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Abstract

Knowledge of human perception of emotional speech is imperative for the development of

emotion in speech recognition systems and emotional speech synthesis. Owing to the fact that

there is a growing trend towards research on spontaneous, real-life data, the aim of the present

thesis is to examine human perception of emotion in naturalistic speech. Although there are

many available emotional speech corpora, most contain simulated expressions. Therefore, there

remains a compelling need to obtain naturalistic speech corpora that are appropriate and freely

available for research. In that regard, our initial aim was to acquire suitable naturalistic ma-

terial and examine its emotional content based on listener perceptions. A web-based listening

tool was developed to accumulate ratings based on large-scale listening groups. The emotional

content present in the speech material was demonstrated by performing perception tests on con-

veyed levels of Activation and Evaluation. As a result, labels were determined that signified

the emotional content, and thus contribute to the construction of a naturalistic emotional speech

corpus.

In line with the literature, the ratings obtained from the perception tests suggested that Evalu-

ation (or hedonic valence) is not identified as reliably as Activation is. Emotional valence can

be conveyed through both semantic and prosodic information, for which the meaning of one

may serve to facilitate, modify, or conflict with the meaning of the other—particularly with

naturalistic speech. The subsequent experiments aimed to investigate this concept by compar-

ing ratings from perception tests of non-verbal speech with verbal speech. The method used
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to render non-verbal speech was low-pass filtering, and for this, suitable filtering conditions

were determined by carrying out preliminary perception tests. The results suggested that non-

verbal naturalistic speech provides sufficiently discernible levels of Activation and Evaluation.

It appears that the perception of Activation and Evaluation is affected by low-pass filtering,

but that the effect is relatively small. Moreover, the results suggest that there is a similar trend

in agreement levels between verbal and non-verbal speech. To date it still remains difficult

to determine unique acoustical patterns for hedonic valence of emotion, which may be due to

inadequate labels or the incorrect selection of acoustic parameters. This study has implications

for the labelling of emotional speech data and the determination of salient acoustic correlates

of emotion.
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1
Introduction

1.1 Motivation of Thesis

Human communication through speech conveys verbal and nonverbal information to express

intentions, ideas, and emotions. Non-verbal communication through tone of the voice is an

important contributing component in emotion expression, which has a significant impact on

interpersonal interaction and social influence [18]. As technology becomes increasingly in-

volved in our everyday life, there is a growing interest to achieve human-like communication

between people and computers. To achieve more sophisticated interactive systems, much re-

search is being conducting in the domain of emotion recognition in speech. Such research has

important implications for the growing development of speech and language research and tech-
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nology [19]. Knowledge on how emotion is conveyed in speech is essential for the development

and improvement of applications such as intelligible speech recognition systems [20], realistic

speech synthesis [21], emotion identification and demonstration in robotics [22], expressive

speech animations [23], and interactive applications such as call centres [24].

Despite speech and emotion being intrinsically effortless forms of human communication, they

are theoretically and technically complex. It is evident from the ongoing research that both

independent and combined domains can be broadly interpreted. Needless to say, it is a fas-

cinating and much discussed topic with many aspects that remain to be investigated. There

are a multitude of challenges regarding emotional speech research. For instance, one needs to

consider how to conceptualise and operationalise emotion [25, 7, 26]. Indeed, this is poten-

tially the biggest challenge, though it may not appear to be as emotion expression is present

in everyday life. However, emotion is not easily defined by simply using linguistic descrip-

tors, rather, it is experienced, expressed, and perceived in a subjective, multimodal, and often

ambiguous manner. Many theories exist to explain emotion [27], but no consensual definition

or unified approach is currently available. In addition, speech is an acoustically rich and com-

plicated signal. It comprises several communicative functions: linguistic, paralinguistic, and

extra-linguistic. These constituent functions are an integral part of speech, each characterised

by specific acoustical patterns. However, both general speech acoustics—speaking style and

voice characteristics such as gender and age—and affect expressions vary significantly for each

individual speaker. This, in and of itself, is a big challenge for speech-related research.

Nevertheless, research has produced many important findings to indicate that emotion can be

reliably detected from speech, and uniquely distinguished by acoustical patterns. In more recent

times, however, it has become evident that the findings from portrayed speech do not adequately

reflect those of natural spontaneous speech—yet, it is not fully understood to what extent such

portrayals differ from natural spontaneous speech. In comparison, there is little data on natural

emotional expressions available, and at the moment there is a compelling need for further

studies using natural vocal expression [28, 29].
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1.2 Aims of the Thesis

Many emotion recognition systems emulate the processes of human inferences. To recognise

emotion automatically from paralinguistic information, one requires a comprehensive under-

standing as to the nature of the inference process of emotion from vocal acoustics—irrespective

of the intertwining semantic content. Numerous acoustic features indicate emotion in speech,

but the extent to which each influences perception of emotion in natural, spontaneous, mood

induced speech remains unknown. Arguably, by removing, masking, or manipulating ver-

bal/vocal cues in expressive speech, a listener’s perception of expressed emotions should be

constricted or misrepresented, therefore, allowing us to quantify its effects. This thesis ad-

dresses these issues and attempts to contribute to research in this field by answering the follow-

ing research questions:

RQ1: What are the practical prerequisites for carrying out large-scale listening tests?

RQ2: Can listeners adequately capture variation of Activation and Evaluation of emotion

in naturalistic speech?

RQ3: Can mood induction procedures provide naturalistic speech with sufficiently dis-

cernible levels of emotion?

RQ4: Does nonverbal naturalistic speech convey Activity and Evaluation levels that are

recognisable to listeners?

RQ5: How do ratings from two perceptually different conditions (verbal and nonverbal

speech) compare?

The objective of these research questions is two-fold, though interconnected. First, research

questions one and two (RQ1 and RQ2) attempt to determine the suitability of a web-based

rating tool using the dimensional descriptive scheme. Research question three (RQ3) inves-

tigates the efficacy of Mood Inducing Procedures to provide speech characterised by natural

spontaneous emotion. Second, research questions four and five (RQ5 & RQ6) investigate the

3



CHAPTER 1. INTRODUCTION

effectiveness of cue modification techniques to explore the resulting effects on human emo-

tion inferences. That is, these techniques allow us to investigate if listeners can reliably judge

expressed emotion in nonverbal aspects of speech.

1.3 Thesis Structure

The work contributing to this thesis is structured as follows:

Chapter 2 - Theoretical Foundations. This chapter deals with the task of conceptualis-

ing emotion. It covers several influential theories and research traditions prevalent in the

literature. The theories of emotion are grouped into four main perspectives, each making

different assumptions about the fundamental nature of emotion. These include the evolu-

tionary, the psychophysiological, the cognitive, and the social constructivism traditions.

A general conception of emotion comprising several components is suggested.

Chapter 3 - Emotional Labelling. This chapter is concerned with emotional speech la-

belling, and reviews the literature relating to assessing and representing emotion. Differ-

ent methods employed to assess emotion that focus on subjective feelings, physiological

changes, behaviours, or cognitions are outlined first. This is followed by a discussion on

the issues related to the classification of emotion. The most widely used representations

are reviewed, which include discrete and dimensional models. Moreover, a review of

recent studies is discussed in relation to descriptive frameworks used for natural sponta-

neous speech.

Chapter 4 - Emotion and Speech. This chapter outlines the integrated domains of emo-

tion and speech. The topic is described in terms of the Brunswikian lens model, which

illustrates the various stages of the communication process between emitting and regis-

tering signs of emotion. Accordingly, different research disciplines of the vocal commu-

nication process of emotion are reviewed. Moreover, the integration and evaluation of

prosodic and semantic cues in emotional speech is discussed. Following this, a review is

provided of the issues concerning the different types of speech materials.
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Chapter 5 - Acoustic Correlates of Emotion in Speech. This chapter examines certain

acoustic parameters that have been correlated with the expression of emotion in speech.

The source-filter model is described, following a general discussion on prosody, pitch,

time, intensity, voice quality and spectral-related features.

Chapter 6 - Development of an Online Rating Tool. This chapter details the develop-

ment of a web-based rating tool to gather ratings from large-scale listening tests, with the

design placing particular emphasis on participant accessibility. This chapter also details

amendments made to the tool in order to be suitable for experimental work.

Chapter 7 - Case Study: Labelling Mood Induced Speech. This chapter details the

first perception test carried out to obtain ratings for labelling emotion in a naturalistic

speech dataset. The ratings suggest that mood induction procedures can provide sufficient

levels of emotion in naturalistic speech. The ratings provided labels to complete the build

of a naturalistic emotional speech corpus.

Chapter 8 - Judging Emotion from Low-pass Filtered Naturalistic Speech. This

chapter covers the experiments that investigate listener inferences based on intact and

non-verbal cues in two conceptually different speech stimuli. This chapter examines a

smaller derived speech dataset based on high agreement levels obtained from ratings in

the case study of Chapter 7. A survey was carried out on different filtered stimuli to

establish a suitable condition to administer. The results show that low-pass filtering has

a relatively small impact on the perception of Activation and Evaluation.

Chapter 9 - Conclusion. This chapter concludes the research and summarises the con-

tributions made in this thesis. The rationale for each aspect of the research are explained

in respect to the research questions asked throughout. Finally, future work is considered

to compliment the research undertaken in this thesis.
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2
Theoretical Foundations

An essential requirement in undertaking the research in this thesis is the task of labelling col-

lected speech data for affective states. There are many challenges with regard to labelling of

emotional content, both technical and theoretical. On the face of it, emotion may seem easy

to define because everyone encounters it in everyday life. However, the nature of it is a topic

of on-going debate of which there is a large body of literature spanning many disciplines (e.g.

philosophy, psychology, sociology, cognitive science) and a confirmed definition is difficult to

obtain. In fact, contemporary researchers [30, 25, 31, 32] explain that there is no consensu-

ally established methodology for describing emotion or labelling data that signify it. One must

carefully plan an approach to labelling emotion in data, and to do so a comprehensive under-

standing of emotion—or more specifically an awareness of the available theories—is necessary.

A researcher investigating the nature of emotion is confronted with a variety of definitions and
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theories, and many viewpoints can be considered. It is not essential to be familiar with all

theories and definitions relating to emotion. Nevertheless, theories steer the orientation of a

specific piece of research as they allow us to make informed decisions about practical implica-

tions. This chapter briefly covers some of the different theories available from which labelling

methods have emerged.

Theories of emotion can be categorised in terms of the underlying nature within which they are

claimed to be best understood. The four perspectives are: the Darwinian, Jamesian, cognitive

and social constructivist [27]. Because each perspective makes different assumptions about

the fundamental nature of emotion, there are various approaches to defining and examining it.

This can make it difficult for findings to be integrated. Although the perspectives do at times

reconcile, at other times, they are contradictory. It is, therefore, important to be aware of the

various perspectives in which a study may belong.

2.1 The Darwinian Perspective

The Darwinian perspective is concerned with evolutionary psychology, which claims that the

best way to understand emotion is to view it in terms of psychological responses for survival.

In 1872, Charles Darwin wrote in his book, “The Expression of Emotion in Man and Animal”

[33], that emotion expressions are vestigial reaction patterns shaped through evolution to assist

a basic survival function, i.e. adaptations shaped by natural selection [34]. This theory not

only suggests that all humans share certain basic or fundamental aspects of emotion, but also

that certain aspects are shared with other related species [35, 36, 34, 37]. The implication of

this theory has prompted animal research and has gained substantial experimental evidence for

the link between human and animal neurophysiology of emotion. Panksepp mentions that to

the best of their knowledge, “basic affective feelings supervene on homologous brain systems

shared by all mammals” [38]. The notion that certain emotions are innate, as psychological

and biological, amongst all humans, suggests that the same emotions should be expressed, to

some degree, instinctively across different cultures. To investigate this, a cross-cultural study
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by Ekman [39] provided some support for this theory. His work focused on the universality of

facial expressions for a small set of basic emotions [40]. The most widely accepted of these

basic emotions are happiness, sadness, anger, fear, surprise and disgust—often referred to as

the “Big Six” [41] (discussed further in Chapter 3.3.1).

If there are a certain number of basic (or primary) emotions evident in facial expressions, one

would expect to see similar evolutionary indications in other modalities of emotion, such as

vocal expressions. As it happens, Darwin [33] provided the first thorough discussion of vo-

cal emotion expression [42] and suggested the correspondence of vocal expression with the

speaker’s emotional state. A study by Scherer et al. [43] suggested that there are similar infer-

ences of emotion from vocal cues across nine different countries—from content-free speech.

However, accurate detection decreased as the participants’ language became more dissimilar

from the presented language, i.e. German. As acknowledged in their study, intercultural stud-

ies may be susceptible to criticism due to contemporary mass media, such as Hollywood films

and the associated familiarity of particular types of expressions. They argued, however, that

vocal expressions by German actors are unlikely to be influenced by Hollywood films because

most foreign films are usually dubbed in German. To deal with common exposure as a poten-

tial artefact, Bryant et al. [35] conducted a study examining the perception of vocal emotional

expression in a South American indigenous population with relatively little exposure to com-

mon sources of emotion stimuli. The study demonstrated that two relatively different cultures

could reliably identify basic affective categories—happiness, anger, fear, and sadness—from

emotional vocalisations, and thus attribute universal recognition to global acoustic properties

such as speech prosody.

2.2 The Jamesian Perspective

Philosophers have questioned the nature of emotion as far back as Socrates and even “pre-

Socratics”. According to Solomon [44], Aristotle also discussed certain emotions at length,

notably the emotion of anger. His examination of anger and his philosophical reflection on

8
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reason centred on the cognitive aspect of emotion, yet acknowledged some sort of accompany-

ing bodily distress. Similarly, René Descartes [45] acknowledged bodily attributes, implying

that emotion requires the interaction of the body and mind. He termed the bodily sensations

associated with emotion as “animal spirits”, which refer to agitation when the mind and body

meet at a small gland at the base of the brain (the pineal gland). Other subsequent philoso-

phers, such as David Hume [46], have also interpreted emotions as a certain kind of physical

sensation—which he called an “impression”.

2.2.1 James-Lange Theory

The connection between emotions and physiological changes in the Darwinian tradition is cen-

tral to subsequent theories of emotion in the Jamesian perspective. Darwin’s perspective, how-

ever, was more concerned with emotional expression, whereas William James was concerned

with emotional experience. In his 1884 article “What is an emotion?” [47], James inspired the-

ory and research in the physiological realm of emotion. He argued that emotional experience

arises from the perception of bodily changes. Around the same time, the Danish psychologist

Carl Lange proposed a similar theory from which the James-Lange theory arose. The James-

Lange theory suggests that emotional experiences arise from the perception of bodily changes

when evaluating an external stimulus. It proposes that the physiological reactions are primary

and that our interpretation of those reactions, which elicits an emotion, is secondary. Their the-

ory produced later work on the facial feedback hypotheses [48, 49, 50, 51]. The facial feedback

hypothesis shows that a certain facial expression will cause a change in a person’s emotional

state. Strack et al. [51] reported that participants who had unknowingly been induced to a

smile by holding a pen in their mouth found comic strips funnier than participants who had not.

Even in the absence of visible facial expressions, using facial EMG (electromyography) it has

been demonstrated that there is a direct link between facial expressions—motor schemata of

facial muscles—and emotions [52, 53]. For example, recordings have shown that participants

respond faster to pleasant and unpleasant words read on a screen when smiling and frowning,

respectively [54]. A study by Barrett et al. [55] established that interoceptive cues (as measured

by heartbeat detection sensitivity) are linked with reports of experienced emotion, but that these
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cues are more important for some individuals than for others. The study suggests that partici-

pants, who more accurately perceive their own heartbeat in a detection task, emphasise feelings

of activation and deactivation in self-reports of emotion to a greater extent.

2.2.2 Cannon-Bard Theory

As mentioned, the James-Lange theory states that physical arousal precedes emotion. This

notion was radically challenged by Walter Cannon [56] and later with Philip Bard. Together

they developed the Cannon-Bard Theory. Unlike the theory proposed by James and Lang,

Cannon and Bard contend that physiological changes are a byproduct of emotions, and that

these changes occur simultaneously with emotional changes in response to a stimulus. Other

commentators support the notion that there is no significant influence of autonomic events1

on emotion. For example, it has been shown that patients with spinal-chord injuries or total

autonomic failure exhibit little, if any, impairment in the experience of emotion [57, 58, 59].

In brief, a major role of this theory is associated with thalamic processes in the brain, which

inspired early functional neuroanatomical models of emotion [60, 61].

Debate on the theories of James-Lange and Cannon-Bard centres on peripheralism versus cen-

tralism. Peripheralists (James-Lange) maintain that the various peripheral bodily changes, such

as heart rate, contribute to the emotion, whereas Centralists (Cannon-Bard) maintain that pe-

ripheral activity is irrelevant, and that emotion is primarily a function of the brain. Both theories

are radically opposed with regard to the temporal sequence of an emotional event, of which a

detailed account is beyond the scope of this research. Fundamentally, however, both theoretical

frameworks are concerned with the physiological processes (somatovisceral activity) resulting

from an experienced emotion.

1The autonomic nervous system is the part of the peripheral nervous system responsible for controlling bodily
functions that function largely below consciousness, such as breathing, the heartbeat, and digestive processes.
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2.3 The Cognitive Perspective

According to Dalgleish and Power [62], the cognitive perspective of emotion is considered by

many researchers to be the fundamental component of emotion. It assumes that thought and

emotions are inseparable and it is evident that it is deeply incorporated into the three other

perspectives [27].

2.3.1 Schachter–Singer Theory

Schachter and Singer [63] revised both the James-Lang and Cannon-Bard theories, and devel-

oped their own, now also known as the two-factor theory. Although partly concurring with the

ideas of both, they contended that physiological arousal can instigate emotions but that phys-

iological changes are not specific to a particular emotion. They proposed that the emotion is

determined by the interaction of physiological arousal and cognition of the event triggering the

physiological arousal. In other words, the theory proposes that an affective response is contex-

tually driven, and that cognition determines whether the physical arousal indicates a state such

as ‘anger’, ‘joy’, etc.

Damasio’s [64] somatic marker hypothesis and Barret’s [65, 66] somatic marker and conceptual

act model are in line with the conceptualisations of James and Schachter and Singer. Damasio, a

neurologist, introduced the idea of somatic markers (physiological reactions). This hypothesis

proposes that emotions arise from bodily experiences which influence behaviour, and espe-

cially that of decision-making. Somatic markers provide a means for evaluating which current

events had previous emotion-related consequences [67]. Barret recently adapted Schachter’s

theory of emotion with the conceptual act model, a social neuroscience model of emotion. It

hypothesises that discrete emotions emerge from a conceptual analysis based on the notion of

core affect2 put forward by Russell [68]. The model challenges the position of basic emotions

being biologically hardwired into the brain.

2Core affect is characterised as the momentary changes in an organism’s neurophysiological state that represent
an immediate relationship to the flow of changing events [66].
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2.3.2 Appraisal Theory

In cognitive emotion theories, Magda Arnold [69] is accredited with the appraisal theory and its

modern approach, although the origins of this perspective stem further back. She proposed that

people evaluate events in their environment, judged as good or bad, resulting in an appraisal

of a stimulus and hence perceived as an emotion [69, 27]. It argues that every emotion is

associated with an appraisal influenced by the individual’s learning history, personality and

physiological state. The appraisal hypothesis is closely related to the idea that emotions are

action tendencies [70]. The process of appraisal informs the organism of the particular features

of a given environment and brings about a state of readiness to act on those features.

2.3.3 Lazarus Theory

In line with Magda Arnold’s appraisal theory, the concept of cognitive appraisal is central to

Lazarus’ theory in which he deals with emotions and coping. The theory states that cognition

occurs before any emotion or physiological arousal. Lazarus specified two major types of

appraisal methods: (a) primary appraisal, which is the evaluation of the significance or meaning

of an event, and (b) secondary appraisal, which is directed at the evaluation of the ability to cope

with the consequences of that event.

2.3.4 Cognitive Emotion Models

The component process model of emotion, developed by Scherer [71], is based on the sequen-

tial check theory of emotion differentiation (a set of criteria that are predicted to underlie the

assessment of the significance of a stimulus event for an organism). It implies that bodily

expression is an outcome of cognitive appraisal but disregards the primacy focus of cogni-

tion, considering it as a constitutive synchronous element. The model attempts to explain how

a sequence of specified stimulus evaluation (appraisal) checks bring about differentiation of

emotional states [72]. This framework considers five crucial components that are synchronised

for a short period of time, where the components of an emotion episode represent the respective
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states of all major organismic subsystems. The five components are: cognitive (appraisal), neu-

rophysiological (bodily symptoms), motivational (action tendencies), motor expression (facial

and vocal expression), and subjective feeling (emotional experience) [7]. Based on his theory,

Scherer [73, 7] makes detailed physiological predictions of vocal changes associated with spe-

cific emotional states determined by particular profiles of appraisal outcomes.

Ortony et al. [74, 6] developed a cognitive emotion model that is computationally tractable,

called the OCC model (Ortony, Clore and Collins). In the OCC model, emotions are valenced

reactions to three types of stimuli: consequences of events, actions of agents, and aspects of

objects. The goal of the model is to predict and explain under which circumstances certain

emotions are likely to occur. This model is explained in more detail in the next chapter (section

3.3.2).

Central to the cognitive perspective evaluation of stimuli is how one “appraises” events in one’s

environment. Cognitive theorists, in contrary to the perspective of James, consider cognitive

processing of stimulus information as primary and the physiological components associated

with emotion as secondary.

2.4 The Social Constructivist Perspective

In contrast to the Darwinian view of the evolutionary development of emotions is the idea that

emotions are socially and culturally constructed. From the social constructivist perspective,

all emotions and human behaviour are learned by individuals through experiencing social and

cultural rules [75]. Typically, social constructivists suggest that emotions are best understood

as the products of learned social rules, necessary for successful social interaction, and that the

biological foundations of them are of secondary importance. Averill [76], for example, argues

that emotions cannot be explained solely from an evolutionary or a physiological perspective,

and suggests they can only be fully understood in terms of the social functions they serve [27].

He describes emotions as socially determined cognitive appraisals that result in behavioural
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“scripts”. How anger is expressed, and what causes anger to emerge, for instance, differs

from culture to culture. While Darwinians typically support their position with the apparent

“universality” of emotions across different cultures, social constructivists often support their

position by reporting the discrepancies of words related to emotion found in languages of dif-

ferent cultures. Furthermore, social constructivists have shown that there are no obvious bodily

correlates with subtle or advanced emotions, such as love and guilt [77]. It is also argued that

there can be a noticeable change in expressed emotions concurrent with the change of essential

social functions [76, 78]. In other words, some emotions may culturally disappear with new

ones emerging [79].

While both strands of research appear to have strong evidence to support their respective posi-

tions [77], the views in each tradition are not mutually exclusive. Even well known Darwinians,

such as Ekman [80], acknowledge the role that culture plays in regulating emotional displays,

and most social constructivists acknowledge that emotions are, to some degree, innate. For

example, some social constructivists agree that strong positive and negative affects may be an

inborn structure of the human brain [65, 68]. In contrast to Darwinians, however, they rarely

consider this to be the case for mammalian brains [81]—this contention awaits neurobiological

support [82]. A study by Matsumoto et al. [83] amalgamated both perspectives, with the no-

tion that an individual’s emotional displays can be both universal and culturally variable. Their

study examined how time-dependent emotional displays of Olympic athletes vary between dif-

ferent cultures. They found that an athlete’s initial emotional expression tended to be universal,

while over time subsequent expressions became culturally regulated. The variance between

athletes was determined by whether the athletes were from an individualistic culture, in which

they appeared more expressive, or from a collectivistic culture, in which the expressions ap-

peared more concealed.
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2.5 Emotions as multifaceted

It can be seen that within each perspective the study of emotion is approached according to

the different basic assumptions made about its nature. Although they may differ in their meth-

ods, certain principles do coincide. The four perspectives discussed focus on different aspects

of emotions but there is evidence that they have begun to converge [27, 41], most apparent

to researchers of the Darwinian and Jamesian perspectives. The Darwinian perspective, deal-

ing with evolutionary theory, and concerned with ‘fundamental’ or ‘basic’ emotions, has been

adopted by both Jamesian and Cognitive researchers, as can be seen in much of Ekman’s and

Lazarus’ work. The first three perspectives (Darwinian, Jamesian and Cognitive) seem to in-

tegrate into a more cohesive view of emotion encapsulating the different research paradigms.

The social constructivist perspective partly conflicts with the Darwinian perspective, proposing

emotions to be socially learned [76]. Against this stance, some evidence suggests that non-

Western congenitally blind individuals, including infants, display emotional facial expressions

similar to Western individuals, indicating the possibility that emotion is not merely obtained

via social learning [84, 85, 86]. Although the social constructivist perspective may not compre-

hensively reconcile with the Darwinian and Jamesian perspectives, it does incorporate certain

aspects provided by them [27]. Each research paradigm, evolutionary, neurological, biological,

psychological or sociological, uses different methodologies that consider the different perspec-

tives. Contingent on the particular perspective, certain descriptive frameworks emerge to meet

the requirements of a particular aspect that a theory emphasises [87].

Theories have been proposed over a wide range of disciplines, each with a focus on a particular

manifestation or component of emotion. At present, it is commonly agreed that emotion is best

conceptualised as a multifaceted phenomenon that consists of several components/elements

[88, 7, 16, 89, 90, 91, 70]. The most commonly accepted of these elements are:

• subjective experience (feelings);

• physiology (body activation);
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• expression (facial and vocal expressions).

Mauss and Robinson [88] provide a review for measuring emotion that focuses on the above

“emotional responses” which arise from an appraisal of a situation, rather than focusing on

cognitive antecedents and their respective correlates of emotion. They refer to “behaviour” as

opposed to “expressions”, which takes into account the link between emotional states and the

tendency to act on them [70]. Scherer’s [7] suggestion for a comprehensive measuring system,

however, includes the notion of evaluating objects and events (appraisal) and the disposition to

act (behaviour) as separate assessable components—albeit somewhat less consensual. These

are referred to as:

• the cognitive component (appraisal);

• the motivational component (action tendencies).

In order to explicitly represent emotion in research, one needs to consider the theories that

representational issues are guided by. These issues are discussed in the next chapter.
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3
Emotional Labelling

3.1 Introduction

To conceptualise emotion, the last chapter gave a general overview of the different types of

theories that are well-known in psychology, emphasising core aspects that represent the nature

of each perspective. These theoretical foundations lead to the practical considerations for as-

sessing and representing emotion, two essential matters involved with emotional data labelling.

The aim of this chapter is to give the readers an overview of the considerations that are made

when labelling speech data for emotion. As mentioned in the last chapter, emotion is typically

conceptualised as being multifaceted that involves synchronised changes in several constituent

elements [92, 7] (see section 2.5). Scherer [7] suggests that in order to provide a comprehen-
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sive representation of emotion, all components should be measured and assessed to evaluate

their convergence. Each component, however, is distinct in nature, and there is currently no

technique that amalgamates them all. Nevertheless, one should keep Scherer’s point in mind—

the whole is greater than the sum of its parts. Therefore, in order to minimise methodological

inconsistencies between our approach and other measurement types, first, it is necessary to fa-

miliarise ourselves with the different assessment techniques, and second, it is crucial to consider

carefully which method to use to explicitly represent emotion that is capable of distinguishing

between distinct emotional states.

3.2 Emotion Assessment

In any scientific investigation some kind of measurement is required. In relation to emotion,

finding appropriate measurement methods is complicated, and mainly because emotion is an

abstract notion difficult to clearly define. Research involving the measurement of emotion has

a long history and it has proven to be a considerably complex task. Typically, measurement

methods are established according to one or more of the constituent elements of emotion—

cognitions, subjective feelings, physiological changes, and behaviours. These measurements

are as follows:

• Self-reports: are the participants’ description of their subjective feelings, cognitions,

and, sometimes, behaviours typically obtained from open-ended questioning or psycho-

metric instruments.

• Physiological measurements: are recordings of physical changes that occur during an

emotional episode. These include responses in heart rate, blood pressure, skin conduc-

tance, pupillary dilation, respiration, and brain waves.

• Behavioural observations: are the emotion inferences of observable actions in response

to an emotion, such as facial, vocal, or whole body expressions. Behaviour/expressions

are generally assessed by objective observers in judgement studies.

18



CHAPTER 3. EMOTIONAL LABELLING

This section first examines each assessment type and discusses to what extent these measure-

ments may cohere. In providing labels, it is also essential to report on the description of the

labels provided, depicted as cause-or effect-type orientation. Moreover, we will briefly discuss

the rationale behind the selection of judges who will effectively assess speech for labelling.

3.2.1 Self-reports

The use of self-reports is a popular method in emotion research, and it serves as the basis for

a lot of the available evidence about emotional experience. It is favoured for several reasons.

This method is relatively straightforward, cheap, and can be easily administered to large sam-

ple groups—delivering it via the web, for instance. Moreover, self-reports allow a researcher to

evaluate whether the objectives of eliciting emotion can be met by systematic inducing proce-

dures, or by being exposed to a specific set of stimuli. Typically, multiple assessments are used

to gain information. Self-reports are used to link the experiential component with physiolog-

ical, behavioural, or both components. In speech research, for instance, labels obtained from

self-reports (cause-type descriptions) can be linked to vocal indicators of emotion to determine

the acoustic correlations.

Self-reports are the only means to gain information about the experiential component of emo-

tion [7]. However, they are considered subjective in their own right and are likely to be un-

reliable [16] due to various psychological factors. For example, Robinson and Clore [93] ar-

gue that self-reports of retrospective emotional experiences—which partially reflect recalling

contextual details of an event—are less likely to be valid than self-reports about current emo-

tional experiences. This suggests that self-reports should be administered during, or at least

shortly after the emotion is being experienced. This can, however, be problematic if it inter-

feres with the emotion induction procedure, making the effect of the inducing procedure, or

evoking stimulus potentially uncertain. Moreover, it has been shown that self-concepts are in-

fluenced by gender stereotypes, which as a result differentiate individual self-knowledge [94].

Self-reports rely on the participant’s own assessment of the emotional experience, so they are
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reliant on a participant’s honesty, introspective ability, and conceptual understanding of emo-

tion descriptions—dimensional concepts of emotion, for example, may not be understood by a

lay person.

3.2.2 Physiological Measurements

As mentioned, physiological measurements are concerned with the body changes that occur

when a person experiences an emotional state. While all traditions acknowledge bodily acti-

vation, those most concerned with the physiological aspect of emotion are the Darwinian and

the Jamesian perspectives. Bodily changes can be assessed using psychophysiological instru-

mentation and methods that are concerned with the link between the psychological meaning—

higher cognitive processes—and physiological responses. Measurable changes occur in both

the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS com-

prises the brain and spinal cord, which send and receive signals from the peripheral nervous

system. The origins of examining brain activity associated with emotion can be affiliated with

the development of Cannon and Bard’s theory (see section 2.2.2). Researchers in this domain

are particularly concerned with how emotions are embodied in the brain, rather than the physi-

ological responses in the peripheral system [95, 67]. Techniques for measuring brain activity—

which can be administered in parallel with other assessments of emotional speech—include

electroencephalography (EEG) [96, 97, 98], magnetoencephalography (MEG) [99, 100], and

neuroimaging techniques, such as positron emission tomography (PET) [101, 102], and func-

tional magnetic resonance imaging (fMRI) [103, 104, 105]. With EEG measurements, elec-

trodes are attached to the participant’s scalp to measure the electrical activity of cells. The

biggest advantage of EEG is its temporal resolution, but it is limited in detecting the precise

location of activity (spatial resolution), thus, it is used to measure activation in relatively large

areas. To achieve both high temporal resolution and spatial resolution, EEG can be combined

with MEG data [106]—MEG records magnetic activity rather than electrical activity. Neu-

roimaging studies, using fMRI—measuring changes in oxygen intake—and PET—measuring

a radioactive isotope injected into the bloodstream—are more successful in locating activity in

specific brain regions. Unlike EEG, fMRI and PET involve using large expensive machinery
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and typically requires induction methods where participants are asked to recall a past event.

In many cases, it may be difficult to determine if particular brain activity is associated with a

recalled memory of an emotional experience, or simply the cognitive task of recalling the event

itself [107].

Located outside of the brain and spinal cord, the peripheral nervous system (PNS) is subdivided

into the somatic nervous system (SNS) and the autonomic nervous system (ANS). The func-

tions of the SNS include the voluntary control of the skeletal muscles, which comprise those of

the face, and the carrying of sensory information (e.g. touch, temperature, and pain). Studies

that link motor expressions (e.g. facial and vocal) with emotions are central to the work of the

Darwinian tradition. Because expression converges with behaviour, we discuss it in a separate

section (section 3.2.3).

The ANS primarily regulates the internal environment of the body, which includes involun-

tary activity, such as skin conductance, heart rate, pupil dilation, and respiration. Much of

the current research that employ ANS measurements is inspired by James’ theory (see sec-

tion 2.2). Within the ANS there are two subsystems: the sympathetic nervous system and the

parasympathetic nervous system. The sympathetic nervous system prepares the body for ac-

tion in threatening situations (i.e. fight or flight), while the parasympathetic nervous system

acts to restore bodily functions, such as slowing the heart rate down. The characteristics of the

anatomical and functional changes within the parasympathetic and the sympathetic branches

have been important in the study of emotion. Measurements of physiological responses of

emotion include heart rate (HR) [108], cardiac output (CO) [109], electrocardiography (ECG)

[110], blood pressure (BP) [111], facial electromyography (fEMG) [112], pupillary dilation

[113], respiration rate [114], and galvanic skin response (GSR) [115]. Psychophysiologists

have built up a wealth of empirical evidence to support the relationship between physiological

measurements and emotion. Several extensive reviews on emotion and both nervous systems

have been provided [116, 117].
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One of the most obvious advantages of using physiological measures is their inherent objectiv-

ity, and the ability to provide continuous measurements. However, there are some limitations.

For example, many of the instruments used are expensive, and some are obtrusive. Moreover,

physiological signals are sensitive to other bodily functions associated with multiple mental or

physical activities that are not necessarily a function of emotional response, such as functions

related to digestion, homeostasis, exertion, etc. [88]. Even with careful control of intruding

variables, physiological changes are highly context-dependent, and correlations with emotional

states have been shown to be inconsistent at the best of times [118].

There have been an ample amount of studies conducted relating to emotion in speech that simul-

taneously integrate information from physiological signals of different modalities [119, 110,

111, 113, 115, 120, 121, 122]. Generally, physiological response measures are linked to the

subjective experience—assessed by self-reports [110, 119]—or to the perceived expressions—

assessed by judgement tasks [123, 113]. The study by Johnstone and Scherer [121] obtained

both physiological and acoustical data and correlated this with self-report data, obtained from

participants who were asked to report how they were feeling at the precise time that the in-

duction procedure (game play) took place—addressing the notion that recalling an emotional

experience may not be as valid as reporting on current experience. On the other hand, some

studies make no account of self-report or observable data. Instead, they may make the assump-

tion that the induction procedure successfully elicits the intended emotion [122], or, explicitly,

associate physiological responses with a specific stimulation [112, 124].

3.2.3 Behavioural Observations

Needless to say, nonverbal behaviour (expressions) is a key component of emotional responses.

As previously mentioned, Darwin proposed that expressive behaviour was the outcome of evo-

lutionary development that exists to serve communicative functions. In line with behaviourism,

Frijda [70] considers emotions as “action tendencies”, tendencies to engage in behaviour as a

result of an evaluated stimulus. He argues that emotions emerge because of an individual’s
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appraisal of an event and its relative value for well-being, which, in turn, prepares “action

readiness” manifested as expressions. Studies of behaviour are concerned with body, facial,

and vocal cues, and can operate independently of a spoken language system, as studies con-

cerning newborns [125], indigenous peoples [35], and animals [126] have demonstrated.

Body Cues

To investigate how emotion is communicated through the body, one can either analyse dynamic

movement (e.g. motion capture systems) [127] or static postures (e.g. photographs or figures)

[128]. Body movement, or “action” behaviours, usually have relatively distinct beginning and

end points, which involve functions such as nodding, shrugging, and gesturing [129]. Action

tendencies can be conceptualised as responsive actions as a result of an appraisal process. In ef-

fect, approach and avoidance behaviour can be used to gauge the observed hedonic-evaluation

of a particular stimulus. Studies show that participants who evaluate stimuli as pleasant, as

opposed to unpleasant, produce approach tendencies, and negative evaluations produce tenden-

cies to avoid [130]—although the actions depend on context and on the participant’s desired

goal [131]. On the one hand, it has been shown that recognition rates from body postures, for

specific emotions such as anger, sadness, and happiness are comparable to that of the voice and

face—yet accuracy rates for disgust, for example, are comparatively low and it is understood

to be primarily communicated through the face [128]. On the other hand, it has been sug-

gested elsewhere [129] that body movements alone cannot portray specific universal emotions.

Instead, body movements are believed to contribute to, or emphasise expressions in line with

facial and vocal cues, and allow information to be communicated about aspects such as attitude

and status. A study by Nelson and Russell [132] showed that bodily expression is essential in

multi-cue emotion communication. They investigated children’s understanding of nonverbal

cues of pride. They showed that 4- and 5-year old children did not recognise pride from facial

or bodily cues independently, nor from integrated face and body cues. Even 6- and 7- year old

children could only infer pride from combined body and face cues, but not from face or body

cues separately. Influenced by the facial feedback hypothesis (see Chapter 2), body postures

are also believed to have an impact on experienced emotion. When considering pride gained
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through the achievement of a task, it has been shown that sitting in upright postures led to

greater feelings of pride compared to sitting in slumped postures [133].

Facial Cues

Presenting facial stimuli is an important method in emotion perception studies. Similar to the

study of body behaviour, stimuli can be presented as either dynamic [134] or static [90]. So far,

it appears that most studies have been limited to static stimuli, e.g. the use of photographs. As

mentioned previously, much work on facial expressions [40, 135, 86] can be affiliated with the

Darwinian perspective of evolutionary theory and the concept of having a few ‘basic’ emotions.

Ekman’s findings on prototypical facial expressions suggested at least six ‘basic’ emotions.

Based on facial anatomy, his work [85] resulted in the development of a systematic observation

tool called the Facial Action Coding System (FACS, for more detailed information see section

3.3.3). While fEMG and FACS measure activity of facial muscles, EMG measures the elec-

trical potentials from muscle contractions, which may not be visibly discriminative by judges.

Because EMG involves placing electrodes on a subject’s face, it is somewhat invasive. This

may cause confounding effects, such as increased self-conscious behaviour. EMG has a higher

level of granularity of contraction measures, but both are said to be highly correlated [136].

Although researchers employing FACS measurements require in-depth training, many use this

method successfully to link induced emotional states to distinct facial expressions (see [137]

for a comprehensive review).

A direct link with facial expressions seems problematic and far from straight forward. A smile,

for example, can be associated with both happiness and nervousness, or with either failure or

success [138]. A review provided by Russell et al. [139] suggests that smiles are often limited

to social circumstances—rather than directly related to a happy event. Although links have

been shown to exist between emotions and certain facial behaviours [140], according to Mauss

and Robinson’s review [88] the conclusions made about the relationships between discrete

emotions and distinct facial response patterns are questionable (see also [139]). They argue

that facial expressions are more reliably linked to the hedonic valence of a person’s state.

24



CHAPTER 3. EMOTIONAL LABELLING

Vocal Cues

Finally, expressive behaviour is also known to exist in vocal communication. In this domain,

researchers consider an expression as the qualities of speech that are communicated through

non-verbal content, also known as paralinguistic content. It is difficult to determine the bound-

aries to which listeners infer emotion from either paralinguistic or semantic (lexical) content.

Decoding studies have shown that listeners are able to infer—actual or simulated—emotion

from paralinguistic cues irrespective of lexical content [35, 141]. Many studies use actors to

portray a set number of different emotions to produce speech utterances composed of stan-

dardised or nonsensical content [142]. This way the speech does not contain any linguistic

information that could indicate the underlying emotion of the speaker. Alternatively, for non-

acted emotions one can remove semantic content by cue masking. Cue masking is used to

distort speech, by removing or altering certain acoustic cues, to make speech unintelligible.

Techniques that are used include low-pass filtering, randomised splicing, playing backwards,

pitch inversion, and tone-silence coding [143, 144, 145, 146]. It has been shown that specific

acoustic vocal cues are associated with discrete affective states [73, 147], yet can also be mea-

sured along a small set of continuous dimensions [13, 16, 148]. Because this thesis is concerned

with emotion in speech, we will dedicate a separate chapter on this topic in order to cover it in

greater detail (see Chapter 4).

3.2.4 Coherence between Emotion Components

In componential emotion theory, it is postulated that coherence across multiple components

(cognitive, behavioural, experiential, and physiological) occurs in response to an emotional

episode [149]. Scherer [7] explains that on the basis that all subsystems underlying emo-

tion components—such as the central nervous system accounting for subjective feeling and

appraisal, and the somatic nervous system accounting for motor expression—are typically in-

dependent, hypothetically they become temporarily interrelated and synchronised during an

emotional episode. However, there are contradictory findings on the coherence among the com-

ponents [91], and further investigations are required. A study by Bonanno and Keltner [150],

25



CHAPTER 3. EMOTIONAL LABELLING

for example, compared spontaneous facial expressions and emotion-related appraisals with ex-

perience of emotion. They found moderate associations with facial expressions and appraisal

profiles of anger and sadness, yet these results were greater in degree compared with smiling

and laughter. In fact, their data showed that laughter occurred more often during appraisals of

anger. Similarly, Mauss et al. [92] found that three components, experience, facial behaviour,

and peripheral physiology, are indeed associated but that coherence varies in degree. The re-

sults indicated that the experiential and behavioural responses are highly associated, while the

physiological responses are only modestly associated with experiential and behavioural re-

sponses. One would assume, however, that behavioural and physiological measurements are

mostly inter-dependent, and less discordant compared to reports of subjective experience and

physiology [117]. Moreover, a study by Gentsch et al. [149] investigated the synchronisation

of specific appraisal processes, as predicted by the component process model [151], simul-

taneously with facial muscle activity and brain activity. The results of the appraisal-driven

response changes supported the predictions made by component process model. However, they

recognise that the generalisability of the results are limited and that investigating coherence is

eminently challenging. They acknowledge, for example, that temporal dynamics, context, and

individual differences (see also [88]) bring several complexities.

It seems that across different contexts, components are only loosely coupled [139], as is evident

in light of the recent findings. The review provided by Mauss and Robinson [88] demonstrates

that different measures of emotion only correlate low to moderate. They suggest that “one

measure of emotion is likely associated with variance unique to [that component]”. The ex-

ample that they provide suggests that facial EMG is more responsive to valence, while skin

conductance is more responsive to arousal. Similarly, with voice communication it has been

shown that valence is more difficult to detect compared to arousal [152]. In summary, Mauss

and Robinson suggest that there is no ‘gold standard’ for measuring emotional responses (see

also [7]). One should treat emotion as a multifaceted phenomenon, and try to interpret each

facet and its constituent role.
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3.2.5 Cause-type and Effect-type Descriptions

In most cases, the investigation of emotion involves linking one component of an emotional

reaction with another. The analysis of speech and emotion, for example, requires correlating

acoustical measurements from the speech waveforms (physiological changes of voice) with ei-

ther the measurements obtained from self-reports (experiential component), the measurements

obtained from listening tests (behavioural component), or, in some cases, with other physiolog-

ical responses such as heart rate. In other words, acoustical data is correlated with a label that

represents either the experiential or behavioural component. In relation to labelling, a valuable

distinction between the two emotion label descriptions has been made by Cowie and Cornelius

[81] as cause-type and effect-type1. The distinction specifies whether the given label is focused

around the realisation of the speaker or the listener. Both types are valuable descriptions, but

are required for different applications. Firstly, when describing emotion, a researcher might

be interested in the internal emotional state (subjective feeling) of the speaker, which subse-

quently leads to the speaker to produce emotion-specific vocal characteristics. In this regard,

the labelling task sets out to capture information about the speaker’s state at the time of speak-

ing (encoding). Research with this goal in mind is referred to be as cause-type orientation. An

example of cause-type labelling is described in the study by Fernandez and Picard [153]. In

this study, the chosen labels (categories) represented stress levels, which were operationalised

by four different experimental conditions corresponding to cognitive load. In any case, they

considered this approach suitable for the application in mind, i.e. detecting stress under driving

conditions.

The second type of orientation is referred to as effect-type. It describes the listener’s interpreta-

tion of a speaker’s state based on the characteristics of speech, irrespective of the speaker’s truly

felt state—or at least the speaker’s truly felt state while speaking is of secondary importance

[154]. Generally speaking, discrete categories and dimensions are used, which are suitable for

the understanding of a layman. Practically, this is the more appropriate type for describing

1This related distinction is also recognised by Scherer [12] in the context of the Brunswikian model (see Chap-
ter 4.1.1 as ‘encoding studies’ and ‘decoding studies’, and by Schr”oder [87] as ‘speaker-centred’ and ‘listener-
centred’, respectively.
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observable behaviour. Because a speaker often disguises or misrepresents what he or she is

truly feeling, it is difficult to provide reliable cause-type descriptions. Inter-rater measurements

do not offer any indication of validity for cause-type descriptions [155], but they do for effect-

type labels, which makes validation relatively straightforward [156]. An example of labelling

specifically identified as effect-oriented can be found in the UU Database [157]. Based on

the psychological background, they annotated speech data for expression with six dimensions

related to personal emotional state, interpersonal relationship, and attitude. To illustrate rater

consistency, they reported the standard deviation values, and for rater agreement they reported

the Kendall’s W coefficients.

Labels that are provided by the speaker’s themselves through self-reports are a justifiable de-

scription for cause-type, but as mentioned earlier, this method is considered by many as too

subjective. When focusing on verifiable properties of a speaker’s state through physiological

measurements, however, descriptions would typically reflect cause-type orientation [154]. In

summary, the important distinction is that what is felt by a speaker does not necessarily cor-

respond to what is being expressed. Cowie mentions that ‘cause’ and ‘effect’ interpretations

diverge in cases such as deception and acting.

3.2.6 Selection of Judges

To provide labels for emotional speech, the assessments performed in this thesis are concerned

with the realisation of the listener, rather than the speaker. The labels are, in other words,

of effect-type description, derived from the evaluations of one or more ‘judges’ of emotional

expressions. There are two types of judges that can annotate: “expert” and “naı̈ve”. In most

cases, expert judges are assigned, which usually comprises a small group that annotates a large

number of speech samples. Although it is often not indicated what expertise the judges actu-

ally have, in many cases experts are researchers who are part of the wider field of emotional

research. In the expert-based approach, issues with the semantics of emotional categories can

be solved by agreeing on the meaning of words prior to the task [26], increasing the likelihood
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of labelling consistency. However, although expert ratings may yield reliability, they may not

yield validity because labelling would be representative of theory. Moreover, expert rating may

even embody theoretical bias [158]. Because the nature of the labels provided are based on the

nature of the population of the judges, one may, on the other hand, be interested in ratings that

are representative of a broader sample population, including judges who are not necessarily

familiar with emotion theory, i.e. “naı̈ve” judges. Emotion is, after all, an important aspect of

communication between all humans. Instead of using a small number of expert raters, large-

scale listening groups have also been proposed [159], or the more recent phenomenon known as

crowdsourcing [160], to provide labels for emotional speech. Crowdsourcing is the process of

outsourcing tasks to a large group of undefined non-expert individuals [161]. In the context of

labelling speech corpora, each speech clip is presented to several raters and rated separately by

each individual. The final label for a speech clip is some combination of these ratings. Crowd-

sourcing has recently been used for labelling corpora in numerous domains, such as machine

translation [162], computer vision [163, 164], and sentiment analysis [165, 166]. Crowdsourc-

ing is a fast and effective way of accumulating ratings [166], yet can provide the same quality

labels compared to those provided by expert judges [167] if a sufficient number of raters is

acquired.

3.3 Representing Emotions

Regardless of which component of emotion is studied, it is essential to find an appropriate way

to describe it. For this thesis, in essence, to investigate links between speech and emotion-

related states, we need suitable methods to represent the emotions that are portrayed in speech.

Due to the complexity and uncertainty of the emotion phenomena, describing and labelling

emotion is not a straightforward task. According to the literature, currently no generally ac-

cepted methodology for labelling exists [31, 10, 16]. Two types of representational theories

generally distinguish the multiple approaches: discrete or dimensional. These are discussed in

this section.
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3.3.1 Discrete Representations

As a matter of course, there is a need to resort to language concepts for the theoretical and

empirical research of emotion. The most common way to describe emotional states is by using

categories derived from everyday language, such as anger, fear, and sadness. At first glance, it

may seem obvious to use categorical terms to explain affective states because the terms used are

so familiar, and it is natural to assume that such categories identify specific states. However, the

literature suggests that discrete representations come with a range of complexities. One of the

initial problems researchers are faced with is the vast number of available words in everyday

language to describe emotion or emotional-related states. Cowie and Cornelius [16] pointed

out several lists proposed by seven different investigations for the English language [168, 169,

170]. The size of these lists range from 107 to 558 words. Furthermore, lists that have been

put forward on the web (see [30]), which are not specifically theory driven but rather reflect

contemporary usage, amount to 3,000 words or standard phrases—280 of which occur in four

or more sources. The sheer number of available categories raises problems for tractability. To

complicate matters still further, the number of emotion words vary between different languages,

certain words exist in some but not in others. This is not to say that the concept of a particular

state described by a singular word in one language cannot be understood or described in another

language without the respective counterpart. In this regard, many studies focus on similarities

and differences in emotion descriptions that exist between various cultures and languages [171],

while other studies specifically focus on the lexical semantics of emotion-related words [172].

