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Abstract 

For centuries, luthiers have committed to working towards better understanding and 

improving the sound characteristics and playability of violins. With advances in 

technology and signal processing, studies attempting to define a violin’s sound quality 

via physical characteristics and resonance patterns have ensued. Existing work has 

primarily focused on physical aspects reflecting an instrument’s sound quality.  

In the music information retrieval domain, advances have been made in areas such 

as instrument identification tasks. Although much research has been completed on 

finding suitable features from which musical instruments can be represented, little work 

has focused on the violin’s complete timbre space and the effect a player has on the 

sound produced. This thesis specifically focuses on representing violin timbre such that 

a computer can detect the sound associated with a beginner from that of a professional 

standard player and detect typical beginner playing faults based on analysis of the 

waveform signal only. Work has been limited to nine playing faults considered by 

professional musicians to be typical of beginner violinists.  

In order to achieve these goals, it was necessary to create a suitable dataset 

consisting of an equal number of beginner and professional standard legato note 

samples. Feature extraction was then carried out by taking features from the time, 

spectral and cepstral domains. Selected features were then used to represent the samples 

in a classifier based on their efficacy at reflecting change within the violin’s timbre 

space. The dataset underwent the scrutiny of professional standard stringed instrument 

players via listening tests from which the target audience’s perception was captured. 

This information was verified and normalised before use as a priori labels in the 

classifier. Based on different feature representations, classification of violin notes 

reflecting perceived sound quality is presented in this thesis. The results show that it is 

possible to get a computer to determine between beginner and professional standard 

player legato notes and to detect playing faults. This thesis involves a thorough 

understanding of violin playing, its perception, suitable analysis methods, feature 

extraction, representation and classification.  
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Abbreviations 

AC  autocorrelation 

CK  spectral centroid kurtosis 
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RCCS  real cepstrum coefficients skew 

RCCV  real cepstrum coefficients variance 

RWC  Real World Computing music database 

SCM  spectral contrast measure 

SCM190 spectral contrast measure below 190Hz 

SF  spectral flux 

SFM  spectral flatness measure 

SFMK  spectral flatness measure kurtosis 

SFMM  spectral flatness measure mean 

SFMS  spectral flatness measure skew 

SFMV  spectral flatness measure variance 

SOM  self-organising map 

STFT  short-time Fourier transform 

SVD  singular vector decomposition 

TK  time domain kurtosis 
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TM  time domain mean 

TS  time domain skew 

TV  time domain variance 

Playing Fault Abbreviations 

BADE  playing fault poor finish to a note 

BADS  playing fault poor start to a note 

BB  playing fault bow bouncing 

CR  playing fault crunching 

INT  playing fault poor intonation 

NV  playing fault nervousness 

SE  playing fault sudden end to note 

SK  playing fault skating 

XN  playing fault extra note 
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1 Introduction 

Music, as a form of expression and of aural tradition, is a part of all cultures. From the 

sixth century, the monophonic liturgical chant of the Roman Catholic Church, known as 

Gregorian chant or plainsong, was passed on orally in Europe [Machlis90]. As the 

number of chants increased, a means of recording the different melodies was needed. 

By the 8th century, ascending and descending symbols, known as neumes, were written 

above the text suggesting the musical direction, but pitch and time could not be 

represented [ibid.]. Guido’s four-line staff musical notation system was in use by the 

tenth century for monophonic chant. Polyphonic music only began to emerge towards 

the end of the Romanesque period (c. 1050-1150) [ibid.]. Following this, a gradual rise 

in the importance of instrumental and secular music began to evolve during the 

fourteenth century. The current five-line staff notation system became widespread by 

the 16th century [ibid.]. It has taken about eight centuries to develop a standardised 

Western music notation system and method of recording the primarily oral tradition.  

As music has evolved over the centuries reflecting societal developments and 

changes, so too have the instruments, playing techniques, styles, how music is 

perceived, methods of recording the material and teaching methods. Focusing on the 

teaching of music, feedback and interaction with a tutor is central to a student’s progress 

especially during the initial years. An important part of this process involves developing 

muscle memory or a link between hearing a sound and what it feels like to produce it 

under expert guidance. Refining this aural training is a lifetime’s work and key to 

musical expression on many instruments, in particular bowed stringed instruments.  

When learning to play a bowed stringed instrument, such as the violin, contact time 

between teacher and student is very important, but often limited. This has resulted in the 

development of a number of practice tools such as accompaniment only recordings, as 

available through the Suzuki Method publishers [Suzuki09], Music Minus One 

[MMO09] recordings and more interactive systems such as Music Plus One [MPO09]. 

For the struggling student, a home computer based tutoring system capable of analysing 

his or her violin playing and offering feedback could be of benefit. Prior to being able to 

develop such an interactive system, a thorough understanding of violin timbre, how it is 

produced and can be represented quantitatively, while still reflecting the qualitative 
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expressions used by musicians, is needed. For example, what features can be used to 

characterise a poorly played note versus that of a well executed one and can playing 

faults be reflected by a measurement. 

Finding a set of features from which violin sound can be represented which 

correlates with violinists’ perception provides a challenge. There is much to be gleaned 

given the lack of perceptual correlates of violin sound quality as well as quantitative 

analysis of the effect a player has on the sound he or she produces. Understanding, 

quantifying, representing and classifying the effect playing technique has on violin 

timbre involves finding workable guidelines for what is considered by professional 

standard violinists to be a good sound, to describe and determine typical playing faults 

and finding methods from which this information can be quantified.  

The research aim of this thesis is to obtain sufficient quantitative understanding of 

the qualitative relationship between violin sound and playing technique from which it is 

possible to determine a beginner note from a professional standard one and to detect 

common beginner playing faults. Knowledge of signal analysis methods and violin 

playing technique are important in this work. The successful development of techniques 

capable of such discrimination is reliant on finding and establishing appropriate features 

as well as a suitable classification process. This thesis builds on existing work from 

many fields, from acoustics to signal processing, leading to a novel approach to further 

understanding the violin timbre space.  

To complete this work, a suitable dataset is needed as existing datasets have no 

beginner note samples. A dataset consisting of equal numbers of professional standard 

legato and of beginner player notes with playing faults, which have been obtained under 

the same conditions, is required. From these recordings, detailed waveform analysis in 

the temporal, spectral and cepstral domains has been conducted in order to better 

understand the sonic effects of bad violin technique and ways of obtaining measures to 

represent this information. Listening tests are conducted to assign qualitative labels to 

the samples, to remove subjectivity and to see if any perceptual correlates between 

violin timbre measures and qualitative expressions used by musicians can be 

established.  

In the rest of this chapter, Section 1.1 very briefly presents how sound is produced 

on a violin. Section 1.2 introduces violin playing technique, emphasising some of its 

difficulties. Many texts exist on violin playing such as [Auer80, Flesch00, Szigeti79], so 

violin playing technique will be kept to a minimum throughout this thesis and only 
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included as necessary. Current research relevant to this work is summarised in Section 

1.3 after which, an overview of musical signal representations is presented in Section 

1.4. The thesis is outlined in Section 1.5, and the original contributions in this thesis are 

presented in the last section of this chapter.  

1.1 A Brief Introduction to the Violin and Violin Sound 

The violin as it is known today was perfected in Cremona, Italy in the late 17th century, 

by the school of luthiers founded by Antonio Stradivarius (1644-1720) [Gill84] and is 

currently used in a wide range of musical endeavours ranging from symphonic, solo, 

chamber music, jazz, folk, popular to religious. For a detailed presentation of violin 

playing from the renowned violinist and pedagogue Leopold Auer, the reader is referred 

to [Auer80]. Throughout this text, parts of the violin are referred to and labelled images 

of the violin are given in Figure 1.1 and Figure 1.2, which have been taken from 

[Violin09].  

Drawing a bow across the string correctly causes the violin body to resonate due to a 

complex system of different couplings. The excitation causes waves related to its length 

to propagate along the string. These vibrations pass through the bridge to the sound post 

and bass bar allowing the instrument’s body to resonate. The treble frequency vibrations 

pass through the right foot of the bridge and sound post shown in Figure 1.2 and the 

lower or bass frequency vibrations go through the left foot of the bridge and pass along 

the bass bar. The brightest sound from a violin is produced when the bow is drawn 

across the string, parallel to the bridge, in line with the tops of the f-holes. Not pulling 

the bow in such a manner mostly results in poor sound, associated with weak or 

developing technique, such as that belonging to a beginner. 

The sound post and bass bar transmit vibrations, allowing the whole instrument 

body to resonate. The pressure changes resulting from the resonating body cause the 

sound to come out of the f-holes. Many functions are associated with the f-holes, 

including providing the opening required for the main air resonance, which relies on the 

volume of air in the violin’s body [Bissinger92]. The f-hole shape has evolved to let the 

bridge oscillate more freely in transferring the string vibrations through the instrument 

body and thereby creating a louder sound [McLennan03]. Should the movement of the 

bridge be restricted, for example, by fitting a mute which restricts the vibrations going 

through from the bridge, the sound quality and volume are effected. 
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Figure  1.1: Violin parts. 

 

Figure  1.2: Internal parts of the violin. 

The violin’s shape has evolved to maximise sound output requiring the air volume 

to have the fundamental cavity or the f-hole resonance at about 260 to 290 Hz 
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[Hutchins97]. Bissinger researched the effects of area, shape and position of the f-holes 

on cavity mode frequencies and showed that f-hole shape has an important effect on the 

fundamental resonance, important in the radiation of acoustic energy or sound 

[Bissinger92]. The cavity resonance goes down in pitch should one f-hole be blocked 

[Hutchins90]. For a good sound to be produced on a violin, multiple complex 

resonances are excited [Bissinger98]. One text which covers violin physics in much 

greater detail is [Cremer84]. The next section details how violin sound is affected by 

playing technique. 

1.2 Violin Playing Technique  

The legato bow stroke is the basic bow stroke for all violinists and means “smoothly 

connected” [Jackson87:23]. To cite Auer, “legato is really the negation of angles in 

violin playing. It is the realizing of an ideal – the ideal of a smooth, round, continuous 

flow of tone.” It is the bow stroke which gives “the beautiful singing tone which is the 

normal tone of the instrument” [Auer80:32]. Once a beginner player has gained 

sufficient bow control to master the legato bow stroke, the player is ready to progress 

onto more challenging bowing patterns and more advanced bow strokes such as 

staccato, a “detached, disconnected” bow stroke [Jackson87:44] or martelé, “a sharply 

accented bowing” [ibid.:28], which involve much greater bow control. 

A violinist alters the instrument’s timbre by changing his or her playing technique 

within the framework dictated by the instrument and bow. Drawing a straight bow 

seems simple enough to a non-player but a straight bow involves good posture, no 

muscle tension, a good bow hold, a loose wrist and keeping the violin still among other 

things. If a bow is not drawn as described previously, the sound quality suffers. The 

sound produced on a violin is a direct result of the player’s bow control, which 

influences how the instrument cavity resonates. The previous section detailed briefly 

how sound is produced assuming correct bowing technique. This section considers the 

effects of a player, a beginner in particular, on the sound produced, focusing on typical 

bowing faults.  

Elements influencing bow control include the bow arm position, bow pressure and 

speed, bow angle, the location of the bow on the string and the straightness of the bow 

stroke. Some typical qualitative beginner player bowing faults include crunching, 

skating, nervousness, bow bouncing, extra note, sudden end, poor starts and ends to 
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notes. Too much pressure at the wrong place relative to bow speed causes the sound to 

crunch. Throughout this thesis the expression “crunch” or “crunches” refers to 

inappropriate force being applied to the string via the bow causing the sound to contain 

many more unwanted and unrelated frequencies. Not drawing a straight bow at the 

optimum place on the string results in a “whisping” or “skating” sound effect as the bow 

skids at an angle along the string. Player nervousness results in a non committed sound 

being produced and is caused by tension in the bow arm. Bow bouncing is also due to 

too much tension in the bow arm. Due to a lack of bow control, extra unplanned notes 

can be played. Unclean, gritty or crunchy beginnings and endings to notes usually occur 

until the player has mastered the bow hold, finger movement and smooth bow turns. A 

flexible, loose wrist and fingers are required to maintain sound quality. Bowing 

technique determines the attack strength, sound projection, harmonic content, timbre, 

pitch, instrument resonance and the length of the note. An overview of the relationship 

between bowing technique and sound is detailed in Table 1.1.  

Issue Level Result/effect on sound 

Bow hold Too tight Crunches, bumps, nasal, wobbling bow 
Bow hold Too loose Light, unconvincing sound 
Straight bow Not straight Skating sound, wobbling bow 
Bow pressure Too much Crunches, wobbling bow 
Bow pressure Not enough Sound lacks commitment, nervous. 
Bow angle/hair contact Too little Playing on wood 
Location of bow on string Too close to bridge Squeaks 

Location of bow on string Over fingerboard Committed sound: airy, distant, dreamy.  
Not committed sound: nervous 

Table  1.1: Relationships between playing technique and sound. 

The variables reflecting bowing technique influence violin pitch as shown in Figure 

1.3. The arrows pointing towards pitch in Figure 1.3 indicate player controlled variables 

and the outward pointing arrows show variables that are influenced by pitch. Although 

it is not marked on the diagram, none is independent.  

Violin resonances are maximised by good playing technique. In this work, the 

evolution of a note is considered from a playing technique perspective only, thus 

avoiding the highly debatable concept of style. To Auer, “style in music … is the mode 

or method of presenting the art in question in a distinctive and intrinsically appropriate 

way” [Auer80:75]. Comparing and contrasting styles and interpretation constitutes a 

very large body of research and although it must be acknowledged, will not be covered 

in this thesis. 
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    instrument resonance

 force of attack      sound projection 

min. length of note        timbre 

    Pitch     

tonality/harmonicity 

       interaction with other instruments 

ornamentation   note type (harmonic, false-harmonic, bow stroke, plucked….) 

   how it is heard by player  

Figure  1.3: Elements influencing violin pitch. 

Features through which sound quality and playing faults may be detected are sought. 

More specifically, characteristics or patterns of legato bow strokes, which are ideally 

independent of pitch and sample length, need to be considered in order to quantify 

legato sound. This involves finding a suitable representation of legato sound which 

reflects a violinist’s perception. Through the quantitative and qualitative analysis of 

violin sound, a link between features and how musicians describe sound or playing 

characteristics is sought. Before detailing real violin sound representations, current 

research in the area is presented in the next section.  

1.3 Current Research 

Research influencing and inspiring this work comes from many areas including violin 

acoustics, music teaching methods and aids, music information retrieval, automatic 

accompaniment systems, speech recognition and player-instrument relationships. An 

overview is given in Figure 1.4. Certain teaching methods, such as the Suzuki Method 

[Suzuki73], place significant emphasis on listening, more so than more traditional 

methods. This “mother tongue” approach to teaching relies on the development of 

listening skills or “ear training” from the outset. The student does not learn to read 

music until they are proficient at playing the instrument and pieces of music. The basics 

of playing the instrument are mastered first and when the student is introduced to 

reading music, he or she learns by association. The Suzuki Method publishers have been 

making recordings of the repertoire and accompaniment only recordings available since 

the 1980s. 
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Figure  1.4: Relevant research domains. 

A significant amount of work has been carried out on violin acoustics including 

finding perceptual correlates [Fritz06, Fritz07]. Much of this work though is focused on 

trying to emulate the old, Italian master violin makers, such as Stradivarius 

[Smithsonian09, Hutchins97], not on playing technique and its effects on sound. 

Although much work has been conducted on violin acoustics and the violin is the most 

uniform of the stringed instruments [Jansson97], much remains unknown. The 

complexities of how the violin resonates make it extremely difficult to develop a 

complete physical model. Work towards developing a physical model of a bowed violin 

string has been done [Serafin01] and Wilson has tried extracting violin performance 

information necessary to drive a digital waveguide model of a bowed violin [Wilson02]. 

With the violin, minute changes such as moving the sound post less than a millimetre 

greatly influence the instrument’s sound [Molin90, McLennan01]. Such variables, of 

which there are many, need to be captured by a physical model. However, information 

relating to physical models for various wind instruments such as the trumpet, trombone, 

saxophone [Vergez06], oboe [Almeida04] and piano [Giordano04] has been published.  

Many approaches used in the music domain originated from general signal and 

speech processing techniques. Of particular interest is research into the singing voice 

and developments which aim to alter its sound characteristics. This includes the 

potential for improving sound quality as the violin is the instrument that best mimics the 

human singing voice [Winkel67]. Pollastri draws attention to the need to develop 
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specific algorithms to deal with a singing voice [Pollastri02b]. Much work has gone into 

studying the singing voice from analysis and synthesis perspectives and Sundberg 

[Sundberg87] offers a thorough look at the peculiarities of the singing voice. Work on 

the analysis, synthesis and improvement of the singing voice is on going [Bonada01a, 

Bonada01b] and some work has been conducted on poor singing. Papers which consider 

poor singing quality, within the music information retrieval domain include [Meek02, 

Pollastri02a, Pollastri02b] and involve classification methods through query by 

humming or singing. Several plug-ins have been developed for improving or adding 

special effects to a recorded singing voice. One such example emulates the Louis 

Armstrong growl in an approach that allows a modal voice to be transformed into a 

growl voice by adding sub-harmonics in the frequency domain [Loscos04].  

With current advances in signal processing and interactive computing, much more 

sophisticated systems and learning aids are now being developed. Such systems are of 

interest because the analysis of poor musical sound attributes is considered. Hämäläinen 

et al. developed a successful real-time singing aid in [Hämäläinen04], which describes 

the use of pitch-based control of a game character by the user’s voice. A direct transfer 

of this approach to a violin, or another instrument aid would not be as successful. A 

singer is physically “free” to concentrate on a screen and able to react to it. 

Instrumentalists, especially beginners, need to be looking at what they are doing and 

looking elsewhere, i.e. at a screen, will disturb their position. For this reason, a system 

which offers feedback after the user has played his or her notes would be much more 

effective. This differs greatly in approach to the MMO CDs, which offer a variety of 

recordings to which the user plays the solo part or MPO, which is an interactive 

accompanying system [MPO09]. Automatic accompaniment systems have evolved 

greatly since MMO and many developments have occurred since the systems put 

forward by Vercoe [Vercoe85] and Dannenberg [Dannenberg85]. Raphael’s MPO 

system reacts in real time to changes in the soloist’s tempo allowing for musical 

expression [Raphael03] and delay has not been reported to be an issue by MPO’s users 

[ibid.].  

Meek and Birmingham put forward a Hidden Markov (HMM) based model for 

dealing with how similar a query is to a potential target within the area of music 

retrieval [Meek02]. This model was developed linking several elements together in the 

same model. These elements, as presented in [ibid.], are transposition, modulation, 

tempo, tempo change, non-cumulative local error, cumulative local error, insertions and 
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deletions. Essentially, it is a model which deals with pitch and tempo changes in depth 

made with the assumption of conditional independence between the representational 

elements. In [Shifrin03], the performance of a query-by-humming HMM is successfully 

tested on a large musical database. 

Spectral features have been used for musical instrument timbre classification 

[Agostini01, Agostini03] as have cepstral and temporal features [Eronen00, Eronen01]. 

In these works, instruments including the violin are represented by multiple features. 

Features used for identifying individual instruments focus on good instrument sound 

and not on representing change within an instrument’s timbre space. Little research has 

been carried out into the relationship between player and effect on instrument sound. 

Fritz investigated the relationship between clarinettist and sound produced depending on 

glottal and windpipe shape [Fritz04]. The classification of three common violin bow 

strokes has been done using data collected from an electric violin and a carbon bow to 

which sensors have been attached [Young08]. These works consider measurements 

obtained via sensors for good playing sound or technique only. There seems to be no 

work conducted on analysing poor violin playing technique. This thesis focuses on the 

effects of acoustic violin playing technique on sound and ways of detecting playing 

faults. Before presenting the thesis outline, suitable musical signal representations are 

presented in the next section.  

1.4 Musical Signal Representations 

This section illustrates different ways of representing musical signals in the time, 

frequency, time-frequency and cepstral domains. An acoustic signal is most commonly 

represented in the digital domain by its sampled waveform where each sample describes 

the signal’s amplitude with respect to time. Time-frequency analysis allows the time at 

which signal frequencies are present to be identified and representations used 

throughout this thesis include the spectrogram and the Constant Q Transform (CQT). 

The cepstral domain is also useful for representing instrumental sound [Klapuri01, 

Eronen01] as the presence of periodicities in the signal are captured [Oppenheim89]. 

Starting with the time domain input signal )(nx , its frequency response )(nX  is 

obtained via the Discrete Fourier Transform (DFT), where N  is the signal length in 

Equation 1.1 [ibid.]: 
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In Figure 1.5, the top image is the waveform of a professional standard legato note and a 

close up of the most significant part of its spectrum is shown in the bottom image, 

displaying the note’s fundamental and harmonics. The clean execution of this note is 

reflected in its spectrum as few unrelated frequencies are present.  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.05

0

0.05

0.1

Time in s

A
m

pl
itu

de

Waveform

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

Frequency in Hz

M
ag

ni
tu

de

Spectrum

 

Figure  1.5: Waveform (top) and harmonic spectrum section (bottom) of a professional 
standard player legato A440 note.  

Harmonic content throughout a note is better represented in time-frequency 

representations as changes in its frequency content with respect to time are illustrated. 

One widely used time-frequency representation is the short-time Fourier transform 

(STFT) based spectrogram whereby the data is presented via a succession of windowed 

DFTs. A Hamming window )(mw is used in this work and the STFT is given by 

),( knX in Equation 1.2, where k is the frequency bin, n the frame and N the signal 

length [ibid.]: 
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The signal’s content is represented in terms of frequency versus time and can be used to 

give a temporal evolution of a note as can be seen in Figure 1.6. In this figure, the 

darkest lines are the note’s harmonics. A 1024 point window with 50% overlap has been 

applied.  
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Figure  1.6: STFT based spectrogram of an A440 legato note. 
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Figure  1.7: Signal representations: waveform (top), spectrogram (middle), CQT 
(bottom). 
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The CQT representation is effective for visualizing and exploiting information about 

the harmonic content of a note. In Figure 1.7, the waveform, spectrogram and CQT 

representations of a professional standard legato A440 violin note are illustrated. The 

Constant Q Transform (CQT) is a log-frequency scaled time-frequency representation 

of a signal [Brown91]. It differs from the DFT in that the ratio between centre frequency 

and frequency resolution remains constant making it suitable for the representation of 

musical signals by setting the frequency resolution to match that of equal temperament. 

In equal temperament, such as twelve-tone equal temperament, each octave is divided 

into 12 equal parts whereas linear spacing occurs in the DFT. To obtain the CQT of a 

signal, lower and upper frequency limits must be selected. A lower or “start” frequency 

limit of 110Hz which is sufficiently below the lowest note G (approximately 196Hz) on 

a violin tuned to A440 and an upper frequency limit of 10kHz are assigned. Eighth tone 

spacing is selected in this work over the more often used quartertone spacing [ibid.] to 

access more information in the beginner note samples. There are 48 eighth tone spaces 

in an octave and the centre frequencies are calculated from Equation 1.3 where b = 48, 

the number frequency bins per octave, f, the initial or previous frequency and c = 1, 2, 

3… 

 b
c ff

1

2=  ( 1.3) 

After the centre frequencies fc have been returned, the ratio between the centre 

frequency and bandwidth, represented by Q, is obtained through Equation 1.4:  

 
12

1
1

−
=

b

Q  ( 1.4) 

The sampling frequency fs is equal to 44.1kHz. Each frequency bin is estimated with a 

frequency dependent window length Nc, limited by a maximum window size and a 

frame size given by Equation 1.5: 

 
c

s
c f

f
QN =  ( 1.5) 

The CQT is obtained from Equation 1.6, where w[n,Nc] is a windowing function [ibid.] 

and Hamming window has been used as in [ibid.]: 
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Cepstral analysis is used successfully in processing speech, seismic, biomedical, 

sonar signals, old acoustic recordings [Oppenheim89], music modeling [Logan00] and 

in instrument identification tasks [Brown01, Martin98]. The complex cepstrum of a 

signal is the inverse Fourier transform of the log spectrum shown below in Equation 1.7 

[Oppenheim89]: 

 ω
π

ωωπ

π

ω deephaseXjeXnc njjj )](*)([ln
2
1][ ∫− +=   ( 1.7) 

Although the log of any base may be used [Deller00], throughout this work the natural 

log has been applied.  

The real cepstrum or cepstrum differs from the complex cepstrum in that it leaves 

out the signal’s phase information and is given by Equation 1.8:  

 ∫−=
π

π

ωω ω
π

deeXnc njj
r )(ln

2
1][  ( 1.8) 

The complex cepstrum need only be used in phase-sensitive applications such as 

vocoders, whereas the cepstrum is more often used in speech analysis and recognition 

systems. Due to its ability at detecting periodicities in the spectrum, the real cepstrum 

has numerous applications, including pitch detection, speech modeling, in digital filter 

design and machine diagnostics [Oppenheim89].  
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Figure  1.8: Real cepstrum representation section of a legato A440 violin note. 
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A section of the real cepstrum of a professional standard legato note is displayed in 

Figure 1.8 where the periodic nature of the sound is visible. 

The representations illustrated in this section will be used for comparing, analyzing 

and extracting features from which violin samples may be represented. An outline of the 

thesis is given in the next section. 

1.5 Thesis Outline 

So far in this chapter, violin sound, playing technique, relevant research, musical signal 

representation and the aims of this thesis have been presented. Violin sound, its 

perception, production and analysis are presented in Chapter 2. Why, what and how the 

dataset was obtained as well as the listening tests carried out are explained in Chapter 3. 

In Chapter 4, the effects of violin playing technique on a note’s waveform are detailed 

and common playing faults are presented. Temporal, spectral and cepstral analyses of 

the dataset are documented in Chapter 5, Chapter 6 and Chapter 7 respectively. In 

Chapter 8, features are selected according to their performance in their respective 

domains and the dataset is represented by a feature array which is then used in a k-

nearest neighbour classifier using the a priori labels from the listening tests. Two tasks 

are tested for classification: one for determining beginner from professional standard 

playing and the second, fault detection. Selected successful detection feature 

combinations are then tested on new data. Conclusions drawn from the work completed 

and alternatives, strengths, weaknesses and possible further work are detailed in the 

final chapter. The following section briefly details the original contributions presented 

in this work.  

1.6 Original Contributions 

The gap in existing work relating to complex instrument signal analysis, such as violin 

sound, allows for further work in this area to be undertaken. Existing work including 

that conducted on violin acoustics, instrument modelling, musical instrument 

identification and classification, music information retrieval, automatic accompaniment 

systems bases its analyses on or towards good violin sound and playing. This thesis puts 

forward a novel approach to violin sound analysis by considering the effect a player has 

on the sound produced. It will be shown that correct detection of a beginner note from a 

professional standard legato one is possible with over 96% accuracy and that multiple 
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playing faults are detectable. This work presents how this is achieved through 

monitoring performance based on sound limits which are considered by professional 

players to be good and reflected through quantitative measures. These quantitative 

measures include standard features from the temporal, spectral and cepstral domains but 

also modifying some of these to focus on the frequency range below the lowest note on 

the violin, approximately 196Hz, which has not previously been done. Some excellent 

yet unexpected results from these features will be detailed, highlighting areas meriting 

further study. In particular, analysis within the time domain will be shown to be very 

effective, including features such as the waveform amplitude mean and the moving 

mean variance values which separate completely the beginner from the professional 

standard legato note samples in the dataset. In the spectral domain, specific CQT 

frequency bins below 196Hz which completely separate the dataset based on player 

standard will be displayed. The content present at some of these frequencies can be 

considered to reflect certain violin resonances as excited by different players. Taking 

the mean PSD and SCM present in the frequencies below 190Hz also perform very well 

at distinguishing between the dataset’s different player types. The results, obtained from 

these features and displayed as modified and detailed in this work, will be shown to be 

statistically significant and have not previously been used to analyse violin sound. This 

thesis will show, for the first time, that a beginner player notes can be distinguished 

from professional standard legato ones and that multiple playing faults can be detected. 
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2 Perception and Analysis of Violin Timbre 

As used in music, timbre refers to the characteristic sound/s created by a musical 

instrument. It is “a term describing the tonal quality of a sound” [Sadie01:25:478]. A 

thorough understanding of violin sound as well as finding suitable quantitative 

representations of violin sound is required to further violin timbre analysis. To a 

musician, a poor quality sound (or timbre) implies an unconvincing sound or a sound 

which contains audible playing faults. Such sounds are produced by poor technique or 

by not making a note sound well balanced or placed within its context. The latter is due 

to poor musicianship rather than to poor technique. Throughout this thesis, poor sound 

quality or timbre will refer to sounds affected by playing errors such as those associated 

with a beginner player while good quality sound will refer to well produced sounds. 

Neither of these terms in this text implies the standard of the recordings, nor the quality 

of the instrument used. In this chapter, how the human auditory system processes sound, 

paying particular attention to how a musician trains their hearing is briefly introduced as 

well as the relationships between pitch, timbre, Helmholtz motion and violin playing 

technique.  

2.1  Hearing Sound and a Musician’s Training 

Sounds exist as pressure differences in air which the human auditory system transfers 

into mechanical vibrations in the middle ear, liquid vibrations in the inner ear and 

finally as electrical impulses in the nerves leading to the brain. Audible sound is 

received as a sensation by the ear and passed to the brain where it is represented in the 

mind of the listener. The difficulty lies in understanding or trying to represent this type 

of “aural” imaging. A continuous frequency to place transformation takes place along 

the basilar membrane which has been represented in some work as non-linear frequency 

bands referred to as critical bands [Howard01, Noll93]. A brief outline of how the 

auditory system processes sound can be seen in Figure 2.1. For a detailed explanation of 

how the human auditory system functions, refer to [Moore82].  

The variety of different types of sounds that the human auditory system deals with 

and the concept of collective perception are worth noting before focusing more 

specifically on violin timbre. There are certain sounds which immediately capture an 
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individual’s attention such as warning signs. A well-known example would be the effect 

of scratching one’s nails down a blackboard. Most people cringe at the sound and it has 

been traced back to our primate ancestry. Primates signal danger to the group by 

scratching their nails on trees in a downward motion [Schafer02]. The importance of 

this issue is the existence of sounds to which a large section of the human condition 

immediately react to, otherwise known as collective perception or learned response. 

 

Figure  2.1: Processing sound via the human auditory system. 

The human listener relies on a wide variety of information to help process sounds 

[Bregman90] and often manages to correctly interpret the information transmitted even 

if at times this information is faulty or unclear due to the presence of disturbance(s). A 

common example of this is listening to a person speak in a noisy environment, also 

known as “the cocktail party effect” and noted in 1953 by Cherry [Cherry53]. Similarly, 

a listener may have to compromise when listening to music. For example, if a wrong 

note is played, but the timbre is consistent, it is less evident to the listener, particularly 

in a fast noted passage. However, should a musician produce an unexpected “squeak” in 

the middle of a phrase it creates a temporary unpleasantness. Tone quality recognition is 

considered to be a type of pattern recognition and a skill a beginner violinist needs to 

develop along with the associated appropriate muscle memory.  

Professional musicians highly develop their sensory perception through training and 

practice which can be thought of functioning as shown in Figure 2.2. Music is not just 

encoded in memory as an aural representation, musical memory is also encoded through 

other means, for example though fingering and bowing patterns, which require muscle 

memory. The development of these muscle memories is reliant on how the sound is 

perceived. This training allows for much more sensitive perception to develop. 
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Although musicians rely on multiple memory types, audition is the most important one, 

and the one which trains the muscle memories.  

Sound
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system
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Figure  2.2: A musician’s sensory system. 

Musical information is transmitted not by independent sounds but rather through 

their relationships. A sound or a note means very little on its own. Every note in a 

phrase has its “weighting”, just like words in a sentence. This is noticeably true for 

basic tasks such as hearing intervals, the distances between notes. Relatively few 

individuals have perfect pitch which is the ability to recognize the pitch name without a 

reference pitch being present. More importantly, music students are trained to listen and 

identify intervals, to develop relative pitch. Observations show that the mechanism for 

identifying intervals is independent of the ability to recognize pitch [Tuiguiane93]. The 

composer Hindemith (1895-1963) correctly pointed out that one must not think of music 

as a series of emitted tones but as a continuum [Hindemith40]. This is important as it 

indicates that humans rely on more than just pitch and tonality to understand music. 

Music psychologists sometimes refer to the mental “coding” that facilitates the 

perception and understanding of music [Narmour92]. The development of this mental 

coding in a violin student is important as it forms their understanding of pitch and 

timbre.  
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2.2  Pitch, Timbre and the Violinist 

From The New Grove Dictionary of Music and Musicians, pitch is “the particular 

quality of a sound (e.g. an individual musical note) that fixes its position in the scale” 

[Sadie01:19:793]. Pitch is a perceptual attribute which is often used to describe a sound 

and timbre is what gives an instrument its characteristic sound. Schönberg captured the 

breadth of what is meant by timbre in stating that “tone colour is the large area of which 

pitch is one division” [Schönberg78]. This section considers pitch and timbre and how 

they specifically relate to violin sound and violinist, encompassing psychoacoustics and 

signal analysis as well as understanding how timbre perception has evolved. 

John Puterbaugh’s chronological timbre line gives an excellent overview of how the 

understanding of timbre perception has evolved over the centuries [Puterbaugh09]. 

Changes in instrument construction, musical style, genre and architecture are reflected 

by this. Already in 1758, Diderot and D’Alambert recorded that timbre was what 

differentiates types of sound [ibid.]. In the late 17th century, Hooke was able to show 

that pitch, as heard by a musician and measured frequency, are quite similar [ibid.]. In 

1937, psychophysicists at Harvard began a series of investigations showing that the 

relationship between pitch and frequency is not one to one [ibid.]. This led to the search 

of a subjective scale of pitch and the subsequent Mel scale emerged. It is a scale judged 

by listeners where notes are of equal distance from one another and relates real 

frequency to perceived frequency [Stevens40]. Pitch and timbre are not independent. 

