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ABSTRACT 

The utilisation of renewable energy resources for electricity and thermal generation is 

extremely important in Ireland due to the lack of indigenous fossil fuel resources and 

the high dependence on imported fossil fuels. The release of environmentally-damaging 

greenhouse gases in the combustion of fossil fuels in electricity and thermal generation 

is also a major issue. In Ireland, the domestic dwelling is recognised as one of the 

biggest energy consumers. The use of renewable energy technologies to provide 

electricity, heating and hotwater can effectively offset the usage of fossil fuels.  

The aim of this research study was to develop a novel technique for the optimised 

integration of grid-connected renewable energy systems to satisfy the entire energy 

demand in a domestic dwelling. The development of the technique was carried out in a 

series of logical stages. In the first stage, a sub-technique for the optimised integration 

of grid-connected micro-renewable electricity generation systems was developed. In this 

sub-technique a detailed and accurate economic analysis of the investigated systems is 

performed. Net present value is the metric employed in the economic analysis and the 

system which achieves the highest net present value is deemed the optimal system. 

High-resolution measured electrical load data and a user-specified renewable energy 

requirement are employed in this sub-technique. The renewable energy requirement is 

the percentage of the household electricity demand that must be satisfied by the on-site 

grid-connected micro-renewable electricity generation system. In the second stage, a 

sub-technique for the optimised integration of grid-connected micro-renewable thermal 

generation systems was developed. In this sub-technique, following the completion of 

the life cycle cost (economic) analysis of the investigated systems, the system which 

achieves the lowest life cycle cost is deemed the optimal system. High-resolution 

measured thermal load data is utilised in this sub-technique. Finally, in the third stage, 

the overall integration technique was then developed by amalgamating these two sub-

techniques. Life cycle cost analysis is again used to determine the optimal system.  

In order to demonstrate their application, the two sub-techniques and overall technique 

were deployed with Irish conditions. The investigated systems were formed from 

commercially-available products; the products selected for this study were six micro 

wind turbines, three solar PV modules, three air source heat pumps and three solar 

thermal collectors. When the sub-technique for the optimised integration of grid-
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connected micro renewable electricity generation systems was deployed under current 

Irish conditions, the optimal system, which meets the 50% renewable energy 

requirement, was a single micro wind turbine having a capacity of 2.4 kW. However, 

this optimal system is not economically viable as its net present value is negative. When 

the sub-technique for the optimised integration of grid-connected micro renewable 

thermal generation systems was deployed, the optimal system was a single air source 

heat pump having a thermal capacity of 14 kW. This optimal system is economically 

viable in comparison with an oil boiler system or an electrical heating system; however 

it is not economically viable compared with a gas boiler system. Finally, when the 

overall integration technique was deployed, the optimal system was a combination of an 

air source heat pump having a thermal capacity of 14 kW and grid supplied electricity; 

however this system is not economically viable in comparison with an economically-

best-performing conventional combination of grid supplied electricity and a gas boiler 

system. The influence of several parameters on the economic performance of the 

investigated systems was also studied with the developed sub-techniques and overall 

technique.  

Due to the wide range of micro-renewable energy generation systems available on the 

market and the broad range of existing capacities, the developed integration technique is 

extremely useful for performing an accurate economic analysis and determining a 

system that is most suitable for a domestic dwelling. 
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NOMENCLATURE 

 

Greek symbols 

α           Temperature coefficient of power, Effect of unpredictable perturbations 

in the radiation attenuators 

α(t) A first-order regression model 

β       Solar absorptance of the PV array, Slope of the surface, Gaussian 

random variables  

γs         Solar azimuth angle 

γ          Azimuth angle of surface 

Γ             Gamma function 

δ            Diurnal pattern strength, Solar declination angle 

δd       Standard deviation of the daily temperature about the monthly-average 

daily ambient temperature 

δd,max Standard deviation of the daily-maximum temperature about the 

monthly-average daily-maximum temperature 

δyr      Standard deviation of the monthly-average temperature about the yearly-

average values 

∆           Number of hours goes into the time period 

∆t  Time step 

ηSTC         PV module efficiency under standard test conditions 

θ          Angle of incidence   

θz         Solar zenith angle 

λ, ε, κ            A function of daily clearness index kd 

ρgr        Ground reflectance 

ζw
2
            Noise variance  
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    Standard deviation of uncorrelated random component 

η            Solar transmittance of any cover over the PV array 

(ηα)/(ηα)n Incidence angle modifier 

(ηα)b/(ηα)n Incidence angle modifier for beam radiation 

(ηα)d/(ηα)n   Incidence angle modifier for sky diffuse radiation 

(ηα)gr/(ηα)n   Incidence angle modifier for ground-reflected diffuse radiation 

(ηα)n       Product of the cover transmittance and the absorber absorptance at the 

normal incidence 

            Hour of peak windspeed, Latitude, Coefficient 

1           First-order autoregressive parameter 

χ            Gaussian random variable  

χ(n)       Value of χ on day n 

ω         Angular displacement of the sun 

ωs          Sunset hour angle 

ω1  Hour angle at the beginning of the hour 

ω2  Hour angle at the end of the hour 

 

Non-Greek Symbols 

a          Autoregressive parameter 

c           Weibull scale parameter 

cave  Average value of c over the time step 

erf    Error function 

f          Modulating factor, Annual inflation rate 

f(t)      Random number drawn from a normal distribution having a mean of zero 

and a standard deviation of one 

fj           Unknown monthly transformation function 
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f(v)  Probability density function of a Weibull distribution 

g[χ]       Gaussian probability density function of χ 

i           Real interest rate 

k           Weibull k factor 

kd         Daily clearness index 

kdl       Lower bound of the range for kd 

kdu      Upper bound of the range for kd 

kh        Hourly clearness index  

khbm  Beam trend component 

khm      Mean hourly clearness index 

km        Monthly clearness index 

km,ave       Monthly average clearness index 

m           Mass flow rate of fluid through the solar collector 

testm   Mass flow rate of fluid under standard test conditions 

n           Mean day of the month, Number of hour in a year 

r1           Autocorrelation factor  

rt        Ratio of hourly global solar radiation on a horizontal surface to daily 

global solar radiation on a horizontal surface 

r
2 

Coefficient of determination 

t             Time 

u        Cumulative probability of χ 

u   Mean of a random variable (u) within the range of between 0 and 1 

u  Standard deviation of a random variable (u) within the range of between 

0 and 1 

v        Cumulative probability of kd 

vi          Wind speed at time step i 
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v           Average wind speed value  

z   Yearly-average wind speed value 

zi         Hour i value 

zi+1       Value for the subsequent hour i+1 

zt         Hour t value 

zt-1       Value for the previous hour t-1 

A           Total aperture area of a solar collector array, Peak-to-peak amplitude of 

the monthly-average diurnal variation of the ambient temperature 

Ai          Anisotropy index 

B           Amplitude for the particular portion of the day 

C         Entire capital cost, Capacitance of the solar thermal collector 

Cp              Specific heat of fluid  

p,testC   Specific heat of fluid under standard test conditions 

CG       Capital grant 

'F           Solar collector fin efficiency factor 

F[kd, dk ]    Cumulative distribution function of kd 

F[α:kd]     Cumulative probability of α 

hkF   Cumulative distribution function of kh 

Fpv       Derating factor 

FR                    Heat removal factor  

FR*(ηα)n  Intercept efficiency 

FR*UL           First order efficiency (heat loss) coefficient 

FR*UL/T     Second order efficiency (heat loss) coefficient  

F(v)  Cumulative distribution function of a Weibull distribution 

Gsc        Solar constant 

Gt        Solar radiation incident on the PV modules in the current hour 
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Gt,NOCT     Solar radiation at which the NOCT is defined 

Gt,STC     Incident radiation at standard test conditions 

H         Hub height of the wind turbine 

Have      Monthly-average daily solar radiation on a horizontal surface 

Ho,ave    Monthly-average daily extraterrestrial solar radiation 

Ho            Monthly-average daily extraterrestrial solar radiation on a horizontal 

surface, Anemometer height 

I          Total solar radiation on a horizontal surface 

Ib         Beam solar radiation on a horizontal surface 

Ibt           Beam solar radiation on a tilted surface collector 

Id         Diffuse solar radiation on a horizontal surface 

Idt        Diffuse solar radiation on a tilted surface 

Igr  Ground reflected radiation on a tilted surface 

Io        Extraterrestrial solar radiation 

IT              Total solar radiation on a tilted surface 

IAM        Ratio of the absorbed radiation at the current incidence angle to the 

absorbed radiation at the normal incidence 

N         Number of days in the month, Number of power (energy) output for a 

year 

P          Revenue generated 

P[kd, dk ]  Generalised probability density function of kd 

R         Replacement cost, Number of hours in the appropriate time period 

Rb       Ratio of beam solar radiation on a tilted surface to beam solar radiation 

on a horizontal surface 

S          Savings made 

SAL    Salvage value 
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T        Project lifespan, Temperature of the fluid in the collector at any point, 

Fluid temperature 

Ta          Ambient air temperature 

Tm   Monthly-average daily ambient temperature 

Tm,max    Monthly-average daily-maximum ambient temperature 

Tave      Average temperature of a solar thermal collector, Median ambient 

temperature for the particular portion of the day 

Ta,NOCT      Ambient temperature at which the NOCT is defined 

Tc          PV cell temperature in the current hour 

Tc,NOCT      Nominal operating cell temperature 

Tc,STC      PV cell temperature under standard test conditions 

Tin           Inlet temperature of a solar thermal collector 

To          Outlet temperature of a solar thermal collector 

TR        Time of replacement occurring 

U          Overall mean wind speed 

Ui        Mean wind speed in hour i 

UL             Overall thermal loss coefficient of the solar collector per unit area 

V         Wind speed at the height H 

V0        Wind speed at the height H0 

X   Mean of the hourly measured power (energy) outputs for a year 

iX   Hourly measured power (energy) output 

Y   Mean of the hourly predicted power (energy) outputs for a year 

iY   Hourly predicted power (energy) output 

Ypv       Peak power output 

Z0        Surface roughness coefficient length 
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CHAPTER 1 

1. INTRODUCTION 

1.1. Background 

The depletion of finite fossil fuel resources and the pollution of the environment are 

major problems worldwide. The first problem has even bigger impacts on Ireland as it 

has a very high dependency on imported fossil fuels. The use of fossil fuels accounted 

for 93.6% of all energy used in 2011. Ireland is heavily dependent on imported fossil 

fuels, oil and natural gas in particular. Imported oil and natural gas accounted for 79% 

of primary energy supply, and Ireland’s overall import dependency was 88% in 2011 

[1]. This extremely high imported-fuel dependency leaves Ireland very vulnerable to 

supply security and price volatility in addition to the environmental concerns raised 

through their consumption. 

The increasing concentration level of greenhouse gases (GHGs) is believed to be a 

major cause of global warming. Carbon dioxide (CO2) is a key component in GHGs, 

and burning fossil fuels to generate energy is one of the main sources of CO2 emissions 

in Ireland. Ireland had committed in the Kyoto Protocol which was an international 

legally binding agreement to reduce GHG emissions. The target for Ireland was to limit 

GHG emissions to 13% above 1990 levels for the period of 2008 to 2012. According to 

the Environmental Protection Agency’s (EPA) published projections for GHG 

emissions, Ireland had met its commitment under the Kyoto Protocol from 2009 

onwards. However, the further reduction of CO2 emission is required and targeted for 

delivering a 20% reduction relative to 2005 level by 2020 [2]. 
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In contrast to Ireland’s lack of fossil fuels, it has significant of renewable energy 

resources. Ireland has one of the best wind resources in Europe given its exposed 

location, and its solar resources are similar to what Germany has, where solar 

technology has been widely used. The biomass growth potential is also extremely high 

compared with other European countries because of the special climate here. 

Geothermal energy is also quite competitive in comparison with other European 

countries. The potential of renewable resources in Ireland has not gone unnoticed. There 

has been a significant increase in renewable energy generation in Ireland, mainly in 

large scale wind generation however. Renewable energy generation has more than 

tripled between 2003 and 2011, from 224 thousand toe (ktoe) to 782 ktoe in absolute 

terms. The Irish government has set its specific targets for energy supply from 

renewable resources and GHG emissions savings in the government white paper 

(published in 2007) ―Delivering a Sustainable Energy Future for Ireland” [3]. The 

white paper projects energy consumption growth at a rate of 0.8% per annum from 2008 

to 2020, although this is subject to change due to the economic recession. The 

increasing energy demand has to be met through consuming less fossil fuels, mitigating 

GHG emissions and through utilising renewable energy more extensively. The proposed 

European Union (EU) target of total final consumption (TFC) from renewable energy 

for Ireland in 2020 is 16%; however Ireland is currently aiming for 13%. The Irish 

government has also set individual targets which renewable energy is targeted to 

contribute to 33% of electricity consumption, 12% of thermal energy and 10% of non-

aviation transport energy. The 2020 target in gross electricity consumption to come 

from renewable energy was extended to 40% in 2008. 

Small-scale or micro-scale renewable energy generation have not yet made a major 

impact in Ireland. The Irish government has been trying to develop this potential 
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market. The direct renewable energy use decreased by 5.6% to 46 ktoe in the residential 

sector in 2011, even with the help of the Sustainable Energy Authority of Ireland 

(SEAI)’s Greener Homes Scheme implementation. The share of renewable energy use 

in households was only 1.6% up to that year.  

The implementation of revised building regulations also helped to effectively reduce 

energy consumption in many new and existing houses. However, most domestic 

dwellings are still totally dependent on external energy supply. The vast renewable 

energy resources here are applicable and suitable for domestic dwellings. Local 

generation avoids a significant energy transmission loss in grid supply. In terms of 

electricity generation, only 35% of the energy input to power stations is delivered as 

electricity to the householder [4]. Local generation can improve the security of energy 

supply, minimise the impact of supply disruption and offset the impact of supply energy 

price fluctuation. For remote areas which have no electricity grid or natural gas 

connection, the micro-renewable energy generation system acts as a decentralised 

supply capable of providing partially or entirely the energy required. Once the cost of 

the installed renewable energy technology has been paid back, the householder can 

benefit from several years of free energy supply until the end of lifespan of the 

technology. This economic benefit for householders could be increased if the Irish 

government’s carbon tax is added on. The use of micro renewable energy generation 

system to generate electricity, heating and hotwater in the domestic applications is an 

important part of renewable energy generation in Ireland.  
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1.2. Research Aim 

The aim of this research is to develop a novel but generally-applicable technique for the 

optimised integration of grid-connected micro-renewable energy generation systems to 

provide the entire electricity, heating and hotwater demand for a domestic dwelling.  

The technique employs economic analysis and can be used for specific case-by-case 

application depending on the weather conditions at the location of the domestic 

dwelling and the energy usage of the dwelling. The technique can be applied in the 

design of a new dwelling, but can also be used to improve the energy supply for an 

existing dwelling.  

The proposed integration technique could be adopted by national energy authorities and 

energy research institutes, e.g. Sustainable Energy Authority of Ireland (SEAI), to 

identify optimal system combinations for domestic dwellings under various different 

scenarios, accounting for local weather conditions, household energy demands and the 

availability of various different renewable energy technologies.  

The optimal system, obtained by applying the proposed integration technique, provides 

valuable information for the individual householder as it suggests the optimal micro-

renewable energy generation system solution on a case-by-case basis.  

1.3. Research Objectives  

The specific objectives of this research are: 

1) To develop a sub-technique for the optimised integration of grid-connected 

micro-renewable electricity generation systems. 
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2) To develop a sub-technique for the optimised integration of grid-connected 

micro-renewable thermal generation systems. 

3) To develop an overall technique, through the combination of the two sub-

techniques, for the optimised integration of grid-connected micro-renewable 

electricity and thermal generation systems. 

4) To deploy the sub-techniques and overall technique to identify the optimal 

systems for an Irish domestic dwelling.       

1.4. Structure of the Thesis 

The thesis is divided into seven chapters and four additional appendices. In Chapter 2, 

the current energy situation in Ireland and the design of an energy efficient dwelling are 

described. In Chapter 3, the existing literature is reviewed and similar studies are 

demonstrated and explained. In Chapter 4, the details of the proposed integration sub-

technique for grid-connected micro-renewable electricity generation systems are 

presented, and the results under current Irish conditions and with realistic parameter 

variations are demonstrated. In Chapter 5, the details of the proposed integration sub-

technique for grid-connected micro-renewable thermal generation systems are 

presented, and the outcomes under current Irish conditions and with realistic parameter 

variations are given. In Chapter 6, the details of the proposed overall integration 

technique for grid-connected micro-renewable energy generation systems are presented, 

the results under current Irish conditions and with realistic parameter variations are 

shown. In Chapter 7, the conclusions are drawn from the results presented, the 

limitations of the proposed integration technique are then discussed and future work is 

recommended. In Appendix A, a detailed description of generating statistically-
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reasonable hourly wind speed data from measured monthly wind speed data is given. In 

Appendix B, a detailed description of generating hourly solar radiation values for a 

tilted solar PV module from provided monthly solar radiation values is shown. In 

Appendix C, a detailed description of generating hourly solar radiation values for a 

tilted solar thermal collector from supplied monthly solar radiation values is presented. 

In Appendix D, a detailed description of generating hourly ambient air temperature 

values from provided monthly ambient air temperature values is given. Finally, in 

Appendix E, a detailed description of the MATLAB model developed and the sample 

codes is presented. 

1.5. Novelty and Contribution 

The work presented in this thesis contributes to the body of knowledge in the optimised 

integration of grid-connected micro-renewable energy generation area, and the novelty 

of this work arises from the facts as follows:  

 The two sub-techniques and the overall integration technique are generally-

applicable and robust to use for any location of interest.   

 The integration technique is specifically designed to take into account the actual 

(measured) domestic hourly electrical load and domestic hourly heating load. 

This is different from other studies where artificial electrical and thermal load is 

used for integration. 

 A renewable energy requirement concept is developed and implemented in this 

study in order to assure the percentage of the household electricity demand that 

must be satisfied by the on-site grid-connected micro-renewable electricity 

generation systems, and to eliminate systems that cannot meet this user-specified 

requirement.   
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 This is a very detailed and accurate economic analysis carried out for four of the 

most commonly utilised micro-renewable energy generation systems in Ireland 

to-date.   

Due to the wide range of micro-renewable energy generation systems available on the 

market and the broad range of existing capacity, the developed integration technique is 

extremely useful for performing an accurate economic analysis and determining a 

system that is most suitable for a domestic dwelling.  

1.6. Publications  

The work presented in this thesis has led to the publication of three directly related and 

one relevant peer-reviewed journal papers in three international journals. Journal paper 

titled as follows: 

 Domestic application of micro wind turbines in Ireland: Investigation of their 

economic viability was published in Renewable Energy in 2011. 

 Domestic application of solar PV systems in Ireland: The reality of their 

economic viability was published in Energy in 2012. 

 Domestic integration of micro-renewable electricity generation in Ireland – the 

current status and economic reality was published in Renewable Energy in 

2014. 

 Rainwater harvesting and greywater treatment systems for domestic application 

in Ireland was published in Desalination in 2010.  
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CHAPTER 2  

2. ENERGY IN IRELAND AND THE 

DESIGN OF AN ENERGY EFFICIENT 

DOMESTIC DWELLING 
 

2.1. Ireland’s Current Energy Consumption 

Ireland’s energy consumption has increased significantly since the early 1990s. The 

total primary energy requirement was 14 million toe (Mtoe) in 2011. Ireland’s TFC 

reached 11.154 Mtoe in 2011, a decrease of 6.7% compared in 2010, but still 54% 

above the 1990 level of 7.249 Mtoe. Oil (6,820 ktoe), natural gas (4,138 ktoe), coal 

(1,264 ktoe), peat (761 ktoe) and renewable energy (831 ktoe) were the dominant fuels 

and accounted for 49.2%, 29.8%, 9.1%, 5.5% and 6.0% of entire energy supply in 

Ireland in 2011 respectively. The share of total primary energy requirement by fuel type 

is shown in Figure 2.1. The energy was used for three modes of applications which were 

electricity generation, heat generation and transportation. The heat generation (4,550 

ktoe) was slightly higher than electricity generation (4,506 ktoe) and transportation 

(4,448 ktoe).  The share of primary energy used by each mode was 33%, 34% and 33% 

respectively.  
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Figure 2.1. The share of total primary energy requirement by fuel in Ireland in 

2011. 

Ireland is one of the most imported fuels dependant countries in the EU. The overall 

energy import dependence decreased 2% points from a peak of 90% in 2006 to 88% in 

2011 due to the greater utilisation of renewable energy, especially for wind energy 

deployment. 

2.2. Ireland’s Current Greenhouse Gas Emission Issues  

Ireland is committed to the Kyoto Protocol (signed in 2007) which is an international 

legally-binding agreement to reduce GHG emissions. The target set for Ireland was to 

limit the annual GHG emissions to 13% above 1990 levels by the period 2008 to 2012. 

This target was achieved in 2009. The annual GHG emissions peaked at 27% above 

1990 levels in 2001. The sources include energy, industrial processes, solvent and other 

product use, agriculture and waste. However, GHG emissions have fallen to 57.34 

million tonnes (Mt) in 2011 which was below the Kyoto limit of 62.84 Mt CO2 

equivalent set for Ireland. The energy-related emissions were the most significant 

source of GHG emissions. The share of GHG emissions from energy-related activities 
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rose from 56% in 1990 to 64% in 2011. The GHG emissions by source in Ireland in 

2011 are shown in Figure 2.2. 

 

Figure 2.2. Greenhouse gas emissions by source in Ireland in 2011. 

The energy-related emissions are also mainly obtained from three modes: electricity 

generation, transport and thermal generation. Electricity was the dominant mode in 

terms of emissions from 2000 to 2006. However transport surpassed electricity to 

become the largest mode from 2006 to 2010 at when thermal generation surpassed 

transport and became the largest mode in terms of GHG emissions. However transport 

overtook thermal generation in 2011 to become the largest emitter of GHGs in Ireland. 

The CO2 emissions from transport were 13.1 Mt and at a rate of 117% higher than those 

in 1990. Even though emissions from both thermal and electricity generation had been 

decreasing since 2006, they still resulted in 12 Mt and 12.8 Mt CO2 emissions in 2011 

respectively.    
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2.3. Ireland’s Residential Sector Energy Status 

The average Irish house consumed 19,875 kilowatt hour (kWh) of energy in total based 

on climate corrected data in 2011. This was comprised of 14,858 kWh (about 79%) in 

the form of direct fossil fuels and the reminder (5,016 kWh) as electricity. The final 

energy use grew by 26% to 2,836 ktoe in the residential sector in 2011. This was taken 

without corrections for climate effects. Oil (1,035 ktoe) was the dominant fuel in the 

residential sector which had a share of 36% in 2011. Electricity (712 ktoe) and natural 

gas (569 ktoe) were the second and third most dominant energy form in this sector 

respectively. Houses built during the 1990s predominantly had oil or natural gas fired 

central heating; in some cases electric storage heating was in use. The household 

electricity usage had also risen from 356 ktoe in 1990 to 712 ktoe in 2011. This increase 

was likely to be the result of increased utilisation of electrical appliances such as 

washing machines, driers, dishwashers, computers and etc. The use of renewable energy 

in the residential sector reached 46 ktoe in 2011, but was still only 1.6% of the overall 

final energy use by fuel in households. The share of TFC by fuel in the residential sector 

in 2011 is shown in Figure 2.3. 
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Figure 2.3. The share of total final consumption by fuel in the residential sector in 

Ireland in 2011. 

In 2011, the total spend by the residential sector in Ireland on energy was approximately 

€3 billion. This high expenditure on energy may be attributed to the significant increase 

in the energy price in this sector. Based on the average household fuel mix in 2011, the 

energy price increased by 37% between 2006 and 2011. However, the average Irish 

household spend on energy fell by 2.3% in the same period and reduced to 

approximately €1,727 per annum. The reasons for this reduction were likely to include 

the economic recession forcing households to reduce their energy spend, energy 

efficiency improvements resulting in lower energy demand, and a greater effort made 

by householders to reduce their energy demand due to environmental concerns. The 

imported electricity price and natural gas price (including VAT at the rate of 13.5%) 

were €0.1928/kWh and €0.05894/kWh in January 2013 respectively. The electricity 

price (including all taxes) for residential householders in Ireland was 5.1% above the 

average of the EU-27 countries at the end of December 2011 and Ireland was ranked the 

eighth most expensive country. However, the natural gas price (including all taxes) for 
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domestic householders in Ireland were 3.9% below the average of EU-27 countries, and 

ranked the 11
th

 most expensive country.  

2.4. Ireland’s Residential Greenhouse Gas Emissions Issues 

The residential sector was the largest CO2 emitting sector in 1990. Energy use in the 

residential sector accounted for more than 35% of overall energy-related CO2 emissions. 

The residential sector started experiencing reductions in energy-related emissions in 

2005. However, the residential sector was still the second largest energy-related CO2 

emitting sector following the transport sector in 2011. The residential sector energy-

related CO2 emissions were 10,479 thousand tonnes (kt) CO2 and accounted for 27% of 

total energy-related CO2 emissions in Ireland in 2007. The share of energy-related CO2 

emissions by sector in Ireland in 2007 is shown in Figure 2.4. 

 

Figure 2.4. The share of energy-related CO2 emissions by sector in Ireland in 2011. 

The average domestic house was responsible for approximately 6.4 tonnes of energy 

related CO2 emissions in 2011. This consisted of 3.9 tonnes CO2 from direct fuel usage 

and the remainder indirectly from electricity utilisation. However, it should be noted 
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that the overall CO2 emissions had reduced by 41% since 1990 and 24% since 2005 

from per average domestic dwelling in Ireland. 

2.5. Ireland’s Domestic Dwelling Energy Consumption 

The electricity consumption of an individual household accounts for approximately a 

quarter of overall energy use. Electricity is mainly used to run electrical appliances 

which can be separated into two categories: traditional appliances such as lighting, 

refrigerator with freezer, vacuum cleaner, washing machine, dishwasher, microwave, 

home computer, television etc and newer appliances such as electric blender, coffee 

machine, game console etc. Electricity may also provide other services to household 

such as hotwater generation and cooking. Electricity can be also utilised in electrical 

storage heaters and electrical instant heater to provide space heating, however this is 

mainly for apartments.    

Domestic electricity demand has been increasing in recent years. One of the main 

reasons for this is the increasing electricity demand for various electrical appliances. 

The increase in electricity demand from digital appliances is the most significant due to 

largely increase in the number of digital appliances, e.g. multiple televisions, laptops, 

game consoles and etc. The increase can be also caused in some domestic dwellings due 

to the householders with higher incomes and those living in newer and larger homes 

who tend to have more electrical appliances and with larger capacities.  However, some 

efficiency gains have been achieved through technical improvements and the labeling of 

appliances by energy usage, for example the introduction of mandatory labeling of 

traditional appliances such as refrigerators and freezers, influences the decision made 

for purchasing and helps reduce in energy demand.   
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The thermal generation in a domestic dwelling consumes roughly 75% of the total 

energy and therefore the method of space heating and hotwater generation is a 

significant factor in energy usage. Central heating systems are mostly utilised for 

providing space heating in Ireland. The proportion of domestic dwellings having central 

heating systems has increased from 52% in 1987 to 97% in 2010. Central heating 

systems are more efficient than individual room heating appliances and/or open fires, 

and therefore, less energy is required to provide the space heating for achieving the 

same level of comfort for householders. Gas or oil fired central heating systems are the 

most commonly installed. Automated control systems such as timers and thermostats 

are also regularly included into central heating systems for the improvement of 

convenience. However, energy usage can be increased through requirement of greater 

convenience and comfort levels in the form of higher temperatures and a move towards 

whole-house heating. Normally, the space heating raises the indoor temperature from 

approximately 8-10
o
C to 18-21

o
C in winter time [5].  

A sharp increase in energy savings per dwelling was observed between 2005 and 2011. 

A number of standout reasons for this recent energy efficiency improvements were 

noted such as: 

 the increased number of new houses built to achieve a higher energy efficiency 

standard and satisfy heating control requirements as specified in the building 

regulations. 

 the existing housing stock were helped to make energy efficiency improvements 

by a number of national residential energy efficiency upgrade schemes offered, 

such as Greener Homes Scheme (ceased in 2011), Better Energy Homes scheme 

and Warmer Homes Scheme. 
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 the decrease in energy use per household included the increasing public 

awareness of the impacts of energy inefficiency on the environment and 

sustainability. 

 the significantly increased energy price. 

The method of hotwater generation is dependent on the central heating system type in 

each domestic dwelling, and the regularity of the use of the central heating system. 

Hotwater is generated regularly during the winter as the central heating system is 

regularly in use. In summer time, hotwater is usually generated from an electrical 

immersion since the central heating is rarely turned on.  

2.6. Ireland’s Renewable Energy Status 

Renewable energy utilisation reached 747 ktoe in Ireland in 2011. Of this, most was 

contributed from wind energy (44%). The contribution of overall energy demand from 

renewable energy was 2.3% in 1990 rising to 6.5% in 2011. Renewable electricity 

contributed 3.7% to the overall energy demand. This was largely due to the continually 

increased contribution from wind energy. According to SEAI, the displacement of fossil 

fuel for electricity generation by renewable energy resulted in an avoidance of an 

estimated €300 million in natural gas imports. The installed generating capacity of wind 

power for electricity generation had reached 1,631 Mega Watts (MW) in 2011 and wind 

energy accounted for over 13% of all electricity generation in 2011. Heat generation 

from renewable energy accounted for 4.8% of all thermal energy demand in 2011. 

There was a growth in the contribution from renewable energy to thermal energy from 

2.6% in 1990 in Ireland. This was mostly due to the increased use of biomass as an 

energy fuel mainly in the industrial sector. There was also an increase in biomass 

utilisation in the residential sector; the residential biomass energy use increased by 9.5% 
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between 1990 and 2011. However, it should be noted that there was also an increase in 

use of geothermal energy, air source energy, and solar thermal energy.  

Ireland is targeted to meet 16% of its overall energy demand from the contribution of 

renewable energy by 2020 under EU Directive 2009/28/EC. In order to achieve this 

overall target, electricity generated from renewable energy will have to achieve 40% of 

gross electricity consumption; the use of biofuel or electricity generated from renewable 

energy will have to make up to 10% of road and rail transport energy usage, and 12% 

thermal (heating and cooling) demands must be generated from renewable energy.  

Renewable energy utilisation can largely avoid CO2 emissions and it was estimated that 

CO2 emissions savings from renewable energy utilisation increased by 337% over the 

period from 1990 to 2011. The total CO2 saving reached 3,640 kt in 2011. Of this 2,144 

kt CO2 was avoided by using wind energy, 633 kt CO2 by using biomass and 346 kt 

CO2 by using hydro energy. 

2.7. Renewable Energy Situation for Domestic Application in Ireland 

2.7.1. The Current Micro Wind Turbine and Solar PV System Market 

Micro-renewable electricity generation has not been very popular in Ireland to-date.  

However, a micro wind turbine is by far the most popular type of system for micro-

renewable electricity generation in Ireland. After a micro wind turbine, a solar PV 

system is the next most popular option. As shown in Figure 2.5, micro wind turbines 

and solar PV systems having total installed capacities of 2,227 kilowatts (kW) and 181 

kilowatts peak (kWp) respectively have been registered with Electric Ireland and 

connected to the Electricity Supply Board (ESB, the state owned utility) distribution 

system (electricity distribution system is referred to as ―the grid‖ throughout this study) 
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in the period from January 2007 to November 2011. These accounted for 91% and 7.4% 

of the total installed capacity (kW) of grid-connected micro-renewable electricity 

generation systems in this period respectively [6]. However, the total capacity of 

installed micro wind turbines and solar PV systems is likely to be higher in this period, 

as a small number of micro wind turbines and solar PV systems are either connected 

with batteries or are waiting to connect to the grid. 

 

Figure 2.5. Breakdown of capacity (kW) of grid-connected micro-renewable 

electricity generation systems installed from January 2007 to November 2011 in 

Ireland. The total installed micro-renewable electricity-generation system capacity 

in this period was 2,448 kW. 

Large capacity (>3 kW) micro wind turbines are the preferred option by householders in 

Ireland to-date. Of the 2,227 kW (428 turbines) of micro wind turbines installed, 

approximately 84% have a capacity greater than 3 kW, as shown in Figure 2.6.  
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Figure 2.6. Breakdown of capacity of grid-connected micro wind turbines installed 

from January 2007 to November 2011 in Ireland. The total installed micro-wind-

turbine capacity in this period was 2,227 kW.  

In contrast to micro wind turbines, small capacity (≤3 kWp) solar PV systems are 

preferred by householders to-date. Of the 181 kWp (78 systems) of solar PV systems 

installed, approximately 81% have a capacity less than or equal to 3 kWp, as shown in 

Figure 2.7.  

 

Figure 2.7. Breakdown of capacity of grid-connected solar PV systems installed 

from January 2007 to November 2011 in Ireland. The total installed solar-PV-

system capacity in this period was 181 kWp.  
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2.7.2. The Current Legislation and Regulations for Installing a Micro Wind 

Turbine and a Solar PV System in Ireland 

Installing a micro wind turbine or a solar PV system in Ireland is usually subject to 

planning permission. However, the installation of these systems may be exempt from 

planning permission if installed under certain conditions. These exemption conditions 

are clearly stated in the Irish government report Planning and Development Regulations 

2007 produced by the Department of Environment, Heritage and Local Government in 

January 2007 [7-9]. The conditions for installing a micro wind turbine are: 

 The turbine shall not be erected on, or attached to, the house or any building or 

other structure within its curtilage.  

 The total height of the turbine shall not exceed 13 metres.  

 The rotor diameter shall not exceed six metres.  

 The minimum clearance between the lower tip of the rotor and ground level 

shall not be less than three metres.  

 The supporting tower shall be a distance of not less than the total structure 

height (including the blade of the turbine at the highest point of its arc) plus one 

metre from any party boundary.  

 Noise levels must not exceed 43 db(A) during normal operation, or in excess of 

5 db(A)  above the background noise, whichever is greater, as measured from 

the nearest neighbouring inhabited dwelling.  

 No more than one turbine shall be erected within the curtilage of a house.  

 No such structure shall be constructed, erected or placed forward of the front 

wall of a house.  
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 All turbine components shall have a matt non-reflective finish and the blade 

shall be made of material that does not deflect telecommunication signals.  

 No sign, advertisement or object not required for the functioning or safety of the 

turbine shall be attached to, or exhibited on, the wind turbine. 

The conditions for installing a solar PV system are: 

 The total aperture area of any such panel, taken together with any other such 

module previously placed on, or within, the said curtilage, shall not exceed 12 

m
2 

or 50% of the total roof area, whichever is the lesser. 

 The distance between the plane of the wall or a pitched roof and the module 

shall not exceed 15 cm. 

 The distance between the plane of a flat roof and the module shall not exceed 50 

cm. 

 The solar module shall be a minimum of 50 cm from any edge of the wall or 

roof on which it is mounted. 

 The height of a free-standing solar array shall not exceed 2 m, at its highest 

point, above ground level. 

 A free-standing solar array shall not be placed on, or forward of, the front wall 

of a house. 

 The erection of any free-standing solar array shall not reduce the area of private 

open space, reserved exclusively for the use of the occupants of the house, to the 

rear or to the side of the house to less than 25 m
2
. 

If the installation of a domestic micro wind turbine or a solar PV system does not satisfy 

these conditions, such as the turbine does not meet the height requirement or the total 

surface area of the solar PV panel is greater than the area stated, it must undergo the 
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planning process, and permission may still be given, However, a roof-top-mounted 

wind turbine does not qualify for exemption from planning permission; it must be 

considered on a case by case basis. 

In order to protect the grid, the maximum export capacity from a grid-connected micro-

renewable electricity generation system is subjected to a limit: 6 kW when the 

connection is single phase and 11 kW when the connection is three phase. However, a 

micro-renewable electricity generation system with a total capacity exceeding the above 

limits can still be connected to the grid once the maximum export capacity is limited to 

6 kW single phase and 11 kW three phase. A micro-renewable electricity generation 

system having a total capacity of 50 kW or less is eligible for connection to the grid 

[10]. 

2.7.3. The Current Financial Support for Exporting Electricity Generated 

from a Grid-Connected Micro-Renewable Electricity Generation 

System 

In general, €0.09 is paid by Electric Ireland to the householder for every kWh of 

electricity exported to the grid from a micro-renewable electricity generation system. 

This price is a standard payment tariff and there is no restriction on the amount of 

electricity exported. Previously there was an additional incentive payment of 

€0.10/kWh for the first 3000 kWh of exported electricity in a year. This payment 

applied for a maximum of five years and was supplied by Electric Ireland in order to 

encourage householders to utilise a micro-renewable electricity generation system [10]. 

This incentive payment was ceased on February 28
th

, 2012. 
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2.7.4 The Current Air Source Heat Pump and Solar Thermal System 

Market 

A large number of micro-renewable thermal generation systems were installed in 

Ireland during the period when the Greener Homes Scheme grant was offered by SEAI. 

The solar thermal system is undoubtedly the most popular type of system for micro-

renewable thermal generation in Ireland. Heat pumps and biomass-type systems are also 

popular options for households. As shown in Figure 2.8, solar thermal systems, heat 

pump systems and biomass systems having total installed numbers of 22,903, 6,029 and 

6,113 respectively have obtained grants from the Greener Homes scheme for systems 

installation, and registered and stored in the Greener Homes scheme database in the 

period from March 2006 to May 2011. These accounted for 65%, 17.12% and 17.35% 

of the total number of installed micro-renewable thermal generation systems in this 

period respectively. However, the total number of installed solar thermal systems, heat 

pump systems and biomass systems is expected to be slightly higher than the number 

shown in this period, as a small number of solar thermal systems, heat pump systems 

and biomass systems did not apply for a grant, and therefore were not registered with 

SEAI. The number of solar thermal systems installed is continuously increasing with the 

help of Better Energy Homes scheme which is also provided by SEAI. The number of 

installed solar thermal system is 9,506 since the start of this scheme in March 2009 until 

December 2013. However, this scheme does not offer grants for other types of micro-

renewable thermal generation systems. The number of these systems installed is 

expected to be small due to the lack of grant support and the adverse impact of the 

economic recession. 
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Figure 2.8. Breakdown of the number of micro-renewable thermal generation 

systems installed from March 2006 to May 2011 in Ireland. The total number of 

installed micro-renewable thermal-generation systems in this period was 35,224. 

ASHPs are not the first choice for a domestic heat pump system installation to-date. The 

number of installed horizontal ground source heat pumps (GSHPs) was greater than the 

number of installed ASHPs during the period in which the Greener Homer Scheme was 

offered; however the number of installed ASHPs was not far from the number of 

installed vertical GSHPs, as shown in Figure 2.9.  
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Figure 2.9. Breakdown of the number of heat pump type installed from March 

2006 to May 2011 in Ireland. The total number of installed heat pumps in this 

period was 6,029.  

During the period of Greener Homes Scheme application, the number of solar thermal 

system was recorded in two phases. In the first phase from March 2006 to July 2007, 

the number of installed solar thermal systems was recorded based on the application of 

the hotwater generated from the solar thermal system, as shown in Figure 2.10. This 

shows that the solar thermal system was mainly used for domestic hotwater application 

only; few systems were installed with the purpose of providing hotwater and heating. 
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Figure 2.10. Breakdown of the number of solar thermal system installed by 

thermal application from March 2006 to July 2007 in Ireland. The total number of 

installed solar thermal system in this period was 5,585. 

In the second phase from August 2007 to May 2011, the number of installed solar 

thermal systems was recorded based on the solar collector type. It can be noted that the 

number of solar flatplate collectors used was slightly greater than the number of solar 

evacuated tube collectors used for domestic application in Ireland, as shown in Figure 

2.11.   
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Figure 2.11. Breakdown of the number of solar thermal systems installed based on 

the type of solar thermal collector used from August 2007 to May 2011 in Ireland. 

The total number of installed solar thermal systems in this period was 17,318. 

2.7.5. The Current Legislation for Installing an Air Source Heat Pump and 

a Solar Thermal System in Ireland 

The installation of an ASHP or a solar thermal system in Ireland can be also exempt 

from planning permission if installed under certain conditions. These conditions for 

installing an ASHP are: 

 The total area of an ASHP, taken together with any other pump previously 

erected, shall not exceed 2.5 m
2
. 

 The ASHP shall be a minimum of 50 cm from any edge of the wall or roof on 

which it is mounted. 

 No such structure shall be erected on, or forward of, the front wall or roof of the 

house. 

 Noise levels must not exceed 43 db(A) during normal operation, or in excess of 

5 db(A) above the background noise, whichever is greater, as measured from the 

nearest neighbouring inhabited dwelling.  
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The exemption conditions for the installation of a solar thermal system are the same as 

for a solar PV system and stated above.  

2.8. Energy Efficient Domestic Dwelling 

Prior to the installation of any micro-renewable energy generation system, the domestic 

dwelling should improve its energy efficiency so that lower capacity electricity and 

space heating generation systems are required while maintain the same convenience and 

comfort for householders. Energy-saving electrical appliances and lighting devices 

should be used to lessen the electricity consumption in a domestic dwelling. 

Improvements in thermal insulation are the most important step towards reducing 

heating demand in a domestic dwelling. Wind is an excellent energy resource, but it 

also has a large influence on a dwelling’s heat loss since heat can be quickly taken away 

from dwelling’s surface by wind. Ireland is one of the windiest parts of Europe, 

resulting in a greater heating loss due to wind compared with other countries. The 

insulation thickness needed depends on the geometry of the house and the amount of the 

internal heating loads required. Thicker insulation implanted can result in less heating 

loss from the dwelling to the surroundings. The insulation materials chosen are also an 

important factor. Materials with a high thermal resistance can enhance the insulation 

performance. For a new dwelling, the insulation should be planned well before building. 

It is very costly to improve at a later stage compared to other components of the house. 

For an existing dwelling, insulation can be added to the walls or roof if none has been 

fitted, or, if insulation is already installed, it can be improved to help the dwelling 

become more energy efficient. The financial support for upgrading the domestic 

dwelling insulation is offered by SEAI through the Better Energy Homes scheme and 

Warmer Homes scheme. Well insulated doors and double or treble glazed windows can 
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also effectively lower the heating requirement in the dwelling. Therefore, a good 

insulation provides the advantage of having a need of a low temperature heating system. 

As a result, a reduction in supplying heat of 1
o
C in internal air temperature may save up 

to 10% of energy consumption. The dampness can make people very uncomfortable, 

but this problem is occurred mainly in under-heated dwellings in winter and is rarely 

observed in well insulated dwellings. It is vital the occupants experience good thermal 

comfort in the dwelling.  

Air leakage is also a major source of heating loss in the house. The abundant wind in 

Ireland has large impacts on houses having poor airtightness. The energy efficient 

dwelling envelope should be extremely air tight to avoid infiltration of cold air. This 

uncontrolled infiltration of air through cracks and gaps in the fabric of houses leads to 

an increase in energy demand for space heating and the cold draught also causes 

occupants’ discomfort. Airtightness should be considered carefully at the design stage 

of a new dwelling construction or an existing dwelling renovation. The barriers 

employed to prevent air leakage should be identified and any gaps between the barriers 

should be sealed. This is of crucial importance to ensure that air leakage is avoided. It is 

equally important to carry them out in the construction phase. Even though good 

airtightness significantly reduces air leakage, the house should not be too airtight. The 

best airtightness level of an energy efficient house should be approximately 0.6 air 

changes per hour (ACH)  by a pressurisation of 50 Pa, resulting in approximately 0.05 

ACH infiltration rate under normal conditions [11]. Good ventilation ensures occupants 

live in a comfortable and healthy environment.  
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2.8.1. Passive Solar Features Applied in an Energy Efficient Dwelling 

Solar energy is used indirectly to produce electricity and hotwater through solar PV 

systems and solar thermal systems respectively. These systems are defined as active 

energy generation systems. However, a passive solar system provides natural heating 

and cooling by using solar energy directly for the dwelling. Passive solar design 

involves the dwelling’s location and orientation, windows’ surface areas as well as the 

correct utilisation of energy efficient windows, shading and thermal mass. A passive 

solar system provides the interior thermal comfort for the occupants whilst reducing the 

requirement of active heating and cooling. It is one of the most cost-effective ways in 

improving the energy performance of a dwelling. Passive solar design also provides a 

better use of natural daylight for lighting purposes. 

2.8.1.1. Passive Solar Heating for Domestic Dwellings 

Passive solar heating as shown in Figure 2.12 presents the most cost-effective way of 

supplying heating to a dwelling. The two elements that are essential in all passive solar 

heating design are the: 

 Selection of high-performance windows and the orientation of the windows area 

to face towards south.   

 Use of high thermal mass materials to construct walls and floors. The heat is 

absorbed and stored in the walls and floors, and released by radiation, 

convection and conduction when the surrounding has cooled down. 

According to research, a dwelling designed using passive solar principles can require 

less than half the heating energy of the same dwelling using conventional windows with 

random window orientation [12]. The standard space heating requirement is 15 kWh/m
2
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annually in a well designed and constructed dwelling employing passive solar 

techniques in the Irish climate. The space heating demand can be reduced by up to 80% 

in comparison with a conventional dwelling in Ireland [13]. 

 

Figure 2.12. Passive solar heating for a domestic dwelling.  

Passive solar heating systems can be separated into four types of system: direct gain, 

indirect gain, sunspace and rock bed. 