Prototypical Categories

Researchers that emphasise categorical descriptions typically identify with a smaller set of dis-

crete emotion episodes that have a special status of being relatively brief and fundamentally

distinctive in nature. In discrete theories, the widespread assumption is that those privileged

emotions are qualitatively unique, considered by most to be the clearest case of an emotional

episode. Related terms such as ‘basic’ [36], ‘primary’, [173], ‘modal’ [174], ‘acute’ [175],

‘full-blown’ [16, 176], and ‘prototypical’ [177] are synonymously used for prime examples of
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these emotions. These terms indicate a sense of hierarchy between emotional states. However,

they can have various denotations depending on the theoretical context [16]. The term ‘basic’

used by Ekman and colleagues, for example, carries theoretical significance in Darwin’s no-

tion of evolution and its central role in the emotion phenomenon. On the other hand, for those

who may describe emotions on dimensions (see section 3.3.2)—or otherwise—the term ‘full-

blown’ is more commonly used [178, 179, 180, 156]. Cowie et al. [156] describe full-blown as

states that have surpassed a certain limit of emotional strength within the Activation-Evaluation

space. In this chapter, we will use the terms (interchangeably) in context with the relevant the-

oretical discussion. Thereafter, we will refer to full-blown (and underlying) emotions.

The Big N of Emotions

For many discrete theorists [173, 135, 36, 86], the idea that certain emotions are ‘basic’ is

central to their research paradigm, mainly following Darwin’s lead of evolutionary theory—

assumptions also occasionally made in the Jamesian and Cognitive perspectives. In this re-

gard, basic emotions should have evolved characteristics that should be functionally distinctive

from other emotions, be universally recognised, be associated with hardwired neurological and

physiological profiles, and should generate emotional response patterns that cohere and con-

verge with each other. Although many share the view that some basic emotions exist, there

is little agreement about how many there are and which ones those are. The different notions

of basic emotions are associated with different empirical criteria. As Ortony and Turner [181]

explained, “the divergence of opinion about the number of basic emotions is matched by the

divergence of opinion about their identity”. They distinguish between two criteria that char-

acterise basic emotions, based on the conception of them being (1) biologically primitive or

(2) psychologically primitive. While the perspective with regard to biological primitive emo-

tions rests on the functional significance of evolution, the psychological primitive’s perspective

recognises basic emotions as irreducible constituents, which can account for all other complex

emotions by a combination of these types. Although these proposed criteria commonly make

up basic emotions, Ekman [182] has expressed his doubt with the idea that two basic emotions
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can occur simultaneously to combine and form other compound emotions, such as ‘smugness’

being a blend of happiness and contempt. The second criterion is the assumption based on the

evolutionary role that certain emotions must be readily apparent at birth, or early in life before

learning has occurred. Although studies do indicate early signs of conveyed [86] and perceived

emotion [183], it is difficult to determine which of these occur early enough to qualify as a

basic emotion.

One of the most influential studies of basic emotion theory is that by Ekman. Based on fa-

cial behaviour observations, Ekman and colleagues [184, 185] accumulated a vast collection

of evidence to support universality of facial expression across several different cultures. They

initially suggested a list of six, which have become the most widely known list [77], termed

by Cornelius as the “Big Six” [27]. These include “happiness”, “sadness”, “anger”, “fear”,

“surprise”, and “disgust”. From a different theoretical approach, similar categories were sug-

gested as being superior [1, 186], however, Ekman [182] later proposed a different list of

15 to include emotions not explicitly encoded in facial muscles. This list includes amuse-

ment, anger, contempt, contentment, disgust, embarrassment, excitement, fear, guilt, relief,

sadness/distress, satisfaction, sensory pleasure, shame, and pride in achievement. Because dif-

ferent commentators suggest different lists, some researcher now refer to them as the “Big” n

emotions [179, 187], n being a figure greater than 2, and up to around 6 in the majority of cases

[188]. Arguably, this highlights the potential uncertainty caused by the notion of the existence

of basic emotions. According to Ekman, to qualify as a basic emotion, the characteristics that

they share and that differentiate one from another, and from other affective phenomena, are

based on the following criteria:

• Distinctive universal signals

• Emotion-specific physiology

• Automatic appraisal mechanism

• Distinctive universal antecedent events
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• Distinctive developmental appearance

• Presence in other primates

• Quick onset

• Brief duration

• Unbidden occurrence

• Distinctive thoughts, memories, images

• Distinctive subjective experience

Several other attempts have been made to classify key emotions that reflect different perspec-

tives, some of which are listed in table 3.1. The list of ‘modal’ emotions proposed by Banse and

Scherer [189] is the most systematic in the literature specifically derived for speech research

[16].

Subordinate Categories

Ekman considers all emotions to be basic, and does not acknowledge “non-basic” emotions

[182]. This may raise the question regarding the variety of other emotions of which we are

aware of. To explain his position, he introduces the concept of ‘emotion families’ that are

similar in quality but may differ with respect to intensity [189], where intensity refers to the

immensity of an emotional reaction, such as differences between rage and controlled anger.

He argues that emotions are not single affective states but a family of related states. Each

emotion family is endowed with a theme and variation. The theme of an emotion family shares

the characteristics unique to a basic emotion, differentiated from one another by the criteria

listed above. Themes are explained in evolutionary terms, while variation is explained by

learning. Variations of a theme are the result of individual and contextual differences. This idea

is familiarised by the work of Shaver et al. [1] whose work is based on prototype theory. His

work does not explicitly identify basic emotions in terms of underlying biological substrates,

but rather emphasises how people construct generic mental representations of important aspects
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Lazarus (1999a) Ekman (1999) Buck (1999) Lewis and Haviland (1993) Banse and Scherer (1996) Cowie et al. (1999b) Plutchik (1980) Parrot (2001)

Anger Anger Anger Anger/hostility Rage/hot anger
Irritation
Cold anger

Angry Angry Anger

Fright Fear Fear Fear Fear/terror Afraid Fear Fear
Sadness Sadness/distress Sadness Sadness Sadness/dejection

Grief/desperation
Sad Sadness Sadness

Anxiety Anxiety Anxiety Worry/anxiety Worried
Happiness Sensory pleasure

Amusement
Satisfaction
Contentment

Happiness Happiness
Humour

Happiness
Elation

Happy
Amused
Pleased
Content

Joy Joy

Interested
Curious
Surprised

Interested

Excitement Excited
Bored Boredom/indifference Bored

Relaxed
Disgust Disgust Disgust Disgust Disgust Disgust

Contempt Scorn Contempt/scorn
Pride Pride Pride Pride

Arrogance
Jealousy
Envy

Jealousy
Envy

Shame
Guilt

Shame
Guilt

Shame
Guilt

Shame
Guilt

Shame
Guilt

Embarrassment Embarrassment
Disapointed

Relief Relief
Hope

Confident
Gratitude
Love Love Love

Affectionate
Love

Compassion Pity
Moral rapture
Moral indignation

Aesthetic
Trust/acceptance
Surprise Surprise

Table 3.1: Recent list of key emotions, partly adopted from Cowie and Cornelius [16].
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of emotions and the relationship between them. In their study, they compiled a list of several

hundred English emotion terms and divided them into categories based on their similarity to

one another. They analysed the data using hierarchical cluster techniques and found that En-

glish emotion words fall into 25 sub categories of synonyms. Six were identified as basic-level

emotion categories (see Figure 3.1), namely “love”, “joy”, “surprise”, “anger”, “sadness”, and

“fear”. They considered “surprise” questionable as it was less differentiated than the other cat-

egories. As we can see, this list is similar to the list initially suggested by Ekman.

Other investigations resemble the notion of hierarchal structures of emotions. With cognitive

accounts of emotion, for example, appraisal components define an underlying emotion as a

subset of the appraisal components of a full-blown emotion [71, 6]. However, cognitivists

have a slightly different view of this. For example, rather than describing emotions as part of

a hierarchal structure, one can conceptually describe underlying emotions as mixed emotions

comparable to mixing a set of basic colors, such as the “Palette theory” of emotions [71].

Cover Classes

Full-blown expressions described by prototypical classes, such as the basic emotions men-

tioned earlier, tend to be most familiar to us, yet appear seldom in complex data that contain

naturally occurring spontaneous emotions. Studies that choose prototypical categories often

use elicited material that has been acted out, and are in most cases stereotypically exaggerated.

When working with natural data, the emerging difficulties appear with the development of ap-

propriate, restricted and manageable lists that describe regularly occurring states in everyday

life. These states are commonly referred to as ‘underlying’ emotions. Having an unconstrained

free-response format allows for detailed specificity and maximal accuracy of affect descrip-

tions. However, it is difficult to quantitatively analyse free responses in a statistically robust

way, as response occurrences for each label are generally too sparse [7]. If an unrestricted set of

labels are used, researchers can reduce the number appropriately by merging them into a lim-

ited number of broad ‘cover classes’, often derived based on semantic resemblance [190, 191].

Alternatively, labels can be established in a data-driven way suited for a specific application.
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affection
love
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liking
attraction
caring
tenderness
compassion
sentimetality

arousal
desire
lust
passion
infatuation

longing amusement
bliss
cheerfulness
gaiety
glee
jolliness
joviality
joy
delight
enjoyment
gladness
happiness
jubilation
elation
satisfaction
ecstasy
euphoria

enthusiasm
zeal
zest
excitement
thrill
exhilaration

contentment
pleasure

pride
triumph

eagerness
hope
optimism

enthrallment
rapture

relief amazement
surprise
astonishment

aggravation
irritation
agitation
annoyance
grouchiness
grumpiness

exasperation
frustration

anger
rage
outrage
fury
wrath
hostility
ferocity
bitterness
hate
loathing
scorn
spite
vengefulness
dislike
resentment

disgust
revulsion
contempt

envy
jealousy

torment agony
suffering
hurt
anguish

depression
despair
hopelessness
gloom
glumness
sadness
unhappiness
grief
sorrow
woe
misery
melancholy

dismay
disappointment
displeasure

guilt
shame
regret
remorse

alienation
isolation
neglect
loneliness
rejection
homesickness
defeat
dejection
insecurity
embarrassment
humiliation
insult

pity
sympathy

alarm
shock
fear
fright
horror
terror
panic
hysteria
mortification

anxiety
nervousness
tenseness
uneasiness
apprehension
worry
distress
dread

Figure 3.1: Emotion prototypes showing basic emotions with its relative underlying emotions [1].
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That is, one may inspect the data and suggest labels by majority voting [192, 193], or in a

manner in which labels seem to cluster in data sets [30]. However, effective methods for selec-

tion can be difficult, and the outcome of different cover classes limits comparability between

studies. It is suggested that higher-order labels, such as basic or cover classes, are widely

applicable, whereas more specialised labels are best suited for application-specific scenarios

[194].

3.3.2 Dimensional Representations

Many researchers have suggested that categorical based descriptions pose too many difficul-

ties, and as an alternative argue for dimensional models, a description well established within

psychological literature [16]. Dimensional theories state that emotions can be described by

an underlying characteristic and placed on coordinates along a given set of dimensions. Re-

searchers can determine underlying structures that describe the order and diversity between

emotion-related words or states. For example, participants may be asked to rate the similarity

among pairs of words (semantic differential ratings), or asked to make introspective judge-

ments about an emotional experience (verbal self-report) [195, 196]. By gathering this data,

one can apply techniques such as multidimensional scaling and factor analysis to determine

if any underlying dimensions are disclosed. It is often argued that dimensions give a more

objective evaluation of emotional states. Jaworska and Chupetlovska-Anastasova [197], for ex-

ample, state that emotion is a highly subjective and qualitative phenomenon, therefore the use

of non-linear statistics, such as Multidimensional Scaling (MDS)2 is particularly suitable.

Abstract Dimensions

Dimensional theory can be traced back as far as Wundt [199], who stated that bipolar scales

represent “feeling opposites of dominating characters”. Wundt proposed that human feelings,

accessible through introspection, can be described by a position on three dimensions, namely

2Jaworska and Chupetlovska-Anastasova [197] indicate that the input data as qualitative is associated with non-
metric MDS and input data as quantitative correlates with metric MDS. Holland [198] refers to the abbreviations
MDS, NMDS and NMS, as Nonmetric multidimensional scaling.
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Figure 3.2: Schlosberg’s three-dimensional model of emotion expression. [2].

“pleasure-displeasure”, “excitation-depression” and “tension-release”. Although his work did

not seem to be based on accompanying empirical evidence, work thereafter by Schlosberg

[200, 2] supported the concept on the basis of experimental psychology. In the context of

rating facial expressions, Schlosberg proposed three dimensions of emotion: “pleasantness–

unpleasantness”, “attention–rejection” and “level of activation”. The three-dimensional space

is presented in Figure 3.2. He considered the level of activation to be quantitative in nature

that could be coupled with concepts of physiological or neurological concepts. In contrast to

discrete representations, he advises that dimensions allow rating divergence to be measured

in a numerical form (cf. [201]), an aspect that is most certainly advantageous for scientific

investigation.

Osgood et al. [202] carried out a semantic differential study to investigate underlying prop-

erties of affective structure in the English language. The major components underlying the

meaning of natural language they concluded were the dimensions of evaluation, potency, and

activity (EPA model). In line with this, Averill [168] specifically studied the semantics of emo-
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Figure 3.3: Russel’s circumplex model of affect, with 28 emotion words on pleasure-
displeasure (horizontal axis) and degree of arousal (vertical axis) [3].

tion terms and supported the evaluation and activity dimension. His interpretation of the data

replaced the potency dimension with control and depth. Use of dimensions is supported by ev-

idence based on intermodality responses, synaesthesia, physiological reactions, and semantic

differential [87]. Albert Mehrabian and James Russell [203] suggested that there were three

dimensions, namely pleasure, arousal and dominance (PAD model). Russell and Mehrabian

[204] found there was strong evidence to suggest the sufficiency of these three dimensions.

Russell [3] later reviewed the literature and presented an experiment using three different scal-

ing techniques on the laymen’s own mental representation of affective space, rather than an in-

trospective account of their current state. The three different scaling techniques demonstrated a

remarkable degree of consistency, from which they provided supportive evidence for the dimen-

sions of pleasure and arousal. Although there was a commonly accepted distinction between

data from introspective self-report and judgement data, he demonstrated that the findings of

both sources of data exhibited similar structures. He, therefore, argued that the model is suit-

able for both layman’s conceptualisation of affect and of affective experience. In other words,

the model is not solely applicable to the perceived structure of emotion terms in natural lan-

guage. Because the observed data is circular in nature (see Figure 3.3), the affective structure

is referred to as the circumplex model of core affect (cf. [68]). He argues that dimensions are
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Figure 3.4: Plutchik’s wheel of emotions partly adopted with labels for Intensity, Polarity, and
Similarity, indicating the dimensions on the three-dimensional circumplex [4].

sufficient for adequately distinguishing between emotional states.

As mentioned, classification approaches in line with Darwin’s theory of evolutionary emotion

are traditionally affiliated with basic emotions. However, some researchers following Darwin’s

perspective also suggest the notion that emotions can be relatively conceptualised within some

dimensional space. For example, Plutchik’s work [34], based on psychoevolutionary theory,

considers that eight ‘primary’ emotions can vary in similarity to one another, and can be con-

ceptualised in terms of pairs of polar opposites. Within this space, emotions can also vary in

intensity. Plutchik proposed both a two- and three-dimensional model, as illustrated in Figure

3.4. The three-dimensional model is presented as a cone. The vertical dimension represents

intensity, and the inner circle represents degrees of similarity among emotions. Four pairs of
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Figure 3.5: Scherer’s Tetrahedral of hedonic valence, activation and control/power [5, p. 30].

opposites (polarity dimension) are depicted by eight categorical primary emotions. In the two-

dimensional model, intensity is illustrated by sequential bands that decrease in strength towards

the periphery, elaborated on by the different hues. Within the blank spaces, mixtures of two

primary emotions are arranged. Plutchik proposes the analogy of primary emotions to basic

colours, from which secondary emotions are formed by various blends of different primary

emotions. The hue is used to express different intensities. This idea is similar to Scherer’s

“Palette theory” of emotions [71].

It is critically acknowledged [5, 158] that the interpretations made from the outcome of factor

analysis and multidimensional scaling are subject to the nature of the stimuli used. In this re-

gard, Gehm and Scherer state—referring to some of Russell’s earlier work—that the outcome

of these techniques can easily be biased by the partial selection of adjectives, so any one dimen-

sion can be strengthened or weakened by the inclusion (or exclusion) of a particular adjective.

With this in mind, they include a large number of emotion adjectives in an attempt to cover emo-

tion labels in their entirety. Furthermore, they examined the link between appraisal processes

of the elicitation of emotion (component process model) with the dimensional structure of the

semantic space of emotion words. The results from cluster analyses and MDS configuration
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disclosed a tetrahedral arrangement (see Figure 3.5) representing three dimensions: “hedonic

valence”, “power/control”, and “activation”. Furthermore, much of the earlier research focused

on prototypical types of stimuli, such as predefined lists for emotion words or stereotypical

portrayals, whereas more recent research is concerned with realistic, spontaneous stimuli. As

mentioned earlier, contemporary approaches, and their handling of naturalistic data, are often

data-driven or application-specific. Taking this into consideration, a study by Batliner et al.

[158] proposed dimensions that would be practicably suited for spontaneous speech (AIBO

speech corpus), with a non-predefined set of labels. To do so, they conducted non-metrical

multi-dimensional scaling (NMDS)3 on the specified labels. By and large, categorical labels

are nominal but can be modified to be non-dichotomous if mapped to dimensions. From their

data, they interpreted two dimensions. As expected, the “valence” dimension is exhibited; how-

ever, instead of Arousal, they suggest an ‘interaction’ dimension.

Based on semantics, memory recall, and facial and vocal expression, the empirical evidence

demonstrates that emotion-related states can be adequately mapped onto a two-dimensional or

three-dimensional space, and subsequently be distinguished according to their position [196].

Although different interpretations are made about the underlying dimensions, mostly, the ele-

mental two-dimensions proposed are conceptually similar. On a two-dimensional model (Eval-

uation/Valence and Activation/Arousal), anger and fear are often placed very near to each other

(see Figure 3.3), since both have strong negative valence and high arousal. Intuitively, however,

they seem clearly different on a subjective and behavioural level. A third dimension, such as

Potency, Control, or Dominance, has been used where the description of a two-dimensional

model falls short to this effect [152, 24, 207]. Moreover, the ambiguity of “surprise” has long

been discussed in the literature [208, 1]. It is explained that “surprise” has an ambiguous va-

lence, as it can be associated with either positive or negative emotions [24], and it can occur

simultaneously with other emotions [208]. To address this, a fourth dimension characterised by

appraisals of novelty and unpredictability has been suggested to distinguish the state of “sur-

3NMDS is a scaling method that disregards the properties of distance between certain quantities measured
[205, 206]. It retains the similarities (or dissimilarities) between values, by preserving the rank order but not the
exact numerical values.
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prise” from other emotions [208]. Certain “surprise” states may not be adequately described

by a single-word label, and instead two emotion words are needed, such as “joyful surprise”.

Although it seems slightly paradoxical, one could argue that dimensions demonstrate a higher

degree of qualitative differentiation in such instances.

In summary, it is evident that different inferences are made about the emerging factors (illus-

trated in Table 3.2.). The naming of dimensions by the individual researchers are based on their

interpretation of the data, therefore the terminology used for dimensions is somewhat equivocal

[32]. In other words, ambiguities can be expected with factor identification. In fact, Scherer

[170] acknowledges that factor analysis and multidimensional scaling are open to criticism for

this reason. There are three dimensions that are most prevalent. Synonymous terminology has

been used but they are conceptually similar [32, 157]. These are as follows:

1. Evaluation, Valence, or Pleasure: the most important element widely agreed on is that

of the hedonic valence of an emotion. It is concerned with the positive or negative eval-

uation of people, things, or events [156]. In this regard, the hedonic valence is assessed

focusing on the individual’s subjective feeling state, or the cognitive appraisal of external

stimuli.

2. Activation or Arousal: the second most agreed element is the activity/arousal factor.

This measure represents the degree of alertness, excitement, and the organism’s disposi-

tion to engage in action [70]. This dimension is often associated with the physiological

arousal and neurological activation.

3. Control, Potency, or Power: This dimension has a more controversial history in emotion

research [207]. It refers to the sense of power or control a subject has over the eliciting

event.

Appraisal Dimensions

Central to the cognitive perspective is the cognitive evaluation made by an organism of an

emotion-relevant object, event, or situation in its environment. Every emotion correlates to a
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Researchers Assessment Abstract dimensions

Wundt (1874) [199] Introspection (theory) pleasure-displeasure excitation-quiescence tension-relaxation
Schlosberg (1941) [200] Judgements of facial expressions pleasantness-unpleasantness attention-rejection
Osgood et al. (1957) [202] judgements of meaning in natural

language (semantic differential)
evaluation activity potency

Osgood et al. (1966) [209] Judgements of facial expressions
(factor analysis)

pleasantness activation control

Bush (1973) [210] Similarity judgements of adjectives
(MDS)

pleasantness-unpleasantness level of activation level of aggression

Mehrabian and Russell
(1974) [203]

Self-reports of imagined events
(regression analysis)

pleasure arousal dominance

Green and Cliff (1975) [211] Judgements of emotional
speech stimuli (NMDS, factor
analysis)

pleasant-unpleasant excitement yielding-resisting

Russell (1980) [3] Review of literature & similarity
judgement of emotion words
(MDS, UDS, PCA)

pleasure arousal

Plutchik (1980) [34] Similarity judgements of emotion
words (semantic differential)

intensity similarity polarity

Scherer (1984) [170] Similarity judgements of emotion
words (cluster analysis, MDS)

positive-negative (evaluation) activity potency

Gehm and Scherer (1988) [5] Similarity judgements of emotion
words (MDS, cluster analysis)

valence activation control/power

Watson et al. (1985) [212] Similarity judgements of emotion
words (NMDS) studies

positive affect negative affect

Shaver et al. (1987) [1] Memory tasks of emotion pictures
and sounds

evaluation activity potency

Feldman (1995) [213] Similarity judgement of semantics
and self report of mood (factor
analysis)

pleasantness arousal dominance

Church et al. (1998) [214] Cross-cultural similarity judgements
of emotion-words (hierarchal cluster
analysis, MDS)

pleasant arousal certainty-uncertainty

Barrett (1998) [215] Self report of affective states (factor
analysis

valence arousal

Batliner et al. (2007) [158] Judgements of spontaneous emotion
speech data (non-metrical
multi-dimensional
scaling)

valence interaction

Fontaine et al. (2007) [208] Cross-cultural study of the semantics
of emotion terms using a componential
approach (PCA, GRID instrument [7])

evaluation-pleasantness activation-arousal potency-control novelty/unpredictability

Table 3.2: Suggested dimensions by different commentators.
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unique appraisal of a situation, which changes according to appraisal variations [216]. Ortony

et al. [74, 6] designed a cognitive emotion model, called the OCC (Ortony, Clore and Collins)

model, which is implemented for the benefit of computational modelling [217, 87, 218]—

valenced reactions contingent on conditional rules. In this model, appraisals of stimuli distin-

guish between 22 emotion types. As illustrated in Figure 3.6, the uppercase labels represent

structural elements, whereas lower case labels correspond to potential emotional states. The

model has three main branches that represent valenced reactions to three types of stimuli: con-

sequences of events, actions of agents and aspects of objects. The first branch represents the

emotions associated with reactions to an event and its consequences, which one can appraise

as a pleasing or displeasing affective reaction. The first distinction is illustrated according to

whether the consequence of the event concerns oneself or of others. The consequences for

other of the event can be desirable or undesirable, and depends on how one feels towards the

other. On the one hand, if the consequence of the event is desirable for the other, one can either

feel happy-for or resentment towards the other. On the other hand, if the event is undesirable

for the other, one can gloat at the other’s misfortune or feel pity. On the other sub-branch, if the

potential consequence of the event is about oneself, one appraises the prospects as relevant or

irrelevant. In the case of a relevant prospect, the potential emotional reaction will be hope or

fear, for which the anticipated prospect is evaluated as confirmed or disconfirmed. For example,

if one hopes for something to happen, and it is confirmed, one will feel satisfaction. This group

of emotions is called prospect-based emotions. If the prospects of an event are irrelevant, the

elicited emotion will be either joy or distress, depending on the appraisal of the consequences

of the event. If the focus is on the self, the elicited emotion may vary between pride and shame,

whereas if the focus is on the other agent one may feel admiration or reproach.

In relation to the middle branch, all emotions correspond to an approval or disapproval of the

actions of an agent. The differentiation made within the attribution group of emotions depends

on the agent’s focus, whether the agent is the self or other. When we react to both an event

and an action, the well-being and attribution type emotions are combined to form the well-

being/attribution compounds group. The emotion gratification, for example, is the combination
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Figure 3.6: The OCC model: global structure of emotion types [6]. The above illustrates
valenced reactions to three types of stimuli: consequences of events, actions of agents and
aspects of objects

of joy (reaction of an event) with pride (reaction to an action). The last branch corresponds to

elicited emotions that are reactions to aspects of objects. These emotions correspond to a liking

or disliking of objects or aspects of objects. This group is called the attraction type of emotions.

A well-developed alternative model is that of Scherer’s [219, 170], the component process

model. In this model, differentiated emotions are the results of successive outcomes of appraisal
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described by a number of stimulus evaluation checks (SECs), along different dimensions. The

following is a brief list of the involved sequences (see [219] for further details):

• Relevance includes checks for novelty, intrinsic pleasantness, and goal/need relevance.

• Implications include checks for causal attribution, outcome probability, discrepancy

from expectation, goal/need conduciveness, and urgency.

• Coping potentials include checks for control and power of the event.

• Normative significance includes checks for internal standards, and external standards.

Scherer [170] conducted a similarity judgement experiment using cluster-analytic and multi-

dimensional scaling techniques on natural language labels. As a result of the study, Scherer

supports that appraisal criteria of the component process model can be organised within the

semantic space of Evaluation and Activation, thus, linking appraisal theory to dimensional

models of affect. More recently, he stated [7] that numerous studies show considerable in-

fluence on emotion differentiation by appraisal dimensions, notably goal conduciveness (con-

ducive/obstructive) and coping potential (control/power). Figure 3.7 shows a mapping of Rus-

sell’s [220] proposed circumplex, with valence and activity as the dimensions, and Scherer’s

[170] own results organised by appraisal criteria—the results were superimposed rotating the

axes by 45 degrees. Another study [196] explored the three-dimensional space of affect (va-

lence, arousal, potency) to examine the position of elicited feeling states, again based on the

results of appraisal profiles. However, they acknowledged a limitation of their study. They

recognised that the use of picture stimuli is not ideal for appraisal criteria—examining an

individual’s goals and needs would be somewhat restricted—therefore, limiting comparisons

between two- and three-dimensional models. The results, nevertheless, suggested that goal

conduciveness correlated highly with the appraisal of pleasantness, which is specified by va-

lence. The arousal dimension appeared to be regulated by novelty and unexpectedness, and the

control/power dimension is determined by the appraisal of coping potential. Meanwhile, a pi-

lot study within HUMAINE research showed that these appraisal variables—that appear to be

linked to the three aforementioned dimensions—tend to receive high agreement with labelling,
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Figure 3.7: Russell’s results of a two-dimensional valence by activity space superimposed on
Scherer’s results based on similarity ratings of emotion terms [7]

namely that of intrinsic pleasantness, goal conduciveness, expectedness, power/powerlessness

of event and consequences [221], while the majority of appraisal descriptors received low rater

agreement.

Based on the component process model, Banse and Scherer [189] confirmed detailed physi-

ological predictions about the vocal changes associated with different emotions. Using acted

speech material, they demonstrated that component patterning, as a consequence of sequential

event appraisal—or stimulus evaluation checks—predicted the configuration of vocal changes

for happiness, sadness, cold anger, and panic fear. Predictions deviated, nevertheless, for con-

tempt, anxiety, shame, disgust, hot anger, and elation.
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When deciding if appraisal-based representations are suited for a particular study, there are

two distinct descriptions that a researcher should consider: (1) researchers may be concerned

either with what the speaker is truly feeling and identify the state that caused the emotions, or

(2) researchers may be concerned with the impression the expressed emotion has on a typical

listener. As mentioned previously (section 3.2.5), this distinction between emotion descrip-

tions has been termed as ‘cause-type’ and ‘effect-type’, respectively [156]. For cause-type

studies, one can operationally define the elicited emotion-related state through the description

of the objective eliciting methods. For instance, a study by Fernandez and Picard examined

drivers’ speech under stress [153], whereby the stress level was operationalised in the context

of varying conditions of cognitive load. Similarly, appraisal theories allow researchers to mon-

itor detailed specifications of appraisal dimensions in the inducing procedure of an emotion. In

the framework of Scherer’s component process model this is done by systematically manipulat-

ing sequential cognitive evaluation checks of emotion-antecedent events (novelty, pleasantness,

goal relevance, etc.) [176, 222]. Intrinsically pleasant and unpleasant images, for example, may

be used to manipulate the appraisal criteria of pleasantness, while a specific event in game play

can be used to manipulate goal conduciveness [223].

3.3.3 Resources

In this section, we review some of the key instruments and resources used to assess observed

behavioural or self-reported affective states. The selection of tools described here are by no

means exhaustive, but they provide us with guidance for our specific goals. The tools we de-

scribe have been used previously for emotion in speech research, except measurements using

FACS, as this is used to measure facial expressions. Because studies of face behaviour are

long-lived, we include the FACS tool in our review to demonstrate the extent to which ob-

servable behaviour can be systematically assessed. We first introduce the FACS tool, and then

demonstrate instruments that embody both discrete and dimensional representations.
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Facial Action Coding System (FACS)

The Facial Coding System (FACS, [85]) measures observable action (contraction and relax-

ation) of isolated facial muscle movements—called Action Units (AUs). This system requires

high levels of expertise with up to 100 hours of training. By itself, it is an index system for

facial expression, and describes facial movements without implications about the behaviour it-

self. Instead, the Emotion Facial Action Coding System (EMFACS) [224] uses FACS scoring

just on facial behaviour that may have connotations of emotion. It is an abbreviated version of

FACS and only uses a selective subset of the FACS coding system. However, in this system,

facial actions are believed to be associated with certain discrete expressions, such as “happi-

ness”, “sadness”, “surprise”, etc. The authors state that it is unsuitable for disguised, highly

controlled, subtle or blends of emotions4. FACS is a descriptive analysis of behaviour, rather

than an inferential process. Nevertheless, together with empirical findings of experience or

inference, FACS can be used to be associated with scoring criteria for expressions of certain

discrete emotions—as Ekman’s work demonstrated—or emotion dimensions [225].

It has been shown that facial and acoustic features are strongly interrelated. Busso and Narayanan

[226] showed that the relationship between facial gestures and speech is influenced by emo-

tional content. They suggest that their results are beneficial for applications such as facial

animation and multimodal emotion recognition.

Emotion Lists

In section 3.3.1 we mentioned that theoretically derived lists can range from 107 to 558 words

for non-basic emotions. Cowie et al. [30] provide a variety of website links that list emotion

words and phrases that reflect everyday usage, rather than categories chosen from theoretical

assumptions. To give an example of the vast amount of words that are used to describe feelings

in natural language, one of the sites5 lists 4000 words and provides over 600 words to describe

negative feelings alone. Cowie et al. inspected the sources and found that 280 occur in four or

4see http://www.face-and-emotion.com/dataface/facs/emfacs intro authors.html for EMFACS details of use.
5http://eqi.org/fw.htm.
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more sources. They reduced the list to 43 cover classes (see Table 1, [30, p. 226]) that they

found were most observed in naturalistic data deduced from several studies [227, 228, 221].

The Grid Instrument

The GRID6 instrument was developed by Scherer and colleagues [7, 208] to address the seman-

tics of emotion terms using a componential approach. This instrument consists of a question-

naire that gathers data to assess the meaning of emotion words across 20 different languages.

The questionnaire comprises 24 emotion terms and 144 emotion features that represent differ-

ent components of emotion (e.g. appraisals, bodily reactions, expressions, action tendencies,

and feelings). So far, empirical evidence demonstrates that four dimensions can adequately

describe the semantic space covered by the emotion terms. These are ‘Valence’, ‘Power’,

‘Arousal’, and ‘Novelty’.

Positive and Negative Affect Scale (PANAS)

The Positive and Negative Affect Scale (PANAS) is a tool that consists of two 10 adjective

mood scales to measure affective states [229]. PANAS consists of discrete categories sub-

divided into positive (attentive, interested, alert, excited, enthusiastic, inspired, proud, de-

termined, strong and active) and negative (distressed, upset, hostile, irritable, scared, afraid,

ashamed, guilty, nervous and jittery) categories. Each term listed is then rated using a five-

point scale indicating how much the emotion is present. In some respect, this tool is similar to

other valence type models.

The Profile of Nonverbal Sensitivity (PONS)

The profile of nonverbal sensitivity (PONS), developed by Rosenthal, Hall, DiMatteo, Rogers

and Archer [143], consists of a scale to investigate how humans infer nonverbal information

via facial, body and vocal cues (see [230]). PONS is composed of discrete auditory and visual

information portrayed through individual segments, both presented in a randomised matter.

6For more information refer to: http://www.affective-sciences.org/grid.
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The visual information is displayed in three types of cues: body, face, and a combination of

both (figure cues). The auditory information is presented as a spliced voice segment (RS) or a

content-filtered voice (CF). The different combinations of visual and auditory cues are referred

to as “channels”. The relevance of voice filtering was used to remove the lexical aspect of the

message, leaving the “tone” of voice7 present.

Diagnostic Analysis of Nonverbal Accuracy (DANVA)

The Diagnostic Analysis of Nonverbal Accuracy (DANVA) tool, designed by Nowicki and

Duke [231] is an instrument designed to evaluate ability to accurately process nonverbal in-

formation. It assesses facial expression, posture, gesture and “tone” of voice. The test for

the perception of facial expressions uses images of happy, sad, angry, fearful, or neutral expres-

sions. If the participant feels the emotion is not listed, the choice would be classified as “other”.

The test on the perception of tone of voice involves a semantically neutral sentence spoken to

portray each of the four emotions (happy, sad, angry or fearful). To test the expressive compo-

nent, participants were asked to speak a semantically neutral sentence after being described a

situation to them designed to elicit one of the four emotions. Good internal consistency (.68 to

.88) and a good test-retest reliability (.70 to .86) have been demonstrated for this tool [230].

Self-Assessment Manikin Test (SAM)

The dimensions Pleasure, Arousal, and Dominance (PAD) have been used as a Semantic Dif-

ferential scale [204, 232]. The Self-Assessment Manikin (SAM) is a graphical depiction of

the PAD emotional model (Figure 3.8). This easy to use rating tool was developed by Lang

[8] as an alternative to verbal emotion assessment, making SAM language-free and suitable

for cross-cultural studies [233]. The three dimensions are represented in the form of graphical

characters from which the user can choose an emotional state. This tool has been used by many

researchers for assessing emotion [234, 235, 152, 23, 236, 98, 237]. Morris et al. [238] com-

pared their results with the results obtained in the Mehrabian and Russell [204] study, claiming

7Westerman et al. [230] refer “tone” of voice to non-lexical information transmitted with verbal messages.
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PLEASURE

AROUSAL

DOMINANCE

Figure 3.8: Self-Assessment Manikin test (SAM) [8]. In most cases, the labels “Pleasure”,
“Arousal” and “Dominance” are not shown to the participant during the experimental proce-
dure.

sufficient similarity. In their study, a combination of SAM and a set of emotion adjectives were

used to analyse emotional responses to television commercials, and showed that measurements

were comparable to measurements across various groups.

Trace Tools: Temporal Measurement

Cowie et al. [9] developed a tool to track emotional content as it changes over time, called the

Feeltrace tool (Figure 3.9). It has two emotion dimensions, Activation (from passive to active)

and Evaluation (from negative to positive). In this system they use a colour coding system

derived by Plutchik [34]. They found the tool comparable to using an emotion vocabulary of

20 words or more. While they recognised the limitations of the tool, they listed several advan-

tageous. The tool can handle in-between states, it comes with statistical advantages because

of obtained numerical data, and it has the unique ability to measure temporal variations, which

seems particularly suitable for speech. However, there is a lack of ability to capture details

that distinguish certain emotions, particularly the often-cited example of fear and anger. Un-

derstandably, reducing emotion to two dimensions may lose some detail for certain states. In

this regard, Grimm et al. [152] found the tool was inadequate for their study because of its
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Figure 3.9: The Feeltrace two dimensional labelling tool that allows measurement of an emo-
tional state continuously over time [9].

restrictions on a two-dimensional space. Furthermore, they argued that valence is a bipolar

rather than an angular-type periodic entity. To distinguish between emotions such as fear and

anger, they favoured the three-dimensional PAD model (i.e. the SAM tool, Figure 3.8).

In a similar vein, tracking is accessible on emotional intensity, using the ETraceScale (see Fig-

ure 3.10). Emotional intensity can be quantified by moving the mouse to follow perceived

differences. Intensity is represented by different colours, ranging from blue (zero intensity)

to red (maximum intensity), and gradual changes are represented by circle size. The scale is

labelled at interval markers to indicate to the rater the different emotion intensities: zero emo-

tion, mild social emotion and emotion at maximum intensity. The EtraceCat (Figure 3.11) is a

counterpart of EtraceScale that quantises motion into categories, rather than having continuous

tracking. The categories are ‘completely emotionless’, ‘partial emotion’, and ‘emotion in the

full sense’.

A comprehensive use of trace-type labelling is included in the Humaine database [194], a nat-

uralistic database of multiple modalities. For this database, they extended the use to include:

• the intensity of the emotion (IntensTrace)
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Figure 3.10: ETraceScale allows for real-time labelling of Intensity relative to time, developed
by Cowie et al. (diagram obtained from Steidl [10]). Raters are able to use the mouse, pressed
down, to record emotion intensity from moment to moment.
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Completely
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Figure 3.11: ETraceCat demonstrates the intensity as categories, developed by Cowie et al.
(diagram obtained from Steidl [10]). Raters are able to use the mouse, pressed down, to record
emotion intensity from moment to moment.

• the level of which the emotion appeared genuine or acted (ActTrace)

• the extent to which a person is trying to cover the emotion actually felt (MaskTrace)

• the dimensions of power (PowerTrace) and unexpectedness (Anticipate/ ExpectTrace)

• the intensity of the highest ranked emotion word for a clip (WordTrace), such as fear.

Geneva Emotion Wheel (GEW)

The study mentioned earlier by Scherer (section 3.3.2) attempted to amalgamate the scientific

concepts of emotion with layman concepts of emotion. By mapping the results derived from

the component process model onto Russell’s circumplex model, he examined the link between

appraisal profiles and the dimensions often used in self-reports studies, Evaluation and Activa-

tion. In his work, he created a graphical representation of emotion family members, whereby

the emotion intensity is presented by circle size, being more intense at the periphery than at the

centre. The choice of concrete families were inspired by what are generally considered ‘basic’

or ‘fundamental’ emotions. Rather than a smaller set of basic emotions, a total of 16 emotion

families were chosen to facilitate ease of reading. This prototype, called the Geneva Emotion

Wheel (GEW) is shown in Fig 3.12.
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Figure 3.12: Geneva Emotion Wheel (GEW) demonstrates a dimensional model that incorpo-
rates discrete labels and emotion families [11].

This instrument is used to measure the affective responses of participants to a variety of stim-

uli. These can include objects, situations and events. The emotion families are arranged around

the wheel in accordance to appraisal dimensions, namely as Control/Power and Pleasantness-

Unpleasantness. Participants are informed that the represented words for each family are sim-

ply an indication to a range of closely related emotions. The participants are able to choose

from two emotion families if a blend seems to be present at different intensities.

The GEW conveys potential from both a discrete and dimensional approach. The dimensional

aspect adheres to the comparability of emotions. The visual representation of intensities and

the categories assigned to emotion families allow for a conventional association of emotion.

The GEW is a relatively recent development, and more testing needs to be done for the validity

of the tool before it is established for general use. It has, however, been given some use in

emotion-related research [239, 22].
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3.3.4 Labelling Naturalistic Emotional Speech

The development of naturalistic speech databases (see [240, 241, 242, 201] for a list of existing

corpora) revealed several problems with annotating that are not present with acted material. An

early example of a naturalistic emotional database is the Leeds-Reading database [243]. This

database contains real-life emotional situations with an emphasis on intense material. Speech

was extracted from interviews with a psychologist and from broadcast material. Douglas-Cowie

et al. [201] provided a review of a series of three studies conducted on the material. Emotional

annotation was organised into four levels. The first level used freely chosen everyday emotion

labels. The second level specified the strength of the emotion, together with a sign to indicate

valence. The third and fourth level described emotional episodes based on the individual’s ap-

praisal of the event. They specified that the number of categories associated with an in-depth

qualitative coding strategy would amount to smaller occurrences in each category. Although

broadcasts provide emotionally rich material, this corpus is not publicly available due to copy-

right issues, as is the case for most truly natural material.

The development of the Belfast Naturalistic database [244] followed from the Leeds-Reading

database and overlapped in descriptive schemes, exploring the audio-visual data from the

broadcast material. Their focus was to develop a quantitative description, and address two

aspects that they concluded marked naturalistic data: uncertainty and gradation. To deal with

uncertainty, the database included all individual ratings rather than solely determining agree-

ment. To address gradation, they developed trace techniques to evaluate and quantify emotion

as it changes over time along underlying affect dimensions: Evaluation and Activation. For the

rating task, they acquired three trained raters to use the tool. They argued that using quantitative

measurements, with a tool such as Feeltrace, better estimated agreement levels because labels

can be evaluated as similar or dissimilar [201]. As somewhat unexpected, dimensional rating

showed less individual differences, with agreement being closer on the evaluation dimension.

To measure rater agreement on time-continuous evaluation, the mean of the cursor position

represented the selected categories. As an alternative to averaging cursor positions, the scale
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can instead be discretised into a finite number of categories. Although, discretising continuous

dimensions may be better suited for discrete (quantised) speech segments.

According to Cowie et al. [30], the most extensive collection of material to date is found in

the JST/CREST Expressive Speech Corpus [245]. It contains several sources of material for

analysis, such as television broadcast, DVD and video, but its main emphasis is the collec-

tion of volunteers who recorded conversations in everyday situations wearing sound recording

equipment. The schema for labelling included the Feeltrace tool (as above). They note that

labellers understood the meaning and validity of the two dimensions, Valence/Arousal8. The

work on this concluded that the chosen framework was not sufficient to describe the expres-

sions found in the material. Therefore, they proposed three levels for labelling: state of speaker,

style of speaker, and physical aspects of the voice—each level contained up to five further sub-

categories. This comprehensive schema appears to be necessary when listening to speech in

context and over long segments. For the task of labelling, they familiarised themselves with the

speaker’s mannerism from the material obtained over a five-year period. Hence, this descrip-

tive scheme is intuitively data-driven. For this thesis, where short segments of speech are rated,

such a comprehensive scheme may not be suitable to the same degree.

In most naturalistic speech datasets, clearly pronounced emotions, such as the full-blown pro-

totypical types are not regularly conveyed. While most labelling schemes for acted data contain

a predefined list of well-established emotion categories, these categories do not generally apply

to spontaneous speech that occurs in daily situations. In many cases, ad hoc labels that are

appropriate in the context of a particular research—application-dependent or data-driven—are

carefully chosen. Unfortunately, choosing a descriptive framework for naturalistic emotional

speech remains a difficult task, and many things need to be considered. Cowie et al. [30] sum-

marise some of the issues surrounding labelling databases:

8Commentators recognise some ambiguity between dimensions used—we use the terms Evaluation/Activation
instead of Valence/Arousal
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• Economy. The vast number of available words in everyday language to identify emo-

tional states makes it an unwieldy descriptive system. To address this, fewer primitive

categories can be chosen based on theoretical selection.

• Consistency. As mentioned in section 3.3.1, broad ‘cover classes’ are often proposed to

achieve economy. However, cover classes are data-driven, and different datasets, there-

fore, suggest different cover classes. It is suggested to base cover classes on theory to

reduce the chance of varying lists.

• Intermediates. Naturalistic emotional databases appear to contain elusive states that are

not sufficiently described by a singular every-day term. To overcome this, abstract or

appraisal-related dimensions are suggested.

• Semantics. The capacity of semantics being associated with a label is an important aspect

for use in a functional system, where not only the state is recognised but also what caused

the state to arise. Appraisal-based labelling offers ways of representing meaning with a

label.

• Natural classes. Although one can suggest that choosing classes based on theory should

be less problematic, it is difficult to know whether well-chosen classes can be refined to

suit all envisaged applications. Classification is often application-dependent, and choos-

ing suitable classes for the right application is a subtle problem.

3.4 Discussion

Assessments provide the labels that are necessary to identify emotions. Because emotions are

pervasive in a number of response systems, emotion can be assessed in several ways. In fact,

we have already noted that emotion is commonly accepted as consisting of several components.

In this chapter, we first discovered that labels provided by self-reports, physiological measure-

ments, and behavioural observations are established corresponding to one of these components

(section 3.2). The investigation of emotion involves linking the results of one type of mea-

surement with another. For example, physiological measures (including acoustical data) are
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linked to either the (subjective) experiential component or the (observable) behavioural com-

ponent, or both. Although self-reports are the only means to obtain information about the

subjective experiential component of emotion, measuring judgements of emotion (behavioural

component) offer better validation methods, and are therefore considered more reliable (section

3.2.3 and 3.2.5). Although distinct in nature, some theorise that all components are coherent

(and synchronous) with each other, while others argue that they are only loosely coupled (sec-

tion 3.2.4). It is evident that there is scope for further work within this line of research as

no technique available can successfully expose the nature of all components simultaneously.

Each type of assessment, therefore, remains independently and equally significant; as the lit-

erature suggests [246, 7], there is still no ‘gold standard’ measurement of emotion. For this

thesis, we focus on emotion that can be observed, irrespective of experiential (and non-visible

physiological) congruence. In fact, for natural spontaneous speech, lack of coherence between

measurable components may be expected. In cases of deception or social compliance, for ex-

ample, the observed behaviour may not correspond to the subjective experience of an emotion.

In other words, the internal state of the speaker (cause-type) may not correspond directly with

the effect the characteristics of speech would be likely to have on a typical listener (effect-type)

(see section 3.2.5). Moreover, we pointed out in section 3.2.6 that there are two approaches

to labelling, employing a group of expert judges or working with a large-group of non-expert

judges. While in most cases expert judges are assigned, the assignment of gathering large

numbers of annotators, it seems, is rarely a principal research objective. Our aim is to provide

effect-type labels—representing the listener’s perceived expression of emotion—evaluated by

an undefined group of individuals (naı̈ve judges) through large-scale listening tasks. To this

end, this brings us to our first research question:

RQ1: What are the practical prerequisites for carrying out large-scale listening tests?

Subsequently, this chapter gave an overview of discrete and dimensional type representations of

emotion, including key instruments that have been used in recent studies of emotion and speech

(section 3.3). First, we looked at the discrete categories approach (section 3.3.1). Language

provides for a meaningful way for people to describe emotion, and tools that use single-word la-
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bels remain popular. Such tools are relatively easy to develop and may be an exemplary choice

when considering laymen’s conceptions, given that everyday language terms are the most fa-

miliar way to describe emotions. However, the literature indicates that describing emotion sci-

entifically with discrete labels poses several problems. Choosing an appropriate list of emotion

terms appears to be the most obvious difficulty. There is a discrepancy among commentators

with the type and number of categories that are compiled. This seems to be particularly com-

plex when dealing with spontaneous naturalistic data—perhaps not so much when dealing with

acted data containing stereotypical expressions. Studies that do use single-word labels often

provide standardised lists that are theoretically derived or empirically established. In cases

where a small amount of categories are used, such as the “Big Six emotions, it is common with

naturalistic data that there are no observable occurrences in the given dataset. If one just views

emotions as basic, it seems inevitable that certain underlying emotions, or emotions of the same

family, will be neglected. This approach seems to inhibit progress for studies of natural spon-

taneous speech. Moreover, choosing too few categories can pose other shortcomings. If the

task uses only a small set of categories, it is thought that the study may act as a discrimination

task (choosing between alternatives) rather than a recognition task (explicitly identifying the

particular category) [12, 189, 247]. In other words, if the study is a forced-choice task with

a relatively small number of response alternatives, the chance of guessing correctly increases.

Statistically, corrections can be made to take this into consideration. The Kappa statistic [248],

for example, measures agreement on nominal data (i.e. discrete labels) and takes into account

agreement occurring by chance [152, 249]. On the other hand, to avoid guessing between al-

ternatives, some studies use free-response formats, whereby a participant can respond with a

category that is not provided in the list ([250]). Studies regarding spontaneous speech often

choose standard lists of non-basic emotions. This often becomes problematic as lists can eas-

ily turn out to be large, making labelling practically intractable. Moreover, ad hoc categories

are often selected suited for a particular speech dataset. This, however, makes it difficult for

comparing results across studies with different speech datasets, and across studies that involve

various cultures. In demonstrating qualitative differentiation in acoustic patterns of emotion

in speech, Scherer [12] writes that it can be problematic when emotion families are not taken
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into consideration. Variants of the same emotion are generally not specified with discrete rep-

resentations. On the other hand, a model that embeds emotion families within some hierarchal

structure may be a suitable solution for observing variance among emotions. However, we ar-

gue that describing emotions along dimensions, the alternative descriptive framework, may be

better suited for this.