This is supported by the results of psychological investigations such as those completed 

by Miller and Carterette who researched the effects of pitch on the similarity of tones 

[Miller75]. Timbre is a multidimensional auditory attribute and there have been 

numerous attempts made, based on perceptual experiments using synthesised and 

recorded tones, to understand its underlying dimensionality. Grey worked on spatial 

solutions for representing timbral similarities between musical tones [Grey77]. The 

multidimensional scaling algorithm used in Grey’s paper geometrically maps these 

subjective distance relationships.  

Since the introduction of acoustical spectral analysis, it has become possible to 

observe the partial components of a sound. Harmonic sounds are periodic or 

approximately periodic sounds with a clear pitch salience and a spectral structure in 

which the main frequency components are evenly spaced. Each instrument has its 

characteristic vibration pattern and hence timbre, where certain harmonics are more 
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prominent while others are lacking. This is determined by the instrument body and 

modified by the player. For example, the violin generates many harmonics and produces 

a complex sound while its characteristic frequency resonances are the main reason why 

it sounds similar to the human voice [Winckel67]. Cleveland researched the spectral 

characteristics of timbre types [Cleveland77] and Grey did much work on the spectral 

fluctuation throughout the duration of a tone [Grey77]. The fluctuations are responsible 

for how timbre changes and the note evolves. Partials form an important part in creating 

timbre, as has been documented by Miller and Carterette [Miller75]. The amplitudes 

and frequencies of single partials of a sound spectrum can be changed greatly before a 

distortion of the tone colour is perceived. The psychologist Karl Stumpf (1848-1936), 

who is noted for his research on the psychology of music and tone Tonpsychologie, or 

tonal fusion theory and a major influence on Gestalt psychology, completed 

experiments demonstrating this by masking overtones by interference [Stumpf03]. 

Through signal analysis, it has been found that certain characteristics help create 

timbres, including formant prominence and location, pitch distribution, attack style and 

decay patterns of harmonics.  

Attack style is of great perceptual importance in creating timbre as it contains 

important non-harmonic information which decay quickly but is characteristic of an 

instrument. It has been well documented that cutting the attack and decay transients of 

sounds leads to ambiguity [Miller75]. An instrumental sound of constant pitch and 

intensity loses its character to a certain extent if the attack is removed [Winckel67]. 

During a presentation at the Sonorities Festival at Queen’s University, Bensa 

successfully demonstrated that it was close to impossible to hear any difference should 

the first 20ms of a piano note be dropped [Bensa04]. It was not noticeable at the lower 

frequencies, but to a highly trained ear it was only just about noticeable at higher 

frequencies when listening for it. Whether this holds for bowed stringed instruments 

remains to be seen, but seems unlikely given the results of Miller’s work. A problem 

associated with its investigation is the lack of ability to determine consistently the attack 

period of a bowed stringed instrument note.  

Violin pitch and timbre are not independent as bowing style influences harmonic 

content and pitch stability. Figure 2.3 illustrates the pitch fluctuations due to a fast bow 

attack compared to that of the steady pitch of a legato note on a violin open A string.  
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Figure  2.3: Effect of attack style on pitch. 

The method applied for pitch detection is based on the distance between peaks obtained 

from the spectrum. As can be seen in Figure 2.3, the pitch of the note which was played 

with a much faster attack fluctuates by approximately 10Hz. This has been included to 

illustrate the difficulties associated with getting a computer to differentiate between 

acceptable pitch fluctuations and poor intonation for violin sound.  

Another cause for acceptable pitch fluctuations is vibrato which is “the wavering 

effect of tone secured by rapid oscillation of a finger on the string which it stops” 

[Auer80:22]. Some research has been completed on the relationship between vibrato 

and pitch [d’Allessandro94, Brown96, Harrera98, Shonle80]. Detuning in the musical 

range is rendered less noticeable by vibrato, which causes pitch uncertainty. A 

psychoacoustics study confirming this common “musician’s knowledge” is presented in 

[Yoo98]. A very slight detuning within the spectral structure of sound seems to be 

evaluated as a positive sensation in the ear.  

2.3 Violin Sound and Helmholtz Motion 

Violin playing technique shapes the timbre produced and is dependent on the collective 

behaviour of several vibrations, which may be weakly or strongly coupled together. The 
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physics of the violin are very complex due to the very large number of variables 

influencing the sound. These variables range from the thickness of the wood used to the 

humidity of the air and are the constraints within which the player must work. Another 

group of variables are semi-fixed, i.e. choice of strings, quality of hair, type of rosin 

used etc. The next set of variables reflects how the instrument is played. For example, 

the relationship between the location and positioning of the bow on the string and sound 

produced. Central to this is how Helmholtz motion is established and maintained along 

a string by bowing technique.  

When the bow is drawn correctly across the string, a rich harmonic spectrum can be 

maintained. On a vibrating string, Helmholtz observed a “V” shape moving along the 

string. This is known as the “Helmholtz Corner”. When this “corner” reaches the bow, 

the friction switches from stick to slip. In an ideal situation, this cyclical switch between 

these different types of friction is known as Helmholtz motion. A simulation of this 

motion can be observed at Professor Joe Wolfe’s web pages [Bows09]. This motion can 

be observed by using an oscilloscope and a strong magnet to induce a current along the 

string as described in [Woodhouse04]. This approach has been used by Wilson, in his 

work towards extracting violin performance information, specifically Helmholtz motion 

and how it is characterised by the speed at which the bow is drawn across the string 

[Wilson02]. Figure 1 in [ibid.] illustrates Helmholtz string displacement ranging from 

ideal to chaotic. Wilson’s results prompted observing the effect bowing technique has 

on Helmholtz motion by emulating these experiments, the results of which are presented 

below.  

The effect bowing technique has on Helmholtz motion is investigated through 

observing it in a set up similar to that detailed in [Woodhouse04]. The violin was placed 

on the table and oscilloscope connected to a string as shown in Figure 2.4. In this set up 

a nickel plated Neodymium magnet was used to induce a current along the string. 

Legato bow strokes as well as beginner bowing faults which have been described in the 

previous chapter, are emulated and the effect on the induced current observed. The 

limitations of the set up are that the violin cannot be played in its regular position, held 

under the chin and the data recording equipment, TiePie Engineering Handyscope HS4 

version 2.85 [TiePie09], only lets segments of up to 2.5 seconds be recorded at a time. 

The results obtained are presented next.  
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Figure  2.4: Set-up for observing Helmholtz motion. 

2.3.1 Effects of Bowing Technique on Helmholtz Motion 

In this section, the following figures display the effect of different bowing styles on the 

Helmholtz motion taken using the set up shown in Figure 2.4. According to Fletcher and 

Rossing, the characteristic Helmholtz waveform for a bowed string is a saw tooth 

waveform [Fletcher98]. In Figure 2.5, the effect a legato bow stroke has on the voltage 

readings is illustrated. The friction types switch evenly giving a regular shape but not 

quite the saw tooth waveform expected.  
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Figure  2.5: Helmholtz motion legato bow stoke. 

In Figure 2.6, the voltage readings for a section of forced playing are given and no 

regular pattern is easily discernable. What has been termed by Fletcher and Rossing as 

“multiple fly back” motion is visible. This refers to the theoretical single return section 

of the Helmholtz motion being replaced by many “fly backs” with alternating signs.  
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Figure  2.6: Helmholtz motion forced note section. 

When the bow is drawn at an angle across the string and “skating” is emulated, the 

effect on voltage readings is illustrated in Figure 2.7.  
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Figure  2.7: Helmholtz motion effect of emulated skating. 

If not enough force is applied to the string, the bow cannot hold the string during the 

“stick” part of the cycle and the typical periodic Helmholtz motion does not develop. At 

the other end, should too much force be applied to the string, a slipping phase cannot be 

started consistently and therefore the cyclical stick-slip motion cannot be continued. 

Comparing the voltage readings between these three figures, the emulated skating bow 

stroke has the lowest voltage levels. Schelling estimated maximum and minimum 

Helmholtz motion limits [Askenfelt89], outside of which, the cyclical stick-slip motion 

cannot be maintained. This is relevant as below a certain level, the bow cannot hold the 

string during the sticking phase. Too much force causes the stick-slip oscillations to 

break down due to difficulty in starting the slipping phase. 
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From conducting this experiment, it can be shown that Helmholtz motion is effected 

by bow stroke style but good sound is not strictly limited to the ideal Helmholtz motion. 

This observation is supported by existing research and is best summed up by 

Sacksteder: “although many aspects of Helmholtz resonance have been observed, 

measured and calculated for centuries, there seems to be no clear consensus about how 

to relate it to the foundations of acoustics” [Sacksteder87]. As interesting as these 

results are, the approach is not practical for obtaining violin timbre features for use in 

this work because they cannot be easily extracted and used in a classifier. Even if a 

more user friendly set up were to be designed, the issue remains as any information 

obtained through this set up is in real-time and not compatible for use in a classifier 

using feature vectors. However, this is the first exploration of the effects of bad violin 

playing using such an approach. 

2.4 Summary 

The difficulties and complexities associated with understanding and representing the 

human auditory system, auditory perception, in particular musicians’ trained hearing 

and current research have been presented in this chapter. It focuses on musicians’ 

training and perception, the effect playing technique has on timbre, pitch and Helmholtz 

motion. Inducing a current along a bowed violin string allowed Helmholtz motion to be 

observed. The effects of legato bowing and emulated playing faults of forcing and 

skating have on the Helmholtz motion have been displayed. Emulating these faults 

shows that the conditions under which a cyclical stick-slip motion exists cannot be 

maintained due to poor bowing technique. Although informative, the results obtained 

from this Helmholtz motion study are not practical for extracting violin timbre features. 

To carry out the research aims of detecting overall violin note sound quality and playing 

faults, finding a suitable way of representing violin notes which reflect the change 

perceived by musicians is needed. This begins with considering the expressions used by 

musicians to describe violin sounds and finding note samples which can be linked to 

these expressions. The next chapter details the violin note dataset and the listening tests.  
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3 The Dataset and Listening Tests 

In the previous chapter, research relating to sound analysis and psychoacoustics has 

been presented with some of the difficulties associated with defining pitch and timbre 

quantitatively. The aims set out in this thesis focus on how violin sound can be 

represented so that a system capable of differentiating between beginner and 

professional standard players as well as identifying playing faults is established. At the 

time of this work, no research existed on exploring the acoustic violin timbre space 

from a playing technique and sound analysis perspective. Existing work assumes good 

sound or that associated with a professional standard of violin playing from acoustics 

[Hutchins97, Fletcher98], to information retrieval [Wilson02] and timbre classification 

[Agostini01, Eronen00]. Information relating specifically to overall violin note quality 

and playing faults is sought. Apart from representative measures, qualitative expressions 

describing the sounds are needed as well as a means of linking the two together. For this 

to occur, a suitable dataset with qualitative labels must be acquired which meets the 

requirements set out by the thesis’ aims. In this chapter, the dataset requirements are 

outlined, information about existing instrument samples and how the dataset was 

obtained are detailed. This is then followed by the listening tests run. 

3.1 Dataset Requirements 

The research aims, as set out in Chapter 1, involve establishing a system capable of 

identifying beginner note samples from professional standard legato ones as well as 

detecting playing faults. At the time of this research, no dataset consisting of beginner 

violin notes existed so one had to be made which includes corresponding professional 

standard legato note samples. Having a suitable dataset on its own is not sufficient and 

the opinions of professional string players regarding overall sound quality and 

descriptions of the samples are sought. Musicians often use qualitative or onomatopoeic 

terms to explain a desired effect or playing fault. Some such examples include 

crunching, where the player uses too much bow pressure and as a result the sound 

cracks and skating, where the bow is drawn across the string at an angle causing the 

bow to skid along the string. The question arises as to how to quantify such terms. This 

requires a dataset in which each sample has been assigned its appropriate qualitative 



The Dataset and Listening Tests   28 

expression label(s). A dataset comprising of equal numbers of professional standard 

player and beginner player note samples is needed. The professional standard player 

note samples serve as a reference to which the beginner notes can be compared. The 

bow stroke used for these reference samples is legato, which is the bow stroke a 

violinist must master before progressing onto other strokes which require more bow 

control, such as staccato. It is appropriate to consider a robust system for fault detection 

and one that is not dependent on sample length or pitch as these two descriptors are 

different for most if not all samples. The ultimate aim is to find features which can be 

applied to the note independent of its length or pitch and which can be used for 

representing the violin timbre space to which qualitative expressions have been assigned 

through listening tests. Both beginner and professional standard player samples need to 

be collected in the same environment using the same equipment. This keeps the dataset 

as uniform as possible and by using the same instrument and set up, the number of 

variables has been reduced allowing the work to focus on playing characteristics by 

making the recordings more readily comparable.  

3.2 Available Datasets 

Having considered the dataset requirements as set out by the thesis aims, some 

information relating to existing instrumental sample collections is now given. Many 

commercial instrument sound sample libraries such as the Vienna Symphonic Libraries 

[VSL09] and samples from the London Symphony Orchestra Samples [LSO09] are 

available. Several professional standard recordings of different orchestral instruments 

are available free of charge from the Electronic Music Studios at the University of Iowa 

[UofI09]. The Real World Computing (RWC) Music Database also provides 

instrumental samples including violin samples [RWC09]. McGill University has 

produced a CD consisting of musical instrument samples which is available for 

purchase [McGill09]. As with seemingly all sample libraries easily available for 

download, individual violin legato notes are included but no beginner note samples are 

available. At the outset of this research, no database consisting of both professional 

legato and beginner violin note samples existed and the dataset requirements for this 

work are still not met by available instrument sample collections. In the following 

sections, the instrument used, the recording process and dataset samples are presented. 
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3.3 The Recording Set Up and Dataset Samples 

The dataset was made using the best microphone available in a recording studio having 

a very dead acoustic. A Beyerdynamic M201TG dynamic microphone with 

hypercardioid polar pattern was used and placed as close as possible to the f-holes 

without disturbing the bow arm. The track was recorded onto DAT and saved as 

monophonic 16-bit, 44.1 kHz format wav samples. The same recording studio, set up, 

violin and bow were used for recording all samples in the dataset.  

An old French violin was used with a modern, 60g well-balanced bow. It is a 

relatively large violin which speaks easily and evenly throughout its frequency range 

and has a big, clear sound. It is an instrument that a beginner is able to play easily. At 

the time of these recordings, the strings on the instrument were Thomastik Dominant 

Mittel for the G, D and A strings and a Pirastro Oliv E string. 

The dataset made consists of 88 beginner note samples and 88 professional standard 

legato notes. Each sample contains one note only and the average sample length is 

1.88s. The pitch range of the dataset is any note which is played in the first position, 

which is the lowest possible position on the violin, i.e. open G3 to B5, fourth finger on 

the E string. Two professional standard players and three beginner players recorded 

samples. The player breakdown for the beginner samples is as follows: 18 from player 

one, 19 from player two, and 51 from player three. For the professional standard legato 

notes, 44 samples were taken from each player. The next step involves labeling the 

dataset as perceived by professional musicians. Through these opinions, qualitative tags 

will be associated with each sample. The listening tests used to source these labels are 

detailed in the following section.  

3.4  Listening Tests   

The research aims are to find a system capable of detecting overall violin sound quality, 

i.e. professional standard versus beginner and playing faults. One important part of this 

involves finding suitable quantitative representations of violin sounds. Another part is to 

capture professional standard musicians’ perceptions of violin sound quality and 

appropriate descriptions. The latter requires listening tests to be conducted which are 

designed to collect this information. Musicians often use qualitative expressions to 

describe sound. In an attempt to meet the research aims, these expressions need to be 

linked to one or more samples in the dataset. Once this information has been gathered, a 
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way of representing the samples by quantitative measures can be undertaken. The 

dataset is to provide a means by which the qualitative expressions and quantitative 

measures can be bridged together via the listening tests.  

The listening tests target professional violinists in particular but to increase 

numbers, cellists and violists have also been included. Many of the sound faults, due to 

bowing technique on the violin have an equivalent on other bowed stringed instruments. 

The listening group consisted of 21 string players, 19 of whom are professional 

musicians, performing and teaching and the other two are violinists of professional 

standard of playing, but are not making a living as musicians. More specifically, the 

group consists of 11 violinists, one violist, four cellists, and five musicians who play 

both violin and viola.  

 

Figure  3.1: Document explaining listening test terms. 

 
Listening Test Terms Explained 
 
1. Terms associated with overall timbre quality: 

(Listener to select only one) 

very poor   → significant playing fault/s dominates sound 

poor    → playing fault/s present in sample 

reasonable  → sound is predominantly good,  contains a small playing fault  

reasonable no fault  → sound is good but there is room for improvement in the timbre. 

good     → no playing faults, good confident sound 

excellent   → note where instrument is perceived to resonate at its best 

2. What is meant by the terms associated with sound characteristics: 

(Listener may select as many as appropriate) 

Crunching   → the sound breaks due to too much bow pressure occurring anytime within the duration

of the note. 

Skating/whisping/whistling  → sound due to bow being on an angle and skidding down the string as opposed to going 

across it.  

Uncommitted/nervous sound  → player ‘chickens’ out, not enough pressure, poor contact with string, sound may be 

reasonable, but fluctuations in timbre or pitch can be perceived 

Intonation problem  → not in tune 

Bouncing bow  → poor bow control and tension in bow arm leading to the bow bouncing along the string 

(right hand vibrato). 

Tips another note or string 

Ends too suddenly 

Poor finish to note   → not clean finish due to lack of bow control, may include faults such as crunching 

Poor start to note   → not clean start due to lack of bow control, may be hesitant, may include faults such as 

crunching. 

Good    → no noticeable faults 
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Listening tests have been devised so that each sample has at least one qualitative 

expression, an overall quality grade of between 1, poor and 6, excellent as well as a 

beginner or professional player label. The outcome of these listening tests provide the a 

priori labels for the classification process from which perceptual correlates for violin 

timbre may be established. The listeners received no training, only a copy of the 

explanation of the terms and of the testing procedure steps, copies of which can be seen 

in Figure 3.1 and Figure 3.2 respectively.  

 

Listening Test Instructions 

 

1. Listen to note once. Test progresses at your speed.  

 

2. Column 2: Grade the overall sound quality between 1 and 6 where 

1 - very poor  

2 - poor    

3 - reasonable   

4 – reasonable no fault  

5 - good   

6 - excellent 

NB: selecting good or excellent implies no tone fault; reasonable no fault, the sound is predominantly good with no 

distinct fault but could be better; reasonable implies that there is a disturbance in the tone at some point; poor has 

at least one fault and very poor contains multiple faults. 

 

3. Column 3: Please associate sound with a beginner or a professional player. 

 

4. Column 4: Please tick as necessary the sound characteristics which best describe the note. NB: a sound may contain 

more than one of these characteristics.  

□ crunching 
□ skating/whisping/whistling 
□ uncommitted/nervous sound 
□ intonation problem 
□ bouncing bow 
□ tips another note or string 
□ ends too suddenly  

    □ poor finish to note 
    □ poor start to note 

□ good (no noticeable faults) 
 

5. Column 4: Please add in any additional comments about the sound which you feel have been omitted by the 

previous sections in this final column.  

Figure  3.2: Listening test instructions document. 

The speed at which the test progressed was controlled by the listener, but each 

sample can only be played once. AKG K240 “Monitor” headphones [AKG09] were 

used and samples were accessed and played through Matlab [Matlab04]. As soon as the 

listener activated the testing/listening program, a random play list was generated 

consisting of all samples from the dataset. The exact list for each listener only became 
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available at the end of the listening test. Each listener completed a box as shown in 

Figure 3.3 for every sample. After the test data had been collected, the consistency of 

the results was inspected, after which normalising this information provided the a priori 

labels required in the classification process.  

As can be seen from Figure 3.3, the listeners could leave comments. The comments 

received from the listeners fall into two groups. The feedback either specified the 

approximate temporal location of the fault, i.e. slight crunch in middle, or related to the 

sound quality of individual samples where the listener felt that the existing descriptions 

were lacking in detail. When asked how they (the listeners) perceived a sound to be 

produced by a beginner player rather than a professional standard player, when no 

distinct faults are present, the replies all referred to either intonation, note texture, to the 

relative proportions of the note or to overall consistency or balance. The listeners were 

not given the option of replying “do not know” relating to the beginner or professional 

player choice and were deliberately forced into making a decision by the listening test 

format. Several listeners did point out that they genuinely found making this decision 

very difficult for three or four samples. Another point that was raised by the listeners is 

the specific case where a sound is marked as being “faultless”, an overall quality rating 

of 4, but still is associated with a beginner player. The term “a good beginner sound” 

emerged. The listening tests provided much information which had to be checked for 

consistency, then normalised to create an average listener, a process which is presented 

in the next section.  

 

 # Overall Quality Beginner or Professional?  Sound Characteristics 
(please tick as necessary) 

Any Additional Comments 

  
 

 □ crunching anytime during note 
□ skating/whisping/whistling 
□ uncommitted/nervous sound 
□ intonation problem 
□ bouncing bow 
□ tips another note or string 
□ ends too suddenly  
□ poor finish to note 
□ poor start to note 
□ good  

 

  

Figure  3.3: Copy of listening test form for each sample. 

3.5  The Average Listener 

The main reason for running listening tests is to establish an average or normalized 

listener, a ground truth, for use as a priori labels in a classifier. Before creating a 
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normalized listener, the listeners’ perception is verified for consistency. Consistency in 

this case involved checking that the range of grades obtained for each sample is 

acceptable, i.e. no one sample has grades returned of both 1 and 6 by the listeners. 

Should this happen, a mistake has been made or a problem exists with the test design or 

procedure indicating that new listening tests would be required. Fortunately, this was 

not the case. The range and mean grade for each sample are displayed in Figure 3.4 

where the mean is shown by an asterisk.  

 

Figure  3.4: The listening group’s overall sound quality grading range. 
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The sample numbers in this figure represent the beginner and professional standard 

legato note samples in alphabetical order. This is because the test sample order was 

randomised for each listener. Knowing this, allows for a clearer understanding of the 

grouping shown in Figure 3.4. The numbering of the dataset is as follows: samples one 

to 29, professional standard samples, samples 30 to 47, beginner notes, samples 48 to 

106, professional standard notes and from sample 107 to the end, are beginner notes. 

Consistency, having been found to be acceptable, means that these results can be used to 

provide the a priori labels required in the classification process.  

In addition to giving an overall sound quality grade to each sample, the listeners had 

to state whether the sample was produced by a beginner or by a professional player. Out 

of the 176 samples, 94 have been labelled “beginner” and the remainder “professional”. 

There are six professional standard legato note samples which have been labelled as 

beginner which are detailed in Table 3.1. Of these samples, the two with the lowest 

quality grades are to be noted as the quantification of these samples is of particular 

interest comparatively to the other samples in the dataset.  
Sample No. Grade  Beginner/professional? Faults perceived? 
Legato 24 4.2857 Beginner  bow bouncing 
Legato 47 4.3333 Beginner  none 
Legato 50 4.2381 Beginner  none 
Legato 52 3.619 Beginner  none 
Legato 56 4.3333 Beginner  none 
Legato 71 3.8095 Beginner  none 

Table  3.1: Professional standard legato note samples labelled as “beginner”. 

For Task II, fault identification, consistency was also verified for fault presence in 

much the same way as for Task I and the results were found to be acceptable. From the 

listening tests, Table 3.2 gives the number of times each fault is recorded as having been 

perceived. The results shown are taken from the mean perception which has been 

obtained by summing up the number of times a fault is identified by all listeners in a 

sample and divided by the number of listeners. Based on these results if a majority of 

players had perceived the fault presence, the fault is considered to be present. Fault 

three, which is “nervousness”, is the most prevalent fault in this dataset.  
Fault No. of Samples Present 

crunch 33 
skate/whistle 30 
nervousness 57 

intonation 30 
bow bounce 16 

extra note/sound 15 
sudden end 30 
poor start 24 
poor end 37 

Table  3.2: Breakdown of fault perceived presence in dataset. 



The Dataset and Listening Tests   35 

 

Figure  3.5: Mean perceived faults in all samples, same sample order as in Figure 3.4. 

In most samples, more than one fault is present as can be seen in Figure 3.5 which 

shows perceived fault presence in all samples. Some interesting observations can be 

drawn from the results displayed in Figure 3.5. Faults bow bouncing and extra note have 

not been perceived as being present together in any sample. Given the descriptions 

assigned to these faults, this is good because sometimes a bow bounce can be perceived 

as an extra note and vice versa. In these recordings, it has to be one or the other, not 

both simultaneously. In this dataset, faults mostly appear together rather than 
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independently, as summarised in Table 3.3 where only 16 samples have been identified 

as having one fault.  

As displayed in Table 3.3, playing faults crunch, skate, intonation and poor start 

have not been perceived as occurring independently. “Poor finish” has occurred on its 

own in three samples. Of the 33 samples which have crunching, 30 of them also contain 

sudden end, and/or poor start, and/or poor finish, supporting the previous statement. 

Crunching tends to occur more often at the starts and ends of notes. Skating always 

occurs with player nervousness in this dataset, but the reverse does not always hold. To 

better illustrate multiple fault occurrences, Table 3.4 gives the percentages of samples 

containing the two indicated playing faults. 
Fault Perceived Independent Fault Occurrence 

crunch 0 
skate/whistle 0 
nervousness 3 

intonation 0 
bow bounce 3 

extra note/sound 1 
sudden end 6 
poor start 0 
poor end 3 

Table  3.3: Perceived independent fault occurrence. 

 CR SK NV INT BB XN SE BAD S BAD E 
CR 100 45 75.76 48.48 12.12 18.18 39 48.48 67 
SK 50 100 100 46.67 20 33.33 26.67 46.67 53.33 
NV 43.86 52.63 100 43.86 19.3 22.81 26.32 40.35 43.86 
INT 53.33 46.67 83.33 100 13.33 16.67 46.67 46.67 46.67 
BB 30.77 37.5 69 30.77 100 0 12.5 19 19 
XN 40 67 86.67 33.33 0 100 0 53.33 67 
SE 43.33 26.67 50 46.67 6.67 0 100 16.67 23.33 
BAD S 67 58 95.83 58 12.5 33.33 20.83 100 87.5 
BAD E 59.46 43.24 67.57 37.83 8.11 27.03 18.92 46.67 100 

Table  3.4: Percentages overlapping faults. 

3.6 Summary  

The dataset requirements needed to fulfill this thesis’ aims have been outlined and 

information relating to how the dataset was obtained including players, instrument, set 

up and recording process have been detailed in this chapter. Information relating to 

available violin note samples has also been included. Working towards the thesis’ aims 

relies on being able to establish a link between the qualitative and the quantitative 

descriptions of violin timbre. This involved listening tests through which, each sample 

was assigned a label linking it to one or more of the playing expressions used by 

musicians, given an overall sound quality grade between 1, for poor and 6, for excellent 

as well as a beginner or a professional player label. This allowed the subjectivity to be 
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removed and a sense of professional string player perception to be documented. Most 

importantly, an average listener has been established by first checking then normalising 

the listeners’ perception of the dataset. These results are to be used as the a priori labels 

for use in the classification process. Now that qualitative labels have been assigned to 

each sample, methods of representing the dataset via quantitative measures will be 

presented. In the next chapter, the effect of violin playing technique on waveform and 

timbre is illustrated, after which, in subsequent chapters, suitable quantitative measures 

are sought for representing the dataset.  
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4 Effects of Violin Playing on Waveforms and Harmonic 

Content 

So far in this thesis, background information pertaining to the thesis’ aims of getting a 

computer to classify violin sound quality and to detect playing faults has been detailed. 

This includes the dataset and listening tests for the proposed tasks which have been 

presented in the previous chapter. The dataset consists of an equal number of beginner 

note and professional standard legato note samples over a range of pitches. In this 

chapter, the relationship between playing characteristics due to poor playing technique 

and their observed effect on waveforms is presented. As multiple playing faults are 

possible, this work has been limited to nine faults found in five main categories. These 

five fault categories reflect the main waveform disturbance patterns and locations 

observed. They are onsets, offsets, amplitude, unevenness, and asymmetry. The 

qualitative fault descriptions used in previous chapters are discussed in terms of playing 

technique and fault category in this chapter. In Section 4.1, each fault category is 

presented individually summarised in Section 4.2.  

4.1  Main Playing Faults Categories 

From visual inspection of the dataset’s waveforms, much variability is observed within 

the waveforms produced by both professional and beginner violinists. The beginner note 

waveforms though show much greater variability. Standard waveform analysis can 

rarely be applied as identifying the different sections (attack, steady-state, decay) of a 

violin note from its waveform alone, is difficult. Beginner notes often have certain 

unwanted characteristics, some of which are visually discernable in the waveform. 

These characteristics have been grouped from visual inspection into five categories: 

onset, offset, amplitude, unevenness and asymmetry around the abscissa. The first four 

categories are directly related to bow control. The causes for the non-symmetry visible 

around the abscissa in certain samples are not known precisely but are most likely 

linked to the player’s bow-technique, effecting the sound produced. As the playing 

faults being considered result from poor bowing, they are not independent. This means 

that more than one fault is often present at the same time. This section considers each 
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fault category individually and professional standard player note waveforms are 

contrasted with those belonging to beginner players. In each category, its associated 

qualitative expressions are detailed. For the actual classification tasks, the faults are 

named using their qualitative descriptions.  

4.1.1  Onsets 

Onset refers to the start of a musical note. The onset or attack is very important for 

establishing an instrument’s timbre. How onset style effects a note’s waveform and 

harmonic structure are presented below. A stringed instrument has different types of 

attacks, reflecting different string excitations. In Figure 4.1, the waveforms of three 

standard violin onsets are given. The sudden attack of a plucked note, the quick attack 

of a fast bow stroke and the gradual onset of a legato note are illustrated.  
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Figure  4.1: Three standard violin waveform onsets: plucked note (top), fast bow 
stoke (middle) and legato note (bottom). 

Bowed stringed instruments have two types of onsets, separate and slurred notes. 

Separate means a bow change occurs and slurred implies that at least two notes are 

played in the same bow stroke. The effect of these different onsets on their waveforms 

is illustrated in Figure 4.2. Spectrograms have been included to help visualise the pitch 
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changes. Although the same pitch is played throughout the right hand images in Figure 

4.2, the effect of changing the bow smoothly is observed. The notes played in the 

sample on the left are A3 B3 A3 B3 A3 B3.  
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Figure  4.2: Note changes waveform and spectrogram (left) and bow changes waveform 
and spectrogram (right). 

 

The waveform attack section of a professional standard legato note onset compared 

to that of a beginner’s note displayed in Figure 4.3, illustrating the relative waveform 

smoothness of the legato note sample. A beginner violinist lacks the bow control 

necessary to achieve clean and precise onsets resulting in the note not being fully 

established. Too much bow pressure is often used which leads to “crunching”. If not 

enough pressure is applied and the note is not started cleanly, there is unwanted noise 

present which is not specifically “crunching”. This effect is referred to in this work as a 

poor start. The waveforms of various violin note onsets have been illustrated. The effect 

of different onsets have on the harmonic content is presented next. 
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Figure  4.3: Professional standard legato (top) and beginner (bottom) note onsets. 

The time-frequency representations of the samples illustrated in Figure 4.1 are given 

in the following two figures. Their spectrograms and CQT representations are displayed 

in Figure 4.4 and Figure 4.5 respectively. The spectrograms shown in Figure 4.4 are 

STFT based and have been obtained by using a 1024 point window Hamming with 50% 

overlap. The samples in this figure are not the same length, so only the section 

comprising of the first 1.5s of the professional standard legato note (bottom image) is 

used in Figure 4.4 and Figure 4.5. In the spectrograms of the fast bow stroke (middle 

image) and the legato note (bottom image), more harmonics are excited for longer 

resulting in very different timbres to each other and to the plucked note spectrogram. 

The evolution of harmonics over time reveals much about the sound. Richer harmonic 

content can be seen in the legato note sample compared to the fast bow stroke and 

plucked note samples. The plucked note has the most sudden attack (top image) and 

comparatively few harmonics are excited and those that are, dissipate immediately. A 

similar temporal evolution of the harmonics is observed in the CQT representations of 

these samples which are illustrated in Figure 4.5.  
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Figure  4.4: Spectrograms of Figure 4.1 waveforms. 

From the qualitative terms used in Chapter 3, beginner player onsets are associated 

with crunching and poor start to the note. These are typical beginner onset faults and are 

caused by an inappropriate amount of bow pressure being applied. Beginner players 

often crunch at the start and end of notes. This crunching is due to stiffness in the bow 

arm and hand which does not allow bow pressure to fluctuate with respect to the bow’s 

speed and position along the string. The arm should be relaxed and supple but firm, 

hanging from the shoulder, letting the shoulder muscles do all the work. Also linked to 

this stiffness problem are poor bow hold and lack of “feel” for the bow which is learned 

over time. The “feel” of the bow refers to the confidence and experience the player has 

with their technique to be able to alter effects such as pressure, angle and speed with 

smoothness and ease. These three elements are the right arm expression tools and they 

depend on a loose, relaxed bow arm. A poor start is not a clean start and has more to do 

with hesitation but does not go as far as crunching and is not easily visible on a 

waveform. To avoid crunching, Auer advises “hold[ing] the bow lightly, yet with 

sufficient firmness to be able to handle it with ease [and to resist from] bring[ing] out a 

big tone by pressing the bow on the strings” [Auer80:20]. To increase the tone, finger 
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pressure not arm-pressure should be applied “thus avoiding forcing the tone which 

otherwise grows rough” [Auer80:21], i.e. crunching.  
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Figure  4.5: CQT representations of Figure 4.1 waveforms. 

An example of the effect a beginner player’s onset crunching has on the waveform 

and CQT representations is illustrated in Figure 4.6. Crunching results in patchy 

harmonic evolution and unwanted frequencies, visible in the CQT representation up to 

about 0.45s in this figure. This beginner sample has been assigned, via the listening 

tests, an overall sound quality grade of 1.14 out of 6, where 6 is excellent. The 

qualitative fault terms associated with this sample are crunching, skating, nervousness, 

bad start and poor end. The comparative overall smoothness of a professional standard 

legato note waveform (top image) and its CQT representation (bottom image) are 

displayed in Figure 4.7. The harmonics evolve more evenly and consistently, reflecting 

a good onset and the note being established and maintained smoothly.  
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Figure  4.6: Beginner note waveform (top) and CQT representation (bottom) with 
crunching during onset. 