 Direct gain - this is the simplest approach and it is the most common used in passive 

solar heating architecture. Sunlight is admitted to the interior space through south 

facing windows and skylights, and then stored as thermal energy. The roof, walls 

and floor are used for solar collection and heat storage by intercepting radiation 

directly and/or by absorbing reflected or reradiated energy. Once the temperature is 

high in the interior space, the thermal storage mass materials will conduct the heat to 

their cores. The stored heat is gradually released when the outside temperature drops 

and the interior space cools in order to reach equilibrium at night. Thermal mass 

plays the most important role in a direct solar gain house. A wide range of heavy 

materials like concrete, rocks, bricks all have high thermal mass. Water contained 
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within plastic or metal containers sometimes can take the place of heavy materials. 

Thermal mass not only causes delays in its response to heat sources such as solar 

gains (known as the thermal lag effect [14]) but also reduces the peaks of the 

temperature swings in the interior space. The effectiveness of thermal storage mass 

depends on its thickness, surface area and thermal properties. High density masonry 

performs well at a thickness of 10 cm to 20 cm, regardless of the location, 

configuration and mass surface area. The mass surface area should be relatively dark 

in colour and located in the dwelling zones which experience direct solar gain. The 

materials should possess high volumetric heat capacity and high thermal 

conductivity. 

 Indirect gain - this design approach uses a mass wall placed between the interior 

space and the sun. There is no direct heating. A dark coloured thermal mass wall is 

usually placed just behind a south facing glazing. The heat is stored or conducted 

through the mass wall to the inside space. The sunlight enters through the glazing 

and is absorbed in the mass wall. The glazing functions to reduce the heat loss to the 

outside. This stored heat is emitted into the interior space when the temperature 

drops. There are three common types of thermal mass wall: 

 The masonry mass wall - this is the simplest mass wall. The wall absorbs 

sunlight radiation, stores the heat and reradiates it to the interior space when it 

cools down. 

 The Trombe-Michel wall - the Trombe-Michel mass wall cannot absorb solar 

energy as quickly as it enters the narrow space between the window area and the 

mass wall. Temperatures in this space can easily become very high. The 

Trombe-Michel mass wall has controllable vents at high and low levels to allow 

convective heat transfer. The heated air rises up due to less density. It flows into 
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the interior space from high level vent. Cool air is drawn into the heating space 

from the low level vent to replace outflow heated air. The air is continuously 

circulated as long as the air entering at the low level is cooler than the air at the 

high level. The vents can be also closed to keep cold air out, then the interior 

space is heated by the thermal mass wall. 

 The water wall - this water wall can be used to replace the masonry wall as 

water has a greater unit heat capacity than masonry materials for a given 

volume. There are no vents at the high and low level of the water wall. Tall 

fibreglass tubes are often used in this application. The principle of operation is 

the same as the masonry wall. The water is heated, the convection process 

quickly distributes the heat throughout the mass, and the wall radiates heat to the 

interior space. 

 Sunspace - a sunspace also known as solar greenhouse has become one of the most 

attractive passive solar features. A south facing sunspace is constructed in front of a 

thermal mass wall exposed to the direct sunlight. The wall is usually at the rear of 

the sunspace and at the front of the primary structure. The sunspace performs its 

passive solar heating function by transmitting solar radiation through its glazing and 

absorbing solar heat on its interior surfaces. Some of the heat is quickly transferred 

by natural convection to the sunspace air as the heat is directly used to maintain a 

suitable temperature in the sunspace. Some sunspaces are operated as a hybrid 

system. A fan is used to transfer heated air from sunspaces to other house spaces. A 

regulator is often used to control the sunspace and interior room temperature. It 

allows the heated air to flow into the interior rooms at appropriate temperatures 

from the sunspace. This is the primary purpose for many sunspace applications. The 

heat can also be absorbed and stored in the thermal mass walls. This is the same 
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principle as indirect gain. The heat stored in the thermal mass walls will be released 

when the interior space or sunspace temperatures drop. The Trombe-Michel wall 

and water wall are popular replacements to conventional masonry walls in this 

application.   

 Rock bed - this is used as an effective and favourite hybrid application in a passive 

solar house. The rock bed is commonly located beneath the source of hot air. It 

absorbs the excess heat in the air in order to reduce the space temperature and 

improve thermal comfort. It is also possible to store heat in the rock bed for later 

use. Hot air flows through the rock bed by natural convection. A convenient 

approach is often used to place the rock bed underneath the floor in the house. The 

rock bed should spread across 75% to 100% of the floor area if the house is located 

in a cold climate, and 50% to 75% in the moderate climates [15]. The distribution of 

heat from the rock bed to the space is entirely passive. The floor temperature only 

needs to be a few degrees above the room temperature. The thermal comfort can be 

improved greatly by keeping the floor temperatures 3-6
o
C above what they normally 

would be. A sunspace can work well with rock bed. The heated air from the direct 

gain is used to charge the rock bed. The heat is used by means of radiation and 

convection to the space from the heated rock bed surface. The rock bed also 

effectively reduces the large temperature swings in the house.  

2.8.1.2. Passive Solar Cooling for Domestic Dwellings 

Natural cooling can be as important as heating in a dwelling. Without a proper natural 

cooling system, a significant amount of energy may be required from air conditioning 

units to handle the peak heat gains and keep the rooms comfortable in the summer. 

However, active cooling is rarely required under the Irish climate since the internal 



Chapter 2 

 

35 

 

temperature of the dwelling seldom becomes too high to be of discomfort for 

householders. Very few dwellings have an air conditioning unit installed. Nevertheless, 

natural cooling using passive solar technique is still important for Irish applications 

especially for occasions when ambient temperature rises to an uncomfortable level. 

The use of effective insulation and overhangs can reduce the heat gain. Movable, tightly 

sealed insulation always work well in the summer as the roof and glazing can be 

covered in order to reduce solar radiation entering the house during the day, thereby 

ensuring that less heat is received in the interior space. The moveable insulation is either 

manually operated or mechanically operated. An automatic timer, a thermostat or a light 

sensitive device is used to drive the motor in the mechanical system to open or close the 

insulation. South facing windows receive the best solar radiation in winter; however 

they also could be the potential source of overheating during summer months. The 

possibility of overheating can be significantly reduced by applying an overhang on the 

roof or on the glazing. The permanent overhang takes advantage of the fact that the sun 

is higher in the summer and lower in the winter. The length of an effective overhang 

should be roughly equal to half the height of the window opening [15]. The overhang 

usefulness can be increased if they are manually adjustable. The adjustable overhang 

can be rolled forwards or backwards to prevent or admit the sunlight entering into the 

house in different seasons. The thermal mass such as masonry walls, floor and water 

walls can act as heat sponges. They absorb heat and slow down internal temperature rise 

in hot days. The thermal mass can be cooled by night-time natural convective cooling 

and/or by using mechanical cooling during off-peak hours. 

Heat can be removed by convective cooling methods in a dwelling. A fan assisted 

convective system is the most commonly used. The interior temperature is lowered by 

exhausting the warmer air through purposely installed high level openings and a fan is 
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used to draw in cooler, replacement air from low level openings. The interior space 

temperature can be also lowered by introducing air through a tube buried a couple of 

meters beneath the dwelling. A fan draws the outside air into the dwelling through the 

tube. This air cools down as it passes through the tube. The heat of entered air can be 

also reduced by a previously cooled rock bed. The rock bed is usually cooled from 

natural convective cooling at night or mechanical cooling at the off-peak time.  

2.8.1.3. Passive Solar Lighting for Domestic Dwellings 

The effective use of passive solar techniques for lighting can sufficiently reduce the 

time of having the electrical lighting turned on, thus decreasing the electricity 

consumption considerably. Sunlight provides natural lighting for daytime interior 

lighting. The general rule for a daylight room is that the glazing area is at least 5% of 

the room floor area. Good natural lighting in a dwelling can be accomplished by having 

high visible-light-transmittance (VT) glazing on the east, west and north façade, and   

large windows facing south. Low-emissivity coatings also help minimise glare while 

offering improved climatic heat gain or loss. 
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CHAPTER 3 

3. LITERATURE REVIEW 

3.1. Overview 

In this chapter, the most recent literature on the integration of micro-renewable 

electricity and thermal generation systems is reviewed. The integration technique for 

each study is explicitly explained. The novelty of these integration techniques is 

presented. Common concepts employed in these integration techniques are identified. 

The most commonly employed/reputable software packages are described and a 

justification is presented for the selection of Hybrid Optimisation of Multiple Energy 

Resources (HOMER) and Transient System Simulation Tool (TRNSYS) as the most 

appropriate software packages for this research. The most recognised and employed 

optimisation approaches for integrating micro-renewable energy generation systems are 

also reviewed and a justification is given for the selection of the iterative approach as 

the most appropriate method for this research.   

3.2. Literature review 

McGowan et al. (2008) presented a study to investigate the feasibility of a renewable 

energy housing development in the United States using wind power and solar thermal 

systems to achieve a net-zero-energy consumption [16]. In this study, the problem, a 

lack of community-scale projects employing on-site renewable technologies (wind 

power and solar power technologies) and energy efficiency measures to successfully 

achieve the goal of net-zero-energy, had been identified. A tool was therefore developed 
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to analyse and compare various system designs for a net-zero-energy house. The energy 

performance and economics of the designs were compared for various sizes of housing 

development which itself depends on the number of houses available for the area 

considered. Seven wind turbine models having a capacity range from 10 kW to 1500 

kW and various types of heating systems were selected for analysis. Hotwater was to be 

generated from a solar thermal system and an auxiliary electrical immersion; if possible, 

space heating was intended to be provided by a solar thermal system, with assistance 

from a single capacity ASHP or GSHP having a fixed coefficient of performance 

(COP), or from an electric resistance heater. Five U.S. cities, one in each of the five 

climate zones based on their wind power potential, were selected for this study. The 

optimal system integration for each city was determined based on economic benefit, 

taking into consideration the wind and solar energy availability, energy prices and state 

incentives. The primary conclusion drawn from this study was that there were cases for 

renewable, net-zero-energy housing development. However these cases were more 

expensive than the deployment of the natural gas heating systems. The key variables 

that affected the economics of net-zero-energy housing were the on-site load, in 

particular the heating load, and the price of energy. On final analysis, when net-

metering programs were applied, the large-scale wind turbines presented greater 

economic advantage than small-scale and medium-scale wind turbines for community-

scale projects. Figure 3.1 shows the prediction method used to obtain the total electrical 

load from a net-zero-energy house. 
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Figure 3.1. A prediction method used to obtain a total electrical load from a net-

zero-energy house. 

Wang et al. (2009) presented a study to investigate the feasibility of a net-zero-energy 

house design in the United Kingdom (UK), and also provide a specific method to 

achieve a net-zero-energy house design in the UK [17]. In this study, two simulation 

software packages (EnergyPlus and TRNSYS) were employed. EnergyPlus simulations 

were employed to perform a building envelope design of an energy efficient house, 

while considering building materials, window sizes and orientations. TRNSYS was 

employed to investigate the feasibility of a net-zero-energy house design objective 

through the integration of a renewable electricity generation system, a solar hotwater 

generation system and an energy efficient heating distribution system under Cardiff 

weather conditions. Prior to the deployment of renewable energy technologies, the 

prospective house design must have achieved the passive house standard. Following 

parametric studies, it was found by this study that the house should be south facing, 

have window to wall ratios of 0.4 at the south façade, 0.1 or less at other oriented 

facades, and have the U value of the external wall to be 0.1 W/m
2
K. Furthermore, the U 

values of the glazing and the roof should be 1.367 W/m
2
K and 0.2 W/m

2
K respectively, 

and the air change rate should be 5 ACH. The solar thermal system was designed to 

provide domestic hotwater. Five varying solar collector areas and four varying mass 
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flow rates of fluid running in the solar circuit were investigated. Two factors were 

considered for selecting the optimal system: solar collector efficiency and solar 

fractional energy savings. A 5 m
2
 solar collector area with a mass flow rate of 20 kg/h 

was selected. Underfloor heating had been demonstrated as the best space heating 

option due to its large heating area and lower temperature requirement. The ASHP and 

GSHP were considered for use with the underfloor heating; the energy consumed by the 

ASHP was 953.2 kWh with the assumption of a COP of 3.0 when providing water at 

40
o
C. The energy consumption would be further reduced if a GSHP was employed, as 

in general GSHP has a higher COP. Micro wind turbines and solar PV systems were 

studied to provide electricity for the net-zero-energy house. Two 2.5 kW wind turbines 

with the hub height of 15 m were selected for this study. A solar PV system with a total 

rated power of 1.32 kWp was also employed. The total annual power output obtained 

from these two renewable electricity generation systems was 7,306 kWh which was 

sufficient to achieve the zero-net-energy house as the total electricity consumption of 

the house was 4,672 kWh. However it is noted that wind turbines generate a 

considerable amount of electricity during all four seasons, solar PV system can only 

produce comparable amount of electricity during the summer. Figure 3.2 shows a 

scheme diagram of a grid-connected renewable electricity generation system employed 

to achieve the net-zero-energy house.  
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Figure 3.2. A scheme diagram of a grid-connected renewable electricity generation 

system. 

Bojic et al. (2011) presented a study to report the investigation of a residential building 

energised by the electricity supplied from a solar PV system and the electricity grid in 

Serbia. In this study, the electricity generated from a solar PV system is either 

consumed by the building or fed to the electricity grid; the grid is used as a form of 

electricity storage. Electricity was utilised to run a GSHP for heating supply, to produce 

hotwater, and to operate lighting and electrical appliances. Three artificial residential 

buildings were investigated, each was designed to minimise the energy required for 

space heating during winter, and also to employ efficient lighting and electrical 

appliances. The first building was a net-negative-energy building where the solar PV 

system only produced sufficient electricity for the heating system. The second building 

was a net-zero-energy building where the solar PV system produced enough electricity 

to meet the entire electrical load. The third building was a net-positive-energy building 

where the south-facing roof of the building was entirely covered by solar PV panels. 

The solar PV system produced more electricity than the building required. The 

investigations were performed using EnergyPlus software package. The energy 

consumed from the building, energy generated from a solar PV system and energy 

purchased from the electricity grid were obtained. The study showed that it is critically 
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important to have a solar PV system connected with the electricity grid. The daily 

energy distribution clearly showed that the electricity grid was required to overcome 

periods of low energy production from the solar PV system. The findings also indicated 

that the quantity of electricity generated by a solar PV system during winter was almost 

one half the quantity produced during summer, on a monthly basis. The payback period 

method was used to make an economic comparison amongst the three buildings. The 

shorter payback was achieved by offering a higher feed-in tariff, charging a smaller unit 

price and installing a large size solar PV array. For better economy, it was also 

recommended that a net-zero-energy building should go forward to become a net-

positive-energy building. Figure 3.3 shows a scheme consisting of the house, its heating 

system and the PV system employed in this investigation. 

 

Figure 3.3. The house, its heating system, and a solar PV system under the 

investigation. 
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Marszal et al. (2011) presented a study in which the life cycle cost (LCC) analysis 

method was used to investigate the cost-optimal relationship between the 

implementation of energy efficient measures and the employment of renewable energy 

technologies [18]. In this study, the extent of energy efficient measures that should be 

taken before renewable energy technologies are applied for a net-zero-energy building 

design was considered. The economic analysis, applied into a multi-storey net-zero-

energy building, was performed in order to identify the cost-effective relationship 

between energy efficiency measures and the implementation of renewable energy 

technologies. The energy demands were considered using the energy performance 

requirement as set by the Danish building regulations for 2010, 2015 and 2020. Three 

alternative energy supply systems were considered: a solar PV system with a solar 

PV/thermal (PV/T) system combined with an ambient air/solar source heat pump; a 

solar PV system with a ground source heat pump; and a solar PV system with district 

heating. Each of the alternative energy supply systems was employed to provide 

electricity, heating and hotwater for the three defined levels of energy demand in the 

building. The LCC (over the lifespan of a building) was evaluated considering the cost 

of investment, operation, maintenance, replacement and demolition. The results 

indicated that, with the intention of building a cost-effective net-zero-energy building, 

firstly the energy usage should be minimised, and thereafter the renewable energy 

generation systems should be employed to offset the remaining energy consumption. In 

this study, a combination of a solar PV system and a GSHP was found to be the cost-

optimal system for the net-zero-energy building in a dense city area. If the cost was less 

important, the combination of a solar PV system, a solar PV/T system and an air/solar 

source heat pump was the most energy efficient solution, and this system also best suits 

cases where a limited area is available for renewable energy systems installation. It was 
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also found that the combination of a solar PV system with district heating was the most 

expensive and the least attractive option due to its high operation and maintenance cost. 

Several sensitivity analyses were also conducted to determine the influence of the price 

of solar PV and solar PV/T collectors, household electricity usage, primary energy 

factors for heating-electricity, real interest rate and lifespan of a building. Figure 3.4 

shows the result of the differences in the LCC between reference case PV-PV/T-HP and 

other alternatives. 

 

Figure 3.4. The differences in the present-value LCC between reference case – PV–

PV/T–HPs and other alternatives. Positive values represent savings and negative 

values represent additional cost. 

Graςa et al. (2011) presented a study to explore the feasibility of solar net-zero-energy 

building systems for a typical single family home in the mild European climate zone 

[19]. The utilisation of solar energy, in the form of electricity and thermal generation, 

were the main focus of renewable energy systems proposed in this study. The impact of 

building envelope design, occupant behaviour and domestic appliance efficiency on the 

final energy demand for two representative house geometries was analysed. The energy 

demand profile of domestic heating and cooling, domestic hotwater and electricity were 
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predicted. Based on this prediction, combinations of renewable energy technologies 

were sized in order to meet all annual energy needs using a dynamic thermal simulation 

tool. The renewable energy technologies considered were a solar thermal system, a solar 

PV system and a heat pump. The solar thermal system was sized to meet the majority of 

the heating and hotwater demand. The heat pump, operated using electricity, was 

employed to provide the deficit heating that the solar thermal system could not supply. 

The design process began with sizing a solar thermal panel area and a storage tank 

volume, then sizing the capacity of a heat pump required for satisfying the deficit 

heating demand. The solar PV systems were then sized to supply the entire electricity 

requirement for the house, including that for the heat pump, on an annual basis. The 

optimal configuration was then identified by performing an economic and 

environmental analysis. From the results of economic analysis, all net-zero-energy 

building solutions were shown to have similar solar thermal systems, i.e. an area of 4 m
2
 

solar thermal collectors and a volume of 300 L thermal storage.  However, the area of 

solar PV panels required to meet the demand of a net-zero-energy building can vary by 

a factor of three and a half, depending on the energy efficiency of the building and the 

electrical appliances used. From the results of this study shown, the initial costs of 

systems that were capable of achieving the net-zero-energy building target were 

significantly greater than the other systems that were unable to meet this target. The 

introduction of a micro-generation government incentive scheme made net-zero-energy 

buildings economically attractive, as the evidence showed that the payback period of 

renewable energy technologies was reduced as a result. Figure 3.5 shows a schematic of 

building energy systems employed in this study. 
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Figure 3.5. A schematic of building energy systems employed in the literature 

study. 

Milan et al. (2012) presented a study to develop a simplified linear, ready-to-use design 

model for optimising a 100% renewable energy supply system for low energy buildings 

in terms of the overall costs [20]. In this study, the continuously increase in the use of 

on-site renewable energy resources in residential household had been noticed, and that 

many houses would be expected to depend solely on renewable sources of energy for 

electricity and thermal generation in the medium term future. Therefore computer 

models that can be used to assess and design energy supply systems for buildings were 

required. However, the current existing models mainly focussed on a national or a local 

scale. A technical engineering approach, based on real system efficiencies and the 

second law of thermodynamics, was applied to develop an optimisation model for sizing 

supply systems in terms of overall costs. In this optimisation approach, linear 

programming was adapted and three design variables (technologies) had been 

considered. These were a solar PV system, a GSHP and a solar thermal system. The 

mathematical representations of the modelling and optimisation were presented in the 

simplified form. Two constraints were applied into this study, they were the total 

electricity supplied from the grid had to be equal to or less than the electricity exported 

back to the grid, and the total surface area of solar PV panels and solar thermal 
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collectors had to be equal to or less than the available south facing roof space. A heat 

storage system had also been considered as part of the overall energy supply system. 

The backup system was strategically designed by adding a safety margin onto the 

supply system dimensions. This model was applied to a case study in Denmark. The 

results indicated that, under the chosen conditions, the optimal configuration was a solar 

PV system combined with a GSHP. This optimal system was around 180% more 

expensive than a conventional system consisting of grid supplied electricity and a gas 

boiler. The very high initial costs of renewable energy systems had been identified as 

one of the major barriers for these technologies to be broadly used. Figure 3.6 shows a 

principle diagram of the investigated energy supply systems.  

 

Figure 3.6. Principle diagram of the investigated energy supply systems. 

Marszal et al. (2012) presented a study to investigate the LCC of different renewable 

energy supply options, and to identify the cost-optimal combination between energy 

efficiency and renewable energy generation [21]. In this study, the utilisation of 

renewable energy technologies to satisfy the energy demand of a net-zero-energy 

building was categorised as on-site options and off-site options. During the study 

period, the on-site option had been recognised as more popular than the off-site option. 
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However, with the number of wind turbine co-operatives, and the limited on-site 

renewable energy supply options available, the off-site renewable energy supply options 

could become a better solution for achieving the net-zero-energy goal. The analysis 

considered a total of seven technology types of which three are on-site options and four 

are off-site options. The three on-site options are: a solar PV system, a GSHP system 

and three micro combined heat and power (CHP) systems driven by three different fuel 

types. The four off-site options are: standalone wind turbine, shares in a wind turbine 

farm, the purchase of green energy from a 100% renewable utility grid, and a district 

heating grid. These renewable energy technologies were integrated into 10 systems in 

order to provide electricity, heat and hotwater for the net-zero-energy buildings. Firstly, 

the energy usage was calculated for a multi-storey residential building located in 

Denmark, which was used as the reference point for a net-zero-energy building. 

Secondly, the renewable energy system components were sized to generate enough 

electricity and thermal energy to offset demand and thus to meet the net-zero-energy 

objective on an annual basis. Finally, the LCC of all combinations were calculated 

based on the buildings’ performance models. The energy efficiency should be 

prioritised for designing a cost-optimal net-zero-energy building if on-site renewable 

energy options were considered, however, it was more cost effective to invest in 

renewable energy technologies than in energy efficiency if off-site renewable energy 

options were considered. In addition, the off-site renewable energy options generally 

had lower LCC than the on-site options. The cost-optimal system selected from the on-

site supply options was the solar PV-micro CHP (biomass) system. Two systems were 

selected from the off-site options since both had the same lowest cost. The two options 

were the share of a wind turbine farm and a GSHP, and the electricity grid and a GSHP. 

These two systems were also the most cost-effective amongst all of the 10 renewable 
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energy supply options considered. Several parameter studies were conducted to 

investigate their impacts on the determination of the cost-optimal combination, such as 

energy cost, PV price and real interest rate. Figure 3.7 shows the results of a total annual 

cost of net-zero-energy buildings for three levels of energy performance requirements 

and the renewable energy supply systems employed. 

 

Figure 3.7. Total annual cost of net-zero-energy buildings for three levels of energy 

performance requirements and the renewable energy supply systems. 

Kapsalaki et al. (2012) proposed a methodology and an associated calculation platform 

which was then used to identify the most economically efficient design solution for a 

residential net-zero-energy building, taking into account the influence of the local 

climate, the indigenous energy resources and the local economic conditions [22]. In this 

study, the economically efficient design, besides being technically effective, was 

recognised to be critically important. There was a need to continuously develop 

methodologies for identifying the best combinations of design variables. These 

methodologies ensure the pre-specified energy and environmental targets are met, while 

also accomplishing either a lowest LCC, a lowest initial cost, or a good compromise 

between the initial cost and the LCC. The analysis model was used to decide the most 
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adequate design solution that lead to a null annual energy balance. The energy demand 

of the dwelling was determined as a function of thermal insulation level, air leakage 

level, ventilation type, window and shading types, glazed area, orientation of the 

dwelling, lighting and electrical appliance usage, domestic hotwater usage and the 

number of occupants. The energy supply options included the heating and cooling 

generation systems, domestic hotwater generation systems, and electricity generation 

systems. These energy generation systems could be either conventional or renewable. 

Local climate data was pre-built in the design model for a number of locations. The 

economic evaluation was performed based on the selected energy demand and energy 

supply options, and the LCC of the design solution was then obtained. The developed 

methodology and model were deployed for a similar detached house, however three 

climates were considered: a cold winter, a mild winter, and a very mild winter but hot 

summer. From the results indicated, there was no trade-off between the LCC and the 

initial cost. A house which had a better economic performance over its life cycle 

generally had a higher initial cost. It was noted that if a greater investment was made on 

enhancing the energy efficiency of the dwelling, this would result in a smaller capacity 

heating and cooling generation system as well as a smaller capacity electricity 

generation system being required. Furthermore, the results also showed that the LCC of 

an economically efficient net-zero-energy building was up to one third less than the 

LCC of an economically inefficient net-zero-energy building. In addition, the results 

showed that the optimal economically efficient design of a net-zero-energy building in a 

mild winter climate can be significantly cheaper than in a climate with a cold winter. 

Figure 3.8 shows the interface of the developed software used to determine the most 

adequate design solution that achieves a null annual energy balance for a building. 
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Figure 3.8. Interface of the developed software used to determine the most 

adequate design solution that achieves a null annual energy balance for a building. 

Walsh et al. (2012) presented a study in which they proposed a model that was capable 

of determining the most appropriate hybrid system for electricity and heating generation 

using indigenous, renewable energy resources in Ireland [23]. In this study, the over 

reliance on imported fossil fuels as the primary energy source for electricity and heating 

generation was identified as a major issue for Ireland. As a result, the nations’ energy 

supply is at risk and the use of fossil fuels leads to climate damage due to the emissions 

of anthropogenic GHGs. A feasibility analysis to investigate the combination of 

available energy generation options was conducted using the HOMER software 

package. Ireland was divided into eight localised regions in order to assess the most 

suitable hybrid energy system for each region depending on the availability of 

renewable energy resources. For electricity and heating generation, the renewable 

energy options considered were wind, solar PV, biomass and hydroelectricity. The non-

renewable energy options considered were diesel, electricity grid and natural gas. The 

total net present cost, cost of energy and the CO2 emissions were the three parameters 
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used to determine the most suitable renewable and non-renewable hybrid system. The 

results indicated that wind energy had the greatest potential for renewable energy 

generation in Ireland since wind energy had been, based on economic investigation, 

selected as a component in the majority optimal hybrid systems. The utilisation of wind 

energy can also make a significant impact on the reduction of CO2 emissions. More than 

half of the electricity generation systems analysed demanded the incorporation of wind 

energy to offset the CO2 emitted from the non-renewable elements. However, due to the 

inherent variability of wind energy, the wind turbines were necessarily grid-connected 

in order to reliably satisfy the electricity and heating demand. The results also showed 

that hydropower generation has a good potential for electricity generation in Ireland. 

However, the employment of solar PV and biomass technologies had been restricted to 

a small number of regions and selected only for stand-alone systems. Figure 3.9 shows 

the results of the grid-connected optimal system determined for each region in Ireland. 
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Figure 3.9. Grid-connected optimal system determined for each region in Ireland. 

Thygesen et al. (2013) presented a study to find the optimal system in terms of cost 

effectiveness while achieving the highest possible solar energy fraction [24]. In this 

study, three solar assisted heat pump systems, used to provide electricity, heating and 

domestic hotwater, were simulated in the programme TRNSYS. The three systems 

were: a GSHP in combination with a 5.19 kWp solar PV system, a GSHP system in 
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combination with a solar flat plate collector system, and a GSHP system in combination 

with a solar flat plate collector system and a solar PV system. The heat pump was 

dimensioned for monovalent operation that was able to supply 100% of the building 

heating load. There were also three types of metering schemes introduced which were 

instantaneous metering, daily metering and monthly metering. For an instantaneous 

metering scheme, the electricity generated from a solar PV system had to be used at 

once in the building, otherwise the surplus electricity had to be exported to the grid and 

sold. However, for the daily metering and monthly metering scheme, the generated 

electricity from a solar PV system for a whole day or a month was settled against the 

building electricity demand at the end of the day or the month, therefore the occupants 

only pay for the net electricity purchased. In these cases, the electricity grid effectively 

acted as a storage device. The solar energy fraction and economic analysis of the 

considered systems were carried out based on the energy demand predicted for a 

building with four occupants and with the Swedish climate. The three main energy 

demands in the building were the household electricity, domestic hotwater and space 

heating, and heat recovery ventilation. The results showed that a GSHP in combination 

with a solar PV system was the most energy and cost effective solution when 

considered in conjunction with a monthly metering scheme. The system consisting of a 

GSHP and a solar thermal system was unprofitable, and also had a low solar electricity 

fraction (5.7%). The third combination consisting of all three technologies achieved a 

relatively high solar energy fraction, however was not profitable. Figure 3.10 shows the 

schematic of three alternative system combinations employed in this study.  
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Figure 3.10. Main components of the systems considered. Alternative 1 was a 

GSHP and a solar PV system; alternative 2 was a GSHP and a solar thermal 

system and alternative 3 was a combination of alternatives 1 and 2. 

3.3. Review of Software Packages for Conducting Energy Performance 

Simulation of Renewable Energy Systems  

There are a number of software packages available for simulating the performance of 

renewable energy systems. A general review of these software packages was carried 

out. A comprehensive review was conducted of six of the most commonly 

employed/reputable packages. These software packages are as follows: RETScreen, 

Hybrid 2, EnergyPLAN, iHOGA, HOMER and TRNSYS. Following the completion of 

the review, HOMER and TRNSYS were chosen as the most appropriate packages for 

employment in this research. The software packages reviewed are as follows: 

 RETScreen is developed by the Ministry of Natural Resources, Canada for 

evaluating the energy performance, financial and environmental costs, benefits 
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and risks of various renewable energy technologies for many locations around 

the world [25]. Fundamental to RETScreen is a comparison between a base case, 

typically a conventional technology, and a proposed case, typically a renewable 

energy technology. The costs of the proposed case that are in excess of those for 

the base case is the main concern for RETScreen rather than the absolute costs 

[13]. RETScreen has a global climate database of more than 6,000 ground 

stations (solar radiation and temperature data for a year) and energy maps (i.e. 

wind maps). It also has a product database which contains solar-photovoltaic-

panel and wind-turbine details. RETScreen can be applied to any energy system 

ranging from an individual project to a global application. There are a number of 

worksheets for performing detailed project analysis including energy modelling, 

cost analysis, emission analysis, financial analysis, and sensitivity and risk 

analysis [26].   

 Hybrid 2 is developed by the Renewable Energy Research Laboratory (RERL) 

at the University of Massachusetts, USA with support from the National 

Renewable Energy Laboratory (NREL) [25]. This software uses statistical 

methods to account for inter time step variations and can predict the 

performance of various renewable energy systems as well as performing detailed 

economic analysis. Hybrid 2 has four main components: the Graphical User 

Interface (GUI), the Simulation Module, the Economics Module and the 

Graphical Results Interface (GRI). Projects are constructed in four steps: an 

organised structure is maintained in the GUI; simulations are run and input 

errors are checked in the Simulation and Economics Modules; and detailed 

graphical output data is viewed in the GRI.  
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 EnergyPLAN is developed by Aalborg University, Denmark [27]. The main 

purpose of this tool is to assist in the design of national or regional energy 

planning strategies by performing energy-system simulations intended for heat 

and electricity supply from conventional and renewable energy generation [28]. 

EnergyPLAN is a deterministic input/output tool. The general inputs are 

demands, renewable energy sources, energy station capacities, costs, and 

regulation strategies for import/export and excess electricity production [29]. 

The outputs given are energy balances and resulting annual productions, fuel 

consumption, import/export of electricity, and total costs including income from 

the exchange of electricity. EnergyPLAN has been widely used to analyse large-

scale renewable energy projects and small-scale combined heat and power 

plants, and has also been used to set up renewable energy strategies for 

sustainable development.  

 iHOGA is developed by the University of Zaragoza, Spain. Multi or mono 

objective optimisation can be performed and a genetic algorithm is employed in 

iHOGA for optimum sizing of hybrid energy systems including solar PV, wind 

turbines, fuel cells, hydrogen tanks, storage systems and fossil-fuel-based 

generating systems. iHOGA is also able to perform sensitivity analyses with a 

relatively low computational time. The main functions of iHOGA are to 

optimise the slope of solar PV panels, calculate life cycle emissions, and also to 

allow the carrying out of probability analyses. iHOGA also provides the energy 

purchase and selling option, stores the component database and sets the 

parameter constraints.  
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 HOMER is developed by the NREL. HOMER has been downloaded by over 

80,000 people in 193 countries to-date. HOMER may be adopted to analyse and 

optimise the performance of both stand-alone and grid-connected power 

generation systems with any combination of wind turbines, solar PV arrays, run-

of-river hydro generators, biomass generators, internal-combustion-engine 

generators, fuel cells, batteries and hydrogen storage. The analysis and 

optimisation procedures take the component costs, resource availability and 

manufacturers’ data into account to produce a list of feasible configurations 

which are sorted by net present cost. A variety of tables and graphs can also be 

generated to fully evaluate individual configurations based on both their 

technical and economic merits. These tables and graphs can also be employed to 

compare and contrast different configurations against one or another and can be 

exported from HOMER to allow external post-processing. Analyses are 

generally performed on an hourly basis for a year; however the simulation time 

step can be adjusted in HOMER to as short as one minute if required. HOMER 

can also incorporate input variables, such as resource availability and load size, 

to perform a sensitivity analysis.  

 TRNSYS is developed by the Solar Energy Laboratory (SEL) in the University 

of Wisconsin, USA. The TRNSYS software package consists of many 

subroutines that model sub-system components. The mathematical models of the 

system components are given in terms of their ordinary differential or algebraic 

equations. TRNSYS is an extremely flexible, graphical-based package which 

also has the capability of interconnecting system components in any desired 

manner, solving the subsequent differential equations and facilitating 
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information output in various formats. The entire problem of system simulation 

reduces to a problem of identifying all of the individual components that 

comprise the particular system and then formulating a general mathematical 

description of each. Two parts, i.e. the kernel and the library, are then used to 

carry out the analysis. The kernel is used to process the input file and then solve 

the system based on the selected solution method and convergence criterion; the 

library is used to store the mathematical components, and these components can 

be updated or modified as required. TRNSYS is very popular for conducting 

analyses of solar thermal systems, low energy buildings, HVAC systems, 

renewable heating generation systems (i.e. ASHPs and GSHPs), cogeneration 

and fuel cells etc.  

The reasons HOMER was chosen for predicting the performance of micro-renewable 

electricity generation systems over alternative software packages in this research are as 

follows: 

 It has been used extensively in previous renewable-energy-system case studies, 

results from which have been widely published in international peer-reviewed 

journal articles [30-45]. 

 It has been tested by comparing generated results of case studies with results 

from alternative software packages [46-48]. 

 It works particularly well with small-scale, renewable-based energy generation 

systems [49]. 

 It provides a detailed explanation of the various input parameters that are 

required for carrying out a renewable energy system analysis. 

 It can import weather and/or load data with various time steps. 
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 The developers offer both comprehensive training courses and long-term 

technical support.  

 It is continuously updated with new features. 

The reasons TRNSYS was chosen for predicting the performance of micro-renewable 

thermal generation systems over alternative software packages in this research are as 

follows: 

 It has been used extensively in previous studies [15, 50-58]. 

 It has been validated against experimental measurements in previous studies [59-

68]. 

 It can analyse single-project, local community or island energy systems. 

 It is capable of simulating all thermal and renewable generation except nuclear, 

wave, tidal and hydro power. 

 It is able to perform analyses with an extremely small time-step. 

 It is possible to add user-specified mathematical tools and components. 

 It has the ability to interface with other simulation programs, such as MATLAB 

and EXCEL.  

 It provides a comprehensive mathematical description and explanation for each 

of the included components. 

 It offers a number of component options for the same type of technology.  

 The developers offer long-term technical support. 

 It is continuously updated and improved upon with new features been added. 
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3.4. Review of the Optimisation Approaches for Integrating Micro-

Renewable Energy Generation Systems 

There are a number of optimisation approaches that could be adopted to perform the 

integration of grid-connected micro-renewable energy generation systems. A general 

review of these optimisation approaches was carried out. A comprehensive review was 

conducted of eight of the most commonly adopted/reputable approaches. These 

optimisation approaches are as follows: Artificial Neural Network, Simulated 

Annealing, Tabu Search, Evolutionary Algorithm, Genetic Algorithm, Swarm 

Intelligence, Particle Swarm Optimisation, and Iterative Optimisation. Following the 

completion of the review, Iterative Optimisation was chosen as the most appropriate 

approach for employment in this research. The optimisation approaches reviewed are as 

follows: 

 An Artificial Neural Network (ANN) is inspired by biological neuron systems 

[69]. A ANN consists of units, called neurons, and interconnections among 

them. After specially training on some given data set, A ANN can make 

predictions for cases that are not in their training set, due to its pattern 

classification capability. The trained ANN provides extremely fast solutions, and 

it can accommodate new patterns or new operating conditions by generalising 

training data. Input and output data are fundamental in a ANN because they 

convey the necessary information to discover the optimal operation point. A 

target response to input data, set as the error information, must be fed back to the 

system, and then the system parameters can be adjusted. This process is repeated 

until the performance is considered acceptable. A ANN may not always work 

well because it may suffer from problems of underfitting or overfitting. These 
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problems are related to the accuracy of prediction. In fact, if a network is not 

complex enough, there may be a simplification of the rules to which that data 

obey, and this is called underfitting. On the other hand, the case of overfitting 

happens if a network is too complex; this may interfere with the process. The 

quality of prediction after training is deteriorated in both cases. The problem of 

premature convergence is also critical for a ANN, and another weak point of this 

approach is that the given data may not cover a significant portion of the 

operating conditions [70]. 

 A Simulated Annealing (SA) algorithm, developed based on the annealing 

process is to relax the system to a state with a minimum free energy, is used to 

solve complicated combinatorial optimisation [71]. The name is taken from the 

analogy with the optimisation process corresponding to the energy function and 

the state of statistical physics. In a large combinatorial optimisation problem, an 

appropriate perturbation mechanism, cost function, solution space and cooling 

schedule are required in order to find an optimal solution with a SA. The 

algorithm used in SA presents an approach similar to hill-climbing; however it 

occasionally accepts solutions that are worse than the current one. The 

probability of such acceptance decreases with time. The cost function with a 

smoothing strategy enables SA to escape more easily from local minima and to 

reach the optimal solution rapidly [72]. 

 A Tabu Search (TS) algorithm is basically a gradient-descent search with 

memory. The memory stores a number of previously visited states along with a 

number of states that might be considered unwanted. This information is placed 

in a tabu list. The definition of a state, the area around it and the length of the 
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tabu list are important design parameters. Aspiration and diversification are the 

two extra parameters often added into these tabu parameters. All of the 

neighbouring states to the current state may also be included in the tabu list; 

however this becomes an obstacle to the optimisation. In order to overcome this, 

aspiration is used and this means the selection of a new state; moreover 

diversification adds randomness to this search. If the TS is not converging, the 

search is reset randomly using diversification and to avoid local optima, and the 

repetition of recently made moves is not allowed [73]. 

 An Evolutionary Algorithm (EA) is a method that exploits ideas of biological 

evolution, such as reproduction, mutation and recombination to find the solution. 

An EA applies the principle of survival, as referring to a biological environment, 

on a set of potential solutions to produce gradual approximations to the 

optimum. The consequence of reproduction, mutation and crossover is the idea 

of evolution. A new set of approximations, often called the fitness function, is 

created by selecting individuals according to their objective function and 

breeding them together using operators inspired from genetic processes. This 

process leads to the evolution of populations of individuals that are better suited 

to their environment than their ancestors. The steps taken to perform the 

evolution are: initialise and evaluate the initial population, perform competitive 

selection, apply genetic operators to generate new solutions, evaluate solutions 

in the population, and then repeat the steps from ―perform competitive selection‖ 

until some convergence criterion is satisfied. Evolutionary approaches can differ 

from one to another in the details of their implementation and the problems 

applied. Their main common traits are based in the survival set of potential 
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solutions and the evaluation of the goodness of a certain objective function. The 

fitness defines the improvement of the algorithm, as the fitness function is 

responsible for assigning quality measures and is the evaluation point of the 

process [74]. 

 A Genetic Algorithm (GA) is a search algorithm based on natural selection and 

genetics. The solution search is built in the form of number strings, usually 

binary. The features of a GA are different from other search techniques in 

several aspects. Firstly, the algorithm is a multi-path algorithm that searches for 

peaks in parallel and this reduces the possibility of local minima trapping. A GA 

works with a coding of parameters rather than the parameters themselves. The 

coding of a parameter will help the genetic operator to evolve from the current 

state to the next state with minimum computations. A GA also evaluates the 

fitness of each string to guide its search instead of the optimisation function. 

There is no need for the computation of derivatives or other auxiliary functions, 

as the GA only needs to evaluate objective function (fitness) to guide its search 

[74]. A GA is a very efficient technique to approximately solve many non-linear 

combinatorial optimisation problems having integer variables. Nevertheless, the 

main deficiency of a GA is the randomness involved in the search process [75]. 

 A Swarm Intelligence (SI) is an artificial intelligence approach based on the 

study of the behaviour of collective self-organised systems. An Ant Colonies 

Optimisation (ACO) is one of the main SI techniques applicable to power 

systems [76]. An ACO uses artificial ants to build solutions by moving on the 

problem graph, and changing it so that future ants are able to build better 

solutions. Artificial ants cooperate to find the solution of a combinatorial 
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optimisation problem by exchanging information via pheromone deposited on 

artificial paths. This algorithm counts on discrete time steps and memory 

allocation of the positions occupied by artificial ants. The solution quality is 

evaluated through artificial ants’ trails and the shortest route determines the best 

solution [77]. 

 A Particle Swarm Optimisation (PSO) is for problems in which a best solution 

can be represented as a point or a surface in an n-dimensional space. A PSO 

establishes a system that is initialised with a population of random solutions. 

Unlike other algorithms, however, each potential solution (a particle) is also 

assigned a random velocity and then is flown through the problem hyperspace. 

The concept of individual learning and information transfer based on human 

characteristics is employed in a PSO algorithm. Each individual particle learns 

and transfers information by exchanging past experiences with other particles. A 

PSO has been found to be extremely effective in solving a wide range of 

engineering problems, since it can handle both discrete and continuous variables 

[78]. The main advantages of swarm intelligence techniques are that they are 

impressively resistant to the local optima problem, are simple to implement, and 

can solve problems in a short simulation time [79]. 

 An Iterative Optimisation approach compares the current solution with the 

previous optimal solution and, if the current solution is better than the previous 

optimal solution, it becomes the new temporary optimal solution. Alternatively, 

if the solution is worse than the previous optimal solution, it is simply discarded. 

This iterative process is repeated until the last solution is obtained and compared 

with the optimal solution. At this point, the overall optimal solution is 
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determined. Although the Iterative Optimisation approach requires more 

computational time than the more complex intelligent optimisation approaches, 

it is able to avoid common issues, such as the solution becoming stuck at the 

local minima/maxima, and is also guaranteed to identify the optimal solution. 

Furthermore, the Iterative Optimisation approach has been widely adopted in 

previous studies of renewable energy technologies, results from which have 

been presented in the literature [80-89]. 

3.5. Summary 

The developed integration techniques, presented in various studies, for micro-renewable 

electricity and thermal generation systems are reviewed in this chapter. The explanation 

of each integration technique is given, and the novelty of it is stated. The identification 

of the general concept applied for these integration techniques is presented. The most 

recognised and utilised software packages are described and a justification is given for 

the selection of HOMER and TRNSYS as the most appropriate software packages for 

this research. The most recognised and employed optimisation approaches for 

integrating micro-renewable energy generation systems are also reviewed and a 

justification is given for the selection of the iterative approach as the most appropriate 

method for this research. In the next chapter, a novel sub-technique of grid-connected 

micro-renewable electricity generation integration is presented. 
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CHAPTER 4 

4. OPTIMISED INTEGRATION OF 

GRID-CONNECTED MICRO-

RENEWABLE ELECTRICITY 

GENERATION SYSTEMS 

4.1. Overview 

In this chapter, a sub-technique for the optimised integration of grid-connected micro-

renewable electricity generation systems is presented. The chapter is split into five 

stages. In the first stage, the domestic household electrical load is accurately generated. 

In the second stage, the technology of micro wind turbine is reviewed, the methodology 

of statistically generating hourly wind speed values is presented, and the methodology 

of obtaining hourly power outputs of a micro wind turbine is then presented. In the third 

stage, the technology of a solar PV system is reviewed, the methodology of accurately 

generating hourly solar radiation values is described, and the methodology of obtaining 

hourly power outputs of a solar PV module is then given. In the fourth stage, a sub-

technique is developed to optimised integrate the selected commercially-available micro 

wind turbines and solar PV systems. Finally, in the fifth stage, the results obtained from 

applying this technique for current Irish conditions and parameters studies are analysed 

and discussed.  
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4.2. Introduction 

The rapid depletion of fossil fuel resources on a worldwide basis has necessitated the 

urgent employment of renewable energy to cater for future energy demand [90]. The 

utilisation of renewable energy is even more important for Ireland due to the lack of 

indigenous fossil fuel resources. Power generation in Ireland is mainly dependent upon 

imported fossil fuels. However Ireland has set the target of 40% electricity consumption 

from renewable energy by 2020 [91]. Ireland has a number of renewable energy 

resources available such as wind, solar, biomass, geothermal, hydropower, wave and 

tidal energy which can be exploited to meet the target set [23]. Wind and solar energy, 

which are clean, inexhaustible and environmental-friendly, are considered excellent 

power generating sources [92]. However, the disadvantages that prevent wind and solar 

energy been extensively used are their unpredictable nature and dependence on weather 

and climatic changes; solar also depends on rotation of earth (day/night). For domestic 

applications the variation of wind and solar energy may not match with the temporal 

distribution of the household electrical load. Fortunately, these problems can be 

partially or wholly overcome by integrating the two sources in a proper combination to 

form a hybrid system, using one source’s strength to overcome the weakness of the 

other [93]. The utilisation of both wind and solar energy allows an improvement in the 

reliability of the energy supply and the economic viability by avoiding design over-

sizing. However, the optimum design of a hybrid-energy system can be very 

complicated, with increased complexity in comparison with a mono-energy system.   