In section 3.3.2, we examined the abstract and appraisal dimensional representations. First,

we observed that there is a large body of empirical evidence to suggest that emotions can be

successfully mapped onto abstract dimensions. A familiar criticism that dimensional models

receive is the inability to differentiate emotions sufficiently. For this reason, common debates

reflect on the type and number of dimensions needed. There are several benefits to the dimen-

sional model. Firstly, they allow for quantitative measurements that can be tracked over time,

and be visually presented, which one would argue is more beneficial for gradual transitions in

dynamic stimuli [152]—although temporal measures, such as tracing, have been performed on

the intensity of categorical descriptions [194]. From the literature, it is evident that discrete cat-

egories, such as the ‘basic’ types, are used more often in studies of facial behaviour than voice

behaviour. In part, this may be due to the potential use of static stimuli (e.g. photographs),

rather than merely dynamic stimuli (e.g. movies). For speech, however, only dynamic stim-

uli can be used, and, therefore, the development of possible temporal assessment needs to be

considered. Second, dimensions indicate proximity (similarity, dissimilarity, etc.) between

observed states, whereas the relationships between categorical descriptions are undefined and

only identical matches are considered. As a result, dimensions give a better estimate for real

consensus among raters compared with categorical descriptions [201]. Third, with a predefined

list, observations will be restricted to the number in that list, even though certain other states

may be observed. Dimensions, however, would not be restricted to a list and would capture all

emotion types, both full-blown and underlying emotions, at least in theory. Moreover, because

labels vary between studies according to the particular speech dataset, scenario, or application

in mind, its subjective use poses problems for cross-corpus analyses. It has been suggested

that affect dimensions are easier to match in this regard [251]. Lastly, compared to dimen-
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sions, one may expect rating consistency to be higher when using emotion terms that laymen

are familiar with (such as happy, sad, etc.). However, this is not necessarily the case. Some

studies found that ratings on dimensions were more reliable than those for categorical descrip-

tions [252, 221, 16]. Although many consider dimensions to be a reduced account of emotion

description, many researchers aware of this limitation heedfully proceed with the dimensional

approach [187, 159, 253, 157, 194, 152, 254, 32, 255, 16].

The other forms of dimensional representations examined were the appraisal dimensions (sec-

tion 3.3.2). Appraisal models are increasingly becoming more accepted in the research commu-

nity [151]. However, Devillers et al. [24] claim that there is a major methodological drawback

with appraisal-based descriptions. That is, to annotate with appraisal dimensions reliably, the

subject who is being induced needs to annotate either introspectively in real-time, which can

affect the emotions experienced and expressed, or rely on the recall of the event. The dis-

tinction made between cause- and effect-type emotion descriptions (section 3.2.5) seems to be

particularly worthy of attention with appraisal-based annotations. To study how emotions are

generated (cause-type), these representations seem very suitable. In the case of an effect-type

study, observers would be required to rate appraisal-related states in other people. So far this

approach has received little empirical work [256], and remains to be examined. Such a task is,

arguably, difficult to conduct successfully, which may result in low agreement levels. In fact,

a study by Devillers et al. [221] compared verbal labels, abstract dimensions, and appraisal-

based annotations of perceived audiovisual recordings, and found that agreement was relatively

low for the appraisal-based annotations [221].

Embodying either the discrete or the dimensional model, in section 3.3.3 we reviewed some of

the key instruments and resources used in judgement studies. Although these tools are not all

made available, they do provide us with a reference point for planning and developing our own

rating tool specific to our needs. In summary, we consider the following to be key aspects in

choosing a descriptive framework for labelling:
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Theory. A researcher needs to bear in mind the limitations that each descriptive scheme

has due to theoretical issues (see section 2). If one adapts the notion of ‘basic’ emotions,

for example, it is generally assumed that certain emotions are universal, and that they

possess specific physiological and expressive profiles.

Orientation. The type of description that is required, distinguished by either cause-type

or effect-type labelling (section 3.2.5), determines the type of assessment chosen for

labelling emotional speech.

Accessibility. The practical usability of a measuring tool needs to be considered regarding

labellers coping potential. It may be necessary to have methods that make it accessible

for participants unfamiliar with emotion theory, i.e. for non-expert users.

Elicitation type. While a specific chosen set of labels may be suited for one particular

speech dataset, it may not be suited for another. The labelling methods chosen often

result from the type of elicitation found in a given dataset (see section 4.3 for more

information). For instance, labels appropriate for acted, stereotypical expressions rarely

reflect the expressions found in real-life spontaneous data.

Modality. Certain emotion terms may be modal specific (see section 4.1). Emotion terms

that are particularly well suited for facial stimuli may not be relevant for speech stimuli,

and vice versa. For example, studies have labelled speech material for underlying states

(or attitudes) such as ‘motherese’ [193] (baby-talk) and ‘sarcasm’ [257]. These terms are

arguably only observed from speech—specific to the dataset under investigation—and

not from facial expressions, at least not to the same degree. Most studies of spontaneous

speech consider strongly the notion of underlying emotions. Studies of facial behaviour,

however, rarely consider such underlying emotions. The distinction between the different

modalities of expression, and the relevant emotion terms used, is an important one to

consider when choosing a labelling method. Although the discrepancy between emotion

lists appear to exists between modalities studied, to our knowledge this is not widely

acknowledged by others in the literature.
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Lastly, we reviewed several recent schemes proposed for labelling naturalistic emotional speech

datasets, and outlined some of the difficulties that researchers were faced with (section 3.3.4).

It appears that labelling methods proposed for naturalistic speech are, in most cases, data-

driven. Several propose comprehensive schemes that provide in-depth qualitative distinctions in

conjunction with dimensional labelling (Evaluation and Activation). It is known that Evaluation

and Activation dimensions capture a relatively large amount of emotion variation [201]. The

use of these dimensions appear to be suitable for natural spontaneous speech, as demonstrated

by the work on the Belfast Naturalistic database [244] and the JST/CREST Expressive Speech

Corpus [245]. The descriptive scheme chosen for this thesis are the two dimensions Activation

and Evaluation. By taking into account some of the issues outlined by Cowie et al. [30] (see

section 3.3.4), we postulate this choice for the following reasons:

Economy. The divergence about the number of emotion words used and the divergence

about their primitive significance makes the discrete representation inconvenient.

Consistency. The different emotion categories proposed relevant to a particular speech

dataset, using ad hoc or cover classes, limit the comparison of results across studies. The

objective nature of dimensions is, arguably, more advantageous for this reason.

Intermediates. Naturalistic speech databases often contain subtle (intermediate or com-

bined) states for which there is no appropriate single-word term. The broad coverage of

the dimensional representation would capture all potential intermediate emotions, albeit

a lower degree of qualitative differentiation.

Furthermore, although discrete representations are more suitable for qualitative differentiation,

we consider that one of the major advantages of using abstract dimensions is:

Quantifiability. The quantitative nature of dimensions provide coordinates for proximity

measurements for more accurate rater consensus estimates, and provides coordinates that

can be visually presented and tracked over time. A dimensional representation is more

sufficient for analysing temporal/dynamic changes.
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However, there are two things we need to consider for the task of labelling. First, although

naturalistic emotional speech has been adequately evaluated on dimensions by expert judges

familiar with the concept of dimensional theories, it is uncertain as to how appropriate this

method is for naı̈ve judges. In order to appoint naı̈ve listeners, we need to consider the acces-

sibility of this concept, how well do lay people understand the concept of emotional Activation

and Evaluation. Second, because the speech material is of a naturalistic sort, emotions are

mostly underlying and not as clear-cut as might be expected, possibly making the task too

demanding for naı̈ve judges. Although the Activation and Evaluation dimensions have been

used successfully with some datasets, this may not be the case for speech composed of mood

inducing procedures. With this in mind, this gives rise to the following research question:

RQ2: Can listeners adequately capture variation of Activation and Evaluation of emotion

in naturalistic speech?

3.5 Conclusion

This review chapter considered two essential requirements involved with labelling emotional

data, (1) how to measure and assess it, and (2) how to conceptualise and classify what has been

measured in order to make emotional states distinguishable. First, the different assessment

techniques (self-reports, physiological measurements, and behavioural observations) were ex-

amined, outlining that each technique deals with a particular component of emotion: cognitive,

experiential, physiological, or behavioural (section 3.2). Research in this thesis is concerned

with labelling of effect-type description (section 3.2.5), whereby behavioural measurements (of

perceived expressions) are exclusive. Additionally, it was argued that labels provided by non-

expert judges are equally valid. We have decided to carry out a case study (Chapter 7) in order

to perform large-scale listening tests, thus exploring research question one (RQ1).

Second, this chapter considered the different prevalent approaches for classifying emotions

(section 3.3), which can be broadly distinguished by discrete or dimensional theory. We con-
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sider the Activation and Evaluation dimensions to be the most enduring in the literature, and

appropriate for dealing with naturalistic emotional speech. To implement this into a tool, the

case study will examine if viable effect-type labels can be determined. This task will, in and

of itself, examine whether the use of dimensions is suitable for naı̈ve judges, and investigate if

a sufficient amount of emotion is present in terms of these dimensions in the given naturalistic

emotional speech dataset, composed of mood inducing procedures. This work will contribute

to attempting to answer research questions two and three (RQ2 and RQ3).

Although throughout this chapter we have emphasised that the issues with data labelling in-

terconnect deeply with the issues of speech data types, little has been mentioned about the

available speech data itself. This will be reviewed in the next chapter. Furthermore, to give our

investigation of data labelling more significance, the following chapters will link in with our

proposed objectives, making the connection with the perception process of vocal expression

(see Chapter 4), and the acoustic correlates of vocal expression (see Chapter 5).
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4
Emotion and Speech

Having looked at a broad overview of the theoretical foundations of emotion in Chapter 2, and

how we may describe emotion in Chapter 3, this chapter deals with how emotion is commu-

nicated through speech. Speech is an acoustically rich signal that comprises several layers of

information: linguistic, paralinguistic, and extralinguistic [258]. The linguistic aspect commu-

nicates the verbal coding system of human language, the paralinguistic aspect communicates

non-verbal information about the speaker’s feelings, attitude, or emotional state, and the ex-

tralinguistic layer conveys information about a speaker’s characteristics, such as identity and

gender. These three communicative functions are an integral part of speech that are charac-

terised by certain acoustical patterns, yet are intertwined within the same speech signal. First,

this chapter will give an overview of the different research studies that one can undertake with

regard to vocal communication of emotion, with emphasis on labelling paralinguistic mean-
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ing. Second, in order to conduct research on emotion in speech an obvious starting point is the

acquisition of emotional speech data. For this, we will summarise the different types of data

available for emotion in speech research, and the main issues that need to be considered.

4.1 Expression and Perception

When humans interact, emotion is communicated innately through various modalities (i.e. fa-

cial expression, speech, and body gestures). Recently, an increasing number of studies report

on multimodal recognition of affect and the existence of relations and/or dependencies between

the different modalities [23, 259, 260]. A study by Busso and Narayanan [226], for example,

showed that if one modality is constrained, other channels have a stronger emotional modula-

tion. Furthermore, there appears to be attentional biases towards facial expressions and vocal

expressions when inferring emotion. Some suggest that the visual channel is the most common

way for people to infer emotions in everyday life [261, 262], while others emphasise vocal

cues are [263]. There is an increasing amount of research being carried out on how emotion

is conveyed and perceived from vocal emotion expression, and it has been shown that listeners

are quite successful at inferring affective states and attitudes on the basis of vocal cues alone

[264, 265, 266, 73, 267, 268], with an accuracy percentage generally found at around 50%

[189]. For acted vocal portrayals, Scherer [12] reported in his review recognition accuracies

between 55% and 65%—being five to six times higher than expected by chance—while the

general reported average accuracy for facial expressions is around 75%. He points out several

potential reasons for this difference. First, the dynamic nature of vocal stimuli may produce

more complex patterns that are less distinguishable compared to specific muscle configura-

tions found in static facial stimuli. Second, emotions that are from a similar family may be

more distinctly recognised when expressed vocally. He further pointed out that emotions such

as sadness, anger, and fear are generally recognised more accurately from vocal expressions,

yet joy seems more ambiguous for vocal expressions compared with facial expressions, from

which it is recognised almost perfectly. In fact, specific emotions may be better expressed via

the voice channel due to the situational context. For instance, if distance governs emotional
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communication, one is more capable of expressing emotions such as ‘fear’ vocally—serving

as an alarm signal [269]. Nevertheless, it is widely acknowledged that the human voice is one

of the primary channels of social and affective communication [105]. Darwin [33] provided

the first comprehensive account of vocal emotion expression. His perspective, consistent with

other contemporary perspectives (e.g. [73, 189]), suggests that specific vocal acoustic cues are

associated with discrete affective states (see [269] and [147] for a review on acoustic correlates

for discrete emotional states). In more recent studies, vocal acoustic cues have also been shown

to correlate with a small set of continuous dimensions [157, 270, 87].

4.1.1 Brunswikian Lens Model

Vocal communication of emotion typically involves two or more individuals emitting and reg-

istering signs of emotion. The various communicative aspects can be illustrated within the

Brunswikian lens model, a conceptual framework of perception [271]. The model was orig-

inally intended for visual perception, which has since been used to conduct judgement and

interpersonal perception studies [272, 273]. It is based on cue theory, which suggests that emo-

tion is perceived through unconscious inferences drawn from a combination of sensory cues

that are probabilistic and not fully reliable [242, 274]. Brunswik suggested that objects are

frequently observed from multiple cues, and emphasises that the observer makes do with a

variable set of constricted and/or imperfect cues. In other words, the perceiver can intuitively

make valid interpretations from uncertain information conveyed by these cues. The perceiver’s

flexible ability to substitute interchangeable cues is referred to as vicarious functioning. The

matter of investigating individual cues is complicated by the fact that configurations associated

with one particular emotion might, in fact, be associated with multiple other behavioural states,

which are not necessarily emotional ones. Particular cues may have alternative meanings. For

instance, a smile can be associated with happiness and success, yet be similarly associated with

emotions of hedonic contrast, such as nervousness and failure [138]. This issue has been re-

ferred to as systematic ambiguity [19, 156].
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Figure 4.1: Scherer’s modified version of the Brunswik model of perception [12]. This figure
shows the relationships between objects and processes involved on the “phenomenal level”
(top) and the corresponding “operational level” (bottom).

Based on Brunswik’s functional lens model, Scherer [73] suggested that research should be

based on a modified version of this model that tailors vocal communication of emotion (Fig

4.1). In a more recent review of the different paradigms of emotion and speech, he has re-

asserted this view [12]. The model illustrates the different aspects of emotion communication,

which distinguishes between the speaker’s encoding (or expression) of emotion, the transmis-

sion of the sound, and the decoding (impression) performed by the listener. According to the

model, the perception process involves distal and proximal cues. A proximal cue (cues close to

the observer) is a physical stimulation pattern in the organism’s senses that corresponds to the

cues of any given external object or event in the environment, i.e. the distal cues (cues distant

from the observer) [275]. In terms of the visual domain, distal variables include measurements

of an object’s size, distance and position, whereas the proximal variables are represented by

the retinal image it produces. The example provided by Scherer [12] for auditory perception

explains that distal cues are the objectively measurable acoustic changes (cues distant from the

observer), such as the fundamental frequency of speech. These cues, in turn, are transmitted
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through a medium to the listener, which are then represented as proximal cues. The proxi-

mal cues can be explained by the process that “gives rise to the pattern of vibration along the

basilar membrane, and in turn, the pattern of excitation along the inner hair cells, the conse-

quent excitation of the auditory neurons, and, finally, its representation in the auditory cortex”.

In consequence, the listener attributes the perceived proximal cues to the speaker’s emotional

state.

In summary, the model highlights the uncertain relationship between objectively measured (dis-

tal) and perceived (proximal) cues. In real life, the distal cues are often misrepresented due to

the distortion of the acoustic signal through the transmission channel (affected by noise, dis-

tance, or medium), and/or by the individual’s physical characteristics of their auditory percep-

tual system (e.g. attenuation of certain frequency bands due to hearing impairments). These

variables affect the transduction and coding process. Moreover, even if the proximal cues reli-

ably map the valid distal cues, it is still possible for the listener to infer incorrectly the speaker’s

emotional state due to cognitive influences during encoding. To quantify the relationships be-

tween distal and proximal variables, the relationship between acoustic patterns and the under-

lying speaker state, Brunswik suggested that a correlation coefficient is the most appropriate

measurement, the degree of which offers an index for the ecological validity1 [274]. Most stud-

ies combine the detail of encoding and decoding processes, while others focus specifically on

one aspect of the perceptual inference process. Scherer distinguishes the type of studies that fit

the various aspects outlined within the model. These are outlined below.

4.1.2 Encoding Studies

In encoding studies (referred to as ‘speaker-centred’ studies by Schröder [87]), the research is

exclusively focused on establishing the association between emotional states and the measur-

able acoustic parameters of the speech signal—assuming that unique acoustical patterns (distal

cues) exist for the different emotional states. Studies regarding automatic recognition of emo-

1Ecological validity is the extent to which the conditions simulated in an experiment or study reflect the con-
ditions in real life. In other words, it is the extent to which the findings can be generalised to the real world.
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tion in speech, for example, are considered to be placed in this domain [87]. Because voice

analysis is representative of the type of speech data under investigation, encoding studies can

be grouped into three major categories: acted emotional expression, natural emotional expres-

sion, or induced emotional expression [12]. That is, the different data types (as presented in

section 4.3) are characterised according to the emotion elicitation found in the respective data

types. That being the case, studies according to these data types are methodologically different.

First, they can be distinguished by the degree of experimental control throughout the recording

process. Whereas recorded material found in naturally occurring situations is mostly beyond

the researcher’s control, induced and acted data types are generally obtained in a controlled

environment. As a result, it is rather easy to obtain good audio quality on the recordings of

acted and induced data types. Second, both natural and induced data types are oriented towards

ecological validity, representative of actual emotional occurrences, while acted data represent

either stereotypical expressions or try to reproduce actual real-life expressions. Essentially, en-

coding studies involve finding associations between a given emotion label with a set of acoustic

parameters. For acted data, the instruction is given to portray a given emotion, so the intended

emotion is predetermined. Therefore, no perception tests need to be carried out to determine

the representative labels—although perception tests can be performed to determine the quality

of acting. With natural and induced data, on the other hand, there is no certainty with the pre-

cise nature of the underlying emotion, so perception tests are necessary. In other words, most

studies involving natural and induced data types combine both encoding and decoding aspects

in one study. Third, the issues associated with labelling often rests on the type of data gathered.

In recent studies that availed of acted material, only a few ‘basic’ emotions were studied, but,

as previously mentioned in section 3.3.1, for natural spontaneous speech data it is common to

find an approach to labelling that is data-driven.

Essentially, the task for emotion recognition involves training models to perform automatic

classification of emotions. In order to do so, a training set of labelled speech is needed. It

should, therefore, perhaps be mentioned that the performance of an automatic classifier relies

not only on the characteristics of the given speech data, but also on the precision in the labelling
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of states. Therefore, one must aim to choose labels that are relevant and appropriate for a given

speech dataset, and that the labels provided are trustworthy, the classic criteria being validity

and reliability [188]. Likewise, when assessing the trustworthiness of a label, one should refer

to the distinction between cause- and effect-type labels—the distinction which conceptualises

that a listener’s perception of emotion does not necessarily imply attribution of a speaker’s ex-

perienced emotion (see section 3.2.5). Cowie et al. [240] explain that for cause-type labelling,

for example, it is appropriate to seek the ‘ground truth’, which establishes what the speaker’s

state was at the time of speaking, while for effect-type labelling it is critical to have the degree

of rater agreement associated with the label.

4.1.3 Decoding Studies

Decoding studies examine the listener’s ability to recognise the emotional state from a speaker’s

vocal expression independent of (normally constitutive) lexical content. Decoding studies are

an essential starting point in the study of vocal expression. Prior to investigating vocal corre-

lates of emotion, decoding studies establish if a speech sample actually conveys emotion that

can be reliably recognised by listeners. In most previous decoding studies, listener judgements

were examined on acted speech. Speech samples with acted emotion can be produced in such

a way that linguistic information does not influence the judgement of emotional meaning (e.g.

using meaningless sentences), and thus the label is independently derived from paralinguistic

patterns (vocal expression that refers to qualities of speech rather than verbal content). The ac-

tors are generally instructed to portray a predefined set of emotions, so the intended labels are

assigned beforehand. Subsequent listening tests can then demonstrate if listeners can accurately

perceive the intended emotion portrayed. One of the major drawbacks with decoding studies is

that the expressed emotions are limited to the ones instructed to act, which is quite different to

the complexity and number of emotions found in natural speech. In addition, the number of re-

sponse alternatives typically provided is often too few (if only 4-6 response alternatives, for ex-

ample). That being the case, the findings are then characterised as discrimination performances

(using exclusion and probability rules to guess the right answer) rather than recognition per-
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formances [189], which would compromise ecological validity. It is questionable, therefore, if

such observations can be generalised to real-life scenarios. The chance of guessing the answer

correctly clearly depends on the response options provided [276, p. 257], however, researchers

can correct the accuracy coefficients to compensate for this effect [277, 12, 65]. In Scherer’s

review [12], recognition rates for facial expressions yielded average accuracy results of around

75%, while recognition accuracies for vocal expression were reported to be between 56% and

65% (around five times higher than would be expected if randomly guessed). It is explained

that these differences could be due to several factors. For example, the dynamic nature of vo-

cal stimuli is less inclined to produce stable acoustic patterns compared to basic facial muscle

configurations (using static stimulus material like photos), and members of a similar emotion

family can be more distinct from each other vocally in comparison to facial expressions.

The recognition accuracies for vocal expressions appear to be comparable in studies conducted

cross-culturally, indicating the universality in emotion inference. Across nine different coun-

tries in Europe, the United States, and Asia, Scherer [43] showed that the overall recognition

rates for vocal emotion portrayals of four different emotions, and neutral state, is 66%—the

stimuli used were meaningless multi-language sentences. The claim that emotions can be

recognised with better than chance accuracy has been supported by a more recent meta-analysis

by Juslin and Laukka, including within- and cross-cultural studies [242]2. Out of 104 studies

reviewed, the summarised data included 1 to 15 emotions, 87% of the studies included acted

expressions, 13% used manipulated speech (see cue masking, section 4.1.4), 7% used mood

inducing procedures, and 12% used natural spontaneous speech. Whereas previous reports

generally reflect emotional portrayals, they reported that decoding accuracy rates for natural

expressions were similarly well above chance. However, they acknowledged that the number

of studies using natural speech was too few, and thus no definitive conclusions could be made.

Furthermore, accuracy estimates across the different studies were similar for individual emo-

tions. Sadness and anger were generally better perceived than fear, happiness, and tenderness.

2The data reviewed was summarised in terms of Rosenthal and Rubin’s [278] effect size index for one-sample,
multiple response alternatives, pi (π). Regardless of the number of response alternatives, the index allows accuracy
scores to be transformed to a standard scale (.50 is the null value, and 1.00 represents 100% correct)
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4.1.4 Inference Studies

Through listening tests, decoding studies and inference studies both focus on the listener’s

judgement of speech. While decoding studies establish the listener’s ability to recognise an

emotional state from a speech sample (decoding), inference studies focus on the specific voice

cues (distal) that a listener utilises in the emotion inference process. For this purpose, listener’s

ratings are correlated with voice cues that have been measured or manipulated. This area con-

sists of three major methods: (1) cue measurement and regression (2) cue masking, and (3) cue

manipulation via synthesis.

Cue Measurement and Statistical Association

Cue measurement and statistical association involve correlating the listener’s judgements of the

speaker’s emotional state with the measured acoustic characteristics (e.g. [31, 279, 280, 281]).

A study by Banse and Scherer combined both encoding and decoding aspects in a study, where

they used 14 acted portrayals of emotions (encoding), and subsequently presented the recorded

material to judges for rating (decoding). This allowed them to determine recognition accuracies

of the target emotions, and specify the effect of different acoustic cues on emotion inferences

based on both their correct and incorrect responses. They used multiple regression analysis to

investigate the relation of a judge’s emotion inferences with the acoustic measurements. They

found that the variance in judgement could be explained by 9-10 acoustic measurements, which

included F0 mean, F0 standard deviation, mean energy, duration of voiced periods, the propor-

tion of voiced energy up to 1000Hz, and spectral slope up to 100Hz [12].

These results correspond to judgements made on acted portrayals. With natural spontaneous

data, associating the acoustic cues with the listener’s judgement of a speech sample would

be the preferred method, as the target emotion is generally not known. Likewise, multiple

regression analysis can be conducted on listener ratings based on dimensions [157], or on

discrete categories of relatively mild affective states such as irritation and resignation [31]. The
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study by Mori et al. [157] found that peak intensity and F0 range were highly correlated with

most dimensions used (pleasant–unpleasant; aroused–sleepy; dominant–submissive; credible–

doubtful; interested–indifferent; positive–negative), and a voice quality parameter correlated

for some dimensions but was dependent on the speaker. Laukka et al. [31] included features

related to pitch, intensity, formants, voice source, and temporal aspects of speech, and found

that listener ratings of irritation, resignation, neutral, and emotion intensities were associated

with them.

Cue Manipulation via Synthesis

Cue manipulation via synthesis has allowed researchers to perform perception tests on stimuli

where various acoustic parameters can be controlled within a speech synthesis system (e.g.

[87, 282, 283]). Broadly speaking, there are three different techniques to create synthesised

speech, each with limitations and advantages depending on the researcher’s aim (see [247] for

a more detailed review):

• Formant synthesis (rule-based synthesis) generates speech based on rules that simulate

acoustic properties of human speech production. Formant synthesis does not process hu-

man speech samples at run time, which makes it computationally favourable as it requires

little memory. In addition, this type of synthesis gives a high degree of control over pa-

rameters related to voice source and vocal tract, which makes it particularly suitable for

those investigating specific cues that a listener may utilise to infer emotion. However,

such systems, so far, generate relatively unnatural speech that sound robot-like compared

to concatenative systems.

• Diphone concatenation uses a series of human speech recordings from a database to gen-

erate a synthesised output—the database holds diphones, which are stretches of speech

from the middle of one phone (speech sound) to the middle of the next one. The synthe-

sis produces the required F0 contours through signal processing techniques, which can

create some distortion. This technique is normally considered more natural than formant

synthesis. However, because it uses speech samples within databases, it is computation-
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ally less resourceful. Furthermore, most diphone systems only allow for control over F0,

duration, and intensity. In most cases, there is no control over voice quality.

• Unit selection is a corpus-based technique that uses relatively large amounts (i.e. several

hours) of recorded speech (or speech units) from a database. In some cases where well-

matching units are found, no signal processing is necessary. In cases where there is

signal processing, the parameters defined can be the same as for diphone synthesis. This

technique is generally perceived as the most natural.

Speech synthesis is a useful tool for studying emotion and speech. It has been successfully

utilised to specify which vocal cues (distal indicators) are used in emotion inferences [284,

285, 286, 287]. The premises for emotional expression used in these studies are generally

acquired from literature reviews and/or by trial-and-error adjustments based on listening tests

[29].

Cue Masking

Cue masking (also referred to as content-masking) procedures modify and/or remove vocal

cues from the speech signal. They have mostly been used to mask verbal content (i.e. to render

speech unintelligible), which can then be used to investigate vocal expressions independent of

verbal information. The main advantage to this method is that intelligibility can be removed

from all speech data types (acted, induced, or natural). Therefore, these techniques seem partic-

ularly useful for judgement and analysis studies of natural spontaneous speech [288], for which

the verbal content cannot be controlled by means used for producing acted material. Inevitably,

applying these methods will affect certain acoustic properties that may characterise the emo-

tion present. So, in practice, it is impossible to preserve all acoustic information while at the

same time remove all verbal information [145]. However, the act of modifying, masking, or

isolating specific cues can, in its own right, be used to investigate systematically how different

voice cues contribute to the emotion inference process [29]. Examples of procedures include:

• Low-pass filtering [146, 145] removes the higher frequencies above a particular cutoff

point, which are important for speech intelligibility, while letting the lower frequencies
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of speech to pass through. Low-pass filtering preserves tonal (e.g. F0 contours) and

sequential properties (e.g. speech rate), yet it reduces spectral content (crucial for voice

quality) and attenuates perceived loudness.

• Random splicing [289, 290] divides speech samples into smaller segments and randomly

rearranges them. This method, therefore, disrupts the temporal and sequential organi-

sation (e.g. pausing, F0 contour continuity), but it retains spectral content important for

voice quality information (e.g. harshness, denasalised).

• Backward speech [291, 292] can be achieved from playing tapes backwards or, nowa-

days, simply digitally reversed. It seems that some phonetic and indexical information is

retained. Although it generates reversed intonation contours [293], features such as mean

pitch, pitch range, and some aspects of vowel and voice quality are preserved [291].

• Pitch inversion is a method used less often. The study by Scherer [294] inverted the

frequencies using a balanced modulator to fold the audio spectrum around a carrier fre-

quency. This technique degrades the normal harmonic relationships necessary for intel-

ligibility but retains stress patterns and intensity contours.

• Tone-silence sequences [294] is a method used for audiotapes to generate a sequence

of tones and intervening silences to replicate the original sequence of speech sounds and

silences. Again, nowadays, digital signal processing techniques allow for a much simpler

and more effective way of manipulating audio speech material in a similar manner (e.g.

audio to midi/synth conversions).

• Reiterant speech [295] is produced by substituting the original syllables of an utterance

with other syllable imitations with similar F0 contour. If the goal of a study is to preserve

as much of the original speech stimuli as possible, and not to isolate or modify cues, this

method is probably the best as it preserves F0, temporal, and voice quality measurements

[29].
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4.1.5 Transmission Studies

As previously mentioned, an important aspect of the Brunswikian lens model is that it high-

lights the fact that the perceptual representation of cues (proximal percepts) may not correspond

in a one-to-one mapping with the objectively measured cues (distal indicators). The model ex-

plains how the transmission of the distal signals from the sender to the receiver, where they are

represented on a subjective proximal level, may be responsible for inference inaccuracies and

should therefore be examined separately. In real-life situations, the transmission process will,

at least to some extent, degrade the acoustic signal (distal cues) due to (1) the physical space

through which the sound is transmitted, and (2) the transform functions in perception, influ-

enced by the individual’s auditory perceptual system. For the former, this may include aspects

such as distance between the sender and the receiver (weakening the signal), the presence of in-

terfering environmental sounds (affecting speech production and perception effort), signalling

mediums such as telephone lines (thus limiting the frequency range), or obstructing materials

such as walls (attenuating certain frequencies). For the latter, the transformation of the distal

signal converted by the individual’s physical characteristics of their auditory perceptual system

to a perception can also become misrepresented. Such modelling is based on work in the psy-

choacoustics of speech perception. The first example Scherer [12] gives is that of perceived

loudness correlating more strongly with the amplitude of a few harmonics or even a single har-

monic rather than with the overall intensity. The second example has shown that listeners are

able to distinguish vocal effort produced from both loud and soft voices but presented at the

same perceived loudness, indicating that listeners seem to have an internal model of a specific

spectral distribution representing vocal effort. Similar effects can be shown for the perception

of F0 contours, loudness, and duration of spoken utterances.

4.1.6 Representation Studies

Scherer [12] explains that the reception of the sound signal by the auditory perceptual sys-

tem is stored in short-term memory as a representation of the proximal cues, at which point

attributional judgements are made. Within the framework of the Brunswikian lens model, rep-
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Emotion stimuli Listening task
Correlates

Feature selectionLabel

Figure 4.2: General procedures for the automatic recognition of emotion.

resentation studies try to make measurements of these proximal cues from verbal reports of a

listener’s subjective impression of the vocal qualities. Accordingly, the principal area lies with

the inference algorithms that are made by listeners, of which vocal impressions act as indica-

tors of particular emotion types. One of the major difficulties with representation studies is that

verbal reports for voice qualities are constrained to the semantic categories available in a given

language. There are few words to describe voice qualities that are used regularly, neither in

everyday language nor in the literature. Example words that describe voice qualities include:

nasal, sharp, and rough. Moreover, it seems difficult to obtain high inter-rater agreement mea-

sures for many of the categories used in such studies, which may be due to the insufficient use

of them in normal everyday language. Incidentally, there are currently very few representation

studies that study the inference structures used by listeners.

4.2 Prosody and Semantic content

When investigating emotion in speech recognition, labels are an essential requirement for re-

searchers to explore the relationship between emotion and speech (see Chapter 3 for more

information). The labels that index the expressed emotion are, ultimately, associated with a

certain facet drawn from the speech signal. In many cases, labels are determined from the

ratings obtained from listening tasks. The perception of emotion is based on prosody and se-

mantic content, however. In this section, we provide a distinction between possible approaches

regarding the labelling process from judgment tasks.
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Emotion stimuli Judgement task

Established by (A) Acoustic

Lexical

Acoustic and Lexical

Nonverbal speech

Transcribed dialogue

Natural Speech

Acoustic cues (A)

Lexical cues (L) Established by (L)

Established by (A & L)

Correlates
Label Feature selection

II

III

IV

V

I

Figure 4.3: A distinction between possible research orientations with reference to channel
contributions in emotion communication.

4.2.1 Labelling Precision

To build a model to automatically recognise emotion from a speech signal, an association needs

to be determined by (1) the selected features and (2) the label that represents the expressed

emotion. The procedure is briefly illustrated in Figure 4.2. First, features are extracted and

analysed to determine the existence of any meaningful patterns. Much work focuses solely on

correlating acoustical features with an expressed emotion [296, 297, 298, 280, 299, 300, 301,

302, 303, 304, 305, 306]. It is well known, after all, that certain acoustic parameters correlate

with emotion. However, we can gather information about the acoustic and linguistic aspects

of a speech signal. Some approaches emphasise the influence of linguistic (or textual) content

by itself [307, 308, 309, 310], whereas other efforts select and augment both acoustic and lin-

guistic features [193, 311, 312, 313, 314, 315]. Incidentally, there are studies that incorporate

discourse context (dialogue acts) as a third source of information [316, 249]. Most of these

studies that investigate combined knowledge sources report on an improvement in automatic

emotion recognition rates. Second, a predetermined label specifies the expressed emotion that

the extracted features are correlated with. Generally, the label is derived by humans perform-

ing subjective listening tests (as performed in Chapter 7). Often labels are derived from speech

that comprises contributing acoustic and linguistic cues—listeners integrate both sources to in-

fer the expressed emotion. At this stage, one may investigate a relationship between the label

and the acoustic (or linguistic) channel. However, the labels are often not derived solely from

acoustic (or linguistic) cues.

Craggs [310] argues in the context of linguistic annotation that if the provided labels are not

based exclusively on the information found in the linguistic content, one should question the
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reliability on the conclusions drawn about a relationship with those labels. Likewise, one could

say the same when determining acoustic correlates. With this in mind, we expand on the

concept illustrated in Figure 4.2 to show several possible research orientations that correlate

extracted features with an expressed emotion (see Figure 4.3). The diagram illustrates that la-

bels are derived from a set of features based on acoustic or linguistic cues. For example, study

type I in Figure 4.3 illustrates that acoustic features are correlated with a label based solely on

the information of the acoustic cues, i.e. from nonverbal speech.

As mentioned above, substantial work has been carried out on natural speech that investigated

acoustic (see II in Figure 4.3), lexical (see IV in Figure 4.3), or a combination thereof (see III

in Figure 4.3) to determine an optimal set of correlated features with a predetermined label.

However, as the diagram shows, the labels are derived from both acoustic and linguistic infor-

mation. As illustrated, the difficulty with natural spontaneous speech is that labels are generally

established from both acoustic and linguistic cues. Clearly, each channel has a specific contri-

bution in affective speech processing, but the level of significance of each and to which each

channel aligns and interacts with the other remains to be investigated. One channel can serve

to elaborate on or conflict (congruence or incongruence) with the conveyed meaning of the

other channel, such as sarcasm [257] or in cases of deception (see section 4.3.4). The study of

channel alignment is not straightforward and there are unavoidable trade-offs that a researcher

has to make when mitigating or controlling one aspect of speech—although, these constraints

are less severe with non-spontaneous speech.

To study the linguistic content independently, one can measure the effect transcribed text has

on the inference of emotion. Because the information is in that case delivered in isolation, the

derived label is based solely on the linguistic content (see V in Figure 4.3). It would, therefore,

be more justifiable to draw conclusions about the relationship between the linguistic features

and the derived label. However, transcribed text may not have the same influence as spoken

text, as it may not have the same ecological relevance [317]. To address this, studies have

presented spoken words, either in a tone congruent or incongruent to the words, to measure
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their effect on a listener’s subjective ratings [318, 319, 317, 320]. On the one hand, it has

been shown that lexical content of spoken words plays a more significant role in conveying

emotional information over tone of voice [321], while on the other hand, it has been suggested

that prosodic cues are mostly used to identify with an expressed emotion [322]—although these

studies might be culture specific. Methodologies that control (or manipulate) semantic and/or

acoustic content are generally restricted to acted speech, but have also been performed using

synthesised speech, therefore, impracticable for spontaneous speech. A mixed control study

conducted by Ilves [285] used synthesised speech to control for both prosodic and semantic

cues. This study investigated how synthetic verbal stimulation with emotional content would

affect the perceiver. The findings showed the ratings of emotions were significantly affected

by the emotional content of the synthesised words. Moreover, the study also showed that

the quality of the same voice received higher ratings when the verbal content was positive in

comparison to the neutral and negative sentences.

4.2.2 Masking Linguistic Content

For speech that is truly natural and spontaneous, it is impracticable to control the linguistic

content by scripting its spoken dialogue. To separate the acoustic and linguistic channels, re-

searchers can, instead, render speech incomprehensible using masking techniques such as ran-

dom splicing [289], backward speech [291], pitch inversion [294], and foreign speech [323],

and re-entrant (REENT) speech [324] (study I in Figure 4.3). Inevitably, using these methods

to mask linguistic content will affect certain acoustic properties that may characterise the emo-

tion present, e.g. backward speech will have reversed intonation contours. It should perhaps be

noted that, nowadays, we benefit from technological advancements compared to early research

that availed of tape to manipulate speech and was often subject to errors by simultaneous pitch

changes.

Another widely used method for masking linguistic content, adapted from research into speech

intelligibility, is low-pass filtering [146, 325]. Low-pass filtering removes high frequencies,
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which are important for speech comprehension (i.e. intelligibility), while leaving the lower

frequency regions of speech intact. Low-pass filtering preserves tonal and sequential speech

variables (or prosodic characteristics) such as speech rate, rhythm, intonation contours, and

stress patterns [326, 293]. Tonal aspects of speech, which are dominated by the lower fre-

quencies, play an important—if not the most important—role in affective expression [326]. An

emotional judgement study that uses low-pass filtered speech can remove linguistic content and

assess the role of the remaining vocal parameters that listeners base their judgement of emotion

on.

The precise nature of low-pass filtering and its impact on speech perception remains to be es-

tablished in studies of speech intelligibility, and emotion in speech. To our knowledge, few

recent studies have used low-pass filtering as a masking technique on ‘spontaneous’ speech.

One such study by McNally et al. [325] elicited emotion in participants—patients with panic

disorder, major depressive disorder, social phobia, and healthy control participants—by asking

them to recall both fear and neutral autobiographical memories. The speech clips were recorded

onto audiotape, rather than being digitised, and content-filtered to eliminate frequencies above

400Hz. Each clip was evaluated by raters along the widely used scales: negative, aroused, and

dominant. Two added scales, anxious and sad, were chosen applicable to the type of speech

material being rated, i.e. speech recordings from patients with mood and anxiety disorders.

For the dimensions they studied, content-filtered speech conveyed enough information on fear

related emotional valence. Similarly, Knoll et al. [146] studied perceptual ratings of vocal

effect on filtered speech directed at Infants (IDS), Adults (ADS) and Foreigners (FDS). Raters

were questioned on four scales: positive vocal affect, negative vocal effect, encouragement of

attention, and comforting and soothing. The authors noted that certain affective scales might be

more informative for a particular type of speech. Thus, comforting and soothing, for example,

might be more relevant for Infant Directed Speech (IDS). Four different filter conditions were

investigated. It was acknowledged that cutoff frequencies above 1000Hz kept some semantic

information discernible that may have confounding effects on the rater’s perception.
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The effect of the low-pass filter on intelligibility mainly depends on the selection of the cutoff

frequency. The range that is important for speech intelligibility is about 500 to 5000Hz [327].

However, there does not seem to be a standard optimal cutoff point for intelligibility as this may

vary depending on the proportion of background noise, quality of recording, and the speech

characteristics of the speaker. Research investigating speech intelligibility filter speech into

a number of frequency bands called ‘analysis filters’ [328, 329]. In most cases of nonverbal

communication, however, researchers use a single fixed value ranging from 300Hz-600Hz [330,

325, 144, 145, 293], or a set of fixed cutoff values in order to compare the effect of each

condition e.g. [146]. MacCallum et al. [331] recommend the cutoff frequency to be at least

one octave above the F0 (minimum of 300Hz) to ensure acoustical analysis accuracy of percent

jitter, percent shimmer, fundamental frequency (F0), signal-to-noise ratio (SNR), and nonlinear

dynamic measures (correlation dimension and second-order entropy).

4.3 Emotional Speech Acquisition

The most important initial step in building an emotional speech corpus is, of course, collecting

appropriate speech material that can be labelled for emotion. Obtaining high-quality emotional

speech data is not only a technical problem, but also a practical and theoretical one. Currently,

available speech materials are inevitably diverse in nature, which makes it particularly difficult

for any cross-corpus analysis [332]. The type of speech material acquired in a given study is

distinctly representative of its goal. When collecting speech material, central to the experi-

mental design are considerations of audio quality and emotion eliciting processes. The audio

quality of recorded speech material needs to be sufficiently adequate for acoustic analysis as

certain voice measures are error prone to poor audio quality [29]. Conditional on recording

setups and environments, technical issues, such as background noise, reverb/echo, and micro-

phone placement ultimately affect the desired signal. Furthermore, the circumstances that the

elicited emotion is characterised by is a topic that has been widely discussed [333], the problem

of authenticity being central to the matter. Picard et al [334] give a summary of five conditions

that characterise the elicited emotion, which influences the acquisition of speech data:

86



CHAPTER 4. EMOTION AND SPEECH

• Subject-elicited vs. event-elicited: is the elicited emotion deliberate (i.e. is the emotion

posed) or is the elicited emotion an outcome of a stimulus or situation outside of the

subject’s control (i.e. is the emotion spontaneous)?

• Lab setting vs. real-world: is the recording environment in a lab or in a setting natural to

the subject?

• Expression vs. feeling: is the emphasis of a study on external expression or on internal

feeling?

• Open-recording vs. hidden-recording: is the subject aware of being recorded?

• Emotion-purpose vs. other-purpose: is the subject aware that the experiment is about

emotion?

The type of envisioned application determines the relevance of the above factors. If the appli-

cation is for acted emotion in movies and animations, for example, one is generally concerned

with the quality of acting, and most of the factors above may not be of immediate concern.

For real-life applications, all factors are generally considered during the experimental design.

Whether one is interested in the external expression (how emotion is observed) or internal feel-

ing (the ground truth)3, for real-life applications, methodologies tend to be oriented towards

ecological validity. In an ecologically valid setting, the ideal situation is to capture actual

emotional occurrence in a subject in response to a personally significant circumstance in a

real-world situation where the recording equipment is hidden and the subject is unaware of the

experimental objectives. As one can imagine, such situations are difficult to improvise because

of ethical reasons. With these specifications in mind, speech data can be broadly grouped into

three types of expressions: simulated, natural, and induced. It is important to be aware of the

distinction between these types, and their potential contributions and limitations. Several ex-

tensive reviews of available emotional speech corpora have been provided [240, 241, 242, 201].

The reviews show that the majority of corpora so far consisted of acted representations of emo-

tion, indicating that the majority of results of previous research do not reflect natural emotion

[335, 336].
3This concept is also described by Cowie [154] as effect- and cause-type studies
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4.3.1 Simulated Vocal Expressions

In previous studies, the most common and easiest method of obtaining speech material is by

asking professional or lay actors to produce vocal expressions of emotions [260, 189, 326, 337].

One of the notable benefits to this method is the additional experimental and environmental

control. Since the acted emotion is predetermined, no perception tests are necessary to label

the data. However, researchers can perform subsequent perception tests to verify that listeners

actually perceive the portrayed emotion as intended. While portraying a given set of discrete

emotions, the verbal content in a speech utterance can be controlled and standardised [12]. This

way the perceived emotion is minimally influenced by the semantic channel, which allows the

researcher to identify how well listeners decode emotion from the tone of the voice indepen-

dently. Presuming that each acted emotional state is expressed exclusively, the researcher can

make direct comparisons of acoustic content in phonetic differences, and attribute them to the

associated paralinguistic information.

Simulated vocal expressions are mostly more intense than spontaneous emotional states [12],

and likely to represent culturally shaped prototypical expressions [269]. This can be an ad-

vantage, yet also be a limitation. It is an advantage because it makes the expression easier to

identify. Generally, acted material is easier to classify automatically compared to spontaneous

speech [241, 193, 338] because the emotions portrayed produce higher arousal levels. How-

ever, intense prototypical emotions are not commonly found in day-to-day scenarios. Actors

may fail to produce the more subtle cues, which may be the relevant ones, while at the same

time over-emphasise others [73]. A major advantage is the fact that the environment is easy

to control. This allows for good sound quality on the recordings, which is crucial for effective

acoustic analysis, particularly at the early stages of research where many aspects of emotional

communication are undetermined.

Although the use of simulated speech has numerous advantages, there are distinct limitations:

• simulated speech is often non-interactive [189, 115], hence may only provide for a lim-
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ited range of emotions [339];

• emotion portrayals reflect conventionalised stereotypes [12] and may not include invol-

untary physiological responses to stimuli normally associated with emotion [340];

• actors may have different subjective interpretations of the emotions they are instructed to

simulate, and acting (or encoding) abilities can differ considerably between actors [144];

• acted speech is often read from text, which differs significantly in acoustic characteristics

due to its nature [341].

Some of these issues can be addressed. The quality and perceived naturalness of portrayals, for

example, can be ascertained by conducting judgement studies [189]. Furthermore, stereotypical

portrayals can be avoided, and interactive dialogues can be used. Elicitation techniques can be

improved by modelling theatrical performance strategies [342].

4.3.2 Natural Vocal Expression

The ideal research paradigm seems to be that of natural vocal expressions. Hence, more

recent studies have shown a tendency towards developing natural, real-life speech corpora

[159, 343, 157]. Speech data containing natural vocal expressions have been sourced from

various situations, such as dangerous aviation circumstances, therapy sessions, call centres, re-

ality television, and journalist reports (see [241, 12, 201] for a list of studies). The primary

advantage of natural spontaneous speech is the increased likelihood of having high ecological

validity [201]. As mentioned above, in an ideal scenario the subject is in a natural setting, is

unaware that the experiment is about emotion, and if practicable, can be recorded in an incon-

spicuous manner. Picard et al. [334] make an interesting point about the fact that recording

devices are becoming increasingly more common, which may lead to the subjects becoming

less aware of them.

Due to copyright restrictions, much of the broadcast material is not available for research. Pri-

vacy and ethical restrictions prevent covert recording of subjects to take place. For this reason,
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truly natural material is generally difficult to obtain. Moreover, finding appropriate methods for

labelling naturalistic data is more complex (section 3.3.4). Issues that came to light studying

naturalistic data were not evident with that of acted material. Most full-blown, prototypical

emotions are often absent in realistic databases [179]. Emotion representation for naturalistic

speech, therefore, is compelled to depart from traditional uses of predefined lists such as the

big ‘n’ emotions, which are seldom found in day-to-day speech. As a result, research is veering

towards methods that allow the more subtle underlying emotions to be included, such as bore-

dom, interest, etc. Subtle emotions are more difficult to recognise by humans, and therefore, the

task for developing systems to successfully recognise spontaneous emotion will also be more

difficult. To complicate matters still further, one cannot assume that natural vocal expressions

represent emotions that are actually felt. Spontaneous speech communication is diffused with

complex variability of involuntary and voluntary control, the distinction between expression

of genuinely felt emotion and strategic signalling [29]. Some of the issues include regulation

mechanisms such as masking, acting, and strategic deception, and regulations that may be cul-

turally or socially defined, such as display and feeling rules. These conceptual influences have

been referred to as ‘push’ effects [12, 340], and ‘input-related issues’ [19, 156] (see section

4.3.4).

Because natural data is mostly obtained in a natural, uncontrolled environment, it is difficult

to determine the precise nature of the appraisal criteria that may have induced the emotional

state, which is unfavourable for studies that incorporate cognitive models of emotion [29].

In addition, recorded material in an uncontrolled environment is more likely to be of poor

sound quality—audio quality is an aspect that is often undervalued. Generally, real-world

environments are noisy, and obtaining a clean signal of the voice in such situations is difficult.

One must be aware that certain voice measures, which could be of significant relevance, are

sensitive to extraneous environmental noise. In fact, some of these acoustic cues may be the

exact ones that are particularly difficult for actors to produce [29].
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4.3.3 Induced Vocal Expression

To find a balance between the limitations that come with acted and truly naturalistic data, a

good trade-off between controllability and naturalness is to induce emotions in participants in

a laboratory environment. Although such material is quite sparse, this method is becoming

increasingly more attractive as a promising compromise [15, 194, 29, 12]. Effectively, investi-

gators can use any one of a variety of induction techniques to trigger an emotional response in

a subject, and subsequently record the associated vocal responses. Gerrards-Hesse et al. [344]

provide a review of the effectiveness of Mood Induction Procedures (MIPs) used in nearly 250

studies. Although there are countless approaches for inducing emotion, they proposed that

most MIPs fall under the following five groups:

1. MIPs based on the free mental generation of emotional states: In this group, the stimuli

are activated by the subjects themselves, which involve emotion-inducing techniques

such as mental imagery (Imagination MIP) [345] or hypnosis (Hypnosis MIP) [346].

