D 5 B LIN Technological University Dub.lin
- ARROW@TU Dublin

Masters Engineering

2004-10-01

Peer-to-peer Searching and Sharing of Electronic Documents

Paul Stacey
Technological University Dublin, paul.stacey@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/engmas

b Part of the Computer Engineering Commons

Recommended Citation
Stacey, P. (2004). Peer-to-peer searching and sharing of electronic documents. Masters dissertation.
Technological University Dublin. doi:10.21427/D7TK75

This Theses, Masters is brought to you for free and open
access by the Engineering at ARROW@TU Dublin. It has
been accepted for inclusion in Masters by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D u B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engmas
https://arrow.tudublin.ie/engthe
https://arrow.tudublin.ie/engmas?utm_source=arrow.tudublin.ie%2Fengmas%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fengmas%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Peer-to-Peer Searching and Sharing of

Electronic Documents

By

Paul Stacey

Master of Philosophy (Mphil)
In

Computer Engineering

School of Control Systems and Electrical Engineering

Dublin Institute of Technology

Supervised by:
Mr. Damon Berry
Dr. Eugene Coyle
October 2004

I certify that this thesis which I now submit for examination for the award of Master of
Philosophy in Computer Engineering, is entirely my own work and has not been taken
from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

This thesis was prepared according to the regulations for postgraduate study by research
of the Dublin Institute of Technology and has not been submitted in whole or in part for

an award in any other Institute or University.

The Institute has permission to keep, to lend or to copy this thesis in whole or in part, on

condition that any such use of the material of the thesis be duly acknowledged.

S < N
Signature 'cias - ,)t‘»t €
D)

Date [7 " l\%eu' Toets

Acknowledgements

It is with great pleasure that I would like to thank the people who made writing
this thesis possible. I would like to gratefully acknowledge the enthusiastic supervision
of Mr. Damon Berry. Throughout my thesis-writing period and research, Damon
provided much encouragement and sound advice. I would like to thank Dr. Eugene
Coyle for his support and guidance throughout this research. I am also grateful to
everyone in room 36C for providing an enjoyable and relaxed working environment. [
would also like to thank Elaine for all her support and patience throughout the writing

of this thesis. Thanks!

Abstract

Peer-to-peer systems have existed since the first incamation of the Internet. In
recent times the Internet has taken on a more hierarchical form, power has been taken
away from the individual and placed in the hands of operators of large servers.
However, with the re-emergence of p2p the individual is gaining more freedom. End
users attached to the Internet now have the power to host and publish content through
the use of p2p technologies. Peer-to-peer systems present significant design challenges
and have opened up a floodgate of research in an effort to overcome some of the
fundamental problems.

This thesis details a conceptual peer-to-peer design solution to some of the
fundamental problems facing p2p systems today. A prototype is developed as a proof-
of-concept. The prototype demonstrates how by enabling users to join communities of
other like-minded users in order to exchange files, the p2p environment becomes more
structured. It is argued that this structuring of the network into communities leads the
way for a more scalable p2p system. Utilising the routing capabilities of the latest p2p
algorithms, the prototype includes an indexing service that facilitates the creation of
virtual rendezvous points for users with similar interests (manifested by shared
keywords). Users are described by the content they store. By using state of the art
Information Retrieval techniques users can be grouped together to form content
sensitive communities. It is intended that this system be used as the basis of a
distributed archive of research papers. The concept presented seeks to improve the
efficiency of file searches associated with p2p file sharing applications. This can be
achieved by incorporating a novel content conmmunity service layer in order to organise
nodes based on the content they store. This has the potential to improve on existing
systems such as Gnutella where nodes are organised in a somewhat random fashion.
Initial findings suggest that the system has better scalability properties giving the user
better search results that reflect the true content available within the system. Search
results are more comprehensive; as search queries are based on semantic meaning rather

than literal matching.

