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7 Validation case study

This part of the study was supported by REIS, P. [VI] and by MUCKENHAUPT, D.

and SCHIEMER, B. [VIII] and their work was supervised by the author.

In this chapter an experiment is presented for the validation of the particle

breakup and defouling erosion models developed in this work, as implemented

in Ansys CFX.

Air flows laden with a number of dry-ice particles are observed in an optically

accessible stream channel containing a flat plate target. The disintegration and

defouling process of these particles is recorded with HSCs and the main para-

meters, such as number and size of secondary particles or indentation size in

fouling layers are processed and compared to corresponding numerical results.

The target plate angle and air velocity are parametrized within this study and

dry-ice particles of random size and shape are injected into the flow. The exper-

iment is set up in a wind-tunnel test-rig and all recordings are made using two

HSCs, a digital camera and Prandtl probe measurement. Experimental and nu-

merical results show good overall agreement and it can therefore be concluded

that it is possible to predict dry-ice breakup and defouling scenarios with the

simulation strategy presented.

Section 7.1 gives an initial overview of the experimental set-up. Section 7.2

presents the numerical modelling of pure air flow and particle tracking through

the stream channel, as well as an initial validation study. Finally, the main

comparison study between numerical simulation and experiment to determine

the predictive capabilities of the novel model implementations in Ansys CFX

in conjunction with appropriate simulation set-ups of the validation cases are

covered in detail in section 7.3.
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7.1 General problem description

A wind-tunnel experiment is designed in order to create an optically accessible

validation scenario towards the novel models and this set-up is shown in Fig. 7.1

and 7.2. The main dimensions of the testing section are displayed in both

figures. This testing section is directly flanged to the nozzle of the wind-tunnel,

which delivers the air flow (a) at various air velocities.

Probe bars (b) and (c) are used for the positioning of Prandtl probes with integ-

rated thermocouples (type K) and these are located at the inlet and the outlet

of the rectangular shaped main part of the testing section. These probes are

used to measure flow properties such as pressure, velocity and temperature.

Flow profiles can be recorded in both horizontal and vertical directions, as in-

dicated by the red arrows in Fig. 7.1. A number of particles can be introduced

into the air-flow via the tubular injection system (d) and these are transported

by the flow and impact upon the target plate (e).

The vertical and angular positions of the injection tube as well as the angle

of the target plate can be varied, as indicated by the red arrows in Fig. 7.2.

The testing section is optically accessible through transparent upper and side

walls (f) which make the utilization of HSCs possible for tracking and sizing of

(b) 

Probe Bar

Inlet

(c) 

Probe Bar

Outlet

(e)

Target-Plate

(a) 

Air-Flow

(d)

Particle-Injection

Transparent

Walls (f) 

385

123

255

Figure 7.1.: Schematic of wind-tunnel experiment for numerical validation.
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(a) 

Air-Flow

(d)

Particle-Injection

(e)

Target-Plate

700

358

Figure 7.2.: Section view of wind-tunnel experiment for numerical validation.

primary and secondary dry-ice particles. Furthermore, an exchangeable target

plate is used for defouling tests (not shown) with which defouling action is

measured after a number of particle impacts. To achieve this, images of the

target plate surfaces are recorded before and after particle impacts outside the

testing section and these are compared by image post-processing.

7.2 Modelling details and run-up study

Initially a pure air-flow run-up study is carried out and it is described in detail

in section D.1 to D.3 in the Appendix. A representative selection of results

is presented here and these highlight the most important findings of the final

particle laden flow simulations. The whole study comprises

• a systematic grid study,

• the discussion of a symmetry assumption,

• comparison of numerical to experimental results for air flow properties.

An overview of the cases investigated is given in Tab. 7.1 and it comprises all

parameters considered and summarizes the mean particle impact properties

measured. More detailed information about the meshing and the numerical

set-up can be found in section D.1 in the Appendix.
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Case Nominal air Nominal target Mean particle Mean particle

no. inlet vel. angle impact vel. impact ang.

1 30 m/s 30° 5.79 m/s 51.66°

2 50 m/s 30° 11.71 m/s 53.91°

3 25 m/s 60° 5.02 m/s 21.98°

4 45 m/s 60° 9.65 m/s 26.30°

Table 7.1.: Overview of validation case parameters; air-flow and channel set-

tings (left column block) and mean particle impact values (right

column block).

It is assumed that the behaviour of the validation experiment can be numerically

predicted by considering a mid-plane cut through the rectangular part of the ex-

perimental set-up, assuming periodical symmetry at its sides. This assumption

is based on preliminary observations of POM and dry-ice particle tracks. These

particles are injected at the mid-channel and in all cases considered they impact

the target in the central 33 % of the channel.

In order to show that side wall effects do not significantly influence the mid-

plane flow, flow parameters were measured at a grid of locations across a num-

ber of vertical and horizontal positions across the section at the inlet and at the

outlet planes of the channel. The results from this study are presented in detail

in section D.2 in the Appendix. Based on these results and on the above particle

tracking observations it was decided to simulate the central 33 % of the channel

depth (i.e. a depth of 41 mm) with free-slip conditions at the sides.

7.2.1 Pure air-flow validation

In this section, results from air flow simulations are compared to experimental

data recorded in the mid plane of the channel at all vertical positions. Figure 7.3

shows some simulation results of the two most extreme flow conditions (i.e.

case #1 with lowest velocity and lowest target angle as well as case #4 with

highest velocity and highest target angle).
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Contours of static pressure are projected to the rear symmetry plane of the nu-

merical volume and velocity streamlines are drawn from the inlet to the outlet

plane. A wake region is clearly visible for both cases and the target influence

upon the pressure field is also clearly visible. A high forebody and low after-

body pressure field is found to establish and it is mainly influenced by the air

velocity and the target plate angle.
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Figure 7.4.: Case#4: air flow pressure (left) and velocity (right) profiles at the

outlet plane - comparison of numerical to experimental data.

A typical comparison of pressure and velocity profiles at the outlet measurement

plane (both inlet and outlet measurement positions are indicated by the red

vertical lines in Fig. 7.3) is shown in Fig. 7.4 for case #4. The predicted pressure

and velocity trends are comparable to the experimental data and the mean

deviations between predicted and experimental data are 12 % for the pressure

profile and 16 % for the velocity profile. A more detailed discussion of this

air-flow validation study is presented in section D.3 in the Appendix. Based

on these results the set-up is assumed to be valid for the later particle model

validation simulations.

7.2.2 Particle tracking validation

In the last step of the run-up study a number of POM particle tracks is experi-

mentally and numerically investigated. The main goal of this study is to assess

the predictive capabilities of the particle transportation and impact predictions

of the numerical set-up. Particle injection is implemented in the numerical
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set-up by setting the initial particle velocity vector and its position in vertical

direction at the inlet boundary corresponding to data measured in the experi-

ment.

Figure 7.5 shows a montage of typical experimental recordings of a POM

particle with a diameter of 3.0 mm at various instants of time pre- and post-

impact. The corresponding pre- and post impact angles of the particles are

measured with respect to the horizontal plane of the set-up (indicated in the

figure). Hence, negative angle values indicate negative vertical particle velocity

components. The particle velocity is post-processed with the recordings using

the procedure presented in Sections 4.1.2 and A.1.

PRE

POST

HORIZONTAL

Figure 7.5.: Montage of typical HSC POM particle track recordings at various

pre- and post-impact instants of time.

Figure 7.6 shows a comparable result from numerical simulation of this situ-

ation and it incorporates a number of POM particle tracks with a diameter of

1.5 mm, high inlet air velocity (i.e. 50 m/s) and low target angle (i.e. 30°).

Contours of absolute air velocity are projected to the rear symmetry plane of

the numerical volume.

The comparison of the data from this run-up study with POM particles is dis-

played in Fig. 7.7. The diagram shows the pre- and post-impact flight path

angles of the particles (i.e. measured to the horizontal as explained in the dis-

cussion of the above Fig. 7.5) and the absolute pre- and post-impact velocity

values from both numerical and experimental results. Reasonable agreement
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Figure 7.6.: Typical result from POM particle tracking simulations with contours

of air velocity.

between numerical and experimental data is achieved with the simulation set-

up chosen.

Particle velocities prior to and after the instant of collision with the target plate

are found to be precisely predicted. The impact angles are underpredicted and,

as a consequence, the outbound angles are overpredicted. These deviations

are more significant for larger particles at lower velocities. Possible causes for
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Figure 7.7.: Comparison of numerical and experimental POM particle tracking

results - particle impact behaviour.
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Case Particle Impact Particle Rebound Particle Impact Particle Rebound

No Velocity [m/s] Velocity [m/s] Angle [°] Angle [°]

1 0.9893 1.0099 0.9566 1.1022

2 0.9570 0.9893 0.8820 1.1133

Tabelle 7.2.: Mean value comparison of validation data for air-flow and particle

impingement.

these deviations are the simplifications of the simulation assuming constant

coefficients of restitution and neglecting rotation of the particles.

The overall agreement of all numerical data compared to experimental results

is satisfactory and a final mean value comparison is listed in Tab. 7.2. The

deviations of the velocities range from 1 % to 5 % and these of the angles range

from 5 % to 12 %. Parts study were carried out with the opening boundary

condition at the outlet of the numerical control volume and this leads to more

significant deviations in the pressure profiles prediced at this position which is

discussed in detail in section D.3 in the Appendix. However, the particle tracks

seem to be independent of these deviations and it can therefore be concluded

that the set-up chosen is adequate for all cases considered.

The whole set-up presented above is assumed to be valid for the prediction

of the main validation situations presented in the next section 7.3. A grid is

used which gives results independent from spatial discretization and the mid

plane cut is applied because the above study showed no influence of the side

walls upon the particle tracks in the middle of the experimental set-up. In

addition, the boundary conditions applied showed no negative influence upon

the predicted particle tracks.
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7.3 Validation of dry-ice simulations

Based on the initial study described above, the numerical set-up for the main

validation case investigations of the newly developed models is chosen. A para-

meter discussion is presented to determine the predictive capabilities of the

models in conjunction with Ansys CFX simulations. Experimental data is re-

corded for particle breakup and defouling erosion and numerical results are

compared to experimental data. The first part of this section describes the

particle breakup model study for dry-ice and the second part deals with the

new defouling erosion model.

A calibration of various additional parameters of the CFX implementation of

the breakup model is necessary before starting the simulations and this is de-

scribed in detail in section D.4 in the Appendix. These parameters are not

originally contained in the model, however, they are useful to avoid possible

computational or memory exceptions caused by numerous breakup scenarios

and huge amounts of secondary particles in large scale simulations. They in-

crease numerical robustness but decrease the degree of predictive capability of

the model. The settings presented in section D.4 for the validation study also

represent a possible choice for the final engine defouling simulations.

7.3.1 Particle breakup simulations

Experimental data for the impact and breakup process of dry-ice particles is re-

corded by means of two HSCs and this situation is displayed in Fig. 7.8. The

side view recordings made with HSC #1 are used to determine primary particle

size, velocity and impact angle and those made with HSC #2 are used to de-

termine the number and the sizes of secondary particles. The field of view of

HSC #2 is focussed to the target plate’s trailing edge because it was observed

in preliminary recordings that most of the secondary particles pass through this

area. This observation is in accordance with the findings that dry-ice particle

rebound is almost plastic (i.e. only low normal rebound velocity components

are expected). Table 7.3 comprises the most important HSC settings of the

experiments.
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HSC#1

HSC#2

(f) 

Transparent

Walls

(c) 

Probe Bar

OutletLights

(b) 

Probe Bar

Inlet

(d)

Particle-Injection

Figure 7.8.: Experimental set-up in particle breakup assessment configuration

with two HSCs (note: probe bars are not instrumented).

Typical examples of primary particles impinging the target plate are displayed in

Fig. 7.9. The left-hand scene is recorded by HSC #1 and a comparable recording

(not the same primary particle) from HSC #2 is shown in the right-hand scene.

The tracking and sizing procedures described in Sections A.1 and A.5 in the

Appendix are used to post-process this experimental data.

Figure 7.10 shows a typical impact scenario from simulations and it comprises

6 primary dry-ice particles of which 5 impact the target plate at high air velo-

city (i.e. 45 m/s) and steep target angle (i.e. 60°). These primary particles

are disintegrated into 34 secondary particles each and all secondary particle

Field of View Spatial discrt. Temporal discrt.

Camera [px x px] [px/mm] [fps]

HSC #1 2016 x 1248 23 2044

HSC #2 2016 x 1248 14 ... 17 2044

Table 7.3.: High speed camera settings for dry-ice validation experiments for the

new models.
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t1

t2

t3

t1

t2

t3

HSC#1 HSC#2

TARGET SURFACE

Figure 7.9.: Typical HSC dry-ice recordings of primary particle by HSC #1 (left,

showing the side view), and of secondary particles by HSC #2 (right,

showing the top view) (note: the scenes do not show the same

primary particle).

Particle
Diameter

Inlet Air Velocity = 45 m/s
Target Angle = 60°

Figure 7.10.: Typical result from dry-ice particle tracking simulations with applic-

ation of particle breakup model - primary and secondary particle

tracks for a number of primary particle impacts.
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tracks are displayed. Primary particle sizes are derived from experimental data

statistics and a uniform size distribution is assumed at the injection point. The

main parameters applied to the CFX implementation of the breakup model,

such as the number of secondary particles allowed in the simulations, are listed

in Tab. D.4 in the Appendix.

Figure 7.11, left, shows the number of secondary particles generated from

primary particle impacts. Equivalent numbers are calculated from predicted

number rates in order to make the numerical and the experimental results

comparable. Good overall agreement can be seen for the number of secondary

particles. The main numerical values are located within the scattering bounds

of the experimental data in all cases. In general, the deviations of predicted

numbers can be explained by the closing procedure of the CFX implementation

of the model, which modifies the number of secondary particles to enforce mass

conservation (details are discussed in Sections 5.4.3 and 5.4.4). The mean sec-

ondary particle size predictions, presented in Fig. 7.11, right, are also in good

agreement with the experimental results and all mean values predicted fit the

experimental scattering bounds.

An overprediction of the number of secondary particles and a corresponding un-

derprediction of the mean secondary particle size is detected in the case of low

air velocity and low target angle (i.e. 30°, 25 m/s). Additional investigations
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Figure 7.11.: Comparison of numerical to experimental data - number of sec-

ondary particles (left) and mean diameter of all dispersed second-

ary particles (right).
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into this particular deviation revealed that the corresponding particle breakup

scenarios happen in the mixed breakup zone, which is not accounted for in

the model (details are discussed in section 5.3.3). The model only applies the

lower boundary between minor and major breakup of dry-ice particles and it

can therefore happen that the simulation predicts particle breakup where some

of the primary particles do not actually break. As a consequence, more smal-

ler particles are predicted in such situations. The other deviations encountered

can be attributed to the closing procedure and to the scattering of the statistical

database of the model and of the experiment presented here.

Furthermore, the comparison is extended to the main secondary particle size

classes (i.e. residual and debris) and predicted particle sizes of these are com-

pared to experimental data in Fig. 7.12. Both diagrams show good overall

agreement of the data. Even in the case discussed above (i.e. 30°, 25 m/s)

the predicted particle sizes of the classes are in good agreement with the ex-

perimental data. It can therefore be concluded that the model overpredicts

the number of secondary debris particles and hence it underpredicts the over-

all secondary particle size if the primary particle impacts happen in the mixed

breakup zone. This indicates that the breakup boundary function applied may

be too strict in such cases.
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Figure 7.12.: Comparison of numerical to experimental data - mean diameter

of residual particles (left) and mean diameter of debris particles

(right).
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Summary

Additional investigation of the upper boundary of this mixed breakup zone and

the application of a further random variable are necessary to overcome this sys-

tematic issue. However, if the current setting is applied, the model tends to be

conservative for defouling erosion predictions, because smaller particles remove

lower proportions of fouling compared to larger ones. It is therefore concluded

that the application of the boundary function as proposed in section 5.3.3 is

acceptable for this work.

The overall agreement of the predicted mean values to the corresponding ex-

perimental data is presented in Tab. 7.4 and the general assessment variable,

Eqn. (A.6), is used. It can be seen that mean deviations of 5 to 10 % are

encountered for the prediction of the secondary particle sizes and that the pre-

diction of the particles of the size classes is more precise than the prediction

of the overall particle size. This can be attributed to more significant inac-

curacies in the predictions of the numbers of secondary particles which show

mean deviations as high as 27 %.

However, there is a significant overlapping of the scattering ranges detected for

all values compared. It is therefore concluded that the new breakup model

is able to predict the dry-ice breakup process for engineering applications.

The range of inaccuracies discussed above is assumed to be adequate given

the stochastic nature of the whole process.

Variable MAX MIN MEAN

φ deviation deviation deviation

nSEK 49 % 8 % 27 %

dTOT 18 % 4 % 10 %

dRES 13 % 1 % 5 %

dDEB 20 % 1 % 7 %

Table 7.4.: Overview of mean value deviations of numerical to experimental res-

ults for breakup model variables.
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7.3.2 Defouling erosion simulations

The set-up presented above is used to assess the predictive capabilities of the

CFX implementation of the novel defouling erosion model. For this reason

HSC #2 (top-view recordings) is removed from the experiment and only

HSC #1 is used to record the primary particles impacting the target plate. Fur-

thermore, an exchangeable target surface is used, which is coated with either

PTFE or SALT and photographed before starting the experiment. After a certain

number of primary particle impingements (i.e. 30 - 50 per parameter) the tar-

get plate is removed and its partially defouled surface is photographed again.

A before-after comparison, comparable to what is described in section 6.3.1,

delivers the desired defouling statistics. Figure 7.13 shows a typical result from

post-processing and the original image of the defouled surface is compared to

the binary outcome from post-processing.

Original Image Post-Processed

Figure 7.13.: Typical indentation pattern from PTFE defouling (left) and corres-

ponding result from post-processing (right).

Numerical simulations are carried out in a similar manner to those described

for the particle breakup model. The primary particle injection position, velocity,

direction and size distribution are derived from experimental measurements.

Furthermore, the experimental parameters listed in Tab. 7.1 are used for the
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defouling tests and the two artificial fouling materials, PTFE and SALT, are used

for each parameter.

This results in a total of 8 tests, each of which was experimentally carried

out twice. In the corresponding numerical simulations a total of 30 primary

particles was considered for each parameter. Typical results from numerical de-

fouling predictions are presented in Fig. 7.14: the left-hand image shows little

defouling of the SALT layer in the case of 25 m/s nominal air velocity and 30°

target angle compared to significant defouling of PTFE with 45 m/s nominal air

velocity and 60° target angle.

Significant defouling: PTFE

• Nominal air velocity = 45 m/s
• Target angle  = 60°

Little defouling: SALT

• Nominal air velocity = 25 m/s
• Target angle  = 30°

Figure 7.14.: Typical indentation pattern from defouling simulations - little de-

fouling of SALT coating (left) and significant defouling of PTFE

coating (right).

A qualitative comparison of predicted defouling to experimental results is

shown in Fig. 7.15 and typical patterns from both SALT and PTFE coatings

are displayed. The comparability of the defouling patterns can be seen. From

this comparison it becomes clear that secondary particle indentations play a

key role in PTFE defouling but this is not the case for SALT. For this reason the

first comparison of numerical to experimental data deals with the number of

indentations per primary particle and this is presented in Fig. 7.16.
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erosion-pattern:
vAIR = 20m/s, α = 60°

EXP NUM

SALT PTFE

EXP NUM

Figure 7.15.: Qualitative comparison of typical indentation patterns from pre-

dicted and experimental defouling - SALT (left) and PTFE (right).

The left-hand display shows results from PTFE testing and the right-hand dis-

play those from SALT layer investigations. Both diagrams show mean values

from 8 experiments and 4 corresponding simulations. Increasing the primary

particle Stokes numbers increases the number of indentations per particle and

this can be seen for both PTFE and SALT layers. The mean values for PTFE are

higher compared to those for SALT. The numerical predictions are comparable

to the experimental results and it is therefore concluded that the secondary

particle indentations are generally captured by the model set-up presented.
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Figure 7.16.: Number of indentations per primary particle from tests with PTFE

(left) and SALT (right) - numerical and experimental data.
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Figure 7.17.: Indentation sizes from tests with PTFE at low (left) and steep tar-

get angles (right) - comparison of numerical to experimental data.

The next comparison deals with the indentation sizes after the defouling tests

and it is presented for PTFE in Fig. 7.17 and for SALT in Fig. 7.18. The left-hand

display of Fig. 7.17 shows the mean values and scattering bars for low target

angle (i.e. 30°) and both nominal air velocities and the right-hand graph shows

comparable results from steep target angles (i.e. 60°).

In both cases the mean numerical values tend to overpredict the mean experi-

mental outcomes. Good agreement can be seen when comparing the overlap-

ping of the scattering ranges. However, the lower range of indentation dia-

meters is not captured by the simulations. This can be attributed to the actual

contribution of very small secondary particles defouling, of which thousands
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Figure 7.18.: Indentation sizes from tests with SALT at low (left) and steep tar-

get angles (right) - comparison of numerical to experimental data.
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actually exist but just a number is simulated (see Tab. D.4 and corresponding

discussion in section D.4). The predictions for steep target angles are closer to

the experimental data compared to these for low target angles.

Results from SALT defouling investigations are presented in Fig. 7.18 in a com-

parable manner. The mean numerical results for low target angles clearly un-

derpredict the experimental results. In case of the low nominal velocity there is

almost no defouling predicted but there are significant indentations detected in

the experiment. The predictions for the higher nominal velocity also underes-

timate the reality, however these are found to be located in the lower scattering

bound of the experimental data.

In contrast, the comparison of numerical to experimental data for steeper target

angle indentations shows good agreement of the mean values. The predicted

scattering bars of the indentation sizes are much narrower compared to the

experimental data. A possible cause for this may be natural scattering experi-

mentally encountered for salt layer defouling, which is not accounted for in the

model at the moment (details can be found in Sections 6.3.2 and C.3).

Summary

Based on the above results it can be concluded that the CFX implementation of

the defouling erosion model adequately predicts actual defouling of PTFE and

SALT layers. However, it must be noted that it failed to predict the defouling of

SALT at low nominal air velocity and low target angle. The lower bounds of the

experimental scattering of the PTFE defouling are not captured by the model.