2. MIPs based on the guided mental generation of emotional states: This group uses MIPs

that present the subject with emotion inducing material with the additional instruction

to get involved with the suggested mood state. These include the Velten MIP (subjects

are asked to read statements that describe positive or negative self-evaluations) [347], the

Film/Story MIP (subjects are asked to imagine the situation in the presented film or story)

[348] and the Music MIP (subjects listen to a mood-suggestive piece of music) [349].

3. MIPs based on the presentation of emotion-inducing material: This group assumes that

the presented emotional stimuli will induce an emotional response without the explicit

guidance of getting into the suggested mood. It uses external material similar to that men-

tioned previously, with the additional Gift MIP—with the assumption that the participant

with be elated with an unexpected gift [350].

4. MIPs based on the presentation of need-related emotional situations: MIPs in this group

exploit the subject’s susceptibility towards satisfaction and frustration, such as the need

for achievement or affiliation. These include the Success/Failure MIP (giving the sub-
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ject false-positive or false-negative feedback of performance during cognitive tasks) and

the Social Interaction MIP (subjects are exposed to certain social interactions specifi-

cally arranged by the experimenter), which can be used to manipulate certain appraisal

dimensions [351, 352].

5. MIPs aiming at the generation of emotionally relevant physiological states: These in-

clude MIPs that induce physiological arousal by administering psychoactive drugs or

placebos (Drug MIP) [353]. In accordance with the facial feedback hypothesis, subjects

are asked to contract or relax different facial muscles to produce a frown or smile (Facial

MIP) [51].

Induction experiments are favoured because of the degree of control they provide. Many induc-

ing techniques have, of course, ethical constraints. For example, administering psychoactive

drugs in participants, is nowadays unlikely to get ethical clearance. Similarly, there are ethical

constraints that prevent the induction of strong emotions in a laboratory environment, limited to

providing relatively low-intensity emotions. This can make it difficult to differentiate between

states [269]. There are, however, many studies that have successfully induced emotion to study

the effects on the voice (e.g. [31, 159, 352, 354, 355, 356, 357]). To prevent demand effects4,

the experiments are in most cases designed so that subjects are unaware that the objective of the

experiment concerns emotion. The Success/Failure MIP seems particularly apt in this regard

[358] because the true nature of the experiment can be disguised (cf. [159, 352]). Because of

the degree of control that MIPs provide makes them favourable for exploring cognitive models

of emotions, such as the component process model by Scherer [151]—such a degree of control

also favours work within the Brunswik lens model [29] (see section 4.1.1). In this framework,

a researcher manipulates cognitive appraisal dimensions and subsequently measures any voice

alterations, or physiological changes. It should be noted that inducing techniques can produce

varying responses between different individuals [12]. For this reason, it is important to verify

the emotional content by performing subsequent judgement analysis and verify consistency and

reliability amongst listeners.

4Demand effects occur when the subject can guess the purpose of the procedure and hence act the desired
emotion.
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4.3.4 Authenticity related Considerations

Most would agree that the emotion expressed by a speaker, and subsequently observed by a

listener, does not necessarily reflect the emotion that is truly felt. In fact, it is difficult to obtain

a true evaluation of the speaker’s subjective experience. It may, therefore, be assumed that an

evaluator assesses emotional content of an utterance differently to how the emotion is experi-

enced [152]. Although vocalisation is naturally responsive to emotional experience, one does

have some voluntary control over it [359]. The distinction of involuntary physiological reac-

tions and voluntary strategic signalling has been termed by Scherer as push- and pull-effects,

respectively. Push-effects correspond to the involuntary physiological responses to emotions,

such as muscle tension, increased heart rate and respiration, vocal tract changes, and facial ex-

pressions. These effects may cause emotions to ‘leak’ through, despite efforts to conceal them.

Pull-effects5, on the other hand, correspond to the voluntary control of emotional behaviour to

comply with external conditions such as social and cultural norms, referred to by Ekman [360]

as display rules, and/or the voluntary control of strategically misrepresenting or concealing

one’s emotions, e.g. deception [361, 362]—similar distinctions that differentiate genuinely felt

emotion with strategic signalling have been made by other authors (see [29, p. 82]). On the one

hand, Banse and Scherer [189] suggest it is unlikely that strategic or emotive communication

would differ strongly in its signal patterns—and, therefore, argued for the validity of portrayed

expressions—while on the other hand, Campbell [363] stressed that making such a distinction

is significant. For acted speech, for example, although listeners may detect the intended emo-

tion portrayals correctly, they may also be aware that the speaker is consciously intending to

express such an emotion.

4.3.5 Audio Quality related Considerations

During earlier times, providing hardware and software for extensive acoustical analysis and

manipulation was less accessible and more costly compared to nowadays. Instead of using

expensive hardware, voice analysis is now done on basic computer software systems. Such

5This is similar to the concept of input-related issues [19, 156]
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systems increase convenience. The criterion needed to obtain optimal recordings of speech is an

aspect still often underestimated. It seems few examples in the literature provide details of the

audio equipment used [364]. The desired signal can be affected by factors such as: the type of

recording systems used; microphone type, placement, and angle; and unwanted environmental

noises [331]. To prevent extraneous acoustic factors, a good recording environment should

make use of sound-proof booths [365], which ultimately will minimise noise-induced errors

during acoustical analysis. A common error caused by noise, for example, can result in F0

estimates being off by an octave [15]. Furthermore, noise affects perturbation measures such as

jitter and shimmer, which are also substantially influenced by microphone sensitivity and the

distance placed from the sound source [366]. Even different microphone types have been shown

to have a significant impact on speech parameter values [367]. Low-pass filtering is often used

to remove a selected range of noise before analysis, but this only attenuates the frequencies

above a given cutoff frequency. Noise reduction technology has improved remarkably in recent

years. However, in most cases there are shared frequencies between noise and the acoustics

of speech, hence the removal of noise will impair the speech signal to some extent. Not only

do sound-proof booths isolate the desired sound source, i.e. the speaker, they also minimise

reverberation. Reverberation can affect F0 contour, temporal envelope, and formant transition

measures, and it can increase low-energy levels and reduce amplitude modulations. In fact, it

generally modifies the overall timbre of the speech signal [368].

4.4 Discussion

This chapter of the review identified several major research topics in the area of vocal commu-

nication of emotion. First, we introduced Scherer’s revised Brunswikian lens model, a frame-

work that describes the complete process of emotional communication through speech (section

4.1.1). It has been suggested that the model is methodologically highly suitable for the study of

vocal expression [29, 12]. One important aspect it highlights is that the perceptual representa-

tion (proximal indicators) of emotion does not necessarily correspond in a one-to-one fashion

to the objectively measured cues (distal indicators) captured at the encoding stage [12]. The
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framework distinguishes between studies of encoding, decoding, transmission, representation,

and inference. It considers several different aspects that may influence the uncertain relation-

ship between encoders, cues, and decoders. According to the issues identified by the model,

the potential study types in the area of vocal communication of emotion were differentiated

and discussed (sections 4.1.2–4.1.6), providing us with both research objectives and direction.

Although in this thesis the Brunswikian lens model is not implemented in its entirety, there are

many aspects of our work that fit nicely into this framework.

As outlined in section 4.1.2, a typical encoding study is typified by the nature of the material

investigated, which is commonly distinguished by emotion elicitation type: simulated (acted),

naturalistic, and induced emotion (section 4.3). Common discussions about the distinctions

of these data types include emotion authenticity/genuineness, ecological validity, and audio

quality. Up to about a decade ago, many were debating whether the essence of acted material

could be representative of natural emotions. Nowadays, it is widely acknowledged that acted

data cannot be adequately compared with naturalistic data [369, 332, 370, 338, 313]. However,

despite acted speech being radically different in nature, its relevance to perception is not com-

pletely unrelated. Much knowledge to date can be attributed to studies of simulated material.

In fact, acted speech material is still widely used (e.g. [371, 372]), but mostly the findings

are not associated with data encountered in real-life situations. The distinction lies with the

application in mind. For example, acted data can be appropriate for applications potentially

found within the entertainment industries, such as animated characters in computer gaming

and movies, while naturalistic data can be appropriate for real-life applications such as medical

diagnostics.

Increasingly, studies are showing a tendency towards developing natural, real-life speech cor-

pora [159, 343, 157] (with less emphasis on full-blown emotions). Compared to simulated

emotional speech, work on naturalistic speech has proven more complex for several reasons.

These include factors such as the acquisition of suitable data (section 4.3), choice of appropriate

emotion descriptors (Chapter 3), the establishment of actual felt or observable emotional states
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(section 3.2.5), and effects such as the push and pull distinction, display rules, and strategic

signalling (section 4.3.4). Obtaining well founded naturalistic emotional speech data is not a

straightforward task. The previous work undertaken, which provided the speech material for

this thesis [159, 339, 373], focused on natural speech and addressed two pressing matters that

can be seen as relevant to the Brunswikian framework. First, one of the objectives of their work

was to provide emotional speech recordings of the highest audio quality. Prioritising speech

signal preservation (transmission) minimises any intervening variables that may systematically

alter the distal cues in the transmission process (section 4.1.5). For example, the use of sound-

proof booths can minimise any extraneous acoustic factors such as reverb, which can have

an impact on fundamental frequency (F0) estimates. Second, the authenticity of the emotion

present (encoding) in the speech material is central to defining its type (naturalistic), as outlined

in section 4.3. As the issues with both acted and truly naturalistic data became evident, Cullen

et al. [364] turned their focus towards inducing emotions (section 4.3.3), arguing that these

methods are an appropriate compromise between the factors associated with them. Their work

implemented mood inducing procedures in a controlled laboratory environment, and delivered

high-quality speech material that reflects natural expressions. The accompanying challenge

with building a corpus involves developing suitable methods for labelling the speech material

that describes its emotional content (decoding studies). In the last chapter we mentioned that

the suitability of labelling methods are partly contingent on the eliciting type present in the

material, i.e. whether the emotions are simulated or spontaneous. As Ellen Douglas-Cowie ex-

plains, both strands, collecting speech data and labelling it, are very much interconnected, and

says that “the categories used in labelling are driven by the material that is there to be labelled,

and the collection of material is driven by an understanding of the categories that it is relevant to

collect.” [374]. As alluded to in the previous chapter, it was decided to carry out a case study to

label the given naturalistic speech material, which will finalise the construction of the natural-

istic emotional speech corpus (Chapter 7). This case study will serve to explore the previously

proposed research question regarding the appropriateness of the labelling scheme (RQ2). In

addition, the ratings obtained from this case study will allow us to verify the emotional con-

tent present in this given speech dataset, essentially allowing us to examine the effectiveness
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of Mood Inducing Procedures—although there is a mutual dependency between verifying the

appropriateness of the descriptive scheme and verifying the emotional content. To this end, this

chapter has given rise to the following research question:

RQ3: Can mood induction procedures provide naturalistic speech with sufficiently dis-

cernible levels of emotion?

There is ample evidence to show that listeners can reliably infer affect-related arousal from

vocal acoustics, and that specific acoustic features associate with the perceived arousal [42,

12, 141]. However, although listeners can reliably differentiate between emotions, hedonic

valence remains, to date, to be more difficult to detect from unique acoustical patterns, both

in automatic recognition (building machine learning classifiers) and by human listeners [253,

375, 235, 376, 12, 139, 13, 377]. There are several reasons that may explain this:

1. The incorrect or incomplete selection of acoustic cues is being studied [29] (discussed

further in the next chapter).

2. Probable arousal differences between emotion families are not being considered ade-

quately [12] (section 3.3.1).

3. Acoustic correlates of emotion are studied when judgements are not made solely on

acoustic information [378, p. 30]—neglecting the interaction with verbal meaning (sec-

tion 4.2).

We suggest that the latter reason is a very likely candidate. This notion was discussed in

section 4.2, where we pointed out that labels are often provided based on judgements made on

both semantic and acoustic content of speech. For natural spontaneous speech, it is difficult

to isolate either the semantic or acoustic channel so as to investigate it independently. Several

techniques are available that attempt to address this (section 4.2.2). By manipulating certain

cues to mask the semantic content (section 4.1.4), the method that we emphasised was low-pass

filtering. This method has been used in previous studies and seems to be a useful tool to remove

semantic content. To examine the extent to which labels are based on acoustic cues exclusively,

we suggest to low-pass filter speech to explore the following research questions:
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RQ4: Does nonverbal naturalistic speech convey Activity and Evaluation levels that are

recognisable to listeners?

RQ5: How do ratings from two perceptually different conditions (verbal and nonverbal

speech) compare?

4.5 Conclusion

This chapter has given us additional knowledge on the labelling of emotional speech, provided

the conceptual basis of the vocal communication of emotion (sections 4.1 and 4.2), and intro-

duced the available speech data sources that a study can be typified by (section 4.3). Outlining

the different processes involved with the vocal communication of emotion (section 4.1) gives

us a better understanding of what is involved in labelling emotional speech, contributing to

research question two from the previous chapter (RQ2). Subsequently, research question three

(RQ3) seeks to examine the potential use of Mood Inducing Procedures for delivering natural-

istic emotional speech corpora (section 4.3.3) by examining the emotional content present. To

this effect, we investigate whether listeners are able to decode expressed levels of Activity and

Evaluation (two-dimensional model of emotion) in the given MIP-based speech material. This

work is pursued in the case study reported on in the next chapter (Chapter 7). With regard to

the information presented in sections 4.1 and 4.2, the concept of different cues (and channels)

affecting emotional decoding, prompted the idea of investigating the extent to which acoustic

cues determine the perception of emotion dimensions (activation and evaluation) in mood in-

duced speech (RQ4 & RQ5). Effectively, this allows us to determine the validity of current

labelling methods that are based on both acoustic and semantic information. To this end, we

will investigate how listeners utilise voice cues to infer emotion from low-pass filtered speech

(cue masking, section 4.1.4), which isolates prosodic features in lower frequency regions, while

making speech unintelligible. This work will be presented in Chapter 8.
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5
Acoustic Correlates of Emotion in Speech

Vocalisations are produced from physiological changes that include respiration, phonation,

and articulation. There is a considerable amount of evidence to suggest that emotions mod-

ulate these physiological changes, which in turn partly determine the produced acoustic signal

[189, 379]. These notable variations occur at the suprasegmental level of speech communica-

tion and can carry a large amount of nonverbal information, including the emotional state of the

speaker [141]. Both acoustic and linguistic features can be extracted from the raw speech wave

data to provide information about emotional states [10], although acoustic features are the more

typical features used so far [296, 297, 298, 280, 299, 300, 301, 302, 303, 304, 305, 306]. Re-

search in this area is still ongoing as there is currently no general agreement on which features

are the most important. Voice cues can be broadly grouped into categories related to funda-

mental frequency (e.g. pitch contours), time-related measures (e.g. speech rate), intensity-
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related measures (e.g. signal energy), voice quality (e.g. jitter and shimmer), and combined

time-frequency-energy measures (e.g. long-term average spectrum). The first three categories

mainly represent perceptual dimensions of pitch, speech rate, loudness, phonation type, respec-

tively, whereas combined time-frequency-energy measures illustrate perceived timbre [269].

According to Scherer [12], most studies have limited their measurements to F0, energy, and

speech rate parameters. He suggests that these measurements are more likely to reflect the

speaker’s arousal (or activation) state, rather than hedonic valence differences. Instead, source

and articulation characteristics such as frequency distribution and formant parameters may be

more indicative of qualitative valence differences. In this section, we present a non-exhaustive

overview of some of the more classical description of speech acoustics often used in the use of

emotion in speech studies.

5.1 Source-filter Theory

The description of vocal acoustics as a two-stage process involving a combination of source

energy and resonance effects is central to the source-filter model [380]. This concept was orig-

inally developed to account for the acoustics of vowels but is now routinely used in other areas

of speech analysis and synthesis [15]. The principles of the source-filter model are also consid-

ered when analysing speech acoustics for emotion [13, 15, 73]. Both source- and filter-related

cues are relevant indicators of physiological changes in vocal production that may accompany

emotional arousal [379].

As the air passes from the lungs through the glottis it causes the vocal folds (located in the carti-

laginous larynx) to vibrate, creating source energy. The source energy is subsequently modified

(filtered) as it passes through the supralaryngeal vocal tract, which comprises the pharyngeal,

oral, and nasal cavities (see Figure 5.1). The source energy can be either voiced or unvoiced.

The regular vibration of the vocal folds produces voiced (or phonated) sounds such as vowels

[15]. The resulting speech waveform is then quasi-periodic1. The basic rate at which the vocal

1Quasi-periodic means that the speech waveform shows periodicity over a short-time period (5-100 ms) during
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Figure 5.1: A schematic illustration of the human vocal tract [13].

folds vibrate is called the “fundamental frequency” (F0), which corresponds to what a listener

perceives as pitch, i.e. the part of speech that gives it the tonal quality. The size of the vocal

folds (length and mass) and the tension placed on them determines the rate of vibration [382].

Most adult males, for example, have longer vocal folds that produce lower vibration rates, per-

ceived as lower pitched voices. Most females, and particularly children, have shorter ones that

produce higher pitched voices. Unvoiced sounds, in contrast, are produced when the air passes

through the glottis without causing the vocal folds to vibrate. The resulting speech signal is

subsequently voiceless, generally perceived as noisy and breathy (e.g. “h” and “s” sounds).

The waveform that is produced is then aperiodic (i.e. random noise).

The energy leaving the larynx passes through the supralaryngeal vocal tract, where the reso-

nance properties of the pharyngeal, oral, and nasal cavities act as filters. These acoustic differ-

ences result from energy regions being passed or attenuated, creating high-amplitude energy

which it is stationary [381]
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Figure 5.2: Diagram illustrating a linear prediction coding (LPC) analysis algorithm. The LPC
residual has a flat spectrum as a result of minimising the error between the signal’s spectrum
and the frequency response of the filter [14].

bands at resonance locations known as formants. The frequencies that are amplified or at-

tenuated are determined by the characteristics of the vocal tract such as the vocal-tract length,

position of the tongue, lips, jaws, etc. The ability to make rapid movements with the tongue and

jaw to change the size and shape of different cavities allows us to produce articulated speech.

Even facial expressions, such as smiling, can significantly affect the outcome of vocal tract

resonances, specifically reflected in formant frequencies [13]. Such filter-related cues may,

therefore, be important indicators of expressed emotion but seemed to have not been studied by

researchers in the field so far [42, 12].

To provide a perceptual approximation of the glottal sound source one can apply an inverse

filter (IF) to the original signal. The most common method for doing this is linear prediction

coding (LPC). An LPC algorithm (see Figure 5.2) finds a filter to fit the spectrum of the input

signal, applies the inverse, and extracts the LPC residual (glottal source)—numerous automatic

inverse filtering algorithms have been suggested (see [383] for an overview). LPC models the

glottal source with a fixed spectral envelope, although the spectral envelope of the actual voice

source generally varies. In fact, the spectral envelope is shaped according to different voice

qualities, such as vocal effort and lax voice [14]. Voice quality is a source-related cue, which

corresponds to the variability in the frequency and amplitude of vocal-fold vibrations (see sec-

tion 5.6).
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5.2 Prosody

In a general sense, prosody describes the way one vocalises a sentence. It refers to the temporal

and melodic aspects of a spoken language that give a sentence meaning beyond its lexical con-

tent. Prosody is at the suprasegmental level of communication, i.e. the phenomena that spans

speech segments (phones) [384, 385]. The suprasegmental features that collectively combine

to form prosody in speech production and perception include rhythm, stress, and intonation. A

simple example of prosodic variation is the difference between a declarative statement (“They

are gone.”) and a question (“They are gone?”). In this example, pitch variation (usually with

a rise at the end of the sentence) is used to convey non-lexical information about whether the

sentence was a question or not. In tone languages, such as Chinese-Mandarin, melodic op-

positions have phonemic value that can distinguish words from one another [384]. In most

European languages, however, prosodic features do not typically change the meaning of a word

[386].

Cutler et al. [387] point out that the term prosody is used in different ways by different re-

searchers. Some conceptualise prosody as an abstract meaning of the structure of speech, while

others conceptualise it more at the actual acoustical conveyance, effectively as a synonym for

suprasegmental features, such as pitch, tempo, and loudness. In fact, Werner and Keller [384]

distinguish between four different representations of prosodic conceptualisation (cf. [385]):

• The linguistic intention is the use of prosody to make semantic distinctions such as the

question-statement distinction mentioned above. Prosody also accentuates certain ele-

ments of a text by marking boundaries and conveying transitions between words, phrases

or sentences. The linguistic representation refers to prosodic descriptions relating to tone,

intonation and stress.

• The articulatory manifestation is the systematic modifications of articulatory move-

ments that produce prosodic variation. These observable physical movements include

variations in amplitude of articulatory movements, air pressure, or electric impulses in

the articulatory musculature.
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• The acoustic realisation of prosody refers to the variables that can be measured from

an acoustic signal. The main acoustic variations include fundamental frequency (F0),

intensity and duration. A stressed syllable, for example, is often higher in fundamental

frequency, greater in amplitude, and longer in duration compared to unstressed syllables.

• The perceptual representation refers to the human perceptual processing. At the sub-

jective level of perception, prosodic phenomena include pauses, length, pitch/melody and

loudness.

It is generally acknowledged that the main prosodic measurements of an utterance are variances

of timing, amplitude, and frequency. Although, these features are, in fact, the measurable di-

mensions of sound itself. Prosodic features can be analysed over a syllable, word, phrase or

an entire utterance (or turn), which makes it context sensitive. Moreover, various aspects of

prosody can have duration relevance, e.g. vowel, pitch, and intensity durations. Similarly,

stress can be distinguished over a word, phrase, or sentence, but is mostly conveyed on a single

syllable [384].

Prosodic features are the most commonly used features for emotion in speech recognition [152,

388, 19, 303]. Murray and Arnott [389] suggest that “anger” and “joy” have a faster speech

rate, a higher pitch average, a wider pitch range, and higher intensity. Sadness and boredom,

on the other hand, are characterised by a lower pitch average, slightly narrower pitch range,

and a slower speaking rate. Since anger and joy have been shown to share the same vocal

characteristics, it seems that prosody characterises activation rather than its valence, since anger

and joy are opposites in hedonic valence. Fragopanagos and Taylor [19] point out that the

findings from most prosodic studies of emotion so far tend to be limited to information about

the activation level, rather than the qualitative valence of an emotional state.

Prosody Frameworks and Applications

One of the most popular labelling schemes to represent prosodic events for categorical an-

notation is the Tones and Break Indices (ToBI) framework [390]. ToBI is a framework for
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transcribing the intonation and prosodic structure of spoken utterances. This framework mea-

sures prosodic features such as pitch accents (or prominence) and prosodic phrase boundaries

(the perceived grouping of words in an utterance) [391]. It comprises a series of labelling tiers,

a tonal tier, break index tier, and a miscellaneous tier. Similarly, LinguaTag uses a three-tiered

approach to define stress in prosodic events, but it consists of duration, pitch and intensity

[392]. Other intonation models include IPO [393] and Tilt [394]. The IPO (Institute of Per-

ception Research) approach was originally for the research of Dutch intonation but has also

been adapted and applied to other languages. The approach provides a framework that extracts

raw acoustic F0 data to provide a model of intonation for a given language. The intonation is

represented by a series of discrete pitch movements (rather than pitch levels) for which the stan-

dardised curve, when resynthesised, should be perceptually equivalent to the original contour

[395]. Mozziconacci and Hermes [283] investigated the production and perception of utter-

ances expressed with emotion using the IPO model. By manipulating cues via synthesis (as

mentioned in 4.1.4), they examined the perception of emotion in speech by transferring a series

of different intonation patterns (obtained from acted speech) onto neutral utterances. Similarly,

the Tilt intonation model facilitates automatic analysis and synthesis of intonation. It provides

a parameterised representation of the intonational events in F0 contours. Pitch events occur

as instants in a linear fashion, have distinct start and end points, and detail pitch peaks and

throughs [395]. McGilloway et al. [303] used a system called ASSESS (Automatic Statistical

Summary of Elementary Speech Structures) for preprocessing to retrieve measures from the

speech signal. In their study, prosody was the primary supra-segmental feature they used for

statistical analysis.

5.3 Fundamental Frequency (F0) related Measures

As mentioned, voiced sounds are the result of the vibration of the speaker’s vocal cords. The

rate at which the vibration occurs is defined by the quasi-periodic number of cycles per sec-

ond, measured in hertz (Hz). This is called the fundamental frequency (F0), and its relative

perceptual impression is referred to as pitch. According to the American National Standards
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Figure 5.3: Speech signal (top) of the utterance we were doing so well, spoken by a female
speaker, in the time domain with its corresponding pitch contour (below).

Institute (ANSI) of 1994, pitch is defined as that attribute of auditory sensation in terms of

which sounds may be ordered on a scale extending from low to high. Pitch is that sensory (sub-

jective) attribute to melody, harmony, and tonality. Intonation plays a big part in natural speech

and is primarily related to fundamental frequency (F0) [384]. Intonation involves incidences

of recurring F0 patterns that are represented by the pitch contour [396]. The pitch contour

characterises the temporal evolution of pitch within a speech utterance [296]. This feature is

an important aspect of emotion in speech recognition, as it can describe the temporal charac-

teristics of an emotion as it unfolds in time [241]. The properties of a speech wave form are

commonly illustrated as periodic variation of sound pressure amplitude as a function of time.

Waveforms are typically illustrated in a time domain. Figure 5.3 shows a speech clip illustrated

in the time domain (top) with its corresponding pitch contour (bottom) over time.

Common pitch statistical measurements of speech include mean, median, minimum, maximum,

standard deviation, range, first quartiles, third quartiles, and interquartile range. Similarly, one

may come across the terms topline and baseline, which are effectively the trend of pitch peaks

and throughs over a phrase [397]. Pitch extraction is a common procedure in the work of speech

science, and is found in most speech analysis software. However, results may vary as there are
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different algorithms for pitch extraction [15]. Typically, algorithms for pitch extraction cor-

relate the waveform against itself to find repeating patterns of periodicity in the signal, and

then producing an autocorrelation function on it. Errors can occur due to noise, present due to

unwanted signals in the recording, or merely as part of the sound produced in the speech pro-

duction system. The most common errors found are “octave jumps”, particularly for emotional

speech [30, p. 235]. These errors are often manually corrected.

Pitch is an important component for conveying non-textual information, such as prominence

and emotion expression [141]. This seems to be the case for many languages [115]. Ververidis

and Kotropoulos [241], for example, showed that anger had the highest pitch level, followed

by fear. Disgust, on the other hand, is expressed with a low mean pitch level. They noted

that the majority of research reported a wide pitch range for fear. Juslin and Laukka [242]

provide an extensive review of the findings of F0 correlates of emotion in 104 studies. In most

reviewed studies, F0 level was found to be high for anger, fear, and happiness, and low for

sadness and tenderness. F0 variability was found to be high for anger and happiness, but low

for fear, sadness, and tenderness. Meanwhile anger, fear, and happiness were associated with a

higher proportion of upward F0 contours compared with sadness and tenderness. With respect

to frequency, intensity, and duration, they found that positive emotions exhibited more regular

patterns compared to the irregularities found in negative emotions. Furthermore, they noted that

much reviewed work was based on data from “informal observations or simple acoustic indices

that do not capture the complex nature of F0 contours in vocal expression”. They suggested

that further research is needed to confirm these preliminary results.

5.4 Time-related Measures

As an integral part of the prosodic phenomenon, the variations in the speed of speech produc-

tion play a big role in the expression of emotion. These variations correspond to changes in

speech rhythm or speech rate [384]. There are several methods for studying speech rhythm

[398], yet no standardised measure exists. Generally, speech rhythm corresponds to the dura-
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tions of vocalic and consonantal stretches in a speech signal. It can, for example, be measured

over vowel duration [399]. Speech rate, on the other hand, is the amount of speech produced

over time, normally measured by quantifying the number of phonemes, syllables, or words in

an utterance per second [15]—syllable counts being the most common method. Speech rate

measurements generally include speech pauses, whereas calculations based on speaking time

excluding pauses have been referred to as “articulation rate” [400]. In itself, variability of

pauses can also be potential indicators of emotional expression. Other temporal measures have

included mean of silence duration, mean of syllable duration [28], and the inverse of mean

length of voiced parts [401].

The review provided by Juslin and Laukka [242], suggests that speech rate/tempo is of pri-

mary importance for listener judgement on vocal emotional expression. For example, they

established that anger, fear, and happiness had a fast speech rate/tempo, while sadness was as-

sociated with a slow speech rate. However, not only does speech rate seem to be associated

with more than one emotion, it is similarly associated with emotions in contrast of qualita-

tive valence, such as anger and happiness. Moreover, it seems that there are gender-specific

differences in speech rates associated with a particular emotion. For example, it has been re-

ported that for anger males exert a slow speech rate, whereas females exert a fast speech rate

[241, 402, 403]. A study by Laukka et al. [28] compared the general findings obtained from

posed expressions with those obtained in their study of spontaneous speech. They found that

the acoustic correlates of authentic irritation and resignation demonstrated a similar trend to

those of posed anger and sadness (except for speech rate for irritation). They suggested that

posed expressions, therefore, do reflect (at least partly) the physiological responses associated

with spontaneous expressions. They reported, however, that the effect sizes for the correlates

they obtained are much smaller compared to studies of posed expressions.
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Figure 5.4: Speech signal of the utterance we were doing so well (left), with corresponding
intensity contour (right).

5.5 Intensity-related Measures

Amplitude of a speech signal is a direct measure of the degree of displacement in atmospheric

pressure caused by sound waves. Although it is directly related to the intensity of a sound,

intensity is a measure that better reflects the perception and production of speech. Intensity is a

measure of the amount of energy in the acoustic signal, measured in decibels (dB), which cor-

relates with the perceived loudness and reflects the effort required in speech production [269].

A graphical representation of intensity contours can be illustrated (see Figure 5.4), similar to

the illustration for fundamental frequency contours. Common global statistical measurements

include mean, standard deviation, range, maximum, minimum, median, and mode. Intensity

and variability of intensity have been shown [241, 242] to be important indicators of expressed

emotion, particularly related to speaker arousal (activity). However, measuring intensity of

speech is susceptible to several factors. These include the distance and angle placement of

the microphone relative to the speaker, background noise levels of the recording environment,

and recorder input levels [15]. To successfully calibrate measures of amplitude or intensity,

cautious procedures when recording should be undertaken. In a natural setting, however, this

is difficult to manage, so a controlled recording environment is more favourable in this regard.

However, this will reflect on the emotion elicitation type found in the data, as either simulated

or induced emotional expressions (see section 4.3).
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According to the review by Juslin and Laukka [242], a high voice intensity mean is associated

with anger, happiness, fear. Although, fear seems to be less reliable because a comparable

number of studies showed that it was associated with a low voice intensity mean [241]. In

contrast, sadness and tenderness were shown to have a low intensity mean. Similarly, voice

intensity variability was high for anger, fear, and happiness, but low for sadness. In most cases,

there seems to be a positive relationship between high pitch mean and high intensity. It may

be that high pitch and intensity means correspond to emotions of a similar level of arousal

[377]. In fact, the literature suggests that arousal (or activation) level is positively correlated

with mean F0, mean intensity, and, in most cases, speech rate [287].

5.6 Voice Quality

Like prosody, voice quality (phonation types) constitutes the paralinguistic form of communi-

cation. Voice quality is sometimes associated with laryngeal qualities but is mostly described as

an auditory judgement of specific phonation types such as “tense”, “harsh”, “rough”, “bright”,

“coarse”, “breathy”, etc. Voice quality can be conceptualised as part of a multi-layered prosodic

system, distinct from the linguistic-prosodic pattern that carries semantic information [404].

Laver [405] defines voice quality as “the characteristic auditory colouring of an individual

speaker’s voice”. In other words, voice quality can be described as the timbre of the voice.

Voice quality is an important aspect in communicating paralinguistic information, such as in-

dividual identity, and expression of attitude and emotion [258, 406, 156].

Vocal quality parameters are determined by the different vocal fold vibration patterns, although

they may not manifest immediate parameters as prosody does [258]. The vocal tract config-

urations are affected by various physiological states, which, in turn, do not sustain a constant

period of oscillation. These variations affect voice timbres. This gives rise to two of the most

common perturbations: jitter and shimmer. Jitter is the cycle-to-cycle variation of the period

length (irregularities of pitch). Shimmer, on the other hand, is the cycle-to-cycle variation of

the peak or average amplitude (irregularities in the intensity) [407, 258]. Jitter and shimmer
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characterise voice qualities such as roughness and breathy speech [258]. Another feature as-

sociated with voice quality is the Harmonic-to-Noise (HNR) ratio. By measuring the degree

of periodicity of a sound—the relative height of the maximum of the autocorrelation function

[408]—HNR is a measure that quantifies (in terms of dB) the amount of additive noise (aperi-

odic) against harmonic (periodic) levels in the voiced signal. As mentioned previously, noise

results from turbulent airflow generated at the glottis during phonation, due to inadequate clo-

sure of the vocal folds [409]. Noise may also be produced when the vocal fold vibration is

aperiodic.

Several studies suggest that voice quality is fundamental in the expression of emotions [410,

383, 411, 121, 406, 412]. A study by Gobl and Nı́ Chasaide [383] focused on defining a cer-

tain relationship between voice quality and emotional states. The presented synthesised stimuli

(see section 4.1.4) were obtained using resynthesis with a formant speech synthesiser system

[282], which is an approximation of the intended voice qualities. Their results showed that

there was no direct association between an individual voice quality and any one emotion (af-

fect) [282, 383]. Moreover, Laver [405] associated “breathy voice” with intimacy, whereas

“lax voice” (breathy voice at the phonatory level) has also been shown to correspond to sadness

[73, 413]. Laukkanen et al. [413] reported that “breathy voice” was more indicative of sadness,

surprise and enthusiasm. Gobl and Nı́ Chasaide [383] found that “breathy” stimuli did receive

some “sad” and “intimacy” response but was more effectively signaled by the “lax-creaky”

stimulus. For breathy voice they found no association with anger and happiness, although this

contrasted with the findings of Murray and Arnott [389]. They mentioned that sadness was

associated with a ‘resonant’ voice quality. Burkhardt and Sendlmeier [414] found a weak asso-

ciation with a breathy and ‘falsetto’ voice. A more general association of a tense voice might be

with anger [73, 413, 414, 383]. Although, Scherer [73] suggests that tense voice is associated

with anger, but also with joy and fear.

Gobl and Nı́ Chasaide [383] reported from their experiments that voice quality might pro-

vide a better indication of milder affective states rather than signalling strong emotions (except
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anger). They note the difficulty in synthesising voice qualities, such as whispery, breathy and

harsh stimuli, suggesting that one should be cautious when interpreting the results. Although

voice quality seems to play a significant role in the communication of a speaker’s emotional

state, it is generally not used in isolation [383, 87]. It has been suggested elsewhere that voice

quality is used to differentiate between discrete emotions [389, 73]. In terms of emotion dimen-

sions, it has been argued that voice quality is a better indicator of emotional valence (e.g. [413]),

while others argue that it is a better indicator of emotional arousal/activation and power/potency

[383, 87].

The findings highlight the difficulty in comparing voice quality results. Most work on voice

quality depends on the use of subjective auditory labels such as breathy, tense, etc. The problem

with the use of such labels is that there is no real consensus between the descriptors used and

the acoustic parameters measured, with results depending on the participant’s interpretation of

the terms used [73, 383].

5.7 Spectral Features

As mentioned in section 5.3, variations of pitch and amplitude are represented in the time

domain. In speech analysis, it is common to transform the speech signal between the time

domain (Figure 5.5 (a)) and the frequency domain (Figure 5.5 (b)) by means of a mathematical

tool called the Fourier transform. Fourier analysis transforms a periodic signal to a function

in the frequency domain, which represents the amplitude at each frequency. The transform is

based on a theorem that proposes that any periodic time-series signal (time domain) can be

decomposed as the sum of a set of sinusoidal functions (frequency domain), mathematically

represented by sines and cosines. A Fourier analysis can illustrate both a single spectral slice

and a spectrogram. The spectral slice displays the energy of each frequency component at

a particular time, as depicted in Figure 5.5 (b) (at 0.554 seconds), or over a short segment,

and thus has no time dimension. A spectrogram (Figure 5.5 (c)), on the other hand, visually

represents the amount of energy at each frequency component as it varies with time. The
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Figure 5.5: Speech signal illustrated in the time domain (a), as a single FFT-based spectral
slice taken at 0.554 seconds represented in the frequency domain (b), and the time-frequency
representation as a spectrogram.

amount of energy at a frequency component is represented by the intensity (or colour) at a

particular point in time. In the frequency domain, the spectrum can depict features such as

harmonics, formants, and energy distribution. To describe the spectral distribution, one can

use global measures such as spectral tilt, mean, standard deviation, skewness, and kurtosis

[15]. Another method to characterise energy distribution is to compute and subdivide the mean

spectral energy over a smaller number of equally wide frequency bands.

Harmonics

Measuring the number of harmonics is a useful feature for speech emotion recognition [415,

241, 416]. Harmonics are component frequencies that are integer multiples of the fundamental

frequency and are defined by their frequency and their amplitude [10]. The relative amplitudes
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of the harmonics give characteristics such as voice quality beyond just pitch. Source variation

and vocal tract filtering vary the amplitudes of the harmonics of a spectrum resulting in differ-

ent voice qualities [417]. Vocal effort, for example, has more high-frequency content whereas

a relaxed voice (or lax voice) has much stronger lower harmonics relative to the upper har-

monics [14]. Comparisons can be made between the amplitudes of different harmonics, such

as the first and second harmonics (H1-H2) or first harmonic and the strongest harmonic in the

third formant (H1-A3). Epstein [417] states, for example, that a breathy voice usually has the

highest amplitude in the first harmonic, and a creaky voice has higher amplitudes in the higher

frequency harmonics. One should perhaps note that the perceived loudness of a voiced speech

signal (proximal cues in terms of the Brunswikian framework) is not so much correlated with its

overall intensity (distal cues) but rather with the amplitude of a few or even a single harmonic

[12].

Formants

Formants are created by vocal tract resonances that amplify or attenuate certain frequencies

in the spectrum. Formants allow us to quantify the natural shape and physical dimensions of

the vocal tract. Formants are specified by their centre frequency, amplitude, and bandwidth.

They are indexed above F0 (fundamental frequency). The first formant is indexed as F1, the

second as F2, and so forth [386] (see Figure 5.6). Voiced phones have four or more formants.

In general, F1 and F2 are considered most significant to distinguish the phonetic properties of

speech sounds, particularly for vowels [10], whereas the higher formants may be speaker de-

pendent [405]. Furthermore, F1 and F2 appear to be more affected by emotional states than

the other formants [241]. A common technique used to estimate formants is linear predictive

coding (LPC) (see 5.1). This technique creates a spectral representation of time-series data by

representing the most prominent spectral peaks using a small set of polynomial coefficients to

define its function [15], effectively representing the filtering effects of the vocal tract.

Formants have been used in several studies in speech emotion recognition [418, 419, 420, 421,
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Figure 5.6: First five labelled formants overlying a Fourier spectrum. Linear predictive coding
(LPC) was used for the envelope [15].

422, 423, 31]. Formants can be used to discriminate between different efforts in articulation that

might be associated with certain emotions. For example, Ververidis and Kotropoulos [241] note

that during slackened articulated speech formant bandwidth is gradual, whereas with improved

articulated speech the formant bandwidth is narrow with steep flanks. Juslin and Laukka [242]

found that formant measurements gave the most consistent results with anger and sadness,

which were associated with increases and decreases in precision of articulation, respectively.

Spectral Tilt

The relative energy of higher harmonics with fundamental frequency (F0) decreases over the

frequency range. The slope of this harmonic spectrum is called the spectral tilt [276]. This is

obtained by using linear regression to fit a line to the individual points that form the spectrum

[15]. When analysing voiced sounds, spectral tilt can be measured as the difference between

the first and second harmonic amplitudes (i.e. H1-H2 / F0-H2). Whereas the term spectral

tilt is used to represent the slope of the spectrum, spectral emphasis is a measurement reflect-

ing the relative mean energy values in the lower and upper halves of the frequency spectrum.

These measurements may serve to show differences in voice quality [424, 417], accent [425]

and emotion-related aspects [415, 426]. A study by Liscombe et al [281], for instance, sug-

gested that spectral tilt (as well as type of phrase accent and boundary tone) may be useful in

distinguishing between the qualitative valence (between positive or negative) of emotions.
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Figure 5.7: The Fourier spectrum with measurements for values of tilt, mean, standard devia-
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Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCC) [427] are standard features used in automatic

speech recognition (ASR) designed to differentiate phones over quasi-stationary extracts of

the speech signal [10]. The short-term statistics of MFCCs are commonly used to extract lex-

ical information from speech, while long-term statistics are useful for paralinguistic analysis

such as emotion [152]. Existing literature indicates that there are contradictory results. Steidl

[10], for example, recommends that the use of MFCCs for emotion recognition can be useful

as it has been successfully implemented [428, 429, 430, 431] to investigate how something is

being said, rather than what is being said. Furthermore, he recommends that features with less

reduction in earlier stages of the computation of MFCCs should consist of valuable informa-

tion for emotion classification. Ververidis and Kotropoulos [241], on the other hand, observed

a poor emotion classification performance [416, 432]. However, they suggest that this may

be due to textual dependency, and the pitch-filtering algorithm used during cepstral analysis.

Additionally, Yang and Lugger [296] stated that the emotional state of a speaker is unlikely to

change as fast as phonemes. Their findings also suggested MFCCs to be less successful for

emotion recognition (cf. [433, 432]).
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Figure 5.8: Long-term average spectra (LTAS) of speech utterance from female talker. The
mean energy is shown across partitioned bands of width 1000Hz (left) obtained from the raw
Fourier spectrum (left).

Long-Term Average Spectrum Analysis

As mentioned, spectral analysis can be conducted on a frame level (see Figure 5.5 (b)) or aver-

aged over whole segments (see Figure 5.8). In Long-Term Average Spectrum Analysis (LTAS),

mean energy is usually extracted over segments of 30 seconds or more [42], which may make it

useful for analysing emotional states that may lie over several speech segments. LTAS is gen-

erally quick and less susceptible to measurement error compared to most other measurements

[139]. It cannot, however, pinpoint expressed emotion in speech segments [15] as it does not

directly correspond to properties of sound at any exact moment [139]. Thus, it may overlook

possible short-term acoustic cues that may be important when decoding emotional speech.

5.8 Automatic Emotion Recognition

With an appropriate speech corpus, work can be carried out to exclusively focus on recognising

the state of the speaker by means of acoustic analysis (encoding studies). For automatic emo-

tion recognition, a machine classifier is trained to classify emotion of a speech utterance based

on the extracted acoustic features. Together with a label to represent the expressed emotion,

the features are provided as input to machine learning algorithms [375] i.e. they are subse-

quently subjected to global statistical measures—global statistics are seemingly less sensitive
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to linguistic information and are therefore useful for emotion in speech recognition [434]. In

earlier studies, feature extractions consisted mostly of statistical measurements such as maxi-

mum, minimum, median, range and variability values on pitch, intensity, and duration-related

features [435]. Alternatively, one can use mathematical transforms on a waveform, such as Lin-

ear Prediction Cepstral Coefficients (LPCC), Log Frequency Power Coefficients (LFPC), and

Mel-frequency Cepstral Coefficients (MFCC). In recent advances, acoustic feature sets have

become very large. For example, the feature set used for INTERSPEECH 2009 Emotion Chal-

lenge consisted of 384 features, the INTERSPEECH 2010 Paralinguistic Challenge included

1582 features, and the INTERSPEECH 2011 Speaker State challenge totalled 4368 features

[178]. Although a large amount of features can be extracted, Ververidis and Kotropoulos [434]

state that the performance of any classifier is reduced when all features are included.

5.9 Conclusion

As we set out to investigate how listeners perceive emotion from acoustic features, this chap-

ter examined the most prevalent acoustical correlates of emotional speech found in the liter-

ature. Needless to say, a basic knowledge of speech acoustics is required to make informed

choices about appropriate investigations on the perception of emotion in speech. The source-

filter model of speech was first discussed (section 5.1) as is now widely used in emotion and

speech research. Following this, the different acoustical aspects of emotion communication that

have been shown to correlate to emotional expression were discussed, which can be subdivided

into prosody (section 5.2), pitch (section F0) (section 5.3), time (section 5.4), intensity (sec-

tion 5.5), voice quality (section 5.6), and spectral features (section 5.7). Although this chapter

provides general information for our research questions, it particularly contributes to exploring

research questions four and five (RQ4 and RQ5).
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6
Development of an Online Rating Tool

6.1 Introduction

In section 3.3.3, several existing tools used for the measurement of emotions were identified.

Considerations in the development and delivery of these tools are essential for labelling emo-

tional speech, one of the main goals of this thesis. It was pointed out in section 3.2.6 that

labelling can be administered to a (usually small) group of expert judges or to a large group of

undefined judges, also known as crowdsourcing. In the traditional sense, where expert raters

are employed to rate speech, tools for the task are often delivered in-house. To harness the

power of crowdsourcing, one generally outsources the task to a group of people via the web.

With the assistance of web-based technologies, tools for rating emotional speech can be de-
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veloped to deliver listening tasks to participants via web browsers. In the case where a small

group of expert raters is used, the concept of what is being rated can be thoroughly revised

prior to the task to ensure labelling consistency. This may not be practicable when targeting an

undefined group of people online, however. Therefore, to increase the likelihood of labelling

accuracy, much care must be taken with the participant’s understanding of the concept that is

to be rated, and the ease and straightforwardness of the task itself. For the development of

an online tool, this chapter aims to address these issues, and will contribute to answering the

following research questions:

RQ1: What are the practical prerequisites for carrying out large-scale listening tests?

The development of the tool considered several practical issues for labelling emotional speech

on a large-scale basis. The tool is, after all, the backbone for effective labelling. To deliver a

fully constructed naturalistic emotional speech corpus, in the next chapter (Chapter 7) it was

set out to use the tool to obtain emotional labels from listening tasks. This task will contribute

to answering research questions two and three (RQ2 and RQ3). In addition, it has been decided

to use the tool as the basis for controlled experimentation to investigate nonverbal aspects of

mood induced speech (Chapter 8), and thus contributing to answering research questions five

and six (RQ4 and RQ5). Because the tool needs to be suitable for the experimental design,

some alterations will be made. This chapter details the specifics for developing the tool for

both tasks.

6.2 Descriptive Scheme

Having reviewed the different labelling schemes (see Chapter 3), it is evident that choosing an

appropriate labelling scheme for annotating emotion in speech is not an obvious task, especially

for natural spontaneous speech. At present, there is no consensual labelling methodology for

describing emotions—the labels provided are linked with care to theoretical presuppositions

that exist for emotion. In many cases, the labelling methodology a researcher settles on reflects

the dataset description (e.g. eliciting type, delivered or observed emotions) and contingent
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on the labelling task requirements, compromises methods applicable for either expert or non-

expert participants.

The labelling scheme used in this chapter is the dimensional approach. This is for two main

reasons. First, it is more suited for cross-studies in a wider context [251] because this approach

avoids the complex issues often associated with subjective category labels for natural speech

(see Chapter 3.4). Incidentally, the corpus is freely and publicly available to accommodate

comparisons between studies. Second, the dimensional approach retains information about the

correspondence and dissent of all ratings—rather than providing solely identical measures—

which gives a more comprehensive knowledge on the level of agreement between ratings. The

conclusions made in this thesis largely rely on these analyses.

The theoretical framework for the labelling scheme used in this thesis is in parallel with that

used for the Feeltrace tool (see [9]), i.e. using the Activation and Evaluation dimensions. The

method used here differentiates from the Feeltrace tool, as it does not require time-continuous

evaluation, i.e. trace labelling (see also the work by [236]). This is because utterances of dis-

crete periods of time (termed as quantised labelling [30]) of short length (∼5 seconds) are used

and it is assumed here that within the speech segment no changes in emotion occur, and are

thus kept constant [436].

Given that a principal consideration in this investigation is the use of crowdsourcing (large-

scale, non-expert listening groups), a labelling scheme that required comprehensive training

was avoided. To assist the participant’s understanding of each scale, the tool includes a de-

tailed instructions page. A preliminary case study was carried out to ensure that the whole

task was conceptually undemanding, and to verify the participant’s understanding of each scale

to be rated (section 6.3). Participants were presented with two discretised scales. A coarser

granularity on each rating scale was opted for by discretising the dimensional scales into fewer

categories—which also accommodates the requirements for machine learning. Each scale is di-

vided into five colour-coded categories (see section 6.3, Figure 6.3), which runs from Passive to
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Login Instructions Listen and Rate

ExitContinue?
Yes NoSign up

Figure 6.1: Flowchart of the web pages presented to the participant.

Active for the Activation scale and from Negative to Positive for the Evaluation scale. Previous

studies have made use of categories such as ‘very’ negative and ‘very’ positive [9]; however,

this study excludes these categories because of the nature of the speech material. Naturalistic

speech conveys underlying emotion which can be considered milder and subtler expressions of

emotion. Lastly, if a participant is unable to rate a clip, there is a “Do not rate” option, which,

in itself, is documented as a rating.