To further contrast the difference in timbre between a professional standard legato 

note sample and that of a beginner, the spectra of two such samples are displayed in 

Figure 4.8. The same number of harmonics is present in both samples but the harmonics 

are much less developed in the beginner note sample’s spectrum. From the listening 

tests, this beginner note sample contains crunching. Crunching causes the harmonics to 

spread out more and become less well defined as additional frequencies are present. The 

qualitative term crunching is associated with the presence of unwanted frequencies in 

the sound. Investigating the sonic properties of crunching further, the effect deliberate 

crunching or forcing has on the waveform, spectrum and CQT representations is 

illustrated in Figure 4.9. Much unwanted harmonic content is present and visible 

between the harmonic peaks in the sample’s harmonic spectrum (middle image) and its 

waveform (top image) lacks smoothness. Rippling and inconsistency of harmonic 

development is visible in its CQT representation (bottom image), in particular during 

the onset period. 
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Figure  4.7: A professional standard legato note sample waveform (top) and its CQT 
representation (bottom). 
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Figure  4.8: Spectra of a professional standard legato (top) and a beginner (bottom) A440 
note samples. 



Effects of Violin Playing on Waveforms and Harmonic Content  46 

0 0.2 0.4 0.6 0.8 1 1.2
2
4
6
8

x 10-3

Time in s

A
m

pl
itu

de

Waveform

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10
15

Frequency Hz

M
ag

ni
tu

de

Spectrum

Time in s

Fr
eq

ue
nc

y 
B

in
(F

re
qu

en
cy

 H
z)

CQT 

0 0.2 0.4 0.6 0.8 1 1.2
0  

100 (460)

200 (1947)

300 (8252)

2

4
x 10-4

 

Figure  4.9: Effect of forcing on a note’s waveform (top), harmonic structure (middle) 
and CQT representation (bottom). 

Violin playing has many different onset styles which help create a note’s harmonic 

spectrum and hence timbre, as has been illustrated in this section. The qualitative faults 

often associated with beginner note onsets include crunching and poor starts which are 

due to poor bow control which, in theory, can be detected based on the presence of 

unwanted frequencies which have been shown to be visible in the time-frequency 

representations. Offsets and the types of faults to which they are susceptible, are 

presented in the following section.  

4.1.2  Offsets 

Offset refers to the end of a musical note and the effect playing technique has on offsets 

is presented in this section. Onsets and offsets are similar in that both are susceptible to 

similar or equivalent types of qualitative faults. Just as for onsets, there are different 

offsets: full offsets and partial offsets. A full onset is where the note is allowed to 

resonate and fade away without any restriction or is ended deliberately by the player. 

This type of offset occurs at ends of phrases or before rests. A partial offset is when the 
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propulsion of a note played is continued into another note. This work focuses on full 

offsets only as work is being carried out on individual note samples.  
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Figure  4.10: Legato note offset. 

The waveforms of the offsets of a plucked note and a fast bow stroke are displayed 

in the top two images in Figure 4.1. The corresponding legato note offset is illustrated in 

Figure 4.10. The legato note sample has the most gradual offset.  
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Figure  4.11: Spectrogram of legato note offset. 

Bow speed and whether or not the note is let ring out effects the offset. The 

spectrograms and CQT representations of the plucked and fast bow sample offsets are 

shown in the top two images in Figure 4.4 and in Figure 4.5 respectively. The 

corresponding legato note offset spectrogram and CQT representations are displayed in 

Figure 4.11 and Figure 4.12.  
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Figure  4.12: CQT representation of legato note offset. 
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The effect different offset styles have on their harmonic content is displayed in these 

time-frequency representations. The onset establishes a note’s harmonic content and 

offset. In the plucked note and fast bow stroke samples, the string is released completely 

allowing the offset to fade out quickly and naturally. In the legato note sample, the bow 

is kept on the string and the note is let taper off. 
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Figure  4.13: Professional standard legato (top) and beginner (bottom) note offsets. 

Offsets, like onsets, cause bow control issues for beginner players, often resulting in 

both categories having very similar sound problems. Crunching and ending the note too 

quickly or poorly are qualitative fault descriptions which can be given to many beginner 

note offsets. An offset is dependent on the note’s excitation as well as the extent of the 

bow’s release of the string and is important in shaping a note’s overall sound. How 

much a bow is released is determined by style and tempo. A fast tempo usually requires 

a full release, whereas a slower one, the note is tapered and the bow is kept on the 

string. Acceptable offset characteristics, regardless of style, require smoothness and the 

sound needs to die out at a reasonable speed, i.e. it should not be crunched or stopped 

suddenly as is apparent in some of the beginner note samples. One example of the 
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observable waveform differences between a professional standard legato and a beginner 

note offsets are displayed in Figure 4.13, where the waveform smoothness of the top 

image can be contrasted to that of the beginner note in the bottom image. This beginner 

sample has been associated with the qualitative expressions of crunching and a poor end 

via the listening tests and has an overall grade of 2.19 out of 6.  
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Figure  4.14: Waveform (top) and CQT representation (bottom) of beginner A440 note 
with crunching at start and end. 

The following figure, Figure 4.14, illustrates the waveform and CQT representations 

of a beginner A440 sample which has been identified by the listeners as having 

crunching at the start and end of the note. The rippling effect is clearly visible in certain 

frequency bins reflecting the note’s harmonic content in the CQT representation, at the 

start and more noticeably towards the end of the note. Additional, undesired frequency 

content, such as the two blotches below left of the first harmonic, which is the first dark 

line in the lower image in Figure 4.14, is present. The note played in this sample is C 

above A440, giving it a fundamental of approximately 515.75Hz which is bin 108 in the 

CQT representation. The two blotches are centred on frequency bins 62 and 98 which 

have centre frequencies of 62.29Hz and 452.89Hz respectively. These frequencies and 



Effects of Violin Playing on Waveforms and Harmonic Content  50 

their neighbouring frequencies are not related the sample’s fundamental frequency. 

Unwanted frequencies aside, the inconsistency of how the sample’s harmonics are 

maintained is visible by the rippling effect along the frequency bins.  

Playing faults such as crunching and poor end are often present in beginner note 

offsets and are similar to those occurring during the onset. They too are caused by poor 

bow control and stiffness in the bow arm. The next section details waveform amplitude 

and its associated qualitative faults.  

4.1.3  Amplitude 

Large and more sudden changes in amplitude are often observed in beginner note 

sample waveforms. Significant variation in amplitude levels is often visible in the 

waveforms of beginner note samples compared to those of professional standard legato 

ones as exemplified by Figure 4.15.  
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Figure  4.15: Waveforms of professional standard legato (top) and beginner (bottom) 
note samples. 

Visually the most noticeable details about these two samples relate to amplitude and 

overall waveform smoothness. The professional standard legato note waveform 
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increases in amplitude relatively gradually, maintaining smoothness, whereas there is 

more noticeable “ripples” present along the beginner note’s waveform. The beginner 

note sample is reported to crunch at the beginning after which its waveform increases 

relatively suddenly in amplitude. 

A beginner must learn the acceptable pressure range for drawing a bow along a 

string. Too much pressure gives rise to “crunching” and too little at the wrong angle 

results in a “whisping” or a “skating” effect in the sound. A bow hand that is too stiff 

results in the bow bouncing along the string, which occurs in the sample illustrated in 

Figure 4.16. Waveform amplitude is affected by bowing technique and typical 

qualitative faults reflected by changes in the waveform amplitude include crunching, 

skating, amplitude level changes and bow bouncing. Crunching and forcing result in 

spiky waveforms caused by sudden changes and jumps in waveform amplitude, which 

have an effect on a note’s harmonic content and evolution as illustrated in Figure 4.16. 
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Figure  4.16: Beginner note sample with bow bounce. 

All qualitative faults can be reflected to greater or lesser extent in the waveform 

amplitude, but it is difficult to link a specific fault with a certain characteristic as 
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playing faults rarely occur independently. In professional standard samples, certain 

characteristics which cause fluctuations in the amplitude are acceptable. The most 

common example is that of vibrato which is illustrated in Figure 4.22. Another example 

is tremolo whereby the player repeats very short bow strokes quickly, usually towards 

the tip of the bow as displayed in Figure 4.25. These are detailed in the section on 

acceptable waveforms, Section 4.1.6. Waveform unevenness is presented next.  

4.1.4  Unevenness  

Unevenness refers to the lack of smoothness in the waveform’s shape. It differs from 

amplitude in that it focuses on the waveform variations in the time or abscissa direction, 

whereas amplitude refers to the changes in the ordinate direction. Both often occur in a 

same waveform. The top image in Figure 4.17 illustrates this effect and the lower image 

is that of a professional standard legato note for comparison, displaying relative 

waveform smoothness. 
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Figure  4.17: Beginner note waveform displaying waveform amplitude unevenness 
(top) contrasted with a professional standard legato note waveform (bottom). 
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The brightest, clearest sound is produced by pulling the bow across the section of 

the string, lined up with the f-holes, where a richer harmonic content is created. Should 

the bow go onto or close to the bridge, the sound squeaks. “In each and every stroke, the 

bow should move in a straight line running parallel with the bridge.” [Auer80:22]. A 

bow that is pulled across the string at an angle adds a “skating” or “whisping” effect to 

the sound which is often associated with uncertainty or nervousness. Informal listening 

tests suggest that unevenness is associated with the qualitative faults skating and 

nervousness. 

The effect waveform unevenness has on its CQT representation and spectrum is 

displayed in Figure 4.18. Unevenness in violin playing impedes the harmonics from 

developing or evolving smoothly and consistently throughout a note, as illustrated in the 

CQT representation. In this sample, there is no clean start to the note as it takes some 

time before the note becomes established. In the spectrum, broader harmonics are 

visible. Unevenness is not the only playing fault which has additional frequencies 

around the harmonics present.  
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Figure  4.18: Waveform (top), CQT (middle) and spectrum (bottom) representations of a 
beginner D3 note sample displaying unevenness. 
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A committed sound has to do with exciting the right combinations of harmonics to 

the necessary levels to create a clear violin timbre. Figure 4.19 displays the harmonic 

spectrum of a committed legato (top image) to that of a beginner note sample reported 

to contain nervousness and skating (bottom image). Skating has a significant effect on 

the harmonic content, as can be seen in the lower image of Figure 4.19. From informal 

listening, the presence of skating in a sound is associated with reducing the magnitudes 

and clarity of the harmonics as the excitation of the string is not clean. This is due to the 

bow being drawn across the string at an angle, which brings in unwanted frequencies. 

Waveform asymmetry about the abscissa is presented next.  
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Figure  4.19: Spectra of legato professional standard note (top) and beginner note sample 
(bottom). 

 

4.1.5  Asymmetry 

Asymmetry refers to the unevenness about the abscissa and is best described by viewing 

effected samples. Most violin note samples’ waveforms are effected to a certain extent 
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by asymmetry, but the most asymmetric ones in the dataset are from beginner note 

samples, such as the waveform of the sample displayed in Figure 4.20.  
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Figure  4.20: Beginner note waveform displaying asymmetry around the abscissa. 

The link between asymmetry and sound quality is not clear. Multiple fault 

descriptions used tend to be associated with the most asymmetric waveforms, making 

linking these waveforms to a particular qualitative playing fault difficult. The 

waveforms of professional standard legato note samples can be asymmetric as displayed 

in previous figures, but not quite to the same extent as those belonging to some of the 

beginner sounds, such as the sample illustrated in Figure 4.20. Poor bowing technique 

has an effect on waveform symmetry. From the listening tests, the most asymmetric 

samples given as examples in this section all contain multiple faults. The qualitative 

terms which have been associated with these beginner samples include skating, 

nervousness, and sudden end to note. 

Waveform asymmetry is reflected in the note’s timbre, visible in the CQT 

representation and in its spectrum, displayed in Figure 4.21. Inconsistent, blotchy 

harmonic development is visible in the CQT representation and the spectrum has wider 

harmonic peaks. Waveform asymmetry is not unique to having these visible effects. 

Five fault categories have been presented with their associated qualitative playing 

faults suggested by informal listening. No one qualitative expression can be consistently 

linked to a specific characteristic. The following section focuses on deliberate playing 

effects which cause acceptable changes to a sample’s waveform and harmonic content. 
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Figure  4.21: Waveform (top), CQT (middle) and spectrum (bottom) representations of a 
beginner A440 note sample displaying unevenness. 

4.1.6 Acceptable Waveforms 

In the previous sections, waveform categories have been tentatively associated with 

playing faults. Limitations and exceptions to these observations are considered in this 

section. Several sound colouring effects such as vibrato, tremolo as well as playing 

techniques, i.e. bow changes and note changes, are picked up in the waveform and can 

be quite similar to those of some of the undesired sounds. Bow and note changes have 

already been presented in relation to note onsets. This section describes the effects of 

vibrato and tremolo.  

Vibrato refers to the embellishment of a note by adding tastefully what is effectively 

a small, local frequency modulation. Style influences vibrato, giving the player use of a 

range of vibratos. These include a very narrow, fast vibrato to a slower, wider version. 

From the technical side, a finger, hand, and full arm vibrato and combinations of these 

exist. The waveform of a sample with a standard, general use vibrato, which is a 

combination of finger, hand and arm vibratos, is illustrated in Figure 4.22 and displays 

amplitude modulation.  
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Figure  4.22: The effect of vibrato on a note’s waveform. 

Vibrato usually changes throughout the duration of the note, helping to bring out a 

specific note’s place in a phrase by changing the colour or intensity. The first thorough 

study on vibrato was conducted by Seashore1 [Winckel67]. Although some work has 

been completed on instrumental vibrato [d’Allessandro94, Brown96] and on violin 

vibrato [Mellody00], much more has been done relating to vibrato of a singing voice 

[Prame94, Prame97, Bonada03].  

The waveform and spectrogram illustrating the effect vibrato has on these 

representations is displayed Figure 4.23. The note played is D4, third finger on the A 

string. To the left in the figure, the waveform of the note with a gentle vibrato is given 

and to the right, the waveform of the same note without vibrato. The approximately 

even fluctuations due to vibrato are visible on the left hand side of this figure. An 

acceptable vibrato on the violin has about a 5 to 10Hz rate [Dodge97]. This figure 

shows that vibrato on the violin has both an effect on frequency and amplitude. This 

sample was not taken in the recording studio the effect of vibrato is well displayed in 

this sample.  

The effect of vibrato on the sample’s spectrum is illustrated in Figure 4.24. As 

expected, the harmonic peaks in the spectrum of the note with vibrato are broader and 

not as well defined. Vibrato involves bringing in neighbouring frequencies to colour the 

sound thereby giving slightly wider harmonic peaks in its spectrum.  

                                                 
1 Carl Emil Seashore (1866-1949): psychologist; Seashore Tests of Musical Ability. 
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Figure  4.23: Effect of vibrato on a note’s waveform (top) and spectrogram (bottom). 
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Figure  4.24: Spectra of a note without vibrato (top) and with vibrato (bottom). 
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Another effect is tremolo which “consists of very small, unaccented détaché bow 

strokes, usually performed near the bow-tip” [Jackson88:51]. The effect tremolo has on 

the waveform, spectrogram and CQT representations is depicted in Figure 4.25. 

Although the pitch remains constant for the duration of the sample, the quick bow 

changes add extra frequencies to the sound giving a shimmering effect which is 

reflected in the spectrogram and CQT representations. The presence of the additional 

frequencies is visible in the tremolo sample’s spectrum, displayed in Figure 4.26 where 

the harmonic are much wider. 

This section on acceptable waveforms has been included to illustrate the difficulties 

and limits associated with determining good violin sound and playing faults. An 

awareness of the differences and proximities between playing faults and deliberate 

playing techniques is important. 
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Figure  4.25: Waveform (top), spectrogram (middle) and CQT (bottom) representations 
of a tremolo sample. 
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Figure  4.26: Spectrum of a tremolo sample. 

4.2 Summary 

Sound characteristics have been loosely linked to playing technique disturbances which 

result from poor bow control in this chapter. Correct and efficient bowing technique 

ensures a certain smoothness which is reflected in the waveform of the legato notes and 

which can be perceived in the sound. Acceptable waveform disturbances due to 

deliberate or desirable effects, such as changing bowing direction, vibrato and tremolo 

have been presented and should not be mixed up with playing faults. Bow strokes 

depend on the speed, pressure and the amount of hair in contact with the string and are 

reflected in the time, frequency and time-frequency representations. A beginner player’s 

developing bowing technique is associated with faults, many of which are reflected in 

the waveform representation. Five main waveform categories have been illustrated and 

explained with the typical qualitative fault descriptions that are often associated with a 

beginner player. This chapter has outlined some of the boundaries required so that 

suitable feature detection can ensue. The following chapters present features which are 

used to represent violin sound in the time, spectral and cepstral domains. 
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5 Temporal Features 

In Chapter 4, visual observations of violin note waveform characteristics typical of the 

dataset’s samples have been presented and various sound characteristics have been 

tentatively linked to specific playing disturbances which result from poor bow control. 

Violin note waveforms contain much variability but less variability is observed in the 

waveforms of the professional standard legato notes. Comparatively, the beginner note 

waveforms tend to display more asymmetry and unevenness. These visible waveform 

characteristics in the beginner notes prompted a statistical approach to obtain possible 

suitable features for violin sound analysis. Statistics provide a way of getting a 

collection of quantitative features from which possible violin sound descriptors are 

sought. Four moments of first order statistics, mean, variance, skew and kurtosis are 

obtained and their usefulness within the context of comparing beginner to professional 

standard player notes is presented. Signal periodicity is presented as described by the 

autocorrelation coefficient. The analysis has been completed on the dataset’s samples as 

well as on the forced note samples. The forced samples are notes where a professional 

player has emulated a beginner’s crunching and has forced the sound even further. This 

chapter considers how and if any of qualitative expressions used in this text can be 

reflected or captured through statistical analysis. 

5.1 First Moment: Mean 

The mean is the arithmetic average of all values shown in Equation 5.1 [Stuart87] where 

N is the data length and i, the current sample number: 

 ∑
=

=
N

i
idata

N
data

1
)(1  (5.1) 

The waveform amplitude mean readings of the samples are displayed in Figure 5.1, 

where the professional standard legato note samples are shown in blue and the beginner 

ones are given in red. Figure 5.1 shows a very large, consistent gap between the mean of 

a beginner note and that of a professional standard player legato note. The scatter plot of 

the same results can be seen in Figure 5.2, where the professional standard legato note 

samples are much more tightly grouped together than the beginner ones.  
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Figure  5.1: Waveform amplitude mean values of professional standard legato and 
beginner player note samples. 

Sample No.  Grade  Mean Perceived faults?  Comments 
Beginner 10 2.67 2.53*10-4 NV, BB, BADS Low mean beginner sample 
Beginner 21 3.33 3.26*10-4 None No playing faults perceived 
Beginner 31 1.43 2.32*10-4 CR, NV, BB, BADS, BADE  Low mean beginner sample 
Beginner 40 2.29 3.24*10-4 None No playing faults perceived 
Beginner 57 2.52 1.81*10-4 NV Lowest mean beginner sample 
Beginner 58 2.86 3.80*10-4 BADE Highest mean beginner sample 
Beginner 62 3.95 3.14*10-4 None Best sounding beginner sample 
Beginner 65 3.86 3.10*10-4 BADE 2nd best sounding beginner sample 
Beginner 77 2.24 2.63*10-4 CR, NV, INT, SE Low mean beginner sample 

Table  5.1: Waveform amplitude mean value sample information. 

Based on this information, it is possible for a computer to detect a beginner from a 

professional standard legato note sample in this dataset. The divide between the sample 

groups is such that a classifier in this case is not required, a simple threshold value 

suffices. Another observation drawn from these results relates to the grouping patterns 

observed. The professional standard legato note samples are all grouped relatively 

tightly together while the beginner note sample readings are more varied. From visual 

inspection, the professional standard legato note sample waveforms are more consistent, 

smoother and have lower mean readings. As a reference, the mean professional standard 

legato sample mean is -1.51*10-4 and the mean beginner sample mean is 3.18*10-4. 

Waveform asymmetry is reflected by these readings as the beginner note samples are 



Temporal Features  63 

consistently averaging positive mean values that are further away from zero than the 

professional standard legato ones. To verify that the difference between the beginner 

and professional standard note samples, as represented by their waveform amplitude 

mean values, is statistically significant and not caused by sampling variability 

[Herzberg83], a  t-test was run with a 0.01 significance level. The null hypothesis is 

rejected and a p-value of 6.6*10-119 is returned. The next step involves finding which 

qualitative feature(s) are reflected by the mean reading.  
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Figure  5.2: Scatter plot of waveform amplitude mean values. 

Information relating to samples marked in Figure 5.1 is detailed in Table 5.1. From 

these results, high mean readings are associated with beginner sounds, but not all 

beginner sounds contain the same faults and some have even been perceived by the 

listeners to be of reasonable quality. From the listening tests, three beginner samples 

have not been associated with any qualitative playing faults. They are beginner samples 

21, 40 and 62. Although they have been perceived as being faultless, this has not been 

reflected by a reduction in their mean values, nor in them having the best overall quality 

grades for beginner note samples. From the listening tests, the best sounding beginner 

samples are 62 and 65. The beginner note with the lowest mean value is from sample 57 



Temporal Features  64 

which has an average sound quality score of 2.52 out of 6 and is reported to have 

nervousness in the sound. Samples 10, 31 and 77, which are the three next lowest 

beginner samples shown in Figure 5.1, also have low overall sound quality grades and 

contain multiple faults.  
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Figure  5.3: Effect of removing crunch sections from beginner samples on waveform 
amplitude mean value. 

Although the waveform amplitude mean value differentiates effectively between the 

two different player types in the dataset, the overall sound quality perceived by the 

listeners is not directly reflected by this measure. As a means of further investigating 

this lack of relationship, beginner player crunching and professional standard player 

deliberate crunching and forcing are considered. Crunching is being investigated 

specifically as it is the one fault that professional standard players can emulate easily. It 

also tends to occur mostly at the starts and ends of notes and as a result, can often be 

easily edited out. The other typical beginner faults cannot be emulated by professional 

violinists as they have become too well conditioned. To better understand the 

relationship between crunching and the waveform amplitude mean value, the crunch 

sections of four samples which have been confirmed through the listening tests to 
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contain crunching, have been removed. The beginner samples, 11, 41, 45 and 58, have 

crunching at the starts and ends of their notes which have been edited out. The 

waveforms’ means were then recalculated and compared to the original values. These 

recalculated mean values are marked in Figure 5.3 by the black asterisks. Trimming off 

the crunch sections at either end of a note reduces the mean value. 
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Figure  5.4: Effect of forced crunching on waveform amplitude mean values. 

The effect of forced crunching on mean values is plotted in Figure 5.4 where the 

forced notes fall into two groups. Samples one to 32, which is the last point before the 

triangulated line jumps up to a much higher value, are recordings of a professional 

standard player crunching deliberately at the start and ends of the notes only. These 

waveform amplitude mean values are similar to those returned by the beginner note 

samples. This supports the link between bow crunching, mean reading and sound 

quality with the results matching those of the beginner note samples. From sample 33 

onwards, the forced notes samples contain notes that are forcefully crunched for the 

duration of the note, which significantly raises the mean value.  

So far, a high waveform amplitude mean reading is associated with emulated 

crunching and beginner sound. To see if this can be extended to include any other 
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standard bow strokes, the relationship between bow stroke style and mean reading is 

presented next. The type of bow stroke or articulation is of great importance as it 

includes information about bow pressure and speed as it initiates the note. The effects of 

different bow strokes on the waveform’s amplitude mean are illustrated in Figure 5.5. 
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Figure  5.5: Effect of different bow stroke styles on waveform amplitude mean value. 

In Figure 5.5, legato, staccato and detaché bow strokes all have much lower mean 

values. Plucked notes, martelé and fast bow strokes all have waveform amplitude means 

within the same region as those belonging to the beginner note samples. A plucked 

string is the most sudden and percussive of the attacks on the violin. Martelé is a 

“sharply accented staccato bowing” [Jackson88:28], having a strong prepared attack and 

a much faster bow stroke than legato. In these recordings, the staccato notes are 

produced by short bow strokes in the lower half of the bow. The fast bow strokes also 

have an accented, sudden start. What plucked notes, martelé and fast bow strokes have 

in common is the strength of their accented attacks. This provides an explanation for the 

high waveform amplitude mean readings for these samples. A high mean can be 

associated with a strong attack which suggests that in the beginner note samples, the 

players are pushing too hard. Further detailed work is required to support the effect of 
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bow stroke on mean reading focusing specifically on attack styles and bow pressure. As 

this work is concerned with determining professional standard legato from beginner 

note samples and fault detection, more detailed work contrasting various types of bow 

strokes will not be completed. 
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Figure  5.6: Moving mean sections of beginner (top) and professional standard legato 
(bottom) note samples. 

The waveform amplitude mean results presented so far have been calculated on 

complete note samples. Next, the windowed mean or moving mean results are given. 

The motivation for applying a moving mean approach was to inspect at which point the 

sound quality changes if possible. The moving mean values of a typical section of a 

professional standard legato note sample and that of a beginner note are illustrated in 

Figure 5.6.  

The moving mean results remain steadier and fluctuate less for the legato note 

sample compared to those taken from the beginner one. From the results obtained, it is 

not possible to show at which point the sound quality changes. Observing these results 

prompted looking into taking the variance of the moving mean waveform amplitude 

mean, the results of which are displayed in Figure 5.7. The moving average has been 
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taken using a window length of 1024 with 50% overlap. The values displayed in Figure 

5.7 show a distinct gap between the results of the two player groups, indicating a feature 

which distinguishes well between the beginner and the professional standard legato note 

samples in the dataset. When first plotted, the moving mean variance (MMV) values 

made it difficult to observe the distinct sample grouping. This was due to five beginner 

samples whose values are outliers, far exceeding the highest beginner sample MMV 

value shown in Figure 5.7. These samples have been replaced with the beginner 

samples’ mean MMV and are marked in Figure 5.7 by black asterisks. The actual MMV 

readings of these samples are listed in Table 5.2. Applying a t-test with a 0.01 

significance level to the MMV results, the null hypothesis is rejected and a p-value of 

9.9*10-5 returned. The differences displayed between the different player types as 

reflected by the waveform amplitude MMV values are statistically significant.  
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Figure  5.7: Moving mean variance values. 

Sample Moving Mean Variance Grade 
Beginner 10 2.64*10-6 2.67 
Beginner 15 3.06*10-6 1.67 
Beginner 31 2.57*10-6 1.43 
Beginner 57 1.1*10-5 2.52 
Beginner 58 1.98*10-6 2.86 

Table  5.2: Moving mean values of samples replaced with asterisks in Figure 5.7.  
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The waveform amplitude mean and its MMV, provide descriptors which separate 

effectively between the beginner and professional standard legato note samples in this 

dataset. The waveform amplitudes are much more consistent and symmetric for the 

professional standard legato note samples than they are for the beginner ones, which 

accounts for the visible gap between the mean readings between these two player 

groups. The MMV reflects the greater fluctuations present in beginner sample 

waveform amplitudes. Comparatively, the effect of forcing the sound on the MMV 

values is displayed in Figure 5.8.  
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Figure  5.8: Waveform amplitude moving mean variance results professional 
standard legato, beginner and forced note samples. 

Samples with emulated crunching at the starts and ends of notes return MMV 

readings similar to those belonging to the beginner note samples. When forcing is 

present throughout a sample, as in the forced note samples numbered 33 onwards, the 

MMV values drop and the readings match those returned by the legato note samples. 

MMV is a measure reflecting waveform amplitude consistency.  

The waveform amplitude MMV separates the beginner from the professional 

standard legato note samples in the dataset effectively. Partial, rather than continued 
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crunching causes greater, more uneven changes in the waveform amplitude and is 

reflected by this measure. Any playing fault or bowing style which has this effect on the 

waveform amplitude is also reflected by the MMV, meaning that as a measure it does 

not exclusively reflect crunching, but playing faults and styles which cause the 

waveform’s amplitude to change suddenly. The mean readings in the frequency domain 

are not as useful as they are pitch dependent. For this information to be comparable, all 

samples in the dataset would need to have the same note. This research focuses on 

violin sound discriminators that are both pitch and sample length independent. Moving 

variance values are presented in the section on waveform amplitude variance which is 

presented in the following section as a violin timbre feature. 

5.2 Second Moment: Variance 

Variance is a measure of the spread of the data and is given by Equation 5.2 [Stuart87]: 
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The waveform amplitude variance values of the beginner, professional standard legato 

and forced note samples are displayed in Figure 5.9.  

In this figure, the professional standard legato note samples tend to have lower 

and more consistent waveform variance values. Comparatively, the beginner note 

samples’ values are much less consistent. A beginner player does not have enough bow 

control to be able to produce consistent results, hence some very high variance values 

within these results. Using variance does not offer a particularly useful option for 

separating beginner and professional standard notes within this dataset but these values 

support what a trained listener would say about beginner sound compared to a good 

violin sound regarding consistency. From these readings, differing amounts of 

crunching and forcing return the lowest variance values. In particular, deliberate 

crunching throughout the duration of the note, which occurs from forced sample 33 

onwards, returns the lowest readings and are more clearly shown in Figure 5.10. An 

explanation for this is that the waveform amplitude variance readings remain consistent 

for the continued crunching samples.  
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Figure  5.9: Waveform amplitude variance values for professional standard legato, 
beginner and forced note samples. 

The beginner samples with the eight lowest variance readings are detailed in Table 

5.3, seven of which have crunching. From these results, crunching alone is not a 

sufficient condition to lower a sample’s waveform amplitude variance value. In the 

dataset, 33 beginner samples contain crunching according to the listening tests. Not all 

of these samples have low variance values. The waveform amplitude variance value 

reflects consistency or amplitude change throughout a sample.  

 
Sample Grade Variance Crunching? 
Beginner 4  1.19 0.14*10-4 yes 
Beginner 5 1.1 0.30*10-4 yes 
Beginner 8 1.43 0.36*10-4 yes 
Beginner 22 1.24 0.43*10-4 yes 
Beginner 30 1.67 0.41*10-4 yes 
Beginner 32 2.81 0.34*10-4 no 
Beginner 51 2.57 0.21*10-4 yes 
Beginner 72 2.43 0.34*10-4 yes 

Table  5.3: Beginner samples with lowest waveform amplitude variance values. 



Temporal Features  72 

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5
x 10-4

Sample Number

V
ar

ia
nc

e

Variance Readings Forced Notes

 

Figure  5.10: Variance readings of forced note samples. 

The waveform amplitude moving variance is presented next. The moving variance 

readings of a professional standard legato and that of a beginner note are illustrated in 

Figure 5.11 and in Figure 5.12 respectively. Based on these results, finding a one-value 

measure for the dataset, independent of sample length, reflecting the different sample 

groups is not evident based on this information.  

Waveform amplitude variance readings obtained for the dataset reflect a beginner 

player’s inconsistency by returning varied results comparatively to those obtained from 

the professional standard legato note samples. Using the forced note samples allows the 

relationship between waveform amplitude and variance reading to be further tested. 

Results show that waveform amplitude consistency and not sound quality is reflected by 

this measure. These results support what is said about beginner playing in terms of 

consistency but are inconclusive regarding detecting overall violin sound quality within 

this dataset and cannot be easily correlated with any of the qualitative expressions used. 

The third moment, skew, is considered as a potential violin timbre feature and is 

presented in the next section. 
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Figure  5.11: Moving variance results for a legato note sample. 
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Figure  5.12: Moving variance results for a beginner note sample. 

5.3 Third Moment: Skew 

Skewness is a measure of symmetry. A normal distribution has a skewness value of zero 

and the more symmetric data is, the closer its skew value is to zero. Negative skew 

values indicate that the data is skewed to the left whereas positive values represent data 

skewed to the right. Skew is defined in Equation 5.3 where σ is the standard deviation 

[Stuart87]: 
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The waveform amplitude skew values for the dataset samples are plotted in Figure 5.12, 

where mostly overlapping results for both player sample groups are displayed.  
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The most prominent peaks in Figure 5.13 have been obtained from beginner note 

samples. A summary of how these samples have been perceived by the listeners is given 

in Table 5.4. All contain various faults and have overall sound quality grades below 3 

from the listening tests. No similarity between faults perceived, overall sound quality 

grade and waveform amplitude skew value can be easily drawn, as reflected by the 

samples detailed in Table 5.4.  
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Figure  5.13: Waveform amplitude skew values for beginner and professional standard 
legato note samples. 

Sample No.  Quality Grade Faults Present 
Beginner 26 1.24 NV, INT, BB, BADS, BADE  
Beginner 29 2 SK, NV, XN, BADS, BADE  
Beginner 38 1.14 CR, SE  
Beginner 52 2.81 SE 

Table  5.4: Information about prominent beginner note samples in Figure 5.13.  

The legato note samples in Figure 5.13 provide results that, when on the same scale, 

give the impression of forming a straight line. To better view these results, they are 

plotted separately in Figure 5.14 where the difference in scale between these sample 

groups is noted. 
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Figure  5.14: Skew values plotted of professional standard legato (top) and beginner 
(bottom) note samples. 

From the analysis carried out on the dataset so far, using skew readings within the 

context of violin sound quality and playing fault detection and this dataset have not 

proven to be effective. No perceptual correlates at this point can be assigned either but 

waveform unevenness is picked up by the skew reading as illustrated in Figure 5.15. 

The waveforms of three beginner samples are displayed in this figure: the first has the 

highest positive skew reading, the second, has the skew value closest to zero, and the 

third one has the largest negative skew reading.  

The larger the skew value in either a positive or negative direction is reflected by 

greater asymmetry in the waveforms. The closer the skew reading is to zero, the 

smoother the overall waveform. This makes sense given the definition of skew but how 

this can be linked to the qualitative expressions used in this thesis is not evident. 