In addition the model underpredicts the scatter for salt defouling.

The mean deviations between numerical and experimental results are summar-

ized in Tab. 7.5. These mean values predicted are in good agreement with the

experimental data for steep target angles (mean deviations ca. 15 %) but show

significant differences for low target angles (mean deviations ca. 40 %).

The major differences between the PTFE and SALT layer defouling are well pre-

dicted for steep target angles and these for the low target angle are found to

be within the range of experimental scatter, despite the case where the model
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failed to predict defouling. Furthermore, the particle breakup model set-up

presented in Chapter 5 can be seen to be valid in conjunction with the defoul-

ing erosion model because secondary particle indentations are predicted when

investigating PTFE defouling.

Case MAX MIN MEAN

deviation deviation deviation

PTFE, 30° target 57 % 10 % 38 %

PTFE, 60° target 25 % 4 % 15 %

SALT, 30° target 45 % 43 % 44 %

SALT, 60° target 17 % 9 % 13 %

Table 7.5.: Overview of mean numerical value deviations related to experi-

mental data.

Potential improvement to the defouling erosion model presented can be

achieved by the consideration of scattering in the defouling functions. This

can be done by introduction of an additional random parameter which must be

derived from statistical data processing of the underpinning experiments. Such

an additional variable may improve the range of the scatter predicted as well

as the prediction of the onset of erosion, which is a solid bound at the moment.

This uncertainty is comparable to what was reported above when discussing of

the function which describes the onset of dry-ice particle breakup.

Finally, both models are considered to be valid for the prediction of axial aircraft

compressor defouling simulations and this final application case is addressed in

the next Chapter 8. The mean deviations encountered in the validation case

study must be kept in mind when discussing results from application case sim-

ulations.
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8 Application case study

This chapter documents the final application case study. The main common goal

of the studies presented in this work is to simulate axial aircraft compressor de-

fouling in a computationally affordable manner. Therefore a comparison study

between a number of typical defouling tests conducted with a GE CF6-500E2

engine at the test-rig are compared to corresponding simulations of this de-

fouling procedure. Tests with indicator coating (i.e. PTFE) applied to the high

pressure compressor of the engine and with the final prototype set-up of the

new “Cyclean” engine wash unit from Lufthansa Technik are selected for this

study because, for these parameters, a large experimental database is available

and comparison between simulations and experiments can be presented.

The comparison of numerical to experimental cleaning results and of predicted

particle sizes and velocities to experimental data shows good overall agreement.

These predictive capabilities of the new models developed in the validation case

study (see Chapter 7) are confirmed based on the results presented here.

In section 8.1 the test-rig and the experimental set-up are described and in

section 8.2 a preliminary study is described which highlights the pure air flow

simulations of the compressor of the dry-cranked engine in comparison to ex-

perimental data from the test-rig. A best case scenario is described which is

used for the later defouling simulations and the most significant simplifications

and assumptions concerning the air flow simulations are highlighted. The fi-

nal section 8.3 presents all relevant information from defouling experiments

and those from additional experiments using a high-speed camera (HSC) to

generate local particle tracking and sizing data inside the engine during the

defouling run. The results from the final defouling simulations are compared

to the aforementioned experimental database and good overall agreement is

found.
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8.1 General problem description

This part of the study was supported by: MUCKENHAUPT, D. [IX] and by ENGEL, M. [X]

and their work was supervised by the author.

The test engine used for the final application case study is a two shaft type and

it encompasses a low- and a high-pressure shaft and these shafts are aerody-

namically coupled. The low pressure compressor (LPC) consists of three stages

and the high pressure compressor (HPC) consists of 14 stages.

The engine is mounted on a stationary test-rig and the high pressure shaft is

driven by an external electric motor. It delivers approximately 130 kW shaft

power and it can crank the engine at speeds up to 22.5 % nominal speed of the

high pressure shaft. In the dry-crank mode, which is investigated for the de-

fouling process, 20 % of this nominal shaft speed is applied (i.e. ca. 2000 rpm).

The low pressure shaft turns at approximately 180 rpm if a steady operational

state is achieved.

A section view of the engine is shown in Fig. 8.1 and the indicated positions

of instrumentation are described below. The engine is equipped with six

Prandtl probes with integrated type K thermocouples. These probes are loc-

ated along the flow path in the compressor and they can be turned (i.e. to

FAN

LPC

HPC

BLMH
BYPS

LPC-IGV HPC-1

HPC-3

HPC-5

HPC-9

HPC-14

INTAKE

HSC-I

HSC-O

AMB

Figure 8.1.: Section view of the test engine GE CF6-50E2 with all relevant instru-

mentation positions indicated.
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measure counter-current flows) and their positions can be varied in radial dir-

ection (i.e. to measure span-wise flow profiles). The first probe position is in

the IGV row behind the fan (LPC-IGV) and it is followed by five downstream

positions in the HPC stages 1, 3, 5, 9 and 14 (HPC-1 to -14). With these probes

static and total pressure as well as total temperature are measured.

Furthermore, there is a static pressure probe ring installed in the bell-mouth

of the engine (probe name ’BLMH’) and it consists of 12 bores. A hot-wire

anemometer is used to measure air velocity at the outlet of the bypass (probe

name ’BYPS’) and a static pressure probe and a type K thermocouple are used to

measure static pressure and total temperature. Ambient pressure, temperature

and humidity are measured away from the flow path. A more detailed descrip-

tion of the probe positioning and measurement concept is given in section E.1

in the Appendix. The corresponding measurement uncertainties have been as-

sessed by MUCKENHAUPT in [IX] and these are summarized in Tab. 8.1 (note:

velocity is derived from total and static pressure).

Position Pressure Velocity Temperature

Bellmouth ±9.5 % n.a. ±0.5 %

Bypass ±4.0 % ±2.5 % ±0.5 %

LPC-HPC ±4.0 % ±2.5 % ±0.5 %

Table 8.1.: Measurement uncertainties at various measurement positions in the

engine for all variables.

Dry-ice particles are sized and tracked with HSCs placed at specific positions in

the high-pressure compressor. Two positions are accessed and these are the IGV

row of the HPC (HSC-I in Fig. 8.1) and a position behind the OGV row of the

HPC (HPC-O in Fig. 8.1). In the first IGV row three vanes have been removed

and their shrouds have been replaced with glass plates. The lighting system and

the HSC are mounted in front of these holes as shown schematically in Fig. 8.2.

Similar holes were drilled into the casing at the outlet of the high pressure

compressor and the HSC is placed downstream of the OGV row. The uncertainty

analysis and post-processing strategy reported in section A.5 in the Appendix

also apply for the HSC experiments presented here. The implementation of
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the HSC technique at the engine test-rig was undertaken by ENGEL [X]; a full

description of this experimental set-up and its preliminary results can be found

in his thesis.

Figure 8.3 shows photographs of the test-rig equipped for a defouling test run.

The left-hand display shows the bell-mouth and the intake of the engine with a

prototype of the new dry-ice based LHT-Cyclean wash unit placed in front. At

the right-hand side the outlet of the bypass and the beginning of the HPC case

can be seen. The LPC is located upstream the HPC and it is surrounded by the

bypass.

Intake

LHT Cyclean 

dry-ice unit

Bellmouth

Bypass

HPC

LPC

Figure 8.3.: Photographs of test engine GE CF6-50E2, front view with a proto-

type of the new Lufthansa Technik Cyclean unit installed (left) and

rear view (right).

The HPC of the test-engine is accessible and the blading can be removed. The

photograph of the opened HPC in Fig. 8.4, left, shows a number of stator and

rotor blades before cleaning and the right-hand side image shows the rotor

after cleaning of PTFE. It is possible to apply the artificial PTFE fouling in ex-

tensive experiments and this data is used to compare the numerical results to

experimental results.

The blades are photographed before and after the defouling test outside the

engine in a controlled lighting environment and post-processing of these pho-
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PTFE coated
stator and rotor
before cleaning

PTFE coated
rotor blades 
after cleaning

Figure 8.4.: Experiment: opened HPC case with some rotor and stator blades

prepared with PTFE (left) and rotor blades after defouling (right).

tographs is carried out with a before-after comparison procedure, comparable

to what is described in section 6.3.1. This procedure delivers the desired de-

fouling statistics. Figure 8.5 shows a typical result from post-processing and

original images of the defouled surfaces are compared to the binary outcomes

IMG POST IMG POST

Figure 8.5.: Experiment: typical defouling results from stage 1 rotor blades, ori-

ginal images and post-processing results (note: these blades were

not defouled with the Cyclean prototype simulated in this work).
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from post-processing. It must be noted that possible curvature of the blading is

not accounted for in the post-processing.

8.2 Modelling details and run-up study

This part of the study was supported by: MUCKENHAUPT, D. [IX] and by ROSSMEISSL,

D. [XI] and their work was supervised by the author.

The engine must be simulated with pure air flow in the dry-crank mode before

the actual defouling simulations can be carried out. The simulation model is

designed assuming periodic symmetry and a stream channel is selected which

consists of single airfoils for each row of the engine. There is no grid independ-

ence study applied but the simulations are made on a scalable mesh with O-grid

meshing of the airfoils and resolved boundary layers. Approximately 100,000

grid-points are used per airfoil passage. The meshing of the engine was carried

out by Lufthansa Technik and the ICEM mesher was used. A typical mesh of an

airfoil passage is presented in section E.2 in the Appendix.

The stationary and rotational domains are linked by stage interfaces and the

mixing plane approach is used to handle the conservation equations (details can

be found for example in [9]). The final numerical set-up is shown in Fig. 8.6

and the boundary conditions applied are indicated.

The simulation strategy for the dry-crank mode consists of two steps and the

most important set-up details are summarized in section E.2 in the Appendix.

In the first step, the set-up is initialized with a numerically stable setting with

first order discretization schemes and strong under-relaxation (referred to as

step 1). In a second step the numerical damping is lowered and higher order

discretization schemes are applied (referred to as step 2). The second step

turned out to deliver fluctuating results and these indicate a transient flow state.

In order to limit the complexity of the later particle simulations, the steady state

approach was assumed to be adequate for this work. However, special attention

is paid to the above fluctuations in the discussion of the results below.
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8.2.1 Results from the low-pressure compressor section

The numerical results from the LPC area are discussed in this section and the

computational pressure and velocity field in stationary frame are presented in

Fig. 8.7 in the meridional plane view (i.e. the mid-channel flow between two

airfoils is presented). The upper display shows the pressure field and a slight

pressure rise can be detected through the LPC. In the lower display, the velocity

field shows two separation regions - one at the tip of the fan blades and another

one at the OGVs of the LPC. Furthermore, there is a stagnation point visible at

the tip of the spinner (note: this is a rotating wall) and a stagnation region is

detected at the axis of the stream channel which links the LPC and the HPC

(note: this is a non-rotating wall). The predicted velocities are in a range up

to18 m/s.

Pressure

Velocity

separated

flow

separated

flow

flow

direction

flow

direction

engine axis

engine axis

Figure 8.7.: Numerical results of the LPC: contours of static pressure (upper) and

velocity in stationary frame (lower) in meridional plane view.
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separated

flow

separated

flow

FAN

IGV

B1
V1

B3

OGV

flow

direction

Figure 8.8.: Detailed num. results of the LPC: streamlines (frame dependent rep-

resentation, i.e. velocity vectors in actual frame).

A deeper insight into the flow development in the LPC is given in Fig. 8.8 where

the streamlines throughout the region of interest for LPC defouling simulations

are plotted. Disturbances in the streamline formation are predicted at the suc-

tion side of the fan blades and at the pressure and suction side of the OGVs.

These uneven streamlines at the fan stage influence the main flow field but

those at the OGV stage rapidly become uniform downstream. It is concluded,

based on these numerical results, that there is an almost undisturbed air flow

through the LPC in the dry-crank mode. There is almost no compression effect

detected. Furthermore it is found that the numerical fluctuations do not affect

the solution of the flow field in the LPC.

8.2.2 Results from the high-pressure compressor section

Comparable results from the same simulations are discussed for the HPC in

Fig. 8.9 to 8.11. Pressure, velocity and turbulent kinetic energy are shown

in the meridional plane through the HPC in Fig. 8.9. There is a significant

pressure rise in the HPC compared to the LPC of up to 10,000 Pa and this is

visible from the upper display. A clearly separated flow region is predicted in

the velocity and in the turbulence field and it develops at the IGVs and settles at
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Pressure

Velocity

Turbulence
separated

undisturbed

Figure 8.9.: Numerical results of the HPC: contours of static pressure (upper),

velocity in stationary frame (mid) and turbulence kinetic energy

(lower) in meridional plane view.

the outer part of the HPC. This separation region can be distinguished from the

undisturbed region by the disordered velocity contours at the outer part of the

engine compared to their regular appearance at the inner part. In the region

with the disordered velocity field, high amounts of turbulence kinetic energy are

predicted by the applied turbulence model. The predicted disturbance vanishes

at the 8th stage of the engine.

Figure 8.10 shows the streamline situation at the inlet into the HPC in detail.

There are strong vortices detected and these originate at the root of the IGV

and at the tip and root of the first blade. The suction side flow of the first blade

is predicted to be almost totally separated. Further downstream the vortex

field tends to concentrate in the outer region of the engine. This concentration

starts at the first vane row and an undisturbed flow channel establishes at the

inner radius of the HPC. The measurement position HPC-1 (indicated by the red

sphere in Fig. 8.10) is placed in the middle of this undisturbed flow channel.
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IGV
blade1

vane1

HPC-1

flow

direction

Figure 8.10.: Detailed num. results of the HPC: streamlines at the inlet (frame

dependent representation, i.e. velocity vectors in actual frame).

The results presented in Fig. 8.9 indicate that this vortex region disappears at

stage 8 where the flow starts to be undisturbed over the whole channel height

until it reaches the outlet of the HPC.

The whole separated flow region is shown with streamlines in Fig. 8.11. It

must be noted that these results are not strictly steady state and, depending

on the number of iterations calculated, the vortex field appears different in

the post-processing. Therefore two possible streamline stills are shown in the

figure (i.e. at various instants of the numerical convergence process). The

corresponding positions of the probes for the mean value comparison, which is

discussed below, are indicated in the display.

Based on the examination of the above simulations it is decided to compare nu-

merical to experimental data at various positions in the potentially undisturbed

flow channel (i.e. as predicted by simulations) and this comparison study is

presented in the next section below.
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IGV
b1

v1

v1

b1
IGV

b8
v8

b8
v8

HPC-1
HPC-3

HPC-5
HPC-8

Figure 8.11.: Detailed num. results of the HPC: streamlines up to stage 8 (frame

dependent representation, i.e. velocity vectors in actual frame).

8.2.3 Comparison of numerical to experimental flow field

Indicators for the predictive accuracy of the simulations presented above are

given in Fig. 8.12 and 8.13 where these predictions are compared to exper-

imental results. The left-hand display in Fig. 8.12 shows trends for static

pressure and the right-hand display such for axial velocity values. The corres-

ponding experimental velocities are recorded with the Prandtl probes turned in

the axial direction for the measurement and the samples are taken in one single

position which is approximately in the middle of the undisturbed flow channel.

These positions were approximated in preliminary experiments and compar-

ison of the results to the predictions are shown in Fig. 8.12. Typical final

results from simulations with both set-ups (i.e. step 1 and step 2) are dis-

played and the values are averaged over the channel height of the undisturbed

flow. The ranges of possible numerical fluctuations from the step 2 simulations

are highlighted by scatter bars whereas the results from step 1 simulations do
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Figure 8.12.: Engine sim. - comparison of num. to exp. data in undisturbed flow

channel; static pressure (left) and axial velocity (right).

not show fluctuations. The fluctuations indicate a non-converged numerical

solution and transient phenomena which cannot be captured by means of he

simulation strategy presented here. However, these effects remain neglected in

this project and should be addressed in future work.

The results represent an adequate prediction of the global trends. Differences in

the results may be caused by local effects in the probe measurements compared

to the averaged numerical values and from the simplifications of the numerical

approach. The mean values of both pressure and velocity trends are predicted

with a mean accuracy of 16 % by the step 1 simulations, the pressure field is

predicted with a lower mean accuracy of 22 % but the velocity field predictions

are better with 7 % when using the step 2 set-up.

Experimental axial velocity profiles are shown in Fig. 8.13 for all measurement

positions and these are compared to the above simulation results. The span

variable shows the relative position along the span of the corresponding vane

with 0 representing the hub (i.e. towards the engine axis) and 1 representing

the tip (i.e. towards the engine casing). At the measurement positions HPC-1, -

3 and -5 there is a clearly visible experimental indication for the flow separation

region. In the case of HPC-1 and -3 counter-flow is measured in the experiments

(i.e. with turned Prandtl probes). The qualitative velocity profiles in Fig. 8.12

are sufficiently well predicted and the global tends in Fig. 8.13 are in good

agreement with experimental data.
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Figure 8.13.: Engine simulations - comparison of numerical to experimental ve-

locity profiles at various measurement positions.
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Based on the above discussion it is assumed that it is possible to simulate the

dry-crank mode of the engine with a reasonable accuracy for the final defoul-

ing simulations presented in this work. Mean pressure and velocity values are

predicted with mean accuracies in the range from 7 to 22 % and although

the velocity profiles at various stages do not exactly match the measured data,

the global trends are recognizable. There are no highly significant deviations

encountered given the nature of the operational mode of the engine and the

simple numerical approach taken.

The temperature field is not discussed in this work and therefore the temperat-

ure field predictions remain unconsidered in this place.

8.3 Application of dry-ice simulations

This part of the study was supported by: ENGEL, M. [X] and his work was supervised by

the author.

Particular modifications of the numerical set-up are made for the simulations

of the defouling procedure. The particle phase is introduced into the region of

interest with a boundary patch at the intake of the stream channel model of the

engine and this is shown in Fig. 8.14 and explained below.

Although the flow simulations are steady-state, the cleaning information gen-

erated is time-dependent. To account for a representative proportion of dry-ice

particles in the simulation, the total mass of dry-ice particles used in the ac-

tual cleaning process mTOT is scaled to the proportion of the engine considered

(first term in parentheses in Eqn. (8.1) below) and to the actual period of time

considered (second term in parentheses):

mSI M = mTOT ·
�αSI M

2π

�

·
�

NSI M

nLPC · tTOT

�

(8.1)

and with this the number of simulated dispersed particles is adapted. The equa-

tion applies the actual angle of the proportion of the intake considered in the

numerical model αSI M and relates it to the whole engine (i.e. 2π). Further-

more, it relates the actual number of rotations considered in the simulation
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NSI M to the total number of rotations of the actual defouling process. The latter

is obtained by multiplication of the rotational speed of the LPC nLPC with the

total process time of the cleaning tTOT . If the whole cleaning cycle would be

reproduced in a full engine model, then mSI M = mTOT .

αSIM

nLPCmSIM

Intake

FAN

vP
pexp(dP)

dry-ice

particles

Figure 8.14.: Implementation of the particle phase into the numerical set-up.

The full set of particle boundary conditions if obtained by using the simplified

experimental particle size distribution and the mean experimental particle ve-

locity (corresponding experiments are described in section 4.3). The air flow

from the injection system and the positioning of the system in the intake of

the engine are neglected. To consider this situation, an expensive multiple do-

main approach (i.e. multiple blades per row) would be necessary and it is not

possible to account for this with the symmetry assumption presented here.

The impact of the particle phase upon the air flow in the engine is also neglected

in this study and this is done by applying CFX expert parameters to freeze the

flow field. This underpinning flow field is calculated before the defouling sim-

ulations and this is described in section 8.2. However, it is possible to assess
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the impact of the particles upon the air flow with an appropriate numerical

parameter set using the set-up presented above.

Regarding the influence of the symmetry assumption upon the defouling predic-

tions, it is known from numerous defouling experiments with the test-rig that

the rotors of the engine are cleaned equally around the circumference even if

the particles are injected at discrete positions. A partial cleaning channel is ini-

tially formed in the stator rows and it increases circumferentially as the particles

propagate through the compressor. It is assumed that the numerical approach

presented here predicts the mean cleaning effect of the rotors and the max-

imum cleaning effect of the stators in the main cleaning flow. This assumption

is discussed below when numerical to experimental results are compared.

The most important model parameters of the CFX implementation of the new

particle breakup model must be calibrated before starting the final defouling

simulations and this is described in detail in section E.3 in the Appendix.

For implementation reasons it was necessary to simulate the cleaning proced-

ure in two discrete numerical domains for the LPC and for the HPC respectively.

These are coupled with an interface at the passage from LPC to HPC and the

particle sizes, velocities and their local distribution are set as boundary con-

ditions for the HPC simulations. Hence a new set of particles is used for the

HPC simulations. The information for this new set of particles is simplified

at the interface and particle size classes are considered, a mean particle velo-

city is derived and the local particle distribution is generated with a weighted

distribution.

8.3.1 Particle breakup simulations

The defouling simulations presented below comprise the assessment of the

cleaning of artificially fouled test-engine compressor parts (fouled using PTFE)

and the corresponding tracking of dry-ice particles. Periods of 1 %, 10 % and

100 % of the total actual process time are considered by modifying the total

mass introduced into the system according to Eqn. (8.1).
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Figure 8.15.: Numerical particle tracks from 1 % process time (only a reduced

number is shown): LPC, rotor pressure sides (ps), stator suction

sides (ss).

The Figures 8.15 and 8.16 show typical particle tracks in the LPC for the simula-

tion of 1 % of the process time. Particle breakup occurrences can be seen up to

IGV

ps

B1

ss St2 St3

V1

ps

Dry-ice particle

diameter [m]

Figure 8.16.: Numerical particle tracks from 1 % process time (only a reduced

number is shown): LPC, rotor suction sides (ss), stator pressure

sides (ps).
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the third stage of the LPC but the predominant disintegration of large primary

particles into smaller secondary fragments happens in the fan stage where the

particles come into contact with a rotating airfoil for the first time.

The particle phase is dominated by small particles downstream of the fan. A

number of large particles is ejected via the fan through the bypass and this

phenomenon was also encountered in the experiment. Only a small number of

particles is found on the suction side of the fan blade and in general a lower

number of particles flows over the suction sides of the blades compared to the

pressure sides.