In recent years, a number of different techniques for analysing the integration of hybrid 

wind and solar PV electricity systems have been presented in the literature. Hoicka et al. 

developed a technique to analyse the complementarity of integrated wind and solar PV 
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electricity generation from geographic dispersion and power reliability aspects for 

Ontario, Canada [94]. Essalaimeh et al. developed a technique to investigate the 

applicability of a combined wind and solar PV electricity generation system for heating 

and cooling in urban areas of Amman, Jordan [95]. Arribas et al. developed a procedure 

to evaluate the performance of a hybrid wind and solar PV electricity generation system 

and applied this procedure for a case study in Soria, Spain [96]. With the introduction of 

an exported electricity tariff in Ireland in 2009, the number of grid-connected micro-

wind and solar PV electricity generation systems has increased significantly in recent 

years. Walsh et al. conducted a study to investigate the renewable energy options 

available on a regional scale in Ireland [23]. This study also presented an overview on 

the most suitable renewable and non-renewable hybrid energy systems for each region. 

However, an investigation of the economic viability of integrated micro-renewable 

electricity generation systems for domestic applications in Ireland has not been carried 

out to-date, something of critical important for the individual homeowner. It is very 

important for a homeowner to not only be aware of the different types of micro-

renewable electricity generation systems but also of the optimal system for each 

individual case.  

This chapter presents a sub-technique for the optimised integration of a grid-connected 

mono/hybrid micro-renewable electricity generation system consisting of a micro wind 

turbine and/or a solar PV system. A single micro wind turbine or a single solar PV 

system forms a mono system; a combination of both forms a hybrid system. The 

integration technique, generally applicable but deployed here for Ireland, takes into 

account technical and economical constraints (e.g. renewable energy requirement and 

maximum export capacity) and guidelines (e.g. exemption conditions for planning 

permission and exported electricity tariff). Net Present Value (NPV) is used to identify 
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the optimal system in this integration technique and is calculated from the hourly power 

outputs of the micro-renewable electricity generation system and high-resolution 

(hourly) household electrical load data. Realistic hourly power outputs for a year from 

the analysed micro wind turbines and the analysed solar PV systems are obtained from 

accurately predicted hourly wind speeds and hourly solar radiation values respectively 

by applying minimum weather data. The hourly household electrical loads for a 

complete year are calculated using an average annual household electrical load and an 

annualised electrical load profile. The predicted system performance and the obtained 

economic results are accurate and reflect the real-life situation of an actual installed 

system. The chapter also demonstrates the modification in the system configuration 

when realistic changes (economical, electricity consumption and weather conditions) 

are made.  

4.3. The Generation of Hourly Household Electrical Load 

In this integration technique, high-resolution (hourly) household electrical load data is 

required. However, the exact hourly household electrical load data is very seldom 

available. Therefore, a procedure is established to generate the hourly household 

electrical loads. This procedure, implemented in Microsoft Excel 2007, requires two 

items of information: 

 An average annual household electrical load. 

 An average annualised electrical load profile (ratio of hourly to yearly electricity 

consumption for a complete year). Generally, on average, electricity 

consumption is higher in winter than summer due to additional usage of 

electrical appliances and lighting devices in Ireland [97]. 
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The 8,760 hourly household electricity load values, in kWh, can be obtained by 

multiplying the average annualised electrical load profile by the average annual 

household electrical load. Shown in Figure 4.1 are examples of generated daily 

household electricity load profiles for four days (one for each season) in the year using 

an annual electrical load of 5,016 kWh (value for an average house in Ireland in 2011 

[98]) and an average annualised electrical load profile provided by ESB Networks for 

2011.  

 

Figure 4.1. Example of generated hourly electrical loads for four days in Ireland. 

Alternatively, hour-by-hour household electrical loads can be artificially generated by 

HOMER [9]. An hourly electrical load profile for one day (one set) in a year is the 

minimum requirement. Then, HOMER is capable of synthesising 8,760 hourly electrical 

load values for an entire year by using this hourly electrical load profile and adding 

random variability parameters (day-to-day, time-step to time-step). HOMER is able to 

take a maximum of 24 sets of hourly electrical load values consisting of two sets of 
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values for a weekday and a weekend for each month from January to December. In this 

case, the seasonal variation can be seen from the generated 8,760 hourly electrical load 

values. However, there is no recognition of any special events, e.g. holiday periods 

(Christmas, Easter), bank holidays and summer holidays. 

4.4. Micro Wind Turbines 

4.4.1. Technology Review of Micro Wind Turbine 

The electricity produced from wind energy is one of the most cost effective from 

renewable energy. Ireland has an exceptional wind energy resource. Following the large 

wind generation development, connection to the ESB grid has become a major issue as 

the wind projects have to compete for access to the network. The capacity of the 

network is very limited in many places where the wind resources are the best. The 

employment of small-scale and micro-scale wind systems ensures best use of wind 

energy in the Irish windy climate. 

Large-scale wind turbines are those rated above 100 kW. Small-scale wind turbines are 

those rated between 100 kW and 5 kW, and micro-scale wind turbines are those rated at 

less than 5 kW [99]. Turbines with ratings from 0.5 kW to 6 kW are the most suitable 

for domestic installation in Ireland. Typically, a 1 kW turbine has a rotor diameter of 

1.75 m, a 2.5 kW turbine has a diameter of 3.4 m and a 6 kW turbine has a diameter of 

5.6 m.  

Wind energy conversion systems depend on either aerodynamic drag or aerodynamic 

lift; modern wind turbines are predominantly based on the aerodynamic lift [100]. These 

devices utilise rotor blades that interact with incoming wind. Therefore, the resulting 

force from the rotor blades intercepts the airflow and consists of a force component 
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which is perpendicular to the drag. As Figure 4.2 shown that, the lift force is a multiple 

of the drag force and it is perpendicular to the direction of the airflow that is intercepted 

by the rotor blade the leverage of the rotor, it causes the necessary driving torque.  

 

Figure 4.2. Aerodynamic principles of wind turbine capture wind energy [101]. 

Generally, a wind turbine comprises five main components which are [102]: 

 rotor blades 

 transmission including pitch control, hub, mounting, main shaft, bearings and 

gear box  

 generator, electronic controls and cables  

 tower including yaw  

 foundation  

However, there is an important difference between micro-scale and large-scale wind 

generators. The micro-scale wind systems as shown in Figure 4.3 are generally direct 

drive, the moving blades of the turbine turning the generator directly. Large-scale wind 
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turbines usually have a gearbox that matches the slowly turning rotor shaft to the 

generator. There are several existing mechanisms used to point the wind turbine towards 

the wind direction or to move away from the wind in case of strong wind speeds. For a 

micro-wind turbine, the rotor and the nacelle (containing the transmission system and 

generator) are oriented into the wind with a tail vane.  

 

Figure 4.3. Domestic wind generation systems [103]. 

Like large-scale wind turbines, the micro-scale wind turbines fall into two categories: a 

horizontal axis wind turbine (HAWT) and a vertical axis wind turbine (VAWT). The 

HAWT, as shown in Figure 4.4, has its rotating shaft parallel to the ground. Two or 

three rotor blades are the most commonly used, as a wind turbine with only two or three 

blades has a high tip speed ratio with a low starting torque. Once the wind speed reaches 

the cut-in speed, these wind turbines could be started. The advantage of achieving a 

high tip speed ratio is that it allows the use of a smaller, lighter gearbox to attain the 

required high speed at the drive shaft of the power generator. Currently, the three-

bladed wind turbine dominates the market. It has a lighter top compared with a VAWT. 

This results in a reduction in the weight of the hub, nacelle and tower structure, 

therefore the entire supporting structure has a lower cost. It is also attributed a better 
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visual aesthetics with lower noise level than a two-bladed wind turbine. There is a broad 

range of materials used for micro-wind turbine blade production, including aluminium, 

steel, wood epoxy and glass-reinforced plastic. The two last materials are the most 

commonly deployed as they have the best combination of strength, weight and cost. It is 

critically important to keep nacelle weights to the minimum, as the weight of a wind 

turbine has a strong influence on its overall cost. The HAWT is generally ground-based 

and mounted on a mast nearby the house. The energy captured by wind turbines is 

highly dependent on the local average wind speed. Most parts of Ireland have an annual 

average wind speed exceeds 5 m/s [104]. There may be an enhanced power output 

delivered from a wind turbine due to the increased wind speed at height, therefore a 

wind turbine mounted on a mast generally receive wind at the best possible mean speed. 

The wind turbine is also more likely to be above surrounding obstacles as turbulence 

around other dwellings or objects can have adverse effect on turbine output. Between 10 

m and 15 m is the reasonable distance from the hub of the turbine to the ground. 

Nowadays, several newly-designed micro-wind turbines have a power output control 

mechanism built in for the rotor blades in order to improve the overall efficiency. For 

these micro-wind turbines, the angle of the rotor blades can be adjusted actively by the 

machine control system which is generally known as pitch control. This system has 

built-in braking, as the blades become stationary when they are fully feathered. Micro 

wind turbines normally reach the rated capacity which is the highest efficiency at the 

designed wind speed, usually, between 12 m/s and 16 m/s. If the wind speed exceeds 

the designed maximum wind speed, the power output can be limited to maintain the 

power output close to the rated capacity and thus reduce the driving forces on the 

individual rotor blade as well as the load on the whole wind turbine structure. The 

applied control mechanism can effectively increase the total amount of energy output, 
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and therefore improve the total efficiency. In traditional approaches, where either a 

brake is applied or where the micro wind turbine is turned away from the wind 

direction, the micro-wind turbine is brought to a standstill when the wind speed exceeds 

the maximum wind speed; however there is no energy output in this case. Rooftop wind 

turbines have become available recently. The turbine sizes are in the range of 400 W to 

1.5 kW. The turbines have to be mounted on structurally sound gable end walls above 

the roofline. They are designed to be easily installed and can be also wired into a normal 

domestic ring main. This kind of system is quite economically attractive. The cost 

reduction in avoiding the use of a mast can make the system more affordable for 

householders. However the turbulence around dwellings effectively reduces local wind 

speed by at least 25% [105], hence power output is reduced considerably.  

 

Figure 4.4. Schematic diagram of a horizontal axis wind turbine [106]. 

For a VAWT, as shown in Figure 4.5, the rotating shaft is perpendicular to the ground. 

Savonius and Darrieus are the two basic designs of VAWT. This type of wind turbine 

generally has a lower power output than the HAWT, but is virtually silent and less 
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affected by turbulence. These unique characteristics make VAWT more suitable for 

urban environment. The turbine can gather wind from all directions, even though more 

wind is needed to get it moving and higher wind speeds are also required to ensure it 

works well. Many manufacturing companies and organisations have shown their 

interests in VAWT for residential purpose. Research and development has been carried 

out to establish the best wind turbine design for domestic usage. 

 

Figure 4.5. Schematic diagram of a vertical axis wind turbine [107]. 

The domestic wind turbine system can be categorised as either on-grid or off-grid: 

 On-grid system - the wind turbine is connected to the grid. The power produced 

from the wind turbine is used to offset the cost of the grid supplied electricity. There 

is also a possibility of exporting electricity to the grid. The income obtained from 

selling electricity to the grid reduces the system payback period. Domestic 

electricity demand generally peaks twice a day, in the morning and evening. Daily, 
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stronger wind usually occurs from mid-afternoon onwards. Therefore, even though 

the wind intensity is relatively low in urban terrain, the wind resource is still well 

suited to match domestic electricity demand especially in the evening. If the wind 

turbine supplies insufficient electricity at the peak demand, it is possible to draw 

electricity back from the grid. 

 Off-grid system - the wind turbine generates electricity at the point of use. The extra 

electricity produced is stored in batteries. This stored electricity is used when the 

turbine generates little power. This system is more expensive than an on-grid system 

(about 25%) because of the batteries required. The batteries usually last for 6-10 

years, so extra costs will be needed to replace worn batteries. 

It is very difficult to accurately predict the power output from a micro wind turbine. The 

power output varies significantly with local wind speed. It is generally worthwhile to 

gather information on local wind pattern before proceeding with design and purchase of 

an appropriate system. Extensive monitoring is not usually performed for a micro-scale 

wind turbine system as it may not justify the expense and time necessary to carry out 

such monitoring.  However, generally, micro wind turbines are considered well suited to 

provide power during the evening period since the wind speeds are stronger from mid-

afternoon onwards. A good match also occurs for seasonal variation, as wind is stronger 

during winter months and calmer during summer months. Furthermore, domestic 

electricity consumption follows a similar trend, with reduced lighting requirements in 

the summer coupled with lower usage of intense electrical appliances such as a clothes 

dryer. 

There are many benefits that a micro-scale wind turbine system can offer; it can: 

 generate clean green electricity. 



Chapter 4 

 

79 

 

 achieve significant CO2 emissions reduction. 

 help tackle fuel poverty. 

 generate electricity at the point of use thus minimise transmission losses. 

 reduce electricity bills greatly. 

 lead to raised awareness of sustainability and renewable technologies in the 

highly populated urban environment.  

However, there are also several downsides presented by installing a micro wind turbine 

for a domestic dwelling which may not be so important for other micro generation 

technologies. These drawbacks can be summarised as: mounting method, vibration, 

noise, colour and reflectivity, shadows and reflections, access for installation and 

maintenance, electromagnetic and electrical interference, physical damage, wake effect, 

driver distraction, and bird and animal (bat) strike. Of all of these the most significant 

aspects to be considered are noise, visual impact and animal strike [108]. For the micro 

wind turbine itself, the turbulent flow and lower wind speeds are common wind 

characteristics of the built environment which is possible to result in a lower utilisation 

and resultant energy yield. Moreover, the more random patterns of production are likely 

to increase wear and tear that could lead to shortened lifespan, safety concerns and 

deteriorated performance of the turbines. 

4.4.2. The Generation of Hourly Wind Speed 

The hourly wind speed data for an entire year at many locations are usually unavailable 

or too expensive to purchase. In order to achieve best accuracy, artificial but statistically 

reasonable hourly wind speed data can be generated using HOMER’s synthetic wind 

speed data synthesis algorithm. This algorithm can produce data that mimic the 
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characteristics of real wind speed, including strong and sustained gusts, long lulls 

between windy periods, and seasonal and diurnal patterns [8]. 

In this technique, the monthly average wind speed at the turbine height for a year at the 

location where the turbine is installed is required. If the monthly average wind speed is 

not available, the annual average wind speed is used (for each month); the use of an 

annual average wind speed shows no realistic seasonal variation however. A logarithmic 

wind velocity profile, Equation 4.1, is used for calculating the wind speed at the micro 

wind turbine hub height if the turbine hub height differs from the height at which the 

measurements are taken. This accounts for the fact that wind speed tends to increase 

with height above ground, as the effect of obstacles (buildings and vegetation) decreases 

with height. A logarithmic wind velocity profile uses a surface roughness coefficient 

length in its calculation. The surface roughness coefficient length is to characterise the 

landscape condition; in this research a value 0.1 is used to represent a landscape 

condition of an open field [109]. 
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 (4.1) 

where V is the wind speed at the height H (m/s), V0 is the wind speed at the height H0 

(m/s), H is the hub height of the wind turbine (m), H0 is the anemometer height (m), Z0 

is the surface roughness coefficient length (m). 

The hourly wind speed data is generated by performing complex statistical calculations; 

a detailed explanation is given in Appendix A. Figure 4.6 shows the HOMER display 

for generating the hourly wind speed data at Dublin. The calculation is based on the 

average monthly wind speed data at the measured height and adding four random 
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variability parameters. These four parameters can accurately reflect the wind condition 

for a particular location ensuring the most realistic hourly wind speed data are 

generated. The four parameters are: Weibull k factor, autocorrelation factor, diurnal 

pattern strength and hour of peak windspeed. These are described as follows: 

 Weibull k factor reflects the breadth of a distribution of wind speeds in the 

Weibull distribution. The Weibull distribution is a two-parameter function that is 

commonly used to fit the wind speed frequency distribution [110]. A value of 

2.12 was calculated in this research to represent Irish conditions. 

 Autocorrelation factor is the degree of dependence on preceding values and is a 

measure of how strongly the wind speed in one hour depends on the wind speeds 

in previous hours. A value of 0.929 was calculated in this research to represent 

Irish conditions. 

 Diurnal pattern strength reflects how strongly the wind speed depends on the 

time of a day. A value of 0.156 was calculated in this research to represent Irish 

conditions. 

 Hour of peak wind speed is the hour of the day that tends to be the windiest, on 

average. The windiest time appears to be 14:00 in Ireland and this value is 

utilised in this study. 
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Figure 4.6. The HOMER display for generating the hourly wind speed data at 

Dublin. 

4.4.3. The Generation of Hourly Power Output from a Micro Wind Turbine 

A micro wind turbine is characterised by its power curve. The power curve gives the 

power output, in kilowatts (kW), for a given wind speed, in m/s, and takes into account 

all aspects including blade aerodynamics and auto-furling/stall effects, electrical 

generator, any gearing and the power electronics associated with turbine itself [97]. 

Figure 4.7 shows the power curves for the Skystream 3.7, the Evance R9000 and the 

CF6d micro wind turbines. Three wind speeds on the power curve are used to describe 

the operation of a particular turbine, and are: 

 Cut-in wind speed. This is the minimum wind speed that a wind turbine can 

generate usable power. Typically the cut-in wind speed is around 3 m/s for 

micro wind turbines available in Ireland. 
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 Rated wind speed. This is the wind speed that a wind turbine can generate its 

rated power. 

 Cut-out wind speed. This is the wind speed that a wind turbine ceases electricity 

generation and shuts down in order to prevent damage to itself. Typically the 

cut-out wind speed is 17 m/s for the micro wind turbines available in Ireland. 

Some micro wind turbines are designed to prevent the blades rotating when the 

wind speed exceeds the cut-out speed. However, newly-designed micro wind 

turbines like the CF6d and the Evance R9000 can regulate to their rated power 

and continuously generate power at high wind speeds. 

 

Figure 4.7. Power curves for three micro wind turbines available on the Irish 

market. 

4.4.3.1. Validation of the Procedure to Predict the Power Output of a 

Micro Wind Turbine 

The procedure to obtain the predicted power output of a micro wind turbine has to be 

validated in order to prove its accuracy. To do this the monthly power outputs from an 

Evance R9000 wind turbine are determined using both measured and predicted hourly 
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wind speeds at a hub height of 10 m and an annual average wind speed of 5.76 m/s. A 

Wilcoxon Rank-Sum Test, a non-parametric statistical hypothesis test, is employed to 

identify any statistically-significant difference between the two sets of power outputs. 

The measured hourly wind speeds are obtained directly from Met Éireann, the Irish 

national meteorological service and the leading provider of weather information and 

related services for Ireland. The predicted hourly wind speeds are obtained by applying 

monthly average wind speeds and all the parameters stated previously. The monthly 

power outputs, using measured and predicted hourly wind speeds, from the Evance 

R9000 wind turbine are obtained as described above. The two sets of power outputs are 

subjected to the Wilcoxon Rank-Sum Test. The sum of the ranks of the monthly power 

outputs using measured hourly wind speeds and predicted hourly wind speed are 

compared with a critical value (5% two-tail) for the Wilcoxon Rank-Sum Test 

corresponding to sample sizes of 12 and 12. The results, given in Table 4.1, show that 

neither rank sum is less than or equal to the critical value. The conclusion can be made, 

based on the available evidence, that the hourly wind speeds predicted by HOMER are 

accurate and realistic, and that they are appropriate for use in this study [111].  
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Monthly power output 

(kWh) using: 

Measured 

hourly wind 

speeds 

Predicted 

hourly wind 

speeds 

 

 

Ranking of monthly power 

outputs 

Jan      741                    698 

 

1 445   13 966 

 

Feb 966                    975 

 

2 480 14 975 

 

Mar 545                    445 

 

3 510 15 1082 

 

Apr 599                    525 

 

4 525 16 1091 

 

May 1709                1730 

 

5 536 17 1231 

 

Jun 582                    636 

 

6 545 18 1305 

 

Jul 510                    480 

 

7 560 19 1329 

 

Aug 560                    536 

 

8 582 20 1348 

 

Sep 1231                1305 

 

9 599 21 1709 

 

Oct 1348                1329 

 

10 636 22 1730 

 

Nov 1082                1091 

 

11 698 23 1984 

 

Dec 2066                1984 

 

12 741 24 2066 

 

Sum of the ranks of monthly power outputs using:  

measured hourly wind speeds = 155 

predicted hourly wind speeds = 145 

Critical value for the Wilcoxon Rank-Sum Test (5% two-tail 

values) corresponding to samples sizes of 12 and 12 = 115 

Neither rank sum is less than or equal to the critical value. 

There is no statistically-significant difference between the two 

sets of power outputs. 

Table 4.1. Validation of the wind speed algorithm using the Wilcoxon Rank-Sum 

Test. 
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4.5. Domestic Solar PV System 

4.5.1. Technology Review of a Solar PV System 

A solar PV system, as shown in Figure 4.8, has the merit of converting solar radiation 

directly into electricity by semi-conductor cells (PV cell) without the intermediate stage 

of heat conversion. A PV module consists of a number of semi-conductor cells. A 

complete installed solar PV system includes an array of PV modules (PV panel), an 

inverter, interconnection wiring and batteries if necessary. The PV cell consists of a 

junction between two thin layers of dissimilar semiconducting materials. An electric 

field is formed in the region of the junction when sun light strikes the cell, causing 

negatively charged particles (electrons) to move in one direction and positively charged 

particles to move in the opposite direct. The flow of electrons is defined as electric 

current. The more intense the light becomes, the more electricity is produced. Therefore, 

a PV system does not only generate electricity from beam (direct) radiation but also 

from diffuse radiation which is likely to happen in cloudy days. Due to the reflection of 

sunlight, slightly cloudy days may even result in a greater amount of electricity 

generated than days having a complete cloudless sky [66]. The PV cell produces direct 

current (DC) electricity that can be directly used for powering DC electrical appliances 

or stored in batteries. This DC electricity can be also converted to alternating current 

(AC) electricity via an inverter for AC electrical appliances [112].  
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Figure 4.8. The illustration of a domestic solar PV system [58]. 

Silicon, the second most abundant material in the earth’s mass and most commonly 

found in sand, is the most commonly utilised semiconductor material in PV technology. 

Monocrystalline, polycrystalline, amorphous silicon (thin film) and hybrid silicon are 

the most generally used silicon materials in a PV cell [113]. Monocrystalline silicon cell 

is the most conversion efficient cell. It has a conversion efficiency up to 20% but it is 

also the most expensive cell in use. A polycrystalline silicon cell is the second most 

efficient with up to 12% conversion efficiency; however the cost of manufacturing is 

lower. An amorphous silicon cell is the least efficient with a conversion efficiency 

between 6% and 10% but it is one of the most important materials in PV generation. 

The low cost of amorphous silicon makes it already very attractive in the market 

compared with other silicon materials. Amorphous silicon is the main material 

employed in thin film technology. Cadmium telluride, copper indium diselenide and 

copper indium gallium diselenide are the other materials employed. Thin film has many 

advantages over the conventional silicon technology. It is very light weight, relatively 

simple to produce and flexible and easy to place. Most important of all it has the 

potential to produce power significantly cheaper than current standard silicon 
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technology. Hybrid material has been developed to take advantage of the characteristics 

of both monocrystalline silicon and amorphous silicon in order to increase power 

generation and reduce the costs. 

Solar PV panels can generate sufficient power to meet all or part of the electricity 

demand for a dwelling even in cloudy days or located in northern latitudes. The PV 

panel is commonly situated on the roof as well as integrated into a roof, but the later is 

more costly. The flexibility of PV panels also enables their use in many housing 

products such as solar roof tiles, curtain walls and decorative screens. The solar PV 

panels can directly replace conventional materials in the house fabrics. They serve the 

same structural and weather protection principle as well as offering the additional 

benefit in providing power to run the dwelling. PV panels can be also mounted on sun 

shadings or built into a double-glazed sealed sunspace to generate the most possible 

power for the dwelling. 

A solar PV system can be operated as a stand-alone or a grid-connected system. 

Batteries are needed in a stand-alone system to store the extra electricity generated 

when there is no demand. The cost of batteries needs to be considered when designing a 

stand-alone PV system. Batteries usually have a life of about 6-10 years, but the PV 

panels have an expected life of around 25 years if they are properly maintained. Thus 

the batteries have to be replaced a few times before the PV panels are exhausted [105]. 

A back-up system is often needed in case of there is not sufficient sunlight for a period 

of time to generate enough electricity for the dwelling. The grid-connected system is the 

most commonly used; over 99.7% of the installed PV systems were grid-connected in 

Europe up to 2012 [67]. An inverter is required in the grid-connected PV system to 

convert DC from the PV to AC of desired voltage and frequency in order to send back 

the extra electricity to the grid. No back-up system is needed as the electricity can be 
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drawn back from the grid. Therefore, the elimination of the need for batteries can result 

a considerable reduction in the initial and replacement costs [114]. However, it should 

be noted that the inverter is an expensive component in the system and it is not 100% 

efficient. There is a considerable amount of electricity loss after conversion. It is very 

important to consider which type of the system suits the dwelling best at the design 

stage.  

Solar PV systems with sizes of 1.0-3.0 kW are the most commonly used in domestic 

applications in Ireland. The power rating given by manufacturers is the peak power 

output that the PV system produces under the standard test conditions. However, the 

actual continuing power output can rarely achieve this as the real solar radiation levels 

are not always as high as under standard test conditions.  

Solar PV electricity generation is broadly considered as one of the most promising 

renewable energy technologies. There are several main advantages associated with solar 

PV electricity generation such as: 

 no moving parts operate. 

 no emissions or noise generated. 

 the fuel (sunlight) is abundant. 

 safe and reliable. 

 almost maintenance free and easy to install. 

 easy to match load requirement by scaling up or down the size of panel once 

surface area is permitted. 

 reduce reliance on imported electricity. 

The main factor limiting the widespread use of solar PV electricity generation is its high 

costs associated with the manufacturing of PV modules; however the cost should reduce 
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significantly as a result of continuous advancements in technology and massive scale in 

production. For example, Germany is the leading country in PV electricity generation in 

Europe. PV panels integrated into roofs are commonly used in domestic houses and are 

generally grid connected. Ireland has a similar latitude as many parts of Germany with 

an average annual solar radiation of about 950 kWh/m
2 

[115]. It is expected that PV 

systems will become one of the most important renewable technologies used in Irish 

dwellings in the 21
st
 century. 

4.5.2. The Generation of Hourly Solar Radiation on Solar PV Modules 

The hourly solar radiation data for an entire year at many locations are usually 

unavailable or too expensive to purchase. In order to achieve best accuracy, artificial but 

statistically reasonable hourly solar radiation data can be generated using the Graham 

Algorithm employed by HOMER [116]. The synthetic solar radiation data display 

realistic day-to-day and hour-to-hour patterns. If one day is cloudy, the next day is 

likely to be cloudy; also, if one hour is cloudy, there is a relatively high possibility that 

the next hour will be cloudy. The hourly effective solar radiation incident on the tilted 

PV modules is generated by performing complex statistical calculations. The 

calculations are based on the latitude and longitude of the location where the PV 

modules are installed, the direction of the PV modules, the slope of the PV modules 

relative to the horizontal, ground reflectance (the fraction of solar radiation incident on 

the ground that is reflected), and 12 monthly-average daily solar radiation values for this 

location, one for each month. Daily solar radiation values are worked out from 

measured monthly solar radiation values obtained from Met Éireann. The detailed 

description of hourly solar radiation generated from monthly solar radiation is given in 
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Appendix B. Figure 4.9 shows the HOMER display for generating the hourly solar 

radiation data at Dublin. 

 

Figure 4.9. The HOMER display for generating the hourly solar radiation data at 

Dublin. 

4.5.3. The Generation of Hourly Power Output from a Solar PV System 

The power output from a domestic solar PV system (a solar PV array and an inverter) 

for a specific hour can be obtained by applying the artificial solar radiation generated by 

HOMER for this hour. The same procedure is applied for each corresponding hourly 

solar radiation for a year. Hence, there are a total of 8,760 hourly power outputs 

generated for a domestic solar PV system.  

4.5.3.1. Power Output from a Domestic Solar PV Array 

The power produced by a domestic solar PV array is calculated using the following 

equation: 
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where Ypv is the peak power output (kW), Fpv is the derating factor, Gt is the solar 

radiation incident on the PV modules in the current hour (kW/m
2
), Gt,STC is the incident 

radiation at standard test conditions (1 kW/m
2
), α is the temperature coefficient of 

power (%/
o
C), Tc is the PV cell temperature in the current hour (

o
C), and Tc,STC is the 

PV cell temperature under standard test conditions (25
 o

C). Each term is described as 

follows. 

Peak power output (Ypv) - the peak power output is the power output under standard test 

conditions.  

Derating factor (Fpv) - the derating factor accounts for factors such as soiling of the 

modules, wiring losses, shading, snow cover and aging, and is used to account for the 

reduction in efficiency because of real world conditions being less favourable than 

standard testing conditions.  

Solar radiation incident on the PV modules (Gt) – the total solar radiation received on 

the tilted PV modules. This includes beam (direct) radiation, diffuse radiation and 

ground reflected radiation strike on the tilted solar PV modules. The hourly solar 

radiation data is synthesised from widely-available coarse data (monthly-average daily 

global solar radiation) sources since the high-resolution measured data is rarely 

available for the location of interest.   

Temperature coefficient of power (α) - the calculation of the power output specifically 

takes the effect of temperature on a solar PV module into account, since a solar PV 

module becomes less efficient as its temperature increases. A solar module is dark 

coloured, and tends to heat up significantly (as hot as 80
o
C when there is no wind 
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blowing) when it is exposed to sunlight [37]. The power produced by a PV module is 

roughly nonlinear in the temperature range under which it is exposed. This 

characteristic is accounted for by manufacturers through a parameter called the 

temperature coefficient of power, usually expressed as a percentage change of the total 

power per 
o
C. For example, a module produces 0.3% less power for every 1

o
C increase 

in temperature above the cell temperature under standard test conditions (25
o
C) if it has 

a temperature coefficient of power of -0.3%/
o
C.  

PV cell temperature in the current hour (Tc) - the PV cell temperature, the temperature 

of the surface of the PV module, is approximately the same as the ambient temperature 

at night; however it can exceed the ambient temperature by 30
o
C or more at noon. In 

reality, PV cell temperature is very difficult to measure since the cells are tightly 

encapsulated for moisture protection [117]; however this is one of the most important 

variables to affect the performance of PV system and their electrical power production. 

The temperature variation is depended on parameters such as the thermal properties of 

materials utilised in PV module encapsulation, types of PV cells and weather conditions 

at the location of interest [118]. For example, crystalline silicon modules have a better 

performance in winter than in summer, however amorphous silicon modules perform 

seasonal reversely to crystalline silicon [119]. The PV cell temperature, Tc, is calculated 

from the ambient temperature and the radiation striking the array using the following 

formula (the temperatures in Equation 4.3 must be in degrees Kelvin): 
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where Ta is the ambient temperature (K), Tc,NOCT is the nominal operating cell 

temperature, Ta,NOCT is the ambient temperature at which the NOCT is defined (293K),  

Gt is the solar radiation incident on the PV modules in the current hour (kW/m
2
), 

Gt,NOCT is the solar radiation at which the NOCT is defined (0.8 kW/m
2
), ηSTC is the PV 

module efficiency under standard test conditions, α is the temperature coefficient of 

power (%/K),  Tc,STC is the PV cell temperature under standard test conditions (298K), η 

is the solar transmittance of any cover over the PV array (%), and β is the solar 

absorptance of the PV array (%). The monthly-average ambient temperature values are 

also obtained from Met Éireann, and each is used as the hourly ambient temperature in 

that month. 

4.5.3.2. Validation of the Procedure to Predict the Power Output of a 

Solar PV System 

The procedure to obtain the predicted power output of a solar PV system has to be 

validated in order to prove its accuracy and to employ it in the integration technique. 

This validation is carried out by comparing the measured power output with the 

predicted power output for a 1.72 kWp solar PV system, assembled from eight Sanyo 

215 W solar PV modules and a Sunny Boy 1700 inverter. This solar PV system, as 

shown in Figure 4.10, was built and installed at a site in Dublin, and monitored by the 

Dublin Institute of Technology (DIT) [63]. The modules were mounted south facing and 

had a 53
o
 slope relative to the horizontal. The solar PV modules were left uncleaned 

throughout the monitoring period in order to mimic the realistic operation in a domestic 

dwelling [114]. The single phase Sunny Boy 1700 inverter, with a rated maximum 

efficiency of 93.5% and a maximum AC power output of 1700 W, was used to convert 

the power output from DC to AC. The power output was measured for a 12-month 
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period, between November 2008 and October 2009. The data acquisition system 

consisted of the Sunny Boy 1700 inverter, a Sunny SensorBox and a Sunny WebBox. 

The inverter and the Sunny SensorBox, used to measure in-plane global solar radiation 

on the solar PV modules, were connected to the Sunny WebBox. The data was extracted 

and recorded at five-minute intervals, and read directly into a computer. The data 

collection was in line with IEC 61724 standards [120]. The five-minute-interval data 

was aggregated by summing the power output over one-hour intervals and then 

employed in this validation study. The HOMER simulation inputs are taken the same as 

the experimental conditions; the solar radiation data used are for the period November 

2008 to October 2009 in Dublin. The PV module specifications are shown in Table 4.2.    

 

Figure 4.10. The actual solar PV system built and installed at a site in Dublin [121].    

PV module - Sanyo 215 W Specification 

Material Monocrystalline silicon 

Maximum power (W) 215 

Maximum power voltage (V) 42 

Maximum power current (A) 5.13 

Module efficiency (%) 17.2 

Nominal operating cell temperature (
o
C) 45 

Temperature coefficient of power (%/
 o
C) -0.3 

Table 4.2. Relevant information for the Sanyo 215 W solar PV module. 
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The measured and predicted annual total power outputs are 885.1 kWh/kWp and 865.1 

kWh/kWp respectively, a difference of 2.26%. This shows that the predicted power 

output from the solar PV system, as calculated by HOMER, agrees closely with the 

measured output on a yearly basis. The coefficient of determination is employed to 

detect the coincidence between the measured and predicted hourly power outputs. The 

coefficient of determination (r
2
), the square of the Pearson (product moment) correlation 

coefficient (r) as shown in Equation 4.4, is defined as the proportion of the variance 

'explained' by the model, which makes it useful as a measure of the success in 

predicting the dependent variable from the independent variables [122].  

2
N

i i
2 i 1

N N
2 2

i i

i 1 i 1

(X X)*(Y Y)

r

(X X) (Y Y)
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i
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1
X X

N
 

N

i

i 1

1
Y Y

N
 

where r
2
 is the coefficient of determination, r is the correlation coefficient, iX is the 

measured hourly  power output, iY is the predicted hourly power output, X is the mean 

of the hourly measured power outputs for a year, Y is the mean of the hourly predicted 

power outputs for a year, and N is the number of power outputs for a year. 

A coefficient of determination of 0.36 is obtained. This means that 36% of the variance 

in the measured hourly power outputs is predicted by the model; however 64% of the 

variance is not explained by the model. Figure 4.11 shows the scatter diagram of 

predicted hourly power outputs versus measured hourly power outputs for the 1.72 kWp 
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solar PV system. There are a number of possible reasons why this coefficient of 

determination value is not higher: 

 The monthly solar radiation data used for predicting the hourly solar radiation 

values was obtained from the national weather station (Dublin airport) closest to the 

location where the solar PV system was installed. However, there is quite a distance 

(approximately 10 km) between these locations, and the monthly solar radiation 

applied in the model was not the same as the solar radiation received by the installed 

solar PV system [123]. 

 The effect of clouds on the output of solar PV modules has been taken into account 

in the solar radiation prediction; however it is not possible to mimic the realistic 

circumstance i.e. clouds travel fast with a strong wind [124]. 

 The inverter is assumed to have a constant efficiency; however the efficiency of the 

inverter used in the actual solar PV system varies with time.           

 

Figure 4.11. Scatter diagram of predicted hourly power outputs versus measured 

hourly power outputs for the 1.72 kWp solar PV system. 
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To the best of the author’s knowledge, this is the first time an attempt has been made to 

validate the predicted hourly power outputs of a modelled solar PV system for an entire 

year. There is no comparable value that can indicate the accuracy of the obtained 

coefficient of determination value since no other validations have been carried out to 

this degree previously. In 52 international peer-reviewed journal articles reviewed by 

the author [27, 32, 125-174] in which solar PV systems were modelled, only 22 articles 

included a validation of their model [27, 125-145]. However, in these articles no 

attempt has been made to validate models by comparing the predicted power output 

with the measured power output on an hourly basis for a complete year. Therefore, 

based on the comparison of annual measured and predicted power outputs, the 

procedure used to predict the power output for a solar PV module is considered 

appropriate for use in this study. 

4.6. Economic Comparison Parameter – Net Present Value 

NPV is the method most recommended for making investment decisions and calculates 

the net amount that the discounted cash flows of a project exceed the initial investment. 

All costs and revenues of the project are discounted as present value to a specified date, 

the base year [175]. The NPV calculates the exact monetary amount that a project 

exceeds or fails to meet [176]. If a project provides a rate of return exactly equal to the 

opportunity cost of capital, then the NPV of this project is zero as the discounted future 

cash flows equal the initial capital costs. Thus, the NPV provides a good decision 

criterion for the economic viability of a project. A project with a positive NPV should 

be deemed acceptable since it is economically viable; the project with a negative NPV 

should be considered unacceptable since it is not economically viable.  In this study, 

NPV is the parameter used to perform a cost/benefit comparison and to identify the 
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optimal system in the micro-renewable electricity generation system [177]. NPV is 

calculated as follows:  

 

T

t T
t 1

CF SAL
NPV C

(1 i) (1 i)
 (4.5) 

where 

 T is the project lifespan. 

 C is the entire capital cost of the micro wind turbine and/or the solar PV system 

including the cost of installation and an inverter. 

 SAL is the salvage value. 

 i is the real interest rate, calculated as: 

 
L f

i
1 f

 (4.6) 

where L is the loan rate offered from a lending institution and f is the annual 

inflation rate. 

 CF is the annual net cash flow calculated as follows: 

 CF S P M  (4.7) 

where S is the savings made by replacing the imported electricity, P is the 

revenue generated from the exported electricity to the grid, and M is the annual 

maintenance cost. 

4.7. Integration of a Micro Wind Turbine and a Solar PV System 

4.7.1. The Integration Technique 

The micro wind turbine and solar PV system integration technique, a flowchart for 

which is shown in Figure 4.12, obtains the optimal configuration of a grid-connected 

micro-renewable electricity generation system consisting of a micro wind turbine and/or 
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a solar PV system (formed from sole capacity solar PV modules). The integration 

technique is implemented in MATLAB. The integration begins with the selection of a 

number of micro wind turbines and solar PV modules for analysis. The height of the 

micro wind turbine and the orientation of the solar PV modules are then set. The 

realistic hourly power outputs of the selected micro wind turbines and the selected solar 

PV modules (at the optimal slope), and the hourly household electrical loads for a year 

are obtained from HOMER and Microsoft Excel respectively using the procedures 

described previously. A database containing the selected micro wind turbines and their 

hourly power outputs, the selected solar PV modules and their hourly power outputs, 

and hourly household electrical loads are stored in MATLAB. All possible systems, 

both mono and hybrid, that can be formed from the selected micro wind turbines and 

the selected solar PV modules are then analysed. For each system a renewable energy 

value is calculated and compared with the renewable energy requirement. The 

renewable energy requirement, a constraint in the integration, is the percentage of the 

annual household electrical load that must be satisfied from the micro-renewable 

electricity generation system. The renewable energy value is calculated using the hourly 

system power outputs and household electrical loads. The hourly power output is 

counted in the calculation of the renewable energy value if the power output is partially 

satisfying the household electrical load; the portion of hourly power output, equal to 

hourly household electrical load, is counted in the calculation if the power output is 

wholly satisfying the household electrical load. For a year, the renewable energy value 

is calculated using the sum of these counted hourly power outputs divided by the annual 

household electrical load. If a system cannot satisfy the user-specified renewable energy 

requirement it is eliminated. For those systems that do satisfy the user-specified 

renewable energy requirement the NPV is then calculated based on the capital costs of 
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the system, the savings made from replacement of the imported electricity, the revenue 

generated from the exported electricity to the grid, the costs of replacement of inverters, 

maintenance costs and the salvage value. The salvage value is the value left in a device 

(exclusive of installation cost) if the lifespan of a device is longer than the desired 

project lifespan. In this integration technique, the major assumption is made that the 

entire capital cost of the micro-renewable electricity generation system is funded from a 

loan. A capital grant option is also built into this integration technique. Once all 

possible system configurations have been analysed, the system having the highest NPV 

is deemed the optimal one and the system configuration is thus obtained.  

Select micro wind 

turbines for analysis

Select solar PV 

modules for analysis

 Generate 8760 hourly 

household-electrical-load 

values

Calculate 

consumed power

Calculate 

surplus power

Calculate 

exported power

Calculate 

dumped power

Calculate 

savings made
Calculate 

revenue generated

Calculate NPV

Yes

No

Identify optimal system configuration 

Apply maintenance cost

Calculate salvage value

Create micro-renewable 

electricity generation 

system & obtain 8760 

hourly power outputs

Yes

All micro-renewable 

electricity generation systems 

analysed?

No

Renewable energy 

value > Required renewable 

energy value?

Generate 8760 hourly 

power outputs from each 

selected solar PV module

Generate 8760 hourly 

power outputs from each 

selected micro wind turbine

 

Figure 4.12. Micro wind turbine and solar PV system optimised integration 

technique [111]. 
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4.7.2. Determination of the Optimal Slope Used for a Solar PV Module 

Solar PV modules/panel generate the maximum power, for a fixed orientation, when 

installed at the optimal slope. The maximum power output of a solar PV module should 

only be obtained once the optimal slope is determined first. Three solar PV systems 

were utilised to determine the optimal slope for each represented solar PV module. 

These solar PV systems have capacities of 1.62 kWp, 1.665 kWp and 1.645 kWp (in the 

capacity range of most installed solar PV systems in Ireland) and are assembled from 

the three capacities of solar PV modules employed in the study respectively.  

The slopes analysed were from 0
o
 to 90

o
 at 5

o
 intervals. The slope of 40

o
 was identified 

as the optimal slopes for all three analysed solar PV systems. The power outputs 

obtained at this slope are greater than power outputs obtained at the other slopes 

investigated. Table 4.3-4.5 show the power outputs obtained from the analysed solar PV 

systems at the different slopes. This optimal slope is determined and used for acquiring 

power output for the three solar PV modules and also applied in the overall integration 

studies. 



Chapter 4 

 

103 

 

Slope 

(
o
) 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

Power 

Output 

(kWh) 

1,285 1,342 1,393 1,437 1,473 1,502 1,523 1,536 1,542 1,539 1,529 1,513 1,490 1,460 1,424 1,381 1,332 1,276 1,216 

Table 4.3. Power outputs obtained from a 1.62 kWp solar PV system assembled from 135 Wp solar PV modules.  

Slope 

(
o
) 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

Power 

Output 

(kWh) 

1,318 1,375 1,427 1,472 1,508 1,538 1,559 1,572 1,577 1,575 1,565 1,548 1,524 1,494 1,458 1,414 1,364 1,308 1,246 

Table 4.4. Power outputs obtained from a 1.665 kWp solar PV system assembled from 185 Wp solar PV modules.  

Slope 

(
o
) 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

Power 

Output 

(kWh) 

1,300 1,357 1,409 1,452 1,488 1,517 1,538 1,551 1,556 1,554 1,544 1,527 1,504 1,475 1,438 1,395 1,346 1,290 1,230 

Table 4.5. Power outputs obtained from a 1.645 kWp solar PV system assembled from 235 Wp solar PV modules.  
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4.8. Results and Discussion  

The optimised integration sub-technique is applied to determine the optimal system for 

Ireland. The selected micro wind turbines and solar PV modules for analysis represent 

other similar micro wind turbines and solar PV modules and include a range of 

suppliers and rated powers. The selected micro wind turbines and the solar PV systems 

(formed from selected solar PV modules) adhere to the conditions for exemption from 

planning permission. The maximum micro-wind-turbine capacity is set at 6 kW, and the 

minimum and maximum solar-PV-system capacities are set at 0.5 kWp and 3 kWp 

respectively. The selected micro wind turbines are the Ampair 600-230, the Swift 1.5 

kW, the Skystream 3.7, the Siliken 3.4, the Evance R9000 and the CF6d; the selected 

solar PV modules are the Sharp 235 W, the CareyGlass Solar 185 W and the Kyocera 

135 W. Tables 4.6-4.8 give relevant information for the selected micro wind turbines, 

the selected solar PV modules and the inverters employed respectively. This indicative 

information was obtained from either official websites or from personal 

communications. The system integration is carried out assuming the micro-renewable 

electricity generation system is installed in Dublin and with the following conditions 

and assumptions: 

 An annual average wind speed of 5.76 m/s and an average annual solar radiation 

value of 970 kWh/m
2
. 