6.3 Design and Implementation

First in this section, the initial design as it was administered for the first case study is described:

labelling emotional speech (Chapter 7). Following this, a small case study that was carried out

to ensure the efficiency of the tool is presented. Last, as the tool is later used for experimentation

purposes (Chapter 8), the alterations that were made specific for the experiment design, and

based on the feedback and experience from the case study, are described.

6.3.1 Framework for Case Study

As mentioned, the tool was delivered online in order to reach a large number of participants.

There is an understanding among the research community that gathering ample data from the

general population can be a demanding task. With this in mind, the tool has been developed

and tested taking into account the end user’s limitations (user-centred design (UCD)), ensuring

ease-of-use and an adequate understanding for each scale to be rated. The participants’ ability

to use the tool with ease, and their understanding about the concept of each scale was given

considerable importance as this would affect the quality of the labels. The design of the site

(see Figure 6.1) ensures that the instructions were presented prior to the listening task, although
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create your account (password must contain only letters

Confirm Password

Is English your first language? 

Have you a hearing impairment? 

Create
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Password
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B.
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B.

A.

B.

Welcome to the EmoVerE Rating Tool

You will be asked to listen to short speech clips and following that to rate them accordingly on two scales.

These scales are explained as follows:

1. Activation

Activation in speech is believed to relate to physical activity that has some link to adrenalin and other
physical characteristics, for example:

If someone receives a gift they do not like they may say "thank you" more passively.

If they receive a gift they do like they may say '"thank you" more actively.

We will ask you how much activity you hear in the speaker’s voice on a scale from passive to active.

2. Evaluation

Evaluation often determines whether the appraisal of an event is favorable or not, for example:

if someone is asked to participate in something they do not want to do they may say "I will do it"
negatively.

If they are asked to participate in something they do want to do they may say "I will do it" positively.

We will ask you whether you think the speaker is being positive or negative during the clip.

 

In both examples, the level of activation and evaluation may overlap, so:

Someone saying "thank you" for an unwanted gift may sound both passive and negative

Someone saying "I don't like the gift" for an unwanted gift may sound both active and negative.

If you are unsure about a clip, please choose the "do not rate" button.

Thank you for taking the time to assist in this research.

 

Instructions Listen and Rate

Figure 6.2: The sign up page (left) requires information on first language and hearing impair-
ment. The instructions page (right) details the concept of Activation and Evaluation, with given
examples.

the participants were able to refer back to the instructions at any stage during the task. More-

over, the tool was designed to be suited for repeated use to accumulate ratings on a continual

basis. Furthermore, to encourage participation, minimum personal details were required.

For the initial design of the site used for the case study in Chapter 7, there were four main

pages:

1. Sign up: participants were required to create a login account. To encourage participa-

tion, minimal details were required from the participants to take account for participant

privacy concerns and to prevent participant impatience towards a daunting task. A sign-

in ID (email address) and password was assigned, with mandatory information on first

language and hearing impairment (on the left in Figure 6.2).

2. Login: participants logged in so that they could be identified with their previous tasks,
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and, therefore, it kept track of speech clips that were already rated, ensuring each speech

clip was only presented to them once.

3. Instructions: based on the dimensions of the circumplex model, Activation and Evalu-

ation were presented on two scales. After login, the participant was presented with a

description, and a written example conceptualising the Activation and Evaluation scales

(on the right in Figure 6.2). The instructions, and the participant’s understanding of them,

were assessed with a preliminary survey (see section 6.3.2).

4. Listen and rate: the listening task was presented as three successive steps, i.e. listen to

the speech clip and rate accordingly on both scales (see Figure 6.3). The scales were

visually colour coded. Speech clips were randomised and taken from two subcategories:

‘before’ and ‘after’ segments of induced emotion (see section 7.2.1 for more details on

subcategories). To ensure that the full audio clip had been listened to, the rating buttons

were disabled until the audio player had reached the end of the speech clip. To rate a

speech clip, both Activation level and Evaluation level had to be selected. If only one

scale was selected the participant was notified and instructed to rate both scales. When

the clip had been listened to, the participant could rate the current speech clip or choose

not to rate it and continue to the next speech clip.

The number of speech clips presented in each session was kept to a minimum to prevent any

fatigue and/or boredom effects, and, thus, decrease the likelihood of spurious ratings. For each

session, participants were presented with six clips before given the option to exit. The number

of clips presented was decided based on the feedback from the preliminary survey (section

6.3.2). Participants were asked to revisit and log back in at a later stage for continual rating.

Participants were given the option to skip a speech clip if they felt they could not rate it by

choosing “Do not rate” (DNR). If a participant chose DNR for three consecutive speech clips,

they were notified and asked if they wanted to exit the session. A total of 160 speech clips

were available for each participant to rate, and each clip could be replayed as many times as

required by the participant. The participant’s login details were stored in a MySQL database

as it was felt it was easier to administer, and the ratings were gathered in an XML database as
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jsnel@hotmail.com:
-  Log  out
-  Feedback

    November  7,  2011,  6:41  pmListen  and  Rate

Welcome  back  jsnel@hotmail.com!  You  have  rated  in  total  508  assets.  In  this  session  you  have  rated  0  and
listened  to  0  assets.

Please  listen  to  the  audio  file  and  rate  it  accordingly:

Passive Slightly  Passive Average Slightly  Active Active

Please  choose  the  activation  level:

Negative Slightly  Negative Neutral Slightly  Positive Positive

Please  choose  the  evaluation  level:

Rate it    Do not rate

(Note:  These  buttons  will  be  disabled  until  you  have  fully  listened  to  the  speech  clip.)

Instructions Listen  and  Rate

Step  01

Step  02

Step  03

emovere
emotional verification experiments

Figure 6.3: The main page of the web-based rating tool for rating speech clips. It includes an
audio player, and colour coded scales for Activation and Evaluation.

this accommodated machine learning softwares. The data stored for each rating included the

participant’s email, the speech clip listened to and the associated ratings, and a timestamp of

when the rating took place.
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Correct Incorrect

Activation 6 1
Evaluation 6 1

(a) No. of correct and incorrect answers
given for the multiple choice questions on
the comprehension of the two concepts
(Activation and Evaluation).

Demand VL L N H VH

Mental 1 1 3 2 0
Temporal 0 3 4 0 0
Effort 3 1 2 1 0

(b) Subjective workload assessment,
VL=Very low, L=Low, N=Normal, H=High,
VH=Very high.

Table 6.1: Survey results

6.3.2 Design Validation

To validate the design of the tool prior to implementation, seven non-experts were surveyed,

in the context of emotional judgement, to (1) assess their understanding of the instructions,

(2) ensure they could setup up an account and complete the task without difficulties, and (3)

assess the subjective workload when using the tool (see Appendix A for questionnaires). Partic-

ipants were from a technical (college staff and other researchers) and non-technical (first-year

journalism students) background. The steps taken for this were as follows:

1. Read instructions.

2. Answer questions about the definitions of both Evaluation and Activation—this is to

validate the participant’s comprehension of the two concepts.

3. Rate speech clips.

4. Complete assessment survey on workload.

For the activation question, six were correct and one incorrect. Similarly, for the Evaluation

question six were correct and one incorrect (see Table 6.1a). It should be noted that the incor-

rect answers were from the same participant. This participant did not follow the order of the

instructions in the above procedure. Instead, the participant read instructions, rated clips, and

then answered the questions on Evaluation and Activation. Overall, it was concluded that there

was a sufficient amount of understanding among the raters for the instructions of both scales.
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After the rating task was completed, a survey (see Appendix A) based on the NASA TLX

[437]—a subjective workload assessment tool—assessed the cognitive load on mental de-

mands, temporal demands, and uncertainty, irritation, and stress (effort) while using the online

rating tool. Overall, it was concluded that the cognitive demands were adequate (see Table

6.1b).

Participants were asked on the amount of clips that they would be willing to rate on a daily

basis. Four participants chose three clips per day and three chose to increase the number. It

was concluded that participants should be presented with three to seven clips at a time to pre-

vent boredom and/or fatigue effects. Besides querying cognitive load, participants gave free-

response feedback on any other information they felt gave difficulties. Accordingly, technical

issues within reason—such as browser issues and password restrictions—were addressed.

Because there was the option of free-response feedback, a brief summary of some interesting

remarks from the different participants are given below:

• Evaluation would be easier as binary.

• The definition of activation is easier to understand in terms of the dynamics of emotion.

• Scale for authenticity/genuineness could be introduced.

• There is a need for a baseline speech clip to compare against it.

• It was necessary to listen to some clips several times to hear the tone of voice, rather than

the linguistic content.

• Others noted they assessed the clips along the scales according to the linguistic content.

• One participant expressed that the speech clips were “weird”.
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Instructions

Exit

Yes

No

Instructions Test
Assign 

condition

YesNo

Listen and Rate

YesNo

Ye

No

All 32 rated?
Login

Successfull?

Figure 6.4: Flowchart of the web pages presented to the participant (experiment).

6.3.3 Adaptations for Experimentation

As mentioned, it was decided to use the framework of this tool for controlled experimentation to

investigate recognition of emotion from nonverbal aspects. Some alterations were made based

on the feedback and experience from the case study. More importantly, however, changes were

made to the tool to be specific for the task and appropriate for the design of the experiment.

The flowchart of the tool is shown in Figure 6.4. Again, a login page was necessary to track

user ratings, and to ensure that the participants were assigned to the appropriate condition test.

As illustrated, an additional subtask that followed the instructions page was included.

For the experiment, it may be necessary to take into account participant demographic informa-

tion that could potentially be significant in the perception of nonverbal (prosodic) aspects of

speech. Various studies indicate that individual differences in culture [321], age [438], gender

[439], and laterality [440] can have an effect on the attentional bias towards either linguistic

or prosodic content. For this reason, changes were made to the sign up/login page to include

participant information on nationality, age, gender, and handedness. Moreover, the login page

also required information on the participants group, as assigned by the researcher.

As already mentioned, speech was rated on two discretised 5-point (colour-coded) scales: Ac-

tivation and Evaluation. For the participants to understand the concept of these scales, a page

with detailed instructions on each scale was provided. Some participants who gave feedback

during this case study (in Chapter 7) felt it was necessary to be presented with a baseline speech

clip prior to the task to allow the participant to compare others against. The initial instructions

provided for the case study did not include a viable baseline speech clip because no clips had
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The EmoVerE Rating Tool

 

Which of the following is best described by Activation (pick one answer): 
 A speech segment that contains a lot of noise.
 A speech segment relating to politics or other governmental affairs.
 A speech segment that contains physical arousal in the voice due to emotion.
 A speech segment where the speech is acted/performed.

Which of the following is best described by Evaluation (pick one answer): 
 A speech segment that indicates that the speaker is asking a question.
 A speech segmen's perceived loudness.
 A speech segment that sounds like a whisper.
 A speech segment where the speaker's voice conveys the benefit of (or problem with) something.

 

Use Rating Tool

Instructions

Figure 6.5: Instructions test page.

received any user ratings. Therefore, users could not be informed with a crucial label that was

reliably applicable to the baseline clip. In the meantime, however, the ratings received from the

case study provided us with a basis for a suitable label—the labels for all speech clips were de-

termined by the ground truth values [441]. To allow the participant to be fully conversant with

the task, an example speech clip with its corresponding value on the Activation and Evaluation

scale (see Appendix B) was provided. The ground truth value of this clip was slightly active

and slightly positive (3,3), and received 18 ratings in the case study1. The example clip was

selected in compliance with the label’s high inter-rater agreement2. This clip was not part of

the stimuli rated in the experiment.

In the previous case study, 7 participants were surveyed prior to implementation to ensure an

adequate understanding of the instructions was attained. Nevertheless, labelling accuracy was

elaborated on by intervening the task with a 5-choice multiple questionnaire on the instruc-

1It should be noted that participants were informed that the provided example was based on the results from
previous findings, and that the shown values did not necessarily indicate the correct chosen categories. Participants
were informed of the values’ subjective and inconclusive nature.

2The interval range was 0.89 on the Activation scale, and 0.78 on the Evaluation scale.
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Passive Slightly Passive Average Slightly Active Active

Please choose the activation level:

(Reminder: Activation is a measure of a person's overall disposition to engage in action, corresponding to how active or lethargic the person

feels. It is related to a speakers's involuntary physical/vocal reaction in the presence of an emotion e.g. laughter, trembling, smiling.)

Negative Slightly Negative Neutral Slightly Positive Positive

Please choose the evaluation level:

(Reminder: Evaluation is the appraisal of an event. The appraisal determines if something is positive or negative. In other words, Evaluation

measures the strength of positive or negative feeling that a speaker is portraying.)

Step 02

Step 03

Figure 6.6: Listening task—with added notes on scale concepts

tions prior to the listening task (see Figure 6.5). Participants were required to complete the

questionnaire correctly before continuing, and if the participant was unsuccessful for either of

the scales, they were informed as a result and instructed to re-read the instructions carefully.

Although this additional task may deter the participant from taking part after unsuccessful at-

tempts, it nonetheless increases labelling accuracy. In retrospect, the task did not seem to pre-

vent participants completing the task. Incidentally, all attempts were documented in a MySQL

database—including the overall process of the task. Again from participant feedback, some

indicated the need to regularly refer to the instructions page to recall the definitions for each

scale. For this reason, the definitions were appended to the scale on the rating page (see Figure

6.6).

As participants were recruited, they were sequentially assigned to one of two groups, i.e. the

first person would be assigned the task with the original/intact condition, the second to the

filtered condition, and so forth. Participants could return to the task at any given time. When

the user completed the first phase, the second phase was made active after two weeks had

passed.
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6.4 Conclusion

First, this chapter discussed the design of the online rating tool developed to be suitable for

large-scale listening tasks, and thus contributing to answer research question one (RQ1). For

this work, it was particularly necessary to make the tool accessible for laymen. For this reason,

instructions were included. Prior to implementing the task, a short survey was carried out to

ensure sufficient understanding. This chapter outlined the general framework as implemented

for the case study in the next chapter and the subsequent experimental chapter. The tool is

used in the case study to provide labels for a naturalistic, mood induced speech dataset. By

providing the labels, it completes the construction of a naturalistic speech corpus (Chapter

7). This chapter also detailed the changes made to the tool in order to implement it for the

experiment in Chapter 8.
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7
Emotional Labelling: A Large-scale

Perception Test

7.1 Introduction

One of the important observations from the previous chapters indicated that building suitable

corpora for emotion in speech research remains a top priority. The build of an emotional speech

corpora consists of two essential tasks: (1) collecting suitable and adequate emotional speech

material and (2) assigning descriptive labels that correspond to the conveyed emotional content.

Both procedures are effectively mutually dependent. That is to say, the emotional content

in a given speech dataset needs to be established by carrying out listening tasks, yet at the

132



CHAPTER 7. EMOTIONAL LABELLING: A LARGE-SCALE PERCEPTION TEST

same time, the verification of its emotional content is largely dependent on the appropriateness

of the labelling methods used. With a naturalistic speech dataset made available to us [442,

159], the first step is to provide well-founded user-verified labels that represent the perceived

emotion for the individual speech clips. The aim is to achieve this by carrying out large-

scale online listening tasks. For this task, participant magnitude and generality is a particularly

important consideration, for which naı̈ve listeners will be availed of, rather than solely ‘expert’

listeners familiar with emotion theoretical knowledge. The obtained ratings will establish the

final labels—the quality being dependent on the ratings’ reliability—from which the absence

or presence of perceived emotional content can be determined, thus, exploring Mood Inducing

Procedures’ (MIPs) effectiveness as a means for eliciting spontaneous emotion. To this end,

this case study will investigate the following proposed research question:

RQ2: Can listeners adequately capture variation of activation and evaluation of emotion

in naturalistic speech?

RQ3: Can mood induction procedures provide naturalistic speech with sufficiently dis-

cernible levels of emotion?

This work aims to develop a naturalistic emotional speech corpus, with focus on audio quality

and authenticity of emotional content. To our advantage, this work is founded on the knowledge

of previous investigations [442, 159], and due to the challenges that the previous investigations

met, i.e. the issues with obtaining a sufficient amount of occurrences for each clip, the rating

strategy was re-evaluated (see section 7.2.1), which comprises some minor changes in the la-

belling methods and speech segmentation. In spite of the alterations, the speech material used

for this study is extracted from the same source–speech recordings as an outcome of Mood

Inducing Procedures [442]. The next section outlines the production of the speech stimuli used

for this particular case study.
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7.2 Methods

7.2.1 Stimuli Selection

In section 4.3 the type of corpora that are used for emotion in speech research were summarised.

It was recognised that obtained spontaneous speech is in many cases recorded in unfavourable

recording environments that can be problematic for effective acoustic analyses. The provided

speech dataset was constructed with emphasis on elicitation of authentic emotions while fo-

cusing on the ideal recording environment, high audio quality being an aspect that is not often

considered as a primary concern.

The Existing MIP Based Speech Dataset

Because there are inevitable restrictions in obtaining truly natural material and at the same time

isolating the desired speech signal from unwanted noise, Mood Inducing Procedures (MIPs)

provide for a convenient trade-off (see section 4.3.3). The speech material provided for this

project is obtained from previous work [442, 159] that implemented MIPs. The procedures

address the importance of audio quality and place great emphasis on the naturalness of emo-

tional content. For its emotional content, MIPs were implemented that incorporated tasks with

the need for achievement, and provided potential rewards for the participants—Success/Failure

and Social Interaction MIP, and the Gift MIP. The construction of the emotional speech dataset

considered several necessary aspects related to emotion induction, and among these were ethi-

cal attentiveness, authenticity of emotional content, and demand effects1. With regard to audio

quality, the inducing methods were performed on participants positioned in soundproof isola-

tion booths (see Figure 7.1) to minimise any unwanted acoustic factors. Speech was recorded

at its highest audio quality of 192Khz/24-bit and for this investigation clips were downsampled

to 44.1Khz. The equipment used for the MIP experiments comprised Neumann U87 micro-

phones, Beyerdynamic DT 150 headphones, and a Pro Tools HD3 rig.

1Demand effects are those possibilities of the subject guessing the purpose of the procedure and hence act the
desired emotion.
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Figure 7.1: There are 4 booths available for recording, consisting of two different sizes. A
recently installed sound proof booth is on the left, and the sound proof booth used for current
speech material is on the right.

Subdivision of Dataset

The MIPs’ efficacy of inducing non-neutral emotions can be determined by rating the dataset as

a whole. However, this may not explicitly indicate that the MIP gave rise to these emotions. As

an attempt to investigate the effectiveness of the MIP, the clips are split into two categories, be-

fore and after, according to the phase of the experiment from which it was extracted. One may

assume a priori that over the duration of the experiment, occurrences of emotional episodes

would increase as time unfolded. In other words, the greater the degree of participant engage-

ment, the greater the degree of emotional involvement.

Vaughan explained in his thesis [159] that it is impracticable for the researcher to control for

all emotion eliciting aspects over the course of carrying out MIPs. The researcher would have

no control over any external engagement prior to the experiment that may have given rise to the

participant’s mood and/or emotional state. Inspecting the recorded material prior to rating and
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Figure 7.2: Extraction of speech clips categorised as before and after.

analysis, a subjective assessment suggested that before MIP manipulation commenced some

participants immediately conveyed emotionally coloured speech, particularly with instances

where the participants described and engaged themselves as friends. This is simply explained

by social interaction (social interaction MIP). One may be interested in investigating the pre-

cise moments of elicited emotions as a result of the researcher’s systematic manipulations.

However, as Vaughan noted, the participant’s response to any manipulation is not always pre-

dictable. Therefore, measuring the effectiveness of an MIP manipulation can be problematic

or indeterminate, considering the difficulty of explaining every potential variable.

In spite of this fact, it is suggested to compare clips that are extracted from different stages

of the experiment, and investigate how the MIP unfolded in time. Theoretically speaking, the

participants should be less emotionally involved at the beginning stage, prior to experimen-

tal manipulations. To compare moments of the intended emotion elicitation, speech segments

were extracted from different phases of the MIP experiment (see Figure 7.2).

Speech segments were extracted and assigned to one of two categories2: (1) those extracted

from the beginning of the experiment, and, therefore, prior to/at the onset of the participant’s

immersion in gameplay—labelled as before—and (2) those extracted from the end to the middle

of the experiment, when fully engaged in the MIP experiment—labelled as after. Subsequently,

2No linear or monotonic relationship was found between the individual clip’s position in time and the observed
rating. This would be expected because emotion fluctuates over time. It was more beneficial to compare two larger
regions within the MIP experiment, i.e. before and after.
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any differences in the rated content will be observed between the two categories and, therefore,

investigate the effectiveness of the MIPs as an emotion eliciting exercise. At this point, it

should be mentioned that the applied boundaries between ‘before’ and ‘after’ are vague, and

the limitations imposed on interpreting the results are acknowledged. For the rating task, 80

speech clips were presented from each category, ‘before’ and ‘after’.

Units of Analysis

Researchers need to consider how emotional episodes unfold and vary over time. This is mostly

addressed with either labelling or segmentation in mind. In terms of labelling, it was mentioned

that trace labelling is intended for this purpose (see Chapter 3.3.3). Alternatively, a single label

is attached to a clip as a whole, with discrete time periods—termed as quantised labelling [30].

This approach is used in this thesis. The choice of units for segmenting speech, however, is

a complex issue because it is difficult to determine where an emotional episode begins and

where it ends. For now, speech clips are kept short to prevent transitions in emotional content

in an utterance, and focus on singular states. In accordance with other studies [436, 158, 159],

relatively short utterances were used, which ranged from 1 to 8 seconds in length (averaging

∼3 seconds). The segmentation process was carried out by the researcher based on intuitive

assessment (see Appendix C for more details).

Rating Strategy

In order to conduct any constructive acoustic analyses, adequate amounts of labelled speech

clips are necessary. However, obtaining large quantities of labelled speech has its practicable

constraints. During his studies, Vaughan [159] identified the significance of choosing a suitable

number of clips to rate. If too many clips are presented to the participant, the number of

occurrences for a given clip will be too small for any statistically relevant analysis. In fact,

this is coupled with the number of categories or discretised levels used. Vaughan reduced the

number of clips for his second case study from 624 to 177. For this case study, 160 clips have

been selected for rating and, to increase the likelihood of sufficient occurrences in the available
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classes3, the number of discretised levels used for each dimension were revised, using five

discrete levels on each scale, instead of 21. Speech clips were extracted from eight different

MIP sessions. The 160 speech clips (80 for each group) were produced by 16 different speakers

(7m/9f).

7.2.2 Online Rating Tool

In the previous chapter, the development of the rating tool for this case study (Chapter 6) was

discussed. To facilitate the use of crowdsourcing—and reach a large number of participants—

the rating tool was delivered via the Internet. The objective of the tool was to have a simple

but clean interface to make it easy for participants to understand and use. In order to achieve

adequate labelling accuracy, the participants’ ability to use the tool with ease, and their un-

derstanding about the concept of each scale was given considerable importance. The tool was

designed with a simple but clean interface, and included a page with detailed instructions con-

ceptualising each scale.

7.2.3 Selection of Subjects

It is argued here that the appointment of raters, and the accumulation process of ratings, is

methodologically significant. Often in state-of-the-art research, rather small numbers of “ex-

pert” labellers are asked to participate in listening tasks. However, most research does not

indicate explicitly what expertise the annotators have—annotators are usually researchers who

are part of the wider field of emotional research. Cowie and Cornelius [16] argued that the

wider, non-expert population can provide ratings that are equally valid to those of experts.

Emotion is, after all, subjective in nature, and an important aspect of general communication

between all humans.

The gathering of large numbers of annotators is rarely a primary research objective. As sug-

3There are five classes on both scales. On the Activation scale, classes range from Passive to Active, and on
the Evaluation scale classes range from Negative to Positive.
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gested by Tarasov et al. [160], the listening tasks for this study are outsourced to a large group

of non-expert individuals, also known as crowdsourcing [161]. That is to say, the aim is to

accumulate judgement ratings from a broader sample population that do not specifically re-

quire theoretical knowledge on emotion. For the online tool, the requirement of demographic

information were kept to a minimum to encourage participation, and only sought information

on English language as their mother tongue and hearing impairment.

Native versus Non-native Speakers

Because crowdsourcing is used to accumulate participants for this study, participants will be

culturally diverse. It is widely known that there is cultural variation in emotional expressions

[35, 43]. Studies have shown, however, that similar inference rules exist from vocal expressions

across different cultures. A study by Scherer [43] showed that judges from nine different lan-

guage speaking countries could infer four acted, categorical emotions from content-free speech,

with a degree of accuracy substantially better than chance.

A study by Bryant and Barret [35] considered the idea that exposure to common emotion stim-

uli from, for example, mass media may be a factor in universal emotion inferences. For that

reason, their study focused on participants from a South American indigenous population (the

Shuar) and showed that those participants could identify emotions reliably from acted vocal-

isations conveyed by American native English speakers—the experiment implemented a task

matching emotional spoken utterances to pictorial facial expressions.

In spite of the above-mentioned studies, culture-related variances in emotion-related studies are

still being explored. For this study, it was deemed worthy to consider demographic information

on native and non-native English speakers as it may have a substantial impact on the overall

outcome, and, therefore, the resultant label. Besides, this study does not reliably compare to

the aforementioned studies for two general reasons. Firstly, the material used in the two studies

consisted of acted material, and as mentioned in section 4.3, it was argued that studies using

139



CHAPTER 7. EMOTIONAL LABELLING: A LARGE-SCALE PERCEPTION TEST

acted material must, to some degree, be differentiated from studies using spontaneous material,

i.e. mood induced speech provided for this study. Secondly, there are numerous approaches to

operationalising emotion and the studies above used categorical emotions, while this approach

is that of the dimensional model (see Chapter 3 for information). Considering this, information

based on English as a first language to operationalise native and non-native English speakers

was gathered.

Hearing Impairment

Depending on the severity, it is clear that a participant’s hearing impairment can have a strong

impact on the outcome of each label. Very few participants, however, reported hearing impair-

ments. Out of 107 participants who registered, four participants indicated they had some form

of hearing impairment, three of whom only registered and did not rate any clips. These were

therefore omitted. In the end, all four participants who indicated having a hearing impairment

were excluded from the results.

7.3 Results

The accumulation process began in July 2011 and at the end of March 2012, 1243 pairs (Ac-

tivation and Evaluation) of ratings received from 71 registered participants (averaging 7.77

ratings per clip) were reported [443]. The tool remained active to increase the potential num-

ber of ratings from those acquainted with the project after the publication was presented. In

July 2012, there were 83 people registered4 from whom ratings giving a total of 1707 ratings

for both scales were received—excluding the 59 DNR ratings. The distribution of the overall

ratings—before and after labelled clips—is shown in Figure 7.3 for the Activation (left) and

Evaluation (right) scale. A total of 160 speech clips were rated, which gave us an average of

10.67 ratings per speech clip.

4In total, 107 people were registered but 24 of these did not rate any speech clips.
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Figure 7.3: Distribution of the ratings received for the Activation (left) and Evaluation (right)
scales, for clips labelled ‘before’ and ‘after’. DNR = “Do Not Rate”.

Activation Evaluation

Mean 2.39 2.00
Median 3.00 2.00
Mode 3 2
IQR 1.00 2.00
Overall SD 1.228 1.039

Table 7.1: Descriptive Statistics

For each scale, Table 7.1 shows the corresponding Mean, Median, Mode, IQR, and Standard

Deviation (see Appendix D for further obtained values.). There is a slight negative skew on the

distribution on the Activation scale, and the obtained mean value is 2.39 (SD=1.228). There

is a slight positive skew on the Evaluation scale, and the mean value is 2.00 (SD=1.093). On

the Activation scale, 392 out of 1707 were rated as ‘Average’ (23%) and 1315 as non-average

(77%). On the Evaluation scale, 674 out of 1707 were rated as ‘Neutral’ (39%) and 1033

as non-neutral (61%). A Kolmogorov-Smirnov statistical analysis suggested a violation of the

assumption of normality for both scales: Activation (D(1707) = 0.212, p <0.05) and Evaluation

(D(1707) = 0.211, p <0.05) scales.
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Figure 7.4: Dot plot for the number of ratings received.

DNR No. of clips

3 1
2 8
1 40

Table 7.2: Number of
DNR ratings received.

7.3.1 Rating Spread

As mentioned, participants were encouraged to rate all clips available but were advised not to

overwork the task and return, if necessary, at a later date. Because there was no restriction on

the number of clips that could be rated at any given time, the process needed to be randomised5.

As would be expected, the received ratings were unevenly distributed. As already mentioned, a

total of 160 speech clips were rated, which gave us an average of 10.6 ratings per speech clip.

Figure 7.4 shows the spread of ratings received, where two clips received the minimum (5) and

one clip the maximum number of ratings (18).

7.3.2 DNR Ratings

Participants were given the option to skip a speech clip if they felt they were not able to rate

it by choosing “Do not rate” (DNR), which was also documented. Out of 1766 ratings, a total

of 59 were DNR ratings (3%), which were spread over 49 speech clips. Table 7.2 illustrates

5Speech clips were randomised to minimise any order/practice effects
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the overall breakdown which resulted in 1 clip receiving 3 DNRs, 8 clips receiving 2 DNRs,

and 40 clips receiving 1 DNR. Because there is a relatively even spread of DNR ratings, and

no specific clip received an exceptional number of DNRs, it was not considered significant for

further investigation. In what follows in this Chapter, DNR ratings are regarded as ‘missing’

values.

7.3.3 Native versus Non-native Speakers

Of the 83 participants who took part, 38 were native English speaking (46%) and contributed to

1021 ratings, and 45 were non-native English speaking (54%) and contributed to 686 ratings.

A Mann-Whitney (non-parametric)6 test was performed to determine if there were differences

in ratings obtained between native and non-native English speakers. Distributions of the ratings

for native and non-native groups were similar on both scales, as assessed by visual inspection

(see Appendix E). On the Activation scale, the test revealed no significant difference between

the ratings obtained from native English speakers (Md = 3, n = 686) and from non-native

English speakers (Md = 3, n = 1021), U = 347471, z = −.282, p = 0.778, r = 0.007. Similarly,

on the Evaluation scale the test revealed no significant difference between the ratings from

native (Md = 2, n = 686) and non-native English speakers (Md = 2, n = 1021), U = 340667.5,

z = −.997, p = 0.319, r = 0.024. The following analyses report on the entirety of ratings,

disregarding demographics of English as a first language.

7.3.4 Inter-rater Measures

Labels should only be assigned to speech clips that are validated in some form. The form of

validation is subject to the description type considered by the investigator, i.e. cause-type or

effect-type [9] (see section 3.2.5). The listening tasks performed for this study (effect-type)

focus on the impression the speaker’s way of conveying emotion has on the listener. In order

6The Mann-Whitney test is a non-parametric test. This was used because we are dealing with ordinal data.
Many studies, however, report on the parametric equivalent. In most cases, a similar interpretation can be made.
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to validate labels in effect-type (or judgement) studies, a high degree of agreement between all

annotators needs to be associated with each label [240, pg. 175]. In this section, two aspects of

inter-rater measurements are looked at. First, the overall consistency of order between ratings

stretching over all clips is measured, using Krippendorff’s Alpha (α), and second, the level of

variation of the ratings for each individual clip by measuring standard deviations is determined.

Inter-rater Reliability

Krippendorff’s α [17] for both scales, Activation and Evaluation, was computed. This is a

reliability coefficient that measures how much raters agree on labels among multiple items—

speech clips in this instance. It is most appropriate for the nature of the data for this thesis,

as it is well suited for data that contains missing values (e.g. DNR ratings)7 and for studies

where multiple (instead of just two) raters are recruited, it can be used with any metric or level

of measurement, and is applicable to either large or small sample sizes—it does not require a

minimum sample size. Moreover, the single coefficient enables us to compare a variety of data

with the same reliability standard. Krippendorf’s α [17] is calculated as follows:

α = 1− Do

De
(7.1)

where Do is the observed number of disagreements between raters:

Do =
1
n ∑

c
∑
k

ock metricδ
2
ck (7.2)

De is the expected level of disagreement by chance:

De =
1

n(n−1)∑
c

∑
k

nc ·nk metricδ
2
ck (7.3)

and ock, nc, nk, and n are arguments that represent the frequency of values in coincidence ma-

trices.
7As seen in Figure 7.4. In this data, the number of ratings received are unevenly spread, which would be

considered—by most inter-rater algorithms—as incomplete. Accordingly, Krippendorff’s α accommodates for
incomplete (missing) values.
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Figure 7.5: Dot plot for the SD values on each scale.

The observed value for α is interpreted as a level of agreement between 0 and 1, where 1

indicates perfect reliability and 0 the absence of reliability. For the 160 clips (or units), the

maximum number of received ratings was 18, which in terms of Krippendorff’s α relates to the

number of observers—clips that received fewer ratings had missing values assigned to them.

Table 7.3 shows the observed Krippendorff’s α coefficients (ordinal) for each scale. The ob-

served value on the Activation scale was higher than the Evaluation scale, with a score of

0.4268. On the Evaluation scale the observed α coefficient (ordinal) was 0.1999.

Krippendorff’s α

Activation 0.4268
Evaluation 0.1999

Table 7.3: Krippendorff’s α [17] (ordinal) as a measure for inter-rater reliability for both scales.
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Figure 7.6: Distribution of clips with respect to the SD value and the median value obtained—
the Activation (left) and Evaluation (right).

Inter-rater Agreement on Individual Clips

As mentioned in the previous section, Krippendorff’s α is a measure of agreement determined

from ratings received from multiple raters, across multiple clips. It does not allow for measur-

ing agreement among raters for individual clips. Considering the reliability was low for both

scales—in particular for the Evaluation scale—it would be advantageous to assess agreement

levels on the individual clips. After all, some clips are more ambiguous and perhaps more diffi-

cult to rate than others, which is likely to have an impact on the overall reliability as measured

above (section 7.3.4). To assess agreement levels on individual clips, the standard deviation

(SD) of the ratings received for each respective clip was used. Figure 7.5 depicts how clips are

distributed with respect to obtained SD values. The plots demonstrate that the majority of clips

have an SD value between 0.5 and 1.00 for both scales (87 clips on the Activation scale and

92 clips on the Evaluation scale). The average SD value on the Activation scale is 0.893, and

0.9255 for the Evaluation scale.

Because the obtained SD values differ for all clips, it is worth examining the trend of SD

spread more closely in relation to the emotional content of the clips. For instance, one can
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Activation Before After Evaluation Before After

Passive 90 61 Negative 45 99
Slightly Passive 164 109 Slightly Negative 187 213
Average 224 168 Neutral 400 274
Slightly Active 273 261 Slightly Positive 157 141
Active 111 246 Positive 73 118

Table 7.4: A comparison of ratings received for each class on each scale between the ‘before’
and ‘after’ labelled clips.

investigate in which rateable category the emotion identifier is most explicit, determined by

the clips agreement level, which may provide some knowledge on the ambiguity of expressed

emotion. One may expect that clips with no emotion—or rather ‘average’ on the Activation

scale and ‘neutral’ on the Evaluation scale—may exhibit a trend of high agreement (low SD

scores). Figure 7.6 demonstrates a cumulative bar chart of SD values within four different

ranges with the respective median score. The Activation scale (left) shows that the highest

agreements (SD range of 0.0 to 0.5) obtained were mostly for clips with a median value on the

‘Active’ class (coded as 4), and those with an SD range of 0.5 to 1.0 received a large number

of clips for which the clips median value was ‘Slightly Active’ (coded as 3). On the Evaluation

scale, the highest agreements (SD range of 0.0 to 0.5) were mainly observed for clips that

were rated as Neutral, and similarly for clips with SD range of 0.5 to 1.0 (see Appendix F for

histogram with mode values, and Tables for precise figures for respective median and mode

values).

7.3.5 MIP Phase Comparison: Before and After

Furthermore, the difference between speech clips extracted from the beginning of the MIP

experiment—and, therefore, before fully immersed in the experiment—and towards the end

of the experiment were assessed. As mentioned above, the clips that were extracted from the

beginning were labelled as ‘before’ and those extracted towards the end were labelled as ‘after’.

Table 7.4 compares the distribution of ratings for the before and after clips.
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Differences between Individual Ratings

A Wilcoxon Signed Rank Test was performed to determine if there was a difference in ratings

for the speech clips labelled as ‘before’ and ‘after’. On the Activation scale, the test revealed a

significant increase in the level of activation for the ratings obtained for the ‘after’ clips (Md =

3) compared to the ‘before’ clips (Md = 2), z = −6.951, p <0.001, with a small effect size (r

= 0.168). However, on the Evaluation scale the test revealed no significant difference between

the ratings obtained for the ‘before’ clips (Md = 2) and ‘after’ clips (Md = 2), z = −1.534, p =

0.125, r = 0.037.

Differences between Inter-rater Reliability

Table 7.5 shows the obtained α measures for clips taken from the start and end of the MIP ex-

periment. It shows that the agreement coefficient is higher for the ‘after’ clips on the Activation

scale, but slightly lower for the ‘after’ clips on the Evaluation scale.

Before (α) After (α)

Activation 0.2978 0.51
Evaluation 0.2072 0.1907

Table 7.5: Krippendorff’s α [17] (ordinal) values for experiment phase (before and after) on
both scales.

Differences between SD Values

SD values between the clips from both conditions—labelled as ‘before’ and ‘after’—were also

compared. In this case, we are dealing with a continuous dependent variable (SD). A prelimi-

nary test was carried out to assess violations of normality. (Preliminary analysis for each scale

ensured no violation of the assumptions of normality.) Each scale contained one outlier, but by

inspection neither revealed an extreme value, and were therefore included in the analysis. The

assumption of normality was not violated (differences between the SD scores of the ‘before’

and ‘after’ clips were normally distributed), as assessed by the Shapiro-Wilks test for the acti-
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vation (p = 0.490) and evaluation (p = 0.424).

Accordingly, a paired-sample t-tests was conducted to evaluate whether there was a statistically

significant mean difference between the agreement level (as measured by SD) of the ‘before’

and ‘after’ clips. For the Activation scale, the test indicated a significant decrease in SD mea-

surements (contrastingly interpreted as an increase in agreement) between the ‘before’ clips (M

= 0.9671, SD = 0.253) and the ‘after’ clips (M = 0.8188, SD = 337), t(79) = 3.142, p = <0.002

(two-tailed), d = 0.3512. The mean decrease in SD measurement was 0.148 with a 95% con-

fidence interval ranging from 0.05436 to 0.24234. The eta squared statistic (.111) indicated a

large effect size.

For the Evaluation scale, however, the t-test indicated a significant increase in SD measure-

ments between the ‘before’ clips (M = 8267, SD = 0.24482) and the ‘after’ clips (M = 1.0242,

SD = 0.362), t(79) = 3.142, p = <0.0005 (two-tailed), d = 0.4648. The mean increase in SD

measurement (interpreted as a decrease in agreement) was 0.198 with a 95% confidence inter-

val ranging from −.29205 to −.10297. The eta squared statistic (.179) indicated a large effect

size.

7.3.6 Speech Clip Duration and Agreement Level

As mentioned above (section 7.2.1), the speech clips used for this case study are of relatively

short lengths. One may suspect that the shorter the speech clips are the more difficult they are

to rate, which may therefore result in lesser agreement (or more DNR ratings.) For this reason,

the relationship between SD measures and the clip duration will also be investigated.

A Spearman’s rank-order correlation (non-parametric) was performed to assess the relationship

between the SD of the ratings on a clip and the duration of the clip. The results indicated that

the correlation between SD and clip duration was not statistically significant for the Activation
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scale (r = 0.080, p = 0.314) nor the Evaluation scale (r = 0.011, p = 0.884).

7.4 Discussion

In this chapter, the aim was to obtain ratings from a large group of non-expert individuals, yet

this proved to be time consuming—ratings were collected over a period of a year, gradually de-

clining in number from the beginning. A total of 83 participants contributed to a total of 1766

ratings, 59 of which were “Do not rate” instances (3%). Although participants were asked to

return regularly and rate all 160 clips over a given period, the majority rated <20 speech clips,

the average being 25. However, using fewer (5 discretised) categories on both scales, and not

availing of a surplus of rateable speech clips, gave a satisfactory spread of ratings over all clips

coupled with sufficient occurrences for each class on each scale. This provided us with ade-

quate substance with which to analyse the findings.

7.4.1 Distribution of Ratings

For each scale, Figure 7.3 shows the spread of ratings over all classes. The evaluation scale

(right) contains a large number of neutral ratings, which would be somewhat expected (see

also [444]), gradually decreasing towards positive and negative classes. As mentioned earlier,

39% of the ratings were rated as Neutral and 61% as non-Neutral. On the Activation scale

(left), however, the majority of ratings appear in the Active classes. The large number of active,

non-neutral clips could be explained by the nature of the tasks carried out during the MIPs.

Overall, the histogram demonstrates the presence of emotional content in a sufficient number

of speech clips. One could suggest therefrom that MIPs were, for this speech dataset, successful

in eliciting emotion. However, everyday speech is generally coloured with emotion expression,

so it may not explicitly indicate that the MIPs gave rise to these emotions.
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7.4.2 MIP Phase Comparison

As mentioned in section 7.2.1, the investigation was broadened by assigning the clips to one of

two categories according to which phase of the experiment it was extracted. The investigation

revealed a significant increase in the level of activation for the ratings obtained for the ‘after’

clips, but showed no significant difference for the evaluation scale. This would suggest that as

the experiment unfolded, the more the participant became emotionally involved, or at least in

terms of activation.

Of the speech clips extracted from the ‘before’ and ‘after phase, both Krippendorff’s reliabil-

ity and SD mean differences gave similar interpretations. The SD measures on the Activation

scale indicated that there was a significant increase in agreement for those clips extracted to-

wards the end of the experiment (after clips). In other words, the more emotionally involved

the participants became—or the more active speech became—the less difficult they became to

identify. Upon evaluation, however, there was a significant decrease in agreement for those

clips extracted towards the end of the experiment, indicating that as an emotional expression

became more extreme, the more ambiguous or less uniform ratings were. Perhaps, one may

expect that neutral speech would be easier to evaluate than negative or positive speech because

emotional speech can be ambiguous.

7.4.3 Inter-rater Measures

Inter-rater reliability for the task was rather low for both scales, where α was 0.4268 for the

Activation scale and 0.1999 for the Evaluation scale. These scores appear to be in line with

other studies that report on α measures lower than 0.55 [445, 310, 446]. In contrast to the find-

ings here, where the reliability coefficient was lower for Activation compared to Evaluation,

the study by Truong et al. [445]8 found that agreement was mostly higher for the valence scale,

8Their study compared audio and visual channels and obtained overall agreement levels ranging from 0.12 to
0.48
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and reported agreement levels on their speech recordings of around 0.12 for Arousal (active vs.

passive) and 0.32 for Valence (positive vs. negative). The low inter-rater reliability measures

were expected, and in accordance with what Craggs and Wood [310] acknowledged, the results

suggest that identifying emotion reliably is a difficult task, or at least that emotion is not nec-

essarily perceived uniformly among individuals. Rating spontaneous speech is a demanding

task because the emotions are mostly underlying—milder and subtler than full-blown proto-

typical expressions. It is, after all, difficult to obtain natural speech with intense states through

MIP experiments because of the restrictions on ethical matters. Moreover, the difficulty of

the task may be, to some extent, related to the use of short speech clips (∼5 seconds). As a

reminder, short clips were used to minimise emotional transitions and overlapping emotional

states. Although research has suggested that participants can effectively recognise emotions as

short as ∼5 seconds [159, 436], the potential effect of speech clip duration will also be briefly

discussed. First, as already mentioned no particular clip received an exceptional number of

DNR ratings. In fact, the proportion of DNR ratings was only 3%, which would suggest that

participants had few difficulties rating the recordings. Second, comparing the relationship be-

tween SD measures and speech clip duration indicated that there was no statistically significant

correlation, suggesting that clip duration—1 to 8 seconds—did not influence agreement levels

(SD), which can be interpreted as the level of ambiguity or difficulty associated with the clip’s

identification task.

The standard deviation measure is often used as a measure of agreement [152, 32]. A major ad-

vantage of this measure is that it allows us to analyse agreement levels on individual clips. The

average SD value on the Activation scale was 0.893, and on the Evaluation scale was 0.9255.

Unlike the Krippendorff computation for reliability, the average SD values demonstrate a small

difference between the two scales. The average SD for the VAM corpus, which also used five

discretised classes, was reported at 0.29 for valence, and 0.34 for activation [152]. Again,

in contrary to the findings here, their results showed that evaluation received a smaller SD

measurement—showing better agreement. It is difficult to explain why the average SD results

here are higher than that of the VAM corpus. The most credible explanation would probably be
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the type of emotional content present in the speech material—similar rating schemes, and sim-

ilar sentence durations (averaging 3 seconds) were used. First, a subjective assessment made

by the researcher on the two types of speech data suggests that the emotions portrayed in this

speech data are subtler compared to those of the VAM corpus. Secondly, in terms of linguistic

content, the corpus used in this study seems to provide little information to indicate emotional

content. Thirdly, comparing to the results here, the VAM corpus contains quite a large number

of negative ratings, which may suggest that negative speech is easier to identify.

Figure 7.5 showed how clips were distributed with respect to obtained SD values. It demon-

strated that on the Activation scale, in proportion to the number of ratings received for the

corresponding class, the highest agreement was among clips with median value located in the

Active class, and on the Evaluation scale highest agreements were among clips with median

value located in the Neutral class9. On the Evaluation scale, the extreme classes—Negative and

Positive—received the lowest agreement. This suggests that active speech is identified more

reliably but appears more ambiguous on the Evaluation scale the more extreme the observed

classes are. A study by Schröder [287] investigated how written text and synthesised speech

were perceived on the activation and evaluation dimensions. The study reported that through

text on average SD measures were higher for Activation, i.e. Activation was more difficult to

judge in contrast with Evaluation. In terms of prosodic cues, Activation was portrayed most

successfully while evaluation proved to be more difficult. Schröder acknowledged that different

aspects of emotion are portrayed through different channels—acoustic and linguistic. It seems

that linguistic content is a strong contributor in emotion identification.

7.5 Conclusion

The purpose of this chapter was to investigate the existence of perceived emotion in an MIP

based speech dataset, by performing listening tests on a large-scale basis. It aims to answer

9Mode measures gave similar results. See Appendix F for distribution of SD value respective to the Mode
value

153



CHAPTER 7. EMOTIONAL LABELLING: A LARGE-SCALE PERCEPTION TEST

questions two and three (RQ2 and RQ3). For this case study, an online rating tool was devel-

oped to accumulate ratings on a large-scale basis and to ensure that the participant’s needs and

limitations were met in order to reinforce rating accuracy (Chapter 6). As mentioned in the last

chapter, in order to successfully deliver the tool, it was important to ensure that naı̈ve listeners

could adequately understand the concept of dimensional rating. The feedback obtained prior to

implementing the listening task (see section 6.3.2) suggested that participants could adequately

rate on dimensional scales. To some degree, this was supported by the results obtained in this

case study, given the low number of DNR ratings obtained (section 7.3.2). The spread of rat-

ings indicated (see 7.3.1) that participants could perceive emotion variation on Activation and

Evaluation dimensions. Based on inter-rater agreement measures (section 7.3.4), however, it

appears that the Activation scale is more reliable. Nevertheless, it is difficult to determine if

this is due to the validity of the descriptive scheme, or due to the content of the speech data

itself, where emotion portrayals are of a subtle kind. The mutual dependency in verifying the

emotional content in the given speech data and assuring the appropriateness of the labelling

scheme can be somewhat seen as a paradox. Investigating the dataset as a whole and then

subdivided—based on a priori assumptions—gave us a foundation to examine the MIPs’ ef-

fectiveness, while simultaneously demonstrating the appropriateness of the labelling scheme.

Overall, it was concluded that the obtained results support both the MIPs practical validity,

and support the chosen labelling scheme. In line with other findings in the literature (section

7.4.3), it is recognised here, however, that identifying emotion is fundamentally a difficult task,

especially for spontaneous emotion of a subtle nature. The overall level of agreement, as tested

by Krippendorff’s reliability coefficient and SD measures, is below ideal, which appears to be

more evident on the Evaluation scale. It was mentioned in the last section that Evaluation is

more dependent on the linguistic channel, which could be a contributing factor to its low agree-

ment levels.

The work in this chapter was part of an ongoing corpus-building project. The outcome provided

ratings linked with the provided MIP based speech material. The work undertaken supplied a
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deliverable naturalistic emotional speech corpus10 made freely available to the general research

community. In conclusion, this chapter contributed to answering research question two and

three (RQ2 and RQ3).