Table of Contents

1 Introduction

1.1 Peer-to-Peer Networking............cooor i e
1.2 Hybrid Versus Pure P2P..... ...
1.3 Hybrid Peer-to-Peer Systems

1.3.1 Napster... .
1.4 Pure Peer-to- Peel Systems
1.4.1 Gnutella.

1.5 Present Day P2Po
1.6 Motivation for Research. e e
1.7 ThesisS QUG oo s e e e s

2 Distributed Hash Tables

2.1 Hash-Tables.. .
2.1.1 Dlstubutm;:, the Hash Table
2.2 A New Begiming for P2P ..

2.3 Developing a Suitable Routmg Subsnate for P2P

2.3.1 Pastry...

232 Tapesny

233 CAN..
234 C1101d

2.4 Discussion of Dnstubuted Hash Table Implementanons

2.5 Projects Using Distributed Hash Tables..
2.5.1 PAST..

2.6 DHTs Vetsus the "Napstels" of P2P
2.6.1 Limitations of DHTs..

3 Information Retrieval (IR}
3.1 AnIntroduction to IR... ...

3.1.1 Current IR Systems...

3.1.2 IR in P2P Systems... :

3.1.3 State-of-the-art IR Teelunques
3.2 Vector Space Approaches..

3.2.1 Generating Document Replesentatlves.....................................
3.2.2 Vector Space Modelling of Documents.................ooo
3.2.3 Documnent Pre-processing.oooo v iir i
3.3 Classification of DOCWMERtS. ..ot ee i e e e
3.3.1 Centroid Based Classification...................cocoveeionn.

3.4 Clustering of Data.. ..
3.5 Information Retr 1eval and P2P

4 Design Concepts and Solutions

4.1 The Substrate Layer...ooocoo i e
4.1.1 Building on Pasny

4.2 Potential Solutions..
4.2.1 Fuzzy Domams
4.2 2 Algorithms and Avalanches

o0 SOy R

(R

13

13
14
16
20
21
22
22
23
24
24
24
25
26

27

28
29
30
3]
31
32
33
35
36
36
37
39

40
41
42
42
42
44

423 Zip Technology
4.2.4 Vector SpaceModelling...

4.3 The Final Solution..

4.3.1 Building a Decentl allsed mde‘{mg service..

4.3.2 Creating indexing nodes..

4.3.3 Building Content Sensltlve Commumtles

4.3.4 Comparing Nodes Based on Content Stor: ed

4.3.5 Organising Network into Communities.........................ooooo
4.3.6 Two Layer Network.
4.4 Searching for DOCUINENES.o oot e e e e
4.5 System OVEIVIEW oot e e e e e

5 Software Design and Implementation

5.1 The Pastry Application Programming Interface (API)

5.2 System Classes and packages. .. .
5.2.1 The Vector Space Modellmg Package
5.2.2 The Community Package...

5.2.3 The Register Package......................
5.2.4 The Message Package................oi i
525 The Node Package e i

5.3 Imported APT’s.. .
531 JAMA: A Java Matu\ Package

6 Evaluation and Discussion
6.1 Evaluation and Simulation..

6.1.1 Evaluation of Vector Space Modelhng Algouthm...

6.1.2 Simulation of Peer-to-Peer Networks..

6.1.3 Simulating a Peer-to-Peer File- Shalmg Network

6.1.4 Modelling Content Distribution. .

6.1.5 Implementation of the Simulator...
6.1.6 Network Simulators. i
6.1.7 Simulating with J-Sim......... ...
6.1.8 Simulations and Results... ... i
6.2 Discussion and Future Work i

6.2.1 Possible Optimisations. ..
6.2.2 Future Investigation.. .
6.2.3 Possible Extensions of the ka

45
46
46
46
47
48
49
50
51
52
53

58
60
62
63
65
67
69
69
70
70
71

73

74
74
77
77
78
80
80
84
89
93
93
94
95

7 Conclusion
Bibliography
Glossary
Appendix A
Appendix B
Appendix C

Appendix D

97

99

108

116

139

143

156

Chapter 1

“Blocking Napster is like standing before hundreds of ngry jackals and
shoting "Shoo!" to keep them from 00 pownds of raw hamburger.”