Furthermore, the particles tend to concentrate at the outer radius of the ma-

chine when exiting the LPC. However some, mostly large, particles counter-

act this general behaviour. This phenomenon can be attributed either to the

stochastic secondary particle velocities resulting from the breakup process or to

the vortex which builds up at the OGV and which may influence these particle

tracks at the exit.

The same particle tracking state is analysed for the HPC and this is displayed

in Fig. 8.17 and 8.18. Most of the particle breakup, induced by the higher

rotational velocity of the HPC compared to the LPC, can be seen in the first

V1
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Dry-ice particle

diameter [m]

St6

St3

St9

St12

IGV

ss

separated

flow
undisturbed

Figure 8.17.: Numerical particle tracks from 1 % process time (only a reduced

number is shown): HPC, rotor pressure sides (ps), stator suction

sides (ss).

253



V1

ps

B1

ss

St6

IGV

ps

St3

St9

St12

Dry-ice particle

diameter [m]

separated

flow
undisturbed

Figure 8.18.: Numerical particle tracks from 1 % process time (only a reduced

number is shown): HPC, rotor suction sides (ss), stator pressure

sides (ps).

stages of the HPC and the flow is dominated by small particles downstream of

the IGVs. Almost no particles hit the suction side of the first blade and this can

be attributed to the strong vortex predicted at the inlet of the HPC which is

discussed in section 8.2.

The separated outer flow region and the undisturbed inner flow channel at front

HPC stages are also recognizable in the particle tracks. There are just a few

particles at the suction sides of the blading in the vortex region and the tracks

at the corresponding pressure sides are chaotic. In contrast, ordered particle

tracks can be seen in the region of the undisturbed flow and the particle tracks

tend to concentrate at the outer radius of the engine if these are downstream of

the vortex region (i.e. behind stage 6). Before this position these tracks mainly

concentrate at the outer radius of the undisturbed flow region.

General findings

Simulation results indicate that some particles pass through the entire com-

pressor since small particles are found to exit the HPC. Mass balances and

particle counts show that approximately 5 % of the injected particle mass enter

the HPC but the number of the particles is an order of magnitude higher at
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this position compared to the number of particles injected into the engine. The

mean particle size predicted at the inlet into the HPC is only 10 % of the mean

particle size injected into the engine.

Furthermore, there is only 0.05 % of the total mass found to exit the HPC in the

particle size classes considered. The number of the particles at the exit of the

HPC, however, is another order of magnitude higher compared to the injection

properties and the mean particle size at the exit of the HPC is approximately

60 % of the particle size at the inlet of the HPC.

Comparison of numerical to experimental particle properties

These computational particle tracking results are compared to experimental

data where possible and the experimental data is acquired in HSC experiments

at two discrete positions of the HPC (details can be found in section 8.1). The

comparison of the results is presented in Fig. 8.19. The left-hand side diagram

shows cumulative probability trends for the particle size distributions at the in-

jection position (LPC in), at the inlet of the HPC (HPC in) and at the outlet of

the HPC (HPC out) and the right-hand side diagram contains such trends for

the particle velocity distributions.
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Figure 8.19.: Defouling simulations - local comparison of numerical to experi-

mental data, particle sizes (left) and particle velocity (right).
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The experimental trends from the injection position and from the inlet posi-

tion of the HPC consist of more than 100,000 particles each but these from

the outlet of the HPC consist of only approximately 550 because the quality

of the recordings from the higher stage was not sufficient to visualize more of

the very small and fast particles. These particle classes considered in the post-

processing of the numerical results are equal to those from the experiment and

the smallest particles considered have a diameter of approximately 40µm. The

experimental data is subdivided into classes at the injection position in prepar-

ation of the simulation and the derived distribution, which is used as boundary

condition to the particle tracking, is shown in the diagram.

Good overall agreement of the numerical and experimental distributions can

be seen for all trends despite the particle sizes at the inlet into the HPC. In

the latter case the simulation predicts significantly more smaller particles com-

pared to the experiment. The particle sizes at the outlet of the HPC are slightly

underpredicted but the trend is in very good agreement with experimental data.

The deviation of the particle size distributions at the inlet of the HPC can be

attributed to factors related to the experimental measurement such as local

aggregation of larger particles in the field of view of the HSC and influences of

the location of the experimental control volume close to the inner radius of the

channel whereas the numerical data is taken from the whole channel.

Furthermore the model uncertainties revealed in section 7.3.1, which require

additional investigations into the breakup boundaries of dry-ice and the applic-

ation of a further random variable, may influence the predicted particle size

distribution at this position.

The numerical velocity distributions presented are both in good agreement with

the experimental trends. The experimental velocity data from the inlet position

into the HPC appears to be bi-modal but this second mode is not predicted to

the same extent. A probable cause for this difference could be cross-flowing

particles (i.e. induced by collision with the first rotor) which are considered in

the experimental trends. This effect may be underpredicted in the simulation

due to the limited number of secondary particles considered. The velocities at

the outlet of the HPC are slightly overpredicted.
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From examination of these graphs it can be concluded that the experimental

ranges of particle sizes and velocities are well predicted. A comparison of sim-

ulated to experimental mean values is given in Tab. 8.2 and based on these

numbers it is concluded that the model predicts the actual behaviour with a

reasonable accuracy for the desired defouling simulation. The mean deviations

of the variables considered range from 10 % to 23 %.

HPC in HPC out

Particle Size 22.41 % 9.71 %

Particle Velocity 14.71 % 21.08 %

Table 8.2.: Overview of mean value deviations of numerical to experimental res-

ults for particle variables.

8.3.2 Defouling erosion simulations

In the final step of this work the PTFE defouling erosion predictions in the test

engine are discussed and, where possible, compared to experimental data. The

upper display in Fig. 8.20 shows the defouled areas on the blading of the LPC for

10 % of the Cyclean process time and the lower display the corresponding res-

ults for 100 % of the process time. The pressure sides are largely defouled after

10 % of the cleaning process at both the stator and the rotor blades. However,

there is a significant difference in the defouling of the suction sides between

these times and there is significantly less defouling visible after 10 % of the

process compared to the 100 % results.

Although total cleaning is rapidly achieved for the pressure sides of LPC com-

ponents, cleaning of suction sides, and particularly the fan suction side, is less

effective. This is evident from both experiment and simulation. Based on the

above results, it can be concluded that the entire pressure sides and a propor-

tion of the suction sides are cleaned by the main particle flow, whereas total

cleaning of suction sides is reliant on deflected particles. Prediction of this

cleaning effect therefore requires prediction of secondary particle tracks and

particle breakup.
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Figure 8.20.: Numerical defouling results: LPC, both sides, 10 % process time

(upper display) and 100 % process time (lower display).

The breakup process significantly increases the number of particles in the en-

gine and this significantly changes the particle trajectories thereby increasing

the probability of particles impacting suction sides. This flow of secondary

particles is less effective in the cleaning process and therefore requires a longer

time to achieve cleaning.

Corresponding results from the HPC are displayed in Fig. 8.21 and 8.22 and

these are discussed below. The more efficient (i.e. earlier) cleaning of the

pressure sides can also be observed in the HPC simulations if the results are

compared to these from the LPC. It can also be seen that cleaning of the pressure

sides is more effective (i.e. more rapid) where the flow is disordered (i.e. stages

1-6) compared to later stages.
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Figure 8.21.: Numerical defouling results: HPC, stator suction sides (ss) and rotor

pressure sides (ps), 10 % process time (upper display) and 100 %

process time (lower display).

The cleaning of the suction sides is limited to characteristic patterns and approx-

imately 40 % to 60 % of the surfaces. The cleaning pattern at the suction sides

of the front stages, where the outer flow is separated, appears to be different

from this at the blading of rear stages.

The characteristic defouling pattern of these suction sides of the rotors shifts

from inner radii at the front-most stages to the middle of the channel at stages

6 to 8 and then further up to the outer radii at stages 9 and higher. Furthermore,

there is additional defouling recognized on both the suction sides of the rotors

and of the stators in the separated outer flow region and this can be attributed

to the chaotic particle behaviour in this region. No particle tracks are seen to
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Figure 8.22.: Numerical defouling results: HPC, stator pressure sides and rotor

suction sides, 10 % process time (upper display) and 100 % process

time (lower display).

impact the suction side of blade 1 because these particles are redirected by the

strong flow separation predicted at this position. Hence, there is no defouling

visible in the numerical results at this surface.

Qualitative comparison of numerical to experimental results

A qualitative comparison of numerical to experimental results is given in

Fig. 8.23 and 8.24. Typical erosion patterns from an extensive experiment

are selected and compared to corresponding patterns from the simulation at

the stages 3, 6, 9 and 12 at the suction sides. Very good agreement of the
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B3ss B6ss

B9ss B12ss

Figure 8.23.: Numerical defouling patterns compared to experimental: HPC, RO-

TOR suction sides, stages 3, 6, 9 and 12.

cleaning patterns on the rotor can be seen for all stages considered and this is

displayed in Fig. 8.23. In particular, those characteristics which are potentially

influenced by the separation flow region, such as the divided cleaning area at

stage 3 and the shift of the maximum cleaning towards outer radii of the engine

for rear stages, are precisely predicted.

V3ss V6ss

V9ss
V12ss

Figure 8.24.: Numerical defouling patterns compared to experimental: HPC,

STATOR suction sides, stages 3, 6, 9 and 12.
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Figure 8.24 shows the same comparison for the corresponding stator blades.

The stator blades shown are taken from the stator region which displays the

maximum cleaning effect. The cleaning patterns are generally comparable but

the maximum cleaning region at the outer radii of the vanes at front HPC stages

is overpredicted by the numerical simulations. It is possible that this is because

the simulations overpredict the effect of separated flow on stochastic particle

distribution. Nevertheless it can be concluded that the predicted erosion pat-

terns at the rotors are in good agreement and those at the stators are in reason-

able agreement with experimental data.

Quantitative comparison of numerical to experimental results

Finally, the simulated defouling values are compared to experimental values

and this is shown in Fig. 8.25 and 8.26. Figure 8.25 shows mean value trends

for the experiment with the largest sample size and three comparable exper-

iments with the same parameters but lower sample sizes. In the case of the

large scale experiment, which is highlighted in the diagram by the thick col-

oured trend line, a total of 336 rotor blades and 1260 stator blades were

investigated. In these additional experiments a total of 70 rotor blades and

75 stator blades were considered.

The left-hand diagram in Fig. 8.25 shows the trends for the pressure sides of

the rotor blading and the right-hand side those for the suction sides. The global

experimental trends are clearly met by the numerical results. The cleaning

prediction is very good at the pressure sides until stage 7. After this stage the

numerical defouling data decreases significantly at stage 8 but this significant

decrease can be found only in particular experimental data and it starts at rear

stages such as 10 and 11.

Prediction of the suction side cleaning is very good in the front part of the

engine up to stage 9 and the numerical results show underprediction at rear

stages. There is more scatter in the experimental results for the suction sides

compared to the pressure sides and there is one experimental dataset which de-

viates from the others over several stages. Although the completely unaffected
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Figure 8.25.: Mean cleaning efficiency of rotor blading: numerical results com-

pared to experimental data, pressure sides (left) and suction sides

(right).

fouling on the suction side of the first numerical blade is not confirmed by the

experimental data, the defouling predicted here is low compared to that of the

remaining stages. The underpredictive character of the numerical results at

stages higher than 7 can be attributed to significantly lower numbers of model

particles in the simulation compared to the actual situation.

The same comparison is discussed for the stator blading in Fig. 8.26. Only the

large scale experiment is considered here because the predictions are only valid

for the mean particle path and it was clearly identifiable only with this exper-

iment. The experimentally maximally cleaned stator blades can be compared

to corresponding data from the numerical simulation. However, the mean ex-

perimental values of the stator cleaning (i.e. the overall result derived from all

stator blades expeimentally investigated) are also presented in the diagrams.

The maximum cleaning efficiency of the pressure sides is well predicted and,

in addition, the predicted decrease of the values shows reasonable agreement

with the experimental data. The comparison of the suction sides in the right-

hand diagram shows that the significant differences of the experimental data in

the first stages of the compressor are not predicted by the simulation. However,

the maximum value predictions are in good agreement with the experimental

data at the rear stages of the HPC.
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Figure 8.26.: Maximum cleaning efficiency of stator blading (i.e. only repres-

enting stator blades being located in the mean particle flow):

numerical results compared to experimental data, pressure sides

(left) and suction sides (right); NOTE: mean experimental values

are also presented (i.e. the overall result derived from all blades in-

vestigated) but these results are not predicted by the simulations.

It must be noted that the mean values recognized in the experiment are signi-

ficantly lower but there was only a single blasting machine considered in the

experiment of the cleaning process. The finalized Cyclean process uses four

such machines increasing the probability that the actual cleaning efficiency will

be closer to the predicted maximum.

Based on the results presented here it can be concluded that the new erosion

model has been successfully applied in an engine defouling simulation in con-

junction with the new particle breakup model for dry-ice. The defouling values

predicted are in good agreement with experimental data. The main cleaning

patterns as well as the overall trends of the cleaning process are predicted with

a reasonable accuracy with deviations in the range from 11 to 21 % and this is

summarized in Tab. 8.3.

In general, the pressure side predictions are closer to the experimental data

compared to the suction sides. This may be attributed to the model uncertainty

reported in section 7.3.2. It has been revealed that potential improvement to

the defouling erosion model presented can be achieved by the consideration
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of scatter in the defouling functions with an additional random parameter. It

was shown that this model uncertainty mainly affects angular impacts and the

probability for angular impacts is higher at the suction sides compared to the

pressure sides, which may explain the more significant deviations.

Pressure side Suction side

Rotor 11.20 % 20.87 %

Stator 11.02 % 18.81 %

Table 8.3.: Overview of mean value deviations of numerical to experimental res-

ults for defouling efficiency.

8.3.3 Summary of the application case study

A steady state simulation approach has been presented for air-flow predictions

of a dry-cranked aircraft engine and it was successfully compared to experi-

mental data from the compressor to prove its validity for the later defouling

simulations. The deviations encountered for the pressure and the velocity field

range from 10 % to 23 % and these are acceptable given the computational ef-

ficiency achieved with this method and taking into account the unstable nature

of this operational mode of the engine (i.e. it is turned at 20 % of the nominal

speed of the high pressure shaft).

Based on these air-flow predictions the final PTFE defouling simulations have

been carried out using the Ansys CFX implementation of the new particle

breakup and defouling erosion models presented in this work. The predic-

tions of particle properties and defouling of the blading have been compared to

experimental data and good overall agreement was reported. The deviations

encountered in this work range from 10 % to 22 %. They are either ex-

plainable via experimental issues such as local effects in the particle tacking

or by model uncertainties, such as the hard boundaries applied for the onset of

particle breakup and defouling erosion (see section 7.3).

Further experimental and numerical work is necessary to achieve a more de-

tailed insight into an appropriate simulation strategy for these defouling scen-
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arios. Local effects, such as the positioning of the Cyclean injection system in

the intake of the engine, possible influences of the air-flow from the injection

system upon the particle tracks or the impact of the particles upon the con-

tinuous air flow inside the engine etc. remained unconsidered in the approach

presented here.

A detailed sensitivity analysis of the calibration procedure for the model para-

meters of the Ansys CFX implementation of the breakup model is also necessary.

However, these additional topics require the handling of very large amounts of

data because transient simulations of a larger proportion of the engine (i.e. at

least 90° symmetry with consideration of one Cyclean injection system) and

more particle tracks, in particular secondary particles, must be considered.

However, it is possible to use the simulation strategy and the models presented

in this work to help understand the cleaning process and to carry out numerical

parameter studies of the Cyclean system. Possible parameters for such studies

range from various types of fouling to system parameters of the cleaning system

such as the particle mass flux, size distribution, velocity or injection position and

direction.
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9 Summary and Outlook
This chapter gives a detailed summary of the work, it highlights its main res-

ults and these are discussed in detail and it gives an outlook dealing with the

planned future work based on the findings presented here. Each of the research

topics addressed in this work is discussed separately and finally in conjunction

with each other when discussing the application case study.

9.1 Dry-ice injection system modelling

Summary

An experimental and numerical investigation was presented dealing with solid

particle acceleration in a range of nozzle geometries typically used in dry-ice

based aircraft defouling applications. The main goal of this part of the study

was to advance the state of the art of dry-ice blasting simulations by an all

encompassing validation study in which experimental and numerical particle

tracks from a wide range of dry-ice blasting nozzles were compared and the

predictive capabilities of the numerical toolbox used were quantified.

For this reason a transparent convergent-divergent dry-ice blasting nozzle was

presented. It was operated in various flow regimes and experimentally investig-

ated with a HSC. Correlations of particle velocities were derived for a range of

POM particles of various sizes accelerated at a range of representative operating

pressures. Velocity was found to be a function of particle size and nozzle pres-

sure and decreasing scattering of the velocity was found for increasing nozzle

pressure. The correlations presented can be used to validate numerical simula-

tions of dilutely particle laden flows.

Furthermore, a HSC experiment was presented to investigate variously laden

dry-ice flows from all types of nozzles considered. A sizing and tracking al-
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gorithm was introduced to derive particle size and velocity information from

these recordings. Velocity was found to be a function of particle diameters,

but only for large dry-ice particles, and of the nozzle/pressure combination ap-

plied. For the smaller particle sizes, a large velocity scattering was encountered.

A comparison of the POM particle velocities with the velocities of large dry-ice

particles for dilutely laden dry-ice flows revealed a good overall agreement of

the trends. This agreement could not be confirmed for densely laden dry-ice

flows.

The numerical set-up of the nozzle simulations presented was validated against

published data for pure air flows and comparable results were achieved. The

particle tracks from the transparent nozzle were used to validate the Lagrangian

particle tracking implementations of Ansys CFX. It was found that the predict-

ive capabilities of the implemented tools decrease with increasing operating

pressure in conjunction with the flow regimes and geometries considered. Best

results were achieved with a 2-way coupling formulation and consideration

of drag and pressure gradient forces in the particles ODE of motion. A max-

imum underprediction of approximately 15 % was found for the mean particle

velocities at the exit of the nozzle in the case of the highest nozzle pressure

considered.

Finally, numerical parameter studies of all the above nozzles were carried out.

Comparison of the predicted particle velocities at the exit of the nozzles to these

experimentally investigated revealed a good overall agreement for the subsonic

and the sonic nozzle but the results for the supersonic nozzle being operated

at 8 bar revealed non-satisfactory deviations as high as 35 %. Therefore it

was necessary to improve the predictive capabilities of the numerical toolbox

for supersonic nozzles and high operating pressures and a new drag-coefficient

formulation was developed by means of re-engineered experimental particle

tracks from the validation experiments with the transparent nozzle. The fol-

lowing discussion of this data lead to a Mach-number related drag-coefficient

formulation which improved the predictions of the particle tracks. The devi-

ations could be decreased from approximately 20 % to 10 % for the dilutely

laden flows and from 35 % to 23 % for the densely laden flow.
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Discussion

This part of the study advanced the state of the art of dry-ice blasting simu-

lations by a number of validation experiments and by the assessment of the

predictive capabilities of the Ansys CFX toolbox for such simulations as was in-

tended. The experimental particle tracks from the transparent nozzle and the

particle size and velocity information from all types of dry-ice blasting nozzles

considered can be used for further validation studies.

The study presented is the first one to deal with all possible types of flow re-

gimes in dry-ice blasting (i.e. subsonic, sonic and supersonic flows) and it

presents numerical and experimental data for each of these cases. The stat-

istical significance of the experimental data was assured by large databases

consisting of as much as 40,000 single dry-ice particle information for each

parameter. The accuracy of the particle tracking was found to be +/- 5.0 % and

this of the particle sizing was found to be +/- 6.5 %. These uncertainties could

be attributed to inhomogeneous illumination of the objects in the recordings

and transitional inaccuracies resulting from the threshold valuing and centroid

matching approaches taken.

The Lagrangian particle tracking toolbox was found to be applicable for dry-ice

blasting simulations of subsonic and sonic flow regimes in conjunction with

all particle loadings considered, i.e. all deviations encountered were lower

than 10 %. However, the deviations encountered in the case of the super-

sonic nozzle being operated at high nozzle-pressure were unsatisfactory and

this was attributed to the drag-coefficient formulation applied. An experi-

mental procedure delivered a modified drag-coefficient formulation and this

significantly decreased the deviations. Based on this it was concluded that the

drag-coefficient for supersonic dry-ice blasting nozzles is a function of the flow

Mach number rather than of the particle Reynolds number. Additional work is

necessary to prove and generalize these findings (see below).

A number of additional findings were reported and these advance the know-

ledge of dry-ice blasting systems. In this context it was shown that there is a

significant agreement between dry-ice velocities from dilutely-laden flows and
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single POM particle velocities in a range of particle sizes. It is therefore sug-

gested to use POM particles for experimental engineering and development

approaches before using dry-ice, which clearly facilitates the experimental pro-

cedure and the post-processing.

Furthermore it was shown that the particle velocities are dependent on the

particle size for large dry-ice particles. This dependency vanishes for small

particles and it was shown that the large velocity scattering of these small

particles can be captured by presenting the results in CDF diagrams. The

scattering was attributed to the particle breakup process and possible particle-

particle interaction inside the nozzles. It could not be precisely predicted with

the methods discussed here because they do not account for particle breakup

and particle-particle interaction phenomena inside the nozzles. However, it was

shown that the predictions are correct for the maximum particle velocities en-

countered. The simulations can be improved by usage of the newly developed

particle breakup model and additional consideration of particle-particle inter-

action models.

Outlook

Future work is necessary to investigate more deeply the physical situations de-

scribed in section 4.5, where the improvement of the particle tracking tools

was presented. The correlation which was found for the drag coefficient in

convergent-divergent supersonic nozzles must be confirmed for a wide range of

nozzle geometries, pressure settings and particle sizes to evaluate if it is widely

usable.