10The corpus includes the DIT Mutual non-disclosure agreement form (to be signed), speech files of 44100 Hz
sample rate, obtained ratings for each speech file and each scale (including user IDs), and Ground Truth labels for
Activation and Evaluation.
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8
Judging Emotion from Nonverbal Aspects of

Naturalistic Speech

8.1 Introduction

The case study carried out in the last chapter demonstrated that there was a sufficient amount of

perceived emotional content in the existing speech dataset and, therefore, it was concluded that

the MIP procedures were successful in inducing non-neutral emotional states. The accumu-

lated ratings determined labels for each speech clip, and, as a result, a structured and functional

emotional speech corpus was built. At this stage, one could investigate which acoustic pa-

rameters correlate with perceived expressed emotions (encoding study), based on the idea that
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these acoustic correlates convey expression independent of the linguistic information. Indeed,

there are ample influential studies that suggest probable acoustic parameter sets. To date, how-

ever, research has not yet established a reliable correlation between the acoustic signal and the

expressed emotion. And, as discussed in section 4.4, this may be due to the incorrect or incom-

plete selection of acoustic parameters. Alternatively, as Mark Tatham and Katherine Morton

[378] suggest, it may be due to the fact that listeners do not perceive emotion solely from

the acoustic signal. Being in agreement with the latter, this concept will be explored in this

chapter. To begin with, perhaps a basic distinction should be made between the linguistic and

acoustic aspects of speech. In effect, this study is concerned with what someone is saying and

how it is being said. Both acoustic and linguistic aspects of speech, however, are intrinsically

fused, which makes empirical evaluation of one aspect in complete absence of the other more

or less methodologically impossible. Despite these constraints, this study attempts to isolate

the acoustic aspects of speech, while minimising any loss of salient acoustical features known

to convey affect.

To enable applications to recognise and extract information on emotion from a speech signal, it

is imperative to have an adequate understanding of human perception of emotional speech. To

investigate speech signals, it is difficult—or in most cases impossible—to solely remove or iso-

late the fundamental psychoacoustic elements (such as pitch, loudness, timbre) to investigate

its role because the associated physical properties (e.g. waveform, spectrum, intensity level,

frequency, etc.) are potentially inclusive. To make progress in understanding the vocal com-

munication of emotion, it is necessary to investigate voice cues as contributing elements part

of the structured whole, rather than independent elementary components. The concept of per-

ceptual organisation may be better illustrated visually (see Figure 8.1) in a manner analogous

to the Gestalt principles [447]. Gestalt principles are often explained with the phrase “unified

whole”, which states that complex systems are inherently irreducible and cannot be explained

by their component parts alone. Instead, a holistic approach is needed. For a hypothetical ex-

ample, Figure 8.1 illustrates different coloured circles that represent a set of acoustic features

(pitch, speech rate, intensity, and spectral). The visual representation of the white box in Figure
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Pitch features
Spectral features
Intensity features

Speech rate

(a) All acoustic features intact (b) Removal of formants (c) Removal of fundamental 
frequency (F0) and formants.

(d) Spectral manipulations

Figure 8.1: Feature sets analogous to Gestalt principles

8.1 (a) symbolises the emotion present in the speech signal, and as illustrated, its appearance

is somewhat subjective and ambiguous, although discernible. By manipulating the acoustic

signal, one may remove spectral features such as speech formants, yet retain prosodic features

such as the pitch, intensity, and temporal related features (Figure 8.1 (b)), leaving a sufficient

amount of information to perceive the emotion. However, if removing salient properties simul-

taneously such as pitch and certain spectral features (Figure 8.1 (c)), the conveyed emotion will

be imperceptible. Despite these constraints, it is possible to systematically manipulate certain

features, such as removing some of the spectral content by low-pass filtering the speech signal

(Figure 8.1 (d)), quantifying the relevant effects on perception, and comparing its strength to

other features. The main objective of the experiment presented in this chapter is to investigate

how emotion is perceived in nonverbal aspects of naturalistic speech. In order to mask the

verbal content, certain acoustic features need to be removed or manipulated. In this regard,

the aforementioned example is taken into consideration, as some paralinguistic features will

inevitably be distorted or degraded. Because these procedures affect different acoustic cues,

the role of certain voice cues can be investigated in this vein.

8.2 Overview

The objective of this experiment is to segregate the acoustic channel and investigate its rela-

tive contribution in conveying emotion. In this regard, how subjects infer intact speech against
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altered speech, i.e. intelligible speech (acoustic and linguistic cues), is compared against un-

intelligible speech (acoustic cues only). To attain unintelligible speech, the linguistic content

is masked by applying a low-pass filter on the speech signal. This technique will allow us to

explore the following research questions:

RQ4: Does nonverbal naturalistic speech convey Activity and Evaluation levels that are

recognisable to listeners?

RQ5: How do ratings from two perceptually different conditions (verbal and nonverbal

speech) compare?

A general theme of this thesis is the acoustic correlates of perceived emotion. It has long been

recognised that acoustical patterns, such as intonation, rhythm, and vocal intensity, signify

paralinguistic cues that have communicative functions to express a person’s emotional state.

Numerous acoustic features correlate with emotional speech, but the extent to which each fea-

ture influences perception of emotion in natural, spontaneous speech—or more specifically

mood induced speech—is still being investigated. It remains uncertain about which of the two

aspects, acoustic or linguistic, is more significant in expressing emotion, what each aspect’s

relative contribution is, and whether each communicative function corresponds invariably with

the other. This chapter seeks to explore some of these issues, which effectively questions the

validity of correlating acoustic parameters with labels that are representative of both acoustic

and linguistic cues.

8.3 Methods

For the main experiment, participants were asked to take part in two separate listening tasks.

The two tasks were performed two weeks apart. For one task, they were asked to rate speech

in its recorded form, i.e. intact (non-filtered) and comprehensible, while for the other task they

were asked to rate speech that was manipulated (low-pass filtered) to make it incomprehensi-

ble. Before full implementation, the task was carried out initially with four people to monitor
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Non-filtered Speech Non-filtered Speech

Filtered SpeechFiltered Speech

Period 1 Period 2

Group A

Group B

Figure 8.2: Experimental design: Crossover study.

the process to ensure the participant’s full understanding and to confirm that all data was accu-

mulated correctly.

8.3.1 Design and Implementation

The experiment consisted of a within-subject (repeated-measures), 2-period crossover design

(see Figure 8.2). A crossover study is a longitudinal study that reduces confounding covariates—

each participant serves as their own control—such as order effects, and individual subject dif-

ferences, thus enhancing statistical power. To achieve this, subjects were randomly assigned

to one of two groups. The groups were presented the stimuli conditions in different orders.

The first group rated the non-filtered speech on the initial task and the filtered speech on the

alternate task, and vice versa for the second group. The tasks were administered two weeks

apart to reduce the subjects’ retention of the speech tone (or F0) from the stimuli in the first

task (priming and/or carry over effects). For each task, each participant was asked to rate 32

speech clips in a phase. Therefore, for each participant, a total of 64 speech clips were rated if

both phases were completed. Speech clips were randomised to avoid stimuli order effects. As

before, participants were given the option to skip a speech clip if they felt they could not rate

it by choosing “Do not rate”, but each clip could be replayed as many times as the participant

wanted. It was expected that the task of rating the filter condition would be somewhat more

difficult as the intact speech. The speech stimuli were presented to the listener via the web-

based rating tool as described in the previous case study (see Chapter 7) with modifications

made to the tool to serve the experiment design. Participants were instructed to do the task

using headphones in a quiet location to keep extraneous noise to a minimum. To emphasise the

importance of performing in a quiet location, participants were asked to switch off any enter-
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Select from 160 rated

speech clips (case study):

- highest ratings

- emotional content
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Removal of speech 

clips that are 

comprehendable.

Final Stimuli SelectionInitial Stimuli Selection

Listening task 1 Listening task 2

Select suitable filtering

condition:

- cutoff point 1

- cutoff point 2

- cutoff point 3

Condition 1: Filtered speech

Condition 2: Non-filtered speech

Figure 8.3: Work flow for stimuli selection.

tainment devices such as TVs and radios, and to minimise any other disturbances while doing

the task.

8.3.2 Stimuli Selection

The stimuli used for this experiment are derived from the same dataset that was used for the

previous case study (Chapter 7). The ratings obtained from the case study will specify the

selection process of the stimuli for this experiment. To draw up the required stimuli for the two

conditions (original and low-pass filtered), 3 preliminary tasks were carried out:

1. Selection of suitable intact (original) speech stimuli

2. Evaluation of an effective filter condition to administer

3. Verification of incomprehensible spoken dialogue in the selected filtering condition.

It should be noted that the conclusions drawn from the experiment are not contingent on the clip

selection strategy. Instead, the selection preference acts as an accompaniment to the proposed

research questions. The three stages (see Figure 8.3 for the workflow) that determined the

stimuli for this experiment include a preliminary analysis for the selection process based on the

previous obtained ratings, and two subsequent listening tasks, using two independent groups of

10 subjects. These steps are detailed next.
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Initial Stimuli Selection (Original)

As already mentioned, the previous case study provided us with annotations to give us a basis to

determine appropriate labels on. A total of 160 clips were rated. For this study, the rationale for

selecting suitable stimuli considered three potential factors. First, speech clips can be selected

based on the number of highest ratings received, and the more ratings a clip receives the more

likely it has sufficient statistical power. For all speech clips, the number of ratings received

ranged from 7 to 17 ratings, with 115 clips receiving 10 ratings or more. Second, the speech

clips should, in some manner, be selected according to where the ratings were received on each

emotion scale (Activation and Evaluation) since this would reflect on RQ2—to only select clips

that received neutral ratings would likely be futile when making any comparisons. Third, one

can also prioritise speech clips according to the level of agreement among raters, i.e. the label’s

statistical reliability. By considering all possibilities, the latter was concluded to be the best

compromise. By arranging speech clips in order of best agreement levels, a sufficient number

of ratings for each clip (ranging from 7 to 15) were retained, covering an even spread over each

scale for each mean value obtained, and at the same time prioritising the label’s reliability (see

Appendix G for results on selected clips).

Agreement and reliability measures are achieved in several ways. Initially, the aim was to de-

termine each clip’s agreement level by calculating the standard deviation (SD) of the ratings

received for each clip. However, because the number of ratings received for each clip differed,

the measure of agreement according to the interval size at the clip’s 95% confidence interval,

or in fact, according to the size of margin error, was opted for. For instance, a margin of error

of 0 would indicate complete agreement. Using the t-statistic (t) as the sample size was less

than 30, the margin of error was calculated as:

E = t(
σ√

n
) (8.1)

Speech clips were sorted in ascending order of agreement for both scales, each scale separately

rather than combined. For the Evaluation scale, the interval size for all 160 speech clips ranged
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from 0.335 to 3.49. The chosen speech clips for this experiment were within the range of 0.335

to 0.766. For the Activation scale, the overall range was from 0 to 3.35, and for the selected

clips it ranged from 0 to 0.81. From each scale, the top 18 clips were selected according to

their agreement level giving in total 36 clips (18x2). Overall, the clips had an interval range

less than 0.81 on the Activation scale and less than 0.77 on the Evaluation scale. One must

bear in mind that although ratings for each scale were obtained simultaneously, a speech clip

that received high agreement on one scale does not necessarily receive similar values on the

other. For example, one speech clip received an interval size of 0 (perfect agreement) on the

Activation scale but a value of 0.989 on the Evaluation scale. Similarly, if a label is rated as

emotionally salient on one scale, it may not be the same for the other scale. Out of 36 clips,

21 clips were considered that approximated as non-neutral on the Evaluation scale (greater or

smaller than 2 plus or minus largest margin of error), and 29 as non-average on the activation

scale. Incidentally, 16 of these clips were labelled as ‘before’ and 20 as ‘after’1.

Provision of filtered stimuli: 2 listening tasks

Two preliminary surveys, using two independent groups of 10 subjects, were carried out to (1)

determine a suitable filtering condition to administer, and (2) to ensure that there was no com-

prehension of the spoken dialogue in the selected filtering condition (see Appendix H for survey

and results). Both surveys were carried out in college labs to ensure that the task was carried

out free from any external distractions. A laptop was used to present the audio in random order

to the subject. The speech clips were listened to using Beyerdynamic DT 150 headphones, with

a frequency response of 5Hz-30kHz. Due to the nature of the stimuli, it is essential to optimise

the accuracy of the presented auditory stimuli. The characteristics of the DT 150—a closed

headphone design and wide frequency response—attenuates unwanted ambient noise and en-

sures the sounds are delivered with adequate clarity.

Participants were informed to write down any words that they could comprehend, or give an-

other free response feedback if so desired. For the first survey, subjects were presented with 18

1See Chapter 7 where clips were separated into two categories.
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(b) Filtered at an octave above F0 maximum: 885Hz cutoff 
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(d) Filtered at an octave above F0 minimum: 240Hz cutoff
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(c) Filtered at an octave above F0 median (key): 392Hz cutoff

Figure 8.4: Spectrogram of example speech clip in its original form (a) and 3 filtering condi-
tions (b), (c) and (d), where condition (c) is the final applied filtering measure.

different speech clips, 6 clips for each of 3 low-pass filtering conditions. The low-pass filtering

cutoff points for the three conditions were set an octave above F0 min, F0 median (key)2, and

F0 max. Figure 8.4 shows an example of a clip’s spectrograms in its original condition (a) and

its respective filtered conditions according to the aforementioned cutoff points (b), (c) and (d).

2The median is used here instead of the mean as it is more robust to deviating F0 values.
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The results were somewhat unexpected. Two speech clips were partly comprehensible in the

filtered key condition but none in the F0 max condition. As expected, participants could not

comprehend any of the F0 minimum conditions. Several participants remarked that the stimuli

did not sound like human speech, but rather like a “rumbling” noise, music or rhythmic pulses.

It was surmised, therefore, that filtering an octave above the F0 minimum was excessively low

and created inapplicable stimuli. Filtering an octave above the key is evidently less likely to

be comprehensible compared to an octave above F0 max because the cutoff point is at a lower

value. Therefore, it was concluded that the key value of the clip as the filtering reference point

was most suitable.

In the second survey, all 36 speech clips were low-pass filtered proportional to the speech clip’s

key. The 36 filtered speech clips were presented to 10 participants, and some dialogue was

correctly perceived in 3 speech clips3. Moreover, 1 clip contained some low-frequency noise

that became more perceptible when filtering was applied. In total, 4 speech clips were excluded

from the main experiment, reducing the final number of speech clips to 32 for this experiment.

Final Stimuli Selection

Altogether, a total of 64 speech clips (32 x 2 for each condition) were used in the experiment.

These clips were of short length (∼5 seconds) assuming that there were no transitions in the

emotional content. The amplitudes of the original speech clips were normalised at −0.3dB,

while the filtered clips were normalised at −0.1dB.

As mentioned above (see section 4.2), most studies that use low-pass filtering to mask linguistic

content use one or more fixed values as cutoff points. However, different speakers—and the

extracted speech segments—vary in F0 ranges and spectrum energy distribution. Therefore,

a fixed filtering condition across all speech clips could potentially give different degrees of

3These clips received high values for Activation (3.76, 4, and 3.62), and were all labelled as ‘after’ in the
previous case study
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intelligibility. For this reason, the aim was to make the level of unintelligibility uniform across

all speech clips. Accordingly, a unique filter cutoff value was exerted that was proportional

to the parameters of the respective speech sample. As determined from the preliminary study,

each clip was filtered with a cutoff value proportional to its F0 median (see the example in

Figure 8.4 (c)). The actual cutoff frequencies chosen were an octave above the clip’s key4 (F0

median x 2), which ranged from 197Hz to 1162Hz for all 32 speech clips (see Appendix I for

clip parameters). The pitch floor and ceiling settings were automatically adjusted relative to

the clip’s F0 quantile values, which gives a better estimation of pitch extrema [448]. The 32

speech clips were low-pass filtered (Hann window), with smoothing at 20 Hz, using PRAAT

5.3.13 [449] software (see Appendix J for the script).

8.3.3 Online Rating Tool

As mentioned, the tool used for this experiment is based on the tool developed for the case

study in the previous chapter. In Chapter 6, the changes that were made to the tool specific

for this task were outlined. Minor changes were made to all pages based on the feedback

and experience during the case study. Specifically, changes were made to the back-end design

in order to facilitate the design of the experiment, as illustrated above (section 8.3.1), i.e. a

within subject, 2-period crossover design. For example, if a participant was initially assigned

to Group A, and was presented the non-filtered condition in the initial task, the participant

would be presented with the filtered condition for the alternate task (two weeks later), and vice

versa for Group B.

8.3.4 Selection of Subjects

For this experiment, 57 participants took part completing the two phases of the experiment, i.e.

rating both conditions. Of these participants, mostly were newly recruited, with less than 10%

that also took part in the previous study. Participants were asked if they had any hearing im-

4To obtain the key (F0 median) value, a PRAAT script based on Celine De Loozes,
‘Get Speakers register.praat’, was used. This script minimises possible pitch tracking errors [448]. It can
be found at: http://www.celinedelooze.com/MyHomePage/Praat.html.
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pairments, and it was decided to exclude the ratings from those who did. Several demographic

variables that could demonstrate potential differences in the emotional judgement task were

collected and taken into account. As a reminder, this study differentiates linguistic and tonal

aspects of speech. Various studies indicate that listeners identifying emotion in speech have

an attentional bias towards either linguistic or prosodic content. These individual differences

have been shown to be relevant to culture [321], age [438], gender [439], and handedness (or

laterality) [440].

Native versus Non-native Speakers

As with the previous case study (Chapter 7.2.3), information on native and non-native English

speakers was documented. Although the results in the case study revealed no significant dif-

ferences, they may not apply in this study due to the nature of the task, which emphasises

the prosodic aspects of speech. All participants were fluent English speakers, of which 8 did

not have English as their native tongue—group sizes were of 49 and 8. All participants were

presented with a release form prior to the experiment (see Appendix K), in which they were

informed to only proceed with the task if they consented with the experiment requirements.

The form and the experimental conditions of this experiment were reviewed and passed by the

ethics committee at the Dublin Institute of Technology.

Age

Age was documented as age-related hearing loss needs to be taken into account, although age

affects high frequencies more than low frequencies. Besides, there are ongoing studies on

age-related differences in the perception and meaning of emotional stimuli. For example, the

study by Grühn and Smith [438] revealed significant differences on a large number of German

adjectives, especially on the valence—synonymous with Evaluation—dimension. Age ranged

from 18 to 65 years, with one group consisting of 45 participants whose ages were 18 to 40,

and the second group consisting of 12 participants who were 40 and above.
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Sex

As regards sex, several studies have reported differences in emotional prosody processing be-

tween male and females [450, 439, 96]. The study by Schirmer and Kotz [451], for exam-

ple, suggests that in contrast to females, men process linguistic and prosodic—or acoustic—

information independently. Participants consisted of 30 males and 27 females.

Handedness

Finally, there is a considerable amount of research and debate on the subject of laterality. Vari-

ous studies indicate that the two aspects of speech—linguistic and acoustic—are lateralised in

the left and right cerebral hemispheres, respectively. The processing of nonverbal stimuli such

as emotional prosody is relatively right-hemisphere lateralised, whereas the processing of artic-

ulate, verbal information is relatively left hemisphere lateralised [330, 440]. Similarly, studies

show that there are individual differences in listeners perceiving complex sounds expressed in a

left (F0, or synthetic listeners) or right (spectral, or analytical listeners) hemisphere dominance.

A study by Nilsenová et al. [440], for example, explored how listeners differed in identifying

emotion according to synthetic and analytic listening modes. They classified listener prefer-

ence using a pitch discrimination task and showed that spectral listeners performed better in an

emotion judgement task. Because some listeners are more sensitive to overall spectral infor-

mation, it is conceivable that certain listening modes may influence the perception of speech in

this experiment for stimuli where higher frequencies are missing. Therefore, the rater’s listen-

ing preference—operationalised as handedness—is also observed. Although notably uneven, 8

of the participants were left-handed and 49 were right handed.

8.4 Results

The statistical analysis reported in this section were conducted using the SPSS statistical pack-

age [452]. The duration of the rating accumulation process over the two phases was 9 weeks,
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Figure 8.5: Distribution of the ratings received for each condition, non-filtered and filtered
speech—for the Activation (left) and Evaluation (right) scales. DNR = “Do Not Rate”.

in which all 57 participants who took part had listened and rated 64 speech clips (32 for each

condition). A total of 1823 ratings were received for each scale in the non-filtered condition.

Only 1 DNR (Do not rate) was received5, which amounts to only 0.05% of the maximum num-

ber (57x32 clips) of potential ratings. For the filtered condition 1815 ratings for each scale,

and 9 DNR ratings, were received. As expected, the 9 DNR showed the filtered condition

was harder to rate; however, it only amounts to 0.49% of the maximum number of potential

ratings. In both conditions, the percentage of DNRs was small, which showed that there was

little uncertainty in the participants rating either condition. The DNR ratings were deemed as

insignificant and, therefore, disregarded any further analysis on the DNR ratings—these values

were incorporated as ‘missing values’.

For each scale, Figure 8.5 shows the number of ratings received for each class in both condi-

tions. The mean value on the Activation scale for the non-filtered condition was 2.44 (SD=1.308)

with slight negative skewness. The data on this scale is spread over all classes, but the values

appear most often in the Slightly Active and Active classes, respectively—this is similar to the

trend in the case study (see Chapter 7, Figure 7.3). The mean value on the Activation scale for

5If a participant chose “Do not rate”, the value DNR was written to the database for both scales.
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the filtered condition was 2.19 (SD=1.327) with Slight Negative skewness. The data on this

scale is spread more evenly compared to the non-filtered condition, but again, the values occur

most often in the Slightly Active class.

For the Evaluation scale, the non-filtered condition had a mean value of 2.04 (SD=1.167) and

a slight positive skew. Although ratings were spread over all classes, the data occur most fre-

quently in the neutral class, as somewhat expected. The ratings for this scale reveal a similar

trend to the case study. The Evaluation scale in the filtered condition had a mean value of 1.87

(SD=1.219), again with a slight positive skew. Although most data for this condition prevail in

the Slightly Active class, the Neutral class peaks on par with it.

8.4.1 Participant Demographics

As already mentioned, demographic information from participants was gathered that was as-

sumed to be potentially significant, especially for the prosodic aspects of the study—filtered

condition. This included English as a first language (nativeness), age, gender, and handedness.

To investigate if there is an interaction between the demographic variables (between-subjects

factor) and the stimuli conditions (within-subjects factor) on the ratings on each scale (de-

pendent variable), the most suitable statistical analysis is the mixed-design ANOVA. On the

obtained data, preliminary analysis indicated violations of the assumption of normality, as as-

sessed by Shapiro-Wilk’s test (p >0.05). Although, the mixed ANOVA is somewhat robust to

deviations from normality, some of the analysis showed there was no homogeneity of variances,

as assessed by Levene’s test of Homogeneity of Variance (p >0.05). In spite of the violations

of the assumption of normality, the results for the mixed ANOVA are presented in Appendix L.

In this section, non-parametric analysis are reported on. Unfortunately, there is no well matched

non-parametric alternative to the mixed ANOVA, differences between groups on the overall

obtained ratings (combined conditions), and independently for each condition, non-filtered and

170



CHAPTER 8. JUDGING EMOTION FROM NONVERBAL ASPECTS OF
NATURALISTIC SPEECH

ACTIVATION EVALUATION

z-value p-value r MdA MdB U z-value p-value r MdA MdB U

Nativeness Non-filtered -0.075 0.941 0.002 2.5 3 108063 -1.596 0.11 0.037 2 2 99586
(A=Non-native Filtered -1.596 0.11 0.037 3 2 99586 -0.681 0.496 0.016 2 2 103415
B=Native) Overall -0.858 0.391 0.014 3 3 417791 -0.639 0.523 0.011 2 2 421279

Handedness Non-filtered -0.196 0.845 0.005 3 3 177683 -0.839 0.401 0.020 2 2 173080
(A=Right Filtered -1.108 0.268 0.026 2 2 170238 -1.793 0.073 0.042 2 2 165379
B=Left) Overall -0.658 0.511 0.011 3 2 701207 -1.836 0.066 0.030 2 2 677401

Gender Non-filtered -1.244 0.214 0.029 3 3 385215 -0.153 0.879 0.004 2 2 396783
(A=Male Filtered -1.744 0.081 0.041 2 2 376553 -0.661 0.509 0.015 2 2 388049
B=Female) Overall -1.238 0.216 0.021 3 3 1611774 -0.82 0.12 0.014 2 2 1624746

Age Non-filtered -3.2 0.749 0.075 3 3 289720 -1.612 0.107 0.038 2 2 277900
(A=18-40 Filtered -2.439 0.015 0.057 2 3 266729 -1.62 0.105 0.038 2 2 274273
B=>40) Overall -1.531 0.126 0.025 3 3 1123676 -2.269 0.023 0.038 2 2 1104754

Table 8.1: Mann-Whitney U test results; Md = median.

filtered, are investigated. For this, a multiple Mann-Whitney U tests is performed and the results

are listed in Table 8.1. The only demographic variable that indicated a significant difference

was that of age. A significant difference is observed on the Activation scale under the filtered

condition (p = 0.015, r = 0.057), and on the overall obtained ratings on the Evaluation scale (p

= 0.023, r = 0.038). Both differences indicated a very small effect size.

8.4.2 Inter-rater Measures

As in the previous chapter (see section 7.3.4), two inter-rater measurements are performed:

Krippendorff’s α (inter-rater reliability) and standard deviation measurements (inter-rater agree-

ment). Out of the 64 speech clips (32 for each condition) that were rated, 1 DNR rating was

received in the non-filtered condition, and 9 DNR ratings for the filtered condition. In the

following, speech clips that were rated as DNR were treated as ‘missing’ values.

Inter-rater Reliability

Table 8.2 shows the Krippendorff’s α [17] (ordinal scale) achieved on each scale for each

stimuli condition. As shown, the agreement coefficients are higher for the Activation scale,

with the highest α score observed on the Activation scale, non-filtered condition (0.588), and

the lowest on the Evaluation scale also for the non-filtered condition (0.26). The observed α for

the Evaluation scale is slightly higher for the filtered condition than the non-filtered condition.
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Non-filtered Filtered

α Mean SD α Mean SD

Activation 0.588 0.8356 0.555 0.8602
Evaluation 0.26 0.9399 0.294 0.9841

Table 8.2: Krippendorff’s α [17], and mean standard deviation (SD) values for both conditions
on both scales.

Inter-rater Agreement on Individual Speech Clips

As mentioned in the previous chapter, to assess agreement levels on individual speech clips,

one can use the standard deviation (SD) of the ratings received for the respective clip6. Table

8.2 shows the average standard deviation values received for both scales in both conditions.

Further details on correlation and mean difference measurements of the obtained SD values are

included in the next section.

In the previous Chapter, the median values of all speech clips where compared against the ob-

tained SD measures using a stacked bar chart (see Figure 7.6, section 7.3.4). It allowed us

to visually compare SD ranges against the tendency of the obtained median values. In other

words, it allowed us to determine agreement measures that are exhibited for a particular class.

For example, it may be expected that high agreement is only affiliated with non-emotional

speech, i.e. Neutral (on the Evaluation scale) or Average (on the Activation scale) speech. SD

measures ranged from 0.13 to 1.48 for both conditions on both scales, which was subdivided

into 4 ranges.

Figure 8.6 shows the distribution according to the SD range (stacks) and the obtained median

values (scale classes). For the Activation scale (top left) in the non-filtered condition, the dia-

gram demonstrates that the highest agreements (SD range of 0.0 to 0.5) obtained were mostly

for speech clips with a median value on the Active class, and that it also obtained a large num-

6In this case, the Confidence Interval range was not used because ratings were evenly proportioned across all
speech clips and, therefore, did not need to consider the mostly varying numbers of received ratings—as done for
the ratings obtained from the case study.
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ber for those with an SD range of 0.5 to 1.0, similar in number to those received for the Average

class. For the filtered condition (top right), speech clips whose median values were in the Ac-

tive class again obtained the highest agreement, but speech clips with an SD range of 0.5-1.0

were mostly in the Slightly Passive class. On the Evaluation scale, neither condition obtained

an SD value in the range of 0.0-0.5. For the non-filtered condition (bottom left), the highest

obtained scores manifested mainly for those clips whose median values were Neutral. For the

filtered condition (bottom right), however, the highest SD range occurred to the same degree in

both Slightly Negative and Neutral classes.

8.4.3 Associations and Group Differences

In addition to agreement measures, this section examines both the correlations and mean differ-

ences between ratings from the two different conditions. Correlation measures are concerned

with the relative similarity of the ordering of ratings between both conditions, but they are not

affected by and do not demonstrate any absolute differences. To demonstrate the significance

of reporting both, let us consider an example of ratings provided in Figure 8.7. The ratings are

illustrated for the original condition (a) and for 3 potential ratings (b), (c), and (d) from the

filter condition. Visually, it suggests some potentially interesting comparisons. Ratings from

(c) and (d), i.e. the filtered condition, both demonstrate a significant difference with that of

(a)—Table 8.3 shows a rating difference of 0.89 between (a) and (c), and a rating difference of

2.11 between (a) and (d). The diagram shows that (a) and (c) exhibit a very similar trend. One

may suggest, for example, that the scale seems to be restricted for the filtered condition, as clips

4, 5, and 6 all receive a rating of 0. By visually comparing (a) and (c) it suggests that filtered

speech is rated relatively similar but with a decrease on its scale. This similarity is mirrored in

a Pearson correlation coefficient of 0.976 (see Table 8.3), while the between-group test, such

as the t-test and the Wilcoxon Signed Rank Test, indicates a statistically significant decrease in

its rating. The results in (b) demonstrate no significant mean difference, but do demonstrate a

perfect negative correlation that should not be overlooked. Similarly, the significant decrease

of the mean difference—of a considerable size—between (a) and (d) should not be ignored

even though it has a low correlation measure. With this in mind, correlation measurements and
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Figure 8.6: Distribution of speech clips with respect to the SD value and the median value
obtained.

paired differences between are calculated for (1) ratings at the individual level and at the group

level (mean), and (2) the SD measurements—interpreted as agreement—on each individual

clip.

Correlation Measures

For non-parametric measures, both Spearman’s rank correlation (ρ) and Kendall rank corre-

lation coefficient (τ) are used to measure a pairwise correlation between two ordinal level
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Clip #
987654321

Va
lue
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(d)
(c)
(b)
(a)

Figure 8.7: Example of different ratings; (a) data
from the original speech clip; (b), (c), and (d) are
other possible outcomes for the filtered conditions.

Mean
Correlation difference

(b) -1.00 NS
(c) 0.976 S: -0.89
(d) 0.06 S: -2.11

Table 8.3: Association and group
differences tests for condition (a)
against (b), (c), and (d).

variables—both of which capture a monotonic relationship7. Both Spearman’s ρ and Kendall’s

tau (τ) measures range between −1 and +1. No association is signified with a value of 0, a

perfect negative association is indicated with a value of −1, and a perfect positive association

is indicated with a value of +1. However, Kendall’s τ and Spearman’s ρ imply different inter-

pretations in the correlation value8. A significant aspect of the Spearman’s ρ is that it involves

squaring the deviations. In comparison, Kendall’s τ is less sensitive to large discrepancies

among a small number of ratings. In other words, it would be less sensitive when only one

instance has a large deviation between the two conditions, but the remainders are otherwise

perfectly concordant—it would, therefore, be less sensitive to one or two dubious ratings.

Spearman’s ρ first computational procedure assigns ranking scores to the values of two differ-

ent variables. Following that, the procedure involves calculating the differences between two

successive rank values for a number of individual items (n), and then squaring the resulting

deviations (d2). The formula for Spearman’s ρ is as follows:

7A monotonic relationship is a causal relationship that shows that either both variable values increase together,
or as one increases the other decreases. The relationship preserves the given order but is not necessarily linear.

8In most cases, Spearman’s ρ will be larger than Kendall’s τ , but this is not always the case. If the deviations
are bigger in a smaller number of cases, a smaller Spearman’s ρ will be obtained.
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ρ = 1− 6(∑d2)

n(n2−1)
(8.2)

Kendall’s tau τ represents the degree of concordance between two variables. It is a measure-

ment of the number of concordant pairs (C) versus the number of discordant pairs (D). There

are three variants for Kendall’s tau, τa, τb, and τc, from which Kendall’s τb is reported on here

because this statistic, unlike Kendall’s τa, makes adjustments for tied ranks—τb and τc only

differ in the way they handle rank ties. The formula for Kendall’s τb is:

τb =
C−D√

(C+D+Y0)(C+D+X0)
(8.3)

where X0 is the number of pairs not tied on X, and Y0 is the number of pairs not tied on Y [453].

Correlation between Individual Ratings

First, the ordinal correlation is evaluated of the ratings received for non-filtered speech and its

corresponding filtered speech in terms of Kendall’s τb. Kendall’s τb is calculated between each

rating for the non-filtered and filtered speech clips. The results for Activation (τb = 0.469, N

= 1814, 2-tailed, p <0.0005) indicate there was a moderate positive correlation between the

Activation received for the non-filtered speech and the filtered speech.

In addition, the correlation for each participant on the Activation scale is calculated. Of the 57

participants, the correlation was small (0.1 <τb ≤ 0.3) for 7 participants, while for 19 partici-

pants the correlation was moderate (0.3 <τb ≤ 0.5), and strong (0.5 <r ≤ 1.00) for the remain-

ing 31 participants. For the analysis of Evaluation, the results for each rating (τb = 0.144, N =

1814, 2-tailed, p <0.0005) show there was a small positive correlation between the Evaluation

perceived in the non-filtered speech and the filtered speech. The correlation obtained for each

participant on the Evaluation scale showed that there was a small negative correlation (0 <τb

≤ -0.3) for 14 participants, a small positive correlation for 31 participants (-0.3 <τb ≤ 0.0),

and a moderate positive correlation (0.3 <τb≤ 0.5) for the remaining 12 participants.
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Figure 8.8: Mean values obtained for each clip for Activation (above) and Evaluation (below).
For the Evaluation scale, 0=Negative, 1= Slightly Negative, 2=Neutral, 3=Slightly Positive,
4= Positive. For the Activation scale: 0= Passive, 1=Slightly Passive, 2=Average, 3=Slightly
Active, 4=Active.

The correlation values between each rating for each scale were compared with the Spearman’s

ρ correlation coefficient. In this case, Spearman’s ρ yielded similar—but slightly higher—

values for the Activation scale (ρ = 0.555, N = 1814, 2-tailed, p <0.0005) and on the Evaluation

scale (ρ = 0.170, N = 1814, 2-tailed, p <0.0005).

Correlation between Mean Values

As well as measuring the correlation between individual ratings, Kendall’s τb for the mean

values for each clip is calculated between the non-filtered and filtered conditions (see Figure

M.1, Appendix M for Mean scatter plots). Figure 8.8 shows the obtained mean values for each

clip on each scale, for both conditions. The mean values for each clip on the Activation scale

(τb = 0.660, N = 32, 2-tailed, p <0.0005) show that there was a strong positive correlation

between the mean values for Activation received for the non-filtered speech and the filtered

speech. For the mean values on the Evaluation scale, the results for each rating (τb = 0.270, N

= 32, 2-tailed, p = 0.031) show there was a small to moderate positive correlation between the
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Figure 8.9: Standard deviation (SD) values for individual speech clips for Activation (above)
and Evaluation (below) scales 0.

mean values for each clip on the Evaluation scale perceived in the non-filtered speech and the

filtered speech. This shows that the correlation increased when the ratings were averaged for

each speech clip.

Once more, the results with the Spearman’s ρ correlation coefficient were confirmed. For the

mean values on the Activation scale, the results (ρ = 0.836, N = 32, 2-tailed, p <0.0005)

indicated a strong positive correlation. For the mean values on the Evaluation scale, the results

(ρ = 0.384, N = 32, 2-tailed, p <0.0005) indicated a moderate positive correlation (see Figure

M.2, Appendix M for correlation diagrams).

Correlation between Standard Deviations

In addition to observing the agreement measures (SD) on individual speech clips (section 8.4.2),

the correlation values were calculated between the agreement measures (SD) obtained for each

clip in both conditions, using Pearson product-moment correlation coefficient (r). Figure 8.9

illustrates the received SD values for each clip for the non-filtered and filtered condition, show-

ing somewhat inconsistent SD values. The obtained SD values, however, appear to follow a
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similar trend between the two conditions (see Figure M.2, Appendix M for SD scatterplot).

For the Activation scale, there was a very strong positive correlation for the SD values between

both conditions, r = 0.723, n = 32, p <0.0005; and there was a strong positive relationship, r =

0.663, n = 32, p <0.0005, between the SD values for the Evaluation scale.

Differences between Individual Ratings

As mentioned above, correlation measures do not provide us with any information on absolute

differences in the height of the ratings given in different conditions. In fact, a perfect correla-

tion will exist if the ordering of ratings between both conditions is exactly the same, but this

does not inform us of any differences.

To investigate the differences in the perception of Activation and Evaluation on the individual

level between the two conditions (non-filtered and filtered), the ratings were subjected to the

nonparametric Wilcoxon Signed Rank Test. The Wilcoxon Signed Rank Test revealed a statis-

tically significant decrease in the level of Activation rated in the filtered condition compared to

the non-filtered condition, z =−8.42, p <0.001, with a small effect size (r = 0.14). The median

Activation rating for the filtered speech clips (Md = 2 = Neutral) was lower than the Activation

rating for the non-filtered clips (Md = 3 = Slightly Active). We can observe (Table 8.4) that

there are more speech clips with a median value for the non-filtered Active class than there are

for the filtered Active class, but more instances in the filtered Passive class than the non-filtered

Passive class. Similarly, we can observe that more instances of the mode value appear in the

Slightly Passive class, and Slightly Active class.

For the Evaluation scale, statistically significant decrease was found in the level of Evaluation

perceived in the filtered condition, z = −4.833, p <0.001. The effect size was small (r =

0.08). The median of Evaluation for the non-filtered speech clips (Md = 2 = Neutral) was the

same for the overall median of Evaluation for the filtered clips (Md = 2 = Neutral). Table 8.4

shows that there are more instances of speech clips with median values in the extreme classes (1
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Non-filtered Filtered Non-filtered Filtered

Activation Md M Md M Evaluation Md M Md M

Passive 1 4 1 5 Negative 0 0 1 2
Slightly Passive 6 7 9 7 Slightly Negative 9 11 11 11
Average 11 5 10 5 Neutral 15 13 13 9
Slightly Active 5 6 6 9 Slightly Positive 7 3 4 6
Active 9 10 6 6 Positive 1 5 3 4

Table 8.4: The number of speech clips in each class with respective median (Md) and mode
(M) values for the non-filtered and filtered conditions—for the Activation (left) and Evaluation
(right) scales.

Negative and 3 Positive) for the filtered condition. For the mode values in the filtered condition,

the ratings occur more frequently in the Negative and Slightly Positive class, but less for the

Neutral and Positive class.

Differences between Mean Values

Measuring differences at the individual level may give different results to measuring differ-

ences at the group level, i.e. in terms of a clip’s obtained mean value. Because mean values

are continuous, a paired-sample t-test is conducted to determine whether the mean difference

between the mean values for each clip observed for both conditions is significantly different.

A paired-sample t-test was conducted for both scales, and it showed, for the Activation scale,

a statistically significant difference between the means of each clip in the non-filtered condi-

tion (M = 2.45, SD = 1.01) and the filtered condition (M = 2.19, SD = 1.00), t(31) = -0.2.777,

p <0.009 (two-tailed). The mean decrease was 0.26 with a 95% confidence interval ranging

from 0.068 to 0.44. The eta squared statistic (0.2) indicated a small effect size. For the Evalu-

ation scale, it showed no statistical significant difference between the means of each clip in the

non-filtered condition (M = 2.04, SD = 0.625) and the filtered condition (M = 1.87, SD = 0.72),

t(31) = 1.379, p <0.178 (two-tailed).

Differences between Standard Deviation Values

Figure 8.9 illustrates a similar trend in SD values obtained for speech clips in both conditions.

In fact, section 8.4.3 showed that there was a very strong correlation on the Activation scale
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and a strong correlation on the Evaluation scale. To determine whether the mean differences of

the SD values are statistically significant, a paired-sample t-test is performed on the obtained

SD values to evaluate the agreement levels of each clip for each scale. The paired sample

t-test showed no statistically significant difference for the Activation scale (M = 0.84, SD =

0.21) in the non-filtered condition and the filtered condition (M = 0.86, SD = 0.24), t(31) =

-0.806, p <0.426 (two-tailed). Similarly, there was no statistically significant difference for the

Evaluation scale in the non-filtered condition (M = 0.97, SD = 0.25) and the filtered condition

(M = 0.98, SD = 0.19) t(31) = -0.424, p <0.675 (two-tailed).

8.5 Discussion

Demographic information did not show that there were any considerable differences between

the selected groups and how they rated non-filtered and filtered speech. Demographic informa-

tion did not appear to influence the performance of raters so all participants were included in

the analysis for inter-rater measures, associations and mean differences.

Distribution of Ratings

The distribution of the ratings on both scales for the two conditions is shown in Figure 8.5.

A slight negative skew is observed for the Activation scale in both conditions, and a slight

positive skew for the Evaluation scale in both conditions. The non-filtered condition contains

more ratings in the Active classes for the Activation scale, and more instances in the Positive

classes for the Evaluation scale, which may be somewhat consistent with the assumption that

upper frequencies lead to a loss of certain emotional cues [146]. However, for the filtered

condition, there is only a slight increase in the number of ratings received for the Average class

and, in fact, a slight decrease in the number of ratings received for the Neutral class. For the

Activation scale, there is an increase in the number of Passive ratings. Similarly, there is an

increase of Negative ratings for the Evaluation scale. This may suggest that the loss of upper

frequencies, or linguistic content, is rated as more Negative (see also [145]) and Passive.
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Inter-rater Measures

Inter-rater reliability for the emotional judgement task was rather low for Activation in both

conditions where α was 0.588 for the non-filtered condition and 0.555 for the filtered condi-

tion. More so, the Evaluation scale received an α of 0.26 for the non-filtered condition and

an α of 0.294 for the filtered condition. While some works report on a decrease in inter-rater

reliability on filtered speech [146, 326], these results suggest this is only the case for the Ac-

tivation scale. It was acknowledged in the previous chapter (section 7.4.3) that low inter-rater

reliability (α) and agreement measures (SD) are expected for non-filtered speech. Compared to

other studies, the results suggest that reliably identifying emotion is a difficult task. One may

expect that rating emotion from filtered speech may be somewhat more difficult. However,

there are marginal differences in the reliability and agreement measurements between the two

conditions. The highest observed α score (0.588) on the Activation scale for the non-filtered

condition would be somewhat expected. The low α scores for Evaluation in both conditions

show the difficulty of the task, whether or not the speech was filtered or not. It is clear that

natural speech is inundated with ambiguity. In addition, the evaluator assesses emotional con-

tent in a speech clip differently to how the emotion is truly felt by the speaker. Factors such

as display rules, deception, and systematic ambiguity (see [156] for an overview) play an im-

portant role in the dissent of how emotion is perceived. Linguistic cues may not always concur

with the paralinguistic cues, and, when evaluating speech, participants may prioritise acoustics

over semantics, or vice versa. For this reason, it may be expected that the filtered condition

would receive a higher inter-rater score than the non-filtered condition due to the minimisation

of interference from the linguistic cues. This is, however, difficult to determine because the α

and SD agreement measures are giving contradictory interpretations. The inter-rater reliability

value, as determined by α , is showing a small increase in reliability for the filtered condition,

yet on the individual clip level, SD is showing a slight decrease in agreement (increase in SD).

Similarly, the standard deviation was measured in both conditions as a measure of agreement

on an individual clip. The standard deviation values appear to follow a similar trend between
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the two conditions (see Fig 8.9). In fact, the correlation measurement between the two condi-

tions was very strong for the Activation scale and strong for the Evaluation scale. The strong

correlation could suggest that the ambiguity and difficulty in rating certain speech clips is at-

tributable to the acoustics alone, irrespective on semantic content. Although the SD values of

clips 15 to 32 predominantly increase in value on the Activation scale, they appear to decrease

in value on the Evaluation scale.

Association and Group Differences

The association of ratings between the two conditions was examined by calculating Kendall’s

τb over all individual cases— each individual rating of the non-filtered clip compared with the

rating of the filtered clip. It showed that there was a moderate positive correlation for the Ac-

tivation scale, and a small positive correlation for the Evaluation scale. The analysis on each

participant showed that the majority (31) of the participants had a strong correlation between

each condition for the Activation scale and a small positive correlation for the Evaluation scale.

Interestingly, 14 participants showed a small negative correlation between the two conditions

for the Evaluation scale. Again, this may be because the interpretation of paralinguistic cues

may not correspond to the interpretation of linguistic cues. That is, emotions can be transmit-

ted deceitfully, and speech that may be semantically negative may be expressed in a positive

manner with, for example, laughter. In this case, linguistic and paralinguistic cues may have

opposing impressions.

In addition to obtaining Kendall’s τb on individual cases, Kendall’s τb was calculated to com-

pare the mean values for each clip in each condition. The graph (see Fig 8.8) appears to suggest

that the ratings for each clip follow a broadly similar trend, especially for the Activation scale.

The results indicated a strong positive correlation for the Activation scale and a small to mod-

erate positive correlation for the Evaluation scale. This showed that the strength of correlation

between the two conditions increased when comparing the mean values for each clip, i.e. the

correlations were stronger at the group level for each clip as opposed to the individual level of
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each rating—similar to the findings of Teshigawara et al. [289]. The strong correlation between

the filtered and non-filtered conditions would be expected and in agreement with earlier find-

ings [32]) isolating pitch/prosody-related features. The significant decrease in the perception

level of Activation, similarly expected, may be explained by the removal of the high frequen-

cies. Clips 12 and 14 have the biggest difference (1.65 and 1.49 classes, respectively) between

their mean Activation values. Both speech clips contained laughter that may be a factor in the

decrease in perception of Activation level in the filtered condition.

Although there is a small decrease in the level of Evaluation for the filtered condition, the over-

all results do not necessarily suggest a preference or importance in the emotion perception of

lexical content, as there are fewer Neutral ratings in the filtered condition. The low correlation,

however, does suggest incongruence between lexical and acoustical cues (cf. [320]). For the

evaluation scale, clip 9 is rated more positive in the filtered condition compared to its counter-

part in the non-filtered condition with a mean value of 1.46 in the non-filtered condition and

2.28 in the filtered condition. The spoken part in this clip “oh my God... we were doing so

well”, may be semantically perceived as Slightly Negative, although it is rated ‘Slightly Pos-

itive’ in the filtered condition. This clip may be an example where the speech clip’s acoustic

significance opposes the effect of its semantic meaning.

8.6 Conclusions

This chapter investigated the effect that low-pass filtering has on the perception of emotion—as

described by Activation and Evaluation dimensions—in naturalistic speech, with the general

aim of exploring the inference of emotion from nonverbal aspects of speech. The spread of the

distribution (section 8.4) indicates that low-pass filtered speech (removing semantic content)

does signal emotion in the Activation-Evaluation space, thus addressing research question four

(RQ4). In relation to research question five (RQ5), it appears that the perception of Activation

and Evaluation is influenced by low-pass filtering, but that the effect is relatively small. To

some extent, it was expected that removing linguistic content would eliminate any incongru-
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ence between the acoustic and linguistic channels, making it less ambiguous—which would

be suggested by the inter-rater measures (section 8.5). However, although there was an in-

crease in inter-rater reliability for the Evaluation scale in the filtered condition, this increase

was relatively small. Moreover, there was a strong correlation between agreement measures,

based on standard deviation, between both conditions, suggesting that the difficulty in rating

speech clips can be attributable to the acoustics, and not the incongruence of both channels.

In future research, it would be of interest to obtain a speech dataset that provides for system-

atically ambiguous, and opposing acoustic and semantic meaning. This, however, may not be

straightforward with naturalistic speech. With acted speech, however, one could systematically

generate speech with opposing paralinguistic and linguistic content, such as speech with nega-

tive semantic content expressed with positive affect e.g. sarcasm or irony. It may be conceived

that higher inter-rater agreement could be achieved for filtered speech of an ambiguous nature

when its linguistic cues are removed.

Overall, the work in this chapter demonstrated that low-pass filtering is a useful tool to remove

semantic content while preserving salient prosodic cues. To this end, this chapter contributed

to answering research questions RQ4 & RQ5.
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Conclusion

9.1 Summary of work

This work is motivated by the long-term goal of developing systems to automatically recognise

emotion from naturalistic speech. The area of focus for this thesis was the nature of perception

of emotion from vocal acoustics. This research began by reviewing four main perspectives that

attempt to conceptualise emotion (Chapter 2), giving a general overview of the most influential

theories that these perspectives have arisen from. In this review chapter it was determined that

emotion is commonly conceptualised as a multifaceted phenomenon that manifests itself in

different components (section 2.5), with research focusing on individual or combined aspects

of these components.
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To investigate emotion scientifically, the next chapter of the review (Chapter 3) gave details on

how to measure and assess emotion, and how to represent emotion in order to make emotional

states distinguishable. Three independent assessment types were explained and discussed (sec-

tion 3.2). While it is theorised that these measurable components cohere, the review demon-

strates that there are contradictory findings also. Moreover, an important distinction between

two emotion label descriptions was discussed, the labels being representative of speaker or lis-

tener realisation (section 3.2.5). Focusing on effect-type labels, the two approaches to selecting

judges (section 3.2.6) were considered and it was decided to select judges whose expertise are

not defined, rather than focusing solely on expert judges to rate the speech material. Following

emotion assessment methods, the review documented how to represent and classify emotions

(section 3.3). The literature suggests that representational frameworks can be broadly distin-

guished by discrete (section 3.3.1) or dimensional theory (section 3.3.2). The discrete repre-

sentation approach indicates that there is no definitive (or optimal) list of emotions suitable

for naturalistic speech. The discrete representations that were considered in the review were

prototypical categories (section 3.3.1), such as the well-known “Big Six” (section 3.3.1), sub-

ordinate categories (section 3.3.1), and cover classes (section 3.3.1). The alternative approach

that was considered was the dimensional approach (section 3.3.2), which represents either ab-

stract underlying factors between emotional states (e.g Activation, Evaluation, and Control), or

is based on appraisal of objects, events or situations (e.g. the OCC model). The literature on

labelling methods for naturalistic data suggests that they are more complex than the methods

previously used for acted material. In this regard, several in-depth descriptive schemes were

reviewed, and what appears to be common in many descriptive schemes is the incorporation

of the two-dimensional model: Activation and Evaluation (section 3.3.4). From this chapter of

the review, it is suggested that the Activation and Evaluation dimensions are most suitable for

the spontaneous emotional speech material provided for this investigation.