(Chronicle, 9.21:00)

Introduction

Comnunity: a body of people having common rights, privileges, or interests [1].
Applying this notion of community to the Internet, it seems that the Internet as a whole
lacks a sense of community. The World Wide Web was originally envisaged in 1986 by
Tim Berners-Lee as a way for academics to share knowledge [2]. The web has become a
victim of its own success in relation to that goal. While there is a huge quantity of
information on the web and it is easy to find text about almost any topic, quality results
are often hidden in a huge set of results. The client-server paradigm inay be partly to
blame for this. In recent times, systems such as Napster [3] and Gnutelia [4] have
pained huge popularity. These systems have initiated a surge of interest and research
into the peer-to-peer (p2p) framework. These systems are restructuring the Internet
away from the client server model to one where a client is also a server, giving
individuals more freedom and control. Users can now choose to be connected to more

specific stores of data.

1.1 Peer-to-Peer Networking

Peer-to-peer networking has recently been made famous by the music industry.
The arrival of Napster in May of 1999 ignited serious debate and legal proceedings all
based around the issue of copyright and the rights of people to share music. But in
reality p2p is the oldest architecture in the world of communications. The Internet was
originally conceived in the late 1960s as a p2p system. This original incarnation of the
Internet (called ARPANET {5]) was built to share computing resources around the U.S.,
within the network each peer was an equal player. In subsequent years the Intemet has
become more restrictive and the client/server paradigm has become the main
architecture of the Internet. This means that control has been taken away from the
individual and placed in the hands of operators of large servers. This, some argue,

leaves these servers and the content they serve open to abuse and censorship. But as has

been observed in recent years, p2p applications are becoming common again, giving the
end user back more power and control.

Until Napster, the sharing of music over the Internet or web did not prove much
of a threat towards the music industry, but the use of p2p technology is proving to be a
major headache for such organisations as the Recording Industry Association of
America (RIAA). The RIAA has sought to prosecute the users and implementers of
Napster and has even succeeded in shutting the original system down. This success for
the RIAA was short lived as a new breed of p2p systems were emerging; due to their
technical design these systems have managed to escape any copyright infringements and
thus have managed to stay operational. As a result it could be said the move to a
completely decentralised approach such as Kazaa {6] may have been more legally than
technically motivated.

The discussion begins by looking at the architectures of Napster and Gnutella.
These two systems are chosen to highlight some findamental technical issues, although
these applications are becoming a somewhat historical starting point for any p2p

discussion.

1.2 Hybrid versus Pure P2P

The most distinctive difference between p2p architectures and client/sever
architectures is “the concept of an entity acting as a Servent” |7]. A servent describes a
node that acts both as a server and client. P2P systems can again then be broken down
into two other categories, that of “pure” p2p and “hybrid” p2p systems. The key
distinction of hybrid peer-to-peer compared to pure peer-to-peer is the fact that a hybrid

p2p network always includes a central entity, which is forbidden by the definition in

pure p2p.

1.3 Hybrid Peer-to-Peer Systems

1.3.1 Napster

@' ode

Search
\ @) Request /-
(1) Regist
\ g arch

o P Results pBownload
Fo< T
-

(3) File (4)
GG

)
ng:ster/ Napster Indexing
e Servers Regltter

. Node . Node

Figure. 1.1. Hybrid Peer-to-Peer system Napster, Peers register their files on a centralised indexing
Server (1). Searches are directed to the indexing server (2), which returns the node

where the file is locared(3) Iiles can then be downloaded from the node hosting the file (4).

To describe Napster as a peer-to-peer network is not necessarily accurate.
Napster’s architecture is designed to rely on a centralised indexing service. It is this
centralised indexing service that puts Napster in the category of a hybrid peer-to-peer
system. There are advantages and disadvantages to this type of system. Other than the
legal ramifications of a centralised indexing service, searching of files becomes much
easier. The reason for this is that all files within the system are registered on this central
server, therefore searches are localised. In hybrid systems it is only the files that are
distributed across the peers that comprise the network. The index containing the
locations of files is centralised (see figure 1.1) nodes registering their files with the
centralised server populate the index. All search requests from nodes are sent to the
central server. When a search on the central server returns a hit for a requested file, the
location of the file is returned to the peer issuing the search request. The searching
application may then connect directly to the peer hosting the file and download directly
from this site [3].

The use of a centralised indexing server makes searching easier but introduces

problems to the system. One big issue with this type of architecture is robustness, if the

6

server fails; the whole system becomes inoperable. The server also introduces
scalability issues to the system. As more users and files enter the system a bigger server

is required {8].