Additional experimental and numerical work is desirable to investigate flow

details such as pressure-field modifications, vortex-shedding and shock-cell as

well as expansion- and compression wave structures and their interaction with

particles for various situations where particles are located in convergent and

divergent sections of supersonic nozzles and where these may modify the flow

pattern. After this, findings could be generalized to situations where particles

are moving throughout the nozzles. Future work on these simulations can

also encompass further development of numerical methods such as turbulence

270



model modifications due to particle presence in the flow or further develop-

ment of the immersed boundary method (see for example [211]) to account for

volumetric particles in such simulations.

The generalization of the findings and the confirmation of their validity for

other nozzle geometries and pressure settings as well as a deeper investigation

into the particle size dependency is currently being investigated in another re-

search project by the author. Furthermore, the interaction between the particles

and the continuous flow field is experimentally investigated in an aeroacoustic

test-rig. A possible coupling of the particle breakup model with the nozzle

simulations is also investigated in this context.

It is planned to publish the main outcomes from these current studies at the

International Conference of Multiphase Flow 2019 in Rio de Janeiro, Brazil.

9.2 Particle breakup modelling

Summary

A new particle breakup model for dry-ice particles has been theoretically and

experimentally derived from a basic mass and energy balance, and it is believed

to be the first of its type for Lagrangian dry-ice particles.

A sensitivity analysis was presented which was related to the application case of

commercial aircraft compressor defouling and it was used to simplify the basic

model assumptions. A theoretical approach was presented in the context of this

analysis to assess the internal bond energy of dry-ice.

Furthermore, a basic experiment was introduced utilizing two HSCs to produce

the statistical database for later computations with the above particle breakup

model. With this, an extensive database of dry-ice particle breakup scenarios

was generated, comprising the investigation of a total of 4,200 single dry-ice

particle impacts. The data and the final model show a significant dependence

of secondary particle number, size and velocity, principally on primary particle
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velocity and size, and to a lesser extent on impact angle and negligible, if any,

dependence was found of all variables on the target temperature.

The above findings indicated a change in the breakup mechanism at low impact

velocities and, therefore, an additional experimental study was conducted to

describe the onset of breakup as a function of particle impact diameter and

velocity. The final formulation of this boundary function was adapted from

literature and compared to experimental data for water ice particles.

Computational implementation of the model was found to reproduce the exper-

imental findings. Some variations were present in both the Matlab and Ansys

CFX implementations, but overall the model was able to reproduce the number

of secondary particles to within +/- 3 % and mean diameters and velocities to

+/- 2 %.

Discussion

The state of the art of dry-ice blasting simulations has been successfully ad-

vanced by the introduction of a dry-ice particle breakup model for Lagrangian

particle tracking, which did not exist before this work. The model presented is

implicitly mass and energy conservative and it was shown that is also satisfies

momentum conservation. It can therefore be used for simple particle breakup

predictions, in which only the secondary particle properties are of interest, but

it can also be used for advanced simulation purposes in terms of the balancing

of mass, momentum and energy.

The structure of the model advances the state of the art of general particle

breakup modelling in Lagrangian particle tracking because it can be used in

large scale applications and, if the statistical database is modified, it can be

used for different materials. In advance of comparable existing models, such

as the Eulerian example presented by CHAPELLE et al. [32, 33, 34], the model

presented here allows more detailed single particle based evaluation of flow

conditions in engineering applications because single particles can be tracked

and balanced.
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It was shown that the model was able to reproduce the number of secondary

particles to within +/- 3 % and that of the mean diameters and the mean ve-

locities to within +/- 2 % compared to the underpinning experimental data.

These deviations could be attributed to the rounding and conservation enforce-

ment procedures applied in the computations. The advantage of a fully conser-

vative formulation of the model eliminates the disadvantage of these deviations

and these were therefore decided to be acceptable. The particle tracking accur-

acy of the experimental data was +/- 5.0 % and this of the particle sizing was

+/- 6.5 % (for details see above).

The model is underpinned with an experimental database and the basic exper-

iment is comparable to what was reported by VARGAS et al. [200] in 2015

for water ice particles in one of the latest experimental investigations of wa-

ter ice breakup. The experiment presented here was developed independently

but in parallel to the above publication (see ZITZMANN [IV]) and a similar

approach is taken. The database developed comprises 4,200 single particle im-

pacts whereas comparable experiments dealing with water ice breakup such as

these by VARGAS et al. [200] or HAUK [78] comprise significantly lower num-

bers of specimens. In addition, no such experimental work dealing with dry-ice

is known to date an therefore it advances the state of the art in the field of

dry-ice investigations.

It was found using a sensitivity analysis that sublimation plays an important

role in the overall energy balance, which confirms the findings reported by

HABERLAND [72], REDEKER [156] and KRIEG [103]. The latter represent the

state of the art in this field of research. However, as an additional advance

in this field, it was shown that breakup energy plays an important role at low

impact velocities and that erosion energy is not negligible in general terms if a

defouling process is considered.

In addition to the above findings the study incorporated the derivation of the

material’s Young’s modulus and applied Hertzian contact theory in a molecu-

lar scale bond model to account for the dry-ice particle breakup energy. The

theoretical Young’s modulus was compared to experimental values reported

elsewhere for dry-ice and to such for water-ice and good overall agreement
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was found. The procedure presented can therefore be concluded to be valid for

the derivation of Young’s moduli for ice particles. The values presented for the

Young’s modulus and for the internal bond energy of dry-ice are an advance of

the state of the art of dry-ice investigations.

Finally the onset of breakup of the dry-ice particles was described by an ex-

perimentally underpinned function which was originally reported for water ice

particles by HAUK [78]. It was found that this method applies also for dry-ice

particles and that the onset of breakup can be described in a similar way for

both materials. The dry-ice experiments revealed a mixed breakup zone where

particle breakup occurs in a number of cases only. This mixed breakup-zone

was not reported for water ice. The discussion of the onset of breakup of dry-

ice particles is also an advance of the state of the art in the field of dry-ice

research.

Outlook

The particle breakup model presented can be enhanced by conducting addi-

tional experiments to improve certain theoretical assumptions. Therefore, an

additional validation study on the energy balance should be applied and the

model performance could be compared to single particle simulations using for

example DEM or SPH methods. In particular the sublimation energy and the

breakup energy proportions should be validated, because these are based on

fully theoretical approaches at the moment.

Furthermore, a more precise database could further enhance the model cap-

abilities in general. One such specification could be achieved for example by

conducting high precision experiments on the dust-phase. The database of

the model could be changed to account for another material such as water

ice and it can be used, for example, in the wide context of hail-strike investiga-

tions which are a current safety topic in aeronautical research (see for example

HAUK et al. [77, 78]).

It is not planned to further improve the particle breakup model at the moment

but the main outcomes from this study are planned to be published in the In-

ternational Journal of Multiphase Flow 2018. The model will be used in dry-ice
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blasting investigations by Lufthansa Technik and Hochschule Darmstadt and at-

tempts are planned to use the model in the context of hail-strike investigation

projects in future.

9.3 Defouling erosion modelling

Summary

It was intended to advance the state of the art of dry-ice based defouling simu-

lations by the introduction of a new defouling erosion model in this part of the

study. Such a model was successfully presented and the theoretical formulation

of this model was based on a number of assumptions derived from an extensive

literature review. The model applies an energy based formulation which was

underpinned with an experimental database. It accounts for the area defouled,

for the energy consumed during the defouling process and for the shape of the

indentation produced by single particle impacts upon variously fouled walls.

Four types of fouling materials typically found in commercial aircraft engine

compressors (i.e. original fouling) and those typically used in defouling exper-

iments at the test-rig (i.e. indicator coating) were considered. This selection

was based on a number of investigations of fouling materials in cooperation

with Lufthansa Technik. The set-up used to derive the database of the particle

breakup model (see above) was slightly modified to conduct the experiments

for the erosion model. It was used to determine energy dissipation of particles

made from non-disintegrative reference material impacting variously fouled tar-

gets and to measure the shape and size of indentations from single particle

impacts upon these targets.

A total of 2,000 single particles has been investigated and representative results

from these experiments show good agreement between the defouling energy

assessment and the defouled areas measured. It was found that the defouling

process is a function of particle velocity, density and diameter. This defouling

process was correlated with logarithmic functions for all cases considered (i.e.
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all particle and fouling material combinations). It was shown that the coeffi-

cient of determination of these correlations decreases with increasing natural

scatter (i.e. artificial vs. original fouling and reference vs. dry-ice particles).

However, a significant correlation strength was reported for all except one case.

Comparable defouling behaviour was reported for both of the artificial fouling

materials and for both of the original fouling materials investigated.

The theoretical model formulation and the statistical database were developed

into a computational Matlab model and into an Ansys CFX implementation of

this model and a range of computed results was discussed. These results high-

light the actual defouling capabilities of dry-ice and the relation between the

defouling energy and the areas defouled. It was shown that the impact energy

consumed for defouling is highly dependent on the particle impact velocity and

diameter. This proportion of energy is assumed to be negligible in the total

energy balance of the impacting particles underpinning the particle breakup

model even if there are ranges of variables in which the defouling energy pro-

portion can be as high as 30 % of the particle impact energy.

Finally it was shown in a brief verification study that the model predicts the

underpinning database with most significant deviations of 0.72 % in the case of

defouling energy.

Discussion

The presentation of the new defouling erosion model for dry-ice based defoul-

ing of amorphous and heterogeneous fouling materials, which are typically

found in axial aircraft compressors, represents an advance in the state of the

art of defouling erosion modelling. No such model was available for these

material pairings before this publication.

A large experimental database with defouling data was presented and a stat-

istical analysis of the significance of the derived correlations was given. It was

shown that the defouling action is, in all cases considered, a logarithmic func-

tion of the particle impact velocity and a linear function of its diameter and

these findings represent an advance in the state of the art of defouling investig-

ations.
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The experimental procedure presented and the structure of the new model

allow a straightforward extension of the material pairings considered in the

model and hence the model can be straightforwardly extended to various ap-

plication cases. Furthermore, the model can be linked with the particle breakup

model because its formulation is energy based. An overall energy assessment

of impacting dry-ice particles is possible by means of this link and this is an

advance in the state of the art of particle flow simulations.

These most significant deviations of 0.72 % in the case of defouling energy were

attributed to rounding procedures and addition of uncertainties of indentation

size predictions and these are decided to be negligible. The particle tracking

accuracy was +/- 5.0 % and the accuracy of the particle and indentation sizing

procedure was +/- 6.5 % (for details see above).

Numerous publications were reviewed and some of the main findings have been

linked together in the framework of the model development. These following

publications represent the state of the art of various fields of research. The idea

of erosion-related energy assessment has been presented by various authors

[90, 91, 92, 101, 102, 145, 147, 148] and the “dynamic indentation testing”

(DI) experiment presented was designed based on general ideas adapted from

[91, 92, 184, 194]. Furthermore, non-disintegrating reference material (POM)

was used to determine dissipation energy of defouling action and this idea is

based on findings from [18, 42, 63, 64]. The dissipation energy values were

assumed to be specific to the fouling material and valid for indentations of

various particle materials and this assumption was based on findings such as

reported for example in [88, 89, 101, 102] for crystalline materials. The link of

all these findings to a new model assumption represents an advance in the state

of the art in defouling erosion modelling. The basic model idea can be used in

experimental and numerical based future work.

Outlook

The defouling erosion model presented can be enhanced by additional evalu-

ation of the scattering of the experimental defouling data. This can be done

based on the statistical database presented here and it is planned to be done by
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the author in the near future. If additional experiments should be conducted to

the overall energy balance of dry-ice particles impacting solid walls, fouled sur-

faces can be considered and in this case the influence of the defouling energy

upon the total energy balance must be investigated, which is possible with the

model presented.

Furthermore, four typical coatings which are relevant to commercial aircraft

defouling processes were investigated in this study. It is possible to enlarge this

statistical database to numerous coating and particle materials in the future us-

ing the basic experiment presented. Some additional experiments with dry-ice

and water-ice particles in conjunction with various additional fouling materials

are currently investigated at Hochschule Darmstadt by the author. It is also

planned to enlarge the model to further defouling effects such as thermal and

chemical and this is currently addressed in another research project at Hoch-

schule Darmstadt in collaboration with Lufthansa Technik.

A publication of the improved model (i.e. improvement by additional evalu-

ation of the scattering) in conjunction with an extensive experimental database

is planned in the Wear Journal in 2018 or 2019 (i.e. depending on the progress

of the improvements and the enlargement of the database).

9.4 Validation case study

Summary

A validation case study for the new particle breakup and erosion models was

presented and for this reason a new wind-tunnel experiment was designed in

which a dilutely laden particle flow situation was observed by means of HSCs.

Initially, pure air flow simulations as well as single particle tracking simula-

tions with POM particles were compared to experiments. The mean deviations

between predicted and experimental data range from 3 % to 12 % for the flow

pressure profiles and from 1 % to 16 % for the flow velocity profiles. Further-

more, these deviations for the particle impact and rebound characteristics range

from 1 % to 5 % for the velocities and from 5 % to 12 % for the impact angle.
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The actual validation of the particle breakup model was described in detail in

section 7.3 and four different parameter settings have been considered in the

experiment. The mean deviations achieved were 27 % for the number of sec-

ondary particles and 10 % for the secondary particle diameters. Furthermore,

the significant experimental scattering of the variables was reproduced all cases

considered.

The validation of the defouling erosion model was also presented in section 7.3

and the model was validated using two artificial fouling materials and the four

above parameter settings. The results indicate that the predictive capabilities

decrease with increasing impact angle (i.e. a change of the impact direction

from normal to tangential measured to the target surface). The mean devi-

ations range from 13 % to 44 % and the significant experimental scattering was

reproduced well in 50 % of the cases considered.

Discussion

The mean deviations encountered in the particle breakup validation were de-

cided to be acceptable given the large scattering of the experimental and nu-

merical data, the deviations caused by the particle tracking simulations (i.e.

1 % to 5 % for the velocities and 5 % to 12 % for the impact angle) in con-

junction with their impact upon the particle breakup statistics underpinning

the model and the post-processing accuracy of the model database and of the

experimental validation data (i.e. +/- 6.5 % for particle sizes and +/- 5.0 %

for particle velocities).

There was a large scattering of the variables encountered in the particle breakup

validation study and this scattering of the secondary particle variables was at-

tributed to the stochastic process of dry-ice breakup. It is mainly influenced

by the original structure of the particles and this structure is mainly influenced

by the production process, the transportation of the particles and by their ma-

turity. Even if the production variables were constant throughout the whole

project and the maturity of the dry-ice particles used was 1 to 3 days in all

cases these influences cannot be completely ruled out. However, the scattering

is a key characteristic of the real breakup process; it was also observed in the
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basic experiment and it was shown that the model reproduces the scattering

range to a satisfactory extent.

In total, the mean particle diameter predictions (i.e. mean deviations of +/-

10 %) are more precise than these of partially comparable models such as this

reported by CHAPELLE et al. [32] (i.e. +/- 15 %) which is an advance in

particle breakup modelling for engineering purposes. The mean numbers of

secondary particles are less precisely predicted compared to the diameters (i.e.

mean deviations of +/- 27 %) and this was attributed, additionally to the mater-

ial structure alterations discussed above, to various computational conservation

and rounding procedures applied in the model.

However, it was shown that the predicted number of secondary particles was

highly influenced by the impact velocity and angle and that small deviations

in these predicted impact characteristics can cause significant deviations in the

predicted number of secondary particles, in particular in the range of impact

velocities and angles where the mixed breakup mode is indicated (for details

see above). These most significant deviations of the predicted numbers of sec-

ondary particles were found in those variable ranges.

A possible improvement of the model was addressed based on these findings

and additional investigations were proposed to elaborate the boundaries of the

mixed breakup zone of dry-ice and to introduce additional random variables to

account for the stochastic nature of this zone. Such an additional study would

further improve the scattering predictions and it would mainly improve the

predicted number of secondary particles.

Furthermore, the results from the validation study showed that the general de-

fouling behaviour, which indicates the differences between the fouling materials

considered, was well predicted. These major differences were better predicted

for steep target angles compared to those for the low target angles. However,

also the predictions for low target angles were found to be within the range of

experimental scatter.

This scatter was predicted to a satisfactory extent for PTFE but the model un-

derpredicts the scatter for SALT defouling. In the case of SALT almost no scatter

was identified in the predictions and at low nominal air velocity and low target
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angle the model failed to predict defouling. The particle breakup model was

shown to be valid in conjunction with the defouling erosion model because sec-

ondary particle indentations were correctly predicted. These secondary particle

indentations were found to cause the scatter in case of PTFE defouling.

A possible improvement to the model was identified based on the above find-

ings and it can be achieved by consideration of experimental scatter (i.e. scatter

measured in the basic experiment) in the defouling functions. This may im-

prove the range of the scatter predicted as well as the prediction of the onset of

erosion, which is a solid bound at the moment and causes the large deviations

encountered for low target angles, in particular in the case of the SALT layers.

In total, the mean values were predicted with an accuracy of 15 % for steep

target angles and 40 % for low target angles. These deviations are caused by

the particle tracking uncertainties (i.e. 1 % to 5 % for the velocities and 5 % to

12 % for the impact angle) in conjunction with their impact upon the statistics

underpinning both the particle breakup and the defouling erosion model and

the post-processing accuracy of the model database and of the experimental

validation data (i.e. +/- 6.5 % for particle and indentation sizes and +/- 5.0 %

for particle velocities).

The uncertainties are increased in case of the low impact angles by the range of

impact velocities and angles where the mixed breakup mode and the onset of

erosion are indicated (i.e. where steep gradients are encountered in the model

functions). These most significant deviations of the predicted defouling were

found in those variable ranges and the uncertainty modulation is comparable

to what was reported above when discussing the deviations of the predicted

numbers of secondary particles.

Outlook

The validation experiment can be used for additional validation studies with

artificially or originally fouled targets as well as for validation purposes in case

of database extensions of the model. It would be useful to carry out more meas-

urements to enlarge the existing validation database presented to add statistical
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significance to the findings and to extend the range of the validation parameters

(i.e. the particle impact characteristics for both models).

The results from the validation study presented will be considered for improve-

ment of the defouling erosion model and in the publications planned for both

models (see above).

9.5 Application case study

Summary

The final application of the new models in an aircraft compressor defouling sim-

ulation was presented and it was intended to use all above findings in this final

part of the study to advance the state of the art of application based defouling

simulations.

The numerical set-up presented consists of a stream-channel approximation of

the engine and it applies rotational periodicity and coarse meshing. However,

good agreement between the predicted and the experimental flow field was

achieved and mean pressure and velocity values were predicted with mean

accuracies in the range from 7 % to 22 %. Although the velocity profiles at

various stages do not exactly match the measured data, the global trends were

recognizable.

The injection of the particles was simplified in the simulation and a method

was presented to use measured particle injection properties in a valid boundary

condition for steady state simulations.

Comparison of the predicted particle tracks to these measured revealed a pre-

dictive capability of the breakup model in conjunction with the simulation

set-up presented which ranges from 10 % to 22 % for the particle sizes and

velocities at discrete positions. The global trends of the particle size and velo-

city distributions were accurately predicted by the simulations except that the

predicted trend of the particle size distribution at the inlet into the HPC did not

match the experiment.
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The final defouling simulations were compared to a range of defouling experi-

ments in which artificial PTFE fouling was used. A global surface comparison of

the defouled blading showed good agreement between the predictions and the

experiment. There was a region identified in the front stages of the HPC where

some mismatches were encountered. Furthermore, mean deviations between

the defouling predictions and the experiments were evaluated and these range

from 11 % to 21 %.

Discussion

The new models were successfully used in the final application case study and

the engine defouling predictions presented are believed to be the first of their

type. However, the main findings from the injection system investigations were

not used for the final simulations presented here, because a periodical stream

channel symmetry of the engine was applied which did not permit modelling of

the localization of the injection due to the position of the injection nozzles.

To account for this at least a 90° symmetry approach must be taken; this ap-

proach was part of the research project and such simulations were conducted

by Lufthansa Technik. The models were applied successfully in these simula-

tions. However, only a very short period of time (i.e. 70 ms) and only the intake

and the LPC section of the test engine could be simulated due to memory issues

during the solution process and during the post-processing of the simulations.

No comparison of these predictions to experimental data could be made.

The flow field simulations presented here were compared to experimental res-

ults and the mean deviations within 7 % to 22 % for the flow field predictions

are satisfactory given the symmetry assumption, the coarse meshing, the steady-

state set-up and the mixing-plane approach taken to link subsequent airfoil pas-

sages to each other. Furthermore the potentially unstable operational state of

the engine must be taken into account (i.e. the engine is dry-cranked during

the cleaning process and it turns at 20 % of the nominal rotational speed) and

measurement uncertainties were quantified with 4.0 % for pressure and 2.5 %

for velocities. In particular the numerical set-up can be improved to achieve

higher accuracies in future work.
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The deviations of the predicted particle sizes and tracks range from 10 % to

22 % and this was mainly attributed to the deviations in the prediction of the

flow field (as discussed above), to the measurement uncertainties in the particle

sizing (i.e. 6.5 %) and tracking (i.e. 5.0 %) and to possible local effects in the

measurements in the engine such as aggregation of larger particles in the field

of view of the HSC and influences of the location of the experimental control

volume close to the inner radius of the channel.

A significant discrepancy in the predicted particle sizes and tracks was dis-

covered at the inlet into the HPC and this discrepancy was assumed to be also

dependent on the mixed breakup zone formulation in the actual breakup model

implementation (i.e. a hard lower boundary is applied) and it can be improved

by the additional work addressed above.

In total, the simulation results represent a significant advance in the state of

the art of particle tracking simulations in dry-cranked engines. This work is the

first one which systematically compares experimental and numerical flow-field

and particle tracking data and which clearly predicts dry-ice particle breakup in

an engine cleaning application (in comparison to GILJOHANN et al. [61]) with

an quantified and satisfactory precision for engineering purposes.

The application of the defouling erosion model and the comparison of the pre-

dictions to the experimental data revealed that the cleaning patterns are gener-

ally comparable. The maximum cleaning region at the outer radii of the vanes

at front HPC stages is overpredicted by the numerical simulations. It is possible

that this is because the simulations overpredict the effect of separated flow on

stochastic particle distribution. In contrast, those patterns which were poten-

tially influenced by the separated flow, such as locally divided cleaning areas

and local shifts of the maximum cleaning towards outer radii of the engine at

rear stages, were precisely predicted.