 An average annual household electrical load of 5,016 kWh.  

 The Weibull k factor is 2.12, autocorrelation factor is 0.929, diurnal pattern 

strength is 0.156 and hour of peak wind speed is 14:00. 

 The installed solar PV system is south facing.  

 The ground reflectance is 0.2. 
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 The efficiency of a solar-PV-system inverter is taken as 95%. 

 An imported electricity price of €0.1928/kWh. 

 An exported electricity tariff of €0.09/kWh.  

 The maximum rate of electricity export is capped at 6 kW. 

 A green loan having a loan rate of 4.5%.  

 An annual inflation rate of 2.26%. This was the average annual inflation rate for 

Ireland for the period January 2001 to December 2010 [178]. 

 No capital grant available. 

 A 50% renewable energy requirement. 

 The project lifespan is 20 years. 
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Wind Turbine 

 

Rated Power 

(kW) 

Cut-in Wind 

Speed  

(m/s) 

Cut-out Wind 

Speed 

 (m/s) 

Hub Height 

(m) 

Capital Cost 

inc VAT  

(2012 €) 

O&M* Costs 

inc VAT 

(€/year) 

Lifespan 

(years) 

Ampair 600-230 [36] 0.6 3 none 10 4800 50 15 

Swift 1.5 kW [179] 1.5 3.5 22 10 7000 50 20 

Skystream 3.7 [180] 2.4 3.5 25 10 14000 125 20 

Siliken 3.4 [181] 3.8 3.5 17 10 25000 125 20 

Evance R9000 [182] 5 3 none 10 35000 200 20 

CF6d [183] 6 1.2 none 10 45000 200 25 

      *O&M- Operation and Maintenance  

Table 4.6. Relevant information for six micro wind turbines available on the Irish market in 2012 and selected for the system integration 

study. 
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Solar PV Module Sharp 235 W CareyGlass Solar 185 W Kyocera 135 W 

Material Monocrystalline silicon Monocrystalline silicon Polycrystalline cell 

Maximum power (W) 235 185 135 

Module efficiency (%) 14.4 14.5 13.5 

Maximum power voltage (V) 30.0 36.2 16.0 

Maximum power current (A) 7.84 5.12 6.10 

Lifespan (years) 25 25 25 

Capital cost inc VAT (2012 €) 650 500 400 

Installation cost per kWp inc VAT (€) 1400 2050 2550 

O&M costs inc VAT (€/year) 50 50 50 

Table 4.7. Relevant information for three solar PV modules available on the Irish market in 2012 and selected for the system integration 

study. 

Inverter 

Sunny  

Boy 

1200 

Sunny  

Boy 

2500 

Sunny  

Boy 

3000 

Windy 

Boy  

1200 

Windy 

Boy  

1700 

Windy 

Boy  

3000 

Windy 

Boy  

3800 

Windy 

Boy  

5000 

Windy 

Boy  

6000 

Peak capacity (kWp) 1.32 2.70 3.2 1.2 1.7 2.5 3.8 5 6 

Capital cost inc VAT (2012 €) 

 

 

1150 1700 1900 1100 1400 1800 2250 3200 3250 

Lifespan (years) 15 15 15 15 15 15 15 15 15 

Table 4.8. Relevant information for nine inverters available on the Irish market in 2012 and selected for the system integration study. 
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4.8.1. Economic Discussion and Identification of the Optimal System 

Based on Current Irish Conditions 

The NPV of a mono micro-renewable electricity generation system consisting of a 

single micro wind turbine or a single solar PV system, and a hybrid system consisting of 

a micro wind turbine/solar PV system, has been calculated with the conditions given 

previously and represents a best case scenario. For example, in this study, the 

orientation of the installed solar PV module is assumed to be south-facing and therefore 

ensures that the maximum power output can be generated. However, this best case 

scenario does not always occur as the roof of the dwelling may not face directly south. 

However, the total annual power output is of the order of 95% of the maximum over a 

wide range of orientations, i.e. from 30
o
 south-east to 30

o
 south-west, once the PV 

module is installed at the optimum or near optimum slope, i.e. from 30
o
 to 45

o 
[184, 

185]. The system with the highest NPV after the project lifespan is deemed the optimal 

system. The NPV (-€5,622) of the optimal system, which meets the 50% renewable 

energy requirement, is achieved by a single micro wind turbine having a capacity of 2.4 

kW; the negative NPV however implies that the optimal system is not economically 

viable under these conditions. Figure 4.13 is an integration map for all the analysed 

systems in this study. The systems on and within the black frame meet the 50% 

renewable energy requirement and are eligible for optimal system determination. 
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Figure 4.13. Integration map of all the analysed systems under current Irish conditions. Imported electricity price is €0.1928/kWh, 

exported electricity tariff is €0.09/kWh and the loan rate is 4.5%. The systems on and within the black frame meet the 50% renewable 

energy requirement. 
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4.8.2. Economic Discussion and Identification of the Optimal System 

Based on the Parameter Studies 

4.8.2.1. Effect of Household Electrical Load on the Optimal System 

The annual household electrical load depends on the number of occupants and the usage 

of electrical appliances. The electricity generated from a micro-renewable electricity 

generation system is more likely to be utilised entirely for the dwelling if the household 

electrical load is high, with very little generated electricity left to export to the grid. In 

contrast, there can be quite a lot of generated electricity to export if the household 

electrical load is low. 

Figure 4.14 (NPV vs. household electrical load) shows that the NPV of the optimal 

system, which meets the 50% renewable energy requirement, varies moderately with 

increasing household electrical load. It is seen that the optimal system is not 

economically viable under the current conditions whether the household electrical load 

is high or low.  

Figure 4.15 (integration map of NPV vs. sample mono/hybrid micro-renewable 

electricity generation systems) shows that a system assembled from the same capacity 

micro wind turbine and the same number of solar PV modules will suffer less economic 

loss over the project lifespan as the household electrical load increases. This is due to 

the difference between imported electricity price (€0.1928/kWh) and exported 

electricity tariff (€0.09/kWh), as the majority of generated electricity is utilised in the 

dwelling rather than exported to the grid. Figure 4.14 also shows that fewer systems are 

eligible for consideration as the household electrical load increases due to the 50% 

renewable energy requirement constraint. 
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Figure 4.14. NPV of the optimal system versus household electrical load. Imported 

electricity price is €0.1928/kWh, exported electricity tariff is €0.09/kWh, the loan 

rate is 4.5% and the renewable energy requirement is 50%. MWT = Micro Wind 

Turbine, SPVM = Solar PV Modules, OS = Optimal Slope. 
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(a) One 2.4 kW MWT, no SPVM 

(b) One 2.4 kW MWT, three 185 W SPVM at an OS of 40o 
(c) One 2.4 kW MWT, five 235 W SPVM at an OS of 40o 

(d) One 6 kW MWT, no SPVM 

(e) One 6 kW MWT, no SPVM 
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Figure 4.15. Integration map of selected micro wind turbines and solar PV systems assembled from 235 W modules for three household 

electrical loads. Imported electricity price is €0.1928/kWh, exported electricity tariff is €0.09/kWh and the loan rate is 4.5%. The 

electrical load is (a) 4,000 kWh, (b) 5,016 kWh and (c) 8,000 kWh. The systems on and within the black frame meet the 50% renewable 

energy requirement. 
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4.8.2.2. Effect of Imported Electricity Price on the Optimal System 

The imported electricity price is another factor that can influence the optimal system. 

Electricity generation is mainly dependent on imported fossil fuels in Ireland. Fossil 

fuel prices are expected to rise in the coming years mainly due to greater global 

demand, and not any particular decline in supply. Also the recent unrest in many fossil-

fuel-exporting countries may cause prices to rise significantly. For householders, there 

could also be other reasons for electricity price increases, including an increase in the 

VAT rate, a levy charge and/or an introduced carbon tax on the usage of electricity. 

Figure 4.16 (NPV vs. imported electricity price) shows that the NPV of the optimal 

system improves considerably as the imported electricity price increases. If the imported 

electricity price rises to €0.298/kWh [186], the highest imported electricity price 

charged in the EU-27 in 2011 (Denmark), the optimal system will nearly be 

economically viable. Figure 4.17 (integration map of NPV vs. sample mono/hybrid 

micro-renewable electricity generation systems) shows that a system assembled from 

the same capacity micro wind turbine and the same capacity solar PV system will suffer 

less economic loss as the imported electricity price increases. Also it can be seen that 

large capacity systems are more affected by increasing imported electricity price since 

the NPV becomes significantly less negative.  
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Figure 4.16. NPV of the optimal system versus imported electricity price. Exported 

electricity tariff is €0.09/kWh, the loan rate is 4.5% and the renewable energy 

requirement is 50%. MWT = Micro Wind Turbine, SPVM = Solar PV Modules.
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Figure 4.17. Integration map of selected micro wind turbine and solar PV system assembled from 235 W modules for three imported 

electricity prices. Exported electricity tariff is €0.09/kWh and the loan rate is 4.5%. The imported electricity price is (a) €0.1928/kWh, 

(b) €0.25/kWh and (c) €0.30/kWh. The systems on and within the black frame meet the 50% renewable energy requirement.
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4.8.2.3. Effect of Exported Electricity Tariff on the Optimal System 

The electricity generated by a micro-renewable electricity generation system may 

exceed the household electrical load. Before February 2009 there was no feed-in 

tariff in Ireland. The introduced exported electricity tariff has been the most direct 

incentive for householders having a micro-renewable electricity generation system. 

However, the uniform exported electricity tariff (€0.09/kWh) currently offered in 

Ireland for both a micro wind turbine and a solar PV system is too low to help these 

systems become economically viable. The United Kingdom, for example, offers a 

very attractive exported electricity tariff to householders with these systems. A 

householder with a micro wind turbine having a capacity less than or equal to 1.5 kW 

and greater than 1.5 kW and less than 15 kW can receive an exported electricity tariff 

of £0.362(€0.43)/kWh and £0.28(€0.33)/kWh respectively. A householder with a 

solar PV system having a capacity less than or equal to 4 kWp can receive an 

exported electricity tariff of £0.433(€0.51)/kWh if applied for before December 12
th

, 

2011; otherwise the householder can receive an exported electricity tariff of 

£0.21(€0.25)/kWh [187].  

Figure 4.18 (NPV vs. exported electricity tariff) shows that NPV of the optimal 

system improves significantly with increasing exported electricity tariff. If an 

exported electricity tariff of €0.25/kWh was offered, the current exported electricity 

tariff offered for a solar PV system in the UK in 2012, the optimal system, which 

meets the 50% renewable energy requirement, is economically viable. Figure 4.19 

(integration map of NPV vs. sample mono/hybrid micro-renewable electricity 

generation systems) shows that a system assembled from the same capacity micro 

wind turbine and the same capacity solar PV system will experience more economic 
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gain over the project lifespan as the exported electricity tariff increases. The exported 

electricity tariff is seen as the most effective way in making a micro wind turbine and 

a solar PV system turn into a good investment, e.g. based on our calculations, a 

single CF6d 6 kW micro wind turbine, manufactured in Ireland, can achieve an 

impressive NPV of €33,467 (16,087 kWh of electricity produced per annum) for 

2011 weather, for a 20-year project lifespan, and assuming an exported electricity 

tariff of €0.33/kWh (the UK exported electricity tariff for a micro wind turbine of 

this size in 2012). However, it should be noted that the high exported electricity 

tariffs offered in the UK are based on expected generation costs which take into 

consideration the renewable resource availability. Ireland, in general, has a superior 

wind resource to that in the UK. Therefore, even if a higher exported electricity tariff 

was offered, it is still likely to be lower than those on offer in the UK. Figure 4.18 

also shows, due to the larger amount of electricity produced, that a rising exported 

electricity tariff has a greater impact on large capacity systems than on small ones. 
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Figure 4.18. NPV of the optimal system versus exported electricity tariff. 

Imported electricity price is €0.1928/kWh, the loan rate is 4.5% and the 

renewable energy requirement is 50%. MWT = Micro Wind Turbine, SPVM = 

Solar PV Modules. 
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Figure 4.19. Integration map of selected micro wind turbines and solar PV systems assembled from 235 W modules for three exported 

electricity tariffs. Imported electricity price is €0.1928/kWh and the loan rate is 4.5%. The exported electricity tariff is (a) €0.09/kWh, 

(b) €0.20/kWh and (c) €0.33/kWh. The systems on and within the black frame meet the 50% renewable energy requirement. 

0

1.0

2.0

3.0

4.0

5.0

6.0 0

0.5

1.0

1.5

2.0

2.5

3.0
-30000
-20000
-10000

0
10000
20000
30000
40000

 

Capacity of solar PV

system (kW) 

Capacity of micro
wind turbine (kW)

 

N
P

V
 (

€
)

-30000

-20000

-10000

0

10000

20000

30000

40000

0

1.0

2.0

3.0

4.0

5.0

6.0 0

0.5

1.0

1.5

2.0

2.5

3.0
-30000
-20000
-10000

0
10000
20000
30000
40000

 

Capacity of solar PV

system (kW)

Capacity of micro
wind turbine (kW)

 

N
P

V
 (

€
)

-30000

-20000

-10000

0

10000

20000

30000

40000

0

1.0

2.0

3.0

4.0

5.0

6.0 0

0.5

1.0

1.5

2.0

2.5

3.0
-30000
-20000
-10000

0
10000
20000
30000
40000

 

Capacity of solar PV
 system (kW)

Capacity of micro
wind turbine (kW)

 

N
P

V
 (

€
)

-30000

-20000

-10000

0

10000

20000

30000

40000

a b c 



Chapter 4 

 

120 

 

4.8.2.4. Effect of Wind Speed on the Optimal System 

The solar radiation received is almost the same throughout Ireland; hence the amount of 

electricity generated from a solar PV system is nearly independent of where it is 

located. However, Ireland has an excellent wind-energy resource which is four times 

that of the European average [188]. In general, the annual average wind speed is around 

5 m/s in the midlands in Ireland; however, the annual average wind speed can reach 7 

m/s for many parts of the country, especially along the coast.   

Figure 4.20 (NPV vs. wind speed) shows the optimal system, which meets the 50% 

renewable energy requirement, is nearly economically viable with an annual average 

wind speed of 7 m/s. Figure 4.20 (integration map of NPV vs. sample mono/hybrid 

micro-renewable electricity generation systems) shows that a system assembled from 

the same capacity micro wind turbine and the same capacity solar PV system will suffer 

a modest economic loss or will even become economically viable once the system is 

installed in a location having a good wind resource. Figure 4.21 also shows that an 

increasing annual average wind speed has a greater economic impact on large capacity 

micro wind turbines than on small and medium capacity turbines. Hence, the wind 

speed at a location can be a decisive factor to determine the components of an optimal 

system. 
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Figure 4.20. NPV of the optimal system versus wind speed. Imported electricity 

price is €0.1928/kWh, exported electricity tariff is €0.09/kWh, the loan rate is 4.5% 

and the renewable energy requirement is 50%. MWT = Micro Wind Turbine, 

SPVM = Solar PV Modules, OS = Optimal Slope. 
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Figure 4.21.  Integration map of selected micro wind turbines and solar PV systems assembled from 235 W modules for three wind 

speeds. Imported electricity price is €0.1928/kWh, exported electricity tariff is €0.09/kWh and the loan rate is 4.5%. The wind speed is 

(a) 5 m/s, (b) 6 m/s and (c) 7 m/s. The systems on and within the black frame meet the 50% renewable energy requirement. 
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4.9. Conclusion 

In this chapter a sub-technique is presented for the optimised integration of a grid-

connected mono/hybrid micro-renewable electricity generation system which employs a 

renewable energy constraint and the NPV concept. A mono micro-renewable electricity 

generation system is formed from a single micro wind turbine or a single solar PV 

system; a hybrid micro-renewable electricity generation system is formed from a 

combination of both. Six micro wind turbines and three solar PV modules (used to form 

the solar PV systems for analysis), which are commercially-available and industry-

representative, are employed in this study. However, additional micro wind turbines and 

solar PV modules can be added to the existing database if a wider range of micro-

renewable electricity systems is required for analysis. Using the developed integration 

technique, the system with the highest NPV after the project lifespan is deemed the 

optimal system. Under current Irish conditions, the optimal system, which meets the 

50% renewable energy requirement is a mono system consisting of a 2.4 kW micro 

wind turbine. However, the system is not economically viable as the NPV is negative 

over the project lifespan. The large capital cost of micro wind turbines and solar PV 

systems and the lack of financial support in terms of both the low exported electricity 

tariff offered and the non-existent capital grant are the main reasons for the poor 

economic-viability of wind, solar and hybrid wind/solar systems in Ireland. 

Nevertheless, these systems should become economically viable in the future with 

reductions in the capital cost of these systems and increases in the cost of imported 

electricity. For example, the price of solar PV modules per kWp in Europe in 2012 was 

less than half of the price in 2001 [189] and the imported electricity price has increased 

by 20.58% from the end of 2007 to the end of 2011 in Ireland [190, 191]. Four 

parameter studies to assess the effect of household electrical load, imported electricity 



   Chapter 4 

 

124 

 

price, exported electricity tariff and wind speed have also been carried out. From the 

results presented, offering a greater exported electricity tariff is seen as the most 

effective support for a mono/hybrid system. Therefore, in order to make micro-

renewable electricity generation systems economically attractive and to promote their 

widespread installation, the current financial support provided under Irish renewable 

energy policies must be improved. One possible strategy is to reinstate the ceased 

exported electricity additional payment of €0.10 for every kWh of electricity exported. 

This tariff would help some micro-renewable electricity generation systems become 

economically viable, and in particular the optimal system as this study shows.  

Moreover, this tariff would encourage householders to satisfy their own demand at the 

location of production first since it is still slightly lower than the current imported 

electricity price applied in Ireland. Another possible strategy could be to provide a 

scheme that offers a financial reward to householders who meet the majority of their 

electricity demand from installed renewable energy systems.  

The weather conditions at a specific location where wind and solar systems are installed 

can also play a major part in determining their economic viability. The excellent wind 

resource available in Ireland is more likely to help micro wind turbines become 

economically viable before solar PV systems. Ultimately, each householder should 

always make a decision based on his/her individual case as to whether a micro wind 

turbine, a solar PV system or a hybrid wind-solar system is worthwhile to be installed or 

which system can achieve the most economic benefit. The renewable energy system 

market is dynamic, continuously influenced by improvements in micro-wind-turbine 

and solar-PV technologies, the economy of scale in production and changes in Irish 

government policies towards micro renewable energy technologies. 
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4.10.  Summary 

A sub-technique for the optimised integration of grid-connected micro-renewable 

electricity generation systems is presented in this chapter. The reviews of micro wind 

turbine and solar PV system are presented. The methodology of generating hourly wind 

speed values and hourly solar radiation values is described; subsequently the 

methodology of predicting hourly power output from a micro wind turbine and a solar 

PV system is presented. The developed integration technique for selected micro wind 

turbines and solar PV systems is explained in detail. The results are then analysed and 

discussed. In the next chapter, the optimised integration sub-technique for grid-

connected micro-renewable thermal generation systems is presented. 
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CHAPTER 5 

5. OPTIMISED INTEGRATION OF 

GRID-CONNECTED MICRO-

RENEWABLE THERMAL 

GENERATION SYSTEMS 

5.1. Overview 

In this chapter, a sub-technique for the optimised integration of grid-connected micro-

renewable thermal generation systems is presented. The chapter is split into six stages. 

In the first stage, the realistic hourly domestic heating demand and profile is obtained. 

In the second stage, the practical daily domestic hotwater demand and profile is 

acquired. In the third stage, the technology of domestic solar thermal system is 

reviewed, the methodology of statistically generating hourly solar radiation values is 

presented, and the methodology of obtaining hourly energy outputs of a solar thermal 

system is then presented. In the fourth stage, the technology of an ASHP is reviewed, 

the methodology of accurately generating hourly ambient air temperature values is 

described, and the methodology of obtaining hourly energy outputs of an ASHP is then 

given. In the fifth stage, a sub-technique is developed to integrate the selected 

commercially-available solar thermal systems and ASHPs. Finally, in the sixth stage, 

the results obtained from applying this sub-technique for current Irish conditions and 

parameters studies are analysed and discussed. 
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5.2. Introduction 

The rapid growth of the global economy has resulted in an exponential increase in 

energy requirements worldwide. The fossil fuel resources required for the generation of 

energy are becoming increasingly scarce and climate changes related to excessive 

carbon emissions has increased interest in both energy saving and environmental 

protection [192]. In recent years, the use of renewable energy technologies has been 

identified as the most effective solution to these problems. The deployment of 

renewable energy technologies is crucial in Ireland given that there are very few 

indigenous fossil fuel resources available. For domestic dwellings, the largest source of 

energy consumption is space heating which accounts for approximately 60% of the total 

domestic energy consumption. Hotwater generation was the second largest source and 

accounts for 18% of the total domestic energy consumption. In Ireland, heat generation 

is dependent on the importation of fossil fuels. Ireland has set a target of 12% of heat 

generation to be met by renewable energy by 2020. Ireland has numerous accessible 

renewable energy resources, such as solar, biomass and geothermal energy, which are 

suitable for domestic heating and hotwater generation. Geothermal heat pumps for 

domestic dwellings have existed for many years. Unfortunately, these devices are often 

extremely expensive, require a large ground area and are primarily applicable to new 

dwellings. ASHPs, which use air as a heat source, are an alternative and relatively 

newer technology which are less expensive, require a smaller amount of space and are 

fit for both new and existing dwellings. As the air temperature tends to fluctuate 

throughout the year whilst the ground temperature remains practically stable, the COP 

achieved by ASHPs is not always comparable to that achieved by geothermal heat 

pumps. However, the temperate climate in Ireland is suitable for ASHP operation since 

the winters rarely become too cold. Solar thermal systems, which are typically used for 
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hotwater generation (and in rare cases for domestic space heating) have been 

extensively and successfully adopted worldwide. However, in most cases, these solar 

thermal systems are operated in combination with a conventional heating system such 

as a gas boiler, an oil boiler or an electric immersion to satisfy the hotwater requirement 

and to manage the intermittent nature of solar radiation. The use of ASHPs in 

combination with solar thermal systems is becoming popular due to the promise of 

reduced energy consumption and cost savings. In this study, the ASHP is analysed for 

the provision of domestic space heating and for the preheating of supply water within a 

hotwater storage cylinder. A solar thermal system is also adopted to raise the 

temperature of the supply water within the hotwater storage cylinder to a desired value. 

The use of both an ASHP and a solar thermal system ensures the maximum use of 

renewable energy for thermal generation. Additionally, the interaction between the 

ASHP and the solar thermal system improves both their economic viability and the 

effectiveness of the energy supply. 

In Ireland, grants provided under the former Greener Homes Scheme resulted in a large 

increase in the number of ASHPs and solar thermal systems installed between March 

2006 and May 2011. However, subsequent grants provided under the Better Energy 

Homes Scheme are limited to solar thermal systems only. These schemes were/are 

designed to stimulate householder interest in the installation of micro-renewable 

thermal generation systems. To date however, a detailed investigation of the economic 

viability of typical domestic integrated micro-renewable thermal generation systems, 

which is of critical importance to individual householders, has not been carried out. As 

well as knowing the various types of micro-renewable thermal generation system that 

are currently available, it is also important to determine the optimal system for each 

scenario.  
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This chapter presents a novel sub-technique for the optimised integration of a 

mono/hybrid micro-renewable thermal generation system consisting of an ASHP and/or 

a solar thermal system. A single ASHP or a single solar thermal system forms a mono 

system whilst a combination of an ASHP and a solar thermal system forms a hybrid 

system. The integration technique is generally applicable but is deployed here for 

Ireland, takes into account technical constraints (e.g. exemption conditions for planning 

permission) and economic supports (e.g. grants available for solar thermal systems). 

LCC is used to identify the optimal system in this integration technique; the heating 

demand and hotwater requirement have to be satisfied from the mono/hybrid micro-

renewable thermal system (a primary and/or an auxiliary heater may be required). 

Realistic hourly thermal (heating and hotwater) outputs for a year from the analysed 

ASHPs and the analysed solar thermal systems are obtained from accurately predicted 

hourly ambient air temperature values and hourly solar radiation values respectively by 

applying monthly weather data. The hourly household thermal loads for a complete year 

are obtained from smart meter trials carried out by the Commission for Energy 

Regulation (CER). The predicted system performance and the obtained economic 

results are accurate and reflect the real-life situation of an actual installed system. The 

chapter also demonstrates the modification in the system configuration when realistic 

changes (economical and heating consumption) are made.  

5.3. Hourly Heating Demand and Profile 

The hourly thermal loads (demand) and profiles employed in this study were obtained 

by multiplying the typical efficiency of a conventional gas boiler with gas consumption 

data obtained from the Smart Metering Gas Customer Behaviours Trials initiated by 

CER [193]. Almost 2,000 Irish homes took part in these trials between December 2009 



   Chapter 5 

 

130 

 

and January 2011. During the trial, a gas smart meter was installed in each individual 

household, and realistic gas consumption behavioural and usage patterns were then 

recorded. Following the completion of the trial, the data was reported in an anonymous 

format and no personal and confidential information were revealed. Five domestic 

hourly gas consumption behavioural and usage patterns in 2010 were selected based on 

the limited information available. The gas consumed is only used for providing heating 

in these five houses; therefore no gas is utilised for water heating and cooking purposes. 

The hourly gas consumption data having a total usage value of 16,536 kWh, the closest 

value obtained when referencing the average energy consumed of 16,232 kWh in the 

form of fossil fuels in 2010, is employed as the base data in this study. These selection 

processes are critically important in determining the hourly thermal heating loads and 

profile. The efficiency of a conventional gas boiler is assumed to be 85%. Although the 

current range of gas boilers have efficiencies of greater than 90%, gas boilers over 15 

years old tend to have efficiencies of less than 80%. Due to the fact that the age of the 

gas boilers which were involved in the trial was not revealed, an average efficiency of 

85% was adopted in this study. Figure 5.1 demonstrates examples of the generated 

hourly household thermal load profiles for four days (one for each season) from the base 

data throughout the year. 
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Figure 5.1. Examples of generated hourly thermal loads for four days from the 

base domestic thermal load. 

Five domestic hourly thermal loads, employed in the parameter study of the effect of 

domestic thermal load on the optimal system, are examined in order to assess if their 

mean values are statistically different. This examination is performed using Tukey’s test 

which is one of the multiple comparison tests of one-way analysis of variance 

(ANOVA). One way ANOVA enables the comparison of several means of populations 

simultaneously. Using ANOVA, it can be determined whether there is any statistical 

difference between the population means. Tukey's test may then be employed to 

compare the difference between each pair of means with appropriate adjustment for the 

multiple tests. The results are presented in a matrix that shows the result for each pair, 

either as a P-value or as a confidence interval. Tukey’s test assumes that the data from 

the different groups come from populations where the observations have a normal 

distribution and the standard deviation is the same for each group [194]. This 

nonparametric test is robust and works best if sample sizes are equal.   
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In this analysis of the five domestic thermal loads using Tukey’s test, the simultaneous 

confidence interval utilised is 95% and the sample size of each domestic hourly thermal 

load is 8,760. The results, given in Table 5.1, show that these five sets of hourly 

domestic thermal load have significantly different means since they do not share a letter 

in the grouping obtained from Tukey’s test.    

 Size of Sample Mean Grouping 

Household 1 8,760 2.90 A 

Household 2 8,760 2.31 B 

Household 3 8,760 1.96 C 

Household 4 8,760 1.60 D 

Household 5 8,760 1.24 E 

Table 5.1.  The result of Tukey’s test showing that the five selected household 

thermal loads are statistically different. 

The statistical maximum, minimum, mean and variance of each the domestic hourly 

thermal loads are demonstrated in Table 5.2. Also, the examples of domestic hourly 

thermal load profiles for four days (one for each season) in the year are shown in Figure 

5.2; these figures represent the annual thermal load of 10,890 kWh, 17,172 kWh, 20,235 

kWh and 25,425 kWh respectively. As shown in these figures, very little thermal load is 

observed during the summer months. Winter and spring generally require the most 

domestic heating since the thermal loads are very active in these periods. Furthermore, 

the domestic thermal profiles with a high thermal load are a lot ―busier‖ (more heating 

is required) than those profiles with a low thermal load.  
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Maximum 

(kWh) 

Minimum 

(kWh) 

Mean 

(kWh) 

Variance 

House 1 13.35 0.00 1.24 9.55 

House 2 18.44 0.00 1.60 14.76 

House 3 13.20 0.00 1.96 9.69 

House 4 17.59 0.00 2.31 12.63 

House 5 19.83 0.00 2.90 20.84 

Table 5.2. The statistical maximum, minimum, mean and variance of the five 

selected domestic hourly thermal loads. 
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Figure 5.2. Examples of generated hourly domestic thermal loads for four days (a) 10,890 kWh, (b) 17,172 kWh, (c) 20,235 kWh and (d) 

25,425 kWh. 
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5.4. Daily Hotwater Demand and Profile 

The daily hotwater demand and profile was employed from the EU reference tapping 

cycle number 3. The energy output of 11.7 kWh for each day is equivalent to a total 

volume of 199.8 L at 60
o
C. This is based on the EU mandate for the elaboration and 

adoption of measurement standards for household appliances EU M324EN [63]. This 

hotwater demand profile consists of 24 draw-offs, and is presented in Figure 5.3. The 

large quantity of hotwater usage is possibly due to the following: showering, bathing, 

dish-washing and etc. Although the daily hotwater demand and profile may vary 

significantly from both day to day and from resident to resident, it is impractical to use 

anything but a repetitive load profile. This is not quite correct for the summer period 

where the hotwater consumption pattern is slightly higher due to frequent showering 

and bathing. However, the temperature requirement for hot water during this period is 

not as high as during winter period. Consequently, the total thermal energy requirement 

is reasonably constant throughout the year. 

 

Figure 5.3. Volume of hotwater draw-off at various time of the day. 
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5.5. Domestic Solar Thermal System 

5.5.1. Technology Review of Solar Thermal System 

The solar water heating system, as shown in Figure 5.4, collects solar thermal energy. 

This solar heat is primarily employed for heating water and the heated water is then 

used for the domestic hotwater supply. The heated water may also be employed for 

space heating if a larger solar collector area, a larger hot water storage cylinder and 

more complex control systems are implemented. A solar water heating system can 

typically meet between 30% and 70% of the total annual hot water demand. Ideally, a 

solar water heating system should provide close to 100% of the hot water demand 

during the summer months and a portion of the hot water demand during the winter 

months when there is less solar thermal energy available. 

 

Figure 5.4. Schematic diagram of a domestic solar thermal system [195]. 

The power output of the solar collector is dependent upon its location, orientation, slope 

and its efficiency. The maximum annual energy output is obtained from a solar collector 

in Ireland when the collector is oriented due south at a slope angle of 30-45
o
 to the 
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horizontal. However, a solar thermal collector is capable of achieving close to 95% of 

the maximum output when it is orientated within 45
o
 of south and with tilt angles from 

10-50
o 
[196]. 

There are two dominant types of solar collector which are employed for domestic water 

heating applications: a flat plate collector and an evacuated tube collector as shown in 

Figure 5.5. These two types of solar collector are both of interest to this research since 

they are both commonly used in Ireland. The flat plate collector has a flat plate absorber 

which is typically coated with a special absorptive layer which maximises solar 

radiation capture. The heat transfer fluid is circulated through channels in the plate or 

pipes bonded to the back. There are headers at each end of the plate for connecting to 

the heat transfer circuit. A translucent glass or a plastic screen (single or double glazed) 

covers the plate. It functions to reduce the heat loss to the surroundings when the fluid 

in the collector is heated to a high temperature. The back and sides of the collector are 

always well insulated. The evacuated tube collector has a long and narrow collector 

plate enclosed in an evacuated tube. The plate is either a pipe containing a heat transfer 

fluid or a metal rod that is heated and transfers the heat via conduction. The vacuum can 

greatly reduce heat loss because there is no air to conduct the heat away. The evacuated 

tube collector generally delivers a higher power output per unit area than a flat plate 

collector. The translucent cover of the flat plate collector reflects some of the solar 

radiation away, especially when the sunshine level is low. Also the plates can be rotated 

to face the sun in the evacuated tube collector. Even though the evacuated tube collector 

generally achieves better efficiency, it is usually more expensive due to the increased 

complexity of its manufacturing process. Solar collectors can be set in a stationary 

(fixed permanent position) or in motion (adjust the position to face the sun) via a single 

or dual axis sun tracking device. The sun tracking device ensures the solar collector 
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receives maximum solar irradiation at all times [197]. The use of this device can 

improve the efficiency of the solar collector, in particular for flat plate solar collectors 

since it produces maximum energy when it is directly facing the sun. However, due to 

the mechanical complexity and the additional cost for installation and operation, the sun 

tracking device has not been widely adopted in Ireland. As such, the stationary solar 

collector is evaluated in this research.    

 

 

Figure 5.5. Schematic diagram of (a) a flat plate solar collector and (b) an 

evacuated tube solar collector [198].  
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Heat is removed from a solar collector using either an indirect system or a direct system. 

Most of the solar collectors deliver heat using an indirect system. In an indirect system, 

a solar fluid circuit is employed to transfer heat from the solar collectors to the hotwater 

storage cylinder. This solar fluid circuit consists of the solar collectors, the connecting 

pipeworks, the electrical pump and a heat exchanger. A fluid that consists of water, anti-

freeze and anti-corrosion inhibitor is commonly used in the solar fluid circuit. A 

domestic hotwater circuit consists of the hotwater storage cylinder, the cold water 

supply, the hotwater taps and shower, and connecting pipeworks. The flat plate collector 

can work also as a direct system in which household water is circulated directly through 

the solar collector, then stored in the hotwater storage cylinder and supplied to the 

house. The direct system only works well in climates where the water rarely freezes 

[199] and, as such, it is seldom employed in Ireland. 

There are two main circulation methods: natural thermosyphon systems and pumped 

systems. A natural thermosyphon system uses the temperature difference generated 

from the collector to drive the water flow around the heat transfer circuit. The hotwater 

storage cylinder should always be located at least 0.5 m above the collector. The heated 

water naturally rises above the cooler water to create a thermosyphon pressure. This 

pressure drives the water up through the distribution pipes into the storage cylinder. 

Cold water is drawn into the bottom of the collector from the base of the storage 

cylinder by gravity. This system is simple and low-cost, but performs poorly in the Irish 

interim weather conditions. A pumped system uses an electrical pump operates by a 

controller to move the solar fluid between the collector and hotwater storage cylinder 

via a heat exchanger. The electrical pump operated when there is a sufficient difference 

between the inlet and outlet solar fluid temperature in the solar collector. No controller 

is required in the thermosyphon system as the circuit only operates when a positive 
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temperature gradient exists. However, a non-return valve is often required to ensure the 

heat is not transferred reversely from the hotwater storage cylinder to the collector. The 

pumped system can reduce heat loss through pipes effectively and also removes the heat 

from the collector at the optimum rate. However its operation cost is higher than that of 

a thermosyphon system as more electricity and maintenance is required. The pumped 

system is predominantly used in Ireland due to the temperate climate, but also works 

well in central and northern Europe.  

The hotwater storage cylinder is a key component in the solar heating system and is 

used to store thermal energy in the form of hotwater [200]. The solar energy availability 

varies with time (day and night) and season. The solar water heating system should be 

prepared for operation whenever solar energy is available. The surplus heat is stored and 

ready for use when required. A duel coil or a multiple coil cylinder (a cylinder with two 

or more heat exchangers) is always used for domestic applications in Ireland. The solar 

fluid circuit should be connected to the heat exchanger located at the bottom of the 

hotwater storage cylinder and the electrical auxiliary immersion should be connected to 

the heat exchanger located at the top of the cylinder [35]. The hotwater storage cylinder 

should be optimally sized. This ensures that full use is made of the energy available in 

the collectors. An under-sized hotwater storage cylinder could lead to frequent 

overheating in the solar fluid circuit and hotwater storage cylinder. The controller, used 

to control the circulating pump, also monitors this excess temperature and may shut 

down the entire system for safety concerns. An over-sized hotwater storage cylinder 

could result in extensive use of the electrical auxiliary immersion which may increase 

both the capital and running costs of the cylinder. The average hotwater consumption 

rate per person is between 40 L and 50 L in Ireland. In general, the hotwater storage 

cylinder should be sized to accommodate between one and two days usage [37]. The 
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hotwater storage cylinder should always be well-insulated using either an insulation 

jacket or a semi-rigid foam coating. These insulation materials can help hotwater 

storage cylinders to retain heat in an effective manner. Precautions have to be taken in 

order to prevent the system from freeze damage. The system can be effectively 

protected using appropriate anti-freeze fluids and insulation. In some cases it may be 

necessary to drain fluid from the collector.    

In recent years, solar thermal systems have seen significant advances in technological 

development, increases in production volumes and reductions in installed costs. For 

example, the use of surfaces with increased absorptive and lower emissivity can 

enhance the thermal performance of solar collectors [201]. Research and development 

has been conducted on the use of PV/T collectors instead of conventional solar thermal 

collectors [182]. Improved pump designs have been implemented to suit different flow 

systems. New hotwater storage cylinders with enhanced stratification mechanisms have 

also been developed and employed, thus reducing system heat loss. 

5.5.2. The Generation of Hourly Solar Radiation on Solar Thermal 

Collectors 

The hourly solar radiation data for a whole year is very rarely available at a lot of sites. 

In order to accomplish the most accurate analysis, artificial but statistically reasonable 

hourly solar radiation data can be generated using a combination of Degelman’s, 

Graham’s, Erb’s and Redinll’s algorithm [202]. These data are generated in a manner 

such that their associated statistics are approximately equal to the long term solar 

radiation data statistics at the specified location. The hourly solar radiation values on the 

tilted solar thermal collector can be calculated by performing sophisticated statistical 

calculations. These calculations are carried out in four steps and require 12 monthly-
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average daily solar radiations for the location, i.e. one for each month, the latitude of the 

location where the solar thermal collector is installed, the shift angle in solar time, i.e. 

the angle difference between the standard meridian for the local time zone and the 

longitude of the location where the solar thermal collectors are installed, the solar 

azimuth angle, i.e. the angle between the local meridian and the projection of the line of 

sight of the sun on to horizontal plane, the slope of the solar thermal collector relative to 

the horizontal, and ground reflectance, i.e. the fraction of solar radiation incidence on 

the ground is reflected.  

The input monthly-average daily solar radiation values are converted into a 

dimensionless form called the clearness index which is the ratio of the total solar 

radiation on a horizontal surface to the extraterrestrial solar radiation on a horizontal 

surface. The daily clearness index values for each month are calculated using 

Degelman’s algorithm. The values of daily clearness index are obtained from a 

cumulative distribution function (with 1 corresponding to the smallest daily clearness 

index value and 31 to the largest value for a 31-day month) and then ordered in a 

predetermined sequence. The same sequence of the numbers 1 to 31 is always used for 

ordering the daily clearness index values. The starting position within the sequence 

however is determined randomly at the beginning of each generation process.   

Once the daily clearness index values for each month are generated, the hourly clearness 

index for each day can be calculated using Graham’s algorithm. The hourly clearness 

index values are transformed into a sequence of normally distributed values which are 

generated from a first-order autoregressive model. The parameter of this first-order 

autoregressive model is a function of the daily clearness index and the use of this first 

order autoregressive model introduces a variable whose probability structure changes 
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for each hour. The generated hourly clearness index values can also be converted back 

to the hourly solar radiation value.  

The diffuse solar radiation on a horizontal surface for each hour is deterministically 

calculated using the hourly diffuse fraction correlation developed by Erbs. The ratio of 

the hourly diffuse solar radiation on a horizontal surface to the hourly global solar 

radiation on a horizontal surface can be determined based on the generated hourly 

clearness index value. The hourly beam solar radiation on a horizontal surface can be 

computed by subtracting the calculated hourly diffuse solar radiation from the hourly 

global solar radiation. 

The beam, diffuse and ground-reflected solar radiation on a tilted surface can then be 

estimated based on the calculated hourly beam and diffuse solar radiation values and the 

slope provided for the solar thermal collector relative to the horizontal using Reindl’s 

algorithm. A detailed description of the procedure employed to generate hourly solar 

radiation data for a solar thermal collector is given in Appendix C.  

5.5.3. The Generation of Hourly Energy Output from a Solar Thermal 

System 

The general first-order differential equation for the fluid temperature change with 

respect to time in a solar thermal collector is given in Equation 5.1 [203]. 

 
'

L a p in

dT
C* F * S A*U *(T T ) m*C *(T T )

dt
 (5.1) 

where  

 n TS ( ) *IAM*A*I  (5.2) 
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and where C is the capacitance of the solar thermal collector including the fluid, F' is 

the solar collector fin efficiency factor, A is the total aperture area of a solar collector 

array, UL is the overall thermal loss coefficient of the solar collector per unit area, T is 

the temperature of the fluid in the collector at any point, Ta is the ambient air 

temperature, m  is the mass flow rate of fluid through the solar collector, Cp is the 

specific heat of fluid in the solar collector, Tin is the inlet temperature of fluid to the 

solar collector, (ηα)n is the product of the cover transmittance and the absorber 

absorptance at the normal incidence, IAM (Incidence Angle Multiplier) is the ratio of 

the absorbed radiation at the current incidence angle to the absorbed radiation at normal 

incidence, and IT is the total radiation on a tilted solar collector.  

Equation 5.2 assumes that the heat loss to the ambient environment varies linearly with 

respect to the temperature difference between the fluid and the ambient air. However, a 

more accurate expression containing the quadratic loss coefficient, UL/T, should be 

employed. The UL/T is multiplied by both the temperature difference between the fluid 

and the ambient temperature and the absolute temperature difference between the fluid 

and the ambient temperature. This quadratic equation is as follows [203]: 

 
L a'

p in

L / T a a

S A* U *(T T )dT
C* F * m*C *(T T )

A*U *(T T )* (T T )dt
 (5.3) 

The collector is discretised into several isothermal temperature nodes and the main 

differential equation for node i is expressed using Equation 5.4: 

 
i i L i a'i

i p i in,i

i L / T i a i a

S A *U *(T T )dT
C * F * m*C *(T T )

A *U *(T T )* (T T )dt
 (5.4) 

where  
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 i

C
C

Number of Nodes
 (5.5) 

 i

A
A

Number of Nodes
 (5.6) 

 i

S
S

Number of Nodes
 (5.7) 

 in,i i 1T T  (5.8) 

In order to analytically solve this differential equation, the Equation 5.4 is placed into 

the form as Equation 5.9. 

 
2i

i i

dT
a *T b*T c

dt
 (5.9) 

 

For T>Ta 
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i L / T
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F *A *U
a

C
 

''
pi L/ T ai L

i i i

m*C2*F *A *U *TF *A *U
b

C C C
 

' ' 2'
p in,ii L a i L/ T a

i i i i

m*C *TF *A *U *T F *A *U *TF *S
c

C C C C
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C
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m*C *TF *A *U *T F *A *U *TF *S
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where T is the fluid temperature and is the dependent variable, t is the time, a and b are 

constants; c however can be either a function of time or a function of the dependent 

variable. If c is a constant with respect to time, then the differential equation can be 

readily solved. If c is not a constant and is a function of the previous node fluid 

temperature, then a reasonable assumption has to be made in which c is constant and is 

equal to its average value (cave) over the time step. If a is equal to zero in Equation 5.9, 

then the outlet temperature, To,i and the average temperature, Tave,i can be calculated 

from Equation 5.10 and 5.11 respectively. 

 
b tave ave

o,i in,i

c c
T (T )*e

b b
 (5.10) 

 
b tave ave

ave,i in,i

c c1
T *(T )*(e 1)

b* t b b
 (5.11) 

where ∆t is the time step. 

If a is not equal to zero in Equation 5.9, the outlet temperature and average temperature 

are calculated using formulae presented in Table 5.3 which depends on the value of the 

determinant q as follows: 

 
2

aveq 4*a*c b  (5.12) 
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For q < 0 For q = 0 For q > 0 

in,i

in,i

o,i

t
q * tanh( q * ) 2*a *T b

2 b
2*a *T bt

1 tanh( q * )*
2 q

T
2*a

 

o,i

in,i

1 b
T

1 2*a
a * t

b
T

2*a

 

in,i

in,i

o,i

t
q * tanh( q * ) 2*a *T b

2 b
2*a *T bt

1 tanh( q * )*
2 q

T
2*a

 

in,i

ave,i

t
q *cosh( q * ) (2*a

2
2*ln b* t

t
*T b)*sinh( q * )

ln q2

2*a aT
t

 

in,i

in,i in,i

ave,i

1 b* t 1
ln a *T ln

b b2*a
T T

2*a 2*a

2*a aT
t

 

in,i

ave,i

t
q *cosh( q * ) (2*a

2
2*ln b* t

t
*T b)*sinh( q * )

ln q2

2*a aT
t

 

Table 5.3. Formulae employed to calculate To,i and Tave,i values [203]. 
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In the case that multiple solar thermal collectors are connected in series, this process is 

repeated for each individual collector. The inlet temperature of the n
th

 solar collector is 

set equal to the outlet temperature of the (n-1)
st
 solar collector. The solar thermal 

collector efficiency can be calculated using Equation 5.13 based on the collector 

thermal efficiency parameters provided under standard test conditions: FR*(ηα)n, FR*UL 

and FR*UL/T. FR is the heat removal factor and Fave represents FR at the average 

temperature condition. 