Information relating to the samples shown in Figure 5.15 and a legato note sample with 

skew closest to zero are given in Table 5.5. The relationship between kurtosis and the 

dataset’s violin note samples is presented next.  
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Figure  5.15: Waveforms of beginner samples with the highest positive skew (top), Skew 
closest to zero (middle) and the lowest negative skew (bottom). 

Sample No.  Skew  Grade  Perceived Faults? 
Beginner 38 1.21*10-6 1.14 CR, SK, NV, XN, BADS, BADE 
Beginner 56 -2.90*10-12 2.86 INT 
Beginner 33 -1.55*10-7 1.48 SK, NV 
Legato 79 1.76*10-14 5.43 None 

Table  5.5: Information about beginner samples shown in Figure 5.15. 

5.4 Fourth Moment: Kurtosis 

Kurtosis measures the data’s “peakiness” compared to that of the normal distribution. A 

high kurtosis value is representative of data that has a distinct peak located close to the 

mean. A signal with a low kurtosis value tends to have a much flatter top around the 

mean rather than a sharp peak. Kurtosis values greater than three or positive values 

depending on the equation used, represent a peaked distribution (super Gaussian). 

Whereas values less than three or negative values indicate a flat distribution (sub 

Gaussian). Kurtosis is obtained from Equation 5.4 [Stuart87]: 
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From Equation 5.4, the normal distribution has a kurtosis reading of 3. The waveform 

amplitude kurtosis readings obtained for the dataset’s beginner and professional 

standard player legato note samples are plotted in Figure 5.16.  
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Figure  5.16: Waveform amplitude kurtosis values for beginner and professional 
standard player legato notes. 

Sample No.  Grade Kurtosis Beg or pro?  Faults perceived?  Comments 
Legato 24 4.2857 7.5518*10+4 Beginner BB Pro perceived as beg 
Legato 52 4.76 1.39*10+5 Beginner None Worst professional 
Beginner 62 3.95 4.33*10+4 Beginner None Best beginner  
Beginner 65 3.86 3.61*10+4 Beginner None 2nd best beginner 
Legato 71 3.81 9.01*10+4 Beginner None 2nd worst professional 

Table  5.6: Information about marked samples in Figure 5.16. 

From the results displayed in Figure 5.16, both sample lists provide quite “peaky” or 

super-Gaussian results as all values returned are greater than 3. Although some 

overlapping values are present in this figure, separation between the two different player 

sample groups is good. The beginner note samples tend to have lower kurtosis values 

than the professional standard legato ones. From these results, the professional standard 

legato note samples have “peakier” distributions than the beginner ones. The samples 

with overlapping kurtosis values in Figure 5.16 are detailed in Table 5.6. What these 
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samples have in common, as captured by the peakiness of their distributions, has not 

been reflected by how they have been perceived by the listeners, nor by their overall 

sound quality grading. The mean waveform amplitude kurtosis reading for professional 

standard legato note samples is 1.19*10+5 and for the beginner samples, 4.7*10+5. The 

highest beginner note kurtosis values which overlap with some of the professional 

standard legato note kurtosis values, all contain different perceived playing faults and 

overall sound quality grades. From the listening tests, the two perceived best sounding 

beginner samples, samples 62 and 65, both return relatively low kurtosis values. From 

the listening tests, no evident link can be established between kurtosis reading and any 

of the qualitative playing expressions used in this text. The difference between the 

waveform amplitude kurtosis values for the dataset’s beginner and professional standard 

legato note samples is statistically significant. The null hypothesis of a t-test with a 0.01 

significance level is rejected and a p-value of 3.9*10-47 is returned. To further 

investigate kurtosis values within the violin timbre context, the effect of deliberately 

forced notes is presented next.  

The effect of forcing the sound has on waveform amplitude kurtosis value is 

displayed in Figure 5.17. As has been observed previously with waveform amplitude 

mean values, the forced notes group splits into two sections when the kurtosis values are 

taken. The first 32 samples, which have emulated crunching at the starts and ends of all 

notes, have lower kurtosis values than the beginner note samples. Forcing throughout 

the note, as in forced note samples numbered 33 onwards is reflected by an increase in 

kurtosis value.  

From the grouping patterns present in Figure 5.16 and Figure 5.17, the results show 

that kurtosis reflects sound quality. These kurtosis readings are sensitive to levels of 

poor sound quality. What can be considered as being the worst sounding samples, where 

the sound has been forced throughout the note, do not return the lowest kurtosis 

readings, implying a measure which reflects waveform consistency. The specific 

element of sound quality captured by the kurtosis value is not represented by the 

qualitative playing terms used in this text. From these results, kurtosis values 

differentiate between beginner and professional standard legato notes within the dataset 

effectively but do not directly reflect the qualitative expressions used in this thesis. 

Autocorrelation is presented in the following section.  



Temporal Features  79 

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12
x 105

Sample Number

K
ur

to
si

s

Kurtosis Values

legato notes
beginner notes
forced notes

 

Figure  5.17: Kurtosis values for professional standard legato, beginner and forced note 
samples. 

5.5 Autocorrelation  

Autocorrelation is the correlation of a signal with itself and is useful for determining 

signal periodicity and is used as a first stage in some pitch detection systems 

[Oppenheim89]. It has also been used as a feature in musical instrument identification 

tasks [Martin98]. More specifically it quantifies the closeness of the amplitudes of two 

samples as a function, in this case, of their time separation and is given by Equation 5.5 

[Jayant84]: 
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The mean autocorrelation values of the dataset’s samples are displayed in Figure 

5.18.  
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Figure  5.18: Mean autocorrelation values of beginner and professional standard legato 
note samples. 

 
Beginner samples 17, 22 and 23, are recorded as being the worst sounding samples in 

the dataset, having overall quality grades of 1. These samples have not been observed to 

have the highest mean autocorrelation values. Samples having similar autocorrelation 

means do not have similar sound attributes. The professional standard legato note 

samples have mean autocorrelation values that are low and comparatively consistent to 

those obtained from the beginner note samples. A low autocorrelation mean implies 

little or gradual change in the signal with respect to time, as reflected by the legato note 

sample readings. The mean autocorrelation readings displayed in Figure 5.18 for the 

beginner note samples are varied. Some of these values are much more elevated, 

indicating sudden, jagged changes in the signal with respect to time, reflecting bowing 

problems more prevalent in beginner note samples. This is further illustrated by the 

mean autocorrelation values returned for the forced note samples, which are displayed 

in Figure 5.19. From forced note sample number 33 onwards, crunching is maintained 

for the duration of each note. This is reflected by a sudden increase in mean 

autocorrelation values, indicating much change in the signals. As a feature, the mean 
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autocorrelation does not discriminate effectively between the beginner and professional 

standard legato notes in this dataset but reflects the inconsistency associated with 

beginner playing. Although the autocorrelation mean results overlap, the professional 

standard legato note samples tend to have lower and much more consistent values than 

the beginner ones do. 
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Figure  5.19: Mean autocorrelation values for professional standard legato, beginner 
and forced note samples (top) and close-up (bottom). 

5.6 Summary  

First order statistics and the mean autocorrelation have been applied to the dataset’s 

samples and the results obtained have been presented in this chapter. The waveform 

amplitude mean and moving mean variance readings returned excellent results in terms 

of detecting the different player groups within the dataset used. Using some of these 

measures, such as the TM and the MMV, allows the beginner note samples to be 

separated with 100% accuracy from the legato professional standard ones in the dataset. 

The difference between the values returned for these features for the dataset’s beginner 

and professional standard legato note samples have been shown to be statistically 

significant by rejecting the null hypotheses of the applied t-tests. Another feature, TK, 
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separates well the two player types in the dataset, with few overlapping sample values. 

An underlying pattern in the waveform amplitude variance results showed a greater 

range in variance readings for the beginner note samples than those for the professional 

standard legato ones. The variance readings reflect the inconsistency of the beginner 

note samples. On a note by note basis, this is of limited use as no direct link between 

sound quality and variance value has been established, but the underlying pattern is of 

interest. Much overlap is present in the skew readings for the dataset’s samples, making 

it not a suitable feature for violin sound classification within the context of this research. 

However, true to its definition, skew readings reflect waveform asymmetry. Samples 

that are strongly positively or negatively skewed in this dataset have been associated 

with much more asymmetric waveforms. The samples having skew values close to zero 

have waveforms that are much more symmetric. The mean autocorrelation returned 

overlapping results which are of limited use towards these specific research aims but the 

underlying pattern reflects waveform consistency. An issue with consistency measures 

is that they do not quantify good from bad samples unless they are comparatively 

inconsistent.  

The most significant features in this section based on the waveform amplitude are 

the TM, TK and MMV values. These measurements alone are not sufficient to meet the 

thesis’ aims, but when combined with features from other domains, more robust results 

are expected. In the following chapter, Chapter 6, spectral domain features for 

representing violin timbre are presented.  
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6 Spectral Analysis 

In Chapter 5, temporal analysis has been applied to the data with the aim of finding 

suitable violin timbre features. This chapter details spectral analysis to further 

understand and represent violin timbre. Spectral analysis permits the component 

frequencies present in a sound to be observed, giving insight into its harmonic structure 

and timbre. Among the features presented in this chapter are constant Q transform 

(CQT) based harmonic content strength features, spectral flux, spectral centroid, power 

spectrum, spectral flatness and spectral contrast measures. In this chapter, the efficacy 

of spectral features for representing the violin timbre space, discriminating between 

beginner and professional standard legato notes as well as fault detection within the 

dataset used are presented.  

6.1  Constant Q Transform  

The CQT as introduced by Brown in [Brown91] yields a log-frequency scaled time-

frequency representation of the signal. As illustrated in Figure 6.1 and Figure 6.2, which 

show A440 notes played by a professional standard and a beginner player respectively, 

the CQT domain is effective for visualising and exploiting information about the 

harmonic content of a note due to the frequency resolution.  
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Figure  6.1: CQT of a professional standard legato A440 note. 

Contrasting these figures, the beginner player’s note is not as cleanly executed as the 

professional standard legato one. This is reflected by the presence of additional 
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frequencies unrelated to those of the actual note as well as the harmonics not being as 

well defined as those displayed in Figure 6.1. This gives rise to the visible blotching and 

rippling effect present in Figure 6.2, particularly from 0.65s onwards in this image. 
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Figure  6.2: CQT of a beginner A440 note. 

From observing the CQT representations of the dataset samples, differences 

between the beginner and professional standard legato note samples are visible. The 

CQT representation uses 312 frequency bins with the first frequency bin centre set at 

110Hz which is well below the frequency of the lowest note on the violin, G3 

(approximately 196Hz when tuned to A440). The frequency content present below this 

note may contain unwanted content reflecting playing quality. Focusing within this 

frequency range and recalling that eighth tone spacing has been used in this study means 

that bin 41 has a centre frequency of 196Hz and bin 40, that of 193.2Hz. The mean 

content of each sample for the first 40 individual frequency bins was taken and revealed 

some useful information. Separation between the dataset’s professional standard legato 

and beginner note samples is achieved using this information. Nine out of these 40 

frequency bins, labelled according to their centre frequencies, are detailed in Table 6.1, 

correctly group these two player types in the dataset.  
Frequency Bin No.  fc (Hz) 
4  114.87 
5  116.54 
6  118.24 
7  119.96 
8  121.70 
9  123.47 
10  125.27 
11  127.09 
20  144.73 

Table  6.1: CQT frequency bin centre frequencies which effectively group beginner and 
professional standard legato note samples. 
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Fewer than 10 overlapping samples are present in the results obtained from these 

frequency bins. To illustrate the level of separation between player groups, the mean 

frequency content from frequency bins four (fc=115Hz), nine (fc=123Hz) and 20 

(fc=145Hz) are plotted in Figure 6.3, where the beginner note samples are in red and the 

professional standard legato ones, in blue. The results returned for all these frequency 

bins are illustrated in Appendix A. Applying a t-test with 0.01 significance level to the 

results displayed in Figure 6.3, returned results that are statistically significant. The null 

hypothesis is rejected in all three cases with p-values of 1.1*10-78, 2.5*10-99 and 3.4*10-

80 respectively. 
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Figure  6.3: Mean frequency content from CQT bins four (fc=115 Hz), nine (fc=123 Hz) 
and twenty (fc=145 Hz). 

Excellent separation between the professional standard legato and beginner note 

samples within the frequency range 110Hz to 196Hz is displayed in Figure 6.3 and in 

Appendix A. The professional standard legato note samples have higher mean 

frequency content in these frequency bins than the beginner ones do. An explanation for 

this gap in frequency content between the beginner and professional standard legato 

note samples is the excitation of instrument resonances and modes. A violin’s 
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fundamental cavity resonance is at approximately 260-290Hz [Hutchins97], the 

frequency range for a sub-harmonic is approximately 135-145Hz. Taking the mean 

frequency content of the twentieth frequency bin, which has a centre frequency of 

145Hz, completely separates the beginner from the professional standard legato note 

samples in the dataset. A plausible explanation for these results is how the violin’s 

fundamental cavity resonance at approximately 290Hz is excited by the different 

players. The professional standard legato note samples all have much higher frequency 

content in this bin than the beginner note samples do, as shown in the lower image in 

Figure 6.3. A professional standard player is expected to excite the frequencies 

associated with the fundamental resonance more. Consulting Marshall’s work on violin 

modes in [Marshall85], the frequency content present in frequency bins six and seven, 

reflects modes 5 and 1 respectively. Mode 5, the first vertical cantilever of the 

fingerboard, is at 236.5Hz which is approximately twice the centre frequency of bin six. 

Mode 1 at 119.5Hz, is the vertical reflection of the tailpiece, is reflected by frequencies 

in bin seven. For further information on violin modes, refer to [Hutchins93]. The 

frequency content in the remaining bins may reflect specific violin modes too but this 

was not revealed in the material referred to. A professional standard player is expected 

to excite these modes more consistently and to a greater extent than a beginner player 

would. This accounts for the gap in average frequency content in these frequency bins. 

The frequency content present in nine CQT frequency bins with centre frequencies 

below the lowest note on the violin provide effective and statistically significant 

discriminators between the dataset’s beginner and professional standard player legato 

note samples.  

6.2  Spectral Flux 

Spectral flux is the average correlation between amplitude spectra in adjacent windows 

[Scheirer96] where the amplitude spectrum is the magnitude of the DFT, )(nX . From 

the spectral flux, a “smoothness” factor is investigated from which harmonicity is 

represented. Scheirer and Slaney used spectral flux in an automatic discrimination 

system between music and speech. Music is reported to have a much higher rate than 

speech [ibid.]. Hawley applied the spectral flux for detecting harmonic continuity in 

music in his PhD thesis [Hawley93]. It has also been used as a feature in music 

information retrieval [Tzanetakis02].  
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Spectral flux is applied to the dataset with the idea of obtaining a possible crunch 

detection method, based on the understanding that crunching increases the number of 

unwanted frequencies present in a sample. The mean spectral flux values obtained for 

the dataset samples are displayed in Figure 6.4. Taking the spectral flux did not provide 

any insight into violin timbre or player fault detection due to the high number of 

overlapping values as displayed in Figure 6.4. For most of the samples in the dataset, 

change is not great enough from one window to the next to be picked up by this 

measure. To further inspect the relationship between sound quality and spectral flux 

reading, the forced note samples’ spectral flux values are also depicted in this figure.  
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Figure  6.4: Average spectral flux for professional standard legato, beginner and forced 
note samples. 

The forced note samples return the most consistent readings and have spectral flux 

closest to zero. By taking the average spectral flux of a sample, samples with harmonic 

content that changes little, return values closest to zero. This confirms spectral flux to be 

a consistency rather than a sound quality measure. Spectral flux reflects harmonic 

content consistency but is not effectively used to differentiate between the beginner and 

professional standard legato note samples in the dataset.  
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6.3  Spectral Centroid   

The spectral centroid is defined by the ratio of the sums of the magnitudes multiplied by 

the relevant frequencies all divided by the sum of magnitudes and correlates strongly 

with the perceived brightness of a signal [Grey77]. It has been used in instrument 

identification tasks [Harrera00, Eronen01]. In this work the spectral centroid is applied 

to the violin’s timbre space and its efficacy at representing sonic change is presented. 

Equation 6.1 is used to calculate the spectral centroid, where N is the length of the DFT, 

)(nX  is the magnitude of the DFT and )(nf  is the frequency at n [Beauchamp82]: 
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The waveform and spectral centroid of a professional standard legato note sample 

are displayed in Figure 6.5.  
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Figure  6.5: Waveform (top) and spectral centroid (bottom) of a professional standard 
legato note sample. 
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From visual inspection, using the centroid provides readings from which the waveform 

can be approximately split into regions (attack-steady-state-decay). After having 

observed the spectral centroids of the professional standard legato note samples, a 

similar pattern emerges. During the steady-state section of the note, where a sound is 

typically its most consistent, the readings drop and level out towards the middle of the 

note. As bow speed changes at either end of the note to prepare for a bow change, the 

spectral centroid increases. In the case of a reasonable sounding beginner note, the 

spectral centroid is less consistent, as illustrated in Figure 6.6.  
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Figure  6.6: Waveform (top) and spectral centroid (bottom) of a reasonable sounding 
beginner note sample. 

To capture the information reflected in these figures, the first order moments have 

been taken and are presented next. The mean spectral centroid values of beginner and 

professional standard legato note samples are displayed in Figure 6.7. Although much 

overlapping of results is visible in Figure 6.7, the beginner note samples tend to have 

lower centroid mean values. The “brightest” sounding samples in the dataset as 

reflected by this measure are some of the professional standard legato note samples. 

Referring to the lower images in Figure 6.5 and Figure 6.6, the spectral centroid mean 
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for these two sample groups is 41.9 and 43.6 respectively. The mean results for these 

quite different samples are close. The legato note samples tend to have more consistent 

steady-state region centroid values, but their onset and offset period readings are much 

higher. Taking the mean of such values effectively has a smoothing effect, returning 

similar readings for both player type samples in the dataset, despite their being quite 

perceptually different. The results obtained for certain samples are detailed in Table 6.2 

including, based on the listening tests, the two worst sounding legato note samples, 52 

and 71, and the two top sounding beginner note samples, 62 and 65. The three beginner 

note samples with overall sound quality grade of 1 are also detailed. The centroid 

variance readings are presented next.  
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Figure  6.7: Mean centroid values for beginner and professional standard legato note 
samples. 

Sample  Grade  Centroid 
Mean 

Beginner 
/Professional 

Perceived faults? Additional Information  

Beginner 17 1 47.51 Beginner  NV, BB  Perceived as worst beginner sample 
Beginner 22 1 59.26 Beginner  CR, SK, NV, INT, BADS, 

BADE  
Perceived as worst beginner sample 

Beginner 23 1 55.04 Beginner  CR, SK, NV, INT, XN, 
BADS, BADE  

Perceived as worst beginner sample 

Legato 52 3.62 76.49 Beginner  none Perceived as worst pro sample 
Beginner 62 3.95 30.12 Beginner  none Perceived as best beginner sample 
Beginner 65 3.86 34.81 Beginner  BADE Perceived as 2nd best beginner sample 
Legato 71 3.81 66.32 Beginner  none Perceived as 2nd worst pro sample 

Table  6.2: Information about samples in Figure 6.7. 
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The spectral centroid variance values are displayed in Figure 6.8 and perform better 

than the centroid mean values at discriminating between the dataset’s beginner and 

professional standard legato note samples. The beginner note samples tend to have 

lower centroid variance values than most of the legato note samples, implying less 

change in sound ‘brightness’ throughout these samples. The legato professional 

standard note samples have greater centroid variance values as the onsets and offsets 

have much higher centroid readings than those in the beginner note samples.  
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Figure  6.8: Centroid variance values beginner and professional standard legato note 
samples. 

Sample No.  Grade Centroid Variance Faults perceived?  
Beginner 4 1.19 310.18 CR, SK, NV, INT, SE, BADS, BADE  
Beginner 15 1.67 207.22 SK, NV, SE, BADE 
Beginner 31 1.43 519.76 CR, NV, BB, SE, BADE 
Beginner 32 2.81 324.10 BADS 
Beginner 42 1.43 267.27 SK, NV, BADS, SE, BADE 
Beginner 51 2.57 609.00 CR, BADS 
Beginner 52 2.81 268.22 BADS 
Beginner 68 1.71 451.61 SK, NV, BADS 
Beginner 70 2.67 246.90 CR,BADE 
Beginner 72 2.43 283.45 CR, NV, BADS 

Table  6.3: Beginner samples with highest centroid variance values in Figure 6.8. 

The sound characteristics of samples with overlapping centroid variance values are 

of interest. The beginner note samples with the ten highest centroid variance values in 
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Figure 6.8 are detailed in Table 6.3. These samples have a wide range of sound quality 

grades. Neither the three worst sounding samples (17, 22 and 23) nor the two top 

sounding beginner samples (62 and 65) as perceived by the listeners, return centroid 

variance readings in this overlapping region. The two worst sounding professional 

standard legato note samples (52 and 71) do not have the lowest centroid variance 

readings among the legato note samples either. Perceived quality as captured via the 

listening tests is not reflected by the centroid variance readings. 

In Figure 6.9, the centroid skew readings for the dataset are displayed. Although 

many of these values are very close, the beginner note samples tend to be more 

negatively skewed than the professional standard legato ones. The range of values 

obtained for the beginner note samples is much greater than those for the legato note 

samples. The differences in the centroid skew values do not separate between the two 

player types in the dataset but the inconsistency of beginner playing is reflected by this 

measure.  
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Figure  6.9: Centroid skew values for professional standard legato and beginner note 
samples. 
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Sample No.  Grade  Centroid Skew Faults Perceived? 
Beginner 7 1.81 -1.06 CR, NV, BADS, BADE 
Beginner 36 2.33 -1.50 INT, SE 
Beginner 71 3.05 -2.26 SE, BADE 

Table  6.4: Three samples with lowest centroid skew values in Figure 6.9. 

The three most negatively skewed centroid values are detailed in Table 6.4 and from 

the listening tests, these samples have a range of sound quality grades. From the 

listening tests, legato sample 71 is labelled as being the worst sounding legato note 

sample. This sample has the highest centroid skew value at 0.40. Legato sample 52, 

which also has a beginner player label, has a centroid skew value much closer to zero at 

8.46*10-4. The two top sounding beginner samples 62 and 65 also have centroid skew 

values close to zero. From these results, it is difficult to assign a qualitative expression 

to these samples based on their centroid skew value only.  
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Figure  6.10: Spectral centroid kurtosis values for professional standard legato and 
beginner note samples. 

Next, the spectral centroid kurtosis values for the dataset’s samples are illustrated in 

Figure 6.10. In this figure, a dotted line indicates the normal distribution kurtosis value, 

3. Above this line, the results are super-Gaussian and below, sub-Gaussian. Although 
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much overlap occurs between the centroid kurtosis values for the beginner and 

professional standard legato notes, most of the samples with the lower centroid kurtosis 

values are beginner samples. The beginner note samples have kurtosis values which 

cover a greater range than those for the legato note samples, reflecting less consistency. 

Although existing research points to the spectral centroid as being a useful feature 

for instrumental identification tasks [Eronen01], it is of limited use for reflecting change 

within the violin’s timbre space as represented by the dataset and listening tests used.  

6.4 Power Spectral Density Estimation 

Power Spectral Densities (PSDs) are power distribution estimates of a signal with 

respect to frequency [Jayant84]. PSD estimations have proven to be useful in many 

applications such as signal detection when the signal is hidden in wideband noise 

[Oppenheim99]. In this section, it is applied to the dataset and its efficacy at 

representing violin timbre and the qualitative descriptions used is presented.  

Many application dependent methods exist for obtaining a PSD estimate. The 

periodogram is the simplest nonparametric method from which the PSD can be 

calculated and is based on getting the Fourier transform of fixed length signal segments. 

It is not regarded as being an accurate method due to bias effects and as a result does not 

provide a consistent estimate [ibid.]. For an illustrated example of why the periodogram, 

which uses a rectangular window, is not a consistent estimator, refer to [Kay88:66]. The 

periodogram can be improved by selecting an appropriate windowing function.  

In this case, Welch’s method, which is also a nonparametric method, uses a Hamming 

window and provides more consistent results [ibid.]. The PSD estimates of a 

professional standard legato note sample and that of a beginner are displayed in Figure 

6.11 and Figure 6.12 respectively. 
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Figure  6.11: Power spectrum via Welch’s method of a professional standard legato 
A440 note. 
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Figure  6.12: Power spectrum via Welch’s method of a beginner A440 note. 
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From the differences visible in Welch’s PSD representations of the beginner and 

professional standard legato note samples, features based on this information can be 

extracted and used to represent the data. The first PSD based feature, is the mean power 

of each sample. The results obtained for the dataset’s samples are illustrated in Figure 

6.13. It is expected that the beginner samples contain comparatively less power and less 

consistency than the professional standard legato note samples, due to the beginner 

players having less bow control and therefore not able to get the strength or consistency 

into the sound. This is not the case, as the results displayed in Figure 6.13 indicate. 

Apart from the professional standard legato note samples four and five in Figure 6.13, 

this group is more consistent in its mean PSD readings. There is nothing from the 

listening tests to indicate why these two samples have such elevated results 

comparatively to the rest of the professional standard legato note samples. The results 

obtained for the beginner note samples are much more varied and inconsistent. From the 

mean PSD readings displayed, overall sound quality is not reflected by this measure and 

neither are the qualitative expressions used. Applying first order statistics to the PSD 

data did not return any useful features either and have not been included.  
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Figure  6.13: Mean power present in each sample based on Welch’s PSD. 
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Recalling the results obtained from certain frequency bins within the 110-190Hz 

range in the CQT representations prompted looking at energy below the violin’s 

frequency range. The second PSD based feature presented uses the frequency content 

present below the violin’s lowest note. Beginner notes tend not to be as clear sounding 

due to bowing difficulties, i.e. scraping and crunching. Taking the power associated 

with the frequencies that fall below the violin’s frequency range reflects this 

information. The mean power present below 190Hz (PSD190) in each sample is 

displayed in Figure 6.14. From this figure, beginner notes contain more power from the 

unwanted lower frequencies than the professional standard legato notes. The 

professional standard legato note samples are much more consistent in the amount of 

power present associated with the lower frequencies or “playing noise”. The mean PSD 

below the violin’s playing range can be used to represent violin timbre and detects 

beginner from professional standard legato notes in the dataset. The statistical 

significance of these results has been checked by running a t-test with a 0.01 

significance level. The null hypothesis is rejected and a p-value of 1.96*10-5 is returned.  
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Figure  6.14: Mean PSD present below 190Hz. 
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Both the CQT and Welch’s PSD based features rely on information obtained via the 

FFT. The PSD190 features take the mean of the power distribution with respect to 

frequency present up to 190Hz. The CQT, as used in this work, has been set with a start 

frequency of 110Hz and uses eighth tone spacing. The means of nine specific frequency 

bins with specific frequency centres below 190Hz serve well at grouping the dataset’s 

samples according to player type. The mean CQT frequency bin numbers one to 39 

means have also been taken and is displayed in Figure A4 in Appendix A. The two 

different player types are grouped accordingly, but with more overlapping samples. The 

results returned via the bin specific data is more accurate at distinguishing between the 

beginner and professional standard player note samples. Using the PSD190 to represent 

the data shows that the beginner note samples in the dataset tend to contain more power 

below 190Hz. The CQT frequency bin means indicate less frequency content present in 

the beginner than in the professional standard legato note samples around the selected 

centre frequencies. Both measures extract FFT based information from within the same 

frequency range, but one focuses on power distribution with respect to frequency and 

the other, on frequency content.  

From these results, the values obtained from the PSD190 feature differentiate 

effectively between beginner and professional standard legato notes in the dataset and 

the difference in the values between the player types has been shown to be statistically 

significant via a t-test. The mean PSD reflects beginner player inconsistency but not the 

qualitative expressions used in this thesis.  

6.5  Spectral Flatness Measure 

The spectral flatness measure (SFM) is defined by the ratio of the geometric mean to the 

arithmetic mean of the power spectral density components in each critical band 

[Jayant84]. The steps taken to obtain the SFM readings are shown in Figure 6.15.  

In theory, the readings obtained from the SFM give an indication of how noisy or 

how close to a pure sinusoid a signal is. As the level approaches 1, the signal is closer to 

white noise. The closer to zero the reading is, the closer the signal is to a pure sinusoid. 

Following this logic, the SFM can be used for crunch detection. Crunching has been 

shown to bring in additional unwanted frequencies into the sound, clearly visible in 

time-frequency representations. White noise by definition contains all frequencies and 

samples with crunching should have SFM readings above any samples with clear pitch 

salience but not as elevated as those with white noise. In this section, the usefulness of 
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the SFM readings for fault detection, specifically crunch detection, as well as the more 

general case of differentiating between professional standard legato and beginner notes 

is presented. 
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Figure  6.15: Steps taken to obtain the SFM. 

The SFM values of a professional standard legato note sample section and that of a 

beginner note sample are illustrated in Figure 6.16. The beginner note sample in this 

figure has an overall grade of 2.8 and is reported to have nervousness and a poor start. 

Although only a section of the legato note sample is shown in Figure 6.16, the complete 

SFM readings for this sample are plotted in Figure 6.17.  



Spectral Analysis  100 

0 0.2 0.4 0.6 0.8 1 1.2
0

0.01

0.02

0.03

0.04

Time in s

S
FM

SFM Beginner and Legato Note Samples

legato note
beginner note

 

Figure  6.16: SFM values of a professional standard legato note and a beginner note. 
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Figure  6.17: SFM of a professional standard legato note sample. 

The steepest SFM reading changes occur at the beginning and end of the note and 

this pattern is repeated throughout the professional standard legato note samples. 

Reasonable sounding beginner samples start approaching this shape too. The bow 

pressure applied to the string is not kept the same throughout the duration of a note. The 

starts and ends of notes require more bow control than the middle section. These are 

also the regions where beginners typically “crunch”. The most bow pressure changes 

occur when the player in closest to either the tip (top of bow) or towards the frog 

(bottom of bow) and this is reflected in the SFM readings. The steady-state section of a 

professional standard legato note, where pressure is applied more consistently, the SFM 

readings flatten out and approach zero, reflecting pitch salience.  

From the professional standard legato note SFM results, the attack-steady-state-

decay sections become discernable. The SFM readings for all the professional standard 

legato note samples follow a similar shape to that displayed in Figure 6.17. 
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Comparatively, the beginner note samples’ SFM values are less smooth as the note 

progresses and the readings are not as elevated at the starts and ends of notes. The SFM 

readings for poor beginner sounds are less smooth and are unreliable for observing the 

attack-steady-state-decay regions, as illustrated by the samples dispalyed in Figure 6.18 

and in Figure 6.19. From a beginner note’s SFM, it is more difficult to judge where the 

attack ends and at which point a steady-state is established. This is often due to the lack 

of a consistent steady-state being established and maintained which is a result of a poor 

attack.  
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Figure  6.18: Beginner sample waveform (top) and SFM readings (bottom). 

In Figure 6.18, the waveform and SFM values of a beginner note sample are 

illustrated. From the listening tests, this sample has an overall sound quality grade of 

2.67 and contains several playing faults: crunching, nervousness, bow bouncing, poor 

start and end to note. The SFM readings show that a clean attack is not achieved and a 

brief almost steady-state section occurs from about 1.3s to 1.5s. As the player stops the 

bow at the end of the note, a short crunch is audible. This crunch coincides with the 

sharp peak which is visible in the right hand side of the lower image in Figure 6.18.  
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The waveform and SFM representations of another beginner note sample are 

displayed in Figure 6.19. From the listening tests, this sample has an overall grade of 1 

and contains multiple faults: skating, nervousness and bow bouncing. The presence of 

these playing faults results in no consistency or steady-state being established and is 

reflected in the unevenness of the SFM readings. Next, the relationship between SFM 

reading and attack is presented. 
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Figure  6.19: Waveform (top) and SFM (bottom) of a beginner note sample.  

Starting with a fast bow stroke, the waveform and SFM readings of a fast bow 

stroke sample are illustrated in Figure 6.20. The bow stroke takes more time to settle 

down towards a steady-state than a legato note attack. This reflects the force applied to 

the string and the faster bow stroke causes greater string fluctuations which accounts for 

the jagged SFM readings. This figure has been included to show that SFM readings 

reflect not only pitch salience but overall playing too.  
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Figure  6.20: Waveform (top) and SFM (bottom) of a fast bow stroke. 

The effect forcing has on the waveform and SFM is displayed in Figure 6.21. 

Forcing the sound to breaking point causes spikes to appear in the waveform amplitude 

and a sudden increase in the SFM readings as illustrated in this figure. The sound is 

forced then released many times, coinciding as the peaks appear and subside the lower 

image in Figure 6.21. The forced note samples are more extreme examples, but are 

useful in showing the effect forcing the sound has on the SFM readings which increase 

sharply and remain elevated and unsteady due to the extra frequencies present in the 

sound.  

The more confident and clear sounding a legato bow stroke is, the lower its SFM 

reading. It will never reach zero as a violin is not capable of producing a pure sinusoid. 

The SFM has potential as a feature for monitoring the overall sound quality as the note 

progresses. To obtain SFM based features, first order statistics have been applied to the 

SFM readings and are presented next. 

The SFM mean (SFMM) values for each sample are plotted in Figure 6.22. These 

results discriminate well between the two player groups in the dataset making it a useful 

feature for describing violin timbre within the dataset. The professional standard legato 
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note samples mostly have higher SFMM readings than the beginner samples do. The 

results do not reflect what was initially expected as a pure sinusoid returns a SFM 

reading of 0 and white noise, 1. The cause of the more elevated SFMM results for the 

legato notes has to do with the attack and offset SFM values. Although the attack is 

clean and accurate in the dataset’s legato note samples, the SFM readings are always 

briefly much higher at the outset before falling, remaining steady and then rising again. 