In general, the pressure side predictions are closer to the experimental data

compared to the suction sides. This may be attributed to the model uncertainty

reported above, which revealed that potential improvement to the defouling

predictions can be achieved by the consideration of scattering in the defoul-

ing functions. It was shown that this model uncertainty mainly affects angular
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impacts and the probability for angular impacts is higher at the suction sides

compared to the pressure sides, which may explain the more significant devi-

ations. Furthermore, there is more scattering in the experimental results for the

suction sides compared to the pressure sides.

The completely unaffected fouling on the suction side of the first numerical

blade is not confirmed by the experimental data and this was attributed to an

imprecise prediction of the flow field in this place and to the lack of scattering

values in the model functions. The underpredictive character of the numerical

results at stages higher than 7 was attributed to significantly lower numbers of

model particles in the simulation compared to the actual situation. The main

cleaning patterns as well as the overall trends of the cleaning process are pre-

dicted with a reasonable accuracy for engineering purposes with deviations in

the range from 11 % to 21 %

Based on these results it can be concluded that the new erosion model has been

successfully applied for the first time in an engine defouling simulation in con-

junction with the new particle breakup model for dry-ice. The defouling values

predicted are in good agreement with experimental data (i.e. for engineering

purposes) and this result is a clear advance of the state of the art in engine

defouling simulations and investigations in general (compare for example to

MUND and PILLIDIS [130], ENGDAR et al. [52] or GILJOHANN et al. [61]).

Outlook

Some of the goals of this part of the study, such as the application of the main

findings from the injection system investigations in the engine cleaning simula-

tions, the simulation of a larger proportion of the engine (i.e. 90° symmetry)

and the application of original fouling material could not be achieved due to a

number of implementation issues with the Ansys CFX model. It was therefore

decided to investigate the predictions of PTFE (i.e. indicator coating) defouling

in detail with the first stable simulation set-up and to compare these results to

corresponding experimental data, where possible.

Finally it was successfully shown that it is possible to predict the actual dry-

ice based cleaning process of commercial aircraft engines with the models and
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simulation set-ups presented, even if a number of assumptions must be made

to achieve an efficient procedure.

Future work should encompass the definition of a calibration procedure of the

novel particle breakup model and a sensitivity analysis of the model parameters

of the CFX implementation. Furthermore, an extensive parameter study of dry-

ice based cleaning of various engine types and fouling materials can be carried

out by means of the findings presented here. Further simulations of the test en-

gine are planned by the author at Hochschule Darmstadt using original fouling.

These should also be compared to experiments where possible.

Furthermore it is planned to investigate a 90° symmetry volume of the test-

engine in conjunction with the development of big-data methods to overcome

the memory exceptions during the simulation and in the post-processing and to

be finally able to handle this large sized models and to evaluate with it achieved

results. This research project is planned to be a cooperation between Dublin

Institute of Technology and Hochschule Darmstadt and it is planned to start it

in 2018.

The outcomes presented in this work and the additional simulations with ori-

ginal fouling addressed above are planned to be published in a paper at the

ASME Turbo Expo 2019 in Phoenix, Arizona, USA.
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A Appendix to Chapter 4: Dry-ice

injection system modelling

A.1 Single particle post-processing

Given the nature of the observed dilute laden flow, the experimental approach

can be classified as Particle Tracking Velocimetry (PTV) [3, 155]. Utilizing the

above HSC system results in a multi-frame single-exposure (continuous illumin-

ation) methodology, following the nomenclature from [3]. The signal-to-noise

ratio (SNR)

SNR=
µI

σBG
(A.1)

achieved is at a value of approximately 5.8 for the most critical case (smallest

particle encountering strongest acceleration). This value is given by the mean

signal intensity value µI divided by the standard deviation of the background in-

tensitiesσBG after [155]. The post-processing of the sequences recorded utilizes

of the intensity based "centre of mass" centroid matching approach [23, 36].

To ensure reliable post-processing, some image preparation must be done be-

fore the actual tracking. First, a background separation procedure is executed

to isolate particle information from background and surrounding information

(i.e. the nozzle). The modified intensity matrix I?i j results from the original

recording containing particles (superscripted {P}) and a representative back-

ground data recording without particles (superscripted {0} and recorded at a

moment t0 6= t).

I?i j (t) = I {P}i j (t)− I {0}i j

�

t0
�

. (A.2)
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After this, the intensity matrix of the corresponding frame undergoes a

threshold valuing procedure according to Eqn. (A.3). It sets particle intens-

ities to 1 and background intensities to 0. The appropriate threshold value

t rv ? is estimated as the lowest intensity value definitely belonging to a POM

particle. It is determined by means of an a priori calibration. The resulting

binary intensity matrix I??i j contains only particle information.

I??i j (t) =







1 ...i f I?i j (t)≥ t rv ?

0 ...i f I?i j (t)< t rv ?
(A.3)

Now, the above mentioned centre of mass (here the centre of intensity) based

centroid matching approach is used to calculate the distance of a POM particles

centroid between two recorded frames as follows:

ζdir (t) =

∑n
i=1

∑m
j=1

h

x i · I??i j (t)
i

∑n
i=1

∑m
j=1

h

I??i j (t)
i (A.4)

The estimation of the size-weighted particle position information ζdir (t) (ex-

ample: dir=x for the axial direction) at discrete times (here in single frames)

with Eqn. (A.4) allows calculation of particle displacement between two con-

secutive frames∆x by Eqn. (A.5). This approach is prone to biased or unsteady

intensity information, even if it is reported to be applicable for asymmetric

particles in [36].

∆x = ζx
�

t2
�

− ζx
�

t1
�

(A.5)

By means of the spatial and temporal discretization of the HSC, the mean abso-

lute velocity between two recorded frames can be derived (in 2D). The afore-

mentioned critical case (smallest particle travelling at highest velocity) leads to

around 16 frames containing single particles travelling along the nozzle length

L. The critical mean axial displacement is found to be approximately 10 mm.
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Over this maximum distance, the resulting velocity information (even if defined

as local) is averaged.

Another uncertainty may result from the threshold evaluation technique presen-

ted in Eqn. (A.3). To account for this, a threshold value based particle sizing

study was done, which revealed a maximum difference between given particle

diameters and post-processed ones of +/-6.5%. This value is assumed to be

the maximum possible displacement error introduced by post-processing due

to misinterpreted particle size. It should be noted that this possible error is

in the range of the production inaccuracy of the POM particles used, which is

given as +/-5.0%.

A.2 Details of the experimental validation study

Table A.1 contains all experimentally derived correlation constants from

Eqn. (4.1) in Section 4.1.2, which describes the particle velocities inside the

validation nozzle as a function of the nozzle length.

C{s}2 [m/s] C{s}1 [m/s] K{s}er r[1]

(2bar) 4bar 6bar (2bar) 4bar 6bar (2bar) 4bar 6bar

1.5mm 16.239 24.879 33.611 72.831 103.520 129.060 0.14 0.13 0.09

2.0mm 13.810 21.740 29.956 67.260 94.824 116.160 0.15 0.09 0.08

2.5mm 11.322 20.220 25.727 60.532 87.981 103.270 0.16 0.09 0.08

3.0mm 12.096 20.057 23.572 61.200 83.977 100.025 0.17 0.10 0.09

Table A.1.: Empirical constants for the correlation from Eqn. (4.1) (2 bar case

valid until x/L=0.6 relative nozzle length).

A.3 Details of the numerical set-up study

Further details of the numerical set-up used for the particle laden flow val-

idation are given below. The spatial discretization of the relevant numerical

volume is made by means of scalable block-meshing technique with respect

to sufficient resolution of the boundary layers (a priori estimated first cell:
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y+ ≤ 1, at least 30 cells in boundary layer) as well as to regions where strong

gradients are expected. The Ansys MESHER tool, versions 15.0 and 16.2, was

utilized and meshing details are presented in Fig. A.1. Preliminary grid- and

ambience-independence studies led to a total problem description consisting

of approximately 7,500,000 grid-points. The ambient proportion considered is

150 · D{L} long and it has a radius of 50 · D{L}(see Fig. 4.5 in Section 4.2.1 for

details).

boundary-

layer

nozzle

wall

Figure A.1.: Details of a representative nozzle meshing.

Boundary conditions selected are nozzle gauge pressure and total temperature

at the inlet as well as open boundaries at the outlets, allowing an entrainment of

the surrounding air. Axial particle velocity (from experimental measurement)

and random radial injection positions are selected as inlet conditions for the

dispersed phase. Ambient pressure and temperature are: pamb = 101,480 Pa

and Tamb = 15.70◦C for all cases simulated with particles (according to ex-

perimental conditions to which the simulations are referred). In case of the

literature based air flow validations corresponding ambient conditions are con-

sidered. The most important grid and set-up information is summarized in

Tab. A.2.

An all encompassing data comparison from the validation study of the pure

air flows is discussed in the following. The results presented in Section 4.2.1

approximately coincide and the same conclusions can be drawn for the Mach

number profiles compared for the subsonic compressible test case in Fig. A.2

and for the supersonic test case in Fig. A.3 with data from the study presented

in [79]. In both Figures A.2 and A.3 the right-hand graph shows the radial

jet profiles at a downstream position x/D=1 and the right-hand graph these at
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GRID Scalable Grid Critical element No. of layers in Total no. Boundary layer

study size h/D? boundary layer of grid points first cell y+

yes yes 0.015 30 7,500,000 1

SET-UP State Turbulence Pseudo Advection Turbulence Energy

Timestepping Schemes Numerics equation

step1 steady k− ε physical, adaptive Upwind 1st order isothermal

step2 steady k− ε physical, δt < D?

u?
High-Res High-Res total energy

Table A.2.: Most important grid and set-up information of the nozzle simula-

tions.

x/D=10. The most significant deviation between the experimental data and

both numerical solutions can be seen in Fig. A.3, right.

While the jet core prediction from the study presented here approximately co-

incides with the experimental data, the numerical solution from [79] clearly

overpredicts the experimental outcomes in the core of the jet. Further away

from the core the situation changes and the simulations presented here tend

to overpredict the reported experimental Mach numbers while the simulated

results from [79] are closer to the experiment, but still overpredicting. The
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Figure A.2.: Compressible subsonic test case - comparison of Mach number pro-

files at x/D=1 (left) and x/D=10 (right); numerical data with numer-

ical and experimental data from [79].
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Figure A.3.: Supersonic test case - comparison of Mach number profiles at x/D=1

(left) and x/D=10 (right); numerical results vs. numerical and exper-

imental data from [79].

remaining trends from Fig. A.2 and A.3 show good overall agreement between

experiment and both simulations.

A numerical evaluation of all results from this validation study is given below.

Its results are used to assess the quality of the simulation set-up presented here.

The general formulation in Eqn. (A.6) is introduced to quantify mean deviations

between experimental and numerical data.

Λφ =







∫ �

φ̄ex p − φ̄num

�2
dζ

∫

φ̄2
ex p dζ







1
2

(A.6)

It describes the cumulative (any direction ζ) squared deviation Λ of any value

φ between experimental and numerical data (indices ex p and num) in relation

to the cumulative and squared experimental data. Taking the square root of this

reveals the average deviation ratio of experimental and numerical results. This

value Λ is used for all comparison discussions in this work. It should be noted

that due to the exponent in Eqn. (A.6) it does not account for the direction of

the deviation.

Table A.3 contains deviations encountered between experimental data from

[79, 144] and the validation simulations presented here. The variables con-

sidered with respect to Eqn. (A.6) are pressure ratio (φ = p/pamb) along the
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nozzle wall (ζ = x/L) as well as Mach number profiles in the expanding jet

(φ = Ma and ζ = r/R) at various axial positions x/D downstream the nozzle

outlet. The comparison study shows maximum deviations of 13 % in the case of

supersonic flow and 9 % in the subsonic case. The deviations tend to increase

for increasing axial position in the supersonic case and decrease in the subsonic

case. Based on this final comparison, the above simulation set-up is stated to

be valid when taking into account the deviations presented.

To ensure the validity of the set-up also for subsonic flows, the study from

PANCHAPAKESAN and LUMLEY [144] was selected to be simulated and com-

pared to published experimental results. In [144] the authors above used self-

similarity effects of subsonic free jets to normalize their results and provided

normalized axial and radial velocity profiles. The actual velocity is related to

jets local top-hat velocity uS (x/D) and this relation is plotted as a function of

the radius of the jet related to the absolute axial coordinate r/x at various axial

position x/D downstream the nozzle outlet.

The comparison between the simulations made with the above set-up and ex-

perimental data from [144] shows good overall agreement for axial velocity

profiles (Fig. A.4, left) and for (very slow) radial velocities (Fig. A.4, right). The

axial profile overprediction at the edge of the jet is comparable to what was

observed for the supersonic jet at particular downstream positions (Fig. A.3,
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Figure A.4.: Incompressible subsonic test case - comparison of normalized velo-

city profiles (left - axial, right - radial) at various axial positions x/D;

numerical data with experiment from [144].
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right). This effect increases further away from the core. It can be seen also

from the values in Tab. A.3, where the assessment of the subsonic case, calcu-

lated with Eqn. (A.6) and φ = u/uS and ζ= r/x , is listed in the last row.

All differences encountered here are acceptable in the context of this work. The

main goal of the study is to simulate particle tracks throughout the nozzles

until their ejection and the jet core predictions of the set-up presented are in

good agreement with the measurements. The maximum average differences

encountered are located further downstream of the nozzles and their values

are approximately +/-13 %.

Ma @ Ma @ Ma @ Ma @

case p/pamb x/D = 1 x/D = 3 x/D = 5 x/D = 10

supersonic n.a. 4 % 7 % 10 % 13 %

subsonic, compressible 12 % 9 % 6 % 5 % 3 %

u/uS @ u/uS @ u/uS @ u/uS @

x/D = 20 x/D = 30 x/D = 40 x/D = 50

subsonic, incompressible n.a. 5 % 7 % 9 % 12 %

Table A.3.: Average deviation ratios of experimental [79, 144] and numerical

results at various downstream positions x/D for air flow validation

cases; values calculated with Eqn. (A.6) in %.

A.4 Detailed results of the validation study

The following discussion represents detailed outcomes from the simulations

with 1-way and 2-way coupling particle tracking set-up. These are referred to

as 1-wc and 2-wc in the plots. Also, the 2-way coupled solution was paramet-

rized considering the contribution of the pressure gradient force, Eqn. (2.70),

referred to as Fdp in the plots. It turns out to have a strong influence upon

the resulting particle tracks. The second force contribution considered in the

right-hand side of Eqn. (2.64) is the drag force according to Eqn. (2.66), which

is referred to as Fdrag in the plots. It is considered in all cases presented here.
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Figure A.5.: Mach number profiles of the particle laden flow for the height (left)

and the width axis (right); various simulation set-ups; downstream

location x/D=3.

From Fig. A.5, which shows a representative portion of the compared datasets,

the influence of the coupling method and the composition of the particles ODE

of motion on the emerging free jet can be seen. The Mach number profiles

displayed change slightly due to particle-fluid interaction. Lower Mach number

values can be found in the core of the jet and slightly higher Mach number

values at its edges if 2-way coupling is selected. There is no significant effect

detected from the pressure gradient force.
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Figure A.6.: Influence of the coupling strategy and the pressure gradient force

upon the particle tracks at 4 bar, 1.5 mm POM particles (left) and

3.0 mm POM particles (right); comparison of trend lines from simu-

lation and experiment.
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Figure A.6 reveals the effect of the pressure gradient force on the particle accel-

eration and its influence increases with increasing particle size. The left hand

side of Fig. A.6 shows the correlated particle velocity trends from the experi-

ments presented in Section 4.1.2 (with dash-dotted upper and lower bounds)

compared to the three above simulation set-ups for the smallest 1.5 mm POM

particles and 4 bar system pressure. The right-hand side of Fig. A.6 shows

the same situation for the largest 3.0 mm POM particles. It turns out that the

particle velocity trends from the simulations with consideration of the pressure

gradient force are closer to the mean experimental outcomes then the other

results. This effect is more significant for the larger particles compared to small

particles.

All results achieved lie inside the experimental scattering boundaries. These

are plotted as dash-dotted trends in Fig. A.6 above and below the mean exper-

imental trends and thy are derived from the slowest and the fastest particles

encountered in the experiments. Further investigation of the data revealed that

the impact of the pressure gradient force increases with increasing system pres-

sure. It is therefore concluded that the pressure gradient force is not negligible

in general for the simulations related to this study.

Table A.4 contains an overview of the most important comparisons from the

particle-laden flow study. These are evaluated by means of Eqn. (A.6) with

φ =
�

�vP

�

� and ζ = x/L, discussing only particle data. The discussion of the

first column block (titled Methods @ 4 bar) reveals no significant difference

between the 1-way coupled (1-wc) and the 2-way coupled (2-wc) solutions.

But the contribution of the pressure gradient force has a significant effect upon

the predictive capabilities of the simulations (see sub-column titled 2-wc, Fdp),

almost bisecting the deviation between the numerical and the experimental

outcomes, which can clearly be seen also in Fig. A.6, right.

The results presented in the second column block of Tab. A.4 (titled BEST: 2-wc

& Fdp) show the comparison of mean numerical and experimental results. The

numerical results are achieved with the best numerical set-up tested in this work

(i.e. 2-way coupling and consideration of pressure gradient force). All mean
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deviations presented are lower than 10 % which is decided to be acceptable for

the studies presented in what follows.

The last column block of Tab. A.4 contains an evaluation of the magnitude of

the deviations of numerical values from experimental values in relation to the

experimental variance. The latter is represented by Ker r from Eqn. (4.1) and

its values are listed in Tab. A.1 and 4.1. Negative numbers in the last column

block of Tab. A.4 indicate numerical results inside the experimental scattering

bounds. There are no positive figures, which means that the mean numerical

predictions fit the experiment well with respect to its maximum scattering. This

situation is also visible from Fig. A.6 (i.e. all simulated trends lie inside the

experimental bounds).

A.5 Post-processing of dry-ice laden flows

This section describes the details of the post-processing method used to auto-

matically detect, size and track dry-ice particles in particle laden jets with up to

800 particles per frame. The ambiguity problem of automatized particle asso-

ciation for particle tracking in these dry-ice flows is solved by utilizing an idea

originally presented by HERING et al. [82], who used particle-size normalized

grey value continuity in a modified streak-overlapping technique.

The HSC data recorded with the set-up presented in Section 4.3.1 is post-

processed to derive desired physical values. All post-processing is done by

means of Matlab 2014b procedures developed, tested and validated in this

study. After classifying image noise by means of spectral analysis, the HSC

recordings (here intensity matrices I at various instants of time t) are filtered

in frequency domain utilizing an adjustable filter technique f (ω). Improved

intensity matrices I? of certain frames t result:

I?t =F
−1 �F

�

It
�

· f (ω)
	

(A.7)

This noise classification and filtering procedure is illustrated in Fig. A.7. It can

optionally be selected and parametrized in the post-processing procedure, if
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necessary. Transformation of the original record (leftmost image in Fig. A.7, red

frame) from spatial to frequency domain allows an insight into the noise pattern

(second image, shifted and centred 2D amplitude spectrum in greyscale). Noise

can be reduced by application of selective and bandpass filtering functions in

frequency domain (third image, applied filtering functions). Afterwards the

filtered image is re-transformed to spatial domain and the background noise is

(in this example) removed (rightmost image, blue frame).

Figure A.7.: Example for noise filtering procedure acc. Eqn. (A.7).

The above filtered matrix I? is used for the threshold valuing procedure. Back-

ground and particle information is distinguished by means of the clustering

method presented by OTSU [142]

σ2
I−I I = pI (t rv ) ·

�

µI (t rv )−µtot
�2+ pI I (t rv ) ·

�

µI I (t rv )−µtot
�2 (A.8)

which estimates appropriate threshold values t rv ? of bipolar intensity histo-

grams calculating the maximum variance σ2 between the histogram poles I

and I I

t rv ? = f
�

max
�

σ2
I−I I

��

....with: 1≤ t rv ? ≤ L. (A.9)

These are described by their probability density functions p , their mean values

µ and the mean value µtot of the total dataset in Eqn. (A.8). If background

and foreground data are not clearly separable in the intensity histogram (i.e.

the second pole of the intensity histogram is weak compared to the first pole),
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OTSUs method can fail to predict the correct t rv ? [170, 208]. In this case,

there is an option included in the post-processing to replace the above variance

estimator, Eqn. (A.8), by a modified estimator proposed by YANG et al. [208]

σ2
I−I I = pI (t rv ) ·

�

mI (t rv )−mtot
�2+ pI I (t rv ) ·

�

mI I (t rv )−mtot
�2 (A.10)

who utilized median values m instead of mean values of the original procedure.

If this method also fails, the frame is removed from post-processing. Successful

outcomes of this threshold valuing procedure lead to second modified matrices

I?? of certain frames t, Eqn. (A.11). These contain only particle intensity values.

All background values are set to 0.

I??t
�

x , y
�

=







0 ...if I?t < t rv ?

I?
�

x , y
�

...if I?t ≥ t rv ?
(A.11)

Furthermore, the aspect ratio

AR=
b

a

!
≥ ARM IN , ...b ≤ a (A.12)

of all identified objects in a frame I??t is taken into account to eliminate heav-

ily blurred data from post-processing. If the quotient of minimum main length

scale b to maximum main length scale a of a particle detected is smaller than

a critical value (i.e. ARM IN = 0.25), the particle is removed from sizing. This

critical value is adjusted in an a-priori experiment with disintegrated dry-ice

particles and it is maintained at a constant value for all post-processing con-

sidered.

An artificial test-image pair which was processed by the above procedure is

presented in Fig. A.8. It was used for verification of the sizing function. The

original image in the upper display of Fig. A.8 contains 60 individually shaped

particles consisting of individually distributed pixel intensities. Six different

particle sizes are placed on a noisy background. The greyscale image in the
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Figure A.8.: Example for particle detection in noisy image by means of

Eqn. (A.7) to (A.12), original artificial image (upper) and post-

processed image (lower).

lower display of Fig. A.8 results from application of the above filtering and

threshold valuing technique.