Following this, various aspects of the conceptual basis of expression and perception of emotion

in vocal communication (section 4.1) were presented, which gave us a better understanding
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of what is involved in labelling emotional speech. The Brunswikian Lens model of emotion

(section 4.1.1) was introduced, and the different areas of study were delineated with regard to

the various aspects of the communication process illustrated by the model (section 4.1.2-4.1.6).

It was argued that such a conceptual framework is methodologically suitable for the study of

vocal expression. Labelling methods based on perception tests were then considered, indicat-

ing that much work correlate acoustic features with labels that are derived from prosodic and

semantic content (section 4.2). The different speech material types were presented, indicating

differentiation based on the elicitation type (section 4.3). Emotion authenticity (section 4.3.4)

and audio quality (section 4.3.5) issues were discussed and it was argued that mood induced

speech provide for an appropriate source of material.

The final chapter of the review (Chapter 5) examined the most prevalent acoustic features

studied in research of emotional speech, which include prosody, pitch, time, intensity, voice

quality, and spectral-related features. The description of vocal acoustics as a two-stage pro-

cess was first presented, involving the glottal energy source and vocal tract filtering (section

5.1). Four different conceptualisations of prosody were then considered, demonstrating that

it is at the suprasegmental level, eminent in the communication of emotion (section 5.2). In

this section, several software frameworks for transcribing prosodic features were presented. At

the acoustic realisation of the prosodic phenomenon, several features were presented in more

detail, including fundamental frequency (F0) related measurements (section 5.3), time-related

measurements (section 5.4), and intensity-related measurements (section 5.5). The literature

indicates that these features are an important component for conveying non-lexical information

such as emotion. Furthermore, the literature on voice quality suggests that it too is fundamental

in the expression of emotion and is utilised by listeners to distinguish states on both Activation

(Arousal) and Evaluation (Valence) dimensions (section 5.6). The final category of features

considered was spectral features (section 5.7), which are measured for speech emotion recog-

nition, including harmonics, formants, spectral tilt, mel-frequency cepstral coefficients, and

long-term average spectrum analysis.
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The provision of an appropriate emotional speech corpus was identified as the initial goal.

The construction of an emotional speech corpus is a two-stage process, collecting suitable

emotional speech data, and providing labels that describe its emotional content. By carrying

out perception tests, the work carried out in this thesis addresses the latter. Because studies on

naturalistic emotional speech are relatively limited, the development of this corpus is a major

contribution to the area of emotion in speech recognition. For the remainder of the work in this

thesis, this corpus provided the foundation for successive investigations into the perception of

emotion from vocal acoustics. As a result of the review chapters, several research questions

were formed that define the scope of this thesis. These are:

RQ1: What are the practical prerequisites for carrying out large-scale listening tests?

RQ2: Can listeners adequately capture variation of Activation and Evaluation of emotion

in naturalistic speech?

RQ3: Can mood induction procedures provide naturalistic speech with sufficiently dis-

cernible levels of emotion?

RQ4: Does nonverbal naturalistic speech convey Activity and Evaluation levels that are

recognisable to listeners?

RQ5: How do ratings from two perceptually different conditions (verbal and nonverbal

speech) compare?

The first two questions (RQ1 and RQ2) were formed in chapter 3 after examining the various

approaches to labelling emotion in speech. Having acquired a naturalistic emotional speech

dataset to annotate, the first aim was to develop a tool that is accessible to a large group of

people. To do this, the review in chapter 3 considered various assessment techniques and emo-

tion representations. It had been decided to provide effect-type labels (representing observed

emotions) rather than cause-type (representing internal realisation of emotions) for the given

speech dataset, as these offer better validation methods (sections 3.2.3 and 3.2.5), and reflect

human perception of emotion in speech. For this, perception tests (of the behavioural compo-

nent) are a necessary means for assessment. The assignment of judges was also considered, and

189



CHAPTER 9. CONCLUSION

it was determined to focus on participant magnitude and generality—including naı̈ve listeners

as opposed to solely expert’ listeners who are familiar with emotion theoretical knowledge

(section 3.2.6). It was established that the most suitable descriptive scheme for the annota-

tion of the given speech dataset (characterised as naturalistic) was the dimensional approach.

This approach is a more objective method and avoids issues with selecting appropriate discrete

categories, which has been proven to be particularly complex for naturalistic data. Having re-

viewed the various dimensional models, the Activation and Evaluation dimensions are the most

prevalent which, for naturalistic speech data, is commonly incorporated within frameworks that

have various qualitative coding strategies (section 3.3.4). Despite the fact that the dimensional

approach has been successfully implemented in numerous studies, it remains to be determined

whether it is suitable for all speech datasets, such as those composed of mood inducing pro-

cedures. Thus, by adopting this framework for the online rating tool developed for this thesis,

the investigations contribute to the knowledge on the practical validity of using dimensions to

convey observable emotions in naturalistic speech.

Research question one (RQ1) was answered in Chapter 6 and Chapter 7. Chapter 6 documented

the development of an online rating tool. The practical issues that were considered for carrying

out large-scale listening tests were presented. These included a user-centered design for the

tool, which ensured it was easy to use for laymen. It was designed to be suitable for repeated

use to accumulate continual ratings; great emphasis was placed on the participant’s overall un-

derstanding of each scale by including instructions and carrying out a survey on 7 non-expert

individuals to ensure sufficient understand of the instructions. The feedback obtained from the

survey suggested that participants could adequately understand the concept of Activation and

Evaluation dimensions. Chapter 7 documented some of the practical difficulties of accumulat-

ing large-scale ratings. To decrease the likelihood of spurious ratings caused by fatigue and/or

boredom effects, the required number of clips to be rated in a session was kept to a minimum.

In spite of several reminders, it was difficult to achieve consistent daily rating from individual

participants. The process of accumulating ratings, therefore, needed to be ongoing. Unfortu-

nately, this turned out to be more time consuming than originally envisaged. The case study

190



CHAPTER 9. CONCLUSION

carried out in Chapter 7 aimed to answer research question two (RQ2). To some degree, the

low proportion of clips not rated (DNR rating) suggests that there was little confusion with the

task. The inter-rater scores obtained were low. However, this is in line with many other studies

that suggest Activation measures are more reliable than Evaluation measures. It is generally

acknowledged that the task of rating underlying emotions in naturalistic speech is naturally dif-

ficult. Agreement levels for clips in the Active class were the highest, suggesting participants

are able to adequately capture variation in Activation. For Evaluation, however, the extreme

classes received low agreement, suggesting that capturing variation in extreme classes became

less reliable.

Research questions three, four and five (RQ3, RQ4, and RQ5) were based on the review in

Chapter 4. This chapter indicated that simulated expression does not reflect spontaneous ex-

pression, and that there is, therefore, and increasing demand for naturalistic data. While there

is a large amount of control over the recording environments with acted speech, this is difficult

to achieve with truly natural speech. It was argued that mood inducing procedures deliver a

suitable compromise between the limitations that come with natural and acted types of mate-

rials. Research question three (RQ3) is concerned with whether there is a sufficient amount of

emotional content present in the provided speech material, specified by mood induction proce-

dures. Furthermore, this chapter considered several aspects in the perception process, which

ultimately determines the obtained labels. It was recognised that in many cases it is not speci-

fied whether labels are provided based on prosodic or semantic content, or both (section 4.2).

It was suggested that if the provided labels are not based exclusively on acoustic information,

one should question the reliability of the relationships of acoustic variables with those labels.

However, it is difficult to isolate the acoustic or the semantic content to provide labels solely

on such information. To address this, inference studies that mask cues attempt to address this

by removing the verbal content (section 4.1.4). It was decided to use this method to further

investigate the given material and determine whether listeners would still be able to infer Acti-

vation and Evaluation levels in non-verbal naturalistic speech, thus forming research question

four (RQ4). Low-pass filtering was the method chosen to remove certain acoustic cues in order
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to remove the verbal content. Research question five (RQ5) is concerned with how ratings from

nonverbal and verbal speech compare, by using low-pass filtering methods.

Research question three (RQ3) was answered in Chapter 7. Because emotions generally occur

in natural speech, it is difficult to determine the efficacy of the MIPs by analysing the ratings

from the dataset as a whole. Therefore, it was decided to categorise the clips according to

which phase of the experiment they were extracted. Clips from the beginning of the exper-

iment, prior to MIP manipulation, were assigned to one condition, and clips taken from the

end were assigned to the alternative condition. It was hypothesised that the participants would

be less emotionally involved at the beginning stage, prior to experimental manipulations. The

results revealed a significant increase in the level of Activation for clips extracted towards the

end of the experiment. However, there was no significant difference for the Evaluation scale. It

suggests that mood inducing procedures were successful in inducing emotion, in terms of Ac-

tivation at least. The ratings obtained for the clips as a whole exhibited a sufficient spread over

all categories, indicating that mood inducing procedures provided sufficient inferable emotional

content.

Chapter 8 aimed to answer question four and five (RQ4 and RQ5). For this experiment, speech

was filtered and compared to its original counterpart. The results obtained from this experi-

ment demonstrated that listeners were able to infer variation on the Activation and Evaluation

dimensions in the filtered conditions as determined from the spread of the ratings, thus answer-

ing research question four (RQ4). In relation to research question five (RQ5), it appears that

there is a difference between the perception of Activation and Evaluation in non-verbal and

verbal speech, but that the effect is relatively small. The results showed that there was a strong

correlation between agreement measures between both conditions, suggesting that acoustic

variables contribute to the difficulty of reliably perceiving emotion in speech. There was a

marginal difference between the reliability and agreement measures between both conditions,

indicating that the task of rating subtle emotions is difficult, regardless of semantic content. It

was difficult to determine if rating nonverbal speech was more reliable for Evaluation. There
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was a slight increase in inter-rater reliability for the nonverbal condition, yet a slight decrease

in agreement for the nonverbal condition, when considering it at the individual clip level.

9.2 Contributions of the Thesis

This thesis has made three novel contributions to the field of naturalistic emotional speech:

1. A web-based rating tool was developed and pilot tested during the course of this research.

The design of the tool complies with the practicality of crowdsourcing, optimising la-

belling accuracy, minimising subjective workload, ensuring adequate accessibility of the

emotion concepts, and encouraging participation. The rating tool annotates emotional

speech clips on discretised Activation and Evaluation scales, with the option to not rate.

Two backend databases were used, one to store participant demographics and the other

to store emotional ratings of Activation and Evaluation. Additionally, an adapted design

of the tool was created to allow for within-subject perception experiments. This design

allows for two different emotional auditory stimuli to be compared and analysed, and to

be, in the same way, administered to the online community. The adapted tool can be used

as a platform to utilise different stimuli conditions in future work.

2. A benchmark naturalistic emotional speech corpus1 was delivered and hosted online to

be freely available to the general research community. As mentioned, part of the work

in this thesis contributes to the construction of a naturalistic emotional speech corpus.

The previous investigations provided high-quality emotional speech material [159, 373,

364], and gave us a solid foundation for research on labelling its emotional content.

This work extends on the corpus development by providing an annotation protocol and

annotation validation procedures for the acquired mood induced speech material. In

this thesis, large-scale listening tests were carried out to obtain emotional dimensional

ratings. The complete corpus is available to the general research community, which

supplies high-quality speech samples (default download at 44.Khz/24-bit but available

1The Dublin Institute of Technology, Induced Emotional (DIT.IE) speech corpus
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up to 192Khz/24-bit), the full set of emotional ratings (Activation and Evaluation), and

Ground Truth values for each clip.

3. An analysis of the perception of non-verbal speech was provided by comparing it to its

verbal counterpart. To provide non-verbal stimuli, three different filtering conditions

were assessed. Two preliminary surveys were carried out to (1) determine the most suit-

able filtering condition, and (2) to ensure all spoken dialogue was unintelligible. As a

result, a unique filtering condition was determined. The investigation determined that

there was a relatively small difference in the ratings, but a strong correlation between

agreement levels in both conditions, suggesting that the difficulty in rating speech, and

ambiguity of emotional content, can be attributable to the acoustics and not necessarily

to the incongruence of linguistic and acoustic channels.

This thesis has considered the practical viability of annotating speech via the web and consid-

ered methods to validate annotation. Furthermore, The implementation of a controlled exper-

imentation on speech stimuli of different conditions allowed us to determine label quality and

validity. Moreover, it has broadened our knowledge regarding which voice cues are utilised to

make inferences of emotion in naturalistic speech recognition.

9.3 Future Work

There are several potential directions that have arisen from the work in this thesis from which

further research can be continued. Three major areas are presented here to determine how

further development may proceed.

9.3.1 Acoustic Analysis

A suitable starting point for subsequent research based on this thesis is to examine the acoustic

correlates associated with the annotations obtained from (1) the case study in Chapter 7, and

from (2) the experiment that compared verbal and non-verbal speech in Chapter 8. Encoding
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studies related to the former approach (1) should try to establish the association between the

measurable acoustic parameters of the speech signal with labels that have been derived from

perception tests based on the complete speech signal, comprised of prosodic and semantic con-

tent. For the latter approach (2), correlation coefficients can be compared between each condi-

tion (verbal and non-verbal) to determine whether it is adequate to correlate acoustic features

with labels derived from prosodic and semantic content, or whether labels need to be derived

from prosodic content alone.

The precise nature of filtering effects on the perception of speech remains to be established in

both speech intelligibility, and affect in speech studies. It is evident from this thesis that the

lower frequencies in naturalistic mood induced speech contain a significant amount of paralin-

guistic features that convey Activation and Evaluation levels. The extent to which the remaining

acoustic features contribute to, or signify Activation and Evaluation remains to be investigated.

It is suggested that many voice quality cues are inaudible after low-pass filtering [454, 144],

yet some laryngeal voice qualities related to spectral balance can still be perceived. Because

low-pass filtering affects or eliminates perceived loudness, articulation information, activity

level, and formant frequencies, it would be of interest to analyse the remaining acoustic cues

that listeners utilise to make inferences about Activation and Evaluation levels.

Acoustic analysis has been made more accessible in recent times by the development of sev-

eral advanced software packages. One of the most widely used software packages for speech

analysis is PRAAT software [449]. This software was used in the previous chapter to low-pass

filter the speech clips. PRAAT is a flexible software application that is capable of analysing,

manipulating, and synthesising speech. It can provide analysis of a wide range of voice cues

relevant to the vocal communication of emotion, specifically those that remain after low-pass

filtering has been applied. With more advanced measurement systems, researchers are faced

with large acoustic feature sets, as illustrated in the INTERSPEECH challenges (section 5.8).

By performing inference studies, and masking particular cues as illustrated in this thesis, the

significance of particular features can be determined, and, thus, reducing potential feature sets.
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Due to time restriction, acoustic analysis was limited and, therefore, not discussed in this thesis.

This will be the focus of future work.

9.3.2 Cue Manipulation: Altering Speech Rhythm

The work presented in Chapter 8 sought to investigate the most prominent voice cues that

listeners use to infer emotion in speech. By manipulating or removing certain cues one can

investigate their roles (see section 4.1.4). Furthermore, it was mentioned that rhythm in speech

is an important prosodic feature that conveys emotion (sections 5.2 and 5.4). Speech rhythm,

however, is not easily defined. According to Werner and Keller [384], neither local or global

rate modifications are entirely linear, and therefore, accelerating or decelerating normal speech

by a fixed rate will not produce natural-sounding speech, as can be imagined. We can, however,

use these artefacts to investigate their effect on the perception of emotion in naturalistic speech.

To our knowledge, there are no existing emotion-in-speech studies that manipulate rhythm of

speech in such a way that preserves—or at least keep the changes to a minimum—temporal or

sequential organisation of pitch patterns. The reason for this is perhaps obvious to some—pitch

patterns are in fact part of the rhythmic structure. As illustrated in the example in section 8.1

(see Figure 8.1), features are generally integrated, and altering one set of features can, and in

most cases will, affect the other feature sets. However, just as Scherer envisaged [12], con-

temporary technological advances allow for more refined and natural sounding alterations in

speech cues such as speech rhythm, that are relevant to emotional communication. For exam-

ple, contemporary software allows for time manipulation processing such as audio stretching,

often referred to elastic audio, without affecting the pitch—unachievable in earlier times when

audiotapes were used. The elements of rhythm in speech can be systematically manipulated

to attenuate features such as prominence, pauses, intensity peaks, etc. Moreover, with con-

temporary technology it is more accessible to alter local rate changes, such as stressing, and

global rate changes, such as speech rate. With the benefit of such tools, effective rhythmic

manipulations can be achieved, while minimising audible artefacts and changes in the temporal
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order of feature sets such as intensity, pitch change, pitch variation, pitch contours, etc. As

mentioned above (section 9.1), the tool developed for the experimental work presented in this

thesis can be used as a platform to utilise different stimuli conditions. In other words, stimuli

that contain rhythmic manipulations can be uploaded to the tool and effectively comparing it to

non-manipulated speech and implementing the same methodology.

For this work, several areas would need to be considered. These may include areas such as

the temporal perception of speech, temporal gestalt perception, rhythm and speech rate, speech

stress and prominence, etc. Some of the following questions are examples that could be con-

sidered:

• How can we conceptualise speech rhythm?

• How do we measure and transcribe speech rhythm?

• What aspects of speech rhythm portray emotion?

• Is there a relationship between temporal music theory and temporal speech theory?

Providing an adequate methodology for transcribing rhythm in speech is essential for speech

manipulation and analysis. For this, software based prosody analysis tools exist. For example,

‘the Prosogram’ transcribes prosody of speech based on intonation2. This system is imple-

mented as a script in the phonetic analysis software, PRAAT3.

9.3.3 Emotional Speech Stimuli

There are several methods to induce emotion in participants. The importance of audio of high

quality was argued for here, recorded material consisting of a high-resolution signal with min-

imal unwanted noise. To meet these conditions a laboratory with a controlled recording envi-

ronment is required. Optimal recording environments should make use of soundproof booths.

2More information about Prosogram can be found at: http://bach.arts.kuleuven.be/pmertens/prosogram/
3More information about PRAAT can be found at: http://www.fon.hum.uva.nl/praat/
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A range of laboratory methods exist to induce temporary mood states as suggested in section

4.3.3. In order to further expand on the variety and size of the current corpus, future work

will consider other MIPs to determine if a difference in emotional ratings can be measured

between different MIP based experiments. There are, however, many restrictions with MIPs

that are ethically questionable. Therefore, in order to investigate this, creative and carefully

planned procedures to elicit emotion need to be devised. Some previous MIPs in contemporary

research would not be suitable, for example, the use of drugs to elicit emotion in participants

(Drug MIPs). Furthermore, some critical literature exists to question the validity of MIPs (e.g.

[455]), hence other alternatives need to be assessed. While much of the literature acknowledges

that annotating natural speech is a difficult task, it is suggested here that there is a need to further

explore other MIPs, or alternative elicitation methods. Research in this area should consider

existing and alternative social psychological experiments for which the following questions

might be considered:

• Do ethical issues prevent us from eliciting negative emotion? If so, is it necessary to

include negative evaluation?

• Do ethical issues prevent us from eliciting high activation in participants?

• Can interview based experiments elicit emotion? If so, can its authenticity and/or strength

be evaluated and compared?

• Can emotion be induced to be more relevant for dimensional models?

• Can specific emotions be induced that apply to specific applications, such as irateness

observed in call centres?

• How do we prevent participant awareness biases (e.g. demand effects)

Moreover, as mentioned in Chapter 8, both linguistic and acoustic cues contribute to emotional

speech communication. However, both channels do not necessarily align with one another.

Acoustic cues can serve to elaborate on or conflict with the conveyed meaning of the linguistic

channel, for example, if one says “I am really happy about that” with an angry tone of voice (i.e.
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sarcasm). The results from the experiment showed that there was strong correlation between

agreement measurements of both conditions, on both scales, suggesting that the low agree-

ment for each speech clip could be attributable to the acoustic cues. To investigate this concept

further, it would be of interest to systematically select speech material so that the prosodic

and semantic content are not congruent in meaning. The selection of speech stimuli that were

chosen for the latter experiment (section 8.3.2) was based on the label’s statistical reliability,

i.e. high agreement levels that were obtained from the earlier case study. Alternatively, one

could investigate a different set of speech stimuli chosen based on low agreement levels, rather

than high agreement. Having inspected the material used for the investigations in this thesis, a

subjective assessment suggests that an insufficient degree of incongruence exists in the speech

material. In fact, to obtain such material may not be straightforward with naturalistic speech,

and one may, for this reason, consider using acted speech in order to systematically generate

speech with opposing paralinguistic and linguistic meaning, such as speech with sarcastic in-

tonation. Alternatively, it may be possible to obtain such speech using sophisticated inducing

procedures.

9.4 Overall Conclusions

This thesis was undertaken in relation to the following statement:

Many emotion recognition systems emulate the processes of human inferences. To recognise

emotion automatically from paralinguistic information, one requires a comprehensive under-

standing as to the nature of the inference process of emotion from vocal acoustics—irrespective

of the intertwining semantic content. Numerous acoustic features indicate emotion in speech,

but the extent to which each influence perception of emotion in natural, spontaneous, mood

induced speech remains unknown. Arguably, by removing, masking, or manipulating ver-

bal/vocal cues in expressive speech, a listener’s perception of expressed emotions should be

constricted or misrepresented, therefore, allowing us to quantify its effects.
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The acquisition of suitable naturalistic emotional speech material was first considered. Mood

inducing procedures were identified as a promising compromise between acted and truly nat-

uralistic speech data, and it was determined that dimensional ratings obtained on a large-scale

basis were the appropriate means for labelling this type of speech material. This thesis de-

scribes the design, testing and evaluation of an interactive web-based listening tool developed

to obtain ratings on a large-scale basis for labelling naturalistic emotional speech. Accordingly,

a case study was carried out to obtain ratings for annotating and analysing the emotional content

in naturalistic speech, providing the research community with a viable naturalistic emotional

speech corpus. Based on this corpus, an experiment was carried out to compare the perception

of verbal against nonverbal speech clips. This work identified suitable filtering conditions for

non-verbal speech analysis, and determined that rating agreement levels can be attributable to

acoustic (low frequency) content independently. In summary, this thesis was defended by an-

swering five research questions in this regard (section 9.1).

Although this work has shown that low-pass filtering is a useful tool to mask semantic content, a

broader selection of naturalistic speech material needs to be investigated to support the findings

in this thesis, and other cue manipulation techniques need to be carried out to investigate further

which voice cues contribute to reliable perceptions of emotion.
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A
Preliminary Surveys

Questionnaire

Number of participants: 7

Procedure for participants:

1. Read instructions.

2. Attend to Evaluation/Activation questionnaire.

3. Rate clips.

4. Attend to subjective workload questionnaire.
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APPENDIX A. PRELIMINARY SURVEYS

Instructions:

Q1 Which of the following is best described by Evaluation (pick one answer):

(a) A speech segment relating to measurement.

(b) A speech segment relating to examination.

(c) A speech segment that sounds like a whisper.

(d) A speech segment where the speakers voice conveys the benefit of (or problem with) some-

thing.

Q2 Which of the following is best described by Activation (pick one answer):

(a) A speech segment relating to work levels.

(b) A speech segment relating to politics.

(c) A speech segment that contains physical arousal in the voice due to emotion.

(d) A speech segment where the speaker begins an action.

Subjective workload of tool usage:

Q3 How hurried or rushed was the pace of the task?

(a) Very low (b) Low (c) Normal (d) High (e) Very high

Q4 How mentally demanding was the task?

(a) Very low (b) Low (c) Normal (d) High (e) Very high

Q5 How uncertain, irritated, and stressed were you?

(a) Very low (b) Low (c) Normal (d) High (e) Very high
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APPENDIX A. PRELIMINARY SURVEYS

Q6 If you were asked to rate a certain number of clips on a daily basis, do you think 3-7

clips should be:

(a) Enough (b) Increased (c) Decreased

Questionnaire results:

Correct Incorrect

Q1 6 1
Q2 6 1

Very low Low Normal High Very high

Q3 1 1 3* 2 0
Q4 0 2 4* 0 0
Q5 3* 1 2 1 0

Kept the same Increase Decreased

Q6 4* 3 0

*Mode

Participant feedback:

A. Tool functionality:

Participant 1 (Male, technical):

• Participant found restriction on using characters within password frustrating (e.g. hy-

phen).

• If all fields are filled in when a new user account is created, button should be highlighted.

• Firefox 5 showed some issues with volume button in player.

Participant 3 (Female, non-technical):

• Easy to sign in, satisfied with no need for email confirmation.
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APPENDIX A. PRELIMINARY SURVEYS

Participant 4 (Male, non-technical):

• Overall easy to understand.

Participant 6 (Female, non-technical):

• Easy login, satisfied with no email confirmation.

B. Instructions:

Participant 1 (Male, technical):

• Suggested answers were more obvious because they were longer (more text). Asked how

participant knew for sure it was the right answer—response was from instructions.

• Participant didnt agree that Activity and Evaluation should be two different scales. Sug-

gested Evaluation to be binary, and a scale for Activity. Participant also questioned sur-

prise.

Participant 2 (Male, technical):

• The word “overlap” used to describe Activity and Evaluation was confusing. Participant

thought he needed to rate on a matrix.

Participant 3 (Female, non-technical):

• Instructions were clear.

Participant 6 (Female, non-technical):

• Easy to understand.

Participant 7 (Male, somewhat technical)
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APPENDIX A. PRELIMINARY SURVEYS

• Found instructions a bit overwhelming, suggested Activation should be kept shorter—

found the reference to adrenalin a bit confusing with the example given i.e. receiving

a gift but said there is no reference to fight or flight. Participant understood it better

once the rating tool was presented (labels etc). Examples did help to understand the

instructions.

C. Presented speech clips:

Participant 1 (Male, technical):

• Listener felt clips didnt portray ‘real’ emotion. Suggested a scale for authenticity/genuiness.

• Suggested a baseline clip to compare against.

• Suggested 7 clips to rate.

Participant 2 (Male, technical):

• Last listened to clip was too short.

• Listened to clips several times to try hear tone of voice, and not semantic content.

Participant 3 (Femal, non-technical):

• 1st speech clip to short.

Participant 5 (Female, non-technical):

• Had to listen to clips 2-3 times.

• Listened for linguistic content.

Participant 6 (Female, non-technical):

• Found the clips used “Weird”.
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APPENDIX B. INSTRUCTIONS: BASE LINE SPEECH CLIP

Listen to Example:

In this following clip, there has been some agreement between listeners on the activation and evaluation
scales. This clip has been rated as "Slightly Active" on the Activation scale and "Slightly Positive" on the
Evaluation scale. It is important to note, however, that this is only given as an example and that there is no 
correct answer when rating the clips.

Negative Slightly Negative Slightly Positive PositiveNeutral
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EVALUATION

Please note:

For the listening task, 
you will be presented 
with two individual 
scales rather than the 
grid shown here to the 
left. The grid is used to 
show that both scales 
can overlap.

You can click on continue if you feel you understand both evaluation and activation. If you don't 
ask the researcher to explain.
You can click on continue if you feel you understand both evaluation and activation. If you don't 
ask the researcher to explain.

Continue 

Figure B.1: Base line speech clip as part of the instructions with associated Ground Truth value.
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MIP Sessions: Segmentation

SAMPLE RATE: 44100
BIT DEPTH: 24-bit

T R A C K  L I S T I N G Total: 20 T R A C K  L I S T I N G Total: 20
MIP Session: Camilla_Christine MIP Session: David_Luc

TRACK NAME: Camilla TRACK NAME: David
FILE NAME START TIME END TIME DURATION FILE NAME START TIME END TIME DURATION
B2_CC_200309   0:03.381   0:06.962   0:03.580 B1_DL_230309   0:00.761   0:04.896   0:04.135
B3_CC_200309   0:07.004   0:08.911   0:01.906 B2_DL_230309   0:07.960   0:10.203   0:02.243
B5_CC_200309   0:13.050   0:15.595   0:02.545 B5_DL_230309   0:14.459   0:15.520   0:01.061
B6_CC_200309   0:18.908   0:20.726   0:01.818 B7_DL_230309   0:21.098   0:23.862   0:02.763
B7_CC_200309   0:21.171   0:23.716   0:02.545 B10_DL_230309   0:27.987   0:30.066   0:02.078
B8_CC_200309   0:23.837   0:26.060   0:02.222 A10_DL_230309  10:27.900  10:29.505   0:01.605
B10_CC_200309   0:36.403   0:38.908   0:02.505 A7_DL_230309  10:41.275  10:43.415   0:02.140
A9_CC_200309   9:03.182   9:06.415   0:03.232 A5_DL_230309  10:59.465  11:01.265   0:01.799
A5_CC_200309   9:26.818   9:29.121   0:02.303 A3_DL_230309  11:04.426  11:06.517   0:02.091
A4_CC_200309   9:35.000   9:36.970   0:01.970 A1_DL_230309  11:11.235  11:15.710   0:04.474
A3_CC_200309   9:36.975   9:38.160   0:01.185
A2_CC_200309   9:38.162   9:40.467   0:02.305 TRACK NAME: Luc

FILE NAME START TIME END TIME DURATION
TRACK NAME: Christine B3_DL_230309   0:10.143   0:11.885   0:01.742
FILE NAME START TIME END TIME DURATION B4_DL_230309   0:12.246   0:13.528   0:01.281
B1_CC_200309   0:00.989   0:04.020   0:03.030 B6_DL_230309   0:16.952   0:17.894   0:00.941
B4_CC_200309   0:09.333   0:12.161   0:02.828 B8_DL_230309   0:23.381   0:24.593   0:01.211
B9_CC_200309   0:29.090   0:31.878   0:02.787 B9_DL_230309   0:25.944   0:28.097   0:02.152
A10_CC_200309   9:02.496   9:04.980   0:02.484 A9_DL_230309  10:32.666  10:35.390   0:02.723
A8_CC_200309   9:06.192   9:08.556   0:02.363 A8_DL_230309  10:38.503  10:41.469   0:02.966
A7_CC_200309   9:09.000   9:13.223   0:04.222 A6_DL_230309  10:44.825  10:46.625   0:01.799
A6_CC_200309   9:16.354   9:19.364   0:03.010 A4_DL_230309  11:00.632  11:02.286   0:01.653
A1_CC_200309   9:38.293   9:42.475   0:04.181 A2_DL_230309  11:05.885  11:08.268   0:02.383

Note: File start with B= Before; Filestart with A= After
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MIP Sessions: Segmentation

T R A C K  L I S T I N G Total: 20 T R A C K  L I S T I N G Total: 20
MIP Sesssion: Emma_Jason MIP Session: Louise_Cliona

TRACK NAME: Emma TRACK NAME: Louise
FILE NAME START TIME END TIME DURATION FILE NAME START TIME END TIME DURATION
B2_EJ_250509   0:10.092   0:11.289   0:01.196 B2_LC_260309   0:28.940   0:36.844   0:07.903
B3_EJ_250509   0:11.296   0:13.854   0:02.557 B4_LC_260309   0:40.005   0:44.505   0:04.499
B5_EJ_250509   0:15.512   0:17.067   0:01.555 B5_LC_260309   0:44.930   0:48.821   0:03.891
B8_EJ_250509   0:25.735   0:28.177   0:02.441 B6_LC_260309   0:49.612   0:51.679   0:02.067
B10_EJ_250509   0:35.755   0:42.449   0:06.693 B8_LC_260309   0:54.962   0:58.002   0:03.039
A8_EJ_250509   2:55.357   2:58.008   0:02.650 B10_LC_260309   1:04.325   1:07.365   0:03.039
A6_EJ_250509   3:02.823   3:04.437   0:01.613 A9_LC_260309  10:25.990  10:28.239   0:02.249
A5_EJ_250509   3:04.696   3:06.790   0:02.093 A7_LC_260309  10:34.502  10:37.177   0:02.675
A3_EJ_250509   3:08.732   3:10.537   0:01.805 A6_LC_260309  10:38.271  10:40.947   0:02.675
A1_EJ_250509   3:13.654   3:19.589   0:05.935 A4_LC_260309  10:54.687  10:58.457   0:03.769

A3_LC_260309  11:01.740  11:03.382   0:01.641
A1_LC_260309  11:03.625  11:08.063   0:04.438

TRACK NAME: Jason
FILE NAME START TIME END TIME DURATION
B1_EJ_250509   0:05.892   0:09.156   0:03.263 TRACK NAME: Cliona
B4_EJ_250509   0:14.014   0:15.713   0:01.698 FILE NAME START TIME END TIME DURATION
B6_EJ_250509   0:17.084   0:19.253   0:02.168 B1_LC_260309   0:25.961   0:29.366   0:03.404
B7_EJ_250509   0:21.463   0:25.633   0:04.170 B3_LC_260309   0:37.087   0:41.404   0:04.316
B9_EJ_250509   0:30.442   0:32.009   0:01.566 B7_LC_260309   0:52.773   0:56.178   0:03.404
A10_EJ_250509   2:11.564   2:14.834   0:03.269 B9_LC_260309   0:56.239   0:58.975   0:02.735
A9_EJ_250509   2:34.615   2:36.886   0:02.271 A10_LC_260309  10:10.243  10:11.763   0:01.519
A7_EJ_250509   2:59.074   3:00.611   0:01.536 A8_LC_260309  10:30.854  10:35.475   0:04.620
A4_EJ_250509   3:07.104   3:08.929   0:01.824 A5_LC_260309  10:46.479  10:48.790   0:02.310
A2_EJ_250509   3:10.898   3:13.222   0:02.324 A2_LC_260309  11:02.652  11:06.725   0:04.073

Note: File start with B= Before; Filestart with A= After
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MIP Sessions: Segmentation

T R A C K  L I S T I N G Total: 20 T R A C K  L I S T I N G Total: 20
MIP Session: Jack_Keith MIP Session:Jenny_Ruth

TRACK NAME: Jack TRACK NAME: Jenny
FILE NAME START TIME END TIME DURATION FILE NAME START TIME END TIME DURATION
B1_JK_210809   0:08.889   0:10.565   0:01.675 B2_JR_240309   0:11.098   0:13.390   0:02.291
B2_JK_210809   0:10.871   0:12.281   0:01.410 B3_JR_240309   0:14.402   0:17.880   0:03.477
B3_JK_210809   0:13.037   0:14.345   0:01.307 B5_JR_240309   0:21.256   0:24.678   0:03.421
B4_JK_210809   0:21.913   0:26.111   0:04.198 B6_JR_240309   0:25.362   0:27.053   0:01.690
B5_JK_210809   0:26.116   0:28.446   0:02.329 B7_JR_240309   0:30.756   0:32.267   0:01.510
B7_JK_210809   1:07.152   1:08.822   0:01.669 B8_JR_240309   0:33.559   0:36.144   0:02.584
B8_JK_210809   1:14.734   1:17.404   0:02.670 B10_JR_240309   0:37.561   0:39.979   0:02.417
A10_JK_210809   8:07.926   8:11.305   0:03.379 A9_JR_240309   8:36.294   8:39.006   0:02.711
A9_JK_210809   8:13.456   8:16.630   0:03.174 A7_JR_240309   9:46.934   9:48.643   0:01.709
A7_JK_210809   8:39.848   8:43.470   0:03.622 A6_JR_240309   9:54.750   9:57.293   0:02.543
A5_JK_210809   9:41.149   9:43.471   0:02.322 A4_JR_240309  10:05.131  10:07.153   0:02.021
A3_JK_210809  10:12.819  10:15.100   0:02.280 A1_JR_240309  10:08.779  10:12.322   0:03.543
A2_JK_210809  10:24.222  10:26.566   0:02.343
A1_JK_210809  11:01.954  11:05.112   0:03.157

TRACK NAME: Ruth
FILE NAME START TIME END TIME DURATION

TRACK NAME: Keith B1_JR_240309   0:08.615   0:11.272   0:02.657
FILE NAME START TIME END TIME DURATION B4_JR_240309   0:18.599   0:21.538   0:02.938
B6_JK_210809   0:32.819   0:35.006   0:02.186 B9_JR_240309   0:36.394   0:38.561   0:02.167
B9_JK_210809   1:38.569   1:44.059   0:05.489 A10_JR_240309   8:25.267   8:26.970   0:01.702
B10_JK_210809   1:51.204   1:55.197   0:03.993 A8_JR_240309   9:05.689   9:09.409   0:03.719
A8_JK_210809   8:16.814   8:20.436   0:03.622 A5_JR_240309  10:00.983  10:03.484   0:02.501
A6_JK_210809   9:10.870   9:13.656   0:02.786 A3_JR_240309  10:05.047  10:08.028   0:02.980
A4_JK_210809  10:03.634  10:06.358   0:02.724 A2_JR_240309  10:09.675  10:10.842   0:01.167

Note: File start with B= Before; Filestart with A= After
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MIP Sessions: Segmentation

T R A C K  L I S T I N G Total: 20 T R A C K  L I S T I N G Total: 20
MIP Session: Paula_Anna MIP Session: Pauly_John

TRACK NAME: Paul TRACK NAME: John 
FILE NAME START TIME END TIME DURATION FILE NAME START TIME END TIME DURATION
B2_PA_090609   0:09.102   0:12.074   0:02.972 B3_PJ_090609   0:11.600   0:12.843   0:01.242
B5_PA_090609   0:40.867   0:46.439   0:05.572 B4_PJ_090609   0:22.467   0:24.729   0:02.262
B6_PA_090609   1:00.743   1:07.245   0:06.501 B6_PJ_090609   0:30.026   0:31.295   0:01.269
B7_PA_090609   1:13.560   1:18.019   0:04.458 B9_PJ_090609   0:35.798   0:39.042   0:03.244
B10_PA_090609   1:22.291   1:27.678   0:05.387 B10_PJ_090609   0:39.042   0:42.485   0:03.443
A9_PA_090609   7:21.237   7:24.032   0:02.795 A10_PJ_090609   9:00.770   9:04.566   0:03.796
A8_PA_090609   7:35.482   7:39.012   0:03.529 A9_PJ_090609   9:06.817   9:10.481   0:03.663
A6_PA_090609   8:17.122   8:20.993   0:03.870 A7_PJ_090609   9:19.750   9:21.428   0:01.677

A5_PJ_090609   9:26.813   9:29.726   0:02.913
A3_PJ_090609   9:32.198   9:34.891   0:02.692
A2_PJ_090609   9:42.836   9:45.529   0:02.692

TRACK NAME: Anna
FILE NAME START TIME END TIME DURATION
B1_PA_090609   0:04.086   0:08.916   0:04.829
B3_PA_090609   0:09.845   0:13.003   0:03.157 TRACK NAME: Pauly
B4_PA_090609   0:39.381   0:44.768   0:05.387 FILE NAME START TIME END TIME DURATION
B8_PA_090609   1:15.418   1:18.762   0:03.343 B1_PJ_090609   0:01.037   0:03.200   0:02.162
B9_PA_090609   1:19.133   1:22.477   0:03.343 B2_PJ_090609   0:11.167   0:13.816   0:02.648
A10_PA_090609   7:19.321   7:23.965   0:04.644 B5_PJ_090609   0:29.066   0:30.214   0:01.147
A7_PA_090609   7:47.371   7:51.829   0:04.458 B7_PJ_090609   0:31.251   0:32.642   0:01.390
A5_PA_090609   8:39.569   8:43.656   0:04.086 B8_PJ_090609   0:32.995   0:35.974   0:02.979
A4_PA_090609   9:20.808   9:27.681   0:06.873 A8_PJ_090609   9:11.937   9:15.425   0:03.487
A3_PA_090609  10:14.678  10:17.836   0:03.157 A6_PJ_090609   9:24.032   9:27.210   0:03.178
A2_PA_090609  10:23.223  10:29.725   0:06.501 A4_PJ_090609   9:28.711   9:31.359   0:02.648
A1_PA_090609  10:48.858  10:54.988   0:06.130 A1_PJ_090609   9:44.293   9:45.396   0:01.103

Note: File start with B= Before; Filestart with A= After
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Summary of obtained values for all clips

Clip M Mdn Mode GT SD VAR Range Min Max 25th 50th IQR M Mdn Mode GT SD VAR Range Min Max 25th 75th IQR
A1_CC_200309 3.00 3 3 2.932 0.53 0.29 2 2 4 3 3 0 3.38 3.5 4 3.369 0.74 0.55 2 2 4 3 4 1
A1_DL_230309 2.23 2 4 1.969 1.79 3.19 4 0 4 0.5 4 3.5 4.00 4 4 4 0.00 0.00 0 4 4 4 4 0
A1_EJ_250509 1.80 1.5 1 2 1.23 1.51 4 0 4 1 3 2 3.40 4 4 3.235 1.07 1.16 3 1 4 2.75 4 1.25
A1_JK_210809 1.50 1 1 1 1.02 1.04 4 0 4 1 2 1 2.71 3 2a 2.449 0.73 0.53 2 2 4 2 3 1
A1_JR_240309 0.92 1 1 1 0.76 0.58 2 0 2 0 1.5 1.5 3.31 3 3a 3.249 0.85 0.73 3 1 4 3 4 1
A1_LC_260309 0.86 1 0 0.683 0.90 0.81 2 0 2 0 2 2 2.57 3 4 3.017 1.81 3.29 4 0 4 0 4 4
A1_PA_090609 2.15 2 3 3 1.34 1.81 4 0 4 1 3 2 1.92 2 2 2.3 1.32 1.74 4 0 4 1 3 2
A1_PJ_090609 1.21 1 1 1.195 0.80 0.64 3 0 3 1 2 1 2.50 3 3 2.2 0.85 0.73 3 1 4 2 3 1
A10_CC_200309 2.22 2 2 2 0.67 0.44 2 2 4 2 2 0 2.22 2 2 2.126 0.44 0.19 1 2 3 2 2.5 0.5
A10_DL_230309 3.77 4 4 4 0.44 0.19 1 3 4 3.5 4 0.5 3.92 4 4 3.922 0.28 0.08 1 3 4 4 4 0
A10_EJ_250509 2.10 2 2 1.946 0.57 0.32 2 1 3 2 2.25 0.25 1.00 1 1 1.08 0.67 0.44 2 0 2 0.75 1.25 0.5
A10_JK_210809 2.00 2 2 2 0.67 0.44 2 1 3 1.75 2.25 0.5 2.60 2.5 2 3 0.70 0.49 2 2 4 2 3 1
A10_JR_240309 0.90 0.5 0 0.762 1.29 1.66 4 0 4 0 1.25 1.25 3.70 4 4 3.627 0.48 0.23 1 3 4 3 4 1
A10_LC_260309 1.33 1 1 1.517 1.03 1.07 3 0 3 0.75 2.25 1.5 2.83 3 3 2.601 0.75 0.57 2 2 4 2 3.25 1.25
A10_PA_090609 2.40 3 3 2.493 0.97 0.93 2 1 3 1 3 2 2.30 3 3 2.886 1.42 2.01 4 0 4 0.75 3 2.25
A10_PJ_090609 2.18 2 2 2.098 0.40 0.16 1 2 3 2 2 0 2.09 2 2a 1.802 0.83 0.69 2 1 3 1 3 2
A2_CC_200309 1.00 1 0a 0.574 1.22 1.50 3 0 3 0 2 2 1.80 2 3 1.099 1.30 1.70 3 0 3 0.5 3 2.5
A2_DL_230309 2.77 3 3 2.763 1.30 1.69 4 0 4 2 4 2 3.62 4 4 3.807 0.65 0.42 2 2 4 3 4 1
A2_EJ_250509 1.63 2 2 1.819 0.52 0.27 1 1 2 1 2 1 1.88 2 2 1.87 0.64 0.41 2 1 3 1.25 2 0.75
A2_JK_210809 1.36 1 1a 1.457 0.67 0.45 2 0 2 1 2 1 2.36 2 2 2.479 1.21 1.45 4 0 4 2 3 1
A2_JR_240309 1.75 2 2 2 1.48 2.20 4 0 4 0 2.75 2.75 3.58 4 4 3.58 0.51 0.27 1 3 4 3 4 1
A2_LC_260309 2.00 2 1a 1.975 1.55 2.40 4 0 4 0.75 3.25 2.5 1.83 2 2 1.497 0.75 0.57 2 1 3 1 2.25 1.25
A2_PA_090609 1.60 2 2 2 0.70 0.49 2 0 2 1 2 1 1.30 1 1 1.339 0.95 0.90 3 0 3 0.75 2 1.25
A2_PJ_090609 2.55 3 1a 2 1.37 1.87 3 1 4 1 4 3 3.00 3 3 3.013 0.77 0.60 3 1 4 3 3 0
A3_CC_200309 1.18 1 0 0 1.47 2.16 4 0 4 0 3 3 2.09 2 3 1.834 0.94 0.89 2 1 3 1 3 2
A3_DL_230309 2.00 2 0a 1.697 1.76 3.09 4 0 4 0 4 4 3.67 4 4 3.763 0.49 0.24 1 3 4 3 4 1
A3_EJ_250509 2.00 2 1a 2.105 1.00 1.00 2 1 3 1 3 2 2.00 2 1a 1.679 1.00 1.00 2 1 3 1 3 2
A3_JK_210809 1.38 1 1 1 0.96 0.92 4 0 4 1 2 1 2.38 2 2 2.111 1.12 1.26 3 1 4 1.5 3.5 2
A3_JR_240309 2.71 4 4 2.945 1.89 3.57 4 0 4 0 4 4 4.00 4 4 4 0.00 0.00 0 4 4 4 4 0
A3_LC_260309 0.92 1 1 2 0.79 0.63 2 0 2 0 1.75 1.75 0.83 0 0 0.639 1.27 1.61 3 0 3 0 2 2
A3_PA_090609 2.67 3 4 2 1.22 1.50 3 1 4 1.5 4 2.5 3.11 3 3 3.202 0.93 0.86 3 1 4 3 4 1
A3_PJ_090609 1.67 2 2 2 0.50 0.25 1 1 2 1 2 1 0.78 1 1 0.918 0.67 0.44 2 0 2 0 1 1
A4_CC_200309 1.75 2 2 1.775 1.06 1.11 3 0 3 1 2.75 1.75 1.25 1.5 2 1.45 1.06 1.11 3 0 3 0 2 2
A4_DL_230309 2.09 2 1 2 1.04 1.09 3 1 4 1 3 2 3.36 3 3a 3.428 0.67 0.45 2 2 4 3 4 1
A4_EJ_250509 1.36 1 1a 2 0.67 0.45 2 0 2 1 2 1 1.55 1 1 1.527 1.13 1.27 3 0 3 1 3 2
A4_JK_210809 2.33 2 2a 2.102 1.00 1.00 3 1 4 1.5 3 1.5 2.11 2 2 2.016 0.78 0.61 2 1 3 1.5 3 1.5
A4_JR_240309 2.78 4 4 2.406 1.86 3.44 4 0 4 0.5 4 3.5 3.89 4 4 3.888 0.33 0.11 1 3 4 4 4 0
A4_LC_260309 3.18 4 4 4 1.25 1.56 4 0 4 3 4 1 3.82 4 4 3.734 0.40 0.16 1 3 4 4 4 0
A4_PA_090609 3.10 3 3 3 0.74 0.54 2 2 4 2.75 4 1.25 2.30 3 3 2.641 1.16 1.34 3 1 4 1 3 2
A4_PJ_090609 2.13 2 1a 2 1.25 1.55 3 1 4 1 3.5 2.5 3.25 3 3 3.092 0.71 0.50 2 2 4 3 4 1
A5_CC_200309 1.00 1 0 1.196 1.15 1.33 3 0 3 0 2 2 0.86 1 0 0.73 0.90 0.81 2 0 2 0 2 2

Evaluation Activation

a. Multiple modes exist. The smallest value is shown
M = Mean; Mdn = Median; Mo = Mode; SD = Standard Deviation; R = Range; 25th = First quartile; 75th = Third quartile; IQR = Interquartile Range.
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Summary of obtained values for all clips