 

p* ave au

T T

ave a ave aave a
ave n ave L ave L/ T

T T

m*C (T T )Q

A*I A*I

(T T )* (T T )(T T )
F *( ) F *U * F *U *

I I

 (5.13) 

The collector thermal efficiency parameters FR*(ηα)n,  FR*UL  and FR*UL/T, which are 

generally represented as a0, a1 and a2,  are referred to as the intercept efficiency, first-

order efficiency (heat loss) coefficient and second-order efficiency (heat loss) 

coefficient respectively. The standard operating conditions for obtaining these 

parameters are [51]: 

 The total solar radiation incidence on the tilted solar thermal collector is 900 W/m
2
.  

 The temperature difference between the average temperature of the solar thermal 

collector and the ambient temperature is 50
o
C. 

Since these parameters are provided, a methodology is required to convert FR*(ηα)n,  

FR*UL  and FR*UL/T into F'*(ηα)n,  F'*UL  and F'*UL/T in order to use Equation 5.3. If the 

heat removal factor FR is given and the solar thermal collectors have a linear efficiency 

curve (UL/T=0), as shown in Figure 5.6, (ηα)n and UL can be obtained by dividing 

FR*(ηα)n,  FR*UL  and FR*UL/T by FR.  
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Figure 5.6. A typical efficiency curve of a solar thermal collector [204]. 

F' is the function of these variables ((ηα)n and UL), and can be solved using Equation 

5.14 . F'*(ηα)n and  F'*UL  can be obtained by multiplying (ηα)n and UL by F'. 

 
test p,test R L

L test p

m *C F *A*U
F' *LOG 1

A*U m *C
 (5.14) 

where testm is the mass flow rate of fluid under standard test conditions and 
p,testC is the 

specific heat of fluid under standard test conditions. 

However, for collectors that have a nonlinear efficiency curve (UL/T<>0), also shown in 

Figure 5.6, F's varies based on the variables ((ηα)n, UL and UL/T) in the efficiency 

equation; also the heat removal factor FR is not commonly provided. As a result, direct 

calculation of the variables (ηα)n, UL and UL/T is not possible. Nevertheless, due to the 

interrelated nature of the variables, the values of F'*(ηα)n,  F'*UL  and F'*UL/T can be 

solved by arbitrarily choosing a value for FR, dividing the efficiency parameters by FR 

to obtain (ηα)n, UL and UL/T, and then calculating F' as a function of these variables. The 
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resulting products of F'*(ηα)n,  F'*UL  and F'*UL/T will be the same regardless of the 

value chosen for FR. Equations for F' as a function of Fave  are given in Tables 5.4-5.8. θ 

is the angle of incidence. 
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For S 0 , LU 0 , L / TU 0 , ave aT T  

L/ T L

2
L/ T L2 2 L/ TL

L/ T L

p

2* q 2*U * U q
ln 1 *

2*U * U qU *U *4 k *m k *m
* 1 ( 1) k *U *(S ) U q

k 2 2 2 4 k
F'

A* q

m*C

 

where ave

p

A*F
k

(m*C )
, 

2

L/T Lq 4*U *S U , L L / Tm U U *  

Table 5.4. Equations employed to calculate F' as a function of Fave [205]. 
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For S 0 , LU 0 , L / TU 0 , ave aT T  
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2
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2

L L/TU 4*U *S  

2
2 L/ TL

L/ T L

1 1 L/ T L

2 2

L/ T L L/ T L

2

L/ T L

p

U *U *4 k *m k *m
* 1 ( 1) k *U *(S ) U

k 2 2 2 4 k 2*U * U
tan tan

4*U *S U 4*U *S U

F'
A* 4*U *S U

2*m*C

 

 

where ave

p

A*F
k

(m*C )
, 

2

L/T Lq 4*U *S U , L L / Tm U U *  

Table 5.5. Equations employed to calculate F' as a function of Fave [205]. 
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For S 0 , LU 0 , L / TU 0 ,  

ave aT T  

1
2

2
pave U / L ave U / L ave U / L ave U / L

ave U / L p p p p

L / T

m*CA*F *U * A*F *U * A*F *U A*F *U *2
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Table 5.6. Equations employed to calculate F' as a function of Fave [205]. 
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For S 0 , LU 0 , L / TU 0  

ave aT T  
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Table 5.7. Equations employed to calculate F' as a function of Fave [205]. 
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For S 0 , LU 0 , L / TU 0  

ave aT T  
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Table 5.8. Equations employed to calculate F' as a function of Fave [205]. 
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The solar thermal collector tests are generally performed on clear days at normal 

incidence so that the transmittance-absorption product is nearly the same as the normal 

incidence of beam radiation. However, it is important to determine the effects of angle 

of incidence of the incident radiation on solar thermal collectors. The intercept 

efficiency is corrected for non-normal solar radiation incidence by the incidence angle 

modifiers (ηα)/(ηα)n. The IAM is calculated from Equation 5.15 [203]: 

 

grb d
bt dt gr

n n n

n T

( )( ) ( )
I * I * I *

( ) ( ) ( )( )
IAM

( ) I
 

(5.15) 

For a flat plate solar thermal collector, the incidence angle modifier for beam radiation, 

(ηα)b/(ηα)n, can be approximated from Equation 5.16: 

 

2

b
0 1

n

( ) 1 1
1 b * 1 b * 1

( ) cos cos
 (5.16) 

where b0 is the first-order incidence angle modifier coefficient and b1 is the second-

order incidence angle modifier coefficient. The incidence angle modifier for both sky 

diffuse, (ηα)d/(ηα)n, and ground-reflected diffuse, (ηα)gr/(ηα)n, are determined by 

integrating the ratio of the absorbed diffuse radiation to the incident diffuse radiation 

over the sky dome and ground dome respectively. The evaluation of the sky diffuse 

radiation modifier (ηα)d/(ηα)n and the ground-reflected diffuse modifier (ηα)gr/(ηα)n are 

presented as follows respectively [203]: 

 

1

1

cot
sin ( )

b b2 2 2 tan
s s

n nd 2 2 2 2

cot
sin ( )

n 2 2 2 tan
s s

0
2 2 2

( ) ( )
* *cos *sin d d * *cos *sin d d

( ) ( )( )

( )
cos *sin d d cos *sin d d

 

(5.17) 
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1

1

b2 2
cot s

sin ( )
gr n2 tan

n 2 2
cot s

sin ( )
2 tan

( )
* *cos *sin d d

( ) ( )

( )
cos *sin d d

 (5.18) 

The solar azimuth angle, s , is the angular displacement from south of the projection of 

beam radiation on the horizontal plane and shown in Figure 5.7. The angle of incidence, 

θ, is the angle between the beam radiation on a surface and the normal to that surface 

and shown in Figure 5.8.  

 

Figure 5.7. An illustration of solar azimuth angle for a tilted surface [206]. 

s  
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Figure 5.8. An illustration of angle of incidence (θ) and slope (β) for a south-facing 

surface [206]. 

For evacuated tube collectors, (ηα)b/(ηα)n is the product of the longitudinal incidence 

angle value and the transversal incidence angle value [207]. The values of different 

longitudinal incidence angles are obtained in a plane that is perpendicular to the 

collector plane and contains the collector azimuth (transversal angle =0); the values of 

different transversal incidence angles are obtained in a plane that is perpendicular to 

both the collector aperture plane and the longitudinal plane (longitudinal angle = 0). The 

graphical representation of the longitudinal and transversal incidence directions are 

shown in Figure 5.9.  
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Figure 5.9.  Graphical representation of the longitudinal (θl) and transversal (θt) 

incidence directions [206]. 

The (ηα)b/(ηα)n of a solar thermal evacuated tube collector is characterised by its type; 

hence each collector has a unique (ηα)b/(ηα)n. The values of the longitudinal incidence 

angle and the transversal incidence angle are available from test report and are required 

for this calculation. If the incidence angle is not identical as the angles provided in the 

test data, an interpolation has to be performed in order to obtain the accurate (ηα)b/(ηα)n 

value. The Table 5.9 shows the transversal and longitudinal angle values obtained for 

Kingspan HP400 and HP450 solar evacuated tube collectors under standard test 

conditions. 
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θt 1 1.01 1.02 1.04 1.04 0.99 0.9 

θl 1 1 0.99 0.97 0.95 0.91 0.83 

Table 5.9. Transversal and longitudinal angle values obtained for Kingspan HP400 

and HP450 solar evacuated tube collectors under standard test conditions [208]. 

5.5.3.1. Validation of the Procedure to Calculate the Energy Outputs of a 

Solar Thermal Flat Plate Collector System and a Solar Thermal 

Evacuated Tube Collector System  

The simulation models set up to predict the energy output of solar thermal systems have 

to be validated in order to prove their accuracy. The validations are carried out by 

comparing the predicted energy outputs with the measured energy outputs for two 

installed solar thermal systems. The first system was assembled from two solar flat plate 

collectors having a total aperture area of 3.95 m
2
 and the second system was assembled 

from one solar evacuated tube collector having a total aperture area of 3.021 m
2
. These 

solar thermal systems, shown in Figure 5.10, were both built and installed at a site in 

Dublin and then monitored by DIT. The solar thermal collectors were positioned south 

facing and had a 53
o
 slope relative to the horizontal. An automated hot water dispensing 

unit was used to extract water from the hot water cylinder in order to mimic the real life 

operation in a domestic application [114]. A RESOL DeltaSol M solar controller was 

used to control the operation of the solar pump station for each of the solar thermal 

systems. Eight temperature sensors were employed to measure the water and the solar 

fluid temperatures. The volumetric flow rate of the solar fluid was measured using 

RESOL V40-06 impulse flow meters which react at 10 litres per pulse. RESOL DL2 

data loggers were used to record data at one-minute intervals. The one-minute-interval 
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data was used to calculate the useful energy gain by the solar thermal collector. The 

calculated useful energy gain was aggregated by summing them over one-hour intervals 

and then employed in this validation study. The energy outputs were obtained for a 12-

month period, between June 2009 and May 2010. The parameters used in simulation 

models were then set identical to the test conditions; the solar radiation and ambient 

temperature data used were for the period June 2009 to May 2010 in Dublin and were 

also obtained from Met Éireann. The specifications of the solar thermal collectors are 

shown in Table 5.10.    

 

Figure 5.10. The solar thermal systems built and installed at a site in Dublin [63]. 
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Parameter Flat Plate Collector  Evacuated Tube Collector  

Number in series 2 1 

Collector aperture area (m
2
) 3.95 3.021 

Fluid specific heat (kJkg
-1

K) 3.708 3.708 

Tested flow rate (kghr
-1

m
-2

) / 80 

Intercept efficiency 0.776 0.778 

First order efficiency 

coefficient (kJhr
-1

m
-2

K
-1

) 
14.22 3.276 

Second order efficiency 

coefficient (kJhr
-1

m
-2

K
-2

) 
0.0594 0.036 

Maximum flow rate (kghr
-1

) 212 330 

Collector slope (Degrees) 53 53 

Table 5.10. Specifications of the solar thermal collectors [63]. 

The measured annual total energy outputs generated from the flat plate and evacuated 

tube solar collectors were 1,984 kWh and 2,056 kWh respectively [209]. The predicted 

annual total energy outputs were 1,824 kWh and 2,075 kWh for the flat plate and 

evacuated tube solar collectors respectively. The percentage difference between the 

measured and predicted annual energy outputs are 8.06% and 0.09% for the flat plate 

and evacuated tube solar collectors respectively. This shows a good agreement between 

the predicted energy outputs and the measured data on a yearly basis. The coefficient of 

determination is also employed to detect the coincidence between the measured and 

predicted hourly energy outputs of the solar flat plate collector system and the solar 

evacuated tube collector system for a whole year. A coefficient of determination value 

of 0.34 is obtained for the solar flat plate system. This means that 34% of the variance 

in the measured hourly energy outputs is predicted by the model; however 66% of the 
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variance is not explained by the model. Figure 5.11 shows a scatter diagram of 

predicted hourly energy outputs versus measured hourly energy outputs for the solar flat 

plate collector system. A coefficient of determination value of 0.4 is obtained for the 

solar evacuated tube system. This demonstrates that 40% of the variance in the 

measured hourly energy outputs is predicted by the model and 60% of the variance 

remains unexplained by the model. Figure 5.12 shows a scatter diagram of predicted 

hourly energy outputs versus measured hourly energy outputs for the solar evacuated 

tube collector system. There are a number of possible reasons why these coefficient of 

determination values are not higher: 

 The monthly solar radiation data used for predicting the hourly solar radiation 

values was obtained from the national weather station (Dublin airport) closest to 

the location where the two solar thermal systems were installed. However, there 

is quite a distance (approximately 10 km) between these locations, and the 

monthly solar radiation applied in the model was not the same as the solar 

radiation received by the installed solar thermal collector systems [7]. 

 The temperature difference set to remove hotwater from the solar thermal 

collectors is not revealed for the installed solar thermal systems. As such, the 

temperature difference set in the solar thermal system models possibly differs 

from the value used in the experiment.  
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Figure 5.11. Scatter diagram of predicted hourly energy outputs versus measured 

hourly energy outputs for the solar flat plate collector system. 

 

Figure 5.12. Scatter diagram of predicted hourly energy outputs versus measured 

hourly energy outputs for the solar evacuated tube collector system. 

To the best of the author’s knowledge, this is the first time an attempt has been made to 

validate the predicted hourly energy outputs of solar thermal system models for a 

complete year. There is no comparable value that can indicate the precision of the 

-0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 

P
re

d
ic

te
d

 E
n
er

g
y
 O

u
tp

u
t 

(K
W

h
) 

Measured Energy Output (kWh) 

-0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 

P
re

d
ic

te
d

 E
n
er

g
y
 O

u
tp

u
t 

(k
W

h
) 

Measured Energy Output (kWh) 



   Chapter 5 

 

165 

 

obtained coefficient of determination value since no other validations have been carried 

out to this degree previously. In 55 international peer-reviewed journal articles reviewed 

by the author [63, 65, 133, 135, 136, 210-259] in which solar thermal systems were 

modelled, only 25 articles included a validation of their model [63, 65, 133, 135, 136, 

210-229]. However, in these articles no attempt has been made to validate models by 

comparing the predicted energy output with the measured energy output on an hourly 

basis for a complete year. Nonetheless, based on the comparison of annual measured 

and predicted energy outputs, the procedure used to predict the energy output for solar 

thermal systems is considered appropriate for use in this study. 

5.6. Domestic Air Source Heat Pump 

5.6.1. Technology Review of an Air Source Heat Pump 

Heat pumps, as shown in Figure 5.13, are a promising technology and use the same 

mechanical principles as refrigerators and air conditioners [260]. A refrigerator removes 

heat from an interior section and discharges it to the ambient environment, whereas heat 

pump extracts heat from the ambient environment and uses it to provide heating and 

hotwater for domestic dwellings. A heat pump can be also operated in reverse, whereby 

it extracts heat from the interior of a dwelling and releases it to the environment. The 

electric compressor built into a heat pump is used to move a refrigerant around in a 

closed refrigerant circuit. The refrigerant, known as the working fluid, absorbs the heat 

from the surroundings through the external heat exchanger and is vaporised. The 

evaporated refrigerant is transferred to and compressed in the compressor. The 

compressor pressurises the evaporated refrigerant which significantly raises its 

temperature. The high-temperature and pressurised evaporated refrigerant then passes 

through an internal heat exchanger where heat is transferred to the heating systems (e.g. 
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underfloor heating, radiators and hotwater cylinder) and such that the refrigerant 

condenses. The refrigerant then passes through an expansion valve where it is de-

pressurised and returns to a low-pressure liquid/vapour mixture and the cycle is 

subsequently repeated. 

 

Figure 5.13. A schematic diagram of demonstrating how a heat pump functions 

[261]. 

A basic factor of great importance for the successful operation of a heat pump is the 

availability of an abundant and dependable heat source for the evaporator preferably one 

at a relatively high temperature. The COP of a heat pump system is the ratio of heat 

energy output to electrical power input, and generally lies between two and five 

depending on the heat pump type, the temperature of the heat source, the temperature 

requirement of the heating distribution system, the type of refrigerant and the specific 

components of the heat pump system. The COP will decrease when the difference in 

temperature between the heat source and the heating distribution system increases, as 

shown in Figure 5.14. This can occur in response to a drop in heat source temperature, 

an increase in the temperature required for the heating distribution system, or a 

combination of both. 
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Figure 5.14. An illustration of COP of a heat pump varies with temperature 

difference [262].  

A heat pump is the most suitable system for low-temperature heating distribution 

systems such as underfloor heating systems, which require temperatures of 30-45
o
C 

[263]. This temperature requirement is the lowest compared with other domestic 

distribution systems such as low-temperature radiators and conventional radiators. The 

underfloor heating system is the most preferable as a higher COP is achieved when the 

heat pump produces low-temperature heat.  In an underfloor heating system, the floor 

slab acts as a thermal storage facility which is very important for two reasons: 

 It minimises the on/off frequency of the heat pump 

 The area of heat release is very large and the required temperature of the water 

flowing through the pipes is significantly lower than that required by 

conventional radiator systems. 

The highest reasonable temperature which the heat pump can supply is about 50-55
o
C. 

This temperature is sufficient for low-temperature radiators (45-50
o
C). Increased 

radiator surface areas are required to maintain the same heat output when this type of 

radiator is in use. However, low-temperature radiators are generally operated in 
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conjunction with a buffer tank to achieve an alternative design solution for a heat pump.  

A buffer tank is used to serve a similar purpose like the storage effect of underfloor 

heating and is incorporated into systems using radiators to provide the required thermal 

storage. However, a buffer tank is not always required if the heat pump can vary its heat 

output to match the heat requirement of the dwelling. Higher temperature heat from 

other sources must be obtained to reach the temperature requirement for the 

conventional radiators (60-90
o
C).  

Domestic hotwater can also be preheated by heat pump systems. The heat pump raises 

the incoming water from a water supply temperature to around 35-40
o
C, and other 

sources are then used to heat the water to the desired storage temperature of 60
o
C. 

R22 (a single hydrochlorofluorocarbon (HCFC) compound) refrigerant has been widely 

adopted in heat pump systems for many decades due to its excellent safety, energy 

efficiency and operating characteristics [264]. However, R22 is considered to be 

harmful to the environment due to its ozone depleting potential and its manufacture by-

product contributes significantly to global warming [265]. R22 is now a controlled 

substance by the Montreal Protocol and will be phased out by 2020 in developed 

countries and by 2030 in developing countries [266]. R410, a blend of 

hydrofluorocarbons (HFCs) was developed as a substitute to R22, is an environmentally 

friendlier refrigerant and does not contribute to ozone depletion. This refrigerant has 

been employed for newly-designed heat pump systems such as the Aeromax (Kingspan) 

and Ecodan (Mitsubishi) heat pumps. There are other substitutes to R22 used in heat 

pumps depending on the application and system design. These include R134, which is a 

low pressure refrigerant, and R407, which is a look-alike zeotropic mixture [264]. There 

are three main types of heat pumps utilised for domestic dwellings: GSHP, water source 

heat pump (WSHP) and ASHP.  
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5.6.1.1. Ground Source Heat Pump 

The heat energy in the soil is used as a heat source for a GSHP. The soil generally 

provides a stable temperature throughout the year with minor fluctuations at depths of 1 

m or more; at a distance of 2 m or 3 m below the ground, the soil temperature remains 

between 11
o
C to 13

o
C in Ireland [263].  The majority of the energy available in the soil 

at shallow depths is solar heat; however, the energy available at greater depths is 

generally referred to as geothermal energy. GSHP systems, as shown in Figure 5.15, are 

often characterised by the method used to enable access to the ground: open loop or 

closed loop. In an open loop system, ground water is extracted via a borehole. This 

water is used as a heat source for the heat pump, and then it is returned to the ground. 

Several boreholes can be linked to increase the capacity of the system. This is the most 

widely used and cost effective type of system where there is a good source of ground 

water available. However, ground water availability is limited, and both fouling and 

corrosion may also cause problems depending on water quality. Most importantly, 

environmental regulations are becoming increasingly restrictive on the use of ground 

water. In a closed loop system, a fluid, usually water or water with anti-freeze, is used to 

transfer heat. The fluid absorbs heat as it flows in a closed loop of high-density 

polyethylene pipe that is in contact with the ground. There are two main ways in which 

the closed loop is installed: vertical and horizontal loop configurations. A vertical loop 

system has the sealed loop of pipes inserted into pre-drilled boreholes. The pipes are 

buried at the depth between 15 m and 120 m into the earth [267]. Its main advantage 

over the horizontal loop system is that it is less affected by the fluctuation of 

temperatures in the soil or rock and it requires less pipes and pumping power. However 

it is more expensive. A horizontal loop system has the sealed loop of pipes buried in a 

horizontal trench about 1.5-3 m deep [268]. In general, the area of the buried pipes is 
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more or less equivalent to the floor area of the house. It is cheaper than the vertical loop 

type, but it requires a large land area. Temperature fluctuations within the soil can also 

have a large impact on the system’s performance.  The GSHP systems have a typical 

COP of around 3.5-4 [196].  

 

Figure 5.15. A schematic diagram of a GSHP system [269]. 

5.6.1.2. Water Source Heat Pump 

The heat energy available in water is used as a heat source for a WSHP. A WSHP 

system, as shown in Figure 5.16, can be classified as either an open loop or a closed 

loop system. For an open loop system, water from a water source, usually a well, is 

passed directly through the heat pump. The heat is removed and then the water is 

discharged to the water source. For a closed loop system, a series of pipes are used to 

extract heat from a water source such as a local lake, river or stream. A mixture of anti-

freeze and water in the closed pipe loop is then used to extract the heat. Water is 

considered as an ideal heat source for a heat pump, and the COP of WSHP systems can 
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reach values as high as 5. However, water must be present in sufficient quantity such 

that drinking water resources are not affected. The water quality, i.e. hardness, 

corrosivity etc, is an important consideration for an open loop system. The 

environmental issues associated with the discharge of the working fluid back into the 

water source have also caused concern.   

 

Figure 5.16. A schematic diagram of a WSHP system [270]. 

5.6.1.3. Air Source Heat Pump 

The external air is used as a heat source for an ASHP. The most common type of ASHP 

used in a dwelling is an air-to-water heat pump as shown in Figure 5.17, where the 

water is referred to as the working fluid of the heat distribution system, e.g. underfloor 

heating, radiators etc. Another type of ASHP is an air-to-air heat pump which is mainly 

fitted to ventilation systems to provide hot air for a dwelling. The seasonally variation 

of air temperature is the key factor that decides the performance of an ASHP. The 
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maritime climate in Ireland, and the moderating influence of the sea in winter lead to 

relatively few days having an air temperature below 0
o
C and as a consequence, ASHPs 

are very applicable for Irish dwellings [271]. A built-in electrical immersion heater is 

available in some ASHPs. The electrical immersion heater is used to make up the 

shortfall in temperature if the heat pump cannot satisfy the heating requirement in the 

dwelling. An ASHP is very unlikely to generate hotwater at a temperature of 60
o
C 

which is recommended for storage. An electrical immersion heater is generally utilised 

to boost up the hotwater temperature as required. ASHPs have slightly lower COPs than 

GSHPs and WSHPs and, according to manufacturers' data, have a COP of between 1.5 

and 5. However this slight reduction in COP can be reflected in costs since it is typically 

less expensive and easier to install than other types of heat pump. The utilisation of an 

ASHP is much less restricted than either a GSHP or a WSHP. The GSHP requires a 

large space for the collector which is rarely available in urban areas; the extra costs 

added for drilling can be very significant, and the access for drilling and excavating 

machinery can also be restricted. WSHPs require a water source at a nearby location 

which very seldom exists; there is a concern about using water from a well as the 

discharged water may affect the quality of drinking water. ASHPs are not only suitable 

for newly-built dwellings, but also for retrofit dwellings which make it extensively 

applicable. Therefore, the ASHP is investigated in this study. 
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Figure 5.17. A schematic diagram of an ASHP system [272]. 

5.6.2. The Integration of an Air Source Heat Pump and a Solar Thermal 

System 

There are a number of ways to integrate an ASHP and a solar thermal system to provide 

both heating and hotwater for a dwelling. The most conventional, and also the most 

commonly used method, is to directly connect the ASHP with the heating distribution 

system to provide the entire heating load. The ASHP is also connected to a heat 

exchanger in the hotwater storage cylinder to preheat the water. The solar thermal 

system is connected with another heat exchanger to heat water to the required 

temperature (60
o
C). Electrical immersion heaters are also used when heating or 

hotwater requirements cannot be met. A schematic diagram of the integrated system is 

shown in Figure 5.18.  
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Figure 5.18.  Domestic integrated micro-renewable thermal generation system for 

a dwelling. 

The second way is to have the ASHP and the solar thermal system both connected with 

a buffer tank. The buffer tank is connected with the heating distribution system to 

provide heating for the dwelling. The hotwater is also drawn from the top of the buffer 

tank to satisfy the domestic hotwater requirement. A schematic diagram of this system 

is shown in Figure 5.19.  
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Figure 5.19. Domestic integrated micro-renewable thermal generation system with 

a buffer tank for a dwelling. 

Many different and more complex combinations of an ASHP and a solar thermal system 

have been proposed by researchers in recent years and certain combinations have even 

been evaluated in experimental tests. As these more complex configurations have not 

yet been widely adopted however, they are not considered appropriate for system 

integration in this study. Nonetheless, these combinations are still worth mentioning as 

some may become popular in the future. Xu et al. presented a study on the operating 

performance of a solar-assisted ASHP for hot water heating, as shown in Figure 5.20 

[273]. A specially designed flat plate collector/evaporator with spiral-finned tubes was 

used to absorb both energy from solar radiation and ambient air in both a simultaneous 

and independent manner. Depending on the weather conditions, the overall COP of the 

system can be improved if this solar-assisted ASHP is operated in different modes. 

When there is sufficient solar energy, such as sunny days in the summer, solar energy is 
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the dominant heat source for hotwater heating. When there is not sufficient solar energy, 

such as sunny days in winter, overcast or rainy days, both solar energy and ambient air 

are the heat source. Finally, when there is no solar energy, such as at night, ambient air 

is the only heat source.  

 

Figure 5.20. Schematic diagram of a solar-assisted ASHP [273]. 

A number of similar studies have also been carried out in order to investigate the 

possibility of improving the COP of an ASHP by incorporating a solar thermal collector 

as an evaporator. Analytical and experimental studies were performed by Kuang et al 

[274] using a solar-assisted ASHP with a 2 m
2
 flat collector that acted as a heat source 

and also as an evaporator for the refrigerant. The long term thermal performance of the 

system was predicted and the monthly COP was found to vary between 4 and 6. 

Another study was conducted and an experimental set-up was introduced and analysed 

by Li et al [275] on solar-assisted ASHP. The experimental results showed that the 

seasonal average COP of system was 5.25, and could even reach 6.61 when the system 

was operating at the optimal condition. In another case, a solar heat pipe collector 

enhanced solar-assisted ASHP was studied by Huang et al [276]. This combined 

system, as shown in Figure 5.21, is operated in a heat pump mode similar to the 
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operation of a conventional electricity-driven heat pump system when solar radiation is 

low; however the combined system is operated in a heat pipe mode when solar radiation 

is high while the heat pump system is not operated and therefore no electricity is 

required. The system can thus achieve a high efficiency.    

 

Figure 5.21. Schematic diagram of a solar-assisted ASHP [276]. 

5.6.3. The Generation of Hourly Ambient Air Temperature Values 

The hourly ambient air temperature values are also very rarely available for a large 

number of locations. The hourly ambient air temperature values are generated using 

Degelman’s algorithm and are based on the supplied 12 monthly-average daily ambient 

air temperature. The procedure adopted for the generation of the hourly ambient air 

temperature values is similar to the procedure used for generating the hourly solar 

radiation values. The daily-average ambient air temperature values and the daily-
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maximum ambient air temperature values for each month are calculated from daily-

average and daily-maximum cumulative distribution functions respectively. The 

monthly-average daily ambient temperature value and the standard deviation of the 

daily-average temperature about the monthly-average daily ambient air temperature, and 

the monthly-average daily-maximum ambient temperature value and the standard 

deviation of the daily-maximum temperature about the monthly-average daily-

maximum temperature are used to establish the cumulative distribution functions. The 

calculated daily-average and daily-maximum ambient air temperature values are then 

ordered accordingly in a predetermined sequence. Two sequences are employed; one is 

utilised for the daily-average ambient air temperature whilst the other is utilised for the 

daily-maximum ambient air temperature. The daily-average ambient air temperature is 

considered to be both the mean value and the median value. Therefore the daily-

minimum ambient air temperature can be determined from these daily-average 

temperatures and the daily-maximum ambient air temperatures. Sunrise and 3pm are 

taken as the time at which the minimum and maximum temperatures are observed, 

respectively. The hourly ambient air temperature values are calculated between the 

daily-maximum ambient air temperature values and daily-minimum ambient air 

temperature values using a cosine interpolation method. A detailed description of the 

procedure employed to generate the hourly ambient air temperature values is given in 

Appendix D.  

5.6.4. The Generation of Hourly Energy Outputs from an Air Source Heat 

Pump 

The investigated ASHP model is a single-stage heat pump and is intended for use in a 

domestic application. In the study, the hourly heating output generated from an ASHP is 

calculated based on the predicted hourly ambient air temperature, the supplied rated 
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ASHP capacity, the supplied fluid flow rate and an external heating performance file. 

This non-dimensional heating performance file contains catalogue data for the generic 

correction factors (capacity fraction and power fraction) for heating capacities and 

electrical powers. The hourly capacity and power of the ASHP can be calculated using 

Equation 5.19 and 5.20 respectively [277].  

 Capacity rated _capacity*capacity_ fraction  (5.19) 

 Power rated _ power*power _fraction  (5.20) 

The correction factors for capacities and powers correspond to the ambient air 

temperature and the fluid temperature entering the ASHP. Table 5.11 and Table 5.12 

show the generic correction factors for capacities and powers for an ASHP and these 

data are used for this study. A linear interpolation is accomplished between the heating 

performance data to calculate the capacity fraction and power fraction for a particular 

hour if the entering hourly ambient air temperature and the entering fluid temperature 

do not equal to the exact values reported in the data. However, the data cannot be 

extrapolated beyond the given range. If the entering conditions of the ASHP are below 

the range, the model will get the capacity fraction and power fraction of the closest 

point, i.e. the bottom of the range. The case is similar for the top of the range; the 

interpolation routine will find the closest available point. The ASHP hourly heating 

output temperature and COP are calculated from Equation 5.21 and 5.22 respectively 

[277]:   

 
out in

p

Capacity
T T

m*C
 (5.21) 

 Capacity
COP

Power
 (5.22) 
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                                                     Inlet Water Temperature (
o
C) 

                                                                  

 Inlet Air Temperature (
o
C) 

25 30 35 40 45 50 

2.2 0.759 0.737 0.714 0.692 0.67 0.648 

7.2 1.08 1.048 1.017 0.986 0.955 0.923 

12.2 1.137 1.106 1.075 1.043 1.012 0.981 

15 1.233 1.199 1.165 1.131 1.097 1.062 

20 1.403 1.359 1.314 1.269 1.224 1.18 

Table 5.11. Correction factors for capacities for corresponding ambient inlet air temperature and inlet water temperature [278]. 

                                                     Inlet Water Temperature (
o
C)                                                                                 

  

Inlet Air Temperature (
o
C) 

25 30 35 40 45 50 

2.2 0.787 0.86 0.944 1.027 1.132 1.249 

7.2 0.868 0.938 1.044 1.136 1.255 1.385 

12.2 0.843 0.923 1.016 1.108 1.224 1.352 

15 0.843 0.924 1.017 1.109 1.226 1.355 

20 0.844 0.924 1.018 1.112 1.229 1.359 

Table 5.12. Correction factors for powers for corresponding inlet ambient air temperature and inlet water temperature [278]. 
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5.6.4.1. Validation of the Procedure to Calculate the Energy Output of a 

Domestic Air Source Heat Pump  

The TRNSYS simulation model used to predict the energy output from an ASHP 

system must be validated in order to prove its accuracy. The validation is carried out by 

comparing the measured energy output with the predicted energy output for a 

Mitsubishi Ecodan 8.5 kW ASHP. This ASHP system was installed in a three-bedroom 

semi-detached house with four occupants in Hertfordshire, UK, and monitored by 

Mitsubishi Electric. A 180 L hotwater storage cylinder was connected, but was not 

used; hence the energy output from this hotwater storage cylinder was not measured and 

was neglected in the validation. An intelligent operating system was incorporated with a 

series of sensors to monitor the temperature inside and outside the house. These sensors 

constantly communicated with each other, and the output from the air source heat pump 

was then adjusted to respond to changes in the weather. The one-minute-interval data, 

i.e. inlet water temperatures, outlet water temperatures and mass flow rates, was 

recorded and used to calculate the energy output from the installed ASHP. The 

calculated energy output at one-minute-interval was aggregated by summing them over 

one-hour intervals and then employed in this validation study. The energy output was 

obtained for a 12-month period, between January 2011 and December 2011 [279]. The 

parameters used in the simulation model are set the same as the measured conditions. 

The ambient air temperature data used are for the period January 2011 to December 

2011 in Hertfordshire, UK. This meteorological data was obtained from the Royston 

weather station in the UK [280]. The ASHP specification is shown in Table 5.13. 
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Parameter Value 

Heating capacity (kW) 8.50 

Power input (kW) 2.88 

Nominal water mass flow rate 

(kghr
-1

) 

1548 

Fan air flow (m
3
s

-1
) 0.916 

Fan power (kW) 0.06 

Table 5.13. The Mitsubishi Ecodan 8.5 kW air source heat pump specification. 

The thermal load enforced for this simulation model was the same as the total thermal 

load delivered from the ASHP for the year. Low-temperature radiators are used in this 

house; the typical temperature required for these radiators is 45
o
C. The TRNSYS 

simulation model is designed to supply circulating fluid temperature at 45
o
C. The 

measured annual total energy output generated from the Mitsubishi Ecodan 8.5 kW 

ASHP was 15,466 kWh. The predicted annual total energy output was 15,696 kWh. The 

percentage difference between the measured and predicted energy output is 1.48% on a 

yearly basis. The coefficient of determination is utilised to determine the correlation 

between the measured and the predicted hourly energy outputs for a year. A coefficient 

of determination value of 0.88 is obtained and this means that 88% of the variance in 

the measured values is predicted by the model; however 12% of the variance is not 

explained by the model. A scatter diagram of predicted hourly energy outputs versus 

measured hourly energy outputs for the air source heat pump system is shown in Figure 

5.22. This coefficient of determination value is considerably higher than the values 

obtained for the solar-type technologies. This can possibly be explained by the fact that 

the monthly ambient air temperatures applied in the ASHP model are approximately the 

same as the ambient air temperatures experienced by the installed ASHP system. The 

temperature variation between two sites located within a relatively short distance is 

small; the variation of solar radiation, however, can be significant. Nonetheless, there is 
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no comparable value available to show the accuracy of the obtained coefficient of 

determination value since no other validations have been carried out to this degree 

previously. In 45 international peer-reviewed journal articles reviewed by the author 

[60, 273, 281-323] in which ASHPs were modelled, only 15 articles included a 

validation of their model [60, 281-294]. However, in these articles no attempt has been 

made to validate models by comparing the predicted energy output with the measured 

energy output on an hourly basis for a complete year. Nonetheless, based on the very 

good agreement between the measured data and the predicted data on an annual basis, 

the simulation model is considered appropriate for this study. 

 

Figure 5.22. Scatter diagram of predicted hourly energy outputs versus measured 

hourly energy outputs for the air source heat pump system. 

5.7. Life Cycle Cost Analysis 

LCC offers a means of obtaining the true cost of an individual component, system, or an 

entire project by taking into account capital, energy, maintenance and other operational 

costs over the life of the facility [324]. The LCC always requires that all costs and 
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savings are evaluated over a long period of time and discounted to present value before 

they can be meaningfully compared. This presents an accurate comparison for a 

component, a system or a project, as all major costs associated with its parts as well as 

the capital cost and the installation cost are considered. From a decision-making point 

of view, the LCC of a project with its alternatives can only be meaningfully compared 

when they are all fulfilling the same basic performance requirements [325]. The cost 

effectiveness is the basic criterion for determining a component, a system or a project 

has an economic advantage over other components, systems or projects respectively. 

For an example, a system has an increased capital cost and a decreased operational cost 

which results in greater savings than additional capital costs, thus this system is deemed 

to be more cost effective. If several systems are being considered, the most cost 

effective system is the one with the lowest LCC. In this study, LCC is the parameter 

employed to perform a cost/benefit comparison and to identify the optimal system in the 

micro-renewable thermal generation system and the overall integration system [326]. 

LCC is calculated as follows: 

 
R

T

Tt T
t 1

CF R SAL
LCC C CG

(1 i) (1 i) (1 i)
 (5.23) 

where  

 C is the entire capital cost of the micro-renewable thermal generation system 

consisting of an ASHP and/or a solar thermal system in this chapter. However C 

represents the entire capital cost of the micro-renewable energy generation 

system in Chapter 6. 

 T is the project lifespan. 

 TR is the time of replacement occurring.  
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 R is the replacement cost of components such as a solar pump unit and a 

domestic circulation pump, also includes the replacement of any micro-

renewable thermal (current chapter) or energy (Chapter 6) generation device if 

the project lifespan is greater than the lifespan of the device itself.  

 SAL is the salvage value.  

 CG is the capital grant available for any of the system.  

 i is the real interest rate. 

5.8. Integration of Micro-Renewable Thermal Generation Systems 

5.8.1. The Integration Technique 

The ASHP and solar thermal system optimised integration sub-technique, a flowchart 

for which is shown in Figure 5.23, obtains the optimal configuration of a micro-

renewable thermal generation system consisting of an ASHP and/or a solar thermal 

system (formed from either flat plate or evacuated tube solar thermal collector(s)). The 

integration technique is implemented in TRNSYS. The integration begins with the 

selection of a number of ASHPs, a flat plate solar thermal collector and two evacuated 

tube solar thermal collectors for analysis. The orientation of the solar thermal collectors 

is then set, i.e. facing south. The optimal slope of the flat plate solar thermal collector is 

determined based on the maximum annual total energy (hotwater generated equivalent) 

predicted from a solar thermal system assembled from solar flat plate collectors in 

TRNSYS. Subsequently all flat plate solar thermal collectors are set at this optimal 

slope respectively. The same procedure can be applied to determine the optimal slope 

for evacuated tube solar thermal collectors; hence all of these collectors are also set at 

this corresponding optimal slope. A detailed description of the procedure employed to 

calculate the optimal slope is presented in the following section. All possible systems, 
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both mono and hybrid (based on the number of renewable energy technologies used), 

that can be formed from the selected ASHPs and the solar thermal systems are analysed. 

A primary electrical heating system is employed to provide heating and preheat 

hotwater if an ASHP is not included in a formed mono or hybrid system. An electric 

boiler with a thermal capacity of 9 kW is employed for the primary electrical heating 

system in this study. An auxiliary electrical heater is a common electric element, similar 

to an immersion heater, which switches on to boost the output of a heating generation 

system. An auxiliary electrical heater with a thermal capacity of 3 kW is employed in 

this study. This auxiliary electrical heater is designed to turn on if the temperature of 

heating output from the ASHP or the primary heating system is less than or equal to 

25
o
C; and turn off when the temperature of heating output is greater than or equal to 

35
o
C. An electrical immersion is programmed to turn on between 5am-8am and 6pm-

9pm daily (the peak hotwater usage periods). However, the immersion heater will be 

turned off if the temperature of water at the tank top exceeds 60
o
C. The ASHP or the 

primary electrical heating system is not only used to provide heating for the dwelling 

but also to preheat water in the hotwater storage cylinder. Due to this interaction effect, 

six system combinations can be formed individually in this study:  

 a combination of an ASHP and a solar thermal system assembled from a number 

of flat plate solar thermal collectors and is shown in Figure 5.24. 

 a combination of an ASHP and a solar thermal system assembled from a number 

of evacuated tube collectors and is shown in Figure 5.25. 

 a combination of an ASHP and an electrical immersion for hotwater heating and 

is shown in Figure 5.26. 

 a combination of a primary electrical heating system and a solar thermal system 

assembled from a number of flat plate collectors and is shown in Figure 5.27. 
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 a combination of a primary electrical heating system and a solar thermal system 

assembled from a number of evacuated tube collectors is shown in Figure 5.28. 

 a combination of a primary electrical heating system and an electrical immersion 

for hotwater heating is shown in Figure 5.29.  

The hourly electricity consumption of operating an ASHP or a primary electrical 

heating system, running a solar pump unit and a domestic circulating pump, driving the 

auxiliary electrical heater, and functioning an electrical immersion in the hotwater 

storage cylinder for a year is collected and summed. The LCC is calculated based on the 

capital costs of the system, the cost of the imported electricity, the costs of replacing the 

circulating pump and/or solar pump unit, maintenance costs and the salvage value. The 

salvage value is the value left in a device (exclusive of installation costs) if the lifespan 

of a device is longer than the desired project lifespan. In this integration technique, the 

major assumption is made that the entire capital cost of the micro-renewable thermal 

generation system is funded from a loan. Capital grant options are also built into this 

integration technique. Once all possible system configurations have been analysed, the 

system having the lowest LCC is deemed optimal and the optimal system configuration 

is thus identified. 
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Select solar flatplate/evacuated 

tube collectors for analysis

Select air source heat 

pumps for analysis

Create micro-renewable thermal 

generation system & satisfy 

8760 hourly heating demand 

and daily hotwater requirement

Obtain 8760 hourly 

heating demand values

Obtain daily hotwater 

requirement values

Obtain 8760 hourly 

electricity consumption 

values

Calculate 

electricity purchased

Calculate LCC

All micro-renewable thermal 

generation systems analysed

Apply maintenance cost

Calculate salvage value

Identify optimal system configuration 

Determine optimal slope 

of a solar thermal system

 

Figure 5.23. An air source heat pump and a solar thermal system integration 

technique.
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Figure 5.24. A domestic thermal generation system consisting of a combination of an air source heat pump and a solar thermal system 

assembled from a number of solar flat plate collectors. 



   Chapter 5 

 

190 

 

 

Figure 5.25. A domestic thermal generation system consisting of a combination of an air source heat pump and a solar thermal system 

assembled from a number of solar evacuated tube collectors. 
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Figure 5.26.  A domestic thermal generation system consisting of a combination of an air source heat pump and an electrical immersion 

for hotwater heating. 
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Figure 5.27. A domestic thermal generation system consisting of a combination of a primary electrical heating system and a solar 

thermal system assembled from a number of solar flat plate collectors. 
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Figure 5.28. A domestic thermal generation system consisting of a combination of a primary electrical heating system and a solar 

thermal system assembled from a number of solar evacuated tube collectors. 
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Figure 5.29. A domestic thermal generation system consisting of a combination of a primary electrical heating system and an electrical 

immersion for hotwater heating.
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5.8.2. Determination of the Optimal Slope for Flat Plate and Evacuated 

Tube Solar Thermal Collectors 

The flat plate and evacuated tube collectors produce their maximum energy output, at a 

fix orientation, when they are installed at the optimal slope. The optimal slope of solar 

thermal collectors should first be determined; the energy outputs then obtained are 

critically important for identifying the optimal system configuration from all possible 

combinations of micro-renewable thermal generation systems.  

One solar thermal flat plate collector system with an aperture area of 3.95 m
2
 and one 

solar thermal evacuated tube collector system with an aperture area of 3.23 m
2
 system 

were used to determine the optimal slope in this study. They are the most commonly 

utilised collector aperture areas respectively for domestic applications in Ireland. The 

systems set up are similar to the solar hotwater generation portion of the micro-

renewable thermal generation system; the two main differences are that water is not 

being preheated from a domestic heating generation system, and no immersion is used 

at the scheduled time. However, various conditions such as the weather data, hotwater 

draw-off rate and water entering temperatures are all identical. The solar thermal 

hotwater generation systems are shown in Figure 5.30 and Figure 5.31. 
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Figure 5.30. The solar thermal flat plate hotwater generation system.  
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Figure 5.31. The solar thermal evacuated tube hotwater generation system. 
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The slopes specified in the analyses ranged from 30
o
 to 60

o
 with 5

o
 intervals. As 

shown in Tables 5.14 and 5.15, a value of 45
o
 was identified as the optimal slope 

angle for both the flat plate and evacuated tube collectors. Therefore, a value of 45
o
 

is specified for the slope angle in the overall integration studies. 

Slope (
o
) 30 35 40 45 50 55 60 

Power output 

(kWh) 
1,767 1,807 1,834 1,846 1,845 1,829 1,801 

Table 5.14.  Results of energy output achieved at various slopes from a solar flat 

plate collector having an aperture area of 3.95 m
2
. 

Slope (
o
) 30 35 40 45 50 55 60 

Power output 

(kWh) 
2,269 2,312 2,340 2,351 2,347 2,327 2,291 

Table 5.15.  Results of energy output achieved at various slopes from a solar 

evacuated tube collector having an aperture area of 3.23 m
2
. 