This is not observed to the same extent in the beginner note samples, indicating that 

there is a problem with the attack and consequent establishment of the note. Beginner 

players tend not to have clean attacks and a steady-state is not always established as 

illustrated in Figure 6.18 and in Figure 6.19. 
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Figure  6.21: Forced crunching sample waveform (top) and SFM readings (bottom). 

The two best sounding beginner note samples, 62 and 65, return low SFMM values. 

The two worst sounding legato note samples, 52 and 71, do not have low SFMM values 

comparatively. Having stated this, the poor sounding legato note samples still have 

overall quality grades that are higher than the beginner note samples. This makes 

linking used qualitative expressions to the samples according to the SFMM value 
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difficult. As a measure though, it allows the two sample types in the dataset to be 

accurately grouped based on player.  
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Figure  6.22: SFM mean readings for professional standard legato and beginner note 
samples.  

Through observing the SFM result patterns for beginner and professional standard 

legato note samples, the range of SFM values returned is different for both player 

groups. This is reflected in the SFM variance (SFMV) readings which are displayed in 

Figure 6.23 where the dataset’s samples are separated into two distinct groups, 

reflecting the different player types. The beginner notes have lower SFMV readings 

than the professional standard legato ones do, making the SFMV a good discriminator 

between these two player types. An explanation for these results is found by observing 

the SFM readings of all these samples. Professional standard legato note samples have 

low, smoother steady state sections but the starts and ends of all these samples have 

much higher SFM readings as illustrated by the sample in Figure 6.17. Beginner 

samples, although tending to return much more uneven SFM readings throughout the 

duration of the note, return SFM readings which are neither as high nor as low as those 

provided by the professional standard legato notes. The difference between these results 
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is statistically significant as the null hypothesis of a t-test with a 0.01 significance level 

is rejected. A p-value of 5.3*10-31 is returned. The performance of the SFM variance 

value at discriminating between beginner and professional standard legato note samples 

is not due to sample variability.  

The two beginner note samples, 62 and 65, perceived to be the best sounding 

through the listening tests have low SFMV values and the two legato note samples, 52 

and 71, perceived to be worst sounding have higher values. Although the SFMV 

separates effectively between the two player groups present in the dataset, a clear 

relationship is not established reflecting the expressions used in this text.  

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10-4

Sample Number

V
ar

ia
nc

e

SFM Variance Values

legato notes
beginner notesno. 52

no. 71

no. 62
no. 65

 

Figure  6.23: SFM variance readings for professional standard legato and beginner note 
samples. 

The SFM skew (SFMS) readings display many overlapping results for the different 

player types in the dataset which makes it a much less useful feature for representing 

violin timbre compared to the previous measures. For this reason, a figure containing 

these results has not been included.  

In Figure 6.24, the SFM kurtosis (SFMK) readings for the dataset samples are 

shown. All samples return very peaky results as all have kurtosis values greater than 3. 
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From these results the beginner note samples in the dataset tend to have lower SFMK 

readings then the professional standard legato ones. The two different player groups are 

not completely separable when represented by this measure, but an underlying pattern is 

present. Given the extent of overlap between these two groups, the SFMK is not the 

most suitable feature for distinguishing one player group from the other when applied to 

this dataset due to the number of overlapping readings.  
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Figure  6.24: SFM kurtosis readings. 

Although the SFMM and SFMV values accurately group the beginner from the 

professional standard legato note samples in this dataset, another application for the 

SFM is as a bow change detector. As the bow changes direction, the sound quality is 

altered. The amount by which it changes is a reflection of playing technique as well as 

musical style and bow stroke used. Smooth bow changes are what players strive for in 

legato bowing. Regardless of how smooth a bow change may be, the SFM reading is a 

sensitive measure to this change and rises a little creating a small peak in the plotted 

readings. Figure 6.25 shows the waveform and the SFM readings of a group of legato 

16th notes. The peaks in the SFM readings line up with the exact point of bow change. 
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This figure illustrates how the SFM values indicate bow change onset detection for 

violin playing and can be extended to all bowed stringed instruments. 

Comparing the smooth bow changes displayed in Figure 6.25 with that of a beginner 

player illustrated in Figure 6.26, shows that a beginner player’s bow change is not as 

clean as that of a professional standard player. The beginner sample shown in Figure 

6.26 does not quickly reach a steady-state nor does it return to one fast enough after the 

bow change. This results in jagged SFM values.  
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Figure  6.25: Waveform (top) and SFM readings (bottom) of a sample of bowed 16th 
notes. 

The SFM detects bow changes but note changes within a same bow stroke are not 

captured. In Figure 6.27, the waveform, spectrogram and SFM of note changes within 

the same bow stroke are displayed. The spectrogram is included to show the note 

changes. The notes played in this sample and G2 A3 G2 A3 G2 A3. The SFM does not 

detect note changes within the same bow stroke and consequently can only be used in 

one type of onset detection. This is logical as it is a power spectrum energy based 

measure and power spectrum energy changes are far greater when the bow changes 

direction than when a finger (note) changes. Additional frequencies are present when 
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the bow changes directions that do not occur when a finger is changed and are reflected 

in time-frequency representations. The presence of these extra frequencies causes the 

SFM readings to increase when the bow changes direction but not when the note 

changes within a bow stroke.  
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Figure  6.26: Example of beginner bow change waveform (top) and SFM readings 
(bottom). 

The SFM is a useful measure for representing real violin sound from which many 

features have been obtained. It can be used to check the sound quality of a legato note as 

it progresses and for detecting bow change onsets. The results obtained from applying 

first order statistics to the SFM readings have shown that the SFMV values are the most 

effective at grouping separately the professionals standard legato note samples from the 

beginner ones. The SFMM values group correctly the dataset samples according to 

player, with some overlapping samples. More overlapping samples are visible when the 

SFMK values are plotted, but the underlying pattern is of interest as the beginner note 

samples tend to have lower values than most of the professional standard legato ones.  
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Figure  6.27: Note changes in the same bow stroke waveform (top), spectrogram 
(middle), SFM (bottom). 

6.6 Spectral Contrast Measure 

Jiang et al. put forward a filter based spectral contrast measure (SCM) feature in 

[Jiang02]. West et al. [West04] have also successfully used this feature in the automatic 

classification tasks of musical signals. As a feature it represents the spectral 

characteristics of music samples via the relative spectral distribution. It is selected as a 

violin timbre feature as it has been reported to be designed to give better results than the 

Mel Frequency Cepstral Coefficients (MFCCs) [ibid.]. It does this by considering the 

strength of spectral peaks and spectral valleys in each sub-band separately, reflecting 

the distribution of harmonic and non-harmonic components in a sample. The SCM is 

considered for its potential as a violin timbre quality detector in this section. The steps 

involved in extracting this feature are detailed in the afore mentioned papers and the 

steps applied are given in Figure 6.28. Jiang et al. used the KLT for the optimal 

reduction of the covariance between elements of the spectral contrast feature vector. 
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West et al. used the DCT to eliminate covariance in highly correlated data citing 

[Potkonjak97] for their choice.  
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Figure  6.28: Spectral contrast steps used by Jiang et al. and West et al. 

The data is sampled at 44.1 kHz. Eight filters are used to divide the frequency 

domain into sub-bands. The frequency ranges for the filters used are: 0-200Hz, 200-

400Hz, 400-800Hz, 800-1600Hz, 1600-3200Hz, 3200-6400Hz, 6400-12800Hz, and 

12800-25600Hz. The spectral magnitudes of each band are put into descending order 

according to magnitude. Equation 6.2 and Equation 6.3 are then applied to obtain 

estimates of the spectral peaks and spectral valleys [Jiang02]. In these equations, i is the 

index, N window size and α, the neighbourhood factor: 
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The inclusion of α, a neighbourhood factor, stabilises the feature by averaging the 

peaks and valleys within a small region. Jiang et al. found that varying α between 0.02 

and 0.2 did not influence the performance significantly. In their implementation, α=0.02 

was used. As a starting point in this work, α=0.02 was taken. Values ranging from 

α=0.01 to 0.25 in increments of 0.01 were also tried as well as values of α=0.3 to 0.9 in 

steps of 0.1. The spectral contrast of each sub-band is given by the difference between 

the peaks and valleys, Equation 6.4: 
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 bandsubbandsubbandsub VPntrastSpectralCo −−− −=  (6.4) 

A high SCM reading implies a signal having high peaks, low valleys and strong 

localized harmonic content. A low SCM reading represents a signal with less harmonic 

content. Results from all filters are plotted in Figure 6.29. The filter range represented is 

indicated on top of each image where the beginner samples are indicated by the dotted 

line and the professional standard legato ones, by the solid one.  
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Figure  6.29: Spectral contrast results for all filters. 

The SCM below 190Hz reflects similar information to that obtained by the PSD 

below 190Hz. The SCM, like the PSD and CQT features, is FFT based and uses both 

the harmonic and non-harmonic components. Although focusing on the frequency range 

below 190Hz, the spectral content is represented as the difference between the harmonic 

and non-harmonic components, as opposed to the power distribution and harmonic only 

content in the PSD and CQT based features. When applying the SCM to the dataset, the 

most interesting results are returned by the first filter, which is the frequency range 

below 200Hz. The lowest note on a violin tuned to A440 is the open G string which is 

associated with a frequency reading of approximately 196Hz. All the results for this 
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filter from the SCM with α ranging from 0.01 to 0.9 give very good separation between 

the professional standard legato and the beginner note samples in the dataset. Given that 

this range includes only the violin’s lowest note and below, the content of this region is 

important. The statistical significance of these results has been verified by applying a t-

test with a 0.01 significance level. The null hypothesis is rejected and a p-value of 

1.67*10-64 has been returned.  

To investigate this further, a series of filters focusing within this frequency range 

have been applied. The images displaying the spectral content below 190Hz, 120Hz, 

85Hz and 75Hz as indicated on top of each image are displayed in Figure 6.30. A value 

of α=0.2 worked the best in terms of separating the two groups for the highest number 

of filters. The filters applied were <190Hz, <120Hz, <85Hz, <75Hz. Excellent 

separation between the two sample groups is visible until 90Hz at which point the 

groups are much closer together but the pattern remains discernable. The filters below 

90Hz display overlapping frequency content levels. The frequency content levels for 

both sample groups are comparable indicating minimum or acceptable “noise” levels 

due to playing.  
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Figure  6.30: Spectral content <190Hz, <120Hz, <85Hz, <75Hz obtained via SCM. 
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The SCM provides useful representation of the violin note samples in the dataset. 

The results provided by filters below 200Hz are of particular use towards attaining the 

research aims.  

6.7  Summary 

Multiple spectral features have been shown in this chapter, some returning more useful 

results than others in relation to the research aims. The efficacy of features based on 

specific CQT frequency bin information, spectral flux, spectral centroid, PSD, SFM and 

SCM for representing violin timbre quality have been presented. Some of these features 

worked best on complete note samples whereas others, such as the SFM and spectral 

centroid are more useful when applied to windowed signals. Among the most successful 

spectral features for representing violin timbre in the dataset are nine specific CQT 

frequency bins, the spectral centroid mean, the PSD below 190Hz, SFMM, SFMV and 

SCM between 0 and 200Hz. These features all group the beginner and professional 

standard legato note samples correctly according to player type. The respective 

differences between the players’ feature values have been shown to be statistically 

significant.  

From the analyses presented so far, it is possible to extract features capable of 

discriminating between beginner and professional standard player legato notes in the 

dataset. From these spectral features, identifying individual playing faults has not been 

shown to be evident, nor has defining perceptual correlates for the violin timbre. When 

used in conjunction with other features from different domains, these detection results 

are expected to improve. Suitable features from the cepstral domain and how they are 

used to represent violin timbre is presented next in Chapter 7. 
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7 Cepstral Analysis 

Temporal and spectral analyses described in the previous chapters have provided some 

useful descriptors for representing violin timbre within the context of this research. This 

chapter presents the efficacy of cepstral features at depicting violin timbre. Representing 

the signal through its cepstrum allows information about its periodicity to be obtained 

and is a standard technique for extracting pitch from speech signals [Youngberg79] and 

instrumental sounds [Klapuri04]. Other cepstral analysis applications include 

seismology, biomedical signals, and sonar signals [Oppenheim89]. The most effective 

cepstral analyses in the audio domain are based on the real and Mel cepstra [Deller00]. 

Features based on these cepstra are detailed in the following sections for their 

effectiveness at depicting violin sound quality and playing faults. 

7.1  Real Cepstral Features 

Cepstral features including statistical analysis of real cepstral coefficients (RCCs) and 

individual cepstral coefficients are presented. The RCCs provide a convenient way of 

modeling spectral information and are obtained by following the steps shown in Figure 

7.1.  

fft

get
magniude

log

ifft

sample

cepstral
coefficients  

Figure  7.1: Steps for obtaining real cepstral coefficients. 
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RCCs have been successfully applied in instrument recognition tasks [Eronen01]. 

Their ability to provide suitable features to characterise the violin’s timbre space within 

the context of the research aims is sought. The ability of each feature to separate the 

beginner note samples from the professional standard legato ones in the dataset is noted. 

Where small numbers of overlapping samples occur, they are identified and how they 

have been perceived by the average listener is included.  
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Figure  7.2: Real cepstral coefficients mean readings professional standard legato and 
beginner note samples. 

First order statistics are applied to the RCCs and the RCC mean (RCCM) results are 

displayed in Figure 7.2. Through representing the dataset by this measure, two distinct 

sample groups are visible in this figure. Higher RCCM values for the beginner note 

samples in red are observed. These samples are much less consistent and have a wider 

value range than the legato professional standard ones which tend to have lower RCCM 

values, shown in blue. The mean RCCM for the professional standard legato note 

samples is 2.49*10-5 and 5.94*10-5 for the beginner note samples and are marked in 

Figure 7.2 by the dotted black lines. By running a t-test with a 0.01 significance level on 

the difference between the RCCM values for the beginner and professional standard 
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legato note samples, the results are statistically significant as the null hypothesis is 

rejected and a p-value of 4.6*10-57 is returned.  

In Figure 7.2, the lowest beginner sample, sample ten, is of particular interest. On 

initial inspection of this figure, it was thought that this sample could be one of the better 

sounding, fault free beginner samples. From the listening tests, this beginner sample 

contains three faults: nervousness, bow bouncing and a poor start to the note and has an 

overall grade of 2.67 out of 6. Beginner samples 17, 22 and 23 are recorded as having 

the poorest overall sound quality, grade 1, yet these three samples do not have the 

highest nor the lowest RCCM values. The beginner sample returning the highest RCCM 

is sample nine, which has an overall grade of 2.19 and reported crunching and a poor 

finish. Other samples which are of interest are those whose RCCM readings are close. 

One such overlapping legato sample, number 24, has been perceived as a beginner note 

rather than a professional note. Listening to this sample, a slight bow bounce can be 

heard towards the end of the note. Its overall sound quality grade of 4.29 is higher than 

all the beginner note samples’ grades. From these observations, the RCCM remains an 

effective discriminator between the two different player groups, but the qualitative 

expressions used in this text are difficult to associate with a specific RCCM value. To 

gain further insight into the relationship between the RCCM reading and violin timbre, 

the forced note samples are displayed in Figure 7.3.  

The forced note samples provide results that are comparatively scattered to those 

obtained for either of the beginner and professional standard legato note samples. 

Exaggerated crunching or forcing does not push the RCCM readings clearly in any one 

particular direction as has been observed in, for example, the time domain waveform 

amplitude mean readings in Figure 5.4. A sound quality range exists within which the 

RCCM value is useful to differentiate between the dataset’s beginner and professional 

standard legato note samples. It can be used as a more general feature in distinguishing 

effectively between the two different player groups in the dataset. The RCC variance 

(RCCV) values for the dataset are presented next.  
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Figure  7.3: Real cepstral coefficients mean professional standard legato, beginner and 
forced note samples. 

The dataset’s RCCV values displayed in Figure 7.4 are low and more consistent for 

the professional standard legato note samples and tend to be higher and more varied for 

the beginner ones. This reflects a beginner player’s inconsistency. As a measure, the 

RCCV discriminates well between the dataset’s different player groups. The mean 

RCCV for the beginner note samples is 3.6*10-4 and for the professional standard legato 

notes, 8.92*10-5. These values are marked by the black dotted lines in Figure 7.4. The 

difference between the professional standard and beginner note samples’ RCCV results 

are statistically significant when a t-test with a 0.01 significance level is applied. The 

null hypothesis is rejected and a p-value of 3.67*10-40 is returned. The beginner samples 

with lower RCCV readings contain multiple faults. Of the samples with overlapping 

RCCV values, legato sample 24 has a beginner player label. Neither the worst sounding 

professional samples nor the best sounding beginner note samples fall into this region. 

These results reflect what is associated with professional standard legato notes, 

consistency but none of the qualitative expressions used in this work is specifically 

reflected by this measure. 
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Figure  7.4: Real cepstral coefficients variance professional standard legato and beginner 
note samples. 

Skewness is a measure of symmetry and both beginner and professional standard 

player legato note samples have overlapping positively RCC skew (RCCS) values and 

for this reason are not displayed. On closer inspection of these results, the beginner note 

samples have RCCS values that cover a wider range than those returned by the 

professional standard legato ones, revealing an underlying pattern confirming 

professional standard legato note consistency. There seems to be no sound quality 

relationship reflected by the skew value as these two player groups have been shown to 

be quite perceptually distinct based on the results of the listening tests. This indicates 

that no conclusion about violin timbre and this measure can be easily drawn. 

Two distinct sample groups emerge when RCC kurtosis (RCCK) value is used to 

represent the dataset as displayed in Figure 7.5. The RCCK is a measure of the data’s 

RCC “peakiness”. All samples shown in Figure 7.5 have kurtosis readings well above 3, 

which are super-Gaussian results. The professional standard legato note samples tend to 

have higher RCCK values then the beginner ones with mean RCCK readings of 

7.77*10+4 and 3.04*10+4 respectively. These mean values are marked in Figure 7.5 by 
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the dotted black lines. In this representation, the professional standard legato note 

samples provide more varied results than the beginner ones do.  

The two worst sounding professional standard legato note samples from the 

listening tests, samples 52 and 71, have RCCK results which do not fall into the 

overlapping region. The lowest legato note sample in Figure 7.5 is sample 14 which has 

an overall sound quality grade of 5.19 out of 6. The professional standard legato note 

sample number 24, which has been labelled as a beginner note, appears within this 

overlapping region. The beginner samples with the highest RCCK values all contain 

multiple faults yet have similar RCCK values to those returned by some of the 

professional standard legato note samples. The two best sounding beginner samples 

from the listening tests, 62 and 65, have RCCK values close to the RCCK mean for the 

beginner player samples. Although the two groups are separated successfully by the 

RCCK value, the sensitivity of these readings does not correlate with the qualitative 

descriptions used in this text. The RCCK value is a coarse discriminator between the 

dataset’s beginner and professional standard legato note samples. 
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Figure  7.5: Real cepstral coefficients kurtosis readings professional standard legato and 
beginner note samples. 
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To investigate the sound quality and RCCK value relationship further, Figure 7.6 

illustrates the effect of forcing the sound has on these readings. The forced notes’ 

RCCK results fall into two groups, except for sample 33, which returns the highest 

RCCK value. The first section consists of samples where the professional standard 

player has emulated beginner crunching at the starts and ends of notes only. In the 

second part, crunching is maintained for the duration of the note. Knowing this, the 

relationship between amount of crunching and RCCK needs to be more clearly defined 

by grading the crunch quality and quantity. Regardless, the RCCK reading determines 

professional standard legato note samples from beginner ones in the dataset. When a t-

test with a 0.01 significance level is applied to the difference between the beginner and 

professional standard legato note sample RCCK values, the null hypothesis is rejected, 

indicating that the results are statistically significant. The p-value returned is 2.2*10-41. 
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Figure  7.6: Real cepstral coefficients kurtosis readings professional standard legato, 
beginner and forced note samples. 

The RCCM, RCCV, RCCS and RCCK readings describe violin timbre. All but the 

RCCS values effectively serve as coarse descriptors capable of differentiating between 

the professional standard player legato and beginner player note samples in the dataset. 
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The RCCS results do not separate the two different player groups but reflect an 

underlying pattern, that of the comparative greater inconsistency present in beginner 

note samples’ results to those representing the professional standard legato ones. 

Unfortunately a link between these results and a specific sound characteristic has not 

been possible to establish with the dataset and qualitative sound descriptions used in this 

work. The effect of sound quality and individual RCCs is presented next.  

According to [Hunt99], the most important information is available in the first 18 

RCCs as coarse spectral shape is modeled by the lower RCCs. For this reason, 

inspection has been limited to these RCCs in this work. Of the 18 RCCs inspected, only 

three proved to be of use towards the research aims: the first, second and sixth RCCs. 

The first real cepstral coefficient (RCC0) is often used as a relative measure of cepstral 

energy and how it changes [Jayant84]. The RCC0 readings for the dataset’s samples and 

the forced note samples are displayed in Figure 7.7.  

Separation is good between the two different player types as professional standard 

legato note samples mostly have much higher RCC0 values comparatively to the 

beginner ones. From these results, energy levels are higher and more consistent for the 

dataset’s professional standard legato note samples and lower with greater variance for 

the beginner ones. This fits with a beginner’s playing being weaker and less consistent. 

Beginner players have less bow control and are less capable of producing a committed 

sound which is reflected by the RCC0 value, allowing this feature to be used as a 

discriminator between the beginner and professional standard legato note samples in the 

dataset. The effect forcing the sound has on the RCC0 value is also displayed in Figure 

7.7, where most of the forced note samples have lower RCC0 values than the beginner 

ones. Forcing the note returns the most varied RCC0 values. Beginner samples three 

and 12 are the two highest beginner peaks with RCC0 values of -2.78 and -2.75 

respectively. Both samples contain multiple playing faults. Out of the lowest scoring 

legato note samples, only one has been labelled by the listeners as being a beginner 

note, sample number 24. It has a RCC0 value of -3.07. From these results, the RCC0 

results distinguish well between the two different player types present in the dataset. 
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Figure  7.7: Real cepstral first coefficient readings professional standard legato, beginner 
and forced note samples. 

 
The second cepstral coefficient (RCC1) represents the balance between the upper 

and lower halves of the spectrum [Hunt99]. It is a ratio of upper harmonic to lower 

harmonic presence. The RCC1 values for the dataset’s samples and those for the forced 

note samples are plotted in Figure 7.8. The professional standard legato note samples 

mostly have lower RCC1 readings than the beginner ones. A significant amount of the 

beginner note RCC1 readings are above 1 implying that there are more upper harmonics 

present than lower ones in these samples. This supports the steelier, brasher, squeakier 

sound which is often associated with beginner playing. 

In Figure 7.8, several beginner note samples’ RCC1 readings overlap with those 

obtained from professional standard legato ones. The forced note samples return the 

most varied RCC1 values. Beginner samples with the lowest RCC1 values are reported 

to have playing faults. The two best sounding beginner samples, 62 and 65, have higher 

RCC1 values, but are still below 1. Beginner samples 17, 22 and 23, which have overall 

quality grades of 1, have high RCC1 values at 1.21, 1.14 and 1.18 respectively. The 

professional standard legato note sample with the highest RCC1 value, sample 14, has 
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an overall sound quality grade of 5.43 out of 6. The next two highest legato note RCC1 

values are for samples 47 and 63 which have beginner player labels. These samples 

have overall sound quality grades of 4.33 and 3.62 respectively and no faults have been 

identified in either sample. Their RCC1 values are 0.83 and 0.82 respectively which are 

high compared to those returned by the other professional standard legato note samples. 

Critically listening to these two samples and focusing on the sound produced, sample 47 

sounds a little “grainy” and lacks “body”, which are not specific faults in this work, 

whereas sample 71 lightly tips another note shortly after the start of the note. The mean 

RCC1 value for the legato professional standard note samples is 0.71. The beginner note 

samples with much lower RCC1 values all contain faults which the legato note samples 

with equivalent values do not possess. This implies that the relationship between sound 

quality as described in this text is not completely reflected by the RCC1 reading. 

Samples with emulated crunching at note starts and ends, return RCC1 values similar to 

those obtained by the beginner note samples. Prolonged crunching, which occurs from 

forced sample number 33 onwards, tends to lower the RCC1 readings.  

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Sample Number

S
ec

on
d 

R
ea

l C
ep

st
ra

l C
oe

ffi
ci

en
t

Second Real Cepstral Coefficient Values

legato notes
beginner notes
forced notes

no. 62

no. 65

no. 17
no. 23

no. 14

no. 47

no. 63

no. 71

 

Figure  7.8: Real cepstral second coefficient values professional standard legato, 
beginner and forced note samples. 
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The RCC1 discriminates well between beginner and professional standard notes for the 

majority of samples in the dataset and can be used to describe violin timbre within the 

context set. The last RCC which represents the two player groups mostly separately is 

the sixth cepstral coefficient (RCC5), which is presented next. 

The RCC5 values obtained for the dataset’s samples and for the forced note samples 

are displayed in Figure 7.9, where the professional standard legato note samples tend to 

have comparatively higher values to the beginner and forced ones. The professional 

standard legato note sample with the lowest RCC5 value is sample 68 which has an 

overall sound quality grade of 5.52. The beginner note samples with the highest RCC5 

values, samples 71, 44, 43 and 58, do not have the highest overall beginner sound 

quality grades. The top sounding beginner note samples, 62 and 65, have the sixth and 

52nd highest RCC5 values respectively. The RCC5 values for many forced note samples 

are similar to those returned by the beginner ones. Based on these observations, a 

connection between a specific sound characteristic as described in this work and the 

RCC5 value is not evident, but this measure differentiates well between the dataset’s 

beginner and professional standard legato note samples. 
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Figure  7.9: Real cepstrum sixth coefficient values professional standard legato, beginner 
and forced note samples. 



Cepstral Analysis  126 

The RCCM, RCCV and RCCK values as well as three individual cepstral 

coefficients, RCC0, RCC1 and RCC5 are coarse violin timbre descriptors within the 

context of this research and the dataset used. These six features correctly group the 

professional standard legato and beginner note samples in the dataset but none is 

correlated with the qualitative expressions used in this text. The Mel cepstrum and 

possible Mel cepstrum based features are presented in the next section. 

7.2 Mel Cepstral Features 

Developed by Stevens and Volkman, a Mel is a measure of perceived pitch of a tone 

[Deller00]. In the Mel frequency cepstrum, the data is converted into its Mel scale 

equivalent frequency before the discrete cosine transform is applied. On the Mel scale, 

frequencies below 1kHz are linear, which is within the human speaking range where the 

human and also the range within which the dataset samples’ fundamentals fall. An 

approximation of the Mel scale conversion for f  greater than 1kHz is achieved by 

applying Equation 7.1, which comes from an implementation in the HTK Toolkit where 

f is the frequency in Hz [Young95]: 

 )
700

1(log2595)( 10
ffmel +=  (7.1) 

The Mel frequency cepstrum based features presented in this section include the Mel 

frequency cepstral coefficients (MFCCs) first order statistics and individual MFCCs.  

First introduced by Davis and Mermelstein in a study on monosyllabic words 

[Davis80], MFCCs are widely used in feature extraction and music information retrieval 

algorithms [Logan01, Tzanetakis02]. MFCCs are obtained by taking the absolute STFT, 

converting to Mel frequency by grouping neighbouring frequency bins together into 

overlapping triangular bands with bandwidth according to the Mel scale and then by 

applying a DCT to its log. The first 12 MFCCs of a professional standard legato note 

sample and that of a beginner one are illustrated in Figure 7.10 have been obtained by 

applying the HTK toolkit approach which is available at [LABROSA]. A maximum 

frequency of 8kHz has been applied, 25ms window size and 10ms hopsize have been 

assigned. The filter bank used consists of 24 triangular filters with constant bandwidth 

up to 1kHz above which, constant Q applies. 40 Mel bands have been used. 
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Figure  7.10: First 12 MFCCs of a professional standard A440l legato note sample (left) 
and of a beginner A440 note sample (right). 

From the listening tests, the samples displayed in Figure 7.10 have overall quality 

grades of 5.52 and 1.76 respectively. The beginner note sample is reported to have 

skating, nervousness, intonation and bow bouncing as playing faults. From these 

images, based on fluctuations with respect to time, some MFCCs are more sensitive to 

changes within the violin timbre space than others. Also worth investigating is the 

change occurring within the first few frames of the MFCCs. From this, the difference in 

attack information between beginner and professional standard legato note samples is 

reflected.  

First order statistics have been applied to the information returned within the first 18 

MFCCs individually. In Figure 7.11, the first Mel cepstral coefficients mean 

(MFCC0M) values for the dataset samples are plotted. These values reflect energy 

content in a signal [Logan01]. The MFCC0M readings of the beginner samples display 

much greater variability than those belonging to the professional standard legato ones. 

This reflects greater player consistency present in the professional standard legato note 

samples than in the beginner ones. The remaining MFCCs have been inspected and only 
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the fourth Mel cepstral coefficients mean (MFCC3M) provided some useful 

information, the results of which are displayed in Figure 7.12. 
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Figure  7.11: First Mel cepstral coefficient mean values professional standard legato and 
beginner note samples. 

Taking the MFCC3M discriminates well between the two different player groups for 

part of the dataset only, as illustrated in Figure 7.12. From these results, the professional 

standard legato note samples tend to have mostly negative MFCC3M readings. Taking 

the MFCC3M proved to be partly effective at representing the dataset in the context of 

separating its two sample player groups. The beginner samples, having the poorest 

overall sound quality, return a wide range in their MFCC3M values whereas the legato 

note samples reflect greater consistency. The two best sounding beginner samples based 

on the listening tests, samples 62 and 65, have much lower MFCC3M values. These 

results alone do not facilitate drawing conclusions regarding the relationship between 

MFCC3M value and the expressions used in this text to describe violin timbre.  
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Figure  7.12: Mel cepstrum fourth coefficient mean values professional standard legato 
and beginner note samples. 

The fluctuations in the MFCCs values throughout the samples have been observed 

and a measure which reflects this change is variance. The Mel cepstral coefficient 

variance (MFCCV) readings have been inspected and all proved to be ineffective at 

grouping separately the beginner from the professional standard legato note samples in 

the dataset. To illustrate this, only the MFCC0 variance values have been included and 

are depicted in Figure 7.13. In this figure, greater fluctuation is visible in the beginner 

note MFCC0 variance values then in the professional standard legato ones which remain 

much more consistent, falling within a smaller range. The comparative consistency of 

these samples is reflected by this measure although it does not group the different player 

types separately.  
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Figure  7.13: First Mel cepstral coefficient variance values professional standard legato 
and beginner note samples. 

In Figure 7.14, the MFCC0 skew readings for the dataset’s samples and those for the 

forced note samples are illustrated. Skew is a measure of asymmetry and the 

consistency of the legato note samples is reflected by this measure. The beginner note 

samples mostly have greater negative skew and the professional standard legato note 

samples’ MFCC0 skew readings are more consistent and closer to zero. These readings 

all have small negative skew values where the lowest value is -0.0935 and the highest is 

-0.0037. Only four beginner note samples have MFCC0 values with positive skew, the 

remainder tend to be strongly negatively skewed. The two best sounding beginner note 

samples from the listening tests, samples 62 and 65, are negatively skewed. The three 

beginner samples with overall sound quality grades of 1, samples 17, 22 and 23, return 

varied MFCC0 values as marked in Figure 7.14. Beginner sample number 71 returns the 

lowest MFCC0 skew reading. This sample has not been perceived to contain any 

playing faults and has an overall sound quality grade of 3.8 out of 6. The professional 

standard legato note samples’ comparative consistency is depicted but perceived sound 

quality as captured through the listening tests is not reflected by this measure. Emulated 
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crunching at the starts and ends of notes, as demonstrated by the forced note samples up 

to number 33, return varied skewed readings. Once the forcing or crunching is 

consistent, i.e. for the duration of the note, the skew readings stabilise and remain closer 

to zero as can be seen from forced sample 33 onwards. Skew reflects symmetry, which 

in this case, reflects consistency throughout a note. Consistently poor as well as 

consistently good sound is captured by this measure, as confirmed by the forced note 

samples.  
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Figure  7.14: Mel cepstrum first coefficient skew values. 

The results obtained from applying kurtosis to the dataset’s samples MFCC0 values 

are displayed in Figure 7.15. Although this measure does not group the samples 

separately according to player, the underlying pattern is important. The professional 

standard legato note samples return results that fall within a smaller range compared to 

those representing the beginner ones, reflecting consistency. The MFCC0 variance and 

skew results also have similar underlying patterns, all indicating more consistent energy 

content in the professional standard legato note samples than in the beginner player 

ones. 
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Figure  7.15: MFCCO kurtosis values professional standard legato and beginner note 
samples. 

As the MFCC0 represents energy, how it fluctuates is important, in particular during 

a note’s onset as this establishes the note’s timbre. Focusing on these changes within the 

first 0.087s of each signal, the MFCC0 mean of this section of each sample is taken and 

plotted in Figure 7.16. In this figure, the professional standard legato note onsets as 

represented by the first ten frames MFCC0 mean, are much more consistent and 

controlled whereas the beginner note sample readings cover a much wider range of 

values.  
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Figure  7.16: MFCC0 mean first 0.087s section of a professional standard legato and 
beginner note samples. 

The information present within the first 0.087s period of the first 18 MFCCs of the 

dataset’s samples was inspected and only MFCC2 revealed results of interest. These are 

displayed in Figure 7.17. Based on the results presented, the dataset’s beginner note 

samples tend to have lower MFCC2 first 0.087s mean values with much greater 

variability. From the listening tests, beginner samples 17, 22 and 23 all have overall 

sound quality grade 1 and samples 62 and 65 have been perceived as being the best 

sounding beginner note samples in the dataset. Samples 56 and 71 have been labelled as 

being the two worst sounding professional standard legato note samples. These samples 

all have MFCC2 first 0.087s mean attack section readings that are not grouped in any 

particular manner, making the association between this measure and any of the 

qualitative expressions used in this thesis difficult. When used in conjunction with other 

features, the MFCC2 onset values may assist in correctly determining violin timbre and 

playing quality characteristics.  