Asset M Mdn Mode GT SD VAR Range Min Max 25th 50th IQR M Mdn Mode GT SD VAR Range Min Max 25th 75th IQR
A5_DL_230309 2.50 3 3 2.707 1.18 1.39 3 1 4 1 3.25 2.25 3.20 3 3 3.209 0.42 0.18 1 3 4 3 3.25 0.25
A5_EJ_250509 2.67 3 3 3 1.12 1.25 3 1 4 1.5 3.5 2 3.44 3 3 3.375 0.53 0.28 1 3 4 3 4 1
A5_JK_210809 1.56 1 1 1.546 1.01 1.03 3 0 3 1 2.5 1.5 3.00 3 4 3.099 1.32 1.75 4 0 4 2.5 4 1.5
A5_JR_240309 2.79 3 3 3 1.05 1.10 3 1 4 2 4 2 3.36 4 4 3.538 1.15 1.32 4 0 4 3 4 1
A5_LC_260309 1.40 1.5 2 2 0.70 0.49 2 0 2 1 2 1 2.10 2 2 2.115 0.88 0.77 3 0 3 2 3 1
A5_PA_090609 2.70 3 4 3.106 1.42 2.01 4 0 4 1.75 4 2.25 2.90 3 3 3.307 1.10 1.21 3 1 4 2.5 4 1.5
A5_PJ_090609 1.71 2 2 1.867 0.61 0.37 2 0 2 1.75 2 0.25 1.79 2 1 2.08 0.97 0.95 3 0 3 1 3 2
A6_CC_200309 2.08 2 2 1.812 1.04 1.08 3 1 4 1 2.5 1.5 2.85 3 3 2.803 0.99 0.97 3 1 4 2.5 3.5 1
A6_DL_230309 3.00 3.5 4 3 1.36 1.85 4 0 4 2.5 4 1.5 3.86 4 4 3.807 0.36 0.13 1 3 4 4 4 0
A6_EJ_250509 1.50 1 1 1.257 1.45 2.12 4 0 4 0.75 2.5 1.75 3.64 4 4 3.788 0.84 0.71 3 1 4 3.75 4 0.25
A6_JK_210809 1.73 2 2 1.978 1.19 1.42 4 0 4 1 2 1 3.09 3 3 2.805 0.70 0.49 2 2 4 3 4 1
A6_JR_240309 1.82 1 1 2 1.47 2.16 4 0 4 1 3 2 3.45 4 4 3.396 0.69 0.47 2 2 4 3 4 1
A6_LC_260309 1.67 2 2 2 0.65 0.42 2 0 2 1.25 2 0.75 1.92 2 2a 1.855 1.00 0.99 3 0 3 1 3 2
A6_PA_090609 2.50 2 2a 2.094 1.31 1.71 3 1 4 1.25 4 2.75 2.88 3 3 2.47 0.83 0.70 3 1 4 3 3 0
A6_PJ_090609 2.33 2 2 2.12 0.71 0.50 2 2 4 2 2.5 0.5 2.67 3 2a 2.626 0.71 0.50 2 2 4 2 3 1
A7_CC_200309 1.50 2 2 1.626 0.65 0.42 2 0 2 1 2 1 2.64 3 3 2.542 0.84 0.71 3 1 4 2 3 1
A7_DL_230309 2.47 3 3 2 0.83 0.70 3 1 4 2 3 1 2.60 3 3 2.481 0.74 0.54 3 1 4 2 3 1
A7_EJ_250509 2.00 2 2 2.125 0.95 0.91 3 0 3 1.25 3 1.75 1.92 2 2 2.014 0.79 0.63 3 0 3 2 2 0
A7_JK_210809 2.10 2 2 1.836 1.10 1.21 3 1 4 1 2.5 1.5 3.10 3 3 2.842 0.74 0.54 2 2 4 2.75 4 1.25
A7_JR_240309 1.00 1 0 0.736 1.22 1.50 3 0 3 0 2 2 3.89 4 4 3.903 0.33 0.11 1 3 4 4 4 0
A7_LC_260309 1.27 1 1 1 0.79 0.62 3 0 3 1 2 1 1.73 2 2 1.99 0.90 0.82 3 0 3 1 2 1
A7_PA_090609 1.18 1 1 1.452 0.87 0.76 3 0 3 1 2 1 1.64 2 1a 1.722 1.12 1.25 3 0 3 1 3 2
A7_PJ_090609 1.83 2 2 2 0.83 0.70 3 0 3 1.25 2 0.75 2.33 2.5 3 2.216 1.07 1.15 4 0 4 2 3 1
A8_CC_200309 2.38 2 2 2.3 0.74 0.55 2 2 4 2 2.75 0.75 2.63 2.5 2 2.51 0.74 0.55 2 2 4 2 3 1
A8_DL_230309 2.50 2.5 2a 2.204 0.93 0.86 3 1 4 2 3 1 3.13 3.5 4 3.327 1.13 1.27 3 1 4 2.25 4 1.75
A8_EJ_250509 1.67 2 2 2 0.65 0.42 2 1 3 1 2 1 2.92 3 3 2.885 0.79 0.63 2 2 4 2 3.75 1.75
A8_JK_210809 0.71 1 0a 0.724 0.76 0.57 2 0 2 0 1 1 1.29 1 1 1.143 0.95 0.90 3 0 3 1 2 1
A8_JR_240309 1.22 0 0 1.156 1.86 3.44 4 0 4 0 3.5 3.5 4.00 4 4 4 0.00 0.00 0 4 4 4 4 0
A8_LC_260309 1.82 2 2 1.782 0.60 0.36 2 1 3 1 2 1 1.82 2 3 1.992 1.25 1.56 3 0 3 1 3 2
A8_PA_090609 2.07 2 3 2.06 1.16 1.35 4 0 4 1 3 2 2.00 2 3 2.252 1.07 1.14 3 0 3 1 3 2
A8_PJ_090609 2.55 2 2 2 0.82 0.67 2 2 4 2 3 1 2.64 2 2 2 0.81 0.65 2 2 4 2 3 1
A9_CC_200309 1.55 2 2 2 0.69 0.47 2 0 2 1 2 1 1.09 1 1 1.091 0.83 0.69 3 0 3 1 1 0
A9_DL_230309 2.67 3 3a 3 1.40 1.95 4 0 4 2 4 2 3.73 4 4 3.608 0.46 0.21 1 3 4 3 4 1
A9_EJ_250509 2.00 2 2 1.985 0.53 0.29 2 1 3 2 2 0 2.75 2.5 2 2.608 0.89 0.79 2 2 4 2 3.75 1.75
A9_JK_210809 2.14 2 2 2 0.95 0.90 4 0 4 2 3 1 2.43 3 3 2.283 1.16 1.34 4 0 4 1.75 3 1.25
A9_JR_240309 1.70 1.5 0 1.315 1.70 2.90 4 0 4 0 3.25 3.25 3.90 4 4 3.895 0.32 0.10 1 3 4 4 4 0
A9_LC_260309 2.44 2 2 2 1.01 1.03 3 1 4 2 3.5 1.5 2.44 3 3 2.398 1.24 1.53 4 0 4 1.5 3 1.5
A9_PA_090609 1.91 2 2 2 0.83 0.69 3 1 4 1 2 1 1.55 2 2 1.487 1.13 1.27 4 0 4 1 2 1
A9_PJ_090609 1.45 1 1 1 0.93 0.87 3 0 3 1 2 1 0.18 0 0 0.091 0.40 0.16 1 0 1 0 0 0
B1_CC_200309 2.58 3 3 2.371 1.08 1.17 3 1 4 1.25 3 1.75 2.25 2 2a 2.108 0.97 0.93 3 1 4 1.25 3 1.75
B1_DL_230309 2.60 2.5 2 2.576 0.70 0.49 2 2 4 2 3 1 1.40 1 0a 1.573 1.35 1.82 4 0 4 0 2.25 2.25

Evaluation Activation

M = Mean; Mdn = Median; Mo = Mode; SD = Standard Deviation; R = Range; 25th = First quartile; 75th = Third quartile; IQR = Interquartile Range.
a. Multiple modes exist. The smallest value is shown
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Summary of obtained values for all clips

Asset M Mdn Mode GT SD VAR Range Min Max 25th 50th IQR M Mdn Mode GT SD VAR Range Min Max 25th 75th IQR
B1_EJ_250509 1.62 2 2 2 0.96 0.92 3 0 3 1 2 1 2.08 2 2 2.186 0.86 0.74 3 0 3 2 3 1
B1_JK_210809 2.92 3 3a 2.719 1.00 0.99 3 1 4 2 4 2 3.67 4 4 3.624 0.49 0.24 1 3 4 3 4 1
B1_JR_240309 1.91 2 2 1.932 0.70 0.49 2 1 3 1 2 1 2.09 2 3 2.148 1.22 1.49 4 0 4 1 3 2
B1_LC_260309 2.29 2 2 2 0.61 0.37 2 2 4 2 2.25 0.25 2.07 2 2 2.077 1.07 1.15 4 0 4 1 3 2
B1_PA_090609 2.67 3 3 2.734 0.87 0.75 3 1 4 2 3 1 2.67 3 3 2.801 0.87 0.75 3 1 4 2 3 1
B1_PJ_090609 1.80 2 2 2 0.92 0.84 3 0 3 1 2.25 1.25 2.20 3 3 2.659 1.62 2.62 4 0 4 0 3.25 3.25
B10_CC_200309 1.43 2 2 1 0.94 0.88 3 0 3 0.75 2 1.25 0.57 0 0 0.404 0.85 0.73 3 0 3 0 1 1
B10_DL_230309 2.08 2 2 2 0.79 0.63 3 1 4 2 2 0 2.08 2 2 1.858 1.24 1.54 4 0 4 1 3 2
B10_EJ_250509 1.40 1 1 2 0.52 0.27 1 1 2 1 2 1 2.00 2 3 2.198 1.05 1.11 3 0 3 1 3 2
B10_JK_210809 1.50 1 1 1.5 1.27 1.61 4 0 4 0.75 2.25 1.5 2.60 3 3 2.397 1.07 1.16 4 0 4 2 3 1
B10_JR_240309 1.38 1.5 2 1.55 1.06 1.13 3 0 3 0.25 2 1.75 2.63 3 3 2.638 1.30 1.70 4 0 4 2 3.75 1.75
B10_LC_260309 2.25 2 2 2.213 0.46 0.21 1 2 3 2 2.75 0.75 2.50 2 2 2.298 0.76 0.57 2 2 4 2 3 1
B10_PA_090609 1.63 1 1 1.553 1.30 1.70 4 0 4 1 2.75 1.75 2.38 2.5 1 1.95 1.30 1.70 3 1 4 1 3.75 2.75
B10_PJ_090609 2.00 2 2 1.931 0.58 0.33 2 1 3 2 2 0 1.57 2 2 1.625 0.53 0.29 1 1 2 1 2 1
B2_CC_200309 1.07 1 1 1 0.83 0.69 3 0 3 0.75 1.25 0.5 1.29 1 0 1.329 1.27 1.60 3 0 3 0 3 3
B2_DL_230309 2.15 2 3 2.179 1.34 1.81 4 0 4 1 3 2 2.23 2 3 2.131 1.01 1.03 3 1 4 1 3 2
B2_EJ_250509 1.82 2 2 1.624 0.60 0.36 2 1 3 1 2 1 2.36 2 2 2.175 1.03 1.05 3 1 4 2 3 1
B2_JK_210809 2.13 2 2 2 0.83 0.70 3 1 4 2 2 0 3.13 3 3 2.888 0.64 0.41 2 2 4 3 3.75 0.75
B2_JR_240309 1.71 2 1a 1.728 0.76 0.57 2 1 3 1 2 1 2.00 2 1a 1.837 1.53 2.33 4 0 4 1 4 3
B2_LC_260309 2.20 2.5 3 1 0.92 0.84 2 1 3 1 3 2 2.90 3 3 2.644 0.88 0.77 3 1 4 2.75 3.25 0.5
B2_PA_090609 1.80 2 2 1.847 1.14 1.29 4 0 4 1 2.25 1.25 2.00 2 2 1.932 1.05 1.11 4 0 4 1.75 2.25 0.5
B2_PJ_090609 2.36 2 2 2.256 1.01 1.02 4 0 4 2 3 1 2.64 3 2a 2.588 1.08 1.17 4 0 4 2 3.25 1.25
B3_CC_200309 2.08 2 2 1.935 0.76 0.58 3 1 4 2 2 0 1.54 2 2 1.497 0.97 0.94 3 0 3 1 2 1
B3_DL_230309 1.91 2 2 2 0.54 0.29 2 1 3 2 2 0 1.64 2 3 1.863 1.29 1.65 3 0 3 0 3 3
B3_EJ_250509 1.85 2 2 1.994 0.99 0.97 3 0 3 1.5 2.5 1 2.69 3 3 2.613 0.95 0.90 3 1 4 2 3 1
B3_JK_210809 2.57 2.5 2 2 0.85 0.73 3 1 4 2 3 1 2.93 3 2a 2.695 0.83 0.69 2 2 4 2 4 2
B3_JR_240309 1.10 1 1 1 0.74 0.54 2 0 2 0.75 2 1.25 2.90 3 3 2.662 0.74 0.54 2 2 4 2 3.25 1.25
B3_LC_260309 1.36 1 1 1.431 0.74 0.55 3 0 3 1 2 1 3.00 3 3 3.1 1.04 1.08 4 0 4 3 4 1
B3_PA_090609 1.73 2 2 2 0.47 0.22 1 1 2 1 2 1 1.36 2 2 1.574 1.03 1.05 3 0 3 0 2 2
B3_PJ_090609 1.65 2 1 2 0.70 0.49 2 1 3 1 2 1 1.29 1 1 1.227 0.92 0.85 3 0 3 1 2 1
B4_CC_200309 3.56 4 4 3.534 0.53 0.28 1 3 4 3 4 1 3.44 4 4 3.353 0.73 0.53 2 2 4 3 4 1
B4_DL_230309 1.57 2 2 2 0.53 0.29 1 1 2 1 2 1 2.14 2 3 2.103 0.90 0.81 2 1 3 1 3 2
B4_EJ_250509 2.09 2 2 2.031 0.70 0.49 2 1 3 2 3 1 1.82 2 3 1.805 1.33 1.76 3 0 3 0 3 3
B4_JK_210809 1.67 2 2 1 0.62 0.38 2 1 3 1 2 1 1.60 2 1a 1.507 1.12 1.26 3 0 3 1 3 2
B4_JR_240309 1.71 2 2 2 1.07 1.14 4 0 4 1 2 1 2.57 3 3 2.33 0.94 0.88 3 1 4 2 3 1
B4_LC_260309 2.20 2 2 2 0.92 0.84 3 0 3 2 3 1 2.50 2.5 2a 2.356 0.85 0.72 3 1 4 2 3 1
B4_PA_090609 3.17 3 3a 3 0.79 0.62 2 2 4 2.75 4 1.25 3.11 3 3a 3 0.90 0.81 3 1 4 2.75 4 1.25
B4_PJ_090609 2.00 2 2 1.944 1.00 1.00 3 0 3 2 3 1 1.29 1 1a 1.461 0.76 0.57 2 0 2 1 2 1
B5_CC_200309 2.70 2.5 2 2.507 0.82 0.68 2 2 4 2 3.25 1.25 2.80 3 2a 2.661 0.79 0.62 2 2 4 2 3.25 1.25
B5_DL_230309 1.56 1 1 1.497 0.73 0.53 2 1 3 1 2 1 1.89 2 2a 1.739 1.05 1.11 3 0 3 1 3 2
B5_EJ_250509 1.50 2 2 1 0.71 0.50 2 0 2 1 2 1 1.60 1.5 1 1.734 0.70 0.49 2 1 3 1 2 1

Evaluation Activation

M = Mean; Mdn = Median; Mo = Mode; SD = Standard Deviation; R = Range; 25th = First quartile; 75th = Third quartile; IQR = Interquartile Range.
a. Multiple modes exist. The smallest value is shown
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Summary of obtained values for all clips

Asset M Mdn Mode GT SD VAR Range Min Max 25th 50th IQR M Mdn Mode GT SD VAR Range Min Max 25th 75th IQR
B5_JK_210809 2.08 2 2 2.069 0.86 0.74 3 1 4 1.5 2.5 1 2.46 3 3 2.397 1.05 1.10 4 0 4 2 3 1
B5_JR_240309 2.31 2 1a 2.248 1.11 1.23 3 1 4 1 3 2 2.85 3 3 2.853 0.99 0.97 3 1 4 2.5 3.5 1
B5_LC_260309 2.40 3 3 3 0.97 0.93 3 0 3 2 3 1 2.50 3 3 2.382 0.71 0.50 2 1 3 2 3 1
B5_PA_090609 3.50 4 4 3.548 0.93 0.86 2 2 4 2.5 4 1.5 3.75 4 4 3.799 0.46 0.21 1 3 4 3.25 4 0.75
B5_PJ_090609 1.70 2 2 1.63 1.25 1.57 4 0 4 0.75 2.25 1.5 3.30 3 3 3.153 0.67 0.46 2 2 4 3 4 1
B6_CC_200309 2.64 2 2 4 1.03 1.05 3 1 4 2 4 2 1.82 2 1a 1.82 1.40 1.96 4 0 4 1 3 2
B6_DL_230309 2.00 2 2 2 1.04 1.09 4 0 4 1.25 2.75 1.5 2.17 2 2a 2.076 1.11 1.24 4 0 4 1.25 3 1.75
B6_EJ_250509 1.86 2 2 2 0.53 0.29 2 1 3 1.75 2 0.25 1.00 1 1 1.032 0.88 0.77 3 0 3 0 1.25 1.25
B6_JK_210809 2.50 2 2 2.353 0.84 0.70 2 2 4 2 3.25 1.25 2.50 3 3 2.546 1.38 1.90 4 0 4 1.5 3.25 1.75
B6_JR_240309 1.58 1.5 1a 1 1.16 1.36 4 0 4 1 2 1 1.83 2 2 1.642 0.94 0.88 3 0 3 1 2.75 1.75
B6_LC_260309 1.38 1.5 2 1.485 0.74 0.55 2 0 2 1 2 1 1.13 1 0 1.361 1.13 1.27 3 0 3 0 2 2
B6_PA_090609 2.40 2 2 2 0.84 0.71 3 1 4 2 3 1 1.30 1 1 1.438 0.82 0.68 3 0 3 1 2 1
B6_PJ_090609 1.92 2 2 2 0.28 0.08 1 1 2 2 2 0 1.62 2 1a 1.802 0.87 0.76 3 0 3 1 2 1
B7_CC_200309 1.78 2 2 2 0.67 0.44 2 1 3 1 2 1 1.89 1 1 1.521 1.17 1.36 3 1 4 1 3 2
B7_DL_230309 2.25 3 3 3 1.06 1.11 3 0 3 1.25 3 1.75 1.42 1 1 1 0.90 0.81 3 0 3 1 2 1
B7_EJ_250509 1.38 1.5 2 1.493 1.06 1.13 3 0 3 0.25 2 1.75 0.50 0 0 0.142 1.07 1.14 3 0 3 0 0.75 0.75
B7_JK_210809 2.50 2.5 2a 2.255 1.08 1.17 3 1 4 1.75 3.25 1.5 3.20 3 3 3.087 0.63 0.40 2 2 4 3 4 1
B7_JR_240309 1.50 1.5 1a 1.479 0.52 0.27 1 1 2 1 2 1 1.83 2 2 1.758 0.94 0.88 3 0 3 1 2.75 1.75
B7_LC_260309 1.69 1 1 1.591 1.18 1.40 4 0 4 1 3 2 1.69 1 1a 1.3 1.38 1.90 4 0 4 0.5 3 2.5
B7_PA_090609 1.33 2 2 1.641 1.00 1.00 2 0 2 0 2 2 2.22 2 2 2.156 1.09 1.19 4 0 4 2 3 1
B7_PJ_090609 2.10 2 2 2.026 0.57 0.32 2 1 3 2 2.25 0.25 2.40 3 3 2.477 0.97 0.93 3 0 3 2 3 1
B8_CC_200309 1.64 2 2 1.51 0.50 0.25 1 1 2 1 2 1 1.64 2 2 1.722 0.93 0.86 3 0 3 1 2 1
B8_DL_230309 2.50 2.5 2a 2.357 0.93 0.86 3 1 4 2 3 1 3.25 3 3 3.023 0.71 0.50 2 2 4 3 4 1
B8_EJ_250509 2.38 2 2 2 0.87 0.76 3 1 4 2 3 1 2.69 3 3 2.596 1.11 1.23 4 0 4 2 3.5 1.5
B8_JK_210809 1.57 2 2 2 0.53 0.29 1 1 2 1 2 1 1.86 2 2 1.947 0.69 0.48 2 1 3 1 2 1
B8_JR_240309 2.00 2 2 2 0.50 0.25 2 1 3 2 2 0 2.11 2 2 2.066 0.78 0.61 2 1 3 1.5 3 1.5
B8_LC_260309 3.00 3 4 3 1.18 1.40 3 1 4 2 4 2 2.91 3 3 3.19 1.30 1.69 4 0 4 3 4 1
B8_PA_090609 2.27 2 2 2.247 0.47 0.22 1 2 3 2 3 1 2.64 3 3 2.577 0.50 0.25 1 2 3 2 3 1
B8_PJ_090609 2.33 2 2 2 0.71 0.50 2 2 4 2 2.5 0.5 2.78 3 3 2.602 0.97 0.94 3 1 4 2 3.5 1.5
B9_CC_200309 1.63 2 2 1.624 0.52 0.27 1 1 2 1 2 1 2.50 2.5 2a 2.442 0.53 0.29 1 2 3 2 3 1
B9_DL_230309 2.36 2 2 2 0.81 0.65 3 1 4 2 3 1 3.18 3 3 3.033 0.60 0.36 2 2 4 3 4 1
B9_EJ_250509 1.86 2 2 2 0.38 0.14 1 1 2 2 2 0 0.71 0 0 0.664 0.95 0.90 2 0 2 0 2 2
B9_JK_210809 2.88 3 3 2.515 0.99 0.98 3 1 4 2.25 3.75 1.5 3.00 3 3 2.765 0.76 0.57 2 2 4 2.25 3.75 1.5
B9_JR_240309 1.13 1 1 0.836 0.99 0.98 3 0 3 0.25 1.75 1.5 1.63 1.5 0a 1.572 1.41 1.98 4 0 4 0.25 2.75 2.5
B9_LC_260309 3.00 4 4 3.149 1.32 1.75 3 1 4 1.5 4 2.5 3.00 3 4 3.096 1.22 1.50 3 1 4 2 4 2
B9_PA_090609 2.19 2 2 2 0.54 0.30 2 1 3 2 2.75 0.75 1.50 1 1 1.423 0.82 0.67 3 0 3 1 2 1
B9_PJ_090609 1.58 2 2 1.612 0.79 0.63 3 0 3 1 2 1 1.08 1 1 1.169 0.67 0.45 2 0 2 1 1.75 0.75

Evaluation Activation

a. Multiple modes exist. The smallest value is shown
M = Mean; Mdn = Median; Mo = Mode; SD = Standard Deviation; R = Range; 25th = First quartile; 75th = Third quartile; IQR = Interquartile Range.
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APPENDIX E. DISTRIBUTION OF RATINGS: NATIVENESS
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Figure E.1: Distribution of ratings on Activation scale.
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Figure E.2: Distribution of ratings on Evaluation scale.
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APPENDIX F. SUMMARY OF STANDARD DEVIATIONS
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Figure F.1: Distribution of clips with respect to the SD value and the mode value obtained—the
Activation (left) and Evaluation (right).

MEDIAN VALUE

Activation Evaluation

SD range Passive Slightly Passive Average Slightly Active Active Negative Slightly Negative Neutral Slightly Positive Positive

0 to 0.5 1 0 1 1 14 0 0 9 0 1
0.5 to 1.00 2 13 30 36 6 0 17 64 9 2
1.00 to 1.5 2 6 27 15 3 1 12 24 11 3
1.5 to 2.00 0 0 1 2 0 1 0 4 0 2

Table F.1: Table shows the number of speech clips in each class—determined by the clips
median values—with their respective standard deviation range.

MODE VALUE

Activation Evaluation

SD range Passive Slightly Passive Average Slightly Active Active Negative Slightly Negative Neutral Slightly Positive Positive

0 to 0.5 1 0 1 1 14 0 0 9 0 1
0.5 to 1.00 3 16 28 34 6 2 19 59 10 2
1.00 to 1.5 6 7 14 21 5 5 14 16 10 6
1.5 to 2.00 0 1 0 1 1 3 1 0 0 3

Table F.2: Table shows the number of speech clips in each class—determined by the clips mode
values—with their respective standard deviation range.
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APPENDIX G. STIMULI SELECTION

Asset Ratings Margin of error Eval_MarginofError Act_MarginofError Eval_GT
A1_DL_230309 15 0 0.989 0 1.968643
A8_JR_240309 9 0 1.427 0 1.156083
A3_JR_240309 7 0 1.748 0 2.945285
B6_PJ_090609 13 0.167600927 0.168 0.526 2
A6_DL_230309 14 0.209669061 0.785 0.21 3
A9_JR_240309 10 0.226215883 1.218 0.226 1.314719
A10_DL_230309 14 0.253199106 0.253 0.16 4
A9_DL_230309 15 0.253486854 0.774 0.253 3
A7_JR_240309 9 0.256222425 0.941 0.256 0.736376
A4_JR_240309 9 0.256222425 1.427 0.256 2.405666
A4_LC_260309 12 0.257019746 0.795 0.257 4
A10_PJ_090609 11 0.271760233 0.272 0.558 2.09768
A9_PJ_090609 11 0.271760233 0.628 0.272 1
A5_DL_230309 11 0.28325959 0.792 0.283 2.706804
B8_CC_200309 14 0.287100715 0.287 0.536 1.509502
B9_PA_090609 16 0.289827048 0.29 0.435 2
B7_JR_240309 14 0.301528356 0.302 0.541 1.479351
B6_EJ_250509 14 0.308623814 0.309 0.506 2
B1_JK_210809 12 0.312834431 0.633 0.313 2.719276
A3_DL_230309 12 0.312834431 1.117 0.313 1.697227
B3_PA_090609 11 0.313801377 0.314 0.69 2
B8_PA_090609 11 0.313801377 0.314 0.339 2.246938
A2_JR_240309 12 0.327170278 0.943 0.327 2
B4_JK_210809 16 0.328889591 0.329 0.597 1
B8_JR_240309 11 0.335904569 0.336 0.525 2
A5_PJ_090609 15 0.338498966 0.338 0.54 1.867226
A10_CC_200309 9 0.338951092 0.512 0.339 2
A10_JR_240309 10 0.345550291 0.92 0.346 0.762439
B10_EJ_250509 11 0.346920895 0.347 0.708 2
B9_EJ_250509 7 0.349558398 0.35 0.88 2
B1_LC_260309 14 0.352925242 0.353 0.619 2
B5_PA_090609 9 0.355824124 0.712 0.356 3.547943
B3_PJ_090609 17 0.360877507 0.361 0.473 2
B3_DL_230309 11 0.362346977 0.362 0.864 2
A7_CC_200309 14 0.375555184 0.376 0.486 1.626442
A2_DL_230309 14 0.375555184 0.751 0.376 2.7628

SELECTED BASED ON CONFIDENCE INTERVAL (CI)

Figure G.1: Top 32 clips based on lowest Margin of Error.
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APPENDIX H. PRELIMINARY SURVEY FOR FILTER CONDITION

Preliminary	  Survey	  –	  Participant	  feedback	  
	  

Please	  listen	  to	  the	  speech	  clips	  as	  instructed	  by	  the	  researcher.	  These	  
speech	  clips	  have	  been	  altered	  to	  make	  them	  either	  fully	  or	  partially	  
incomprehensible.	  The	  task	  itself	  does	  not	  test	  your	  performance;	  instead,	  it	  
investigates	  speech	  comprehension	  under	  certain	  conditions.	  	  

You	  will	  be	  asked	  to	  listen	  to	  18	  speech	  clips,	  if	  there	  are	  any	  parts	  in	  the	  
speech	  that	  you	  can	  or	  can	  not	  comprehend,	  please	  indicate	  accordingly.	  The	  
researcher	  will	  inform	  you	  when	  a	  new	  speech	  clip	  will	  be	  played	  to	  you.	  

For	  each	  speech	  clip,	  please	  answer	  the	  following	  question:	  	  

Can	  you	  understand	  any	  words	  played	  back	  to	  you?	  

	  

Speech	  clip1:	  	  	  	   No	  	  	  ¨	  	   	   	   	   Yes	  	  	  ¨	  

If	  yes,	  please	  transcribe:	  

	  

Speech	  clip2:	  	  	  	   No	  	  	  ¨	  	   	   	   	   Yes	  	  	  ¨	  

If	  yes,	  please	  transcribe:	  
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Survey 1: Testing for filter condition

1 2 3 4 5 6 7 8 9 10

F_A10_CC_200309 N N N N N11 N N N N N Octave above F0 min

F_A10_DL_230309 N N N N N N N N N Y18 Octave above F0 median

F_A10_PJ_0906099 N N N N N12 N N20 N27 N36 N Octave above F0 max

F_B10_EJ_250509 N N N5 N N N N N28 N37 Y19

F_B1_JK_210809 N N N N N N N N N Y20 N = No comprehension

F_B1_LC_260309 N N N N N N16 N N29 N38 N

F_A1_DL_230309 N1 N N6 Y5 N N N N N N

F_A3_JR_240309 N N2 N7 N8 Y9 Y13 N21 N30 N39 Y21

F_A2_JR_240309 N N N N N N N N N N

F_A4_LC_260309 N N N Y6 Y10 Y14 N22 N31 Y17 Y22

F_A8_JR_240309 N N Y3 N N N17 N23 N N40 N

F_A10_JR_240309 Y1 N N Y7 Y11 Y15 Y16 N N  N

F_A2_DL_230309 N N3 N N9 N13 N18 N24 N N41 N46

F_A3_DL_230309 Y2 N Y4 Y8 Y12 N19 N25 N32 N42 N47

F_A4_JR_240309 N N4 N N N14 N N26 N33 N43 N48

F_B3_DL_230309 N N N N10 N15 N N N N44 N

F_B3_PA_090609 N N N N N N N N34 N N

F_B3_PJ_090609 N N N N N N N N35 N45 N

Fi
le

 ID

Note: number beside indicates that user 
gave feedback (see next page)

Y = Some comprehension
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Survey 1: Testing for filter condition 

N1 - Could make out Dublin accent N28 - female Y7 - "No you didn't"
N2 - Laughter N29 - laugh female Y8 - "This is..."
N3 - Crying N30 - female voice Y9 - "Oh god" (or something)
N4 - Laughter N31 - female voice Y10 - " You didn't see any of it"
N5 - Gender: F N32 - female Y11 - "No you didn't"
N6 - Can hear inflection N33 - sounds like another language Y12 - ".... Another one"
N7 - Sounded like children N34 - male voice Y13 - "...Oh no!"
N8 - Laughing N35 - Male Y14 - "That's nice"
N9 - Laughing at end N36 - music Y15 - "No you didn't"
N10 - Change in tone N37 - beats Y16 - "No you didn't"
N11 - doesn't sound like speech N38 - sounds like singing Y17 - "I live in Ranelagh"
N12 - doesn't sound like speech N39 - shocked Y18 -"mm mm"
N13 - laughing or coughing N40 - Anxious Y19 - "mm mm"
N14 - laughing N41 - laugh Y20 - "mm mm"
N15 - doesn't sound like speech N42 - male Y21 - "Oh god" comment: sounds upset

N16 - sounds like singing N43 - laughing, happy, girl Y22 - "tremendous" - not sure
N17 - definitely excited N44 - male
N18 - laughing N45 - male
N19 - Panic N46 - sounds like laughter
N20 - doesn't sound like speech N47 - sounds upset
N21 - Crying N48 - sounds like laughter
N22 - excitement Y1 - "No you didn't"
N23 - panic Y2 - "another one"
N24 - coughing Y3 - "...often towel"
N25 - but sounds familiar Y4 - "another one"
N26 - Laughing Y5 - ".. Really?"  
N27 - female Y6 - "...it is horrendous"

Notes on free-response feedback
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Survey 2: Comprehension test

1 2 3 4 5 6 7 8 9 10 Result

1 N Y N Y N N Y N N Y incomprehensible

2 N N N N N N N N N N incomprehensible

3 N N N Y N N N N Y N incomprehensible

4 N Y N Y N N N N N N comprehensible

5 N N N N Y N N N N Y incomprehensible

6 N N N N N N N N Y N incomprehensible

7 N N N Y N N Y N N Y incomprehensible

8 N N N N N N N N N N incomprehensible

9 N N N N N N N N N N incomprehensible

10 N N N N N N N N N N incomprehensible

11 N N N N N N Y N N N incomprehensible

12 N N N N N N N N Y N incomprehensible

13 N N N Y N N N N N N comprehensible

14 N N N N N Y N N Y N incomprehensible

15 N N N Y N N N N N N incomprehensible

16 N N N N N N N N N N incomprehensible

17 N N N Y N N N N N N incomprehensible

18 N N N Y N N N N N N incomprehensible

19 Y Y N Y N N Y N Y Y comprehensible

20 N N N N N N N N N N incomprehensible

21 N N N N N N Y N N N incomprehensible

2 N Y N N N N N N N N incomprehensible

23 N N N N N N N N N N incomprehensible

24 N Y N N N N N N N N incomprehensible

25 N N N N N N N N N N incomprehensible

26 N N N N N N N N N N incomprehensible

27 N N N N N N N N N N incomprehensible

28 N N N N N N N N N N incomprehensible

29 N N N N N N N N N N incomprehensible

30 N Y N Y N N N N N N incomprehensible

31 N N N N N N Y N N N incomprehensible

32 N N N Y N N Y N N N incomprehensible

33 N N N Y N N Y N N Y incomprehensible

34 N N N N N N N N N N incomprehensible

35 N N N N Y N Y N N N incomprehensible

36 N N Y N N N N N N N incomprehensible

PARTICIPANT

Fi
le

 ID

APPENDIX H. PRELIMINARY SURVEY FOR FILTER CONDITION
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Survey 2: Comprehension test
Notes on results

1 incomprehensible participant heard 1 out of 9 words - "you" 

2 incomprehensible

3 incomprehensible (note: word guessed wrong &one participant almost guessed "life")

4 2 participants judged 3 out of 6 words correct >> comprehensible

5 incomprehensible (note: word guessed wrong)

6 incomprehensible

7 incomprehensible (note: word guessed wrong)

8 incomprehensible

9 incomprehensible

10 incomprehensible

11 incomprehensible

12 incomprehensible

13 1 participant heard 4 out of 13 words >> context of evaluation may be comprehensible

14 incomprehensible (note: 1 participant guessed 1 word wrong)

15 incomprehensible (note: 1 participant had a close guess)

16 incomprehensible

17 incomprehensible (note: 1 participant guessed 1 word wrong)

18 incomprehensible

19 3 participants judged correct >> evaluation context comprehensible

20 incomprehensible

21 incomprehensible

2 incomprehensible (note: 1 participant guessed 1 word wrong)

23 incomprehensible

24 incomprehensible (note: 1 participant guessed all words wrong)

25 incomprehensible

26 incomprehensible

27 incomprehensible

28 incomprehensible

29 incomprehensible

30 incomprehensible (2 participant guessed all words wrong but the same)

31 incomprehensible

32 incomprehensible (note: 1 participant guessed 1 word wrong)

33 incomprehensible (note: 2 participant guessed all words wrong)

34 incomprehensible 

35 incomprehensible (note: 1 participant guessed all words wrong)

36 incomprehensible (note: 1 participant guessed all words wrong)

Fi
le

 ID

APPENDIX H. PRELIMINARY SURVEY FOR FILTER CONDITION
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FILE F0 min F0 mean F0 max F0 SD key range floor ceiling  oct_key oct_min oct_mean oct_max
A10_CC_200309 160 179 234 9.9 176 73 130 350 353 321 357 467
A10_DL_230309 143 197 250 27 206 107 130 420 413 286 394 501
A10_PJ_090609 80 103 137 8.4 102 57 80 210 205 161 205 274
A1_DL_230309 120 224 443 79.8 196 323 120 460 392 240 448 885
A2_DL_230309 123 187 331 46.4 174 208 120 340 348 247 374 663
A2_JR_240309 255 357 491 63.4 349 236 230 740 698 510 713 983
A3_JR_240309 313 559 853 127.4 581 540 260 810 1162 625 1118 1706
A4_JR_240309 331 514 669 95.9 497 338 260 890 994 661 1028 1338
A4_LC_260309 180 335 486 84.5 329 306 180 720 657 360 670 971
A5_DL_230309 85 129 177 22.7 124 92 80 270 249 170 258 354
A5_PJ_090609 94 109 133 7.2 108 39 80 210 215 189 218 266
A6_DL_230309 136 173 219 15.6 171 83 130 340 342 272 346 438
A7_CC_200309 157 203 308 33.2 192 151 140 390 384 315 406 616
A7_JR_240309 221 382 529 102 358 309 220 920 716 441 764 1058
A9_DL_230309 115 155 220 22.8 151 105 110 330 302 230 311 440
A9_JR_240309 258 372 541 81.1 350 283 230 810 700 515 744 1082
A9_PJ_090609 73 130 161 23.6 137 88 70 290 275 147 260 323
B10_EJ_250509 143 192 349 27 186 206 140 420 372 287 385 698
B1_JK_210809 111 187 381 79 152 270 90 390 304 222 374 762
B1_LC_260309 164 205 347 23.8 205 184 150 410 409 327 410 695
B3_DL_230309 94 115 133 10.8 116 38 80 240 231 188 231 265
B3_PA_090609 144 166 212 13 163 68 120 330 326 288 332 424
B3_PJ_090609 89 101 126 9.3 98 37 70 210 197 178 203 252
B4_JK_210809 100 127 245 25.1 121 145 90 250 242 200 254 490
B5_PA_090609 165 273 671 102.8 243 506 150 650 486 331 547 1342
B6_EJ_250509 93 100 116 4.6 98 22 80 200 197 187 200 232
B6_PJ_090609 104 124 140 7.4 123 35 90 250 247 209 248 279
B7_JR_240309 175 213 283 18.2 209 108 160 420 418 349 425 565
B8_CC_200309 156 213 297 28.9 213 141 150 450 426 311 426 593
B8_JR_240309 144 196 279 15.3 198 135 140 390 396 287 392 558
B8_PA_090609 139 225 311 42.3 223 172 140 450 445 278 451 622
B9_EJ_250509 116 125 204 15.1 120 88 90 240 240 232 249 408
B9_PA_090609 145 170 229 11.8 168 84 130 330 336 290 341 457

AVERAGE 149.3 213.3 318.3 38.9 207.2 169.0 134.5 428.2 414.5 298.6 426.7 636.6
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# script Low-pass filter files 
# Author: John Snel 
# email: john.snel@mydit.ie 
# purpose: To low-pass filter all files in a given folder and output the resultant files to 
a given folder. 
#  Writes a report on the following values: f0min, f0mean, f0max, f0sd, range, 
floor ceiling, octave_condition 
# Notes: Filters 4 conditions: octave above min, mean, max, key 
 
clearinfo 
form calculate_register 
 #indicate where your sound files and TextGrid are 
 sentence input_folder /Users/johnsnel/Desktop/College/*Filter_CI/A/ 
 #indicate where you want your output to be saved for filter min_octave 
 sentence output_folder_min 
/Users/johnsnel/Desktop/College/*Filter_CI/A/Filter_min 
 #indicate where you want your output to be saved for filter mean_octave 
 sentence output_folder_mean 
/Users/johnsnel/Desktop/College/*Filter_CI/A/Filter_mean 
 #indicate where you want your output to be saved for filter max_octave 
 sentence output_folder_max 
/Users/johnsnel/Desktop/College/*Filter_CI/A/Filter_max 
 #indicate where you want your output to be saved for filter key_octave 
 sentence output_folder_key 
/Users/johnsnel/Desktop/College/*Filter_CI/A/Filter_key 
  
 #filter settings 
 comment Filter above this frequency 
 positive Smoothing 20 
 comment Scale intensity to 
 positive intensity 60.0 
  
endform 
 
# Make a listing of all the sound files in a directory. 
myList = Create Strings as file list... list 'input_folder$'/*.mp3 
ns = Get number of strings 
 
# Create directories 
createDirectory (output_folder_min$) 
createDirectory (output_folder_mean$) 
createDirectory (output_folder_max$) 
createDirectory (output_folder_key$) 
 
# Output headers to file:    
# Note floor and ceiling = min_f0 and max_f0 
line$="FILE'tab$''tab$'f0min'tab$'f0mean'tab$'f0max'tab$'f0sd'tab$'key'tab$'range'tab
$'floor'tab$'ceiling  octave_min'newline$'" 
line$>'output_folder_min$'/infoA_min.txt 
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line$="FILE'tab$''tab$'f0min'tab$'f0mean'tab$'f0max'tab$'f0sd'tab$'key'tab$'range'tab
$'floor'tab$'ceiling  octave_mean'newline$'" 
line$>'output_folder_mean$'/infoA_mean.txt 
line$="FILE'tab$''tab$'f0min'tab$'f0mean'tab$'f0max'tab$'f0sd'tab$'key'tab$'range'tab
$'floor'tab$'ceiling  octave_max'newline$'" 
line$>'output_folder_max$'/infoA_max.txt 
line$="FILE'tab$''tab$'f0min'tab$'f0mean'tab$'f0max'tab$'f0sd'tab$'key'tab$'range'tab
$'floor'tab$'ceiling  octave_key'newline$'" 
line$>'output_folder_key$'/infoA_key.txt 
 
 
for i from 1 to ns 
 select Strings list 
 name$ = Get string... 'i' 
 Read from file... 'input_folder$'/'name$' 
 mySound=selected("Sound") 
 mySound$=selected$("Sound") 
  
 pitch_step = 0.01 
 To Pitch... 'pitch_step' 60 600 
 myPitch=selected("Pitch") 
 myPitch$=selected$("Pitch") 
 minimum_f0= Get minimum... 0 0 Hertz Parabolic 
 maximum_f0= Get maximum... 0 0 Hertz Parabolic 
 q65 = Get quantile... 0.0 0.0 0.65 Hertz 
 q15 = Get quantile... 0.0 0.0 0.15 Hertz 
  
 max_f0 = 10*ceiling((1.92*q65)/10) 
 min_f0 = 10*floor((0.83*q15)/10) 
  
 select mySound 
 # To pitch better for voice research 
 ;To Pitch... 'pitch_step' 'min_f0' 'max_f0' 
 # for intonation research: 
 To Pitch (ac)... 0 'min_f0' 15 no 0.03 0.45 0.01 0.35 0.14 'max_f0' 
 myPitch2=selected("Pitch") 
 myPitch2$=selected$("Pitch") 
 
 min= Get minimum... 0 0 Hertz Parabolic 
 max= Get maximum... 0 0 Hertz Parabolic 
 mean=Get mean... 0 0 Hertz 
 key = Get quantile... 0 0 0.5 Hertz 
 span = log2(max/min) 
 range = max-min 
 sd= Get standard deviation... 0 0 hertz 
 
 # Get octave values 
 octave_min = min*2 
 octave_mean = mean*2 
 octave_max = max*2 
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 octave_key = key*2 
 
 # Filter min  
  # Select sound object 
  select Sound 'mySound$' 
 
  # Filter 
  Filter (pass Hann band)... 0 octave_min smoothing 
 
  # scaled files because it was clipping   ------------ 
  Scale peak... 0.8 
 
  # Save resulting files 
  Write to WAV file... 'output_folder_min$'/F_'name$' 
  select Strings list 
 
  # Print to txt file 
 
 line$="'mySound$''tab$''min:0''tab$''mean:0''tab$''max:0''tab$''sd:1''tab$''key:0'
'tab$''range:0''tab$''min_f0:0''tab$''max_f0:0''tab$' 'octave_min:0''newline$'" 
  line$>>'output_folder_min$'/infoA_min.txt 
 
 
 # Filter mean 
  # Select sound object 
  select Sound 'mySound$' 
 
  # Filter 
  Filter (pass Hann band)... 0 octave_mean smoothing 
 
  # scaled files because it was clipping   ------------ 
  Scale peak... 0.8 
 
  # Save resulting files 
  Write to WAV file... 'output_folder_mean$'/F_'name$' 
  select Strings list 
 
  # Print to txt file 
 
 line$="'mySound$''tab$''min:0''tab$''mean:0''tab$''max:0''tab$''sd:1''tab$''key:0'
'tab$''range:0''tab$''min_f0:0''tab$''max_f0:0''tab$' 'octave_mean:0''newline$'" 
  line$>>'output_folder_mean$'/infoA_mean.txt 
 
 # Filter max 
  # Select sound object 
  select Sound 'mySound$' 
 
  # Filter 
  Filter (pass Hann band)... 0 octave_max smoothing 
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  # scaled files because it was clipping   ------------ 
  Scale peak... 0.8 
 
  # Save resulting files 
  Write to WAV file... 'output_folder_max$'/F_'name$' 
  select Strings list 
 
  # Print to txt file 
 
 line$="'mySound$''tab$''min:0''tab$''mean:0''tab$''max:0''tab$''sd:1''tab$''key:0'
'tab$''range:0''tab$''min_f0:0''tab$''max_f0:0''tab$' 'octave_max:0''newline$'" 
  line$>>'output_folder_max$'/infoA_max.txt 
 
 # Filter key 
  # Select sound object 
  select Sound 'mySound$' 
 
  # Filter 
  Filter (pass Hann band)... 0 octave_key smoothing 
 
  # scaled files because it was clipping   ------------ 
  Scale peak... 0.8 
 
  # Save resulting files 
  Write to WAV file... 'output_folder_key$'/F_'name$' 
  select Strings list 
 
  # Print to txt file 
 
 line$="'mySound$''tab$''min:0''tab$''mean:0''tab$''max:0''tab$''sd:1''tab$''key:0'
'tab$''range:0''tab$''min_f0:0''tab$''max_f0:0''tab$' 'octave_key:0''newline$'" 
  line$>>'output_folder_key$'/infoA_key.txt 
 
endfor 
select all 
minus Strings list 
 Remove 
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APPENDIX K. PARTICIPANT CONSENT FORMS

 
 
 

Participant Number: _____ 

Emotion Inference Listening Tests 
Research Participant Release Form 

You have been asked to be a participant in John Snel’s ongoing speech research 
within the EmoVerE team, which is part of the Digital Media Centre in the Dublin 
Institute of Technology (DIT), Aungier Street. The entire experiment consists of 
two speech stimuli listening sessions. Each listening session will be performed 
on two occasions two weeks apart, the duration of each session being 30-45 
minutes. To complete the experiment, it is necessary that you, the participant, will 
be able to commit to the tasks on both occasions. A dedicated time for each 
session will be discussed between you and the researcher and chosen most 
suitable for you. All data that you will be asked to provide will be kept 
anonymous. Your data will contribute to the overall findings of the EmoVerE 
project, and will be used in future academic publications. Your email address is 
used to provide login details for each session and monitor your ratings. The email 
address provided by you will be kept confidential within a password-protected 
database; it will not be used for any purposes other than to create an 
identification reference. The data provided by you will be de-identified on the 
second session of the experiment.  
 
The EmoVerE research team will endeavour to do the following: 
 

• To protect the welfare and dignity of the participant. 

• To respect the individual's freedom to decline participation. 

• To maintain confidentiality of research data. 

• To be responsible for maintaining ethical standards. 

• To take every precaution and make every effort to minimize potential risk to  

participants. 

• To only use the data supplied by the participant with their full consent.  

 
 
“I hereby give my consent to the John Snel and the EmoVerE research team in DIT to 
use the data gathered from my participation in this experiment for purposes of their 
ongoing research and future publications only:” 
 
Name (block capitals): __________________________________________________________ 
 
Signature: ____________________________________________________________ 
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Date: ______ / ______ / ______ 
 
 
 
 
 
 
 
 
 
 

 
 
 

Research Participant Additional Information Form 
Please provide the following mandatory information: 
 
Do you have any hearing impairments:       Yes ¨   No ¨ 
 
 
Is English First language:                   Yes ¨   No ¨ 
 
Please list any other languages that you are fluent or proficient in: 
_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

 
 
The following information is optional, which may also be of relevance to the 
research being undertaken. Please feel free to include or exclude any additional 
information. 
 
Age:         No response: ¨ 
 
Gender:  Male ¨        Female ¨             No response: ¨ 
 
Handedness:    Left ¨  Right ¨  No response: ¨ 
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L
Participant Demographics: Mixed ANOVA

Analysis

To test whether two groups differed in their performance in listening to non-filtered and fil-

tered speech (within-subjects factor), we conducted a 2 x 2 mixed ANOVA using participant

nativeness, age, gender, and handedness (between-subject factor). In Table L.1, the values un-

der F(1, 1182) indicate the obtained value of the F-statistic, where 1 in (1, 1182) indicates the

interaction term’s degrees of freedom, and 1182 indicates the error term’s degrees of freedom.

The probability of obtaining the observed F-value is given by the p-value, and the effect size is

indicated by η2.

As mentioned in 8.4.1, the obtained ratings indicate violations of the assumption of normality.
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APPENDIX L. PARTICIPANT DEMOGRAPHICS: MIXED ANOVA ANALYSIS

ACTIVATION EVALUATION

F(1, 1182) p-value η2 Violations F(1, 1182) p-value η2 Violations

Nativeness 2.181 0.14 0.001 Normality 2.181 0.14 0.001 Normality
Handedness 1.729 0.189 0.001 Normality 0.391 0.532 0.000 Normality,

homogeneity of variances
Gender 0.543 0.461 0.000 Normality 0.114 0.736 0.000 Normality,

homogeneity of variances
Age 0.7219 0.007 0.004 Normality 0.018 0.894 0.000 Normality

Table L.1: Mixed ANOVA analysis.

We can also see from the table that on the Evaluation scale, ‘handedness’ and ‘gender’ has no

homogeneity of variances, as assessed by Levens Test of Homogeneity of Variance (p >.05).

For all data there are no outliers, as assessed by inspection of a boxplot for values greater than

1.5 box-lengths from the edge of the box.

The table demonstrates that on the Activation scale, there is a statistically significant interaction

between the participants age and the (non-filtered and filtered) conditions, F(1,1182) = .7219,

p = .007, partial η2 = .004—the effects size being very small. Although there are violations of

the assumption of normality (assessed by Shapiro-Wilks test p <.05), there is homogeneity of

variances.
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Scatterplots for Mean and Standard

Deviation
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APPENDIX M. SCATTERPLOTS FOR MEAN AND STANDARD DEVIATION
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Figure M.1: Scatter Plots for Mean values.
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Figure M.2: Scatter Plots for standard deviation values.
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