5.8.3. TRNSYS Simulation Model 

The micro-renewable thermal generation system is developed and built using 

TRNSYS simulation software package. All appropriate components for constructing 

these micro-renewable thermal generation systems have been selected. Each 

component, based on specific mathematic descriptions, requires a number of constant 

parameters and time dependent inputs to produce a time dependent output. Once each 

component is characterised (parameters defined), it is then interconnected with other 

components to create the desired micro-renewable thermal generation system model.  

The main components employed for this simulation model in this study are:  

 ASHP (Type 941)  

 solar thermal flat plate collector (Type 539) 
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 solar thermal evacuated tube collector (Type 538)  

 hotwater storage cylinder (Type 534)  

 weather generator (Type 54)  

 solar radiation processor (Type 16)  

 flow stream loads (Type 682) which was used as the compulsory hourly 

thermal load  

The assistant components employed are:  

 pumps (Type 3b)  

 data reader (Type 9e) which was used to provide the existing thermal load 

 fluid diverting valve (Type 647) 

 fluid mixing valve (Type 649) 

 differential temperature controller (Type 2b) which was used to control the 

pump in the solar collector loop. The pump would start operating signalled 

from the controller once the outlet temperature of the solar collector was 5
o
C 

hotter than the temperature of the supplied water, and stop operating when the 

difference reduced to 2
o
C  

 variable speed pump (Type 110)  

 pipe duct (Type 31)  

 water heater energy supply (Type 1226) which was used as an electrical 

immersion for hotwater storage cylinder  

 forcing functions (Type14) that were used a number of times to input a 

control signal for the electrical immersion, hotwater demand profile and 

mains water supply temperature  

 plotter and result summary (Type 65c)  
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Tables 5.16-5.18 show the values of parameters used for ASHPs, a solar thermal flat 

plate collector, two evacuated tube collectors and a hotwater storage cylinder.  

Three additional components are used to complete the desired systems model, they 

are: 

 the individual ground-reflected diffuse radiation on a tilted solar collector 

equation performa.  

 virtual tank mode.  

 mass flowrate equation performa.   

Both individual beam solar radiation and sky diffuse solar radiation on the tilted solar 

collector, as well as the total solar radiation on the tilted solar collector consists of 

beam solar radiation, sky diffuse solar radiation and ground-reflected radiation can 

be calculated from the solar radiation processor. Although the individual ground-

reflected diffuse radiation on the tilted solar thermal collector cannot be determined, 

it is required for both types of solar thermal collectors (Type 538 and Type 539). 

Therefore the ground-reflected diffuse radiation on the tilted solar thermal collector 

was estimated using Equation 5.24 [206] and is incorporated into the TRNSYS 

simulation model using the equation proforma as follows. 

 gr gr

1
I I* * *(1 cos )

2
 (5.24) 

where Igr is the ground-reflected radiation received by the collector, I is the global 

solar radiation on a horizontal surface, ρgr is the ground reflectance and β is the slope 

of the collector relative to the horizontal.  

A virtual tank (hotwater storage cylinder component with two inlets and two outlets) 

is used between the ASHP loop (or a primary electrical heating system) and the 
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domestic heating loop. The ASHP component (Type 941) available in TRNSYS is an 

on/off device which does not meet a set point temperature but simply puts its entire 

current capacity into heating up the domestic heating loop when the controller 

detects a heating load for any hour. Therefore the ASHP can dramatically overheat 

the domestic heating loop when under low heating load conditions. Since the newly-

designed commercial ASHPs are commonly inverter-drive such that the power 

outputs can be modulated depending on the heating load requirement, the use of this 

virtual tank is the most effective approach to mimic a realistic ASHP system. 

However this virtual tank is not working as a buffer tank which is sometimes used in 

an (traditional) ASHP system.  

The pump component (Type 3b) is used as the domestic circulating pump. This 

component is an on/off device which enforces the maximum flowrate when it is on, 

and a zero flowrate when it is off. However, this does not reflect the physical 

scenario whereby the domestic heating fluid is still circulating with a very low 

flowrate excepting the time that the maximum flowrate is enforced. This was 

observed from the Mitsubishi Ecodan W85 ASHP testing report [327]. The mass 

flowrate equation performa, incorporated into the TRNSYS simulation model, 

reflects a real-operation mass flowrate circumstance in the domestic heating loop and 

is expressed using Equation 5.25.  

 m 0.8 a*(pump_ rated _flowrate 0.8)  (5.25) 

where   is the mass flowrate in the thermal load loop (kg/min) and a is the control 

signal from the controller in the heating load loop.  
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5.9. Results and Discussion 

The integration technique is applied to determine the optimal system for Ireland. The 

ASHPs and solar thermal collectors selected for analysis represent other similar 

thermal capacity ASHPs and types solar thermal collectors. The selected ASHPs and 

the solar thermal systems (formed from the selected solar thermal collectors) adhere 

to the conditions for exemption from planning permission. The maximum overall 

collector surface area of the solar thermal system is 12 m
2
. The selected ASHPs are 

the Mitsubishi Ecodan W50 (rated thermal capacity of 5 kW), the Mitsubishi Ecodan 

W85 (rated thermal capacity of 9 kW), and the Mitsubishi Ecodan W140 (rated 

thermal capacity of 14 kW). The selected solar thermal collectors are the Kingspan 

flat plate collector and the Kingspan Evacuated tube collectors HP400 and HP450. 

Tables 5.16-5.18 give relevant information for the selected ASHPs and solar thermal 

collectors employed respectively. This indicative information was obtained from 

either official websites or from personal communications. The system integration is 

carried out assuming the micro-renewable thermal generation system is installed in 

Dublin and with the following conditions and assumptions: 

 An annual average air temperature of 9.9
o
C and an annual solar radiation 

value of 970 kWh/m
2
. 

 An average annual household thermal load of 16,536 kWh.  

 The daily hotwater requirement of 199.8 L at 60
o
C. 

 The installed solar thermal system is south facing.  

 A ground reflectance of 0.2. 

 An imported electricity price of €0.1928/kWh. 

 A green loan having a loan rate of 4.5%.  
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 An annual inflation rate of 2.26% (which was the average annual inflation 

rate for Ireland for the period January 2001 to December 2010 [178]). 

 A solar thermal system capital grant of €800. 

 The project lifespan is 20 years. 

5.9.1. Economic Discussion and Identification of the Optimal System 

Based on Current Irish Conditions 

The LCC of a mono micro-renewable thermal generation system consisting of a 

single ASHP or a single solar thermal system, and a hybrid system consisting of an 

ASHP/solar thermal system, has been calculated with the conditions given in the 

previous section. However, it should be noted that the cost of the heating distribution 

system is not included when comparing the micro-renewable thermal generation 

systems. The system with the lowest LCC after the project lifespan, that satisfies 

both the heating requirement and the hotwater demand, is deemed the optimal 

system. The LCC (€33,604) of the optimal system is achieved by a single ASHP 

having a thermal capacity of 14 kW. Figure 5.32 is an integration map for all the 

analysed systems in this study. The economic viability of the micro-renewable 

thermal generation system can be determined by comparing it with other 

conventional thermal (heating and hotwater) generation systems. Oil, natural gas and 

electricity are the most common fuels used for domestic heating and hotwater 

generation. The oil boiler system for providing heating and hotwater for domestic 

dwellings was the most popular in Ireland; 711,330 were installed by the end of 

2011. The natural gas boiler system was the second most popular used, as there were 

550,215 installed by the end of 2011. The electricity system was popular, however, it 

is mainly used for apartments; 140,419 was the total number installed by the end of 
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2011 in Ireland [328]. Therefore, the determination of economic viability of the 

micro-renewable thermal generation system has to be made in comparison with each 

individual conventional thermal generation system. However, the micro-renewable 

thermal generation system is designed to connect with an underfloor heating 

distribution system. Other conventional thermal generation systems are generally  
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Air Source  

Heat Pump 

Thermal 

Capacity 

(kW) 

Power 

Input 

(kW) 

Air Flow 

Rate 

(m
3
/min) 

Fan Power 

(kW) 

Compressor 

Power 

(kW) 

Compressor 

Start Type 

Nominal 

Water Flow 

Rate 

(L/min) 

Refrigerant Installed 

Cost inc 

VAT 

(€) 

Ecodan W50 5 1.22 50 0.086 0.9 Inverter 14.3 R410A 8100 

Ecodan W85 9 2.34 55 0.06 1.3 Inverter 25.8 R410A 9500 

Ecodan W140 14 3.34 100 0.074*2 2.5 Inverter 40.1 R410A 12200 

Table 5.16. Relevant information for three air source heat pumps available on the Irish market in 2013 and selected for the system 

integration study [329, 330]. 

Hotwater 

Storage Cylinder 

Height 

(mm) 

Width 

(mm) 

Depth 

(mm) 

Tank 

Volume 

(L) 

Surface Area 

of Heat 

Pump Coil  

(m
2
) 

Surface Area of 

Solar Coil  

(m
2
) 

Backup 

Immersion 

Heater Rating 

(kW) 

Standing 

Losses 

kWh/24 

hours 

Capital Cost 

Inc VAT 

(€) 

Kingspan 

Aerocyl 

Plus-me 

Cylinder 

2050 550 720 300 3 0.96 3 2.43 950 

Table 5.17. Relevant information for hotwater storage cylinder available on the Irish market in 2013 and selected for the system 

integration study [331]. 
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Solar Thermal Collector 
Kingspan Solar Flat Plate 

Collector 
Thermomax HP400 Thermomax HP450 

Type Flat plate Evacuated tube Evacuated tube 

Aperture area (m
2
) 1.93 2.16 3.23 

Intercept efficiency 0.732 0.75 0.75 

First order efficiency coefficient 

(W/m
2
K) 

3.472 1.18 1.18 

Second order efficiency coefficient 

(W/m
2
K

2
) 

0.008 0.0095 0.0095 

Rated flow rate (L/hr) 96 160 240 

Absorbance (%) 95 95 95 

Emittance 3 5 5 

Heat transfer fluid Water/Glycol Water/Glycol Water/Glycol 

Initial cost inc VAT (€) 2750 2700 2700 

Installed cost inc VAT (€) 580/2m
2
 500/10 tubes 

Table 5.18.  Relevant information for three solar thermal collectors available on the Irish market in 2013 and selected for the system 

integration study [332-335]. 
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connected with traditional radiators. The underfloor distribution system is normally 

more expensive than the traditional radiator system. The cost difference between 

these two distribution systems has to be taken into consideration in order to 

accurately determine the economic viability of the micro-renewable thermal 

generation system. A difference of €1,100 is employed in this study for a typical 3-

bedroom dwelling and is added to every optimal system when comparison is made 

with a conventional thermal generation system. The LCC of an oil boiler system, 

which satisfies both the heating requirement and the hotwater demand, is 

approximately €44,500 over a 20-year project lifespan. The optimal system, i.e. a 

single ASHP, is economically viable since its LCC (increased to €34,704 when the 

cost difference between the underfloor heating system employed for a micro-

renewable thermal generation system and the radiators system employed for a 

conventional thermal generation system is taken into account) is less than the LCC of 

the oil boiler system. The LCC of a natural gas boiler system is approximately 

€25,670 for a 20-year project lifespan. In this case the optimal micro-renewable 

thermal generation system is not economically viable since its LCC is greater than 

the LCC of this natural gas boiler system. The electrical system is rarely used for 

domestic heating in dwellings in Ireland. The approximate cost of €58,370 for a 20-

year lifespan, is considerably higher than the other two conventional heating and 

hotwater generation systems. As the LCC of the optimal micro-renewable thermal 

generation system is much less than the LCC of the electrical system, it is deemed 

economically viable. A detailed description of the three conventional thermal 

generation systems is displayed in the Table 5.19. 
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 Oil Boiler  

System 

Natural Gas 

Boiler System 

Electricity 

Heating System 

Efficiency (%) 75 85 100 

Installed cost (€) 4,000 2,500 1,800 

Cost of hotwater 

storage cylinder 

(€) 

500 500 500 

Cost of fuel (€/kWh) 0.1013 0.05894* 0.1928 

Maintenance cost 

(€) 
85 85 0 

* An annual standing charge of €89.93 is applied. 

Table 5.19. A detailed description of three typical conventional thermal 

generation systems [336]. 
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Figure 5.32. Integration map for all micro-renewable thermal system combinations; mono systems consist of a single ASHP or a single 

solar thermal system, which hybrid systems consist of an air source heat pump with a solar thermal system assembled from solar flat 

plate collectors (left) or an air source heat pump with a solar thermal system assembled from solar evacuated tube collectors (right).
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5.9.2. Economic Discussion and Identification of the Optimal System 

Based on Parameter Studies 

5.9.2.1 Effect of Household Thermal Load on the Optimal System 

The annual household thermal load is divided into two parts: heating and hotwater. The 

domestic heating is seasonally dependent since heating is required more often in the 

winter than it is in the summer. The domestic heating is also affected by its distribution 

system installed in the dwelling. The low-temperature heating distribution systems, such 

as underfloor heating system, generally requires less energy input to satisfy the 

domestic heating requirement in comparison with the medium and high-temperature 

heating distribution systems such as low-temperature radiators or conventional 

radiators. The same level of comfort is experienced by occupants with a lower room 

temperature, i.e. at the low end of the comfort level room temperature range, when 

using an underfloor heating system as oppose to a radiator-based system. The domestic 

heating requirement also depends on the occupants’ comfort expectations. Some 

occupants may have the desired room temperature greater or less than the comfortable 

temperature of 18
o
C-21

o
C. Other occupants may operate the heating generation system 

for an extensive period in order to ensure that the room temperature remains constant 

for a longer time. Therefore, the domestic heating is first varied significantly for each 

different scenario as the total heating load and the load profile will differ depending on 

the occupants’ behaviour in each dwelling. The volume of hotwater consumption is 

mainly dependent on the number of occupants in the dwelling. Four occupants are 

assumed for a standard dwelling. The total volume of approximately 199.8 L of 

hotwater at 60
o
C per day is a reasonable assumption made in this study. Various 
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domestic heating loads have been applied and the effect of these domestic heating loads 

has been investigated. 

Figure 5.33 (LCC vs. household heating load) shows that the LCC of the optimal 

system, increases in an almost linear fashion as the household heating load is increased. 

However, it should be noted that a unique profile is obtained for each thermal load 

(statistically different as determined previously from Tukey's test) therefore the effect of 

the profile must be taken into consideration. 

 

Figure 5.33. LCC of the optimal system versus household thermal load. Imported 

electricity price is €0.1928/kWh and the loan rate is 4.5%. ASHP = air source heat 

pump. 

A study was carried out in order to investigate the LCC obtained from various profiles 

where the total thermal loads were statistically similar. The effect of different heating 

profiles having statistically the same heating load for a mono micro-renewable thermal 

generation system (an ASHP alone) is summarised in Table 5.20. 
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ASHP  

Thermal Capacity 

(kW) 

Heating Load 

(kWh) 

LCC 

(€) 

5 

15,016 

15,045 

15,147 
 

39,213 

32,315 

36,157 
 

9 

15,016 

15,045 

15,147 
 

32,987 

32,916 

32,654 
 

14 

15,016 

15,045 

15,147 
 

34,426 

35,058 

34,298 
 

Table 5.20. The power outputs obtained from various domestic heating profiles 

which having statistically the same heating load for an air source heat pump 

system. 

From the result shown, different profiles make a significant impact on the calculated 

LCC of micro-renewable thermal generation systems having a small thermal capacity. 

For example, the LCCs obtained for satisfying a heating load of 15,016 kWh and 15,045 

kWh from a 5 kW ASHP system is €39,213 and €32,315 respectively, a difference of 

17.6%. However, it was found that different profiles have an insignificant influence on 

the calculated LCC of micro-renewable thermal generation systems having a medium (9 

kW) and large (14 kW) thermal capacity, e.g. a difference of 0.02% and 1.8% are 

obtained for a heating load of 15,016 kWh and 15,045 kWh from these two ASHP 

systems respectively.  

The investigation is extended to calculate and compare the LCCs of ASHP systems for 

two statistically different heating loads, with each having its unique profile. For a 9 kW 

ASHP system, the result shows that the LCC obtained is €34,564 for satisfying a 

heating load of 14,056 kWh; however the LCC of €32,987 is calculated for a heating 
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load of 15,016 kWh. In this case, it is actually more expensive to run this 9 kW ASHP 

system over a 20-year project lifespan for a lower total heating load (14,056 kWh) than 

a larger one (15,016 kWh) due to the fact that the different profile is applied. When the 

same profiles are applied to a 14 kW ASHP system, the calculated LCCs are €33,603 

and €34,426 for heating loads of 14,056 kWh and 15,016 kWh, respectively. This is as 

expected since the cost of running the 14 kW ASHP system over a 20-year project 

lifespan is lower for a lower total heating load than for a larger one. 

Figure 5.34 and Figure 5.35 (integration map of LCC vs. sample mono/hybrid micro-

renewable thermal generation systems) shows that a system assembled from the same 

thermal capacity ASHP and the same size of solar thermal collectors will economically 

cost more over the project lifespan as the household thermal load increases. This is 

because the ASHP has to operate either continuously at its rated capacity or for longer 

periods in order to meet the increased domestic heating demand. Also the increased 

thermal load has a greater impact on the economic analysis for the small capacity 

ASHPs than for the large capacity ASHPs, as the auxiliary heater has to turn on 

frequently in order to assist the small capacity ASHP in satisfying the demand. 

However, the auxiliary heater is not often used since the heating demand can generally 

be met from the large capacity ASHP. The cost saving from operating the auxiliary 

heater can be significant. 
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Figure 5.34. Integration map of selected air source heat pump and solar thermal system assembled from solar flat plate collector for 

three domestic thermal loads. The domestic thermal load is (a) 10,890 kWh, (b) 14,055 kWh and (c) 20,235 kWh. 
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Figure 5.35. Integration map of selected air source heat pump and solar thermal system assembled from solar evacuated tube collector 

for three domestic thermal loads. The domestic thermal load is (a) 10,890 kWh, (b) 14,055 kWh and (c) 20,235 kWh. 
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5.9.2.2 Effect of Imported Electricity Price on the Optimal System 

The imported electricity price is a significant factor that can impact the determination of 

the optimal system. The ASHP and solar thermal system are operated using electricity 

only. Hence, the imported electricity price is directly related to the operational cost of 

the micro-renewable thermal generation system. The imported electricity price is 

expected to rise in the coming years. This increased electricity price can be in the form 

of an actual price increases, and/or an increase in the VAT rate and a levy charge on the 

usage of electricity. 

Figure 5.36 (LCC vs. imported electricity price) shows that the LCC of the optimal 

system increases moderately as the imported electricity price increases. This increase is 

due to the rising operational cost for every kWh electricity consumed from both the 

ASHP and solar thermal system. Figure 5.37 and Figure 5.38 (integration map of LCC 

vs. sample mono/hybrid micro-renewable thermal generation systems) shows that a 

system assembled from the same capacity ASHP and the same size solar thermal system 

will economically cost more to satisfy the entire heating requirement and hotwater 

demand as the imported electricity price increases. It can be also noted that small 

capacity ASHP systems are influenced more by an increase in the imported electricity 

price since the LCC becomes significantly larger.  

For a hybrid system containing an ASHP and a solar thermal system, it was found that 

the lowest LCC of the system, for the same capacity ASHP, is achieved by employing 

an increasing size of solar thermal system as the imported electricity price increases. For 

example, a hybrid system consisting of a 9 kW ASHP, the smallest LCC of €35,519, 

€39,788, €45,083 are achieved by combining this capacity ASHP with a solar thermal 

system having flat plate collector areas of 7.72 m
2
, 9.65 m

2
 and 11.58 m

2
, and the 
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lowest LCC of €35,016, €38,952, €43,942, are achieved by also combining this capacity 

ASHP with a solar thermal system having evacuated tube collector areas of 6.47 m
2
, 

7.55 m
2
 and 7.55 m

2
 when the imported electricity prices are €0.193, €0.24 and €0.30 

per kWh respectively.  

 
Figure 5.36. LCC of the optimal system versus imported electricity price. The loan 

rate is 4.5%. ASHP = air source heat pump, ET = solar thermal evacuated tube 

collector system.  
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Figure 5.37. Integration map of selected air source heat pump and solar thermal system assembled from solar flat plate collectors for 

three imported electricity prices. The imported electricity price is (a) €0.1928/kWh, (b) €0.24/kWh and (c) €0.30/kWh. 
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Figure 5.38. Integration map of selected air source heat pump and solar thermal system assembled from solar evacuated tube collectors 

for three imported electricity prices. The imported electricity price is (a) €0.1928/kWh, (b) €0.24/kWh and (c) €0.30/kWh. 
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5.10.     Conclusion 

In this chapter, a sub-technique is presented for the optimised integration of a 

mono/hybrid micro-renewable thermal generation system in order to satisfy the heating 

demand and hotwater requirements of a domestic dwelling. The mono micro-renewable 

thermal generation system is formed from a single ASHP or a single solar thermal 

system; the hybrid micro-renewable thermal generation system is formed from a 

combination of both. Three thermal capacity ASHPs, one flat plate solar collector and 

two evacuated tube solar thermal collectors (used to form the solar thermal systems for 

analysis) which are commercially-available and industry-representable are employed in 

this study. However, additional ASHPs and solar thermal collectors can be added to the 

existing database if a wider range of micro-renewable thermal generation systems is 

required for analysis. Using the developed integration technique, the system with the 

lowest LCC after the project lifespan is deemed the optimal system. Under current Irish 

conditions, the optimal system, is a mono system consisting of an ASHP having a 

thermal capacity of 14 kW. The system is not economically viable when compared with 

a domestic gas boiler system for generating the same amount of heating and hotwater 

since the LCC of this optimal system is greater than that of the gas boiler system. 

However, the LCC of this optimal system is lower than that LCC of a domestic oil 

boiler system or a domestic electrical system for generating the same amount of heating 

and hotwater and therefore it becomes economically viable. The large capital cost of 

ASHPs and solar thermal systems, and the current nonexistent /insufficient financial 

support (nonexistent capital grants for ASHPs and insufficient capital grants for solar 

thermal systems) are the main reasons for the micro-renewable thermal system not 

being able to compete with cheaper thermal generation systems (e.g. a domestic gas 

boiler system) in Ireland. Nevertheless, these systems should become economically 
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viable in the future with reductions in the capital cost of these systems and improved 

capital grant. The current capital grant is only offered to the solar thermal system with a 

flat rate of €800 per dwelling under the Better Energy Homes scheme by SEAI, and no 

grant is available for an ASHP. These have been reduced or terminated from previously 

available capital grants to householders from Greener Homes Scheme by SEAI. A grant 

of €2,000 was provided for an ASHP per dwelling; a grant was provided for €250/m
2
 

and €300/m
2
 for a solar flat plate system and a solar evacuated tube system respectively 

subject to a maximum area of 6 m
2
. Two parameter studies to assess the effect of 

household heating load and imported electricity price have also been carried out. From 

the results shown, the LCC of the micro-renewable thermal generation system increases 

moderately with an increased domestic heating load. However the LCC of the system 

can be also affected significantly by the heating load profile, even if the total heating 

load is almost identical. The increased imported electricity price can lead to a significant 

increase in the operational cost for a micro-renewable thermal generation system, 

particularly for the ASHP. Consequently, the LCC of the system over the project 

lifespan will also increase.  

Finally, each householder should always make a decision based on his/her individual 

case as to whether an ASHP, a solar thermal system or a hybrid system is economically 

meaningful and should be installed. The renewable energy system market is dynamic, 

and is continuously influenced by improvements in ASHP and solar thermal collector 

technologies, the economy of scale in production and changes in Irish government 

policies towards micro-renewable energy technologies. 
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5.11.    Summary 

An optimised integration sub-technique for grid-connected micro-renewable thermal 

generation systems is presented in this chapter. The reviews of solar thermal system and 

ASHP are presented. The methodology of generating hourly solar radiation values and 

hourly ambient air temperature values is described; subsequently the methodology of 

predicting hourly energy output from a solar thermal system and an ASHP is presented. 

The developed integration sub-technique for selected solar thermal systems and ASHPs 

is explained in detail. The results are then analysed and discussed. In the next chapter, 

the novel optimised integration overall technique for grid-connected micro-renewable 

energy (electricity and thermal) generation systems is presented. 
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CHAPTER 6 

6. OPTIMISED INTEGRATION OF 

GRID-CONNECTED MICRO-

RENEWABLE ENERGY 

GENERATION SYSTEMS 

6.1. Overview 

In this chapter, a novel technique for the optimised integration of grid-connected micro-

renewable energy (electricity and thermal) generation systems is presented. The chapter 

is split into two stages. In the first stage, a technique is developed to integrate the 

selected commercially-available micro-renewable electricity and thermal generation 

systems. In the second stage, the results obtained from applying this technique for 

current Irish conditions and parameters studies are thoroughly analysed and discussed.  

6.2. Introduction 

The deployment of micro-renewable energy generation systems for domestic dwellings 

is of huge importance for current and future dwelling design. In Ireland, newly built 

dwellings, and dwellings for sale or lease have to obtain the Building Energy Rating 

(BER). The dwelling which acquires a good BER is very energy efficient. Good 

insulation, appropriate glazing and airtightness are applied to ensure the dwelling 

requires minimum heating. The hotwater storage cylinder and pipe works should also be 

well insulated in order to prevent energy loss and thereby reduce the energy required to 

generate hotwater. In addition, with the aim of reducing the household electricity 
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demand and subsequently achieving an energy efficient dwelling, energy-saving 

electrical appliances should also be employed. After all the above energy-efficient 

measures have been taken, the utilisation of a micro-renewable energy generation 

system for supplying electricity, heating and hotwater becomes critically important. 

This is also one of the most effective ways in improving the BER of a dwelling and 

helping the dwelling become truly sustainable and energy efficient. The use of 

renewable energy generation systems can enhance the security of the energy supply of 

the dwelling, as very little energy will be required from an external source e.g. 

electricity, natural gas and oil. Therefore the supply of electricity, heating and hotwater 

remains consistent even if there is a shortage from the conventional energy supply. 

Furthermore, this should also ease the impact of conventional energy price increase on 

the householder. 

The integration of micro-renewable energy generation systems for a domestic dwelling 

or a residential building has already been studied as shown in the literature review. 

Different techniques have been developed and applied to find the most suitable systems 

from these studies. The optimal system, in general, can be determined in terms of either 

economic viability or energy efficiency. In this study, an investigation of the economic 

viability of integrated grid-connected micro-renewable energy generation systems for 

domestic applications in Ireland has been carried out. The results obtained from 

economic analysis are very important for the homeowner in deciding:  

 if a micro-renewable energy generation system is worthwhile to install. 

 if an integrated system has an advanced economic viability over a single system. 

 which of the single or the combined system can achieve the most economic 

benefit.  
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It is very important for homeowners to know the various types of micro-renewable 

energy generation system available when intending to install a domestic renewable 

energy system. However, it is equally or even more important to decide on the optimal 

system which accomplishes the maximum economic benefit under each case scenario. 

This chapter presents a novel technique for the optimised integration of a grid-

connected micro-renewable energy generation system consisting of a micro-renewable 

electricity generation system and/or a micro-renewable thermal generation system. A 

micro-renewable electricity generation system consists of a single micro wind turbine or 

a single solar PV system, or a combination of both; a micro-renewable thermal 

generation system consists of a single ASHP or a single solar thermal system, or a 

combination of both. The integration technique is deployed for dwellings in Ireland; 

however it is generally applicable to any location. In this integration technique, LCC 

analysis is employed to identify the optimal system, while also taking into consideration 

the technical and economical constraints and guidelines. The sub-technique developed 

to obtain the predicted hourly electricity values from a micro wind turbine and/or a solar 

PV system is described in Chapter 4. An annual household electrical load and an 

average annualised electrical load profile is used to calculate the hourly household 

electrical loads for a complete year, the detailed calculation procedure is also described 

in Chapter 4. Another sub-technique, described in Chapter 5, is developed to attain the 

consumed hourly electricity values from an ASHP and/or a solar thermal system in 

order to meet all heating and hotwater demand based on realistic hourly household 

thermal loads. The predicted system performance is realistic and reflects the real life 

circumstance if a system integration occurs, and the obtained economic results give an 

accurate implication of an actual installed system. The chapter also demonstrates the 
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modification in the change of system configuration when realistic assumptions 

(economic and demand) are made. 

6.3. The Integration Technique 

The overall integration technique, displayed in a flowchart as shown in Figure 6.1, 

obtains the optimal configuration of a mono/hybrid micro-renewable electricity and/or a 

micro-renewable mono/hybrid thermal generation system. In this study, four types of 

renewable energy generation systems suitable for supplying domestic electricity, 

heating and hotwater are considered. These systems are micro wind turbines, solar PV 

systems (formed from sole capacity solar PV modules), ASHPs and solar thermal 

systems (formed from either flat plate solar thermal collector(s) or evacuated tube solar 

thermal collector(s)). The integration technique is implemented in MATLAB. The 

detailed description of the MATLAB model developed and the sample codes have been 

presented in Appendix E. The integration starts with the selection of a number of micro 

wind turbines, solar PV modules, ASHPs, a solar thermal flat plate collector and two 

solar thermal evacuated tube collectors for analysis. The orientation of both the solar PV 

modules and solar thermal collectors is set to face south as maximum solar radiation is 

received at this orientation when the solar systems are located in the northern 

hemisphere. The optimal slope of the solar PV module and the solar thermal collector is 

determined individually based on the maximum annual power production predicted 

from three solar PV systems assembled from three different capacities of solar PV 

modules, or two solar thermal systems assembled from solar flat plate collectors or solar 

evacuated tube collectors. All solar PV modules and solar thermal collectors are 

positioned at these optimal slopes respectively. The detailed description of optimal 

slope determination has been shown in Chapter 4 and Chapter 5. All combinations of 
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systems are considered and formed from the selected renewable energy technologies. 

The detailed formation of mono/hybrid micro-renewable electricity generation systems 

and mono/hybrid micro-renewable thermal generation systems has been described in 

Chapter 4 and Chapter 5 respectively. A database, stored in MATLAB, is set up to 

contain all available information in order to carry out the integration and determine the 

optimal system that satisfies the electricity, heating and hotwater demand for a domestic 

dwelling. In the database, the selected micro wind turbines and their hourly power 

outputs, the selected solar PV modules and their hourly power outputs, the selected 

ASHP, the selected solar flat plate/evacuated tube collectors, the hourly power inputs 

required to operate a mono or a hybrid micro-renewable thermal generation system for 

providing the entire heating and hotwater, the hourly power inputs to drive the primary 

and/or the  auxiliary heating system and the electrical immersion in the hotwater storage 

cylinder, and hourly household electrical loads are all stored. It should be noted that the 

area of each solar PV module and of each solar thermal collector is also stored in the 

database. This allows one to restrict the total area permitted for installing solar types of 

systems if a renewable energy technology regulation is implemented, e.g. in order to 

qualify for the planning permission exemption in Ireland, the total area of solar PV 

modules and/or solar thermal collectors cannot be more than 12 m
2
. Therefore, if this 

regulation is applied, a single solar PV system, a single solar thermal system or a 

combined solar PV system and solar thermal system, will have to be formed within this 

limit; other systems are not considered for economic analysis. However, this current 

study has not set the limitation on the total area of the solar PV system or the combined 

system consisting of a solar PV system. The renewable energy requirement is also 

applied into this overall integration in order to accomplish the desired percentage of the 

total electrical load requirement (both household electrical load and the electrical load 
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required for operating heating and hotwater generation systems) that must be satisfied 

from the on-site micro-renewable electricity generation system. Any micro-renewable 

electricity generation system that cannot satisfy the renewable energy requirement is 

eliminated from the economic analysis. For the systems that do satisfy the renewable 

energy requirement, the LCC is calculated based on the capital costs of the system(s), 

the cost of the imported electricity used, the revenue generated from the exported 

electricity to the grid, the costs of replacement of a micro wind turbine (without mast), 

solar PV modules, ASHPs and/or solar thermal collectors if the project lifespan is 

greater than the lifespan of the renewable energy devices themselves, the costs of 

replacement of inverter, circulating pump and/or solar pump unit, maintenance costs of 

each individual system and the salvage value. The salvage value is the value left in the 

device (exclusive of installation cost) if the lifespan of a device is longer than the 

desired project lifespan. In this integration technique, the major assumption made is that 

the entire capital cost of the micro-renewable electricity generation system and micro-

renewable thermal generation system is funded from a loan. Capital grant options are 

also built into this integration technique. Once all possible system configurations have 

been analysed, the system having the lowest LCC is deemed the optimal choice and the 

system configuration is thus obtained. 
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            Figure 6.1. Grid-connected micro-renewable electricity and thermal generation integration technique. 
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6.4. Results and Discussion  

The overall integration technique is applied to determine the optimal system that meets 

the entire electricity, heating and hotwater demand for a domestic dwelling in Ireland. 

The selected micro-renewable electricity generation technologies are micro wind 

turbines and solar PV modules, and the selected micro-renewable thermal generation 

technologies are ASHPs and solar thermal collectors; these selected systems for analysis 

represent other similar market-available micro wind turbines, solar PV modules, ASHPs 

and solar thermal collectors. The exemption conditions from planning permission are 

considered in the initial selection process. The hub height of a micro wind turbine is set 

at 10 m in this study as the total height including turbine blades cannot exceed 13 m in 

order to meet the exemption requirement. Micro wind turbines with a capacity of 6 kW 

generally have a diameter equal to or less than 6 m. The total area of an ASHP is the 

main constraint of selection; the selected ASHPs are all within this restriction which is 

less than 2.5 m
2
. The solar thermal systems (formed from selected solar thermal 

collectors) also adhere to the conditions for exemption from planning permission. The 

maximum surface area of the thermal collectors in a solar thermal system must be less 

than or equal to 12 m
2
 as stated in the exemption conditions. However, solar PV 

systems (formed from selected solar PV modules) are the only exceptions that are not 

designed to adhere to the conditions for exemption in this study. The solar PV system is 

sized based on the most commonly installed capacity range of domestic solar PV system 

which is less than or equal to 3 kWp. The selected micro wind turbines are the Ampair 

600-230, the Swift 1.5 kW, the Skystream 3.7, the Siliken 3.4, the Evance R9000 and 

the CF6d; the selected solar PV modules are the Sharp 235 W, the CareyGlass Solar 

185 W and the Kyocera 135 W. The selected ASHPs are the Mitsubishi Ecodan W50 

(rated at a thermal capacity of 5 kW), the Mitsubishi Ecodan W85 (rated at a thermal 
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capacity of 9 kW), the Mitsubishi Ecodan W140 (rated at a thermal capacity of 14 kW); 

the selected solar thermal collectors are the Kingspan flatplate collector, Kingspan 

evacuated tube collector HP400 and Kingspan evacuated tube collector HP450. Tables 

4.6-4.8, Table 5.16 and Table 5.18 give relevant information for the selected micro wind 

turbines, the selected solar PV modules and the inverters employed, the selected 

ASHPs, and the solar thermal collectors employed respectively. This indicative 

information was obtained from either official websites or from personal 

communications. The system integration is carried out assuming the micro-renewable 

electricity and/or thermal generation system is installed in the Dublin area, with the 

following conditions and assumptions: 

 An annual average ambient air temperature of 9.9
o
C. 

 An annual solar radiation value of 970 kWh/m
2
. 

 An annual  average wind speed of 5.76 m/s. 

 An average annual household electrical load of 5,016 kWh.  

 An average annual household thermal load of 16,536 kWh.  

 The daily hotwater requirement of 199.8 L at 60
o
C. 

 The Weibull k factor is 2.12, autocorrelation factor is 0.929, diurnal pattern 

strength is 0.156 and hour of peak wind speed is 14:00. 

 The installed solar PV system and solar thermal system is south facing.  

 The ground reflectance is 0.2. 

 The efficiency of a solar-PV-system inverter is taken as 95%. 

 An imported electricity price of €0.1928/kWh. 

 An exported electricity tariff of €0.09/kWh.  

 The maximum rate of electricity export is capped at 6 kW. 
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 A green loan having a loan rate of 4.5%.  

 An annual inflation rate of 2.26%. This was the average annual inflation rate for 

Ireland for the period January 2001 to December 2010 [178]. 

 A solar thermal system capital grant of €800 and no capital grant available for 

other types of technologies. 

 A 0% renewable energy requirement. 

 The project lifespan is 20 years. 

6.4.1. Economic Discussion and Identification of the Optimal System under 

Current Irish Conditions 

The LCC of a micro-renewable electricity generation system and/or a micro-renewable 

thermal generation system has been calculated with the conditions given in the previous 

section. The overall system must satisfy electricity, heating and hotwater demand for a 

domestic dwelling and the system with the lowest LCC is determined as the optimal 

system over the project lifespan. The optimal system is deemed to consist of an ASHP 

having a thermal capacity of 14 kW which provides heating and preheats hotwater, an 

electrical immersion which heats water to the required temperature (60
o
) and the 

electricity grid which supplies the electricity. This optimal system accomplished an 

LCC of €49,131 (this value is increased to €50,231 when making an economic 

comparison with conventional electricity, heating and hotwater generation systems, to 

account for the cost increase between the domestic heating distribution systems as 

explained in Chapter 5) over a 20-year project lifespan.  

It should be noted that the economic analysis is carried out based on a best case 

scenario. The micro-renewable heating generation system is designed to connect with an 

underfloor heating system. However, an underfloor heating system is rarely installed for 
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Irish applications as traditional high-temperature radiators are still the dominant heating 

distribution system where a gas boiler or an oil boiler is employed for domestic heating 

generation. Therefore the economic outcome presented in this study is generally 

applicable to newly-built but also to existing dwellings with an underfloor heating 

system.  

The economic viability of the optimal system is determined by comparing it with 

conventional electricity supply and domestic thermal (heating and hotwater) generation 

systems. The electricity grid is considered for electricity supply, and an oil or a natural 

gas boiler system is considered for domestic heating and hotwater supply. For providing 

the entire electricity, heating and hotwater, the LCC of a conventional combination of 

the electricity grid and an oil boiler system, and a combination of the electricity grid and 

a natural gas boiler system is €60,027 and €41,197 respectively for a 20-year project 

lifespan. Figure 6.2 shows the LCC comparison between the optimal micro-renewable 

energy generation system and the conventional generation systems. This clearly shows 

that the optimal system has an economic advantage over the conventional combination 

system consisting of an oil boiler and the electricity grid. However it has an economic 

disadvantage when compared to the system consisting of a natural gas boiler and the 

electricity grid. Electricity generation using a micro-renewable system is still very 

costly, and has not yet become competitive in comparison with the grid supplied 

electricity under the conditions stated in the study. The inclusion of any micro-

renewable electricity generation system resulted in an increase in the overall LCC over 

the project lifespan. The hotwater demand and profile imposed particularly for the 

current study may affect the involvement of the solar thermal system for the overall 

optimal system selection. The majority of the hotwater demand is for morning and 

evening hours. However, there is very little or no solar radiation available to generate 
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hotwater for the demand required for morning hours; therefore, only hotwater demand 

for evening hours can be fully or partially satisfied from hotwater generated by the solar 

thermal system. In this case, the solar thermal system operates to its full strength; 

however it only partially meets the demand. If, in a different case, hotwater is demanded 

mainly from the afternoon to evening hours, then it is possible for the solar thermal 

system to meet most of the requirements, which results in the solar thermal system 

being more effective and enhances its economic viability. In this scenario there will be a 

better chance that the solar thermal system is chosen as part of the optimal system. 

 

Figure 6.2. LCC comparison between the optimal micro-renewable energy 

generation system and conventional generation systems. 

6.4.2. Effect of Imported Electricity Price on the Optimal System 

A change in the imported electricity price can affect the economic evaluation of micro-

renewable electricity and thermal generation systems individually and also the 

determination of the optimal system selection from each of the energy generation 

systems respectively, as presented in Chapter 4 and Chapter 5. However, due to the fact 
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that a micro-renewable electricity generation system can only produce electricity, 

therefore the increased imported electricity price, in this case, can help increase the 

savings made and improve the economic viability of the mono/hybrid systems available. 

Conversely, the micro-renewable thermal generation system can only consume 

electricity, the increased imported electricity price can result in an increased cost 

required to generate the same amount of heating and hotwater for a domestic dwelling. 

Consequently, this impairs the economic viability of the mono/hybrid systems available. 

For the overall integrated system, the electricity generated from a micro-renewable 

electricity generation system is more likely to be consumed in the location of production 

since an extra amount of electricity is required for operating the micro-renewable 

thermal generation system. The cost of the overall integrated system is likely to increase 

with increasing imported electricity price. A large capacity micro-renewable electricity 

generation system, with a high capital cost however, has to be installed in order to 

reduce the amount of grid supplied electricity and subsequently offset the added cost of 

electricity purchases. In another case as the electricity is supplied from the same 

capacity system, the increased overall cost is driven by the increased operational cost as 

the same amount of electricity has to be purchased from electricity grid, however at a 

higher price.  

Figure 6.3 (LCC vs. imported electricity price) shows that the LCC of the optimal 

system, as expected, increases reasonably as the imported electricity price rises. From 

the results shown, a mono/hybrid micro-renewable electricity generation system is still 

not economically competitive when compared with the electricity supplied from 

electricity grid, even if the imported electricity price rises to €0.30/kWh. Neither a 

mono nor a hybrid micro-renewable electricity generation system was selected as a part 

of the integrated optimal system. The large thermal capacity of an ASHP (14 kW) has 
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been selected as the main heating system for all of the imported electricity prices 

investigated, and it also functions to preheat hotwater in the hotwater storage cylinder. 

When the imported electricity prices are relatively low (i.e. not significantly increased 

from the current price, e.g. €0.22/kWh and €0.24/kWh), there is no solar thermal system 

selected for the optimal system and the hotwater is heated by an electrical immersion to 

the desired temperature. However at higher imported electricity prices (€0.26/kWh, 

€0.28/kWh and €0.30/kWh), the solar thermal systems are selected at the current set up. 

This indicates that the cost of solar thermal system can be offset by the extra costs 

required to operate the electrical immersion when the imported electricity prices have 

significantly increased. It is important to recognise that the increased imported 

electricity prices can have a significant impact on the economic viability of the micro-

renewable energy generation systems; furthermore it will also alter the determination of 

the components of the optimal system. If the weather conditions (wind speed and/or 

solar radiation) at a location are superior to the current weather conditions applied, then 

a micro-renewable electricity generation system is possible to be considered as part of 

the integrated system.    
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Figure 6.3. LCC of the optimal system versus imported electricity price. Exported 

electricity tariff is €0.09/kWh and the loan rate is 4.5%. EG= electricity grid, 

ASHP = air source heat pump and SETS= solar evacuated tube thermal system.  

6.4.3. Effect of Exported Electricity Tariff on the Optimal System 

The electricity generated from a micro-renewable electricity generation system is either 

used by the domestic dwelling or exported to the electricity grid. For the overall 

integrated system, this generated electricity is not only used to meet the consumption 

from lighting and electrical appliances existing within the dwelling, but also the extra 

electricity required to operate the ASHP and/or solar thermal system for heating and 

hotwater generation purpose. The majority of electricity generated is likely to be utilised 

at the location of production and therefore little is exported to the grid.  An increase in 

exported electricity tariff however will still favour the installation of a micro-renewable 

electricity generation system. This will possibly even encourage the installation of a 

large capacity system due to the fact that more electricity can be exported at a higher 

tariff after the electricity demand is met.   
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Figure 6.4 (LCC vs. exported electricity tariff) shows that the LCC of the optimal 

system decreases significantly as the exported electricity tariff rises. There are two 

significant points that should be noted. First, when the exported electricity tariff reaches 

€0.23/kWh, the integrated micro-renewable generation system containing a 6 kW micro 

wind turbine and a 14 kW thermal capacity ASHP becomes truly economically viable 

compared with a conventional system having electricity supplied from the electricity 

grid, and heating and hotwater generated from a natural gas boiler system. The LCC 

(€38,187; this value is increased to €39,287 when takes into account the cost difference 

between heating distribution systems) of the micro-renewable energy generation system 

at this exported electricity tariff was lower than the conventional system that achieved 

the lowest LCC (€41,197) amongst all conventional systems. Second, the micro-

renewable electricity generation was introduced as the main electricity supplying system 

rather than the electricity grid when the exported electricity tariff was €0.18/kWh. The 

increased revenue generated from exporting electricity helped this micro-renewable 

electricity generation system overcome the economic deficit between a micro wind 

turbine and grid supplied electricity, and made it become a more economically viable 

solution; hence it is included as part of the optimal system. It should also be noted that 

the wind speed at the location of interest (Dublin) in this study only represents an 

average wind speed in Ireland as a whole. There are many locations, especially areas on 

the coast that have a stronger and more consistent wind. The increased exported 

electricity tariff will certainly help even smaller capacity micro wind turbines, installed 

at these sites, become economically viable, even though an increased electricity demand 

has to be accounted for operating a micro-renewable thermal generation system.  
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Figure 6.4. LCC versus exported electricity tariff. Imported electricity price is 

€0.1928/kWh and the loan rate is 4.5%. EG= electricity grid, ASHP = air source 

heat pump and MWT= micro wind turbine.  

6.4.4. Effect of Renewable Energy Requirement on the Optimal System 

For a net-zero-energy house identification, the amount of exported electricity has to be 

greater than or equal to the electricity supplied from the grid. There is no consideration 

of the electricity generated from a micro-renewable electricity generation system 

actually meets the amount of on-site electrical load in the dwelling. However, this 

renewable energy requirement imposes the user specified percentage of electricity 

demand must be satisfied by the on-site micro-renewable electricity generation system. 