To size the particles detected in frame t, the intensity matrix I?? from

Eqn. (A.11) is treated as a binary matrix, setting all intensity values above 0

to 1. This resulting binary matrix is subscripted S and referred to as I??S in what

follows. It is used to size detected particles according Eqn. (A.13). For that

purpose, an integral over the bounding box area Abb of each particle i in the

image (for example bounding boxes of i = 1...60 particles in Fig. A.8) is solved.

This leads to a size vector αP,i. It contains particle sizes (here pixel count) of all

particles i found in any investigated frame at a certain instant of time t :

α
{t}
P,i =

∫ ∫

Abb,i

I??S,t d xd y. (A.13)

These size values are used to obtain sphere-equivalent diameters dP,i of all

particles i assuming their square areas αP,i being square areas of ideal spheres:

d{t}P,i =
�

4

π
·α{t}P,i

�
1
2

. (A.14)
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Figure A.9.: Physical values (i.e. cumulative particle size distribution) for the test

frame from Fig. A.8, original target values and post-processed result

values.

Conversion of the results from Eqn. (A.14) with corresponding spatial discretiz-

ation values from the experiment leads to physical values (i.e. particle diamet-

ers in mm).

Adopting this procedure to size all particles from the above test-image leads to

the particle size distribution displayed in Fig. A.9, where post-processed data is

compared to original data. It can be seen that the exact information content of

the image is altered by the above procedure, but the general trend of the particle

size distribution is still governed. Single pixel information is lost due to the

filtering and threshold valuing procedures applied. The remaining particles are

slightly modified because they partially consist of intensity values comparable

to background intensities.

However, a good approximation of the real result is achieved by classifying

the detected particles into appropriate size-class bins. The size of these bins is

dependent on the spatial discretization. An assessment experiment with POM

particles of various sizes (i.e. particle diameters from 0.5 mm to 3.0 mm were

considered) and shape (i.e. spherical particles and non-spherical granules were

considered) revealed a predictive accuracy of +/-6.5 % in particle diameter,

which is the maximum deviation encountered with the above procedure.
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The same procedure as described in Eqn. (A.13) for sizing leads to the formu-

lation of an energy vector εP,i according to Eqn. (A.15), which is applied for

particle tracking. It utilizes the intensity matrix I?? instead of the binary mat-

rix I??S . This leads to another vector εP,i which contains summarized intensity

values of each particle i in any frame at a certain instant of time t.

ε
{t}
P,i =

∫ ∫

Abb,i

I??t d xd y (A.15)

To obtain 2D velocity vectors of particles, a centroid matching approach

between associated particles of two consecutive frames is chosen (see for ex-

ample ADRIAN [3], BRADY et al. [23], CHEEZUM et al. [36]).

The ambiguity problem of automatized particle association in such densely

laden dry-ice flows is solved by utilizing an idea originally presented by HER-

ING et al. [82], who reported that a unique matching criterion for particle

laden flows with up to 800 particles per frame-pair can be found if the particle

size and its pixel energy (i.e. the grey value continuity) is taken into account

resulting in the modified streak-overlapping technique.

In this work, the procedure utilizes a comparable criterion eP,i which incorpor-

ates particle pixel energy εP,i from Eqn. (A.15) and its size αP,i, Eqn. (A.14):

e{t}P,i = ε
{t}
P,i ·α

{t}
P,i . (A.16)

The values eP from two consecutive time steps {t} and {t + 1} are compared in

a residual formulation

C{(t):(t+1)}
i =max









1−

�

�

�e{t}P,i − e{t+1}
P,(1:n)

�

�

�

�

�

�e{t}P,i + e{t+1}
P,(1:n)

�

�

�









!
≥ C M IN

i (A.17)

which accounts for the e-value of certain particles i from the first frame {t} and

e-values from all particles (1 : n) found in the second frame {t + 1}. Its purpose

is to find minimal differences. This leads to an ambiguity matrix C containing all
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possible particle associations and their correlation probability (1 = ideal, 0 = no

correlation). Moderately changing flow, ambient and illumination conditions

as well as particle modifications (i.e. rotation) in two consecutive frames are

considered by means of an acceptance limit (i.e. C M IN
i = 0.9). Most probable

particle pairs are then associated by means of Eqn. (A.17).

Next, physical plausibility of a possible match j is checked by means of a cri-

terion comparable to Eqn. (A.17)

C{(t):(t+1)}
ecc, j =






1−







2 ·min
h

ecc{t}P, j , ecc{t+1}
P, j

i

ecc{t}P, j + ecc{t+1}
P, j













!
≥ C M IN

ecc (A.18)

to quantify the agreement of the matched particles shape in both frames {t}

and {t + 1} by means of their elliptical eccentricity values. These are calculated

as follows

eccP, j =

�

1−
�

b

a

�2�
1
2

(A.19)

with their main axis lengths. In Eqn. (A.18), a certain predefined deviation

(i.e. C M IN
ecc = 0.75) must be allowed, since the particles investigated (i.e. dry-

ice) are non-spherical and they can change their appearance due to rotation or

disintegration between two time-steps.

An a priori investigation of representative recordings leads to the evaluation of

a second plausibility criterion which incorporates the flow angle γ and which

allows only a maximum limit for valid matches (i.e. γMAX = 5° ):

γ
{(t):(t+1)}
P, j

!
≤ γMAX (A.20)

All potential particle pairs from Eqn. (A.17) which do not match the plausibility

criteria assessed by Eqn. (A.18) and (A.20) are removed from tracking. Only

particles which match the above acceptance limits are considered.
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The 2D velocity vectors of these remaining particle pairs j can be estimated

automatically using centroid matching:

vP, j =
4x j

4t
. (A.21)

A comparison study in which automatically generated particle tracks from the

procedure presented above are compared to tracks where particle matching was

done manually (i.e. the ambiguity criterion from Eqn. (A.17) was replaced by

user defined particle-pair indication) revealed maximum deviations for auto-

matically tracked velocities of +/-5%.

An example for tracking results from the post-processing of an actual dry-ice

laden flow is presented in Fig. A.10 and its left-hand display shows two con-

secutive frames of the particle laden flow emerging nozzle #1 at 8 bar system

pressure. The frames are overlaid (frame {t + 1} under semi-transparent frame

{t}) and pixel colours indicate the corresponding intensity values. The frames

contain a total of 30 single particles, from which 6 are automatically considered

for tracking. The results from sizing and tracking are shown in Fig. A.10, right.

All associated particle pairs are highlighted with coloured circles and boxes in

both images.

F

L

O

W

Figure A.10.: Example for particle tracking in a real dry-ice laden flow, consec-

utive frames overlaid (left) and physical result (right) with particle

pairing indication.
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A.6 Pre-processing of dry-ice simulations

Particle phase modelling

In the following a procedure is described which is used to link experimental

particle data to numerical particle modelling and the numerical calibration pro-

cedure of the total number of model particles to be considered in the simula-

tions is presented.

Experimental size distributions of dry-ice particles, pex p
�

dP
�

, are modelled in

six representative particle size classes c = 1...N (here N = 6) for numerical

simulation

d{c}P =
�

125 ... 4000µm
�

...c = 1...6. (A.22)

Their probability densities can be derived directly from experimental data

p
�

d{c}P

�

=

d{c,end}
P
∫

d{c,star t}
P

pex p d
�

dP
	

(A.23)

considering the above numerical size classes as mean values of the correspond-

ing numerical bins.

A link between this classified particle size distribution p
�

d{c}P

�

and the nu-

merical particle number-rate distribution p
�

ṅc
�

has to be formulated for each

particle size class c. The numerical number-rate describes the number of real

particles represented by a single Lagrangian model particle in simulations per

unit time. It is defined as follows:

ṅc =
ṁc

mc
(A.24)

where ṁc is the mass flux of a certain particle size class and mc is the mass

of a particle from this class. Since experimental particle size distributions are
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known and can be classified with Eqn. (A.23) to numerical particle size classes,

it is assumed that the final number rate distribution of all particle classes p
�

ṅc
�

must be equal to the classified particle size distribution:

p
�

ṅc
� !
= p

�

d{c}P

�

(A.25)

Furthermore, in all simulations presented in Section 4.4.1, the number distri-

bution of numerical model particles p
�

n{c}P

�

is chosen to be uniform for all

particle size classes N considered, i.e.:

p
�

n{c}P

�

=
1

N
(A.26)

For Lagrangian particle tracking in Ansys CFX, mass- and number-rate distribu-

tions must be defined initially. Therefore particle mass distributions p
�

m{c}P

�

for all particle size classes have to be calculated from the above classified ex-

perimental particle size distribution

p
�

m{c}P

�

=
p
�

d{c}P

�

·m{c}P

N
∑

i=1

h

p
�

d{i}P

�

·m{i}P

i

, (A.27)

with i = 1...N representing all particle size classes considered in the simulation

(here N = 6).

With this formulation the above link between particle number rate distribu-

tion p
�

ṅc
�

and classified experimental particle size distribution p
�

d{c}P

�

, Eqn.

(A.25), can be calculated:

p
�

ṅc
�

=
p
�

m{c}P

�

· ṁP

p
�

n{c}P

�

· nP,tot ·m
{c}
P

(A.28)

using the known total particle mass flux ṁP and a chosen total number of model

particles nP,tot .
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Figure A.11.: Mach number profiles at x/D=1 (left) and particle tracks for selec-

ted particle size classes (right) calculated with variable number of

model particles.

The latter influences the accuracy of numerical solutions and must be para-

metrized in a-priori set-up calculations, which was done in this study with

nozzle #1 at 8 bar nozzle pressure. Typical results from these initial calcu-

lations are discussed in Fig. A.11.

The left hand graph of Fig. A.11 shows Mach number profiles along the width

axis at x/D=1 downstream nozzle #1 outlet. Significant differences can be

seen between profiles calculated with 10 and 100 model particles, while there

is only a negligible difference detectable between profiles from 1,000 and

10,000 model particles. The right-hand graph of Fig. A.11 contains repres-

entative particle tracks for two selected particle size classes calculated with the

above numbers of model particles.

The most significant difference in particle tracks, all compared to the solution

of 1,000 model particles, can be detected for results with 10 model particles.

A slight difference is still detectable for 100 model particles and almost no

difference can be seen between the predicted tracks from 1,000 and 10,000

simulated model particles.

This case is treated as representative for all nozzle simulations in this work

and the number of model particles nP,tot considered in all nozzle simulations is

selected to be 1,000.
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Temperature effects

To account for the possible heat transfer between dry-ice particles and air in the

linking tubes between the blasting machines and the nozzles, a 1D model calcu-

lation has been set-up to estimate the air inlet temperatures to the nozzles. This

calculation procedure is illustrated schematically in Fig. 4.18 in Section 4.4.1

and the details of the procedure are described below. The number of 1D seg-

ments of the tube model in the calculation procedure was parametrized a priori

to achieve a result independent from discretization (i.e. comparable to a grid

study).

Particle, fluid and geometrical information of the process is necessary for the

above estimation and the most important parameter to the results was found

to be the particle size distribution. Convection from ambience to the tube was

found to be negligible.

The following assumptions turned out to be valid for the final pre-calculations:

• heat-transfer mechanism fluid-particles: Nusselt model for ideal spheres

(see e.g. [179])

• particle breakup in tube: linear blend function between initial and final

diameter distribution (both known from experiments)

• particle velocity in tube: constant slip-factor from experiments

Further contributors to air temperature have been investigated, but were found

to be negligible upon the predicted air temperatures:

• pressure losses in tube: dissipative heating based on pressure-loss estima-

tion (see e.g. [179])

• convective losses via tube wall: Nusselt model for cylinder, free convection

(see e.g. [179])

• sublimated mass proportions of CO2

• dilute dry-ice loading (i.e. 5%)
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The particle size distribution pi
�

dP
�

in each segment i along the tube (total

number of segments s) is estimated as follows

pi
�

dP
�

=

�

pend
�

dP
�

− p0
�

dP
�

s

�

· i+ p0
�

dP
�

(A.29)

for all particle size classes introduced for numerical simulations of dry-ice

particles (see above, Eqn. (A.22) and (A.23)). The particle sizes are assumed to

be uniformly distributed (i.e. p0
�

dP
�

) at the injection position (Fig. 4.10, pos.

(3)) and to be distributed as given from experimental data (i.e. pend
�

dP
�

) at

nozzle inlet (i.e. tube outlet).
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Figure A.12.: Air temperature trends from 1D a priori estimation for various

particle size distributions (left) and for fully laden dry-ice flows

through the linking tubes of nozzle #1 and #2 (right).

The influence of various discrete particle size distributions inside the tube upon

the estimated air temperature at the nozzle inlet is shown in Fig. A.12, left. If

uniform initial distribution of particles is assumed throughout the whole tube

(i.e. pi
�

dP
�

= p0, assuming no particle breakup inside the tube), a significantly

higher air temperature is predicted at the nozzle inlet (i.e. x/L = 1) compared

to those results in which changes in the particle size distribution due to breakup

inside the tube are considered (i.e. pi
�

dP
�

=Eqn. (A.29)). In the third case

shown the final particle size distribution, which is measured at the outlet of

the nozzle with the HSC experiment, is used directly at the particle injection
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position (pi
�

dP
�

= pend , again assuming no particle breakup inside the tube).

This total neglect of the particle disintegration process inside the tube leads to

an earlier cool down of air temperature compared to both the other scenarios.

However, it results in the same nozzle inlet temperature as estimated with the

linear breakup assumption. A further parametrization of the initial particle size

distribution p0, assuming one large particle size class at the injection position

of the particles, does not affect the temperature prediction significantly (trend

comparable to the red one in Fig. A.12, not shown).

Because the particle size distributions at the inlet and at the outlet of the tube

can be measured, the linear breakup assumption is used in the final temperature

estimation. For this reason the approach shown in Fig. 4.18 in conjunction with

Eqn. (A.29) is assumed to be a good estimate for temperature predictions of

fully laden dry-ice flows in nozzles #1 and #2. Results from final estimations

for both nozzles are shown in Fig.A.12, right.

A.7 Details of the study for the new drag-coefficient

Re-engineering procedure

The re-engineering procedure of drag coefficients is done using Eqn. (2.64),

(2.66) and (2.70) in the following formulation:

cD (x) =
mP ·

∂ 2xP
∂ t2 +

∂ p
∂ x
· mP
ρP

1
2
· π

4
· d2

P ·ρ f ·
�

�vP − u
�

� ·
�

vP − u
�

(A.30)

accounting for experimental particle acceleration data and flow pressure-

and velocity-field data from steady state numerical simulations. Figure A.13

presents re-engineered drag coefficients for all POM particle sizes and both high

pressure settings investigated (i.e. 4 bar, left hand display and 6 bar, right-hand

display) and compares this data to drag coefficients calculated by means of the

Schiller-Naumann formulation (S-N-Corr) according to Eqn. (2.68).

In the convergent part of the nozzles the re-engineered drag coefficients are

significantly higher than the values predicted by the default correlation. The
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Figure A.13.: Experimental drag coefficients for model particles in transparent

validation nozzle, 4 bar (left) and 6 bar (right).

differences encountered become negligible at a relative nozzle length of x/L t

0.5. The effects discussed above dealing with high forebody and low afterbody

pressure as well as strong flow acceleration around particles are assumed to be

active especially in the convergent nozzle parts (the nozzle throat is located at

a relative nozzle length of x/L ≈ 0.12) . A mean value comparison of the drag

coefficients from Fig. A.13 reveals comparable deviations of experimental from

correlated numbers for both pressure cases investigated

1
∫

0

c{ex p}
D (x) d x

1
∫

0

c{S−N}
D (x) d x

= 1.3638|6 bar ... 1.2926|4 bar ≈ 1.33. (A.31)

Correlation coefficients for the new drag-formulation

The new drag-coefficient formulation as a function of flow Mach number is

derived and discussed in Section 4.5.2 and the correlation coefficients for this

new formulation, Eqn (4.5), and both cases presented (i.e, 4 bar and 6 bar

nozzle pressure) are summarized in Tab. A.5.
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Figure A.14.: Results from repeated numerical simulations with modified em-

pirical drag coefficient in comparison to old results and experi-

mental data inside the nozzle operating at various pressure levels;

particle size ranges from 1.5 mm POM particles (upper left display)

to 3.0 mm POM particles (lower right display).
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Case K1 K0

4 bar 1.5550 1.496

6 bar 1.5898 1.370

mean 1.5724 1.433

Table A.5.: Correlation coefficients for new empirical drag coefficient formula-

tion, Eqn (4.5).

With the modification presented above and in Section 4.5.2 all non-satisfactory

simulations were repeated, leading to new results presented, amongst others, in

Fig. A.14 (see previous page). The old predictions and experimental trends are

compared to the new predictions. The trends shown comprise all POM particles

sizes considered and those range from 1.5 mm (uppermost left-hand display)

to 3.0 mm (lowermost right-hand display) . The particle velocities are plotted

as functions of the nozzle length for 4 bar and 6 bar nozzle pressure.

A significant improvement of the predictions is achieved in all cases considered

and the deviations of the mean particle velocities predicted at the nozzle outlet

(i.e. at the relative nozzle length = 1) are minimized. However, the success of

the improvement turns out to be particle size and nozzle pressure dependent be-

cause the deviations achieved with the new correlation increase with increasing

operating pressure and particle size.
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B Appendix to Chapter 5: Particle

breakup modelling

B.1 Details of the sensitivity analysis

In order to simplify the describing set of equations for dry-ice breakup model-

ling, single contributors to the basic energy balance, Eqn. (5.1), are tested in

terms of sensitivity to the application case. A range of dimensionless variables

(energy quotients) Υ is derived for this purpose. Using these, the impact of all

possible energy contributors is related to primary particle kinetic energy. If this

proportion is is low enough (i.e. the limit is decided to be 10 %), the energetic

contribution is neglected in the simulation procedure. Vector indications are

neglected in what follows.

First, the kinetic energy is tested towards negligibility of the rotational compon-

ent with

Υkin =
Erot

Et rans
=

1
2
· θi ·ω2

i
1
2
·mi · v 2

i

=
2
5
·mi ·

d2
i
4
·ω2

i

mi · v 2
i

=
1

10
·

d2
i ·ω

2
i

v 2
i

(B.1)

and the critical case is a large secondary particle with a low translational ve-

locity component. According to the HSC results from Section 4.3, the largest

possible particle diameter is assumed to be di = 1000µm and the velocity range

taken into account is v i = 2.5 ... 20 m/s. By means of varying the rotational fre-

quency, ω, Fig. B.1, left, is created. In case of the lowest velocity considered

(i.e. 2.5 m/s), the model particle must rotate with a frequency of approximately

2, 000 s−1 to represent at least 5 % of the particles kinetic energy. For the highest

translational velocity in the example there is a frequency of 20, 000 s−1 neces-

sary to reach the critical value defined above. Rotation of secondary particles
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cannot be ruled out in general, but expecting higher translational velocities and

lower particle sizes in the application case compared to what is considered in

the model calculation from Eqn. (B.1), rotational components of energy are

decided to be negligible in what follows.
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Figure B.1.: Rotational energy contribution (left) and potential energy contri-

bution (right) related to translational kinetic energy for a range of

critical variable values.

Next, the potential energy difference is related to kinetic energy (already neg-

lecting rotation):

Υpot =
∆Epot

Ekin
=

mi ·∆zi · g
1
2
·mi · v 2

i

= 2 ·
∆zi · g

v 2
i

. (B.2)

The variable value considered in this equation is the critical height difference

∆z. Gravity is treated as a constant, g = 9.81 m
s2 , and particle velocity is para-

metrized in the same range as above. Figure B.1, right, shows the results for

Υpot for a range of height differences.

It is visible, that for very slow particles (here 2.5 m
s
) a height difference of ap-

proximately 3 cm meets the above critical value of 10 %. The faster the particles

are, the less important a potential height difference becomes. Keeping in mind

that the final particle breakup model is designed to be used in numerical sim-

ulations and the balancing procedure is only executed in a very small control

volume next to the wall, potential energy contribution to Eqn. (5.1) is decided

to be negligible in what follows.
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Conventional dry-ice pellets are assumed to be used at sublimation temperat-

ure, so there is no sensible heating to be considered. However, a theoretical

relation of thermal energy to kinetic energy

Υth =
∆Eth

Ekin
=

mi · cp ·∆Ti
1
2
·mi · v 2

i

= 2 ·
cp ·∆Ti

v 2
i

(B.3)

is shown in Fig. B.2, left. The specific heat capacity of dry-ice is assumed to be

780 J/(kg · K) following REDEKER [156]. It can be seen, that if the problem

was not assumed to be isothermal, even small temperature differences would

have a high impact upon the overall energy balance for low particle velocities.

However, hence there are only slight temperature differences expected, if any,

thermal energy contributions are deemed to be negligible in Eqn. (5.1). But

in cases where the model is used for significantly subcooled dry-ice particles,

thermal energy contributors might be considered.
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Figure B.2.: Thermal energy contribution (left) and air work energy contribu-

tion (right) related to kinetic energy for a range of critical variable

values.

The work of aerodynamic forces on particles crossing the control volume of still

air is considered

Υair =
Eair

Ekin
=

�

�

�cD ·
ρair

2
· v 2

i · Apro j ·δx i

�

�

�

1
2
·mi · v 2

i

=
3

2
·

cD ·ρair ·δx i

di ·ρP
(B.4)
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assuming the particle drag coefficient to be constant cD = 0.44, the particle

density too be ρP = 1, 560 kg/m3 and an air density of ρair = 1.169 kg/m3 at

standard ambient conditions. The flight distance between particle and wall is

parametrized in the range ofδx = 0.5 ... 2.0 cm and the particle diameters are

varied. Figure B.2, right, shows trends of Υair .

For very small particle sizes of 20µm, which is assumed to be the smallest

dispersed particle contributing to erosion in this study (details can be found

in Section 5.4.1), significant proportions of aerodynamic work energy up to

50 % can be seen, depending on the distance δx considered. In numerical

simulations, when the last cell in front of the wall is considered as the control

volume for the energy balance of the particle breakup such as shown in Fig. 5.1

(i.e. δx → 0), aerodynamic work is negligible. However, in cases where the

model should be used for rough discretized problem areas (i.e. an a priori

calculation with δx � 0) aerodynamic work contributors must be considered.