The Mel cepstrum has provided multiple features which describe violin timbre. First 

order statistics have been applied to each of the first 18 MFCCs and some have proved 
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to be suitable violin timbre discriminators for the dataset’s samples. The Mel cepstrum 

provides many timbre descriptors but the MFCC0, MFCC2 and MFCC3 provide results 

which more specifically represent violin timbre quality in the dataset used. The 

MFCC0M, MFCC0V, MFCC0S, MFCC0K, MFCC0 first 0.087s mean and MFCC2 

first 0.087s mean reflect the consistency of the professional standard legato note 

samples comparatively to that of the beginner ones, but correlating any of these 

measures with the expressions used is not evident.  

0 10 20 30 40 50 60 70 80 90
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Sample Number

M
ea

n

MFCC2 0.087s Onset Section Mean

legato notes
beginner notes

 

Figure  7.17: MFCC2 mean first 0.087s professional standard legato and beginner note 
samples. 

7.3 Summary 

Many cepstral features have been applied to represent violin timbre. More specifically, 

features have been found which distinguish between the professional standard legato 

and beginner note samples in the dataset from both the real and Mel cepstra. More 

specifically, in the real cepstrum, the RCCM, RCCV, RCCK, RCC0, RCC1 measures 

and from the Mel cepstrum, the MFCC0, MFCC2 and MFCC3 values provide some 

useful results for representing violin timbre change in the dataset. The results confirm 



Cepstral Analysis  135 

that the real cepstrum provides more useful results than the Mel cepstrum, supporting 

what has been concluded elsewhere [Deller00]. Although some of the features presented 

performed better at detecting professional standard legato notes from the beginner ones, 

others effectively detected sound consistency within the sample groups. Regardless of 

the not very evident relationship between sound descriptions and cepstral 

measurements, these features remain effective coarse descriptors for the violin timbre 

space. Features from these cepstra describe violin timbre and will be considered for use 

in the classifier. This stated though, features obtained from the spectral and time 

domains display greater potential for further work on violin timbre representations for 

analysis.  

The time, spectral, and cepstral domains all provide useful violin sound descriptors. 

Some of these features perform better than others at distinguishing beginner note 

samples from professional standard legato ones in the dataset. Their individual and 

combined effectiveness at the detection tasks will be tested in the following chapter via 

a classifier.  
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8 Classification 

So far in this work, quantitative and qualitative aspects of violin sound have been 

presented. The use of features from the temporal, spectral and cepstral domains has 

been examined, returning features capable of representing violin timbre. Listening tests 

have been run allowing qualitative labels to be assigned to the dataset’s samples 

reflecting stringed instrument musicians’ perception. The information gleaned so far 

merges in this chapter, providing a classification system for violin notes. Classification 

is the general term given to organizing or grouping similar data together according to 

selected characteristics or some common feature and is the approach taken in this work 

to test the representative features. Grouping data together based on similar patterns or 

descriptive features allows a class label to be associated with the group. The most 

significant aims of classification relate to data simplification and prediction, increasing 

the efficiency of tasks such as information retrieval [Gordon99]. Violin timbre features 

from the temporal, spectral and cepstral domains and the a priori labels obtained from 

the listening tests are used for classifying violin notes. The aim is to provide objective 

and stable classification for the subjective nature of violin sounds.  

In this chapter the classification of violin notes based on overall sound quality and 

individual playing faults is presented. First, the classification steps are detailed and then 

the classifier is tested. Two tasks are put to the classifier: the detection of beginner from 

professional standard player legato note and individual playing fault detection. The 

outcomes’ ability to generalise is then tested on new data and conclusions are drawn.  

8.1 Classification Procedure 

The classification steps applied to the violin timbre tasks are detailed in this section. 

The dataset is represented as an fn× array where n is the number of samples and f, the 

number of features used. From the dataset, suitable cluster centres are obtained via Jain 

and Dubes’ k-means clustering algorithm [Jain88] and the a priori labels come from the 

listening tests. A k-nearest neighbour (k-NN) classifier is then used, the labels compared 

and classifier accuracy obtained, as shown in Figure 8.1.  

The features initially selected to represent the violin note samples are based on 

visual inspection of their ability to separate the dataset’s samples into two distinct 
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player groups within their respective domains. In all, 33 features are used to represent 

the dataset’s samples. The playing fault descriptions used in this work are recalled in 

Table 8.1 along with the abbreviations used throughout this chapter.  

 

Figure  8.1: Classification steps. 

Number Fault Name 
Fault 1 crunching (CR) 
Fault 2 skating (SK) 
Fault 3 nervousness (NV) 
Fault 4 intonation (INT) 
Fault 5 bow bouncing (BB) 
Fault 6 extra note (XN) 
Fault 7 sudden end to note (SE) 
Fault 8 poor start to note (BADS) 
Fault 9 poor finish to note (BADE) 

Table  8.1: Fault descriptions. 

The task dependent a priori labels have been obtained via the listening tests detailed 

in Chapter 3. There are two groups of labels: one reflecting the overall sound quality 

and the other, for individual faults present. Each listener evaluated the overall sound 

quality of all the samples by giving a grade between 1 (very poor) and 6 (excellent). To 

represent professional or beginner samples in the first task and existence or non-

existence of a playing fault, only two clusters are required. Class labels of ‘1’ for 
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professional player or no fault present and ‘2’ for beginner or fault present are used to 

reflect the listeners’ perception. This was done by finding all the samples which had an 

overall sound quality grade of 5 or above and re-labelling them as ‘1’ and the remaining 

samples as ‘2’. Grading level 5 was taken and not 4 because only the good to excellent 

sounds should be classified as professional sounds and not those with quality perceived 

as being “reasonable”. The dataset consists of 88 beginner notes and 88 professional 

standard legato good notes. 82 of the 176 samples have been perceived as being good 

and consequently have label ‘1’ and the remaining 94 have label ‘2’. Using the 

information obtained about fault perception, labels were assigned according as to 

whether a fault had been perceived or not. Samples perceived as having a specific fault 

have been labelled with ‘2’ for that fault and ‘1’, for the fault not having been 

perceived. These fault labels are stored in a 176 x 9 array, the order of faults is as shown 

in Table 8.1. Playing faults rarely occur in isolation and most of the beginner player 

samples contain more than one fault. After having obtained the dataset’s a priori labels, 

the next stage involves finding suitable clusters. 

Clustering is an exclusive, intrinsic, partitional classification method and is the most 

common form of unsupervised learning and often used as the first stage of a 

classification process [Jain88]. Clustering techniques are used to find centres which 

reflect the distribution of data points [Bishop95]. For the first task, two clusters are 

sought: one for poorer quality or beginner violin sounds and another for professional 

standard legato notes. For the fault identification task, the clusters are for presence and 

absence of a fault. Although clusters are inferred from the data it is possible to influence 

the outcome by, for example, the choice of distance measure used [Duda73]. The 

distance measure represents the relationship between pairs of points or vectors 

belonging to the sample space and is important in any automatic procedure which 

attempts to mimic human perception for identifying clusters. The most commonly used 

distance measures include the Euclidean, Minkowski and Canberra metrics 

[Krzanowski95]. K-means clustering is one of the most often used clustering methods 

because of its simplicity and robustness. It converges well with the Euclidean distance, 

which has been selected for use in this work and is given in Equation 8.1 [Jain88]: 
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The k-means clustering code, taken from the Somtoolbox [SOM] from Kohonen’s 

work on self-organising maps [Kohonen90], uses the iterative partitional clustering 

algorithm put forward by Jain and Dubes, a description of which is in [Jain88:96-7]. An 

advantage of this algorithm is that it automatically assigns items to clusters. The 

disadvantages are that the number of clusters must be pre-selected and that all items are 

forced into a cluster, making it sensitive to outliers. The squared Euclidean distance 

metric is used which is computationally faster for clustering than the Euclidean distance 

[ibid.] shown in Equation 8.1. The clustering algorithm remains unaffected by this 

change as it is a partitional clustering method as opposed to a hierarchical one. Clusters 

obtained from non-negative matrix factorisation (NMF) and singular vector 

decomposition (SVD) have also been investigated. Significantly better results have been 

achieved using the k-means clustering algorithm comparatively to other clustering 

methods investigated. Only the k-means clustering results are presented in this work. 

Running the k-means clustering algorithm provides the prototype vectors used in the 

k-NN classifier. For the first task, two cluster centres are needed. The “beginner” and 

the “professional” clusters centres become the f x 1 prototype vectors, where f is the 

number of features used. For the fault identification task, clusters are formed according 

to the presence or absence of a particular fault based on the listening tests. Prior to use 

in the classifier, these prototype vectors were checked by comparing their values with 

the means of all samples for each feature associated with its respective cluster to check 

for convergence. The algorithm converged well and no alterations had to be made. From 

the listening tests, clusters based on perceived presence of each fault were also used to 

inspect the existence of perceptual correlates for the violin’s timbre space.  

A proximity matrix is calculated using the squared Euclidean measure between the 

prototypes and the feature vector array. This matrix is inputted into the k-NN classifier, 

to which class labels are assigned. These labels are then compared with the a priori 

labels to obtain the classifier accuracy reading. The k-NN rule classifies a sample by 

assigning it the label which is most often associated with its k-nearest samples. When 

k=1, it is a special case of a k-NN classifier where every sample is assigned to the class 

of the nearest cluster. In practice, k=1 is often used [ibid.], as it is in this work, as the 

dataset size is not too large. Prior to detailing the classification results, cross-validation 

methods are briefly presented.  
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8.2 Cross-Validation 

Cross-validation techniques are methods for detecting and preventing classifier over-

fitting, used for checking classifier accuracy estimation and generalisation potential. 

Classifier accuracy is the probability of correctly labelling a randomly selected sample. 

Cross-validation serves as an accuracy consistency measure allowing these results to be 

generalised and subsequently applied to another dataset. For estimating the accuracy of 

a classifier, an estimation method with low bias and low variance is best.  

Rather than running a classifier on the entire dataset, cross-validation involves 

putting the dataset samples in a random order after which, a portion of the dataset is put 

aside as a training set and the remaining samples are used for testing. Two well 

established cross-validation techniques are n-folds and leave-one-out cross-validation 

(LOOCV). In n-fold cross-validation, the dataset is put into n equal sections where n-1 

sections are used for training and the remaining section is used for testing. The sections 

are rotated and the means of the results of the n classifications are taken. In LOOCV, as 

the name implies, each sample is removed one at a time and used for testing and the rest 

of the samples are used for training. This makes LOOCV an almost unbiased method 

but high variance can be a problem which can lead to unreliable estimates [Efron83]. 

From a purely practical perspective, LOOCV is computationally intensive and is better 

used on smaller datasets and also why n-fold cross-validation is favoured in this work. 

Four-fold cross-validation has been selected.  

In four-fold cross validation, the randomly ordered samples are divided into four 

equal parts. Randomising the dataset prior to splitting it up into four equal parts reduces 

the possibility of biasing the cross-validation. Three quarters of the dataset are used for 

training and the remaining quarter for testing the classifier. The sections are rotated so 

that each quarter is used as the test set once. The results obtained for each section are 

compared and the differences between test and train sets are an indication of feature 

combination suitability for the detection task. The mean readings are taken from all four 

folds and used for analysis. Four-fold cross validation has been applied to both tasks 

and to all possible feature combinations, the results of which are presented in the 

following section. 
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8.3 Classification Results 

A large number of features and feature combinations have been tested in the classifier. 

A total of 33 individual features and combinations of, have been used to represent the 

dataset’s samples. Task I is the detection of professional standard legato notes from 

poorer sound quality ones, such as those associated with a beginner violinist and Task II 

is playing fault detection. The results obtained, via four fold cross-validation for both 

tasks are presented and conclusions are drawn. Four-fold cross-validation involves 

obtaining the mean accuracy results for every possible feature combination. The smaller 

the error between the training and testing sets, the better the associated feature or feature 

combination suits the classification task. All results obtained for each combination 

without repetition will not be shown in the text as it amounts to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n

 combinations 

where n is the total number of features and r, the selected number of features. The 

features selected to represent the dataset’s samples were based on their ability or lack of 

to group the samples according to beginner and professional standard player in their 

respective domains. Of the 33 features used to represent the samples, six completely 

separate the dataset’s samples accurately based on player type when applied directly to 

the data. These features are the TM, MMV, CQTH9, PSD190, SFMV and the SCM190. 

Good separation between player groups is also provided through representing the data 

by taking the TK, SFMM, RCCM, RCCV, RCC0, RCC1, RCC5 and the MFCC3 

values. When using these last representations, less than ten samples’ values overlap. A 

further ten features including the TV, AC, CV, SFMK, MFCC0M, MFCC0V, MFCC0S 

and the MFCC0K, return values which reflect an underlying pattern of interest. 

Although the readings overlap, these features’ values confirm musicians’ perception 

about the two different players groups in the dataset, i.e. the relative inconsistency of 

beginner playing. The remaining features are not effective at differentiating between the 

different player groups in the dataset as their values completely overlap, making the 

different player groups indistinguishable from each other. The classification results 

obtained for both tasks are detailed next.  

8.3.1 Task I Results  

In this section, a summary of the results obtained for Task I is presented. To start with, 

the monothetic results returned for determining beginner from professional standard 
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legato note samples via four-fold cross-validation are displayed in Table 8.2. The results 

which are of greatest interest are those returning the highest detection rates with no or 

very small difference between the testing and training set results as this reflects feature 

combination suitability for the selected task. The best performing features for this task 

via the classifier are the TM, MMV and CQTH9 features, which have returned 97% 

detection accuracy. Although these three features have performed well at grouping the 

beginner from the professional standard legato note samples correctly in their respective 

domains, not all features perform as efficiently at the same task via the classifier, as can 

be seen by the results displayed in Table 8.22. 
No. Feature Train % Test % 
1 TM 97 97 
2 TV 52 44 
3 TS 52 52 
4 TK 90 89 
5 MMV 97 97 
6 CQTH9 97 97 
7 PSD 52 53 
8 PSD190 52 51 
9 SFM 58 58 
10 SFMM 63 60 
11 SFMV 92 92 
12 SFMS 52 52 
13 SCM190 92 92 
14 CM 67 65 
15 CV 70 69 
16 CK 63 64 
17 RCCM 91 91 
18 RCCV 90 90 
19 RCCS 92 92 
20 RCCK 86 89 
21 RCC0 88 88 
22 RCC1 90 90 
23 RCC2 72 73 
24 RCC3 75 77 
25 RCC5 88 86 
26 RCC12 62 63 
27 RCC27 59 63 
28 MFCC0M 58 53 
29 MFCC1M 50 51 
30 MFCC3M 75 74 
31 MFCC0K 60 55 
32 SF 48 48 
33 AC 50 50 

Table  8.2: Monothetic classification results for Task I. 

Of the remaining three features which successfully distinguished between the two 

different player groups in the dataset, SFMV, SCM190 and PSD190, two performed 

slightly less accurately and the third one performed poorly in the classifier. The SFMV 

and SCM190 returned lower detection results of approximately 92% accuracy even 

though when applied directly to the data, the results are 100% correct. The PSD190 

performed poorly in the classifier, returning detection results around 50%. An 

explanation for this last poor result is displayed in Figure 8.2, which shows the distance 
                                                 

2 All of these features and how well they represent the dataset’s samples have been presented or 
discussed in the text except for RCC12 and RCC27. How these two features represent the dataset’s 
samples are displayed in Appendix C. 
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between the two cluster centres and the dataset’s samples as represented by their 

PSD190 values. Many of the beginner note samples, when represented by their PSD190 

values, have very similar distances from the cluster centres than the professional 

standard legato ones. For this reason, the PSD190 does not function well in the 

classifier. This measure serves better as a threshold decision surface. Some of the other 

poor classifier performances can be attributed to having cluster centres which are too 

close together. This accounts for the incorrect assignment of a high proportion of 

samples, thereby returning classifier detection at approximately 50%.  
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Figure  8.2: Distance between cluster centres and dataset samples’ PSD190 values.  

The best detection accuracy result for any feature used in the classifier, for the 

detection of beginner note samples from professional standard legato ones, is 97%. As 

stated previously, the features returning this result, the TM, MMV and CQTH9, separate 

the data according to player type with 100% accuracy when applied directly to the data. 

The slightly lower detection result returned when these features are used in a classifier 

can be linked to a small number of outlier values. There will always be a risk of 

classifier sensitivity to outliers when samples being tested are represented by only one 

feature. Although the monothetic results display much information about the dataset’s 
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samples and cluster centres formed as represented by the different features, an 

improvement on 97% detection accuracy is sought. This may be achieved by decreasing 

cluster sensitivity to outliers by using more than one feature to represent the samples.  

Before presenting the results returned when multiple features are used to represent 

the dataset’s samples, the other features which have returned high detection rates for 

Task I are noted. These include the TK, SCM190, RCCM, RCCV, RCCS, RCCK, 

RCC0, RCC1, RCC5 and SFMV. In all, 13 features return detection results above 86% 

for this task. Seven of the top performing results have been returned by features that are 

based on the real cepstrum.  

A summary of the feature combinations returning the best results, 97% detection 

accuracy, is displayed in Table 8.3. Where numerous feature combinations have been 

returned, they are detailed in the indicated tables in Appendix B. Using more than eight 

features causes the results to continue to drop in accuracy and for this reason feature 

combinations using more than eight features are not displayed. In Table 8.3, the leftmost 

column gives the number of features used. The next two columns list the train and test 

set results obtained. The fourth column states the number of feature combinations 

achieving these results and in the rightmost column, the features are listed.  

Through observing the feature combinations which have returned the best detection 

results for Task I, a pattern is revealed. The same features are regularly returned, giving 

rise to a cumulative feature effect, i.e. the successful features using lesser numbers of 

features exist within those using a greater number of features. This indicates much 

repetition, hence redundancy, within the best performing feature combinations. It also 

highlights the most useful features for the detection of beginner from professional 

standard legato note samples.  
No Train% Test% No. Combinations Features 
1 97 97 3 TM; MMV; CQTH9 
2 97 97 7 TM,CQTH9; TM,PSD190; CQTH9,RCCM; TM,MMV; TM,RCCM; TM,SFMV; 

MMV,CQTH9 
3 97 97 27 Table B1 
4 97 97 32 Table B2 
5 97 97 27 Table B3 
6 97 97 10 Table B4 
7 97 97 1 TM,CQTH9,SF,SFMV, RCCM,RCCV,PSD190 
8 95 95 568 - 

Table  8.3: Feature combinations returning the best detection results Task I. 

From Table 8.3, features 1, TM, 5, MMV and 6, CQTH9, are the three most 

significant features and are also the ones which performed well individually in the 

classifier. From these results, Task I is achieved by using any of these three features 

only. Observing all the successful feature combinations returned, at least one of these 
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features is present in each combination. The presence of any one of these three features 

makes the other features effectively redundant. The only features in the successful Task 

I features displayed in the above table and in those in Appendix B, are the TM, CQTH9, 

PSD190, RCCM, SFMV, MMV and SF all of which perform well when applied directly 

to the data except for the SF.  

When more than eight features are used to represent the dataset’s samples, the 

detection accuracy results drop to 95% and a much greater number of successful feature 

combinations is returned. The same seven features important in the previous feature 

combinations remain dominant in these combinations as well. As the number of features 

increases further, the accuracy continues to drop and a gap emerges between the train 

and test set results, indicating that the feature combinations with more features are not 

as well suited for the detection task as those using a lesser number of features. How well 

the same features and feature combinations perform at fault detection is detailed next.  

8.3.2 Task II Results 

Fault detection via four-fold cross-validation is presented in this section. The complete 

monothetic results obtained for fault detection are displayed in Table B5 and in Table 

B6 in Appendix B. From these results, all the playing faults have been detected. Feature 

suitability is based on the strength of the detection results, the closeness of the train and 

test set results and if any other faults have been detected by a given feature combination. 

The smaller the gap is between the train and test set results, the more suitable a feature 

is for detecting a specific playing fault. What is observed in these tables is that, should a 

feature perform well at detecting one playing fault, it tends to be effective at detecting 

many other playing faults too. This complicates individual feature detection. 
Fault Train% Test% Feature Other Faults Detected 
CR 80 83 SF All others except for NV 
SK 82 81 SF All others except for NV 
NV 75 

75 
72 
73 

RCC1 
RCC5 

at least a 5% gap 

INT 83 83 SF All others except for NV 
BB 90 91 SF All others except for NV 
XN 88 88 SF All others except for NV 
SE 82 81 SF All others except for NV 
BADS 85 87 SF All others except for NV 
BADE 78 80 SF All others except for NV 

Table  8.4: Individual playing fault detection monothetic results. 

A summary of the best detection results obtained for each playing fault based on the 

monothetic results is displayed in Table 8.4. The leftmost column lists the playing fault, 

the detection results of which are given in the following two columns. The fourth 

column lists the feature used and the last column lists any other playing faults detected. 
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From the results displayed in Table 8.4, playing faults bow bouncing and extra note 

achieve the highest detection accuracy readings at 90% and 88% on their training and 

91% and 88% on their testing sets respectively. Both playing faults are detected by the 

same feature, SF. From these results, feature 32, SF, detects all playing faults within 

approximately 80% to 90% detection accuracy except for player nervousness. This 

feature returns the poorest detection results for nervousness at approximately 68% 

detection accuracy, which is at least 10% lower than that obtained for crunching. The 

results for bow bouncing and extra note are close after which, a drop of at least 6% 

exists before any other playing fault is detected. Features 22 and 25, which are RCC1 

and RCC5 respectively, detect player nervousness. These features also detect other 

playing faults but there is a drop of at least 5% between its detection and that of another 

fault.  

The proximity between the detection results for these playing faults is not entirely 

unexpected given that multiple playing faults tend to occur simultaneously in the 

dataset’s beginner note samples. This is well illustrated by the data collected from the 

listening tests. More specifically, Figure 3.5 which illustrates the perceived playing fault 

presence in each sample. Furthermore, Table 3.3 lists the perceived independent fault 

occurrence for the dataset’s samples, which is comparatively very low to the overall 

fault presence. Information about the proportion of the overlapping perceived playing 

faults is displayed in Table 3.4. Based on the information collected about the dataset 

through the listening tests, identifying faults individually and independently was not 

expected to be evident. The classifier is identifying the presence of multiple playing 

faults together, as too have the listeners. From these initial results, the same features 

detect multiple playing faults. The fault detection results obtained by using feature 

combinations are presented next.  

From the monothetic fault detection results, bow bouncing and extra note are the 

two most readily detectable playing faults. When more than one feature is used to 

represent the data, bow bouncing and extra note also returned the highest detection 

results using the same feature combinations. Information relating to the detection of 

these playing faults is presented in Table 8.5. They are presented together to highlight 

the proximity of their detection results. The feature combinations displayed in this table 

are those that returned the highest detection rates, whose train and test results are the 

closest and which have a workable gap between the fault detection rate and that the 
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other playing faults. Where feature combinations are numerous, they are listed in 

Appendix B. 

From the results displayed, bow bouncing and extra note are detected 

simultaneously. The proximity between the results obtained for detecting bow bouncing 

and extra note is well displayed in Table 8.5. These two playing faults are similar in that 

bow bouncing can be considered as a form of extra note as, as the bow bounces along 

the string, the effect can be thought of as little additional notes. The results obtained 

point to combining these two playing faults and renaming them under a common name 

for detection purposes. Taking a closer look at these results shows that if the highest 

detection rates are returned for bow bouncing, the next fault detected is always extra 

note. Although these two faults are detected within a close proximity of each other, a 

much larger gap exists after this, one of approximately 5% for some and 10% for the 

ones listed in the last four lines in Table 8.5 before another fault is detected as indicated 

in parentheses in Table 8.5.  
Fault  Train% Test% No. Features No. Combinations Features Gap% 

BB 90 89 3 1 TM,SFMM,AC +0.4 
XN 90 91 3 1 TM,SFMM,AC +4.7 
BB 88 86 3 6 Table B7 +0.6 
XN 87 90 3 6 Table B7 +4.9 
BB 90 90 4 1 TM,RCCV,SFMV,AC +0.2 
XN 90 93 4 1 TM,RCCV,SFMV,AC +5.1 
BB 90 90 5 1 MMV,RCCM,RCCV,SFM,AC +0.6 
XN 90 93 5 1 MMV,RCCM,RCCV,SFM,AC +4.7 
BB 88 86 6 8 Table B8 +0.6 
XN 87 90 6 8 Table B8 +4.5 
BB 88 86 7 4 Table B9 +0.6 
XN 87 90 7 4 Table B9 +4.5 
BB 88 86 8 4 Table B10 +0.6 
XN 87 90 8 4 Table B10 +4.5 
BB 85 85 3 3 TV,SF,PSD; TV,PSD,RCCS; SF,PSD,RCC2 +2.8 (+10) 
BB 85 85 4 1 PSD,RCCS,RCC2,RCC27 +3.2 (+10) 
BB 85 85 5 1 TV,TS,PSD,RCCS,RCC12 +2.8 (+10) 
BB 85 85 6 

 
2 TV,TS,SF,PSD,RCCS,RCC2; 

TS,SF,PSD,RCC2,RCC12,RCC27 
+3.2 (+10) 

Table  8.5: Bow bouncing and extra note detection results. 

Regarding the features present in the successful feature combinations, two points are 

noted. The first, a cumulative feature effect, as displayed in the Task I results, is not 

present in these fault detection feature combinations. This makes tracking the presence 

of a specific feature difficult. The second point is an observation about the type of 

features that are present. Features that have been labelled as poor performing features in 

this text are more prevalent in the fault detection combinations. The features which fall 

into this category include AC, TV, TS, SF, SFM, PSD, RCC3, RCC12 and RCC27. 

Fault detection is dependent on the presence of such features whereas the Task I results 

require features that perform well at discriminating between the two different player 

types in their respective domains for a successful classification outcome. The results 
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show that bow bouncing and extra note have been detected simultaneously. 

Nervousness is also readily detectable, although to a lower detection accuracy level, the 

results of which are detailed next.  

Nervousness is detected to approximately 73% detection accuracy through using 

many feature combinations which are displayed in Table 8.6. Where numerous, the 

feature combinations are given in Appendix B. Although detection results do not exceed 

74% accuracy, a gap of at least 7% to other faults exists when three, five, six, seven and 

eight features are used. From these results, feature seven, RCC1, is the most prominent 

feature, present in all the feature combinations of interest. Features six and seven, RCC0 

and RCC1 respectively, are also present in the successful feature combinations listed in 

Table 8.6. When detecting nervousness, increasing the number of features used does not 

increase the detection rates but the gap between the detection of player nervousness and 

that of any other fault widens, which improves feature combination suitability for the 

given task, noting that the displayed drop in accuracy is small. This is shown by the 12, 

13 and 14 feature combinations listed in the table below. Taking the difference between 

the training and testing set results as well as the detection proximity to other faults into 

account means that using more features is better for detecting nervousness within these 

conditions. Nervousness is best detected to approximately 72% accuracy by using the 

12, 13 and 14 feature combinations. These feature combinations returned the closest 

train and test set results as well as providing a gap of at least 11% between detecting 

faults.  
Train% Test% No. 

Features 
No. 
Combinations 

Features Gap% 

74 76 3 1 RCCM,RCC0,RCC1 +7% 
74 76 5 1 MMV,RCC0,RCC1,SFMV,SFMS +7% 
74 76 6 7 Table B11 +7% 
74 76 7 2 TM,MMV,RCCV,RCC0,RCC1,RCC3,SFMS; 

MMV,RCCM,RCC0,RCC1,SFM,SFMM,SFMV 
+7% 

74 76 8 2 TM,MMV,RCCV,RCC0,RCC1,RCC3,SFMV,AC; 
TM,RCCM,RCC0,RCC1,SFMM,SFMV,SFMS,AC 

+7% 

73 71 12 1 TM,TK,CQTH9,PSD190,SFMM,SFMV,SCM190,RCCV,RCC0,RCC1,RCC5,CV +12 
72 71 13 1 TM,TK,CQTH9,SFMM,SFMV,SCM190,RCCM,RCCV,RCC0,RCC1,RCC5,CV,AC +12 
72 71 14 1 TM,TK,CQTH9,PSD190,SFMM,SFMV,SCM190,RCCV,RCC0,RCC1,RCC5,CV,AC +11 

Table  8.6: Player nervousness detection. 

A total of 33 features and multiple feature combinations have been used to represent 

the data in the classifier. The features and feature combinations have been selected 

based on their individual features’ ability to group, according to player type, the 

dataset’s samples. For Task I, 97% accuracy has been achieved through many different 

feature combinations. From the Task II results, all playing faults are detected, but only 

nervousness is detected in a way that can be considered to be independent of the other 
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faults. In other words, detecting player nervousness with a sufficient gap before another 

playing fault is detected. Bow bouncing and extra note are the faults with the highest 

detection levels returned by the same feature combinations, making these two playing 

faults simultaneously identifiable. The detection results of these two playing faults point 

to renaming them under a common name for detection purposes. 

Through using different feature representations of the data, the relationship between 

cluster centres and detection task has been observed. Regarding feature choice for Task 

I, three points are important when using a k-NN classifier. Firstly, how the feature 

performs directly on the data, in this case at grouping the samples according to player 

type. Secondly, that the different player samples do not return similar distances between 

their representations and cluster centres. And finally, the proximity of the clusters to 

each other, as determined by the feature used. From the results returned, a pattern in the 

detection results emerges reflecting feature choice. For Task I, the ‘good’ performing 

features are necessary and for fault detection, the inclusion of what is referred to in this 

text as ‘poor’ performing features improves the detection results of playing faults. For 

task I, increasing the number of features has not further facilitated overall fault detection 

nor the detection of individual faults as reflected by the results detailed. Relying on one 

feature only for either detection task makes the results less robust and more sensitive to 

outliers or erroneous data. For cluster stability reasons, using more than one feature is 

favoured. In the following section, feature combinations for both detection tasks are 

tested on new data. Although the results presented have been obtained from a four-fold 

cross-validation and therefore should generalise, testing the feature combinations on 

new data further tests the generality of the results.  

8.4 Testing New Data 

From the results obtained from the classifier via four-fold cross-validation in the 

previous section, multiple suitable feature combinations have been returned for both 

detection tasks. In this section, some of these feature combinations are tested on new 

data. This serves as a further check on the feature combinations’ ability to generalise. 

Prior to testing on new data, a summary of the feature combinations returned from both 

tasks deemed to be of interest, is given. 

From the Task I results, where present, the same features have been shown to be 

important for the detection of beginner and professional standard legato note samples. 

Feature combinations have returned detection results of 97% accuracy using one to 
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seven features. The results show much redundancy in that the combinations with more 

features include the successful combinations with lesser numbers of features. Rather 

than testing all of the feature combinations individually for Task I, three feature 

combinations have been selected and are displayed in Table 8.7. These feature 

combinations have constituent features that all perform well at differentiating between 

beginner and professional standard legato note samples in the dataset when applied 

directly to the data. They consist of the most significant features present in the other 

successful feature combinations too. 
nf Important Feature Combinations for Task I 
5 TM, MMV, RCCM, RCCV,SFMV 
6 TM, CQTH9, PSD190, SFMV, RCCM, RCCV 
7 TM, MMV, RCCM, RCCV,SFMV, PSD190, CQTH9 

Table  8.7: Task I feature combinations. 

Developing playing, i.e. that which is associated with a beginner player, is detected 

much more readily and robustly than identifying individual playing faults resulting in 

fewer combinations. The feature combinations for fault detection tend to require a 

greater number of features than those for Task I. A cumulative feature effect, as 

observed in the Task I results, is not present to the same extent. The feature 

combinations needed for fault detection are listed in Table 8.8. 
nf Fault Features 
3 NV RCCM, RCC0, RCC1 
3 BB&XN TM, SFMM, AC 
4 BB&XN TM, RCCV, SFMV, AC 
4 BB PSD, RCCS, RCC2, RCC27 
5 BB TV, TS, SF, PSD, RCCS 
5 NV MMV, RCC0, RCC1, SFMV, SFMS 
5 BB&XN MMV,RCCM,RCCV,SFM,AC 
12 NV TM,TK,CQTH9,PSD190,SFMM,SFMV,SCM190,RCCV,RCC0,RCC1,RCC5,CV 
13 NV TM,TK,CQTH9,SFMM,SFMV,SCM190,RCCM,RCCV,RCC0,RCC1,RCC5,CV,AC 
14 NV TM,TK,CQTH9,PSD190,SFMM,SFMV,SCM190,RCCV,RCC0,RCC1,RCC5,CV,AC 

Table  8.8: Prominent fault detection feature combinations.  

There are two ways of testing new data: threshold values and comparing clusters. 

Threshold values have been obtained from the trial dataset results based on how well a 

feature performs at separating the two player groups in the dataset. This works well 

where the dataset samples are grouped distinctly. Depending on the features returned 

from the classifier, applying threshold values is not always possible. In the clustering 

test, representative features are obtained from the new data sample based on the 

successful feature combinations from the classifier and the distances from the clusters 

provided by the original dataset are compared. Should a sample be positioned closer to 

the beginner cluster, it gets a beginner note label and likewise for the professional legato 

label. Both of these testing methods can have their sensitivity increased or decreased by 

altering the number of conditions met. The conditions referred to are determined by the 
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features selected. For example, a sample may meet the professional standard for four 

out of the five features but depending on the level set, this sample can be labelled as a 

beginner or as a professional. This allows a certain flexibility to the system by being 

able to compensate for occasional erroneous data values. Of the features presented in 

this work, relatively few discriminate with 100% accuracy the two different player 

groups. Many more group data correctly but have some overlapping values. So a best of 

x out of y feature values approach allows the testing sensitivity to be altered. To check 

their performance, these testing methods have been run on the dataset and the labels 

compared with those assigned to the samples through the listening tests, the results of 

which are displayed in Table 8.9. The five features used are TM, MMV, RCCM, RCCV 

and SFMV.  
Method Initial Sensitivity (4 out of 5) Increased Sensitivity (all 5) 
Threshold Method 163 out of 176 labels same as listeners 170 out of 176 labels same as listeners 
 6 pro std leg note samples incorrectly labelled 5 pro std leg & 1 beginner note samples incorrectly labelled 
Clustering Method 163 out of 176 labels same as listeners 170 out of 176 labels same as listeners 
 13 pro std leg note samples incorrectly labelled All labels correct 

Table  8.9: Testing methods based on five features for Task I. 