Furthermore, if a high requirement is set, only the systems that are able to meet a 

sufficient amount of on-site electricity demand can be included for optimal system 

selection. There are several benefits which are observed when a large percentage of 

electricity demand is satisfied from the on-site micro-renewable electricity generation 

system. From a national point of view, this reduces the energy flows and related losses 

in transmission system; from a consumer point of view, this increases consumer’s sense 
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of ownership and self-energy supply security, while also encouraging the use of a larger 

capacity of micro-renewable electricity generation system in order to make the most of 

local renewable energy available, and eliminating the effect of increasing imported 

electricity price.  

Figure 6.5 (LCC vs. renewable energy requirement) shows that the LCC of the optimal 

system increases initially, followed by no alteration and then goes to infinity as the 

renewable energy requirement increases. The electricity supplied from the electricity 

grid is superior to any of the micro-renewable electricity generation system in terms of 

economic viability when there is no requirement of renewable energy requirement; a 

small capacity (2.4 kW) micro wind turbine was introduced to the overall integrated 

system to supply electricity in order to meet renewable energy requirement of 20%; the 

largest micro-wind turbine (6 kW) considered in this study was introduced into the 

overall integrated system when 40% or 60% of the overall electricity demand 

(electricity for domestic lighting and appliances, and operating the thermal generation 

systems) had to be met; however no mono/hybrid micro-renewable electricity 

generation system is capable of supplying a renewable energy requirement of 80%. This 

clearly shows that, under the current conditions stated, a mono/hybrid micro-renewable 

electricity generation system with a capacity larger than that considered in the study has 

to be used on site in order to meet the total or even the majority of the overall electricity 

demand. However, this can also be achieved from the existing systems in the study. For 

example, if a planning permission can be granted, micro wind turbines are allowed to be 

installed with a higher mast. Micro wind turbines, in general, harvest more energy and 

produce greater power at greater height. Therefore, with the enhanced power generated 

it is likely that the electricity demand will be met compared to micro wind turbines that 

are installed at a low height.     
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Figure 6.5. LCC versus renewable energy requirement. Imported electricity price 

is €0.1928/kWh, exported electricity tariff is €0.09/kWh and the loan rate is 4.5%. 

EG= electricity grid, ASHP = air source heat pump and MWT= micro wind 

turbine. 

6.5. Conclusion 

In this chapter, an overall technique is presented for the optimised integration of a grid-

connected micro-renewable electricity generation system and a grid-connected micro-

renewable thermal generation system in order to satisfy the entire electricity, heating 

and hotwater demand. Micro wind turbines and solar PV systems were considered in 

this study for micro-renewable electricity generation systems, the grid was also 

considered as the main electricity provider or as a backup system; ASHPs and solar 

thermal systems were considered in this study for micro-renewable thermal generation 

systems. A primary and an auxiliary electrical heating system, and an electrical 

immersion were also employed for the generation of space heating and hotwater. Six 

micro wind turbines, three solar PV modules (used to form the solar PV systems for 

analysis), three thermal capacity ASHPs, and a flat plate solar collector and two 
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evacuated tube solar thermal collectors (used to form the solar thermal systems for 

analysis) which are commercially-available and industry-representative were employed 

in this study. A database containing all considered micro wind turbines, solar PV 

modules, ASHPs and solar thermal collectors was established. However, the existing 

data is not restricted to these considered capacity systems; it can be also expanded to 

include any other capacity of micro-renewable electricity or thermal generation system 

for analysis. Applying the developed overall integration technique, the system which 

has the lowest LCC after the project lifespan is determined as the optimal system. Under 

the conditions stated in the study based on weather data obtained from Dublin, the 

optimal system is a system consisting of an ASHP having a thermal capacity of 14kW, 

and the electricity grid which provides all household electrical load and operates the 

heating and hotwater generation system. However, the LCC of this optimal system is 

greater than the LCC obtained from a conventional system whereby the electricity grid 

supplies the entire electricity demand, and a domestic gas boiler system provides all 

heating and hotwater. Therefore, the optimal system is deemed not economically viable 

in this comparison. Nevertheless, this optimal system shows its economic advantage 

over two other conventional systems: the electricity grid and a domestic oil boiler 

system, and the electricity grid alone to provide the entire electricity, heating and 

hotwater for a domestic dwelling. The micro-renewable electricity generation system is 

not considered as part of the optimal system under the conditions stated. The high 

capital costs and lack of financial supports make the micro-renewable electricity 

generation system unable to compete with the electricity grid. However, it should be 

noted that the weather conditions at many other locations are superior to the condition at 

the location for where this study was conducted, wind energy in particular. The micro-

renewable electricity generation systems are likely to become economically viable if 
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they are installed at those locations. An ASHP is the only micro-renewable energy 

generation system contained in the optimal system.  The mild weather conditions in 

Ireland can help an ASHP work efficiently, and become economically viable compared 

with other traditional heating generation systems, apart from a gas boiler system. 

ASHPs should be the preferred option in the locations without gas supply. The solar 

thermal system is, in general, the most commonly installed micro-renewable energy 

generation system. However, the time periods of hotwater demand for the domestic 

dwelling in the study, makes it difficult for the solar thermal system to be utilised to its 

full working capacity; therefore it becomes economically unviable. The hotwater 

generated from the system is most likely to use for the demand at nights while hotwater 

required for the mornings has to be met from an electrical immersion. Three parameter 

studies to assess the effect of imported electricity price, exported electricity tariff and 

renewable energy requirement have been performed. The LCC of the overall integrated 

systems increases moderately with an increased imported electricity price. The 

increased imported electricity price raises the LCC by increasing the cost of purchased 

electricity from the electricity grid when the household electrical load is not met from 

the mono/hybrid micro-renewable electricity generation system, as well as increasing 

the operational cost of running the micro-renewable thermal systems. However it should 

also be noted that the solar thermal systems gradually become economically viable over 

time. Conversely, the increased exported electricity tariff encourages the involvement of 

micro-renewable electricity generation systems. Micro wind turbines, in particular, have 

been selected to be part of the optimal system when the exported electricity tariff 

reaches to €0.18/kWh. Furthermore, all micro-renewable electricity generation systems 

benefit from the increased exported electricity tariffs, and will become economically 

viable when the electricity grid is taken as the reference point. There is no significant 
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effect on the micro-renewable thermal generation system, as the electricity generated 

from any of micro-renewable electricity generation is prioritised of supplying demand 

on site first and then exported to the electricity grid. The increased renewable energy 

requirement demands an increased capacity micro-renewable electricity generation 

system with the intention of meeting a user specified percentage of electricity demand 

from generation on site. The LCCs of the systems that fulfil the requirement increase 

along with the growing capacity of the systems. However, the current considered 

systems cannot meet the requirement if a high renewable energy requirement is 

enforced.        

The decision of installing a micro-renewable electricity generation system and/or a 

micro-renewable thermal generation system should be made based on the realistic 

economic viability of these systems for every household. The weather condition at the 

location of interest, the household electrical load and the household thermal load are 

different and are all critically important factors for analysis for each case scenario. The 

renewable energy system market is also dynamic and continuously influenced by the 

advancements in technologies, the production in scale and the change of Irish 

government policies towards micro renewable energy technologies. 

6.6. Summary 

A novel optimised integration technique for grid-connected micro-renewable energy 

generation systems is presented in this chapter. The developed integration technique for 

selected micro-renewable electricity and thermal generation systems is described in 

detail. The results are then analysed and discussed.  
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CHAPTER 7 
7. CONCLUSION AND 

RECOMMENDATION 

7.1. Conclusion 

In recent years, a number of studies have presented various developed techniques of 

system integration for electricity, heating and hotwater generation for residential and 

commercial buildings. However, many of the studies looked at either community-scale 

or apartment blocks rather than any individual domestic dwelling. The type of 

renewable energy technologies available, the capacity and quantity of the system 

required for the generation of a large amount of energy differs from the smaller amount 

of energy required such as for a domestic dwelling. The system combinations were also 

determined based on an artificial building/housing design; for example, a dwelling with 

provided U values for walls, attics, windows and doors where space heating is evaluated 

from the simulated design. Overall electricity demand is obtained based on the capacity 

of electrical appliances and lighting provided, and the number of hours that they 

operate. However, these approximations cannot provide accurate consumption data and 

will affect the system integration determination. In Ireland, the number of smart meters 

is on the increase; therefore it is possible that the exact consumption data may soon be 

obtained. However, very few studies so far have presented a purposely-developed 

technique for a system integration taking into account measured high-resolution 

electricity and heating load. 
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The net-zero-energy housing concept has been introduced for a number of years as 

shown in several studies demonstrated in the literature. In general, the systems satisfy 

this concept in which the amount of exported electricity is equal to or greater than the 

amount of imported electricity. This is a valid concept solution for an optimal system 

determination. However, this is not possible to reveal the percentage of electricity 

demand is satisfied by the on-site renewable electricity generation system. This concept 

can be meaningful for each individual householder; however, for a community or a 

nation this becomes less attractive approach since the issue of power transmission loss 

has still not been considered effectively. Despite this observation, very few studies have 

taken this into consideration.        

The aim of this research study is to develop a novel technique to optimise the 

integration of grid-connected renewable energy technologies for a domestic dwelling in 

order to provide the entire electricity, heating and hotwater requirement. This generally-

applicable and robust integration technique was developed to purposely employ high-

resolution measured electrical and thermal load data and a user-specified renewable 

energy requirement. The technique was developed in three stages: a technique for the 

integration of grid-connected micro-renewable electricity generation systems, a 

technique for the integration of grid-connected micro-renewable thermal generation 

systems, and an overall technique for the integration of grid-connected micro-renewable 

energy generation systems.  

The dwelling investigated in this study is assumed to represent a best case scenario, 

with the following assumptions being made: 

• The dwelling is new and features an underfloor heating system so that an ASHP 

will work at its optimum condition. 
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• The dwelling is located in a rural region and is surrounded by open fields so that a 

relatively high wind speed is available for a micro wind turbine. 

• The roof(s) of the dwelling are directly south-facing so that a relatively high solar 

radiation is received by solar PV modules and solar thermal collectors. 

• A representative household electrical load and a distinctive household heating load 

are employed for an average Irish dwelling (a three/four-bedroom dwelling having 

a floor area of 120 m
2
 and with two-four occupants). 

• An average hotwater consumption rate is employed for a family of four occupants. 

The integration of a grid-connected micro-renewable electricity generation system can 

be either a mono or a hybrid system and consists of a micro wind turbine and/or a solar 

PV system. A single micro wind turbine or a single solar PV system forms a mono 

system; a combination of both forms a hybrid system. This developed generally-

applicable integration sub-technique was employed for an Irish application. Therefore, 

the technical and economical constraints and guidelines under specific conditions in 

Ireland were considered for the selection and integration process, and economic 

analysis. The NPV was the factor used to identify the optimal system available from a 

mono system or a hybrid system from six commercially-available micro wind turbines 

and/or a solar PV system assembled from three commercially-available solar PV 

modules. The hourly power outputs of the micro-renewable electricity generation 

system for one year were accurately and realistically predicted based on statistical 

calculations performed by applying a minimum weather data, i.e. monthly wind speed 

values and monthly solar radiation values. The realistic costs associated with each 

system considered in the study were also obtained. This ensures that the economic 

analysis carried out is accurate. The high-resolution, i.e. hourly household electrical 
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loads for one year were also calculated from an average annual household electrical 

load and an average annualised electrical load profile, and then used as the base load 

(electricity consumption from existing electrical appliances and lighting devices in a 

domestic dwelling) in the integration technique. This integration sub-technique is able 

to accurately predict system performance (either mono or hybrid) and then attains an 

economic outcome if an actual system was installed. Based on the economic results, the 

optimal system can be determined and the system configuration can then be obtained. 

The economic viability of the optimal system or any of the system can also be decided. 

This would give the householder a clear indication whether a micro-renewable 

electricity generation system is worthwhile to install, and what the most suitable system 

is in terms of economic benefit.   

The integration of micro-renewable thermal generation system comprises an ASHP 

and/or a solar thermal system. The micro-renewable thermal generation system, either a 

mono system or a hybrid system, has to satisfy the entire heating and hotwater 

requirements for a domestic dwelling. The primary electrical heating system, the 

auxiliary electrical heating system and/or an electrical immersion can be also employed 

when necessary in order to achieve the domestic thermal requirement. This developed 

integration sub-technique considers technical and economic constraints and guidelines 

under current Irish conditions, and uses LCC to find the optimal system from selected 

three thermal capacity commercially-available ASHPs and three solar thermal collectors 

used to form a solar thermal system. The practical hourly heating loads and hourly 

hotwater demand for one year were obtained. The monthly ambient air temperature 

values and monthly solar radiation values were applied in order to statistically generate 

the reasonable hourly ambient air temperature values and hourly solar radiation values 

for an entire year respectively. Therefore, the energy outputs of the analysed ASHPs 



Chapter 7 

 

249 

 

and solar thermal systems can then be realistically predicted, and used to satisfy the 

obtained hourly heating loads and hotwater demand. The primary and/or auxiliary 

heating system, and/or an electrical immersion may be used when there is a deficit 

between the supply and demand. The predicted system performance and the obtained 

economic results can truly reflect the circumstance in which an actual system is 

installed in a domestic dwelling. The economic viability of the optimal system, or any 

mono/hybrid system, is decided based on comparing the LCC of the system with the 

LCC calculated from the most commonly employed conventional heating and hotwater 

generation systems whilst meeting the same domestic demand in Ireland. This can give 

a specific indication whether a micro-renewable thermal generation system is 

economically viable and/or justified to replace the current existing system available in 

the domestic dwelling. The result obtained from economic analysis is also used to select 

the optimal system for each case scenario. 

The overall integration of grid-connected micro-renewable electricity generation 

systems and/or micro-renewable thermal generation systems is then developed and 

presented in Chapter 6. The four types of micro-renewable energy generation systems 

require no external fuel supply, besides being connected to the electricity grid. The 

micro-renewable thermal generation system, assisted by the auxiliary electrical heating 

system and immersion, is to provide the entire heating and hotwater demand for a 

domestic dwelling. The micro-renewable electricity generation system, supported by the 

electricity grid, is to supply electricity for satisfying the domestic electrical load and for 

running a micro-renewable thermal generation system. This overall integration 

technique is suitable for applications in all locations; Ireland was chosen to be analysed 

however. The optimal system is determined based on the least LCC achieved from an 

accurate economic analysis performed by realistically predicting power and energy 
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outputs from the selected commercially-available technologies and all system 

combinations. The economic viability of the micro-renewable energy generation 

systems was evaluated by comparing it with the economic outcome obtained from a 

conventional energy supply system available in the domestic dwelling. In this study, the 

conventional system takes into account the purchase of grid supplied electricity, 

combined with a heating and hotwater generating system from a domestic gas boiler 

system, a domestic oil boiler system or a domestic electrical heating system. This study 

gives an important economic indication for a domestic dwelling that has or is planning 

to have energy supplied from a micro-renewable energy generation system. Also, it 

shows whether any system can achieve an economic advantage over the conventional 

systems employed. The optimal system selected also presents the most economic 

benefit amongst all of the considered systems. 

From the study shown, of all mono/hybrid renewable electricity generation systems, the 

optimal system is a single micro wind turbine having a capacity of 2.4 kW under current 

Irish conditions and that also meets the 50% renewable energy requirement; however 

this system is not economically viable since the calculated NPV is negative. It should be 

noticed that none of the analysed systems are economically viable even if there is no 

restriction of renewable energy requirement as all mono/hybrid systems considered can 

only attain a negative NPV. An assessment of the effect of varying household electrical 

load, imported electricity price, exported electricity tariff and wind speed was 

conducted. Firstly, from the assessment of the household electrical load, the NPV of the 

optimal system varies moderately with increasing household electrical load subjected to 

satisfy the 50% renewable energy requirement. However, the optimal system cannot 

achieve economic viability whether the household electrical load is low or high. It is 

also seen that a system assembled from the same capacity micro wind turbine and the 
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same capacity of solar PV modules will endure a reduced economic loss over the project 

lifespan as the household electrical load increases. Secondly, from the assessment of the 

imported electricity price, the NPV of the optimal system improves considerably as the 

imported electricity price increases. However, the optimal system is still not 

economically viable even if the imported electricity price reaches €0.30/kWh. The 

economic loss will be reduced for a system assembled from the same capacity micro 

wind turbine and the same capacity solar PV system as the imported electricity 

increases. Thirdly, from the assessment of exported electricity tariff, the NPV of the 

optimal system improves significantly with increasing exported electricity tariff.  The 

optimal system which meets the 50% renewable energy requirement, is a micro wind 

turbine having a capacity of 6 kW when the exported electricity tariff is €0.18/kWh. 

This optimal system becomes economically viable since the NPV has turned from 

negative to positive. The effect of increasing exported electricity tariff results in a 

system assembled from the same capacity micro wind turbine and the same capacity 

solar PV system experiences further economic gain over the project lifespan. Finally, 

from the assessment of the wind speed, the optimal system which meets the 50% 

renewable energy requirement, is a micro wind turbine having a capacity of 2.4 kW and 

is nearly economically viable when the average wind speed reaches 7 m/s. Furthermore, 

the optimal system, a micro wind turbine having a capacity of 6 kW, is economically 

viable when the average wind speed reaches 8 m/s since it has a positive NPV and also 

meets the renewable energy requirement. A system assembled from the same capacity 

micro wind turbine and the same capacity solar PV system will endure a modest 

economic loss or even becomes economically viable at the location having a good 

annual average wind speed. 
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From the study shown, of all micro-renewable thermal generation systems, the optimal 

system is an ASHP having a thermal capacity of 14 kW and no solar thermal system, 

and assisted by an auxiliary electrical heating system and an electrical immersion. This 

optimal system satisfies the entire heating and hotwater requirement for a domestic 

dwelling. This optimal system is economically viable if this system is compared with an 

oil boiler system or an electrical heating system since its LCC is lower than the LCC of 

these two conventional systems; this optimal system however is not determined 

economically viable when compared with a natural gas boiler system since the LCC of 

this system is greater than the LCC of the natural gas boiler system providing the same 

amount of heating and hotwater. Two parameter studies were carried out to assess the 

effect of household heating load and imported electricity price on the optimal system 

determination. From the assessment of household heating load, the LCC of the optimal 

system increases moderately with an increasing household heating load. However, it 

should be noted that this assessment was carried out differently from the assessment of 

household electrical load. A unique profile is corresponded with each of the household 

heating load, from low to high, rather than scaling down or up an annual household 

electrical load and utilising an identical load profile. A system assembled from the same 

thermal capacity ASHP and the same size of solar thermal system would economically 

cost more over the project lifespan as the household heating load increases. From the 

assessment of the imported electricity price, the rising operation cost caused by the 

increased imported electricity price leads to the LCC of the optimal system increasing 

moderately. A system assembled from the same capacity ASHP and the same size solar 

thermal system will have to suffer a larger cost in order to satisfy the same heating and 

hotwater requirement if the imported electricity price increases.  
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From the study shown, of the integration of all grid-connected micro-renewable 

electricity and thermal generation systems, the optimal system is a system in which 

electricity is supplied from the electricity grid, and heating and hotwater are provided 

from an ASHP having a thermal capacity of 14 kW with assistance from an auxiliary 

electrical heating system and an electrical immersion. This optimal system is however 

not economically viable when it is judged based on a comparison made with a 

conventional system comprising grid supplied electricity, and heating and hotwater is 

provided from a natural gas boiler system. However, this optimal system can be 

declared economically viable if compared with two other conventional systems: grid 

supplied electricity, heating and hotwater are provided from an electrical heating 

system; or grid supplied electricity, and heating and hotwater are supplied from an oil 

boiler system. The effect of the imported electricity price, the exported electricity tariff 

and the renewable energy requirement were investigated. Based on the results obtained 

from the imported electricity price study, the LCC of the optimal system increases 

reasonably as the imported electricity price rises. The component of the optimal system 

includes an ASHP having a 14 kW thermal capacity, no solar thermal system and 

without any micro-renewable electricity generation system when the imported 

electricity price has not increased significantly. However, the solar thermal system is 

determined as part of the optimal system when the imported electricity price has risen 

considerably. The optimal system is not economically viable at the current imported 

electricity price when compared with a conventional system consisting of the grid 

supplied electricity and a gas boiler system. Furthermore the optimal system could be in 

an even worse economic circumstance if the imported electricity price has risen 

significantly, and possibly resulted in becoming not economically viable even if 

compared with a conventional system containing the grid supplied electricity and an oil 
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boiler system. The parameter study of the exported electricity tariff shows that the LCC 

of the optimal system decreases significantly as the exported electricity tariff increases. 

Even though the current exported electricity tariff offered cannot help the optimal 

system become economically viable, an increased exported electricity tariff would have 

significant impact on the economic viability of the systems. The optimal system can 

genuinely become economically viable even if it is compared with a system comprising 

the grid supplied electricity and a natural gas boiler system when the exported 

electricity tariff is €0.23/kWh as the study shown. The result also shows that the optimal 

system consists of a micro wind turbine having a capacity of 6 kW and an ASHP having 

a thermal capacity of 14 kW when the exported electricity tariff is €0.18/kWh; this 

indicates that micro-renewable electricity generation is introduced as the main 

electricity supply system rather than the electricity grid. Finally, from the study of 

renewable energy requirement demonstrates that the LCC of the optimal system 

increases initially, follows by no alteration and then becomes infinity as the renewable 

energy requirement increases. The optimal system includes a micro wind turbine having 

a low capacity (2.4 kW) at first. However, a large capacity micro wind turbine is 

required in order to satisfy the increased renewable energy requirement, and eventually 

there is no system available for optimal system determination as none of them are able 

to provide the amount of electricity required for household consumption.   

The developed integration technique can perform a very detailed and accurate economic 

analysis for grid-connected micro-renewable energy generation systems to provide 

electricity, heating and hotwater for a domestic dwelling. The results obtained provide 

extremely valuable information for each householder to assess the economic viability of 

the systems considered; thereafter the optimal system is determined based on the 

maximum economic benefit achieved.  
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However, it should be noted that the analyses undertaken in this study are based on a 

best case scenario. For example, the solar PV modules considered in this study are 

assumed to be directly south-facing even though the roofs of many Irish dwellings may 

not be directly south-facing. As such, the PV modules and thermal collectors may not 

function as efficiently as predicted in this study. As the assumed conditions do not 

adequately characterise the entire Irish housing stock, careful consideration should be 

given before drawing any policy-related conclusions from the results presented in this 

study.  

Under the stated conditions and the selected commercially-available systems in the 

study, most of the systems presented are not economically viable compared with the 

conventional electricity, heating and hotwater generation systems. The high capital costs 

and the lack of financial support from the government are the two main reasons which 

resulted in this economic drawback. The cost of manufacturing micro-renewable energy 

generation systems has been gradually decreasing, e.g. the cost of solar PV generation 

per Watt has decreased significantly from early 2000 to the present. The innovation and 

improvement in technologies, the massive increase in production, alternate materials 

utilisation etc, resulted in reduced costs for the micro-renewable energy generation 

systems. Ireland has an extremely good wind conditions, and even if the cost of micro 

wind turbines do not significantly reduce in the near future, they are still likely to 

achieve economic viability providing they are installed at a location with a good wind 

resource. On average Ireland receives as much solar radiation as most parts of Germany 

where solar PV and solar thermal have been widely employed for domestic applications. 

There is a potential that solar technologies can be extensively exploited here. The 

marine climate ensures that Ireland is rarely too cold in seasons in which heating and 

hotwater are required. An ASHP would be an ideal choice for many domestic 
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applications for providing heating and hotwater. This has been proven from the results 

shown as an ASHP is always selected to be a part of the optimal system, and can 

genuinely become economically viable if it is compared with some of the conventional 

systems. An offered grant can be the most direct support for any of the micro-renewable 

energy generation system implementation. However, there is no national grant or 

deployment programme available towards micro wind turbines and solar PV systems. It 

is extremely likely to have a very positive reaction from a householder if a grant is 

offered for micro wind turbines and solar PV systems as demonstrated in the period 

when the incentive electricity tariff was offered. The number of micro wind turbines and 

solar PV systems installed had increased considerably; much improved from the period 

before the incentive electricity tariff had been offered, in particular for micro wind 

turbines. The added economic benefit of installing a micro-renewable electricity 

generation system can be considered as one of the most important factors for this 

increased number of systems installed. The same effect has also been noticed during the 

period when grants were offered for ASHPs and solar thermal systems under the 

Greener Homes Scheme. The number of installations had been stimulated which shows 

the very positive outcome of offering grants for householders. However, there is 

currently only a single grant available for solar thermal systems in Ireland. The very 

limited grants available make it very difficult for micro-renewable energy generation 

systems being used more extensively for domestic application. Grants can be offered in 

many forms, such as direct capital grants, reinstating the previously-ceased incentive 

exported electricity tariff, improved generally-applied exported electricity tariff, 

reduced tax/levy on purchasing the micro-renewable energy generation systems etc. A 

micro-renewable energy generation system will likely to become a popular choice for 

electricity, heating and hotwater generation in Ireland in the future since there is an 
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abundant renewable energy source available and if an appropriate grant programme is 

offered. The developed integration sub-techniques and overall technique for micro-

renewable electricity generation systems, micro-renewable thermal generation systems, 

or a hybrid of both can certainly help domestic dwellings achieve sustainable living and 

maximise economic effectiveness. 

7.2. Limitations 

The locations where micro wind turbine can be installed are restricted as an urban area 

is generally not practical since there is no open field. The micro wind turbines 

considered in this study are primarily suitable for installation in locations surrounded by 

wide open fields where relatively high wind speeds are observed. The wind speed in an 

urban area is typically lower than locations where wide fields are available. The adverse 

effect of dwellings on the wind speed can also result in the reduction of power output 

from micro wind turbines. Up to 28% of the total number of dwellings is possibly 

located in less compact dwelling regions and could be suitable for micro wind turbine 

installation in Ireland. Nonetheless, the option of a micro wind turbine for electricity 

generation should be eliminated for the analysis if the investigated dwelling is not 

located in a suitable site.  

Secondly, the household electrical load profile used in this study was an average 

annualised electrical load profile. This profile was the only credited profile available for 

conducting this research study at the time. However, it should be noted that each 

domestic dwelling has its own unique electrical load profile. This is directly related to 

the occupants’ behaviour, and the electrical appliances available and their usage. This 

study has demonstrated that various domestic heating loads can have an impact on the 

LCC analysis of the considered systems; therefore, various household electrical loads 
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with their unique profiles are also likely to influence the outcome of the economic 

analysis and, subsequently, affect the selection of the optimal system. However, it is 

important to recognise that this developed integration technique is generally applicable. 

The adopted hourly household electrical loads for a year describe the electrical demand 

in an average Irish dwelling (defined as the total residential energy demand divided by 

the number of permanently occupied dwellings and approximately represents a 

three/four-bedroom dwelling having a floor area of 120 m
2
 and with two-four 

occupants) [5], and is used to demonstrate the proposed integration technique. This set 

of hourly household electrical loads is only applicable to this employed dwelling and 

does not account for variations in the electrical demand which are very likely to occur 

from one dwelling to another. The employed hourly household electrical loads do not 

characterise the electrical demand of the entire Irish housing stock and, in the practical 

application of the proposed integration technique, an accurately-measured electrical 

load should be generated and considered for each individual investigated household.   

Thirdly, the adopted hourly household heating loads (with a unique heating demand 

profile) describe the heating demand in a chosen Irish dwelling having a total annual 

usage, in the form of fossil fuels, that is very close to the energy consumption of an 

average dwelling (a three/four-bedroom dwelling having a floor area of 120 m
2
 and with 

two-four occupants), and is used to demonstrate the proposed integration technique. 

This set of hourly household heating loads is only applicable to this employed dwelling 

and does not account for variations in the heating demand which are very likely to occur 

from one dwelling to another. The employed hourly household heating loads do not 

characterise the heating demand of the entire Irish housing stock and, in the practical 

application of the proposed integration technique, an accurately-measured heating load 

should be generated and considered for each individual investigated household. 
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Fourthly, the domestic hotwater demand and profile comes from the EU reference 

Tapping Cycle Number 3. This was repetitively used for each day of the year; therefore 

there is no weekday and weekend, and seasonal variance shown. However, this demand 

and profile is still the most suitable to represent the general domestic scenario since 

there is very few data available on variety of domestic hotwater loads for Irish 

applications. Nonetheless, the integration technique is developed to accurately perform 

economic analysis and then determine the optimal system. The hotwater demand and 

profile applied into the technique should be, ideally, measured and recorded for the 

investigated domestic dwelling. The general demand and profile would provide 

important indicative information for an average domestic dwelling; however, it is not 

possible to provide a specific figure for an individual case. 

Fifthly, the solar thermal system described in this study is used for generating hotwater 

only. However, the solar thermal system can be also used for space heating generation 

in some practical cases, especially for locations in a tropical climate. The hotwater 

generated is more than enough to satisfy the entire hotwater demand, and can also 

provide the partial heating requirement. Ireland is located in the region of the temperate 

climate. The hotwater generated from solar thermal systems installed is unlikely to 

satisfy the entire hotwater demand; hence it is even more difficult to contribute for 

heating. The majority of solar thermal systems are installed for the sole purpose of 

supplying domestic hotwater in Ireland. Only in limited number cases that they are 

installed for the purpose of supplying both heating and hotwater. This study reasonably 

takes the general approach to which solar thermal system is set up for the hotwater 

generation alone.  

Sixthly, concerning the use of batteries to reduce the amount of exported electricity, the 

proposed technique is focused on grid-connected systems due to the fact that batteries 
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are very costly, and both their lifespan and performance is difficult to predict. Also, 

sizing the capacity of batteries is complex. In particular, if the capacity of the batteries 

is oversized, the economic analysis results will be negatively impacted due to increases 

in both their initial and replacement cost. 

Seventhly, a carbon tax was not taken into consideration for the up-to-date analysis. 

There is currently no such tax applied for electricity consumption. A rate of carbon tax 

is difficult to predict, and it may not be appropriated to assume the same as the current 

carbon tax rate that is imposed on domestic heating fossil fuels in Ireland. Also, the 

micro-renewable thermal generation systems are all electricity-driven systems, and the 

CO2 emission saved from local consumption of the natural gas or the oil has to be 

considered to offset the CO2 emission caused if the electricity is supplied by the 

electricity grid. Thus, the cost saving made on utilising the micro-renewable thermal 

generation system is not possible to perform since the carbon tax for electricity 

generation is unknown. However, this will be one of the important factors to be 

considered in future analyses if a carbon tax is imposed on electricity generation in 

Ireland. 

Finally, the personal discount rate is defined as the rate at which an individual trades 

current for future currency [337]. The determination of the personal discount rate is a 

provocative subject with important implications for many aspects of economic 

behaviour and public policy [337]. The personal discount rate used for an investment 

project varies with the time delay of the reward or penalty and also varies with income 

and other personal characteristics. One approach to determine the rate for an investment 

project is to consider the cost of capital which has to be recovered by the investor to 

warrant the investment [338]. The opportunity cost of capital [339] or the weighted 

average cost of capital [340] are commonly employed as the discount rate for an 
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investment project. A different approach is to choose the rate of return on an investment 

project as the discount rate. For a domestic household, due to uncertainties such as the 

investment period, availability of capital, income and non-economic factors, the 

expected rate of return can vary significantly [338]. Another approach to choosing the 

discount rate for an investment project is the relevant going market interest rates faced 

by the individual (whether a borrower or a lender) [339]. The methodology of 

employing the real interest rate as the discount rate is adopted in this study. This 

methodology is supported by several previous studies [21, 34, 35, 37, 38, 43, 97, 268, 

341-352]. For example, Hong et al. conducted a study to develop a framework for the 

implementation of building-scale new renewable energy systems (solar photovoltaic, 

solar thermal, geothermal, and wind energy systems). The discount rate was calculated 

from the nominal interest rate and inflation rate, and was used to estimate the LCC in 

this study [342]. Marszal et al. conducted a study to investigate the LCC of different 

renewable energy supply options for a net zero energy building in Denmark. The real 

interest rate was used as the discount rate to calculate the LCC in the study [21]. 

Ringwood et al. conducted a study to estimate the economics of renewable 

microgeneration of electricity from wind and solar energy sources, and the annual 

percentage rate (interest rate offered by the loan issuer) was used as the discount rate to 

calculate the discounted payback period [97]. Janjai et al. conducted a study to 

investigate the potential application of concentrating solar power systems for producing 

electricity in Thailand and the debt interest rate was used as the discount rate to 

calculate the levelised cost [352]. Alphen et al. conducted a study to quantify and 

evaluate the potential of solar and wind resources in the Maldives for electricity 

applications, and the real interest rate was used to discount all future cash flows and 

thereafter to calculate the NPV [348]. As explained previously however, this 

http://www.sciencedirect.com/science/article/pii/S0360544208002867
http://www.sciencedirect.com/science/article/pii/S0306261911004338
http://www.sciencedirect.com/science/article/pii/S1364032106000475
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methodology of adopting the real interest rate is only one of several possible approaches 

which have been proposed for determining the discount rate.  

The discount rate adopted in this study could be considered low due to the fact that the 

nominal interest rate of the selected green loan is also rather low (4.5%) and represents 

a best case scenario. However, in general, the personal loan rate from Irish banks is 

typically higher than the value used in the current study, e.g. Bank of Ireland offers a 

personal loan rate of 11.5% [353]. If the current rate from Bank of Ireland is applied, 

the real interest rate (discount rate) would be increased to a value of 9.03%. The 

discount rate used to perform economic analyses can vary considerably. For example, 

the discount rate specified by the Irish Department of Communication, Energy and 

Natural Resource ranges from 5% to 8% for various energy generation and/or supply 

projects [32]. The European Wind Energy Association generally utilises a discount rate 

of 7.5% for wind power generation [354]; however a rate of 10% is used by the 

International Renewable Energy Agency as wind power generation projects are 

considered to have a relatively high risk [355]. Additionally, a discount rate of between 

6% and 8% is used for residential solar PV systems by the same agency [356]. The 

United States Department of Energy however employs a low discount rate of 3% for 

projects related to energy conservation, renewable energy resources and water 

conservation [357]. The SEAI normally utilises a discount rate of 8% when performing 

economic analyses of renewable energy generation systems for Irish applications [358]. 

If this rate is adopted for the current analysis, the optimal micro-renewable energy 

generation system is deemed to consist of an ASHP having a thermal capacity of 9 kW 

which supplies heating and preheats hotwater, an electrical immersion is employed to 

heat water to the required temperature (60
o
), and grid-supplied electricity. This optimal 

system achieved an LCC of €34,355 (this value is increased to €35,455 when making an 
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economic comparison with conventional electricity, heating and hotwater generation 

systems, to account for the cost increase between the domestic heating distribution 

systems) over a 20-year project lifespan. It is worth noting that the specification of the 

higher discount rate has an effect upon the optimal system configuration. A 9 kW ASHP 

is obtained as the optimal system rather than the 14 kW ASHP due to the fact that the 

operational cost becomes less when it is discounted at a higher value. However, the 

higher discount rate used does not alter the determination of the system economic 

viability in this case. The optimal system is not economically viable when compared 

with a conventional energy supply system consisting of grid-supplied electricity and a 

gas boiler system; this system combination achieved an LCC of €26,357. Conversely, 

the optimal system remains economically viable when compared with the conventional 

system consisting of grid-supplied electricity and an oil boiler system which obtained an 

LCC of €38,456. Rather than assuming a discount rate, it should be selected (calculated) 

based on each individual household situation. Although the current study provides 

valuable information in the case where a low discount rate is adopted, the results should 

be carefully considered before making any policy-related conclusions. Clearly, this 

issue should be considered as a potential avenue for future research in this area.        

7.3. Recommendation for Future Research 

The investigation of domestic household electrical load may be carried out in order to 

find the effect of various profiles on the economic analysis. A number of measured 

hourly electrical load data had been made available from research performed through 

smart metering trial by CER. Two possible avenues can be explored for future research. 

Firstly, the hourly electrical loads are statistically the same in magnitude however 

having varies electrical load profiles; these loads can be applied into the study and used 
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as the based electrical load. The obtained economic analysis results and thus determined 

optimal system should give an indication if variation in electrical load profile would 

make any impact and the significance of the impact. Secondly, a more realistic approach 

can be taken to perform the parameter study. Each selected household electrical load has 

a different magnitude (from low to high) and its unique load profile. In general, a 

decrease or an increase in the overall household electrical load is more likely to be 

caused by reducing or extending the distribution of the hourly household electrical load 

rather than scaling the hourly load down or up.  

This can be also expanded to the use of various domestic hotwater loads if an 

investigation of the effect is required. The domestic hotwater load is entirely based on 

each householder’s consumption habit. The domestic hotwater load used in this study is 

for a typical family in which it is assumed the occupants have day-time work. The load 

may vary significantly if the occupants spend large time in the dwelling; the hotwater 

usage could be increased in total quantity, and also be more distributed and less peaked. 

The season variance could also affect the hotwater usage. The domestic hotwater load is 

possible to have an impact on the optimal system determination from an economic 

analysis performed. For example, the solar thermal system is used more effectively if 

the majority of hotwater is consumed in the afternoon or evening; the electrical 

immersion is turn on less frequently as most hotwater consumed is likely to be 

generated from the solar thermal system. In contrast to this, if the hotwater is consumed 

mostly in the morning, the solar thermal system can hardly provide any useful hotwater 

for the occupants’ usage. The electrical immersion has to turn on regularly in order to 

satisfy the hotwater demand. Another example, the water supply (cold water) is 

preheated by an ASHP once it is on. This is likely to happen in the seasons which 

heating is required; therefore less energy is required from an electrical immersion to 
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heat the hotwater to the desired temperature. However, during the period of no heating 

demand, the solar thermal system with help from an electrical immersion is used to 

bring the hotwater temperature to the required standard. Therefore, the real hotwater 

consumption load is desirable if available. This is possible to achieve an even more 

realistic result than the current employed domestic hotwater load in the study.    

GSHPs or WSHPs can be investigated and integrated into the considered systems in the 

study. Like ASHP, these two heat pumps are electricity-driven devices, therefore the 

electricity generated from micro wind turbines and/or solar PV systems assisted by the 

electricity grid can operate these heating and hotwater generation systems, and no solid 

or liquid fuel is required e.g. gas, oil, biomass. A GSHP or a WSHP can be used to 

replace an ASHP considered in the study to be the main heating supply system. For a 

GSHP, the configuration of the pipes that absorb heat from the soil has to be decided, 

either horizontal or vertical. In order to accurately predict the energy output from a 

GSHP, several main factors have to be decided in advance, such as: 

 the size of the land available and the depth planned for laying down the pipes 

for a horizontal system  

 the depth of borehole, and an open loop or a closed loop for a vertical system  

 the efficiency of the heat pump unit 

 the heating distribution system employed in the domestic dwelling  

For a WSHP, there are also factors that have to be verified at the initial process such as 

the availability of the water source, and the temperature of the water source and its 

variance over the year. These two heat pump systems should be eliminated if the heat 

source is not available e.g. there is not enough land to install a horizontal loop pipe for a 

GSHP system. The methods of integrating a heat pump system and a solar thermal 

system are presented in numerous ways, in particular for the combination of a GSHP 
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and a solar thermal system. The most traditional way is to have a GSHP or a WSHP to 

generate heating and also preheat water, and the solar thermal system is used to heat the 

hotwater alone. Another ways is to have a GSHP or a WSHP generate heating and 

hotwater, and the solar thermal system assists the heat pump for both heating and 

hotwater generation. There are other newer ways implemented such as the solar heat 

collected is used to recharge the soil during the summer months with the purpose of 

GSHP can absorb more heat during heating seasons, thus increasing the heat pump 

efficiency. Therefore the method of integration should be also determined. In order to 

carry out the most accurate economic analysis, the detailed cost of the heat pump 

systems should be provided in the integration technique. The hourly power inputs of 

any considered system should be added into the data base. The installation cost of a 

GSHP is significantly higher than an ASHP because of the extra cost involved such as 

drilling, purchasing, and laying pipes. However, a GSHP generally has a higher COP 

and a lower operational cost than an ASHP since the variation of soil temperature is 

small during the year, unlike the ambient air temperature which fluctuates considerably 

during the year. There is a possibility that a GSHP or a WSHP to be more cost effective 

under an individual scenario. The use of a GSHP or a WSHP can be a valid 

recommended future study; however the heat transfer between soil and fluid flowing in 

the pipe, and the heat transfer in the heat exchanger between the heat pump and the 

domestic heating distribution system should be completely understood and applied into 

the study. 
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APPENDIX A 

A GENERATION OF HOURLY WIND 

SPEED VALUES 

Realistic hourly wind speed values for a year can be generated by performing statistical 

calculations based on 12 monthly-average-wind-speed values, one for each month, and 

four statistical parameters: Weibull k factor, autocorrelation factor, diurnal pattern 

strength and hour of peak wind speed [359]. The monthly-average-wind-speed values 

must be supplied. The hourly wind speed values for a year are generated in five steps: 

Step 1.   Generate a sequence of autocorrelated numbers. 

Step 2.  Generate a desired average diurnal wind speed profile and then scale it to fit for 

each month. 

Step 3.  Perform a probability transformation on the sequence of numbers generated in 

Step 2 to make it conform to the same normal distribution as Step 1. 

Step 4.  Add the sequence of numbers generated in Step 3 to the sequence of numbers 

generated in Step 1. 

Step 5.  Perform a probability transformation on the sequence of numbers generated in 

Step 4 to make it conform to a desired Weibull distribution. 

In Step 1, a first-order autoregressive model is used to generate a sequence of 

autocorrelated numbers, one for each time step into which the year duration is 

discretised. A single hour is used as the time step in this study. The formula to generate 

the sequence is shown in Equation A.1. 
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 t t 1z a *z f (t)  (A.1) 

where zt is the hour t value , zt-1 is the value for the previous hour t-1 and the initial zt-1 

is chosen as zero, f(t) is a random number drawn from a normal distribution having a 

mean of 0 and a standard deviation of 1, and a is the autoregressive parameter which is 

equal to the one-hour autocorrelation factor as shown in Equation A.2.  

 1a r  (A.2) 

The autocorrelation factor r1 is the autocorrelation between any two time values in a 

sequence separated by a lag of one time unit. This autocorrelation factor typically has a 

value in the range of 0.80-0.95, and reflects how strongly the wind speed in one hour 

tends to depend on the wind speed in the previous hour. Historical measured hourly 

wind speed data is used to calculate this factor using Equation A.3 [360]. In this study, 

year 2010 hourly wind speed data is employed. 

 

n 1

i i 1

i 1
1 n

2

i

i 1

(z z)*(z z)

r

(z z)

 (A.3) 

where iz  is the hour i value, i 1z is the value for the subsequent hour i+1, z is the 

yearly-average value and n is the number of hours in a year. 

From Step 1, a series of numbers for a year is generated. These numbers conform to a 

normal distribution with a mean of 0 and a standard deviation of 1.  

In Step 2, a desired average diurnal wind speed profile is generated using Equation A.4 

[361]. 
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 i

2*
U U 1 cos *(i )

24
 for i=1, 2, … 24 (A.4) 

where Ui is the average wind speed in hour i, U  is the yearly-average wind speed, and i 

is the hour in a day. δ is the diurnal pattern strength which reflects how strongly the 

wind speed tends to depend on the time of the day. It is a number in the range of 0 and 

1, and typically has a value of between 0 and 0.4.  is the hour of peak windspeed 

which represents the hour of the day that tends to be windiest on average. The δ and  

are calculated and determined from measured hourly wind speed data for Dublin in 

2010.  

This generated diurnal wind speed profile is used repeatedly for all days in a year. 

However, due to the fact that the average wind speed varies each month, the average 

diurnal wind speed profile is then scaled to fit for the average of each month; within 

each month the diurnal pattern is repeatedly for each day.   

In Step 3, a probability transformation, a statistical procedure by which one modifies a 

set of numbers to conform to a desired probability distribution function, is performed. 

The sequence of values generated in Step 2 is transformed to conform to the same 

normal distribution used in Step 1. In order to perform this probability transformation, 

the cumulative distribution function of the original set of data (values in Step 2) is 

produced. The percentile value of each original data point is calculated from this 

produced cumulative distribution function. Finally, the percentile value is employed in 

the desired cumulative distribution function (in this case, it is a normal distribution 

function with a mean of 0 and a standard deviation of 1) to obtain the corresponding 

transformed value.     
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In Step 4, a sequence, conforms to a normal distribution and also shows the desired 

degree of autocorrelation, is created. This resulting sequence is achieved by adding the 

sequence generated in Step 1 to the sequence generated in Step 3.  

The final step, Step 5, is to perform another probability transformation on the sequence 

generated in Step 4 to make it conform to a desired Weibull distribution. The Weibull 

distribution is a two-parameter function that is commonly used to represent a good-fit to 

a wind speed frequency. The probability density function [362] and cumulative 

distribution function [363] of a Weibull distribution are expressed in the Equation A.5 

and Equation A.6 respectively:   

 

k 1 k

i iv vk
f (v) * *exp

c c c
 (A.5) 

 

k

iv
F(v) 1 exp

c
 (A.6) 

where vi is the wind speed at time step i, k is the Weibull k factor (shape) which reflects 

the breadth of a distribution of wind speeds in the Weibull distribution, and c is the 

Weibull scale parameter. The relationship between the Weibull k factor and the Weibull 

scale parameter [364] is given by Equation A.7. 

 

v
c

1
1

k

 
(A.7) 

where v  is the annual average wind speed value and Γ is the gamma function.  