1.4 Pure Peer-to-Peer Systems

Complete decentralisation i.e. no centralised control is what is known as a pure
p2p network. This type of architecture solves many of the problems presented by the
hybrid model. A pure p2p network boasts such aftributes as robustness; if one node
fails, the network still works. This is because the network is made up of many
connections and nodes that carry traffic and serve data. If one node fails, several links
may be Jost. However, in most cases there will exist several paths between two nodes.
Pure p2p algorithms systems are designed to route messages around these link or path
failures and hence provide access to the data still remaining within the network. With
severe node loss networks may fragment, this is where groups of nodes become
detached and communication between these now autonomous p2p networks becomes
temporarily impossible. How p2p systems handle situations like this differ from system
to system but in any case content is still available within the separate fragmented groups
of nodes but at a reduced quality of service. This may seem like a flaw in design but if
we consider the situation that the centralised server in the hybrid model failing the
whole system becomes inoperable.

Pure p2p architectures are also more scalable, the reason for this is that they are
not reliant on the size of the centralised indexing service. Size has two mmportant
meanings here. Physical memory size can be expensive and a limiting factor to the
amount of content the network may serve when using a centralised approach. Size also
describes the limitations of the server to accept connections and answer requests or for
data. In a centralised architecture the central server introduces potential bottleneck to
the system. These limitations are over come by a pure decentralised approach.
However, complete decentralisation introduces some serious chalienges when designing
a p2p system. The main problem introduced involves the ability of a peer to find the
data or file requested, even if the data is live on the network. A scalable searching
mechanism is one of the biggest issues with pure p2p networks. It is useful to examine

more closely an implementation of such a system, Gnutella.

1.4.1 Gnutella

Gnutella first appeared in 2000, released as an experiment by Justin Frankel and
Tom Pepper the developers of Winamp [9]. It was originally offered to AOL [10] who
rejected the idea. The open source community subsequently took on board the project,
lead by Gene Kan. Gnutella allows each node within the network to connect to a small
group of other nodes that in turn connect to other nodes and so on. In order to search for
a particular file, a node issues a search request to the group of nodes that it is connected
to. The other nodes receiving this request search their local hard drives for the requested
file and also forward the request to the nodes that they are connected to. This type of
searching is called flood searching, the search request is also given a time-to-live (TTL)
stamp which determines the number of hops the request will do before ‘dying’ (see
figure 1.2).

* Seach x.Mp3 (TTL = 2)
** Download x.mp3

Node

Node

Figure 1.2. A pure p2p network, Gnutella. Search requests are forwarded to nodes that are directly
connected who in turn_forward the request to other nodes (1). Query hits are sent back to the

requesting node (2). The file may be downloaded directly from the peer hosting the file (3).

The problem presented with this type of searching method is that it has
scalability issues. As the number of nodes within the network becomes larger, the TTL
needed to search every node becomes prohibitively expensive. Search requests eat up
bandwidth trying to access every node.

The trade off here is keeping the TTL low and thus leaving parts of the network
unreachable. As a result search requests do not return a true representation of the files

available within the network. Another interesting point about Gnutella’s search

o

techniques is that Gnutella is built from many different “flavours” of the software.
When a node receives a search request, the software acting as the servent may interpret
the request differently to other incamations of the software. Some incarnations look
inside the files that are being shared while others interpret multiword queries as
conjunctions. Search requests may also return different results. These attributes of
Gnutella mean that Gnutella is truly an open non-restrictive system and is truly real-
time reflecting what is available at the time of the request. This has advantages for
certain situations and disadvantages for others.

Gnutella suffers from some scalability issues. However, it has been shown that
Gnutella’s flood search technique scales well to 10,000 nodes [11]. Even though it 1s
possible to form private Gnutella networks to cut down on the number of nodes that
need to be searched. Private networks have a scaling factor that when exceeded means
results of search requests do not reflect all the files that are available at the time of the
request.