Prior to testing new data, the test data is presented. The legato note samples have 

been downloaded from the University of Iowa’s Electronic Music Studio’s Musical 

Instrument Samples [UofI]. These note samples are comparable to the professional 

standard legato note samples in the dataset. Beginner note samples have been obtained 

from different sources. One group consists of samples which had been obtained in as 

similar a way as possible to the original data at a later date, using the same players. This 

group is referred to as Begtest. The other samples have been obtained from two young 

students using a Sony monophonic microphone and recorded directly into Cool Edit Pro 

[CoolEditPro98]. The recordings of these players were taken in the living rooms of their 

homes. All rooms are quiet and have good practicing acoustics, i.e. not live. One student 

plays a half size violin and the other, a full size. Both students have been playing a few 

years and are capable of producing good sound and were asked to play open notes and 

scales with separate bows, stopping between notes. These two players are better than the 

beginner players used to make the dataset. Many of the notes produced by these 

students have good sound quality and few are dominated by playing faults. So returning 

only beginner labels for these samples is not expected. Before testing the new data, the 

samples were labelled by a professional violinist.  

A summary of the new samples’ results obtained when using the same five features 

are displayed in Table 8.10. The five features used in this testing procedure are the TM, 
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MMV, RCCM, RCCV and SFMV. Using the clustering method is favourable to the 

threshold approach as it yields more accurate results. To contrast the results and to 

check the sensitivity level set, the test was run on the dataset samples. In this case, the 

outcome of each feature goes towards determining the label assigned and this level can 

be altered. In the results displayed, at least four features need to be labelled professional 

player for the sample to get this label.  
Sample List Player Violin Size Type No. Samples Task I Outcome 
U of I Professional  Full  Legato 93 All labelled professional 
Begtest 3 beginners  Full  Legato 121 All labelled beginner 
Student_1 Student  Full  Legato 97 16 beg and 81 pro (listener: 25 beg and 72 good) 
Student_2 Student 1/2 Legato 49 10 beg and 39 pro (listener: 11 beg and 38 good) 
Dataset 5 players  Full  Legato 176 Correct labels; 6 different to listening test labels 

Table  8.10: Test data samples based on at least four out of five features. 

The six dataset samples which have different labels to those assigned by the 

listening tests are all professional standard legato notes which have been given beginner 

player labels. The Begtest and U of I samples have all been labelled correctly. In the 

student samples, the listener and cluster labels mostly overlap but the violinist listener 

picked up more subtleties in the notes judged which formed their decision, based on the 

feedback returned. The inclusion of a professional violinist’s opinion serves as a guide. 

The student samples are mostly good and comparatively to the dataset’s beginner note 

samples, only small faults are present. These faults do not dominate the sound samples. 

With the aim of improving label accuracy, the number of features is kept the same but 

the test sensitivity is changed by altering the conditions met. These conditions are now 

determined by the outcomes of all five features and the results are displayed in Table 

8.11. A professional standard label is assigned should all features return values which 

fall within an acceptable distance from the dataset’s professional standard legato note 

samples’ cluster.  
Sample List Player Violin Size Type No. Samples Task I Outcome 
U of I Professional  Full  Legato 93 All labelled professional 
Begtest 3 beginners Full  Legato 121 All labelled beginner 
Student_1 Student  Full  Legato 97 All labelled beginner (listener: 25 beg and 72 good) 
Student_2 Student  ½ Legato 43 All labelled beginner (listener: 11 beg and 80 good) 
Dataset 5 players Full  Legato 176 99 beg and 77 pro; 13 different to listening test labels 

Table  8.11: Test data samples based on five features with maximum sensitivity. 

Increasing the test sensitivity level now assigns beginner labels to all the student 

samples and to some of the dataset’s legato note samples. The results in the previous 

table are better for Task I. Further labelling improvements are tested by using more 

features. The results using six features are given in Table 8.12 and reveal labelling 

accuracy levels which fall between those provided in the previous two tables. The six 
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features used in this testing procedure are the TM, MMV, RCCM, RCCV, SFMV and 

PSD190. In these results, the labelling depends on all six features.  
Sample List Player Violin Size Type No. Samples Task I Outcome 
U of I Professional Full  Legato 93 All labelled professional 
Begtest 3 beginners Full  Legato 121 All labelled beginner 
Studen_1 Student  Full  Legato 97 87 beg and 10 pro (listener: 25 beg and 72 good) 
Student_2 Student  1/2 Legato 43 All labelled beginner (listener: 11 beg and 80 good) 
Dataset 5 players Full  Legato 176 99 beg and 77 pro; 13 different to listening test labels 

Table  8.12: Test data samples based on six features with maximum sensitivity. 

The test samples which are most like the dataset samples, U of I and Begtest, are 

correctly labelled. Listening to the Student_1 samples which have been labelled as 

professional player, nine have good sound quality but the tenth does not have acceptable 

sound quality throughout the duration of the note. The violinist has labelled these nine 

samples as good but not the tenth. An explanation for this discrepancy is that Student_1 

is a strong player and some features, such as TM, are influenced by force and not only 

good quality strength3. The labelling returned is more severe than desired in these 

results based on how the dataset has been labelled, indicating a need to alter the test 

conditions set. Reducing the test sensitivity improves the labelling while using the same 

feature list, as displayed by the results given in Table 8.13. In these results, at least five 

feature values out of six need to fall within an acceptable proximity to the dataset’s 

professional standard legato note samples’ values to be given a professional player 

label.  
Sample List Player Violin Size Type No. Samples Task I Outcome 
U of I Professional  Full  Legato 93 All labelled professional 
Begtest  3 beginners Full  Legato 121 All labelled beginner 
Student_1 Student  Full  Legato 97 17 beg and 80 pro (listener: 25 beg and 72 good) 
Student_2 Student  1/2 Legato 43 10 beg and 39 pro (listener: 11 beg and 38 good) 
Dataset 5 players Full  Legato 176 All labelled correctly; 6 different to listening test labels 

Table  8.13: Test data samples based on six features with decreased sensitivity. 

The test setup used to obtain the results displayed in Table 8.13 correctly labels all 

the dataset samples. Compared to the labels obtained via the listening tests, six 

professional standard legato note samples have different labels. These are the six legato 

samples that the listeners have labelled as beginner player. The number of labels 

assigned by the testing procedure for the student samples is close to those given by the 

violinist but the sample labels need to be inspected. All but two of the 17 Student_1 

samples which have been labelled as beginner player by the test have been given fault 

descriptions by the violinist. Two of Student_2’s beginner player labels as determined 

by the test conflict with the descriptions given by the violinist and are reported as being 

                                                 
3 See Figure D1 in Appendix D which displays the TM values for these different sample groups.  
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of good quality. The results obtained when the number of features is increased to seven 

are presented next.  

The seven features used in the feature combination tested are the TM, MMV, 

RCCM, RCCV, SFMV, PSD190 and CQTH9. The results obtained when using the test 

settings that return the dataset samples labelled correctly are given in Table 8.14. The U 

of I and Begtest samples have all been labelled correctly. All of Student_2’s and most of 

Student_1’s samples are labelled beginner which is more severe labelling than that 

given by the violinist. Many of the students’ samples are of acceptable quality. To 

obtain these results, at least six of the seven features require values close to those of the 

dataset’s professional standard legato note samples’ cluster centre to get a professional 

player label. Taking the labelling based on all seven features, which is not displayed, 

return results that are even more severe, labelling eleven of the dataset’s legato note 

samples as beginner player.  
Sample List Player Violin Size Type No. Samples Task I Outcome 
U of I Professional  Full  Legato 93 All labelled professional 
Begtest  3 beginners Full  Legato 121 All labelled beginner 
Student_1 Student  Full  Legato 97 87 beg and 10 pro (listener: 25 beg and 72 good) 
Student_2 Student  ½ Legato 43 All labelled beginner (listener: 11 beg and 38 good) 
Dataset 5 players Full  Legato 176 All labelled correctly; 6 different to listening test labels 

Table  8.14: Test data samples based on seven features with reduced sensitivity. 

Sample List Player Violin Size Type No. Samples Task I Outcome 
U of I Professional  Full  Legato 93 All labelled professional 
Begtest  3 beginners Full  Legato 121 All labelled beginner 
Student_1 Student  Full  Legato 97 17 beg and 80 pro (listener: 25 beg and 72 good) 
Student_2 Student  ½ Legato 43 10 beg and 39 (listener: 11 beg and 38 good) 
Dataset 5 players Full  Legato 176 86 beg and 90 pro; 8 different to listening test labels 

Table  8.15: Test data samples based on seven features with further reduced 
sensitivity. 

The labelling results obtained once the test conditions have been reduced further are 

displayed in Table 8.15. In these results, at least five of the seven features must return 

values which fall within proximity to those representing the dataset’s professional 

standard legato note samples. The U of I legato note samples retain their professional 

player labels and two label changes have occurred in the dataset samples. Two beginner 

note samples have professional player labels. Listening to these two samples, their 

sound quality is reasonable and not dominated by playing faults. The labelling for the 

students’ samples is better aligned with the labels given by the violinist. From the 

results displayed, the optimum results use only five or six out of the seven features. 

Although using one to twelve features for Task I is possible based on the 

classification results returned, using five and six feature combinations is favoured. Most 

of these features, when applied directly to the dataset, group the different player types 
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accurately, but some samples have overlapping values. By increasing the number of 

features used, should a sample overlap in one domain, it may not in the others, allowing 

for more robust labelling. Detecting beginner from professional standard violin notes is 

best achieved by a computer using five and six feature combinations consisting of the 

TM, MMV, RCCM, RCCV, SFMV and PSD190. What is important in achieving an 

acceptable outcome is setting the test sensitivity correctly based on the number of 

features used and how the dataset samples or a control sample set is labelled.  

Fault detection feature combinations are tested in a similar manner. Before these 

results are presented, it should be noted that the beginner student samples used as test 

data are of a higher standard than the dataset’s beginner player samples, as a result of 

labelling. Not all samples contain playing faults and the ones that do, the faults are often 

not severe, i.e. the note is not dominated by playing faults. From the classification 

results, many possible combinations can be used in theory for specific fault detection. 

However, when tested, the combinations using the higher number of features performed 

better as a result of labelling and only these are presented in this section.  
Fault % correct labelling 
CR 81 
SK 83 
NV 68 
INT 83 
BB 91 
XN 91 
SE 83 
BADS 86 
BADE 79 

Table  8.16: Fault detection dataset labels. 

Fault Begtest UofI Student_1 Student_2 
NV 99% 5% 20% 19% 

Table  8.17: Test data player nervousness detection.  

The fault detection feature combinations selected for identifying playing faults were 

first run on the dataset samples to check accuracy before running them on the new data. 

The first feature combination tested consists of 13 features: TM, TK, CQTH9, SFMM, 

SFMV, SCM190, RCCM, RCCV, RCC0, RCC1, RCC5, CV and MCC3M. The 

percentage of labels matching the listening test ones for all faults are displayed in Table 

8.16.  

From the classification results, this feature combination detects player nervousness 

to approximately 73% accuracy. Applying this combination directly to the dataset 

detects all the playing faults with extra note and bow bouncing returning the highest 

detection results and nervousness, the lowest. When tested on the new data, the results 
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obtained are displayed in Table 8.17. The values displayed are the percentages of 

samples with the selected fault label.  

Listening to the samples with the assigned fault labels, these samples do contain 

faults but not uniquely the fault selected for detection, as displayed by the Begtest 

samples. This is acceptable as faults tend to occur together, as they do in the dataset 

used. The U of I samples though do not have any playing faults yet eight samples have 

been incorrectly labelled as having playing faults. Both Student_1 and Student_2 are 

better players than those who provided the dataset’s beginner note samples. This 

accounts for the lower nervousness or fault detection in these samples. These samples 

are not perfect but none is dominated by any one particular playing fault. Based on these 

results, this feature combination functions better at a more general fault detection level 

rather than specifically for detecting nervousness.  

Fault detection has not been as successfully achieved as the detection of beginner 

versus professional player task. The samples returned do contain playing faults but not 

specifically the fault set out to be detected. There are several possible explanations for 

this. To begin with, the detection results returned by the classifier were lower for fault 

detection than those for Task I. Successful fault detection feature combinations detected 

multiple playing faults and the largest detection level gap between any two faults was 

approximately 10%. Violin playing faults are more often than not linked to each other, 

making the presence and identification of independent faults difficult. Although the 

results returned had been obtained through a four-fold cross-validation classification 

method, testing on new data permitted to further check the generality of the feature 

combinations and specific detection tasks. The feature combinations for Task I have 

been shown to generalise well.  

8.5 Summary 

A 1-NN classifier with k-means clusters has been used via four-fold cross-validation to 

detect beginner note samples from professional standard legato ones and for detecting 

playing faults. Multiple features and feature combinations have been tested and 

compared. The effect of timbre descriptor choice on classification outcome has been 

investigated and certain feature selections have been shown to be more advantageous 

than others when used in the classifier. Successful feature combinations were then 

tested on new data from a variety of sources to check their ability to generalise. The 



 Classification  157 

outcomes of these tests show that the feature combinations selected generalise well for 

Task I. Playing faults have also been detected. Individual fault detection though is more 

difficult and has not always possible under the conditions set. 

Detection accuracy of 97% for Task I has been returned via four-fold cross-

validation. Within the numerous feature combinations achieving 97% detection, much 

redundancy is present. From the multiple feature combinations returning 97% detection 

accuracy for Task I, much feature repetition is present, illustrating a cumulative feature 

effect. Increasing the number of features above eight did not return any improvement in 

the detection results. The three most significant individual features for Task I via the 

classifier are the TM, MMV and CQTH9, all of which performed well at grouping the 

dataset’s samples according to player type when applied directly to the data. The other 

important features for this task included the RCCM, PSD190 and the SFMV. Features 

that distinguished accurately the different player groups in the dataset did not always 

perform well in the classifier. PSD190 is one such feature. The advantage of using more 

than one feature in a feature combination is cluster stability. The more features that are 

used in defining a cluster centre, the less susceptible the classification process becomes 

to an erroneous or an outlying reading for any one feature. From the classification 

results returned by the various feature combinations, the effect on cluster design has 

been observed. Regarding feature choice for Task I, three points are important. Firstly, 

how the feature performs directly on the data, i.e. in this case, how effective it is at 

grouping the data according to player type. Secondly, the distances between the 

samples’ representative values and the clusters and lastly, the proximity of the two 

clusters to each other. The closer the clusters are together or have similar distances for a 

majority of samples, the likelihood of incorrect labelling greatly increases. Although the 

classification results had been obtained through a cross-validation method, which in 

theory allows the outcomes to generalise, the successful feature combinations’ 

generality was further tested on new data, which had been obtained from a variety of 

different sources. The results have been shown to generalise well for Task I. In certain 

instances, the computer has been shown to return more accurate labelling than the 

listeners. 

Playing faults have been detected but isolating all specific faults was not possible. 

Bow bouncing and extra note have been detected simultaneously via multiple feature 

combinations and nervousness proved to be readily detectable too. From the features 

used, should one feature perform well at detecting a specific playing fault, it tended to 
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perform well at detecting the other faults too. In finding suitable fault detection feature 

combinations, attention had to be paid not only to detection accuracy, but also to the 

space between the fault’s detection and that of another one. Feature selection based on 

the lack of ability to split the dataset into beginner and professional groups in their 

respective domains, is reflected favourably in the fault detection results. Mixed feature 

combinations as well as those using the poorer performing features returned the best 

results for fault detection within the dataset. From the results returned, specific fault 

detection remains difficult. This is due to playing faults mostly occurring together as 

reflected by the information collected via the listening tests. The combinations 

presented serve better at general fault detection rather than detecting any specific 

playing fault. In the following chapter, the research presented in this thesis is 

summarised and conclusions are drawn.  
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9 Conclusions 

The research undertaken to investigate violin timbre has been presented in this thesis 

through the novel approach of analysing the relationship between violinist and sound 

produced. The aims of developing a way through which a system can differentiate 

between professional standard legato notes and those associated with a beginner player 

as well as detecting playing faults based on the information available in the waveform 

signal only were set. Work completed included inspecting, analysing and detecting nine 

main beginner playing faults: crunching, skating, player nervousness, intonation, bow 

bouncing, extra note, sudden end to note, poor start to note and poor finish to notes. 

Qualitative and quantitative analyses of violin timbre were required to glean a better 

understanding of how to best represent it. The approach taken has focused specifically 

on comparing typical beginner player notes to those played by professional standard 

violinists. Given the lack of existing research in the area, the work encompasses a range 

of topics including violin sound perception, signal analysis and representation, 

classification and testing. 

The main steps in this work included the creation of a suitable dataset to facilitate 

establishing a link between the qualitative expressions and quantitative measures were 

established via listening tests. Through quantitative analysis, the dataset’s samples have 

been represented by multiple features from the temporal, spectral and cepstral domains. 

The listening tests assigned qualitative labels to the dataset reflecting musicians’ 

perception. Playing faults were defined and their presence or absence confirmed through 

the listening tests taken by professional standard string players. Information sought from 

the listeners included grading the overall sound quality, determining fault presence and 

labelling each sample as a beginner or as a professional player note. The listeners’ 

consistency was verified by inspecting the range and means of values returned for each 

note sample before normalising the results to create an “average listener”, which 

provided the a priori labels for use in the classifier.  

The quantitative analyses included sourcing suitable features to represent the data 

effectively, capable of capturing the change in timbre due to the player. Much existing 

work on instrumental sound contrasts one instrument’s timbre against that of another 

one and not typically for use within a specific timbre space. Numerous standard features 
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from the time, spectral and cepstral domains have been investigated for their efficacy at 

representing violin timbre within the dataset with varying levels of success.  

The efficacy of each feature at grouping the different player types within the dataset 

separately is of great importance. Observing these standard representations for the 

dataset’s samples led to inspecting the frequency region below the violin’s lowest notes, 

G3 at 196Hz. This involved looking at the CQT frequency bins below 190Hz. Of these, 

nine frequency bins provided representation grouping the dataset’s samples based on 

player type. The PSD below 190Hz was also effective at displaying the different player 

types in the dataset. It has been shown that the beginner samples contain more power in 

the unwanted frequencies, those below the violin’s playing range, than the professional 

standard ones. Taking the SCM within the same frequency range also provided good 

results. The SCM190 results displayed a higher value for the beginner note samples than 

for the professional standard ones. Modifying these features to focus on the frequency 

content below 190Hz has returned useful results and has not previously been done in 

violin sound analyses.  

Of all the features tested, a small number of features completely separate the 

beginner from the professional standard legato note samples in the dataset. They are the 

TM, MMV, SFMV, SCM190 and the mean CQT frequency bin content of nine specific 

bins below the lowest note. A further 12 features separate well the two player groups 

with less than ten samples overlap. These features come from the time, spectral and 

cepstral domains and include the TK, CV, PSD190, SFMM, SFMK, RCCM, RCCV, 

RCCK, RCC0, RCC1, RCC5 and MFCC3M. There is also a further category of results 

in which all samples overlap but there is an underlying pattern which reflects relevant 

information. In these representations, the beginner sample values cover a much wider 

range than the professional standard legato ones do, thus illustrating what musicians 

often say about beginner player violin notes, that they are inconsistent. This can be seen 

in the AC, MFCC0M, MFCC0V, MFCC0S, MFCC0K and in the MFCC0 and MFCC2 

mean values of the first 0.87 seconds of the dataset’s samples. The values obtained for 

the remaining features overlap, making distinguishing between the different player 

types in the dataset based on these representations not possible.  

After sourcing features, different classification methods were considered. A k-means 

NN classifier was selected as it is a robust and effective classification method. 

Classification via a 1-NN classifier with k-means clusters using 33 different features and 

various feature combinations. All features and feature combinations were tested using 
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four-fold cross-validation resulting in some excellent results. The ability of these feature 

combinations to generalise was further tested on new data.  

It has been shown that a computer can differentiate effectively between beginner 

and professional standard legato violin note samples with 97% accuracy. The results 

returned have shown that it is possible to achieve Task I by using one feature only. 

Basing a detection task on only one feature makes it sensitive to erroneous data and 

outliers, recalling that relatively few features have separated the dataset’s samples based 

on player type with full accuracy. Using more than one feature to represent the data 

allows greater detection accuracy. Should a sample get an incorrect label from one 

feature, the values used to represent it based on the other features will rectify the 

situation, making for more robust detection. From the results obtained, improvements 

on this level of accuracy were not achieved by altering the feature choice or number. 

Where present, the same features have been returned indicating much redundancy in the 

successful feature combinations. Although four-fold cross-validation has been used to 

obtain the results, the ability to generalise was further tested on new data. A testing 

system was set up requiring five to seven features. The test sensitivity was set based on 

the number of conditions applied, which are determined by the feature combinations. 

The features used include the TM, MMV, RCCM, RCCV, SFMV, PSD190 and 

CQTH9. When the appropriate test sensitivity level had been selected, the results 

returned were found to be good indicating that the results generalise. Beginner notes 

have been successfully identified from the professional standard legato notes using at 

least five out of the seven features.  

Task II, playing fault detection proved to be a much greater challenge than detecting 

beginner from professional standard legato notes. Faults have been detected, but 

individual fault identification has been shown to be much more difficult. The choice of 

feature combination plays an important role in fault detection as confirmed by all the 

results returned. Increasing the number of and using better performing features was 

shown to be less effective for fault detection than for determining professional standard 

from beginner notes. The presence of poor performing features in the feature 

combinations have proven to be better for Task II than using all the best performing 

ones. The poor performing features are those that did not differentiate between the 

dataset’s different player types when applied directly to the data. Although using poor 

performing features returned the weakest Task I results, these features are beneficial for 

fault detection. The feature combinations returned for individual fault detection when 
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tested on new data, did not specifically detect the given fault but detected playing faults 

in general. Given that playing faults are rarely present in isolation in the dataset or in 

reality, these results are not unexpected. 

The advantages of testing various features and feature combinations have allowed 

classifier performance to be confirmed in terms of consistency but more importantly, 

have helped to better understand the relationship between cluster design, detection task 

and the dataset’s samples. For Task I, three points are important in cluster definition. 

The first, the features used perform well at differentiation between the two different 

player groups. Secondly, that a majority of samples do not return similar distances to the 

same clusters and finally, the presence of a suitable gap between the two cluster centres. 

Observing the most important features across all feature combinations tested for Task I 

revealed that the same features have been returned when present.  

Task II requires the data to be represented by a greater number of features. These 

features do not need to meet the same conditions as those for Task I. A “cumulative 

feature effect” or feature redundancy is not observed in the fault detection results to the 

same extent as in the Task I results. In fault detection, the polythetic clusters tend to be 

quite different one from another with the feature combination significantly changing 

once another feature is added. This makes tracing a particular feature through the fault 

detection results difficult.  

Improvements to the classification results were implemented by making the feature 

choice more diverse as well as increasing the number of features used. These changes 

did not return detection rates above 97% for Task I but certain changes permitted 

playing fault detection results to improve. Several approaches can be taken to improve 

classification results of which feature number and selection is just one. Changes can be 

made at different stages of the classification process from feature choice to dataset 

design. The most compatible with the results presented, is to find and use suitable 

features which more readily capture the subtly changing violin timbre. One possible 

example would be location specific features which quantify, for example, onset 

characteristics or pitch salience which is dependent on the steady-state section. These 

features might then facilitate the detection of certain location prevalent faults such as 

poor starts and finishes to notes. The success of such features though, is dependent on 

being able to determine effectively the attack, steady-state and decay regions of all 

violin note waveforms.  
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Alternatives to using new features include specific dataset design and the re-

labelling of playing fault descriptions. It has been shown that playing faults rarely occur 

in isolation as beginners tend not to produce sound faults independently. This makes 

data collection a long and arduous process should one opt to use samples with only one 

fault present and for this reason improbable. Another way to improve detection results is 

to re-label the playing faults. Certain playing fault descriptions are quite similar and 

overlap as has been shown by the results obtained, which point to re-labelling the bow 

bouncing and extra note playing faults together.  

An alternative to re-labelling the descriptions used which could be made to facilitate 

the testing procedure with the aim of improving accuracy, could be the use of fault 

gradations. Fault gradation could allow for more detailed information on how the 

dataset is perceived and would allow some of the comments made by the listeners to be 

taken into consideration. Including the feedback from the musicians would make the 

listening tests more detailed and precise. The listening tests could be redesigned, run 

and used in the classifier as it stands, but the dataset is likely to be too limited from 

which it could be difficult to obtain conclusive results. The down side of applying fault 

gradation is that a much larger dataset is needed; one including many more samples 

exhibiting varying levels of faults. With a larger dataset, listening test testing time and 

subsequently listener concentration and focus become issues. As presented, the listeners 

had to allow about an hour to complete the listening tests. Listener concentration at 

times appeared to fluctuate, which is why extending the testing time length or test size 

in one sitting is not advisable. Further work in this area needs to strike a balance 

between listener concentration and test size. Alternatively, fault specific test sets could 

be set up for example, a crunch test, whereby the listeners are asked only to state 

whether the selected fault can be perceived or not. This would involve a long, thorough 

dataset collection process which would not be evident as multiple playing faults are 

typically present in the majority of beginner note samples.  

Various ways of improving the detection results have been suggested so far ranging 

from finding and using new features to redesigning the dataset and listening tests have 

been proposed. Another approach considers defining the distance from a cluster centre 

to which a label applies. In the work presented, both the professional standard legato 

and beginner note clusters have been inferred by the dataset as defined by the features 

used. Several possible methods of improving the results based on cluster design are 

proposed. One way is to decrease the acceptable professional standard player region. 
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This can be done by adding an intermediate or good beginner player cluster. This would 

allow samples which fall in the middle range between the two clusters to be labelled as 

beginner instead of professional, in theory leading to greater accuracy. This allows for 

the acceptable professional standard region to be reduced and that of the beginner one to 

be increased. An alternative to this, which may improve sample labelling, is to create a 

system whereby only the professional standard note clusters are defined by the dataset 

and let the beginner ones be determined by the user. This assumes that the user is a 

beginner violinist but more importantly allows the test sensitivity to be adaptable to suit 

the user. A record of this progress based on beginner cluster movement over a period of 

time can be kept. The beginner note samples as set by the dataset can be used as a 

default setting.  

The research presented in this thesis can be easily modified and extended so that it 

can be used on other bowed stringed instruments. Apart from further applications and 

uses within the music information retrieval and analysis domains, more general uses 

include use within speech and language analysis. More specifically, taking a similar 

approach could be used in the development of articulation and language pronunciation 

tools by applying a more sonic rather than phoneme based analysis approach.  

 



References  165 

 

References 

[Agostini01]  G. Agostini, M. Longari, E. Pollastri, “Musical instrument 
timbres classification with spectral features”, IEEE Fourth Workshop Multimedia Signal 
Processing, pp.97-102, 3-5 October 2001.  
[Agositini03]  G. Agostini, M. Longari, E. Pollastri, “Musical instrument 
timbres classification with spectral features”, EURASIP Journal on Applied Signal 
Processing 2003:1, 1-11. 
[AKG09]  AKG “Monitor” Headphones product information [Online]. 
Available: 
http://www.akg.com/site/products/powerslave,id,429,pid,429,nodeid,2,_language,EN.ht
ml [Accessed: 12/12/09] 
[d’Allessandro94]  C. d’Allessandro, M. Castellongo, “The pitch of short-duration 
vibrato tones”, Journal of the Acoustical Society of America 95(3):1617-30, 1994. 
[Almeida04]  A. Almeida, C. Vergez, R. Causse, X. Rodet, “Physical model of 
an oboe: comparison with experiments”, International Symposium on Musical 
Acoustics, Nara, Japan, April 2004.  
[Askenfelt89]   A. Askenfelt, “Measurement of the bowing parameters in violin 
playing”, Journal of the Acoustical Society of America 86(2):503-516, 1989.  
[Auer80]  L. Auer, Violin Playing As I Teach It, Dover Publications Inc., 
New York, 1980.  
[Beauchamp82] J. W. Beauchamp, “Synthesis by spectral amplitude and 
brightness: matching analyzed musical sounds”, Journal of Audio Engineering Society 
30(6), pp. 396-406, 1982.  
[Bensa04]   J. Bensa, “Analysis synthesis of piano sounds using physical and 
signal models”, workshop Physical Modeling: Future Directions at SARC 28/04/04  
[Bishop95]  C. M. Bishop, Neural Networks for Pattern Recognition, Oxford 
University Press, 1995.  
[Bissinger92]  G. Bissinger, “Effect of f-hole shape, area and position of violin 
cavity modes below 2kHz”, Catgut Acoustical Society Journal, 2:2(Series II), 
November 1992.  
[Bissinger98]  G. Bissinger, G. Gearhart, “A standardized qualitative violin 
evaluation procedure”, Catgut Acoustical Society Journal, 3:6(series II):44-45, 1998. 
[Bonada01a]   J. Bonada, A. Loscos, P. Cano, X. Serra, “Spectral approach to 
the modeling of the singing voice”, Proceedings of the 111th Audio Engineering Society 
Convention, New York, USA, 2001.  
[Bonada01b]  J. Bonada, O. Celma, A. Loscos, J. Ortolà, X. Serra, “Singing 
voice synthesis combining excitation plus resonance and sinusoidal plus residua 
models”, International Computer Music Conference (ICMC), Havana, Cuba, 2001. 
[Bonada03]  J. Bonada, A. Lascos, “Sample-based singing voice synthesizers 
by spectral concatenation”, Stockholm Music Acoustics Conference (SMAC03), 
Stockholm, Sweden 2003. 
[Bows09]  The bowed string [online]. Available: 
www.phys.unw.edu.au/jw/Bows.html, [Accessed: 10/12/2009].  
[Bregman90]  A. S. Bregman, Auditory Scene Analysis: the Perceptual 
Organisation of Sound, MIT Press, Cambridge, 1990. 

http://www.akg.com/site/products/powerslave,id,429,pid,429,nodeid,2,_language,EN.html
http://www.akg.com/site/products/powerslave,id,429,pid,429,nodeid,2,_language,EN.html
http://www.phys.unw.edu.au/jw/Bows.html


References  166 

 

[Brown91]  J. C. Brown, “Calculation of a constant Q spectral transform”, 
Journal of the Acoustical Society of America, 89, pp. 425-434, 1991. 
[Brown96]  J. C. Brown, K. V. Vaughn, “Pitch center of stringed instrument 
vibrato tones”, Journal of the Acoustical Society of America 100(3):1728-35, 1996. 
[Brown01]  J. C. Brown 
[Cherry53]  E. C. Cherry, “Some experiments on the recognition of speech 
with one and two ears”, Journal of the Acoustical Society of America 25(5):975-979, 
1953.  
[Cleveland77]   T. F. Cleveland, “Acoustic properties of voice timbre types and 
their influence on voice classification”, Journal of the Acoustical Society of America, 
61:1622-1629, 1977. 
[CoolEditPro98] Cool Edit Pro, Version 1.2, Syntrillium Software Corporation, 
1998.  
[Cremer84]   L. Cremer, The Physics of the Violin, translated by T. Allen, MIT, 
London, 1984.  
[Dannenberg85] R. B. Dannenberg, “An on-line algorithm for real time 
accompaniment”, Proceedings of the International Computer Music Conference 
(ICMC), Paris, France, 1985. 
[Davis80]  S. B. Davis, P. Mermelstein, “Comparison of parametric 
representaions for monosyllabic word recognition in continuously spoken sentences”, 
IEEE Transactions on Acoustics, Speech and Signal Processing, 28(4):357-366,1980.  
[Deller00]   J. R. Deller, J. H. L. Hansen, J. G. Proakis, Discrete-Time 
Processing of Speech Signals, IEEE Press, John Wiley & Sons Inc., 2000. 
[Dodge97]   C. Dodge, T. A. Jerse, Computer Music: Synthesis, Composition 
and Performance, Schirmer Books, New York, 1997. 
[Duda73]  R. O. Duda, Pattern Classification and Scene Analysis, Wiley, 
London, 1973.  
[Efron83]   B. Efron, “Estimating the error rate of a prediction rule: 
improvement on cross validation”, Journal of the American Statistical Association, 
78(382):316:331, 1983.  
[Eronen00]  A. Eronen, A. Klapuri, “Musical Instrument Recognition Using 
Cepstral Coefficients and Temporal Features”, Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2000. 
[Eronen01]  A. Eronen, “Comparison of features for musical instrument 
recognition”, Proceedings of IEEE Workshop on Application of Signal Processing to 
Audio and Acoustics, New Paltz, New York, 2001. 
[Flesch00]  C. Flesch, The Art of Violin Playing, NY, 2000.  
[Fletcher98]   N. Fletcher, T. D. Rossing, The Physics of Musical Instruments, 
Springer, London, 1998.  
[Fritz04]   C. Fritz, “La clarinette et le clarinettiste: influence du conduit 
vocal sur la production du son”, PhD thesis, L’université de Paris 6 and the University 
of New South Wales, December 2004. 
[Fritz06]   C. Fritz, I. Cross, B. C. J. Moore, J. Woodhouse, “Perceptual 
correlates of violin acoustics”, Proceedings of the 9th International Conference of Music 
Perception and Cognition (ICMPC), Bologna, 22-26 Aug. 2006 (pre-publication copy). 
[Fritz07]  C. Fritz, I. Cross, B. C. J. Moore, J. Woodhouse, “Perceptual 
thresholds for detecting modifications applied to the acoustical properties of a violin”, 
Journal of the Acoustical Society of America, 122(6),2007. 
[Gill84]  D. Gill (ed.), The Book of the Violin, Rizzolli International 
Publications, Inc., New York, 1984.  