Breakup energy contribution is left in this place and it is discussed in detail in

what is presented below, as a model for internal bond energy of dry-ice must be

introduced before discussing its contribution to the overall energy balance.

Next, sublimation energy required to sublimate a certain proportion of primary

particle mass is discussed

Υsub =
Esub

Ekin
=
δmpc ·δhpc
n
∑

i=1

1
2
·mi · v 2

i

=
εsub ·mP ·δhpc

1
2
·
�

1− εsub
�

·mP · v i
2 = 2 ·

εsub ·δhpc
�

1− εsub
�

· v i
2 (B.5)

and εsub represents this proportion of mass and it is parametrized in the range

from 0.05 to 0.0005 %. The heat of fusion of dry-ice is assumed to be δhpc =

573,020 J/kg following KRIEG [103].
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Figure B.3.: Sublimation energy contribution (left) and erosion energy contribu-

tion (right) related to kinetic energy for a range of critical variable

values.

The particle velocity is variable and Fig. B.3, left, shows the outcomes. Sub-

limation energy is highly dependent on the sublimated proportion of primary

particle mass. If a particle impact at 40 m/s and only a sublimation of 0.05 %

is considered approximately 35 % of kinetic energy would be consumed for

sublimation, which is a not negligible value. Therefore sublimation energy is

determined to be not negligible in Eqn. (5.1).

Next, the energy consumed for defouling erosion is related to kinetic energy as

follows:

Υer =
Eer

Ekin
=
δm f ou · e f ou
n
∑

i=1

1
2
·mi · v 2

i

=
δm f ou ·

1
ρ f ou
· e f ou

1
2
·mP · v i

2 = 2 ·
δVf ou · e f ou

mP · v i
2 . (B.6)

Mean sized particles (i.e. dP = 250µm) are assumed to impact fouled surfaces

at various impact velocities. The fouling layer thickness is assumed to be δ f ou =

20µm (related to preliminary fouling layer investigations, details can be found

in Section 6.3) and the indentation diameter is assumed to be dI M P = 100µm.

The fouling energy is parametrized in the range from 0.001 to 0.1 J/mm3. These

values are estimated following KLEIS and KULU [102], who reported a range of

specific erosion energies for crystalline materials. It is assumed that appropriate

values for fouling layers are lower than these and this topic is addressed in

Chapter 6.
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It can be seen from Fig. B.3, right, that the energy contribution of defouling

depends on the fouling specific energy and on the particles impact velocity. In

the case of e f ou = 0.1 J/mm3 defouling consumes only a negligible proportion

of kinetic energy at particle impact velocity of 40 m/s. Increasing this fouling

energy value by one order of magnitude leads to an proportional increase of the

energy consumed, which turns out to be approximately 25 % in this example.

Hence the proportion of defouling energy is only negligible if the fouling specific

energy is low enough and it is dependent on the particle impact velocity and

size. Therefore it must be generally considered in Eqn. (5.1). Determination of

fouling specific energies considering typical foulants from aircraft defouling is

a separate topic of this work and it is addressed in Chapter 6.

The amount of breakup energy for the breakup of one single secondary particle

from an impinging primary particle can be expressed utilizing the internal bond

energy of dry-ice particles. It is theoretically derived in Section B.2 in the Ap-

pendix. Inserting this model, Eqn. (B.18) and (B.23), into Eqn. (5.8) leads to

the formulation of the breakup energy:

Ei,bu = 100 ·
kB · Tpc

r2
0 ·π2

· CA,bu · d2
i = γ

{0} · CA,bu · d2
i . (B.7)

Application of the above theory to estimate the energetic contribution of the

breakup energy to the overall energy balance, Eqn. (5.1), leads to the describing

dimensionless variable:

Υbu =
Ebu

Ekin
=

n
∑

i=1
γ{0} · A{0}i

n
∑

i=1

1
2
·mi · v 2

i

=
γ{0} · CA,bu · d

2

i

1
2
·ρP ·

π

6
· d

3

i · v
2
i

= 12 ·
γ{0} · CA,bu

π ·ρP · d i · v
2
i

(B.8)

andΥbu is discussed in Fig. B.4 with the model constants γ{0} = 0.095 J/m2 and

CA,bu = 0.242 (assuming a manufacturing pressure of pman = 100 bar for the

dry-ice). Furthermore, the above ideal dry-ice density and a primary particle

diameter of dP = 1000µm are assumed.

The mean secondary particle diameter d̄i is varied in the range from 25µm to

100µm (i.e. producing 64,000 to 1,000 secondary particles assuming a void
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Figure B.4.: Breakup energy contribution related to the translational kinetic en-

ergy for a range of critical variable values.

fraction of 0) and the particle velocity is also varied. The velocity is valid for

primary as well as for secondary particles, because the mass balance is assumed

to be unity for this calculation (i.e. the total primary particle mass is transferred

to the secondary particles).

Figure B.4 shows that the breakup energy is not negligible at low particle velo-

cities (i.e. v i = 1...10 m/s) , which is confirmed for example in [192]. However,

it turns out to be negligible for higher particle velocities (i.e. v i > 10 m/s), even

if a large number of very small secondary particles is released on impact.

A summary of the sensitivity analysis to the basic energy balance, Eqn. (5.1),

discussed above is given in Tab. B.1. The column-wise listing contains descrip-

tions of the coefficients used, equations of the coefficients, critical variables

used, maximum error estimates (i.e. based on the application case) and the

final decision whether the energy contributor is negligible or not.

Referencing the above sensitivity analysis and resulting parameter study, it is

concluded that from the original energy formulation, Eqn. (5.1), potential,

thermal and aerodynamic work contributions can be neglected in the descrip-

tion of the impact process addressed here. Dissipative energy is assumed to be

contained in the amount of breakup energy and it is therefore also neglected.

The final simplified energy balance is written as follows:

EP,kin =
n
∑

i=1

�

Ei,kin+ Ei,bu

�

+ Esub + Eer (B.9)
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Energy Coefficient Critical Max. Error Neglection

Proportion Variables Estimate

Rotational Υkin =
Erot

Et rans
= 2

5
·

r2
i ·ω

2
i

v 2
i

ri = 1000µm

ωi = 2000 s−1

v i = 2.5 m/s

6.5 % YES

Potential Υpot =
∆Epot

Ekin
= 2 · 4zi ·~g

v 2
i

4zi = 2 cm

v i = 2.5 m/s
6.3 % YES

Sens. Heat Υth =
∆Eth
Ekin
= 2 · cp ·4Ti

v 2
i

4Ti = 10−4 K

v i = 2.5 m/s
2.5 % YES

Air Work Υair =
Eair
Ekin
= 3

2
· cd ·ρair ·δxi

di ·ρP

δx i = 2 cm

di = 50µm
20.8 % ...depends

Breakup Υbu =
Ebu
Ekin
= 12 · γ

{0} ·CA,bu

π·ρP ·d i ·v 2
i

d̄i = 50µm

v̄ i = 2.5 m/s

(nP = 8000)

28.7 % NO

Lat. Heat Υsub =
Esub
Ekin
= 2 · εsub ·δhpc

(1−εsub)·vi
2

εsub = 0.0005%

v̄ i = 2.5 m/s
91.7 % NO

Erosion Υer =
Eer
Ekin
= 2 ·

δVf ou ·e f ou

mP ·vi
2

Vf ou =
π

4
·
�

100µm
�2 · 20µm

e f ou = 0.01 J/mm3

mP =
π

6
·
�

250µm
�3 ·ρP

v̄ i = 2.5 m/s

59.1 % ...depends

Table B.1.: Summary of the sensitivity analysis to the basic model assumption.
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B.2 Derivation of internal bond energy for dry-ice

To account for the particle breakup energy, a model assumption for internal

bond energy of the dry-ice particles must be derived. Basically following the

derivation by FOELL [57] and comparing it to publication from ASHBY and

JONES [13] and this from FILSER and GAUCKLER [55], it is assumed that

internal bond energy of a crystalline particle is a function of its Young’s modulus

Y and a characteristic length d?

γ{0} =
Y · d?

π2 . (B.10)

The only publication known to the author dealing with values for the Young’s

modulus of CO2 dry-ice is this from REDEKER [156]. He performed compres-

sion tests with large artificial dry-ice specimen (dP = 30 mm) and reported a

mean value of YCO2 ≈ 0.23± 0.07 GPa from a total number of 12 tests.

This study, in contrast, presents a theoretical approach to the Young’s modulus

of dry-ice. It is based on macromolecular potential theory. Generally following

the above publications [13, 55, 57], the Young’s modulus, which is defined as

derivative of stress σ with respect to strain ε, can be rewritten dependent on

the energetic potential function Ψ(r)and on the molecular radius of a molecule

at rest r0:

Y =
dσ

dε
→

dσ

dr
·

dr

dε
→

1

r0
·

d2Ψ(r)
dr2 . (B.11)

Assuming stress to be the quotient of force F to area A

σ =
F

A
≈

F (r)

r2
0

=
1

r2
0

·
dΨ(r)

dr
→

dσ

dr
=

1

r2
0

·
d2Ψ(r)

dr2 (B.12)

and strain to be the displacement of molecules from their position at rest (i.e.

from the molecular distance r0):

ε =
r − r0

r0
→

dε

dr
=

1

r0
, (B.13)
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the energetic potential function can be expressed by means of the general equa-

tion

Ψ(r) =−
A

rn +
B

rm (B.14)

taking into account that the potentials derivative at the molecules position at

rest, r0, must be zero

dΨ
dr
|r0
= 0. (B.15)

Its value Ψ
�

r0
�

at this position can be approximated by setting it equal to the

energy necessary to melt all inner bonds [57]. Application of the Boltzmann

constant kB and assuming the particle to be at phase-change temperature Tpc

leads to

Ψ
�

r0
�

=Ψ0 ≈ kB · Tpc. (B.16)

The Young’s modulus can be rewritten by means of Eqn. (B.14) to (B.16):

Y ≈
(m · n) · kB · Tpc

r3
0

. (B.17)

In [57, 216] it was shown, that the product of the model exponents from

Eqn (B.14) in Eqn. (B.17) can be approximated by (n ·m) ≈ 80 for numer-

ous crystalline materials including water-ice. The molecular ionic radius of CO2

dry-ice is assumed to be r0 ≈ 536 pm following [43].

The Young’s modulus is then calculated for dry-ice by means of Eqn. (B.17)

and the result is 1.395 GPa. A comparison of this value (based on the as-

sumption of micromolecular ionic bond behaviour following [29, 43]) with the

above experimental value of YCO2 ≈ 0.23±0.07 GPa obtained by REDKER [156]

shows satisfactory conformity. Theoretically derived values for ideal crystalline
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material were expected to be higher than these values from experimental in-

vestigations with large specimen. However, both values are of the same order

of magnitude.

A further comparison of the the above derivation has been done for the Young’s

modulus for water-ice. Values for the latter can be found for example in com-

prehensive reviews in [113] or more recently reported in [62]. The listed val-

ues are in the range from 0.3 to 11.5 GPa [113] and 4.35 to 7.78 GPa [62].

ASHBY and JONES [13] reported a value for the Young’s modulus for water-ice

of 9.1 GPa, which is comparable to the aforementioned.

The calculation of the Young’s modulus for water-ice with the above procedure

results in 3.4 GPa (with r0 ≈ 446 pm for water-ice from [43]) and this value

lies in the same range as the values reported. Based on these results, the es-

timation adapted from [29, 55, 57], Eqn. (B.17), is assumed to be valid for the

rough estimation of Young’s moduli of ice particles and it is used in this work

to determine such a value for dry-ice.

According to [55], a valid assumption for the displacement length of crystalline

molecules is a strain of 25 % (i.e. d? = 1.25 · r0) until the onset of internal

bond breakage. With this assumption, a new formulation for the internal bond

energy of dry-ice particles can be written from Eqn. (B.10) and (B.17):

γ{0} ≈
80 · kB · Tpc

r3
0

·
1.25 · r0

π2 = 100 ·
kB · Tpc

r2
0 ·π2

. (B.18)

and the application this reveals an internal bond energy estimate of approxim-

ately 0.095 J/m2.

The second unknown in Eqn. (5.8) is internal bond area, AP , and it must also

be approximated theoretically to calculate the breakup energy. This is done by

applying Hertzian geometrical contact theory, reported for example in [94], to

the above molecular ionic bond estimation. The corresponding model assump-

tion for dry-ice is shown in Fig. B.5. A primary particle (here index P, grey) and

a secondary particle (here index i, white) can be seen with yellow molecular

particles at the surface of the secondary particle.
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Figure B.5.: Assumption of internal bond area of dry-ice particles based on Hert-

zian contact theory.

It is assumed, that each of the ni surface molecules of the secondary particle is

in Hertzian contact with a molecular counterpart of the primary particle (not

shown in Fig. B.5). Hence, the contact radius a0 of one such molecular pairing

can be calculated according to [94]

a2
0 =
�

1.5 ·
�

1− ν2
�

· pman ·π · r2
0 ·

r0

Y

�
2
3
= r2

0 ·
�

1.5 ·
�

1− ν2
�

· pman ·
π

Y

�
2
3

(B.19)

applying manufacturing pressure of dry-ice particles, pman, and Poissons ratio of

dry-ice,ν , which is assumed to be 0.33 in this study (comparable to the water-

ice values reported in [113]) . The number of molecules engaged in each bond

between the primary particle P and any secondary particle i can be estimated

by balancing the available surface of the secondary particle to the projected

area of a single molecule (in this case represented by π

4
· r2

0)

ni =
4 · Γ

2
3 ·π · r2

i

π · r2
0

= 4 · (0.71)
2
3 ·

r2
i

r2
0

. (B.20)

Furthermore, a cubical void fraction for spheres Γ = 0.71 (reported for dry-ice

in [43]) is considered and it is recalculated to a 2D information. The whole con-

tact area describing the bond between any secondary particle i and the primary

particle P can be calculated with Eqn. (B.19) and (B.20):

Ai = π · a2
i = π · ni · a2

0 = π · 4 · (0.71)
2
3 ·

r2
i

r2
0

· r2
0 ·
�

1.5 ·
�

1− ν2
�

· pman ·
π

Y

�
2
3

. (B.21)
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Rearrangement of this formulation by application of the diameter of the sec-

ondary particle instead of its radius r2
i =

d2
i
4

and computation of the constant

values from Eqn. (B.21) leads to the final expression estimated for the bond

area of dry-ice secondary particles:

Ai =

�

π
5
3 ·
�

1.065 ·
�

1− ν2
�

·
pman

Y

�
2
3

�

· d2
i . (B.22)

The term in brackets is a constant which is known a-priori, and Eqn. (B.22) can

be simplified by introduction of a breakup constant (i.e. CA,bu) to

Ai = CA,bu · d2
i . (B.23)

Finally, the breakup energy for the breakup of one single secondary particle

from an impinging primary particle can be expressed by inserting Eqn. (B.18)

and Eqn. (B.23) into Eqn. (5.8):

Ei,bu = 100 ·
kB · Tpc

r2
0 ·π2

· CA,bu · d2
i = γ

{0} · CA,bu · d2
i . (B.24)

B.3 Model assumption for secondary particle velocities

In order to estimate secondary particle post-impact velocities, an elliptical en-

velope is assumed to contain these particles and the outer bounds of this ellipse

are tracked. This ellipse is described by Eqn. (5.20) which is introduced in

Section 5.3.1. The envelope is assumed to be represented by the fastest dis-

persed particles. However, the initial cloud of dust (see discussion of Fig. 5.7)

remains neglected because it disappears form the HSCs field of view directly

after impact. The temporal development of the envelope of secondary particles

is tracked with both HSC #1 and #2 in relation to the primary particle impact

point. This situation is schematically shown in Fig. B.6.
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The primary particle impact point (red X) is shown in the left-hand image from

side view (HSC #1) and an idealized distribution of secondary particles is in-

dicated by the grey ellipse. The mid-point of this ellipse (yellow dot) is shif-

ted tangentially along the target. The secondary particles envelope velocity

in normal direction is v−z . The right-hand scheme shows the same situation

from bottom view (HSC #2). Here, the ellipsoid of the secondary particles

is indicated in dark grey and the velocityv el l
x of its mid-point is related to the

primary particles impact point. Furthermore, the velocities along both ellipse

axes (here dir = x , y) are indicated: v+/−dir . With these values, maximum sec-

ondary particle velocity (neglecting the cloud of dust) can be estimated.

x

y

Figure B.6.: Schematic of secondary particles cloud tracking in side view (left)

and bottom view (right).

It was experimentally observed that secondary particles are stochastically dis-

tributed between the impact point and the envelope of the ellipse. This observa-

tion was also reported in various water ice impact studies [69, 143, 158, 200].

Based on this finding, secondary particle velocities are stochastically modelled

in the final particle breakup model by means of the elliptical formulation. It

is assumed that absolute secondary particle velocities range from zero to max-

imum envelope velocity (which is derived from experimental data) and that

the individual particle velocity vectors are stochastically distributed inside this

elliptical envelope.
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The theoretical values, all illustrated in Fig. B.6, are related to experimental

outcomes as follows:

v {mx}
x =

v+x + v−x
2

:= a (B.25)

v {mx}
y =

v+y + v−y

2
:= b (B.26)

v {mx}
z = v−z := c (B.27)

v el l
x := aELL (B.28)

where the right-hand side variables a, b, c and aELL describe final mean results

derived from the experimental recordings.

B.4 Proof of momentum conservation

The new particle breakup model applies a mass- and energy-balance to assure

conservation and this is described in Sections 5.2 and 5.4. Momentum conser-

vation is formally achieved by measured secondary particle velocities and by the

model assumption that the secondary particle vectors are fitted inside the meas-

ured envelope of the cloud of secondary particles (for details see Sections 5.3.1

and B.3).

However, momentum conservation of the model is proved in what follows and it

is demonstrated that there can be found a coefficient of restitution lower than 1

(i.e. the momentum residual) for each secondary particle velocity component if

the measured secondary velocities and the elliptical distribution procedure de-

scribed above are applied. To demonstrate this, an additional model assumption

is introduced for the breakup situation and this is shown in Fig. B.7.

350



vP

1)

2)

3)

4)

wCV

gCV

vP

vn,2
vi,2

v1,2

vP

Impacting

Particle

Artificial 

Rebound Plane (W)

Impacting Particle, 

„Pre-Disintegrated“

Original Wall 

Impact Coordinates (I)

global 

control volume

wall 

control volume

ω

ϕ

Secondary 

Particles

(here: i=1…3)

Figure B.7.: Schematic of the model assumption for the proof of momentum

conservation of the particle-breakup model.

The breakup process is theoretically split into four steps. First, the impact-

ing particle enters the wall control volume (wCV) and it is pre-disintegrated

between steps 1) and 2) into all secondary particles (in this example 3) but it

is not yet reflected from the wall. At the interface between steps 1) and 2) the

residual of the mass balance (index m)

Resm
wCV =

n
∑

i=1
mi,2

mP
= δm (B.29)

these of all momentum balances (index M,dir)

ResM{dir}
wCV,P =

n
∑

i=1
mi,2 · v

{dir}
P,I

mP · v
{dir}
P,I

= δm (B.30)

and this of the energy balance (index e)

Rese
wCV,P =

1
2
·

n
∑

i=1
mi,2 ·





vP,I







2

1
2
·mP ·





vP,I







2 = δm (B.31)
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are therefore satisfied by the mass residuum measured δm (i.e. taken from

the statistical database underpinning the model). For each of these second-

ary particles i an artificial particle-wall contact is assumed to take place at the

impact point. Furthermore it is assumed that each of these pre-disintegrated

secondary particles impinges the wall at the primary particle velocity vP,I .

In a real breakup the secondary particles interact with the wall and with each

other during the impact process. In the model, however, this interaction is

covered by the assignment of secondary particle velocity vectors which are mod-

elled based on experimental data. To prove that the model is momentum con-

servative it is shown, that for each of these pre-disintegrated secondary particles

an artificial rebound plane can be found which is created by an individual rota-

tion of the wall plane around both the tangential and the normal wall axes (here

ϕ andω) in a way that the coefficients of restitution for all velocity components

of the particles are smaller than one.

To achieve this, the particle velocity vectors are transformed from step 2) to

step 3) from the original wall coordinate system (index I , blue in Fig. B.7)

into a modified, wall-bound coordinate system (index W , green in Fig. B.7) by

means of individual rotation matrices R for the particle velocity before

vP,W = R
�

ϕ,ω
�

· vP,I (B.32)

and after impact

vi,2,W = R
�

ϕ,ω
�

· vi,2,I . (B.33)

These artificially rotated planes theoretically replace the real collision partners

of the secondary particles. The idea for this theoretical approach is based on

the publications by SOMMERFELD and HUBER [175] who used a rotated plane

to predict particle-wall interaction between small particles and rough walls. In

such situations the particles interact with the rough texture of the wall even

if the wall is globally a plane and therefore the particle velocity vectors are
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modified after the impact and this modification cannot be described by global

coefficients of restitution.

By means of the rotated planes it can be shown that the mass balance

Resm
wCV,i =

mi,2

mi,2
= 1 (B.34)

the momentum balances

ResM{dir}
wCV,i =

mi,2 · v
{dir}
i,2,W

mi,2 · v
{dir}
P,W

= ε{dir}
i,W (B.35)

and the energy balance

Rese
wCV,i =

1
2
·mi,2 ·





vi,2,W







2

1
2
·mi,2 ·





vP,W







2 =




Ei,W





 (B.36)

can be satisfied by applying the measured and elliptically fitted secondary

particle velocities vi,2,I . Thereby it is always possible to find coefficients of

restitution for all velocity components of the particles in the modified, wall-

bound coordinate system such as

ε
{dir}
i,W

!
< 1 (B.37)

and this statement was proved by numerous calculations from which two are

presented below.

In the example discussed below the first rotation angle of the artificial rebound

plane is chosen artificially and this is done as a function of the particle impact

angle αP

ϕ =
�

�90°−αP

�

�+ 15°
!
= 0 ...

π

2
. (B.38)
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The second rotation angle of the rebound plane can then be calculated consid-

ering the same boundaries

ω
!
= 0 ...