In order to construct the Weibull cumulative distribution function, the determination of 

Weibull k factor is essential. The maximum likelihood method is used to calculate this 

factor in this study using Equation A.8 [365]:  
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(v ) *ln(v ) ln(v )

k
n

(v )

 (A.8) 

where vi is the wind speed in time step i, and n is the number of non-zero wind speed 

data points. Because it is an implicit equation, it is solved in an iterative manner. The 

initial guess for k is 2 [364]. Once the Weibull k factor is obtained, the Weibull scale 

parameter can be solved explicitly using Equation A.7. The probability transformation 

can then be performed on the sequence of numbers generated in Step 4 (a normal 

distribution function) to a desired Weibull distribution function which is created based 

on an annual average wind speed, and calculated Weibull k factor and Weibull scale 

parameter. The procedures used to calculate the transformed values are very similar to 

Step 3; the only difference is that a desired Weibull distribution function is employed 

rather than a normal distribution function. 
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APPENDIX B 

B. GENERATION OF HOURLY SOLAR 

RADIATION VALUES FOR A SOLAR 

PV SYSTEM 

The generation of hourly solar radiation values on a horizontal surface are based on the 

stochastic mathematical models developed from Graham theory. These models are used 

to generate synthetic data from the solar simulation program itself, without having to 

perform the costly and time-consuming reading of solar irradiation data nor to provide 

for it [366]. These mathematical models are capable of generating solar irradiation 

information for almost any location globally. The hourly solar radiation values on a 

tilted surface are then evaluated from the predicted hourly solar radiation values on a 

horizontal surface using HDKR model (the Hay, Davis, Klucher, Reindl). The hourly 

solar radiation values on a tilted solar PV module for a year are generated from five 

steps:  

Step 1.  Convert 12 monthly-average daily solar radiation values into 12 monthly 

clearness index values, one for each month. 

Step 2.  Generate daily clearness index values for a year from converted monthly 

clearness index values. 

Step 3.   Generate hourly clearness index values for a year from predicted daily 

clearness index values. 
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Step 4.  Convert predicted hourly clearness index values into hourly solar radiation 

values on a horizontal surface.  

Step 5.  Generate hourly solar radiation values on a tilted surface from predicted hourly 

solar radiation values on a horizontal surface. 

In Step 1, solar radiation is often converted into a dimensionless form named as 

clearness index which is defined as the ratio of the total solar radiation on a horizontal 

surface at a specific time to the extraterrestrial global solar radiation on a horizontal 

surface at the same time. The clearness index indicates the fraction of the solar radiation 

striking the top of the atmosphere that can make it through and strike the earth’s surface. 

The hourly, daily and monthly clearness index is expressed as khr, kd and km 

respectively. The daily index, kd, is not the same as the average of the hourly clearness 

indices of the day. The average of the daily clearness indices of the month is not 

identical to the monthly clearness index, however the difference is small and the 

quantities can generally be used interchangeably. If the monthly-average daily solar 

radiation on a horizontal surface of the earth for a given latitude is known, the monthly 

clearness index can be calculated from Equation B.1. 

 
ave

m

o,ave

H
k

H
 

(B.1) 

where km is the monthly clearness index, Have is the monthly-average daily solar 

radiation on a horizontal surface which is the value provided for the study and Ho,ave is 

the monthly-average daily extraterrestrial solar radiation on a horizontal surface and is 

calculated from Equation B.2. 
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N

o

n 1
o,ave

H

H
N  

(B.2) 

where Ho is the monthly-average daily extraterrestrial solar radiation on a horizontal 

surface and calculated using Equation B.3 for latitudes in the range of -60
o
 to +60

o 

[206], and N is the number of days in the month:  

 

sc
o

s
s

sc
o

2 1
2 1

24*3600*G 360*n
H * 1 0.033*cos

365

*
* cos *cos *sin *sin *sin

180

12*3600*G 360*n
I * 1 0.033*cos

365

*( )
* cos *cos *(sin sin ) *sin *sin

180

 (B.3) 

where Gsc is the solar constant and has a value of 1,367 W/m
2
, n is the day of the year 

and in this case this is the mean day of the month as shown in Table B.1.  is the 

latitude which is the angular location north or south of the equator, north positive;  

-90
o
< <+90

o
. δ, calculated using Equation B.4, is the declination which is the angular 

position of the sun at solar noon with respect to the plane of equator, north positive;  

-23.45
o
≤ δ≤ 23.45

o 
[206]. ωs is the sunset hour angle and can be calculated using 

Equation B.5. 

 
284 n

23.45*sin 360*
365

 (B.4) 

 s

sin *sin
cos tan tan

cos *cos
 (B.5) 

The monthly-average daily extraterrestrial radiation Ho can be estimated using Equation 

B.6 if the latitudes are not in the range as previously stated, i.e. -60
o
< <+60

o
  [206]: 
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*(1.00110 0.034221*cos B 0.001280*sin B 0.000719*cos 2B 0.000077*sin 2B)

*
* cos *cos *sin *sin *sin

180

 (B.6) 

where 
360

B (n 1)*
365

 

Month Day of Month n 

January 17 17 

February 31+16 47 

March 29+16 75 

April 90+15 105 

May 120+15 135 

June 151+11 162 

July 181+17 198 

August 212+16 228 

September 243+15 258 

October 273+15 288 

November 304+14 318 

December 334+10 344 

Table B.1. Average days for months and values of n by month [206]. 

In Step 2, the stochastic mathematic models for generating synthetic kd values are not 

constructed with the domain of kd, but instead use an intermediate Gaussian variable 

that is obtained by performing a probability transformation between the distribution of 

kd and the Gaussian domain [366]. The kd series are non-stationary and non-Gaussian, 

these characters can be corrected by transforming kd into a new Gaussian random 

variable χ with statistics that are invariant which have the same mean and variance for 
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all months. The fj represents the unknown monthly transformation function that maps kd 

into a Gaussian variable χ as shown in Equation B.7 [366]. 

 
j df [k ]  (B.7) 

The Gaussian distribution of χ has a mean of zero and a variance of one. Both the 

distribution of kd and χ can be specified. The transformation must ensure that their 

respective marginal probabilities are unaltered. g[χ] is the Gaussian probability density 

function for χ. P[
dk , dk ] is the probability density function for kd and dk  is the 

monthly-average daily clearness index which is equal to km. u is the cumulative 

probability of χ and v is the cumulative probability of kd given in Equation B.8 and 

Equation B.9 respectively. 

 

2t

2
1 1

u g(t)dt * e dt * 1 erf
22* 2

 (B.8) 

where erf is the error function. 

 

d

dl

k

d d d d d

k

v P[k , k ]dk F[k , k ]  (B.9) 

where P[kd*, dk ] is the probability that an event has its kd in the narrow interval kd*≤ kd 

≤ kd*+dkd*. The obtained km, based on provided monthly-average daily values, are 

required to specify the cumulative probability function F[kd, dk ]. Random variables that 

are transformed by their distribution function always yield a transformed variable that is 

uniformly distributed on (0,1) [367]. Therefore, both u and v should be uniformly 

distributed on the (0,1) interval. u and v must be equal since u and v have the same 

distribution function and the sought transformation requires that the cumulative 
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probabilities be maintained. Hence the integral transformations can give the desired 

function fj by rearranging Equation B.10. 

 

d

dl

k

d d d d d

k

1
* 1 erf P k , k dk F k , k

2 2
 (B.10) 

Hence 

 
1

d d j d2 *erf 2*F* k ,k 1 f k  (B.11) 

The generalised cumulative probability function F[kd, dk ] can be obtained by using the 

historic record to evaluate it, or mathematical expressions for the probability function as 

shown in Equation B.12 [368]:  

 

dk

d d d d d

0

F k ,k P k ,k dk  (B.12) 

The theoretical expression for P[kd, dk ] is expressed in Equation B.13 and Equation 

B.14 when assuming a random solar radiation sequence [368]. 

0≤kd<kdl d dP k ,k 0  (B.13) 

Kdl≤kd≤kdu 
d

d d

du dl

*exp( *k )
P k ,k

exp( *k ) exp( *k )
 (B.14) 

In these equations, kdl and kdu are the lower and upper bound of the range for kd 

respectively. Kdl has always been set equal to 0.05 [368] and kdu is a monotonically 

increasing function of dk  and is calculated using Equation B.15 [369]. ν is also a 

function of dk ; a unique solution of ν can be found by iterating this transcendental 

Equation B.16 [370]. 
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 8

du d dk 0.6313 0.267*k 11.9*(k 0.75)  (B.15) 

 du du dl dl
d

du dl

( *k 1)*exp( *k ) ( *k 1)*exp(k )
k

*(exp( *k ) exp( *k ))
 (B.16) 

The F[kd, dk ] function corresponding to the P[kd, dk ] function is then expressed as 

shown in Equation B.17 [369]. 

 
d dl

d d

du dl

exp( *k ) exp( *k )
F k ,k

exp( *k ) exp( *k )
 (B.17) 

The stochastic mathematical model for the annual series of χ(n) is constructed using the 

universal first-order autoregressive model of the form as follows [366]: 

 1(n) * (n 1) w(n)  (B.18) 

where χ(n) is the value of χ on day n, n and n-1 are day numbers; n-1 represents a day 

previous to day n, 1  is the first-order autoregressive parameter, w(n) is the value on 

day n of a random number drawn from a set of uncorrelated Gaussian numbers having a 

mean of zero and a variance of ζw
2
; the noise variance ζw

2
 is managed by 1  in relation 

to 
2 2

w 11 . Thus, the χ series can be produced once 1  is known (fixed). The 

estimations of 1  vary with location from 0.253±0.02 to 0.348±0.02; the average value 

of 0.29 is appropriate to be used for the generalised model for χ(n) since such a small 

adjustment is highly unlikely to be of any significance for engineering simulation work 

[366].  

For each kd to be generated, an uncorrelated number is randomly produced from a 

generator (usually uniform) based on a parent distribution knowing the mean and the 
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variance. The output from this generator is then transformed from this parent 

distribution to a Gaussian distribution with a mean of zero and a variance of ζw
2
. 

Random values drawn from this set represents the value of w(n) in Equation B.18. The 

first value of χ, required to begin the process of generating the series of χ(n), is 

generated at random from the governing Gaussian distribution for χ. Once a set of 

Gaussian variable χ(n) has been produced, the kd(n) set can be obtained by performing 

an inverse probability transformation through Equation B.11 (rearranged to express kd 

as a function of χ).  

In Step 3, from previous description of generation of daily clearness index kd, it is 

known that the probability of daily events change on a monthly basis. There is also 

strong evidence that the probability of a specific hourly clearness index kh value 

depends on the clearness index kd for the day which is occurred [369]. A time series 

mathematical model for the kt sequence which is flexible in nature and also incorporates 

the varying nature of its probability features is developed by Graham and used in this 

study. The generated kd form is used as input in this generation of hourly clearness 

index kh. The variation in kh events is containing two components: a trend (or mean) 

component and a random component as follows [371]: 

 h hmk k  (B.19) 

where khm is the mean hourly clearness index if the presence of radiation attenuators 

were uniformly distributed over the day and α is the effect of unpredictable 

perturbations in the radiation attenuators, mainly caused by varying cloud cover; the 

random component will be small if it is a clear day with little or no clouds, however this 

component will be significant if it is a cloudy day. The khm component consists of two 
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sub-components which are the beam trend component and the diffuse trend component, 

and is obtained by evaluating both. A simple exponential equation is used to represent 

the beam trend component that is a function of air mass as shown in Equation B.20:  

 hbm 0 1k a a *exp( *m)  (B.20) 

where m is the air mass taken at the centre of the hour; the air mass is defined by the 

solar zenith angle (θz) and can be worked out from 
1

z sec m [206], and a0, a1 and κ 

are functions of the daily clearness index kd. The diffuse trend component has a strong 

dependence on the beam trend component and is also a similar function of khbm. 

Therefore, the overall khm should be of a form as follows: 

 hmk (t) *exp( *m)  (B.21) 

where the parameters λ, ε and κ are unique functions of the clearness index kd for the 

day considered and demonstrated in the following empirical expression: 

 
3

d d 0 d d(k ) k b *k *(1 k )  (B.22) 

 d 1 d(k ) b *(1 k )  (B.23) 

 d 2 d d(k ) b *(1 k ) / k  (B.24) 

where b0, b1, and b2 are constants and have a value of -1.167, 0.979 and 1.141 

respectively.  

The random component can be obtained from a first-order regression model which α(t), 

expressed in Equation B.25, is related to the value in the immediately preceding hour 

(α(t-1)) plus a random value drawn from an uncorrelated random set. 
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 (t) * (t 1) (t)  (B.25) 

where  is the coefficient and is equal to the autocorrelation coefficient r estimated 

between values separated by one hour. This autocorrelation coefficient r reflects the 

effect of past values of α on the current value; an estimate of non-zero of r implies that 

past values do have influence on current values, otherwise a zero estimate suggests the 

opposite. The r value is depended on the kd value and calculated using Equation B.26. 

 1 2 d dr c c *k (1 k )  (B.26) 

where c1 and c2 are constants, and have a value of 0.35 and 1.1 respectively. However, 

in order to simplify the calculation but still give an accurate result, a constant value of 

0.54 is generally utilised for r.  

The generation of daily sets α requires a definition of its probability distribution. This is 

fixed by the distribution of υ, the set of uncorrelated random values used to generate α. 

The Gaussian distribution is generally used to represent the random variable υ in the 

stochastic model. However the frequency distribution of υ is non-Gaussian, as a result 

the frequency distribution of α is also non-Gaussian, Therefore it is necessary to employ 

a model for α’s distribution function. The probability model used to present frequency 

distribution of α is expressed in Equation B.27. The frequency of α is identical to the 

frequency of the corresponding kh. Thus, this frequency distribution varies depending 

on the daily clearness index, the standard deviation  also changes with kd as shown in 

Equation B.33. The kd random variable is bounded between an upper limit khu and a 

lower limit khl.  
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p 1 q 1

d h d

hu hl

(p q)*u *(1 u)
P( : k ) P(k : k )

(p)* (q)*(k k )
 (B.27) 

where Г(.) is the gamma function, p and q are parameters and can be calculated in 

Equation B.28 and Equation B.29, u is a random variable within the range of between 0 

and 1, and can be calculated in Equation B.30. 

where 

 

2

hu hl

2

u

u *(k k )
p u  (B.28) 

 
p*(1 u)

q
u

 (B.29) 

 
p

u
(p q)

 (B.30) 

where u and u  are the mean and the standard deviation of u, and they are calculated in 

Equation B.31 and Equation B. 32 respectively. 

 
hm hl

hu hl

k k
u

k k
 (B.31) 

 u

hu hmk k
 (B.32) 

where 

 
d*k

0.16*sin
0.90

 (B.33) 

The accuracy of the frequency distribution is determined by the estimates of khl and khu 

values. The suitable values of khl and khu can be obtained using Equations B.34 and 

B.35 respectively. 
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 hl hmk max(0,k 4* )  (B.34) 

 hu hmk min(0.9, k 4* )  (B.35) 

Since the frequency distribution of α is not Gaussian, therefore simply select the random 

variable υ from a non-Gaussian distribution is not sufficient. The mathematics required 

to manipulate non-Gaussian variables is much more complex than with Gaussian ones. 

Thus, α values are directly obtained rather than finding individual υ values. A 

probability transformation has to be carried out in order to transform the non-Gaussian 

random variables α to the Gaussian random variables β with a mean of zero and a 

variance of one. This procedure is the same as the probability transformation performed 

for generating daily clearness index. The relationship between α and β is shown in 

Equation B.36. 

 
1

d2 *erf 2*F( : k ) 1  (B.36) 

where F[α:kd] is the cumulative probability of α which is calculated by integrating 

Equation B.27. Since β is Gaussian, the serial relationship between hourly events can be 

obtained from its random set as shown in Equation B.37. 

 (t) * (t 1) b(t)  (B.37) 

where b(t) is selected from uncorrelated set of Gaussian random numbers having a mean 

of zero and a variance of 1-
2
. The autocorrelated β random variable is transformed 

into the non-Gaussian distribution for α, and a corresponding α value can then be 

obtained from this β value. Thus sets of α(t) values are generated with the correct 
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frequency distribution and hourly serial relationship. The value of  is the same as that 

used for α which is a reasonable approximation of 0.54.    

In Step 4, the evaluation of the total solar radiation on a tilted surface is generally of 

interest. The predicted hourly clearness index has to be converted to the hourly total 

solar radiation on a horizontal surface. The Equation B.38 is used to perform this 

conversion.  

 h

o

I
k

I
 (B.38) 

Where I is the total solar radiation on a horizontal surface for an hour period, Io is the 

extraterrestrial radiation on a horizontal surface for an hour period, and is calculated in 

Equation B.39. ω1 and ω2 are hour angles which are used to define an hour (where ω2 is 

the larger). 

 

sc
o

2 1
2 1

12*3600*G 360*n
I * 1 0.033*cos

365

*( )
* cos *cos *(sin sin ) *sin *sin

180

 (B.39) 

In Step 5, the HDKR model is used to calculate the total solar radiation fall on a tilted 

solar PV module. Three components, beam, diffuse and ground-reflected solar radiation, 

are estimated individually. Once these three components have been calculated, the sum 

of them is the total solar radiation on a tilted solar PV module.  

The diffuse solar radiation on a horizontal surface is calculated from the hourly diffuse 

fraction correlation. The diffuse fraction, Id/I (the ratio of the hourly diffuse solar 

radiation on a horizontal surface to the hourly global solar radiation on a horizontal 

surface), of the hourly total solar radiation is strongly correlated with kh. The correlation 

is presented in Table B.2 [372], where Id is the diffuse solar radiation on a horizontal 
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surface. The beam solar radiation on a horizontal surface, Ib, is then calculated by 

subtracting the diffuse solar radiation on a horizontal surface from total solar radiation 

on a horizontal surface. 

For kh  ≤ 0.22 

d hI / I 1.0 0.09*k  

For 0.22  < kh  ≤0.80 

2 3 4

d h h h hI / I 0.9511 0.1604*k 4.388*k 16.638*k 12.366*k  

For kh  >  0.80 

dI / I 0.165  

Table B.2. The correlation between the diffuse fraction, Id/I and the hourly 

clearness index, kh. 

The contribution of diffuse solar radiation on a tilted surface can be calculated using 

Equation B.40. 

 
3

dt d i i bI I * 0.5*(1 A )*(1 cos )* 1 f *sin A *R
2

 (B.40) 

where Idt is the diffuse solar radiation on a tilted surface, Ai is the anisotropy index and 

calculated from Equation B.41, β is the slope of the surface relative to the horizontal, f 

is the modulating factor and is calculated from Equation B.42, and Rb is the ratio of 

beam solar radiation on a tilted surface to beam solar radiation on a horizontal surface, 

and is calculated using Equation B.43. 

 
b

i

o

I
A

I
 (B.41) 
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 bI
f

I
 (B.42) 

 b

z

cos
R

cos
 (B.43) 

where θ is the angle of incidence of beam solar radiation on surface, is calculated from 

Equation B.44. 

 z z scos cos *cos sin *cos( )*sin  (B.44) 

where β is the slope of the surface which is defined as the angle between the surface and 

the horizontal; the slope is measured as a positive value when the surface is tilted in the 

direction of the azimuth specification, γs is the solar azimuth angle and is calculated in 

Equation B.45, and γ is the azimuth angle of surface which is the angle between the 

projection of the normal to the surface into the horizontal plane and the local meridian; 

the signs utilised for γs and γ are identical which are zero if facing the equator, positive 

if facing west and negative if facing east. θz is the solar zenith angle and is calculated 

from Equation B.46. The slope, solar azimuth angle, surface azimuth angle and solar 

zenith angle for a tilted surface are demonstrated in Figure B.1.  

 
s

z

cos *sin
sin

sin
 

(B.45) 

 zcos sin *sin cos *cos *cos  (B.46) 

where δ is the solar declination angle,  is the latitude and ω is the angular 

displacement of the sun east or west of the local meridian due to rotation of the earth on 

its axis at 15
o
 per hour; morning negative, afternoon positive.  
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Figure B.1. The slope (β), solar azimuth angle (γs), surface azimuth angle (γ) and 

solar zenith angle (θz) for a tilted surface. 

The contribution of beam solar radiation on a tilted surface can be calculated using 

Equation B.47. 

 bt b d i bI (I I *A )*R  (B.47) 

where Ibt is the beam solar radiation on a tilted surface, Ib is the beam solar radiation on 

a horizontal surface, Id is the diffuse solar radiation on a horizontal surface. 

The contribution of ground-reflected solar radiation can be calculated using Equation 

B.48 and by assuming the ground as an isotropic reflector. 
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gr gr

1
I I* * *(1 cos )

2
 (B.48) 

where ρgr is the ground reflectance. 
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APPENDIX C  

C. GENERATION OF HOURLY SOLAR 

RADIATION VALUES FOR A SOLAR 

THERMAL SYSTEM 

The generation of hourly solar radiation values on a horizontal surface are based on the 

mathematical models developed from Degelman and Graham (with a slight 

modification) theory. These mathematical models have been used extensively to predict 

solar irradiation values for many locations worldwide. The hourly solar radiation values 

on a tilted surface are then evaluated from the predicted hourly solar radiation values on 

a horizontal surface using Reindl model. The generation of hourly solar radiation values 

on a tilted solar thermal collector consists of four main steps. They are: 

Step  1.   Convert monthly-average daily solar radiation values into monthly clearness 

index values. 

Step 2.  Generate daily clearness index values for a year from converted monthly 

clearness index values. 

Step 3.   Generate hourly clearness index values for a year from predicted daily 

clearness index values. 

Step 4.  Generate hourly beam, diffuse and ground-reflect solar radiation values on a 

tilted surface from predicted total hourly solar radiation values on a horizontal 

surface. 
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In Step 1, monthly solar radiation values are converted into a dimensionless form called 

clearness index. The detailed description of this conversion is given in Appendix B. 

Equation C.1 is used to calculate the monthly clearness index: 

 
ave

m

o,ave

H
k

H
 (C.1) 

where km is the monthly-average clearness index, Have is the monthly-average daily 

solar radiation value on a horizontal surface which is required for the study, Ho,ave is the 

monthly-average daily extraterrestrial solar radiation on a horizontal surface and is 

calculated from Equation C.2. 

 

N

o

n 1
o,ave

H

H
N

 
(C.2) 

where Ho is the daily extraterrestrial solar radiation on a horizontal surface and is 

calculated from Equation C.3, and N is the number of days in the month:  

 

sc
o

s
s

24*3600*G 360*n
H * 1 0.033*cos

365

*
* cos *cos *sin *sin sin

180

 (C.3) 

where Gsc is the solar constant, n is the day of the year, is the latitude, δ is the solar 

declination angle and is calculated in Equation C.4, and ωs is the sunset hour angle 

which is calculated in Equation C.5. 

 
o o 284 n

23.45 *sin 360 *
365

 (C.4) 

 scos tan * tan  (C.5) 
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In Step 2, the monthly clearness index is used to establish the cumulative distribution 

function (long-term monthly distribution). The cumulative distribution function is 

generated using Equation C.6. The generation procedure is given in details in Appendix 

B. 

 
d dl

d d

du dl

exp( *k ) exp( *k )
F k ,k

exp( *k ) exp( *k )
 (C.6) 

where kd is daily clearness index, 
dk is the average of the daily clearness indices of the 

month which is equal to km, and kdl and kdu are the lower and upper bound of the range 

for kd. 

The N kd for a month has to be selected from this cumulative distribution to represent 

the long-term conditions, where N is the number of days in the month (28, 30 or 31). 

The cumulative distribution is related to the cumulative fraction of occurrence, F. The 

cumulative fraction of occurrence specifies the fraction of time the kd variable is less 

than a specified value of kd. If it is a 31-day month, the value of kd corresponding to F 

equal to 1/31, which means that for 1/31 of the time, i.e. one day in a 31-day month, 

will a kd value less than a particular value occur. However, one out of 31 days must be 

less than this value of kd [373]. The range from 0 to this value of kd is not specified; 

however a logical way to pick a value is to get the value of kd at the average of the F-

value and the previous one, e.g. the second kd value obtained is corresponding to F-

value equal to 3/62 since this F-value is the average of the value (2/31) and the previous 

value (1/31) [373]. 

The obtained N kd values for a month is placed in an order which the kd values should 

occur. However, this order should not be neither in an ascending or a descending order 

nor should be in a random order [369]. The lag-one autocorrelation of the annual series 
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of daily total solar radiation is generally between 0.15 and 0.35 which is an indication of 

weak positive correlation and shows no systematic dependence on location or climate 

type [369]. A fixed order is developed based on the autocorrelation capitalised at 

different locations. The orders of kd values depend on the km value and show a correct 

lag-one daily kd autocorrelation. For a 31-day month, the numbers 1 to 31 are assigned 

to the 31 values obtained from the cumulative distribution; 1 represents the smallest kd 

value and 31 represents the largest value. The numbers 1 to 31 are then placed in an 

order such that when the kd values corresponding to the N numbers are placed in that 

order, the approximate lag-one autocorrelation is reproduced. The sequences of ordering 

daily clearness index values are shown in Table C.1.  

km ≤ 0.45 
24, 28, 11, 19, 18, 3, 2, 4, 9, 20, 14, 23, 8, 16, 21, 26, 

15, 10, 22, 17, 5, 1, 6, 29, 12, 7, 31, 30, 27, 13, 25 

0.45< km < 0.55 
24, 27, 11, 19, 18, 3, 2, 4, 9, 20, 14, 23, 8, 16, 21, 7, 

22, 10, 28, 6, 5, 1, 26, 29, 12, 17, 31, 30, 15, 13, 25 

km ≥ 0.55 
24, 27, 11, 4, 18, 3, 2, 19, 9, 25, 14, 23, 8, 16, 21, 26, 

22, 10, 15, 17, 5, 1, 6, 29, 12, 7, 31, 20, 28, 13, 30 

Table C.1. Sequences of ordering daily clearness index values [369]. 

The same sequence of the numbers 1 to 31 is always utilised for ordering the daily kd 

values, however, the beginning point with the sequence is determined randomly at the 

start of the generation process. For months of other than 31 days, only the numbers of 

days (e.g. 28 or 30) are obtained from the 31-day cumulative distribution. The number 

(e.g. number 31 in a 30-day month) is simply skipped in the sequence. Even though this 

does have a slight impact on the daily autocorrelation, it is small and considered less 

important than maintaining the long-term distribution.  
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In Step 3, if the daily clearness index value of kd is known, the long term mean value of 

clearness index for each hour, khm, can be estimated from Equation C.7: 

 
o o

hm d t

o o o

H HH I
k * * k *r *

H H I I
 (C.7) 

where rt is ratio of hourly global solar radiation on a horizontal surface to daily global 

solar radiation on a horizontal surface [374], and is calculated using Equation C.8. 

 
o

t

o

I
r (a b*cos )*

H
 (C.8) 

where 

 
s

s

a 0.409 0.5016*sin( 60)

b 0.6609 0.4767*sin( 60)
 (C.9) 

where ω is the hour angle, ωs is the sunset hour angle, Io is the hourly global 

extraterrestrial solar radiation on a horizontal surface, and is calculated in Equation 

C.10. Ho is the daily extraterrestrial global solar radiation on a horizontal surface, and is 

calculated in Equation C.11. 

 

o sc

2 1
2 1

12*3600 360n
I *G * 1 0.033*cos *

365

*( )
cos cos (sin sin ) *sin sin

180

 (C.10) 

 

o sc

s

24*3600 360n
H *G * 1 0.033*cos

365

*
* cos cos sin *sin sin

180

 (C.11) 

where Gsc is the solar constant, is the latitude, δ is the declination, and n is the day of 

the year. The description of each term in details is given in Appendix B. 
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The kh values are transferred from the cumulative distribution function to a normal 

distribution variable, χ, with a mean of 0 and a variance of 1. This transferred variable 

can then be represented by a first-order autoregressive model [375], as shown in 

Equation C.12. 

 t 1 t 1 2 t 2 N N 1 t* * ... *  (C.12) 

For a first-order autoregressive model, N is equal to 1 and 1  is the lag-one 

autocorrelation. In this case, this parameter was estimated by performing a large number 

of calculations using Equation C.13 [376], and found to be a weak function of kd. 

However this parameter is not statistically different from the mean value of 0.54. This 

value is also used to represent the lag-one autocorrelation of the deviations of kh from 

khm.  

 

days N 1

i i 1

i 2
1 days N 1

i

i 2

(y y)*(y y)

(y y)

 (C.13) 

where N is the number of hourly kh values in a day. The first and the last hour for which 

solar radiation recorded each day were discarded, as the radiation amounts are always 

small and inaccurate. In order to generate the kh values, a χ value for each hour is 

obtained by randomly selecting a value for εt from a Gaussian (normal) distribution with 

a mean of 0 and a variance of 1- 1

2
,
 
and then applying this selected εt value into a first-

order lag correlation as shown in Equation C.14. 

 t 1 t 1 t*  (C.14) 
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The χ is transferred to a non-Gaussian kh by equating the normal cumulative distribution 

function of χ to the non-Gaussian distribution function of kh. The equation for a normal 

cumulative distribution with a mean of 0 and a variance of 1 is as follows: 

 

2

normal

1 1
F * exp * t dt

22*

1
* 1 erf

2 2

 (C.15) 

where erf(z) is the error function which is given in Equation C.16. 

 
2z

t

0

2
erf (z) * e dt  (C.16) 

Both the mean and the shape of the cumulative distribution of kh values are dependent 

on the hour of the day and the kd value. Therefore the functional dependence can be 

approximated by a single curve. The cumulative distribution function of the kh is 

represented in Equation C.17. 

 
hk

1
F

1 exp( 1.585*h)
 (C.17) 

where  

 
hh hm kh (k k ) /( )  (C.18) 

where khm is estimated from Equation C.6 and 
hk  is calculated from Equation C.19 

[376]. 

 
h

d
k

*k
0.1557*sin

0.933
 (C.19) 

kh can be solved using Equation C.20 by equating the cumulative distribution functions. 
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hk

h hm

1
k k *ln 1

1.585 1
* 1 erf

2 2

 (C.20) 

The kh’s sequence is not continuous; therefore a new χ’s series has to be generated for 

each day (the last hour χ on the previous day should not be used as the χt-1 for the first 

hour of the next day). Zero, mean value of χ, is utilised for the initial value of χt-1. 

The daily total of the summed hourly solar radiation values is not necessarily equal to 

the initially generated daily solar radiation value. To correct this, a correction factor, a 

ratio of the generated daily solar radiation value to the sum of all generated hourly solar 

radiation values for the day, is employed. Each kh value is then multiplying by this 

correction factor, therefore ensure that the total hourly solar radiation values for the day 

is the same as the daily solar radiation value generated from the monthly value. This 

correction does not have any significant effect on the diurnal variation, and also makes 

sure that the long-term daily statistic is maintained.  

In Step 4, for most of the cases, the total solar radiation fall on a tilted solar thermal 

collector surface is of interest. This is obtained by calculating and summing the beam, 

diffuse and ground-reflected solar radiation components. The Reindl model is used to 

calculate these components in this Appendix. The procedure employed to calculate the 

contribution of beam solar radiation on a tilted surface, shown in Equation C.21, is the 

only difference between this model and the HDKR model presented in Appendix B: 

 bt b bI I *R  (C.21) 
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where Ibt is the beam solar radiation on a tilted surface, Ib is the beam solar radiation on 

a horizontal surface, and Rb is the ratio of beam solar radiation on a tilted surface to 

beam solar radiation on a horizontal surface and is calculated in Equation C.22. 

 b

z

cos
R

cos
 (C.22) 

where θ is the angle of incidence of beam solar radiation on surface, and is calculated 

from Equation C.23. 

 z z scos cos *cos sin *cos( )*sin  (C.23) 

where θz is the solar zenith angle and is calculated from Equation C.24, β is the slope of 

the surface, γs is the solar azimuth angle and is calculated in Equation C.25, and γ is the 

azimuth angle of the surface.  

 zcos sin *sin cos *cos *cos  (C.24) 

 s

z

cos *sin
sin

sin
 (C.25) 

where δ is the solar declination angle,  is the latitude and ω is the mean hour angle of 

time step.  

The correlation employed to calculate the hourly diffuse solar radiation on a horizontal 

surface is identical to that described in Appendix B. The contribution of diffuse solar 

radiation and ground-reflected solar radiation on a tilted surface are the same as 

described in Appendix B which can be calculated using Equations C.26 and C.27 

respectively. 
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3

dt d i i bI I * 0.5*(1 A )*(1 cos )* 1 f *sin A *R
2

 (C.26) 

where Idt is the diffuse solar radiation on a tilted surface, Id is the diffuse solar radiation 

on a horizontal surface, Ai is the anisotropy index and f is the modulating factor.  

 
gr gr

1
I I* * *(1 cos )

2
 (C.27) 

where ρgr is the ground reflectance. 
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  APPENDIX D 

D. GENERATION OF HOURLY 

AMBIENT AIR TEMPERATURE 

VALUES 

The hourly ambient air temperature values for a year can be reasonably and statistically 

generated using Delgelman’s theory. The calculations performed are based on provided 

12 monthly-average daily ambient air temperature values, one for each month, and two 

predetermined sequences for ordering daily-average and daily-maximum ambient air 

temperature values. The hourly ambient air temperature values for a year are generated 

from seven steps: 

Step 1.  Calculate daily standard deviation about the monthly-average daily ambient air 

temperature. 

Step 2.  Calculate monthly-average daily-maximum ambient air temperature values. 

Step 3.  Calculate daily-maximum standard deviation about the monthly-average daily-

maximum ambient air temperature. 

Step 4.  Generate daily-average ambient temperature values. 

Step 5.  Generate daily-maximum ambient air temperature values. 

Step 6.  Generate daily-minimum ambient air temperature values. 

Step 7.  Generate hourly ambient air temperature values. 

In Step 1, the daily standard deviation, δd, about the monthly-average daily ambient air 

temperature is calculated in Equation D.1 [373]: 
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 d m yr9.273 0.07952*T 0.0097111*  (D.1) 

where Tm is the monthly-average daily ambient air temperature and δyr is the standard 

deviation of the monthly-average daily temperature about the yearly-average monthly 

temperature. 

In Step 2, the monthly-average daily-maximum ambient air temperature values, Tm,max, 

are calculated from the monthly-average daily ambient air temperature values and the 

monthly clearness index values, as shown in Equation D.2. 

 
m,max m

1
T T *A

2
 (D.2) 

where A is the peak-to-peak amplitude of the monthly-average diurnal variation of the 

ambient temperature, and is calculated from Equation D.3. 

 mA 25.8*k 5.21  (D.3) 

where km is the monthly clearness index which is the ratio of monthly-average daily 

solar radiation on a horizontal surface to the monthly-average daily extraterrestrial 

radiation.  

In Step 3, the standard deviation of the daily-maximum temperature ( d,max ) about the 

monthly-average daily-maximum temperature is calculated from the daily standard 

deviation, as shown in Equation D.4. 

 
d 1

d,max

2

(i) C (i)
(i)

C (i)
 (D.4) 

where i indicates the month, and C1 and C2 are determined from Table D.1. 
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Month C1 C2 

January 0.8033 0.7900 

February 1.8151 0.6899 

March 2.9018 0.5823 

April 2.397 0.6053 

May 0.6159 0.7343 

June 0.3275 0.7920 

July 1.2187 0.9717 

August 1.4222 1.0269 

September 0.2053 0.8326 

October 3.0621 0.5167 

November 3.0242 0.5811 

December 5.0849 0.3777 

Table D.1. Coefficients used to estimate the standard deviation of the maximum 

daily ambient temperature from the standard deviation of the average daily 

ambient temperature [373]. 

In Step 4, the daily-average ambient air temperature values (for each month) are 

obtained from a normal cumulative, and then ordered by a fixed sequence to replicate 

the daily correlation. The knowledge of both the mean and the standard deviation is 

required to uniquely specify this normal distribution. The mean is the monthly-average 

daily ambient air temperature and the daily standard deviation is calculated in Equation 

D.1.  
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The generation of the daily-average temperature values for a month consists of two 

steps: 

A) Obtain N daily-average ambient air temperature (Td) values from the cumulative 

distribution in a manner such that the N values will recreate the distribution. N is 

the number of days in a month (31, 30 or 28). The cumulative distribution is 

related to the cumulative fraction of occurrence, F. The cumulative fraction of 

occurrence can specify the fraction of time that the Td variable is less than a 

specified Td value. As an example, assuming a 31-day month, there is only one 

value of Td corresponding to F equal to 1/31, which indicates that for 1/31 of the 

time will Td less than a particular value occur. However, 1 out of 31 days must 

be less than this value of Td. The range from 0 to this value of Td is not 

specified; however a logical way to choose a value is to take the value of Td at 

the average of the F value and the previous one, e.g. the Td value for a day is 

obtained corresponding to F value equal to 1/62 as this F value is the average of 

the F value (1/31) and previous F value (0), as shown in an exaggerated Figure 

D.1. 
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Figure D.1. A demonstration of obtaining a Td value from an exaggerated 

cumulative distribution diagram. 

Like the example shown, one and only one Td value will occur between the Td 

value associated with F=1/31 and F=2/31; hence the Td value corresponding to 

F=3/62 can be found. 31 daily-average ambient air temperature values can be 

generated in this manner. The same method can be easily applied to a 30-day or 

a 28-day month.  

B) Ordering these N daily-average ambient air temperature values in order to 

produce a correct daily autocorrelation. Again, the order is determined from a 

fixed sequence, However, this sequence used to order the daily-average ambient 

air temperature values is a distinctly different sequence from the one used to 

order the kd values. The sequence starting position is determined at the 

beginning of the generation process and remains the same for all of the 

sequences.  
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In Step 5, the daily-maximum ambient air temperature values can be also generated in a 

similar approach as the generation of daily-average ambient temperature values. The 

cumulative distribution of the maximum temperature is also assumed to be normal; the 

mean and the standard deviation are calculated from Equation D.2 and D.4 respectively. 

However a different sequence is used to order these daily-maximum ambient 

temperature values; this sequence employed presents a significant correlation between 

the daily-average and daily-maximum ambient temperature values. The sequences for 

ordering daily-average ambient air temperature values and daily-maximum ambient air 

temperature values are shown in Table D.2. 

Tm 

20, 29, 13, 26, 31, 30, 21, 12, 14, 11, 2, 1, 3, 15, 25, 9, 

5, 7, 6, 4, 19, 8, 10, 23, 22, 27, 16, 18, 28, 17, 24 

Tm,max 

24, 29, 14, 21, 31, 30, 23, 5, 12, 11, 2, 1, 7, 16, 25, 10, 

8, 3, 4, 9, 18, 6, 13, 26, 20, 22, 15, 17, 27, 19, 28 

Table D.2.  Sequences for ordering daily average ambient temperature and daily 

maximum ambient temperature values [371]. 

In Step 6, the daily-minimum ambient air temperature values are calculated by 

assuming the daily-average values are equal to the median which is the average of the 

daily-maximum and daily-minimum ambient temperature values. 

In Step 7, the hourly ambient air temperature values are generated by performing a 

cosine interpolation between the daily-maximum and daily-minimum ambient air 

temperature values. This produces a continuous series of hourly ambient air temperature 

values and also gives a smooth transition between adjacent days.  

The minimum hourly ambient temperature is assumed to be the value for the hour in 

which sun rises; the maximum hourly ambient temperature is assumed to be the value at 

3pm. All of the daily-average and the daily-maximum ambient temperature values have 
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to be generated one day in advance, therefore the next day’s minimum ambient 

temperature value is available for the interpolation between the maximum ambient 

temperature of one day and the minimum temperature of the following day. Equation 

D.5 is used to calculate the hourly ambient temperature, Thr: 

 
hr ave

*
T T B*cos( )

R
 (D.5) 

where Tave is the median ambient temperature for the particular portion of the day as 

shown in Table D.3. B is the amplitude for the particular portion of the day which is one 

half of the difference between the appropriate maximum and minimum temperatures. 

This amplitude is negative during the sunrise-to-3pm period. ∆ is the number of hours 

goes into the time period and R is the number of hours in the appropriate time period. 

From sunrise of the day (the minimum 

ambient temperature of the day) to 3pm 

of the day (the maximum ambient 

temperature of the day) 

Tave is equivalent to the daily-average 

ambient temperature. 

From 3pm of the day (the maximum 

ambient temperature of the day)  to 

sunrise of the next day (the minimum 

ambient temperature of the next day)  

Tave is the average of the maximum 

ambient temperature of the day and 

the minimum ambient temperature of 

the following day. 

Table D.3. Variation of Tave used for calculating hourly ambient temperature 

values. 

 

 

 

  



Appendix E 

330 

 

APPENDIX E 

E OPTIMISED INTEGRATION CODE 

DEVELOPED IN MATLAB  

The optimised integration of a micro-renewable energy generation system is performed 

using a custom-written MATLAB code. The custom-written model is purposely 

developed and a database containing the selected micro wind turbines and their hourly 

power outputs, the selected solar PV modules and their hourly power outputs, the 

selected ASHP, the selected solar flat plate/evacuated tube collectors, the hourly power 

inputs required to operate a mono/hybrid micro-renewable thermal generation system 

for providing the entire heating and hotwater, the hourly power inputs to drive the 

primary and/or the auxiliary heating system and the electrical immersion in the hotwater 

storage cylinder, hourly household electrical loads, and complete costs (installation, 

operation, replacement and maintenance) associated with these energy generation 

systems are all stored in the model. The mono or hybrid micro-renewable electricity 

generation system combination, single or combined micro-renewable thermal 

generation system, and the combination of both are first realistically formed. The 

formed systems that can satisfy the imposed constraints and guideline are subsequently 

considered in the economic analysis, whilst the rest are discarded. A comprehensive 

economic analysis over the project lifespan is then performed and the system that 

performs best economically is deemed as the optimum system which allows the system 

configuration to be determined. The optimised integration Matlab code was written in 

three phases and consists of an overall code and two separate types of sub-codes. 
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5.The overall code, as shown in Figure E.1-E.3, contains the information including the 

capacity and physical sizes of all selected micro-renewable energy generation 

systems, the costs of these systems and other associated components, the individual 

lifespan of these systems and the user-specified project period, the constraints and 

guidelines enforced, and the economic parameters required to perform the economic 

analysis. This overall code is developed to compare all sub-optimal systems, and 

determine the overall optimal system and then illustrate the system configuration. 

Each sub-optimal system is determined from the sub-code developed for a 

mono/hybrid micro-renewable electricity generation system consisting of a selected 

micro wind turbine and a solar PV system assembled from a solo capacity solar PV 

module, combined with all mono/hybrid micro-renewable thermal generation 

systems. 
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Figure E.1. The Matlab code developed to perform the overall optimised integration. 
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Figure E.2. The Matlab code developed to perform the overall optimised integration. 
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Figure E.3. The Matlab code developed to perform the overall optimised integration. 
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Of the two separate types of sub-codes, one type is designed for the integration of 

micro-renewable electricity generation systems, as shown in Figure E.4-E.9, whilst the 

other is designed for the integration of micro-renewable thermal generation systems as 

shown in Figure E.10-E.11. Due to the interacting effect, as the domestic heating 

generation system, either an ASHP or a primary electrical heating system, is used to 

provide entire heating, but also employed to preheat water in the hotwater storage 

cylinder. All systems (either a mono or a hybrid thermal generation system) have to be 

individually simulated, and hourly power inputs required to operate the system for 

providing the entire heating and hotwater are then obtained. The detailed costs required 

for these heating and hotwater generation are also calculated. All of this useable 

information is fed into the sub-code which has been developed for the integration of 

micro-renewable electricity generation systems. The overall hourly electricity 

consumption for a domestic dwelling is obtained by adding the hourly household 

electrical loads with the hourly power inputs required for the thermal generation 

systems. The mono or hybrid micro-renewable electricity systems are formed from a 

selected micro wind turbine and/or a solar PV system assembled from a selected solo 

capacity solar PV module(s); the capacity of the solar PV system is dependent on the 

number of solar PV modules utilised. The formed system is then assessed in order to 

verify that if it can satisfy the enforced constraints and guidelines i.e. renewable energy 

requirement. The economic analysis is carried out for the satisfied systems. If the 

calculated economic outcome of a system combination is better than the previous 

system combination, this combined system is then deemed as the temporary optimum 

system. However, if the calculated economic result is worse than the previous one, the 

system is then discarded. The sub-optimal system is then determined once all systems 
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(one kind of system combination consisting of a selected micro wind turbine and/or a 

selected solar PV module) have been analysed and compared. 
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Figure E.4. The Matlab code developed to perform the integration of micro-renewable electricity generation systems 

optimised integration. 
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Figure E.5. The Matlab code developed to perform the integration of micro-renewable electricity generation systems. 

optimised integration. 
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Figure E.6. The Matlab code developed to perform the integration of micro-renewable electricity generation systems. 

optimised integration. 
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Figure E.7. The Matlab code developed to perform the integration of micro-renewable electricity generation systems. 

optimised integration. 



Appendix E 

341 

 

  

Figure E.8. The Matlab code developed to perform the integration of micro-renewable electricity generation systems. 

optimised integration. 
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Figure E.9. The Matlab code developed to perform the integration of micro-renewable electricity generation systems. 

optimised integration. 
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Figure E.10. The Matlab code developed to perform the integration of micro-renewable thermal generation systems. 

optimised integration. 
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Figure E.11. The Matlab code developed to perform the integration of micro-renewable thermal generation systems. 

optimised integration. 
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