References  167 

 

[Giordano04]  N. Giordano, M. Jiang, “Physical modelling of the piano”, 
European Journal of Applied Signal Processing, 7:926-933 2004.  
[Gordon99]   M. Gordon, P. Pathak,  “Finding information on the World Wide 
Web: the retrieval effectiveness of search engines”, Information Processing and 
Management, 35:141-180, 1999.  
[Grey77]  J. M. Grey, “Multi-dimensional perceptual scaling of musical 
timbres”, Journal of the Acoustical Society of America, 61:5:1270-1277, May 1977. 
[Hämäläinen04] P. Hämäläinen, T. Mäki-Patola, V. Pulkki, M.Airas, “Musical 
computer games played by singing”, Proceedings of the 7th International Conference on 
Digital Audio Effects (DAFx-04), Naples, Oct. 5-8, 2004. 
[Harrera98]  P. Harrera, J. Bonada, “Vibrato extraction and parameterization 
in the spectral modeling synthesis framework”, 1998. 
[Harrera00]  P. Harrera, X. Amatriain, E.Batlle, X. Serra, “Towards instrument 
segmentation for music content description: a critical view of instrument classification” 
(accessed 14/05/03 at http://ciir.cs.umass.edu/music2000/papers/herrera_abs.pdf ) 
[Hawley93]  M. Hawley, “Structured Sound”, PhD thesis, MIT, 1993. 
[Herzberg83]  P. A. Herzberg, Principles of Statistics, Wiley, New York, 1983.  
[Hindemith40]  P. Hindemith The Craft of Musical Composition, trans. Schott’s, 
Mainz, 1940.  
[Howard01]  D. M. Howard, J. Angus, Acoustics and Psychoacoustics, 2nd 
edition, Focal Press, Oxford, 2001. 
[Hunt99]   M. J. Hunt, “Spectral signal processing for ASR”, Proceedings 
Automatic Speech Recognition and Understanding, 1999.  
[Hutchins90]  C. M. Hutchins, Journal of the Acoustical Society of America 
87(1), pp. 392-397, 1990.  
[Hutchins93]  C. M. Hutchins, “Mode tuning for the violin maker”, Journal of 
the Catgut Acoustical Society, 2:4:5-9, 1993. 
[Hutchin97]  C. M. Hutchins (ed.), V. Benade (ass. Ed.), Research Papers in 
Violin Acoustics 1975-1993, Vols. I & II, Acoustical Society of America, Woodbury 
NY, 1997.  
[Jackson87]  B. G. Jackson, J. Berman, K. Sarch, The A.S.T.A. Dictionary of 
Bowing Terms for String Instruments, American String Teachers Association, 3rd 
edition, Tichenor Publishing Group, Bloomington, Indiana, 1987. 
[Jain88]  A.K. Jain, R. C. Dubes, Algorithms for Clustering Data, Prentice-
Hall, 1988. 
[Jain89]  A. K. Jain, Fundamentals of Digital Image Processing, Prentice-
Hall, 1989. 
[Jansson97]  E. V. Jansson “Admittance measurements of twenty-five high 
quality violins”, Acustica, 83:337-341, 1997. 
[Jayant84]   N. S. Jayant, P. Noll, Digital Coding of Waveforms, Prentice 
Hall, Englewood Cliffs NJ, 1984. 
[Jiang02]  Jiang, D-N, Lu, L., Zheng, H-J, Tao, J-H., Cai, L-H, “Music type 
classification by spectral contrast feature”, Proceedings IEEE International Conference 
on Multimedia and Expo, Vol. 1:113:116, 2002. 
[Kay88]   S. M. Kay, Modern Spectral Estimation: Theory and Application, 
Prentice Hall, Englewood Cliffs, NJ, 1988.  
[Klapuri01]  A. Klapuri, T. Virtanen, A. Eronen, J. Seppanen, “Automatic 
transcription of musical recordings”, Consistent and Reliable Acoustic Cues Workshop, 
CRAC-01, Aalborg, Denmark, 2001. 

http://ciir.cs.umass.edu/music2000/papers/herrera_abs.pdf


References  168 

 

[Klapuri04]   A. Klapuri, “Signal processing methods for the automatic 
transcription of music”, PhD thesis, Tampere University of Technology, March 2004. 
[Kohonen90]  T. Kohonen, “The self-organizing map”, Proceedings of the IEEE 
78:9:1464-1480, September 1990.  
[Krzanowski94] K. J. Krzanowski, F. C. H. Marriott, Kendall’s Library of 
Statistics 1: Multivariate Analysis, Arnold, 1994. 
[Krzanowski95] K. J. Krzanowski, F. C. H. Marriott, Kendall’s Library of 
Statistics 2: Multivariate Analysis Part 2, Arnold, 1995. 
[LABROSA]  Lab Rosa [Online]. Available: http://labrosa.ee.columbia.edu/ 
[Accessed: 12/10/09] 
[Logan00]   B. Logan, “Mel cepstral coefficients for music modeling”, 2000.  
[Logan01]  B. Logan, A. Salomon, “A music similarity function based on 
signal analysis”, Proceedings IEEE International Conference on Multimedia and Expo, 
2001. 
[Loscos04]   A. Loscos, J. Bonada, “Emulating rough and growl voice in 
spectral domain”, Proceedings of the 7th International Conference on Digital Audio 
Effects (DAFX04), Naples, Italy, Oct. 5-8, 2004. 
[LSO09]  London Symphony Orchestra samples. [online] 
http://www.notionmusic.com/products/notion3/sounds.html [accessed: 12/10/09] 
[Machlis90]  J. Machlis, The Enjoyment of Music, 6th edition (standard 
version), Norton & Co., New York, 1990.  
[Marshall85]  K. D. Marshall, “Modal analysis of a violin”, Journal of the 
Acoustical Society of America, 77(2), Feb. 1985. 
[Martin98]  K. D. Martin, Y. E. Kim, “Musical instrument identification: a 
pattern-recognition approach”, 136th Meeting Acoustical Society of America, October 
1998. 
[Matlab04]  Matlab 7, Version 7.0.0.19920 (R14), 2004. 
[McLennan01] J. E. McLennan, “The soundpost in the violin. Part II: The effect 
of soundpost position on peak resonance and sound output”, Journal of the Australian 
Association of Musical Instrument Makers XX(1), March 2001. 
[McLennan03] J. E. McLennan, “The function of f-holes in the violin”, Journal 
of the Australian Association of Musical Instrument Makers XXII(3), September 2003.  
[McGill09]   McGill University Master Samples [Online]. Available: 
http://www.music.mcgill.ca/resources/mums/html/ [Accessed: 12/10/09] 
[Meek02]  C. Meek, W. Birmingham, “Johnny can’t sing: a comprehensive 
error for sung music queries”, University of Michigan, Advanced Technologies 
Laboratory, Proceedings of the International Computer Music Conference, 2002. 
[Mellody00]  M. Mellody, G. H. Wakefield, “Time-frequency characteristics of 
violin vibrato: modal distribution and synthesis”, Journal of the Acoustical Society of 
America, 107(1):598-611, 2000. 
[Miller75]  J. R. Miller, E. C. Carterette, “Perceptual space for musical 
structures”, Journal of the Acoustical Society of America, 58:3:711-720, September 
1975. 
[Molin90]  N.-E. Molin, A. O. Wahlin, E. V Jansson, “Transient wave 
response of the violin body” (Letters to the Editor), Journal of the Acoustical Society of 
America, 88:5:2479:2481, November 1990.  
[MMO09]  Music Minus One [Online]. Available:  
www.musicminusone.com/ [Accessed: 12/10/09] 
[MPO09]  Music Plus One [Online]. Available: 
http://xavier.informatics.indiana.edu/˜raphael/music_plus_one/ [Accessed: 12/10/09] 

http://labrosa.ee.columbia.edu/
http://www.notionmusic.com/products/notion3/sounds.html
http://www.music.mcgill.ca/resources/mums/html/
http://www.musicminusone.com/
http://xavier.informatics.indiana.edu/


References  169 

 

[Moore82]   B. C. J. Moore, An Introduction to the Psychology of Hearing, 2nd 
edition, Academic Press, London, 1982. 
[Narmour92]  E. Narmour, The Analysis and Cognition of Melodic Complexity: 
The Implication – Realization Model, University of Chicago Press, 1992. 
[Noll93]  P. Noll, “Wideband speech and audio coding”, IEEE 
Communications Magazine, November 1993. 
[Oppenheim89]  A. V. Oppenheim, R. W. Schafer Discrete-Time Signal 
Processing, Prentice-Hall Inc., New Jersey, 1989. 
[Oppenheim99] A. V. Oppenheim, R. W. Schafer Discrete-Time Signal 
Processing, 2nd edition, Prentice-Hall Inc., New Jersey, 1999. 
[Pollastri02a]  E. Pollastri, “A pitch tracking system dedicated to process 
singing voice for music retrieval”, IEEE 2002.  
[Pollastri02b]  E. Pollastri, “Some considerations about processing singing voice 
for music retrieval”, Proceedings of the 3rd International Conference on Music 
Information Retrieval (ISMIR), 2002. 
[Potkonjak97]  M. Potkonjak, K. Kim, R. Karri, “Methodology for behavioural 
synthesis-based algorithm-level space exploration: DCT case study”, Design 
Automation Conference, 1997.  
[Prame94]   E. Prame, “Measurements of the vibrato rate of ten singers”, 
Journal of the Acoustical Society of America 96(4):1979-84, 1994. 
[Prame97]  E. Prame, “Vibrato extent and intonation in professional western 
lyric singing” Journal of the Acoustical Society of America 102(1):616-21, 1997. 
[Puterbaugh09] J. Puterbaugh, Timbre Time Line [Online]. Available: 
http://www.music.princeton.edu/~john/timbretimeline.htm [Accessed: 10/12/09]. 
[Raphael03]  C. Raphael, “Orchestral musical accompaniment from 
synthesized audio”, Proceedings of the International Computer Music Conference, 
2003. 
[RWC09]  Real World Computing [Online]. Available: 
http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html [Accessed: 10/12/09]. 
[Sacksteder87] R. Sacksteder, “How well do we understand Helmholtz 
Resonance?”, Journal of the Catgut Acoustical Society, No. 48, November 1987. 
[Sadie01]  S. Sadie (ed.), The New Grove Dictionary of Music and 
Musicians, 2nd Ed., Macmillan Publishers Limited, 2001. 
[Schafer02]  M. Schafer speaking at Journées Design Sonore à Paris, 20-21 
March, 2002, general information at http://confs.loa.espci.fr/DS2002/  
[Scheirer96]   E. Scheirer, M. Slaney, “Construction and evaluation of a robust 
multi-feature speech and signal processing”, Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing, 1997.  
[Schönberg78]  A. Schönberg, Theory of Harmony, trans. R. E. Carter, Faber and 
Faber, London, 1978 (originally published in 1922).  
[Serafin01]   S. Serafin, M. Burtner, C. Nichols, “Expressive controllers for 
bowed string physical models”, Proceedings of the 3rd International Conference on 
Digital Audio Effects, Limerick, 2001.  
[Shifrin03]   J. Shifrin, W. Birmingham, “Effectiveness of HMM-based 
retrieval on large data bases”, Proceedings of the 4th International Conference on Music 
Information Retrieval, 2003. 
[Shonle80]  J. I. Shonle, K. E. Horan, “The pitch of vibrato tones”, Journal of 
the Acoustical Society of America 67(1):246-52, 1980. 
[Smithsonian09] Digital Stradivari: computer models of violins reveal master 
luthier’s techniques [Online]. Available: http://smithsonianscience.org/2009/11/digital-

http://www.music.princeton.edu/~john/timbretimeline.htm
http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html
http://confs.loa.espci.fr/DS2002/


References  170 

 

stradivari-computer-models-of-violins-reveal-the-master-luthiers-secrets/ [Accessed: 
12/10/09] 
[SOM]   The SOM Toolbox [Online]. Available: 
http://www.cis.hut.fi/somtoolbox/ [Accessed: 12/10/09] 
[Stevens40]  S. Stevens, J. Volkman, “The relationship of pitch to frequency”, 
American Journal of Psychology, 53:329, 1940.  
[Stuart87]  A. Stuart, J. K. Ord, Kendall’s Advanced Theory of Statistics: 
Distribution Theory (Volume I), 5th Edition, Charles Griffin and Co. Ltd. London, 1987. 
[Stuart91]  A. Stuart, J. K. Ord, Kendall’s Advanced Theory of Statistics: 
Classical Inference and Relationship (Volume II), Edward Arnold, London, 1991. 
[Stumpf03]  K. Stumpf, Tonpsychologie, MA: Adamant Media Corporation, 
Boston, 2003 (originally published 1883 and 1890). 
[Sundberg87]  J. Sundberg, The Science of the Singing Voice, Northern Illinois 
University Press, Dekalb, IL, 1987. 
[Suzuki73]  S. Suzuki, The Suzuki Concept: An Introduction to a Successful 
Method for Early Music Education, Diablo, Berkeley, 1973. 
[Suzuki09]  The Suzuki Method [Online]. Available: 
http://suzukiassociation/teachers/twinkler/ [Accessed: 10/12/09] 
[Szigeti79]  J. Szegeti, Szegeti on the Violin, Dover Publishers, First Edition, 
NY, 1979. 
[Tanguiane93]  A. S. Tanguiane, Artificial Perception and Music Recognition 
Lecture Notes in AI 746, Springer-Verlag, 1993. 
[TiePie09]  TiePie Handyscope HS4 instrument description [Online]. 
Available: 
http://www.tiepie.com/uk/products/External_Instruments/USB_Oscilloscope/Handysco
pe_HS4.html [Accessed: 10/12/09] 
[Tzanetakis02]  G. Tzanetakis, P. Cook, “Musical genre classification of audio 
signals”, IEEE Transactions on Speech and Audio, 10:5: 293-302, July 2002.  
[UofI09]  The University of Iowa Electronic Music Studios Musical 
Instrument Samples [Online]. Available: http://theremin.music.uiowa.edu/MIS.html 
[Accessed: 12/10/09] 
[Vercoe85]  B. Vercoe, M. Puckette, “Synthetic rehearsal: training the 
synthetic performer”, Proceedings International Computer Music Conference, 1985. 
[Vergez06]  C. Vergez, P. Tisserand, “The BRASS project, from physical 
models to virtual instruments: playability”, Lecture Notes in Computer Science, Vol. 
2006 No. 3902, May 2006.  
[Violin09]  Violin parts [Online]. Available: 
www.violinstudent.com/violinmap.html [accessed: 12/10/09] 
[VSL09]  Vienna Symphony Library [Online]. Available: 
http://www.ilio.com/ [Accessed: 12/10/09]. 
[West04]  K. West, S. Cox, “Features and classifiers for the automatic 
classification of musical audio signals”, Proceedings of the 5th International Conference 
on Music Information Retrieval (ISMIR), 2004. 
[Wilson02]   R. S. Wilson, “First Steps Towards Violin Performance 
Extractions Using Genetic Programming” pp. 253-62 in J. R. Koza (ed.) Genetic 
Algorithms and Genetic Programming at Stanford 2002, Stanford, California, 2002.  
[Winckel67]  F. Winckel, Music, Sound and Sensation: A Modern Exposition, 
Dover, NY, 1967. 

http://smithsonianscience.org/2009/11/digital-stradivari-computer-models-of-violins-reveal-the-master-luthiers-secrets/
http://smithsonianscience.org/2009/11/digital-stradivari-computer-models-of-violins-reveal-the-master-luthiers-secrets/
http://smithsonianscience.org/2009/11/digital-stradivari-computer-models-of-violins-reveal-the-master-luthiers-secrets/
http://smithsonianscience.org/2009/11/digital-stradivari-computer-models-of-violins-reveal-the-master-luthiers-secrets/
http://www.tiepie.com/uk/products/External_Instruments/USB_Oscilloscope/Handyscope_HS4.html
http://www.tiepie.com/uk/products/External_Instruments/USB_Oscilloscope/Handyscope_HS4.html
http://theremin.music.uiowa.edu/MIS.html
http://www.violinstudent.com/violinmap.html
http://www.ilio.com/


References  171 

 

[Woodhouse04] Why is the violin so hard to play? [Online]. J. Woodhouse, P.M. 
Galluzzo, “Why is the violin so hard to play?” Plus 31 October 2004. Available: 
http://plus.maths.org/issue31/features/woodhouse/index.html [Accessed: 01/02/10]. 
[Yoo98]  L. Yoo, D. S. Sullivan Jr., S. Moore, I. Fujinaga, “The effect of 
vibrato on response time in determining the pitch relationship of violin tones”, 
Proceedings of the 2nd International Conference of Music Perception and Cognition 
(ICMPC), 1998. 
[Young95]  S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, 
G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, P. Woodland, The HTK Book 
(for HTK Version 3.4), Dec. 1995, revised Dec. 2006.  
[Young08]  D. Young, “Classification of common violin bowing technique 
using gestural data from a playable measurement system”, Conference on New 
Interfaces for Musical Expressions (NIME08), Genoa, 2008. 
[Youngberg79] J. Youngberg, “Rate/pitch modification of speech using the 
constant Q transform”, Proceedings of the IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), Vol. 4:748-751, 1979.  

http://plus.maths.org/issue31/features/woodhouse/index.html


  172 

 

Author’s Publications 

[Charles09] Charles, J., Fitzgerald, D., Coyle, E. “Violin sound classification”, 17th 
Telecommunications Forum TELFOR 2009, Belgrade, Serbia, November 24-26, 2009.  
 
[Charles08] Charles, J., Fitzgerald, D., Coyle, E. “Violin sound quality detection”, 
Irish Systems and Signals Conference, NUI Galway, June 18-19, 2008.  
 
[Charles06] Charles, J., Fitzgerald, D., Coyle, E. “Quantifying real violin sound”, 
DMRN, Goldsmith College, London, July 22-24, 2006. 
 
[Charles06] Charles, J., Fitzgerald, D., Coyle, E. “Violin timbre space features”, Irish 
Signals and Systems Conference, Dublin Institute of Technology, 28-30 June 2006. 
 
[Charles05] Charles, J., Fitzgerald, D., Coyle, E. “The violin timbre space”, IT&T 
Annual Conference, Maritime Institute, Cork Institute of Technology, Cork, 26-27 
October 2005. 
 
[Charles05] Charles, J., Fitzgerald, D., Coyle, E. “Development of a computer based 
violin teaching aid, ViTool”, Audio Engineering Society, Barcelona, May 28-31, 2005. 
 
[Charles04] Charles, J., Fitzgerald, D., Coyle, E. “Towards a computer assisted violin 
teaching aid”, International Symposium on Psychology and Music Education, PME04, 
Padua, Italy, Nov. 29-30, 2004. 



Appendix A 

 

173 

Appendix A: CQT Frequency Bin Content 

The CQT mean content from frequency bins four, five and six are illustrated in Figure A1, 

showing higher mean values for the professional standard legato notes than for the beginner 

ones. 
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Figure A 1: Mean content CQT frequency bin numbers four (top), five (middle) and six 
(bottom). 

Figure A2 and Figure A3 display respectively the mean CQT content from frequency bins 

seven, eight and nine and frequency bins ten, eleven and twenty.  
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Figure A 2: Mean content CQT frequency bin numbers seven (top), eight (middle) and 
nine (bottom). 
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Figure A 3: Mean content CQT frequency bin numbers ten (top), eleven (middle) and 
twenty (bottom). 
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Figure A 4: Mean content CQT frequency bin numbers 1 to 39 (110-190Hz). 
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Appendix B: Feature Combinations 

In this section, the successful feature combinations too numerous to list in Chapter 8 are 

displayed.  
Features Train % Test % 
TM,CQTH9,PSD190 97 97 
TM,CQTH9,SFMV 97 97 
TM,CQTH9,RCCM 97 97 
TM,CQTH9,RCCV 97 97 
TM,PSD190,SFMV 97 97 
TM,PSD190,RCCM 97 97 
TM,PSD190,RCCV 97 97 
TM,SFMV,RCCM 97 97 
TM,SFMV,RCCV 97 97 
TM,RCCM,RCCV 97 97 
CQTH9,PSD190,RCCM 97 97 
CQTH9,SFMV,RCCM 97 97 
TM,MMV,RCCM 97 97 
TM,MMV,RCCV 97 97 
TM,MMV,SFMV 97 97 
MMV,RCCV,SFMV 97 97 
TM,MMV,PSD190 97 97 
TM,MMV,CQTH9 97 97 
MMV,RCCM,CQTH9 97 97 
MMV,PSD190,CQTH9 97 97 
TM,CQTH9,SF 97 97 
TM,SF,SFMV 97 97 
TM,SF,RCCM 97 97 
TM,SF,RCCV 97 97 
TM,SF,PSD190 97 97 
CQTH9,SF,RCCM 97 97 
CQTH9,SF,PSD190 97 97 

Table B 1: Best three feature combinations from Table 8.3. 

Features Train % Test % 
TM,CQTH9,PSD190,SFMV 97 97 
TM,CQTH9,PSD190,RCCM 97 97 
TM,CQTH9,PSD190,RCCV 97 97 
TM,CQTH9,SFMV,RCCM 97 97 
TM,CQTH9,SFMV,RCCV 97 97 
TM,CQTH9,RCCM,RCCV 97 97 
TM,PSD190,SFMV,RCCM 97 97 
TM,PSD190,SFMV,RCCV 97 97 
TM,PSD190,RCCM,RCCV 97 97 
TM,SFMV,RCCM,RCCV 97 97 
CQTH9,PSD190,SFMV,RCCM 97 97 
TM,MMV,RCCM,RCCV 97 97 
TM,MMV,RCCM,SFMV 97 97 
TM,MMV,RCCV,SFMV 97 97 
TM,MMV,RCCM,PSD190 97 97 
TM,MMV,RCCM,CQTH9 97 97 
TM,MMV,RCCV,PSD190 97 97 
TM,MMV,RCCV,CQTH9 97 97 
TM,MMV,SFMV,PSD190 97 97 
TM,MMV,PSD190,CQTH9 97 97 
MMV,RCCM,SFMV,CQTH9 97 97 
MMV,RCCM,PSD190,CQTH9 97 97 
TM,CQTH9,SF,SFMV 97 97 
TM,CQTH9,SF,RCCM 97 97 
TM,CQTH9,SF,RCCV 97 97 
TM,CQTH9,SF,PSD190 97 97 
TM,SF,SFMV,RCCM 97 97 
TM,SF,SFMV,RCCV 97 97 
TM,SF,SFMV,PSD190 97 97 
TM,SF,RCCM,RCCV 97 97 
TM,SF,RCCM,PSD190 97 97 
TM,SF,RCCV, PSD190 97 97 

Table B 2: Best four feature combinations from Table 8.3. 
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Features Train % Test % 
TM,CQTH9,PSD190,SFMV,RCCM 97 97 
TM,CQTH9,PSD190,SFMV,RCCV 97 97 
TM,CQTH9,PSD190,RCCM,RCCV 97 97 
TM,CQTH9,SFMV,RCCM,RCCV 97 97 
TM,PSD190,SFMV,RCCM,RCCV 97 97 
TM,MMV,RCCM,RCCV,SFMV 97 97 
TM,MMV,RCCM,RCCV,CQTH9 97 97 
TM,MMV,RCCM,SFMV,PSD190 97 97 
TM,MMV,RCCM,SFMV,CQTH9 97 97 
TM,MMV,RCCM,PSD190,CQTH9 97 97 
TM,MMV,RCCV,PSD190,CQTH9 97 97 
TM,MMV,RCCV,PDD190,CQTH9 97 97 
TM,MMV,SFMV,PSD190,CQTH9 97 97 
MMV,RCCM,SFMV,PSD190,CQTH9 97 97 
TM,CQTH9,SF,SFMV,RCCV 97 97 
TM,CQTH9,SF,SFMV,PSD190 97 97 
TM,CQTH9,SF,RCCM,RCCV 97 97 
TM,CQTH9,SF,RCCM,PSD190 97 97 
TM,CQTH9,SF,RCCV,PSD190 97 97 
TM,CQTH9,SFMV,RCCM,RCCV 97 97 
TM,CQTH9,SFMV,RCCM,PSD190 97 97 
TM,CQTH9,SFMV,RCCV,PSD190 97 97 
TM,SF,SFMV,RCCM,RCCV 97 97 
TM,SF,SFMV,RCCM,PSD190 97 97 
TM,SF,SFMV,RCCM,PSD190 97 97 
TM,SF,RCCM,RCCV,PSD190 97 97 
CQTH9,SF,SFMV,RCCM,PSD190 97 97 

Table B 3: Best five feature combinations from Table 8.3. 

Features Train % Test % 
TM,MMV,RCCM,RCCV,SFMV,PSD190 97 97 
TM,MMV,RCCM,RCCV,SFMV,CQTH9 97 97 
TM,MMV,RCCM,RCCV,PSD190,CQTH9 97 97 
TM,MMV,RCCM,SFMV,PSD190,CQTH9 97 97 
TM,MMV,RCCV,SFMV,PSD190,CQTH9 97 97 
TM,CQTH9,SF,SFMV,RCCM,RCCV 97 97 
TM,CQTH9,SF,SFMV,RCCM,PSD190 97 97 
TM,CQTH9,SF,SFMV,RCCV,PSD190 97 97 
TM,CQTH9,SF,RCCM,RCCV,PSD190 97 97 
TM,SF,SFMV,RCCM,RCCV,PSD190 97 97 

Table B 4: Best six feature combinations from Table 8.3. 

In Table B5 and Table B6, the monothetic results, via four-fold cross-validation, for playing 

fault detection are displayed.  
f CRtrain % CRtest % SKtrain % SKtest % NVtrain % NVtest % INTtrain % INTtest % BBtrain % BBtest % 
1 63 63 63 65 74 73 61 61 56 59 
2 51 52 53 44 53 43 53 45 50 48 
3 20 18 16 19 32 30 19 18 10 12 
4 56 55 54 56 66 65 53 55 48 50 
5 73 77 79 80 69 73 77 78 83 84 
6 63 63 63 65 74 73 61 61 56 59 
7 51 52 53 44 53 42 52 45 50 49 
8 21 19 18 19 31 29 18 18 9 13 
9 27 24 25 27 39 36 26 24 18 20 
10 28 26 26 26 39 35 26 23 19 19 
11 58 58 56 58 69 68 55 57 50 53 
12 22 21 18 20 33 31 19 19 12 16 
13 62 63 61 64 71 72 58 60 55 59 
14 44 45 41 43 51 52 42 44 37 41 
15 38 38 37 40 47 45 40 40 31 35 
16 43 40 42 40 49 46 37 36 38 39 
17 64 62 63 64 72 71 64 64 57 60 
18 53 53 50 53 63 62 50 49 44 46 
19 65 63 63 65 72 72 65 65 58 60 
20 53 53 51 53 63 62 50 51 44 46 
21 67 66 63 65 72 71 68 69 60 60 
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22 66 65 67 69 75 72 67 68 59 63 
23 41 39 41 44 53 52 40 40 34 37 
24 67 70 65 66 69 70 65 65 67 70 
25 68 66 68 69 75 73 67 66 62 65 
26 58 61 60 63 60 64 62 63 63 62 
27 38 40 36 41 45 47 34 36 34 39 
28 58 60 59 55 55 56 57 60 59 64 
29 45 41 48 45 44 44 47 43 46 43 
30 57 53 61 61 65 63 62 58 58 60 
31 62 63 63 64 59 57 62 65 64 64 
32 80 83 82 81 69 71 83 83 90 88 
33 18 16 18 20 31 27 17 17 10 13 

Table B 5: Monothetic fault detection results for crunch, skate, nervousness, intonation 
and bow bouncing. 

f NXtrain % XNtest % SEtrain % SEtest % BADStrain % BADStest % BADEtrain % BADEtest % 
1 57 56 60 61 62 61 65 66 
2 52 52 53 47 53 49 51 48 
3 9 7 18 18 14 13 21 21 
4 49 48 53 54 53 52 58 59 
5 83 88 75 74 80 83 74 76 
6 57 56 60 61 62 61 65 66 
7 52 53 52 46 53 49 51 49 
8 11 8 19 19 15 13 22 21 
9 19 16 24 23 23 21 30 29 
10 20 16 25 25 24 20 30 28 
11 51 49 55 57 55 54 59 60 
12 13 11 18 19 18 17 24 23 
13 56 55 60 62 59 60 62 64 
14 36 32 40 44 41 40 44 43 
15 33 33 35 38 37 38 40 41 
16 38 33 41 38 41 36 42 39 
17 60 59 64 65 63 60 66 65 
18 46 43 49 49 49 47 55 55 
19 61 59 65 66 64 61 67 66 
20 46 44 50 50 50 48 56 56 
21 61 63 67 68 65 64 67 69 
22 63 61 62 63 67 66 66 65 
23 34 33 38 40 39 38 44 45 
24 62 61 67 66 65 67 65 70 
25 65 64 63 63 66 64 70 67 
26 61 63 63 63 59 61 56 59 
27 32 33 35 38 35 39 38 46 
28 60 61 58 61 58 60 56 58 
29 48 49 49 48 46 43 48 44 
30 59 57 59 56 62 61 61 58 
31 65 69 61 60 64 64 61 65 
32 88 91 82 81 85 87 78 80 
33 11 9 17 18 14 12 21 20 

Table B 6: Monothetic fault detection results for extra note, sudden end, bad start and bad 
end to note. 

 

From Table 8.5 feature combinations for fault detection using three, six, seven and eight 

features are in Table B7, Table B8, Table B9, Table B10 and Table B8 respectively.  
Features Fault 
TM,RCCM,SFMS BB & XN 
TM,SFMM,SFMS BB & XN 
MMV,SFM,SFMS BB & XN 
RCCM,RCCV,SFMS BB & XN 
RCC3,SFM,SFMS BB & XN 
SFM,SFMV,SFMS BB & XN 

Table B 7: Best three feature combinations detecting bow bouncing and extra note from 
Table 8.5. 
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Features Fault 
TM,MMV,RCCM,RCC3,SFMM,SFMS BB & XN 
TM,MMV,RCCM,RCC3,SFMS,AC BB & XN 
TM,MMV,RCCM,SFMV,SFMS,AC BB & XN 
TM,RCCV,SFM,SFMM,SFMS,AC BB & XN 
MMV,RCCM,RCCV,SFM,SFMS,AC BB & XN 
MMV,RCCV,RCC3,SFMM,SFMV,SFMS BB & XN 
RCCM,RCCV,SFM,SFMM,SFMV,SFMS BB & XN 
RCC3,SFM,SFMM,SFMV,SFMS,AC BB & XN 

Table B 8: Best six feature combinations detecting bow bouncing and extra note from 
Table 8.5. 

Features Fault 
TM,MMV,RCC3,SFM,SFMM,SFMS,AC BB & XN 
TM,MMV,RCC3,SFM,SFMV,SFMS,AC BB & XN 
TM,RCCV,RCC3,SFMM,SFMV,SFMS,AC BB & XN 
MMV,RCCM,RCCV,SFM,SFMM,SFMS,AC BB & XN 

Table B 9: Best seven feature combinations detecting bow bouncing and extra note from 
Table 8.5. 

Features Fault 
TM,RCCM,RCCV,RCC3,SFM,SFMM,SFMS,AC BB & XN 
TM,RCCM,RCCV,RCC3,SFMM,SFMV,SFMS,AC BB & XN 
TM,RCCM,RCC3,SFM,SFMM,SFMV,SFMS,AC BB & XN 
MMV,RCCM,RCCV,RCC3,SFMM,SFMV,SFMS,AC BB & XN 

Table B 10: Best eight feature combinations detecting bow bouncing and extra note from 
Table 8.5. 

Features Fault 
TM,MMV,RCCM,RCC0,RCC1,SFMM NV 
TM,RCCM,RCCV,RCC0,RCC1,SFMM NV 
TM,RCCM,RCC0,RCC1,SFMM,SFMS NV 
TM,RCCV,RCC0,RCC1,SFM,AC NV 
TM,RCC0,RCC1,RCC3,SFM,SFMS NV 
RCCM,RCC0,RCC1,SFM,SFMV,AC NV 
RCCV,RCC0,RCC1,SFM,SFMM,SFMV NV 

Table B 11: Nervousness detection feature combinations using six features from Table 
8.6.
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Appendix C: Further Real Cepstral Coefficients 

The thirteenth and twenty-eighth real cepstral coefficients for the dataset’s samples are 

displayed in Figure C1 and in Figure C2 respectively. These figures illustrate that neither 

coefficient serves well as a discriminator between the beginner and professional standard 

legato note samples in the dataset.  
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Figure C 1: Thirteenth real cepstral coefficient values. 
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Figure C 2: Twenty-eighth real cepstral coefficient values.
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Appendix D: Waveform Amplitude Mean and New Data 

Figure D1 displays the waveform amplitude mean values for the new data. It had been 

included to highlight the difference in mean values between the dataset’s professional 

standard legato note samples and those reflecting the Student_1 and Student_2 samples. 
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Figure D 1: Waveform amplitude mean values for different sample player groups. 
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Appendix E: CD Contents 

 

Data Folder  → Beginner  contains all beginner note samples used  

 → Professional   contains all professional standard legato note 
    samples used 

 

Code Folder → cep.m     % real cepstral coefficients 
   cepm.m    % Mel cepstral coefficients 

centstats.m % 1st order statistics from 
spectral centroid 

CQTfbinj.m % this is Judith Brown’s code 
modified for eighth tone spacing 
rather than quarter tone spacing 

   first20CQTfreqbins.m   % 1st 20 CQT frequency bin  
        content means; uses Judith  
        Brown’s CQT code above, see
        http://www.wellesley.edu/ 
        Physics/brown/ 
   getMELonsets.m   % Mel cepstra for onset period 

 getwavstats.m     % 1st order statistics from  
     waveforms 

   getrccstats.m    % 1st order statistics from real 
        cepstral coefficients; also use for 
        Mel cepstral coefficients statistics 
        – select as wanted 
   movavgw.m    % waveform moving average 
        statistics 
   scm.m     % spectral contrast measure 
   sfmstats.m    % 1st order statistics from  
        spectral flatness measure 
   specflux.m    % waveform spectral flux 
    
 
    

    

http://www.wellesley. edu/
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