π

2
(B.39)

and under consideration of the requirement that all coefficients of restitution

must be lower than unity. The rotation matrix can be expressed explicitly with

these rotation angles

R
�

ϕ,ω
�

= Ry
�

ϕ
�

·Rz (ω) (B.40)

and it is shown in Fig. B.9 for the example of a single particle impact and re-

bound presented in Fig. B.8 that there is always a solution which allows to find

coefficients of restitution smaller than 1 for all velocity components, depending

on the artificial plane selected.

Z
-C

o
m

p
o

n
e

n
t

Parameters:

vP = 12.5 � 100 m/s

αP = 90° � 80° � 45°

nSEK = 1

Primary

Particle

Secondary

ParticleαP

vP

vi,2

Figure B.8.: Example no. 1: primary particle impingement at various impact

velocities and angles produces a single secondary particle.
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αP:

45°�90°

εX

εY

εZ

Figure B.9.: Solution of example no. 1 showing the coefficients of restitution

linking the primary and the secondary particle velocity vector as a

function of the selected artificial plane.

Based on this is demonstrated below that this principle is also applicable to

a real situation, in which a primary particle is disintegrated into 4 secondary

particles and each of these is redirected into various directions after impact

(see Fig. B.10). The results of this calculation are shown in Fig. B.11, where the

rectangular (i.e. αP = 90°) and the angular primary particle impact (i.e. αP =

45°) are considered and all residuals of the secondary particles for mass (m),

momentum (M,dir) and energy (e) are plotted. Furthermore the calculated

second rotation angle ω of the artificial rebound plane is shown whereas the

first rotation angle ϕ is pre-selected as suggested above.

All values presented are lower than 1 and it is therefore concluded that the the-

ory described above holds and that the model is mass-, momentum- and energy-

conservative even if it only applies mass- and energy-conservation equations in

its numerical formulation. Momentum conservation is achieved by measure-

ment and application of the secondary particle velocities and it is implicitly

integrated in the particle breakup model presented.
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Figure B.10.: Example no. 2: primary particle impingement at two impact

angles produces a number of secondary particles.
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Figure B.11.: Solution of example no. 2 showing numbers lower than 1 for all

residuals considered and for all secondary particles.
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C Appendix to Chapter 6: Defouling

erosion modelling

C.1 Defouling variations for angular impacts

Because angular impacts (i.e. not perpendicular to the wall’s surface) produce

non-spherical and displaced indentations, an additional formulation must be

used to consider this fact in the model. Therefore the elliptical eccentricity of

the experimental indentations is measured in the experiment

ecc{par t, f ou,α} :=

�

a2− b2

a2

�

�

1
2

�

(C.1)

Shape deviations from ideal spherical indentations and asymmetric displace-

ment of indentations from the impact point are considered by processing this

value into the geometric ellipse equation in Cartesian coordinates (described

for example in [26]):

� x

a

�2

+
� y

b

�2

= 1 (C.2)

and into the formulation of the distance between the centre and each of the

two foci of the ellipse (i.e. the focal distance)

f =
�

a2− b2
�

�

1
2

�

(C.3)

The geometrical meaning of this procedure to indentation predictions is shown

in Fig. C.1. As an example a typical indentation area from an angular impact
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Figure C.1.: Schematic showing the assumptions and terminology used to de-

scribe the non-circular defouled area.
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is fitted by means of the above variables, assuming the focal distance to be

representative for the displacement of the centre of the defouled area.

The parameters to be used in Eqn. (C.2) and (C.3) are derived as follows from

experimental data. First, the impact area is used to express the elliptic defouling

area

A{par t, f ou,α}
I M P = π · a · b. (C.4)

Rearrangement of the elliptical eccentricity formulation, Eqn. (C.1),

ecc{par t, f ou,α} =
�

1−
�

b

a

�2�
�

1
2

�

(C.5)

in conjunction with the above defouling area description leads to two addi-

tional equations and these can be used to determine the two additional ellipse

variables

a =
b

�

1−
h

ecc{par t, f ou,α}
i2�

�

1
2

� (C.6)

and

b =
A{par t, f ou,α}

I M P

π · a
. (C.7)
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C.2 Details of the review of the restitution concept

The results of a study utilizing POM particles and an artificial coating are

presented and these show that the coefficients of restitution are a function of

Stokes number and that the diameter of the defouling produced is a function

of the particle diameter and of the impact velocity. Spherical and non-spherical

particles made from POM reference material of various sizes (i.e. diameters

from 1.5 mm to 3.8 mm) and shape (i.e. spherical particles and granules) are

used to determine experimental restitution and defouling data. These trends

are examined regarding their comparability and the outcomes of this study are

shown in Fig. C.2.
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Figure C.2.: Restitution data (left) and defouling data (right) for variously sized

and shaped POM particles.

The left-hand display shows comparable coefficients of restitution measured

for impacts of particles with various sizes (1.5 to 3.0 mm) and shape (3.8 mm

particles are irregularly shaped granules) and this coefficient is expressed as

a function of the Stokes number. Even the irregularly shaped particles show

restitution data comparable to spherical particles, as long as their rotational

speed remains low after impact compared to translational velocity components.

The coefficient of restitution could not be accurately determined for particles

having high post-impact angular velocity; such particles are not shown in the

graph (Fig. C.2, left). Furthermore, the graph contains the whole dataset from

the basic experiment with 1.5 mm POM particles.
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The above comparability is also valid for indentations caused by these particles

upon PTFE coated targets and this is shown in Fig. C.2, right. The correspond-

ing defouling indentation diameter can be described by a logarithmic correla-

tion as a function of particle impact velocity. It must be related to the impacting

particles diameter to account for various indentation sizes generated by various

primary particle sizes. The correlation presented has a coefficient of determ-

ination of R2 ≈ 0.9 and the results are found to be independent from particle

shape and size.

It must be noted that the author previously postulated [VII] the correlation of

indentation diameters as a function of Stokes number. However, this proced-

ure fails when various particle sizes of the same material are considered. The

indentation size turned out to be linearly dependent on particle size but not

logarithmic.

C.3 Detailed experimental defouling data

In this section all experimental results considered for the determination of the

defouling functions are presented.

The results for both original fouling materials defouled with reference material

particles at normal impact angles are shown in Fig. C.3 (i.e. ORIG1 defouled

with POM, left-hand display, and ORIG2 defouled with stainless-steel, right-

hand display). The impact velocity of the stainless-steel particles is recalculated

to equivalent dry-ice velocity values by means of Eqn. (6.4).

Figure C.4 shows the defouling data for both original fouling materials defouled

with dry-ice particles at normal impact angles (left-hand displays) and at angu-

lar impacts (right-hand displays). Both upper displays in Fig. C.4 contain data

from ORIG1 defouling tests and these lower displays contain data from ORIG2

defouling.

It must be noted that there was almost no defouling detectable for angular dry-

ice impacts upon ORIG1 fouling (Fig. C.4, upper right display). The logarithmic

correlation of this dataset is formally not valid but it is decided to accept this
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uncertainty here to be able to provide a comparable description for all materials

considered.

Figure C.5 shows the experimental data and the corresponding logarithmic cor-

relations for PTFE fouling defouled with POM particles (upper displays) and

with dry-ice particles (lower displays) at normal impact angle (left displays)

and at angular impacts (right displays). The scattering increases if dry-ice

is used instead of POM and this effect is discussed in detail in Section 6.3.2.

Figure C.6 shows comparable experimental data and the corresponding logar-

ithmic correlations for SALT fouling defouled with the same parameters as the

PTFE above.

Some representative figures are given and the trends for the whole range of

materials and parameters investigated are discussed in detail in Section C.3.
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Figure C.3.: ORIG1 defouling with POM particles (left) and ORIG2 defouling

with stainless-steel particles (right), both at normal impact angles

(i.e. 0°).
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Figure C.4.: Original fouling - normal impact defouling (0°, left displays) and an-

gular impact defouling (60°, right displays) with dry-ice particles

upon ORIG1 fouling (upper displays) and upon ORIG2 fouling

(lower displays).
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Figure C.5.: PFTE fouling - normal impact defouling (0°, left displays) and angu-

lar impact defouling (60°, right displays) with POM particles (upper

displays) and with dry-ice particles (lower displays).
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Figure C.6.: SALT fouling - normal impact defouling (0°, left displays) and angu-

lar impact defouling (60°, right displays) with POM particles (upper

displays) and with dry-ice particles (lower displays).
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D Appendix to Chapter 7:

Validation case study

D.1 Details of the numerical set-up

Details of the numerical set-up used for the wind-tunnel simulations are given

below. The spatial discretization of the relevant numerical volume is made

by means of scalable block-meshing technique with respect to sufficient resol-

ution of the boundary layers (a priori estimated first cell: y+ ≤ 1, at least

30 cells inside of the boundary layer). The Ansys MESHER tool, version 17.2

was utilized and meshing details are presented in Fig. D.1. A preliminary grid-

study led to a total problem description consisting of approximately 6,000,000

grid-points. The mesh was refined block-wise and the mostly refined meshing

zone is located around the target plate. The O-gird around the plate and the

rectangular mesh in the channel are linked with an unstructured buffer-layer

meshing, which allows to parametrize the target angle easily without complete

re-meshing of the area of interest.

The boundary conditions selected are mass-flux and total temperature at the

inlet as well as static pressure and open boundaries at the outlet. The selection

of the outlet boundary condition is depending on the target plate angle and this

is discussed in more detail in Section 7.2. Furthermore, the particle velocity

vector (adapted from experimental measurement) and a predefined injection

position (measured in the experiment) are selected as inlet conditions for the

dispersed phase. In the case of dry-ice the experimentally derived particle size

distribution is applied to the particles.

Ambient pressure and temperature are: pamb = 101,300 Pa and Tamb =

20.00◦C for all cases simulated with particles (according to experimental con-

ditions to which the simulations are referred). The most important grid and
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Inlet:
mass flux

Outlet:
static pres.
pres. opening

buffer-layer
meshing

periodicity

particle
injection

target plate
(here @ 60°)

boundary
layers

Figure D.1.: Details of a representative stream channel meshing for the wind-

tunnel experiment.

set-up information is summarized in Tab. D.1 and Tab. D.2 contains the most

important parameters of the cases considered, the corresponding boundary con-

ditions for the simulations and the reference values selected for the discussion

of pressure and velocity profiles in Section 7.2 and in Sections D.2 and D.3 in

the Appendix below.

GRID Scalable Grid Critical elem. No. of layers in Total no. Boundary layer

study size h/D? boundary layer of grid points first cell y+

yes yes 0.04 44 6,000,000 1

SET-UP State Turbulence Pseudo Advection Turbulence Energy

Timestepping Schemes Numerics equation

step1 steady k−ω− SST physical, adaptive 1st order 1st order isothermal

step2 steady k−ω− SST physical, 1e-4 s Upwind High-Res total energy

Table D.1.: Most important grid and set-up information of the wind-tunnel val-

idation case simulations.
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D.2 Details of the symmetry assumption study

It is assumed that the behaviour of the validation experiment can be predicted

numerically by considering a mid-plane cut through the rectangular part of the

experimental set-up assuming periodical symmetry at its sides. This assumption

is based on preliminary observations of POM and dry-ice particle tracks. These

particles are injected at the mid-channel and they impact the target in all cases

considered in the central 33 % of the channel.

In order to show that side wall effects do not significantly influence the mid-

plane flow, flow parameters were measured at a grid of locations across three

vertical and four horizontal positions across the section at the inlet and out-

let. Typical results showing the most significant deviations of the pressure and

velocity field measured in the mid plane (i.e. 0 % depth) compared to near

side-wall results (i.e. 90 % depth) are shown in Fig. D.2 to D.3 for the cases #1

and #4 and the inlet and outlet planes of the channel.

The most significant deviations are encountered at the outlet-plane (i.e. behind

the target plate) and there are almost negligible differences found for compar-

able measurements at the inlet planes (shown in the upper displays of Fig. D.2

and D.3). Influences of the side walls are clearly visible in the measurements

of static pressure nearest to the wall (i.e. 90 % channel depth) in all cases and

these influences are also visible in the corresponding velocity data. The dif-

ferences are more significant for low velocity flows with smaller target angles,

such as shown in Fig. D.2, compared to higher velocity flows with steeper target

angles, such as shown in Fig. D.3, and this can be attributed to denser stream-

line formation and the related changes in the pressure and velocity field near

the upper wall of the stream channel.

However, the deviations decrease and become negligible for almost all meas-

uerements further away from the wall and based on these results and the above

particle tracking observations it was decided to simulate the central 33 % of the

channel depth (i.e. a depth of 41 mm) with free-slip conditions at the sides.
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Figure D.2.: Case#1: air flow pressure (left) and velocity measurements (right)

at the INLET plane (upper displays) and at the OUTLET plane (lower

displays) at three vertical and four depth positions (i.e. depth in %,

0 % = mid channel, 90 % = nearest to the side wall).
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Figure D.3.: Case#4: air flow pressure (left) and velocity measurements (right)

at the INLET plane (upper displays) and at the OUTLET plane (lower

displays) at three vertical and four depth positions (i.e. depth in %,

0 % = mid channel, 90 % = nearest to the side wall).
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D.3 Details of the air-flow validation study

A detailed comparison of the pressure and velocity profiles at the inlet and at

the outlet measurement planes of the channel are shown in Fig. D.4 to D.5 for

the cases #1 and #4. The predicted pressure and velocity trends are generally

comparable to the experimental data.

The strong deviations of the predicted pressure profiles at the outlet for the low

target angle cases (i.e. cases #1 and #2; case #1 is shown in Fig. D.4, lower

left display) are accepted in order to achieve numerical stability of the solution

by applying an opened boundary instead of static pressure at this position (for

details see Section D.1). Due to very low absolute pressure values of the order

of 100 Pa and the afterbody position of these deviations this local pressure

field is assumed to be less influencing upon the particle tracks compared to the

predicted air flow velocity profiles in these cases which match the experimental

data well. Therefore those deviations are assumed to be acceptable in favour of

a numerically stable solution.

In contrast to the low air velocity cases, the high air velocity cases numeric-

ally converged satisfactorily applying mass-flux inlet and static pressure outlet

boundary conditions. In all cases the most significant differences between the

numerical and the experimental data are found at the outlet planes and much

lower deviations are found at the inlet planes (compare upper displays to lower

displays in both figures).

The mean deviations between numerical and experimental data are summar-

ized in Tab. D.3. The listing reveals that the velocity profiles are predicted with

mean deviations in the range from 1 % to 16 %. Those deviations of the pres-

sure profiles range from 3 % to 17 % but it must be noted that the deviations of

the pressure profiles with low target angles are significantly higher. However,

this situation was decided to be acceptable for the purpose of the simulations

and this decision is discussed above.
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Figure D.4.: Case#1: air flow pressure (left) and velocity (right) profiles at the

INLET plane (upper displays) and at the OUTLET plane (lower dis-

plays) - comparison of numerical to experimental data.
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Figure D.5.: Case#4: air flow pressure (left) and velocity (right) profiles at the

INLET plane (upper displays) and at the OUTLET plane (lower dis-

plays) - comparison of numerical to experimental data.
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D.4 Details of the particle breakup model set-up

This section describes the a-priori settings of various parameters of the particle

breakup model implementation in Ansys CFX. These settings are necessary

because there is a number of additional parameters applied in the CFX im-

plementation of the breakup model and these are not originally contained in

the model. However, these parameters are useful to avoid possible computa-

tional or memory exceptions caused by numerous breakup scenarios and huge

amounts of secondary particles in large scale simulations. These parameters

can be used for set-up and model calibration studies and they increase numer-

ical robustness but decrease the degree of predictive capabilities of the model.

The most important additional parameters are:

• the total number of secondary particles nSEK ,

• the number-rate of secondary classes ṅi,

• the maximum number of breakups nGEN ,

• the minimum breakup diameter dBU ,min and

• various random flags Cξ.

The total number of secondary particles describes how many model particles are

numerically generated by a primary particle impact. These secondary particles

are distributed into the secondary size classes (i.e. residual, debris, dust dis-

persed and dust continuous) resulting in the secondary particle number rates.

By means of the maximum number of breakups it is possible to set a maximum

limit of breakup processes in which a particle (either the primary particles or the

secondary particles resulting from one particular primary particle) can particip-

ate. The minimum breakup diameter can be applied to clip the lowest size of

particles considered for breakup and this is additional to the breakup boundary

function presented in Section 5.3.3.
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Finally it is possible to apply experimental randomness of secondary particle

values by selecting the random flags for all data underpinned experimentally

(i.e. number, diameters and velocity components of secondary particles).

To assess the above simplifications of a numerical set-up, the degree of abstrac-

tion is introduced

Λφ = 1−
min

�

φC FX , φEX P
�

max
�

φC FX , φEX P
� (D.1)

and it can be applied to each of the above variables (here φ). It relates model

values (index: C FX ) to real values (index: EX P) which are derived from the

basic experiments. This assessment criterion is used in the model parameter

overview given in Tab. D.4 and orders of magnitude are compared when dealing

with the numbers of particles.

These settings represent a possible choice for later engine defouling simulations

and therefore these are used for the validation case presented here. The max-

imum degree of abstraction takes place in the numbers of particles considered

in the small particle size classes.

Model Parameter Setting Reality Degree of Abstraction

φ Λφ · 100%

nSEK O
�

101
�

O
�

103
�

99%

ṅRES O
�

100
�

O
�

101
�

90%

ṅDEB O
�

101
�

O
�

102
�

90%

ṅDUST O
�

101
�

O
�

103
�

99%

ṅCON T O
�

100
�

O
�

104� 99%

nGEN 3 3 0%

dBU ,min 80µm 20µm 75%

Cξ 1 1 0%

Table D.4.: Overview of model parameters and their impact upon the modelled

degree of abstraction.
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E Appendix to Chapter 8:

Application case study

E.1 Details of the measurements in the test engine

A more detailed description of the probe positioning and of the measurement

concept of the test engine is presented below.

The Prandtl probes (see Fig. 8.1) are positioned within the vane rows. For these

experiments one vane is removed and the probe is installed in its place. This

situation is shown in Fig. E.1. The total pressure holes are placed approximately

at the axial position of the leading edges of the corresponding vanes and their

radial position can be varied to measure flow profiles along the span of the

blading. In the case of counter-current flows it is possible to turn the probes

around the axis of the stator row and if the probes are turned by 180° their

front bores are at the axial positions of the trailing edges of the corresponding

vanes.

The data from the probes is recorded by a „Can-Bus“ system with a sample rate

of 10 Hz and physical results are generated by means of a specially developed

Figure E.1.: Typical position of Prandtl probe within stator row, degrees of free-

dom are indicated.
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Temp. Max. Pressure Max.

Position range deviation range deviation

AMB -40 ... +400 °C 0.05 % 0 ... 105,000 Pa 0.09 %

BLMH as above as above 0 ... 250 Pa 9.5 %

BYPS as above as above as above as above

LPC-IGV to HPC-3 -40 ... +400 °C 0.05 % 0 ... 250 Pa 2.9 %

HPC-5 to HPC-14 as above as above 0 ... 10,000 Pa 4.0 %

Table E.1.: Overview of measurement technique applied.

analysis code. Both shafts of the engine are equipped with separate revolution

counters. Sensor details are given in Tab. E.1 below. The instrumentation of

the engine was done by MUCKENHAUPT [IX]; details of the analysis code, cal-

ibration procedures, measurement strategy and an error chain analysis can be

found in his thesis.

E.2 Details of the numerical set-up

Details of the numerical set-up used for the aircraft engine simulations are given

below. The spatial discretization of the relevant numerical volumes are made

by means of scalable block-meshing technique with respect to a fine resolution

of the boundary layers (here no a priori estimation of the first cell height was

made). The Ansys ICEM tool, version 16.2 was utilized and meshing details

are presented in Fig. E.2 (note: only a proportion of the mesh is displayed to

assure that the features are visible). In order to be able to efficiently simulate

the particle laden defouling process it has been decided to use 100,000 grid-

points per airfoil passage. Note that the meshing of the engine was carried out

by Lufthansa Technik.

The boundary conditions used are total pressure and temperature at the inlet as

well as open boundaries with static pressure and total temperature constraints

at the outlet. A preliminary numerical study has been carried out to select

the outlet boundary conditions. The boundary conditions of the particle phase
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Figure E.2.: Details of a number of representative airfoil control volumes mesh-

ing for the defouling simulations (note: meshing was carried out by

Lufthansa Technik).

are described in detail in Section 8.3. The most important grid and set-up

information of the flow field simulations is summarized in Tab. E.2.

GRID Scalable Grid Mean elem. No. of points Total no. of Boundary layer

study size [um] per passage grid points y+ size

yes no 1,000 100,000 3,700,000 n.a.

SET-UP State Turbulence Pseudo Advection Turbulence Expert

Timestepping Schemes Numerics parameters

step1 steady k−ω− SST physical, adaptive Upwind 1st order no

step2 steady k−ω− SST physical, 1e-5 s High-Res High-Res no

Table E.2.: Most important grid and set-up information of the engine simula-

tions.
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E.3 Details of the particle breakup model set-up

The most important model parameters of the new particle breakup model in An-

sys CFX are calibrated for the engine defouling simulations (details about the

calibration can be found in Section D.4) and this is done using a range of prelim-

inary numerical convergence studies. The values determined by these studies

are the cleaning pattern, the particle size distributions and the particle velocity

distributions at various significant positions of the engine. The parameters used

in the final defouling simulations are summarized in Tab. E.3.

Model Parameter Setting Setting Simulated Real

φ LPC HPC Magnitude Magnitude

nSEK 19 19 O
�

101
�

O
�

103
�

ṅRES 3 3 O
�

100
�

O
�

101
�

ṅDEB 6 6 O
�

100
�

O
�

102
�

ṅDUST 9 9 O
�

101
�

O
�

103
�

ṅCON T 1 1 O
�

100
�

O
�

104�

nGEN 12 28 n.a. n.a.

dBU ,min 1500µm 105µm n.a. n.a.

Cξ 1 1 n.a. n.a.

Table E.3.: Overview of model parameter settings and their impact upon the

modelled degree of abstraction.
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