In the past number of years with the popularisation of p2p through Gnutella and
Napster there has been a massive mcrease in the number of p2p applications running
across the Internet. Studies have found that p2p traffic can account for up to 70% of all
internet traffic [12] [13]. The next section takes a brief look at some of the recent
developments that are currently in operation creating this massive amount of traffic. The
discussion will then lead to what kind of systems can be achieved in the near future and

what lessons from current systems can be incorporated into new designs.

1.5 Present day P2P

The application of p2p systems is ever increasing. P2P has been used in such
contexts as distributed computation, for the search for extra-terrestrial intelligence with
SETI@home [14]. Distributed search engines such as InfraSearch {15] and OpenCOLA
{16] and file sharing in a distributed environment through systems such as Gnutella [4],
Kazaa [6], BitTorrent [17], Freenet [18] and Napster [3]. All of these systems have been
deployed to varying degrees of success. SETI@home, which at the time of writing is
investigating its first possible success in its search for evidence of extra terrestrial
intelligence. On the other hand the creators of Napster have spent most of their time at
the forefront of a legal battle to remain operational. Each system has been successtul for

different reasons. Their deployment has highlighted some very fundamental design rules

for p2p algorithms. The attributes that make them successful can be reused in other
systems and the attributes that limit their success can be redesigned. For example
systems such as Morpheus [19] and Kazaa have implemented a kind of hierarchical
network where nodes with sufficient bandwidth become super peers, this design aids
searching for files, and is a rework of the original Gnutella implementation. Most of the
current file sharing systems mentioned above are different incarnations of the same
ideas with slightly different methods of searching and organising nodes. In order to find
more of the innovative and unique ideas that are being developed one has to look to the
research community. Some of the more promising p2p protocols are still only in their
early stages. Behind the publicity about courtrooms and aliens there has been a flurry of
research into improving p2p systems from lessons fearned from the above systems. One
interesting project is under development by Sun Microsystems. JXTA [20] is Sun’s
attempt to get involved with the increasingly popular peer-to-peer computing
revolution. JXTA attempts to define a framework for peer-to-peer applications by
establishing a virtual network overlay on top of the existing physical network
infrastructure. It provides mechanisms to advertise and find peers, peer groups, services
and content information. It also provides primitives for communication between peers.
The trend towards defining an overlay or framework for operational p2p systems is not
confined to JXTA. One of the most interesting recent developments comes in the form
of distributed hash-tables. Distributed hash-tables (DHT) have been shown to be both
scalable and robust, two very much sought after qualities of p2p systems.

Arising from the seminal work of Plaxton et al. [21] several independent
projects appeared in 2001. Pastry [22], Tapestry [23], CAN [24] and Chord [25] attempt
to achieve the constant access time performance achieved with a traditional hash table
and employ this idea in a distributed p2p system. JXTA is a higher-level
implementation than other substrate overlay networks such as DHT systems. This is
where JXTA presents problems. In Sun’s attempts to define such a framework, JXTA
has become for some applications, too constraining. It has been argued that because p2p
networking is such an open research topic and that p2p networks represent a shift from
the normal client-server paradigm to a more “free” and non-regulated environment.
Sun’s efforts of defining such a framework may in fact go against the principles of
“free” p2p systems. Distributed hash tables are a lower-level implementation of a p2p
framework and give the designer much more freedom of design. There are a number of

projects using DHT systems as frameworks for p2p systems, PAST [26], Skipnet [27].

PAST is a global storage system built on top of Pastry, a similar system is Oceanstore
[28], which is built on top of Tapestry. Distributed hash tables are discussed in detail in
Chapter two.

The above discussion has given the reader a general look at the area of peer-to-
peer networking and discusses some of the first incarnations of p2p systems to where
the area is today. The rest of this chapter describes the motivation behind this research
and thesis, and concludes by giving a brief overview of the layout of the rest of the

thesis.

1.6 Motivation for Research

The above discussion gives an overview of peer-to-peer networking and
identifies some important aspects of p2p design and some of the pitfalls that arise. P2P
systems have opened a door to new interesting and exciting possibilities for building
networks for end-users and has given public Internet users the ability to serve files and
data of their own choosing. The work presented in this thesis is intended to tackle the
problem of providing easy access to quality texts from more prestigious sources that
may become hidden in a barrage of search results performed on the web. Users will be
placed into communities of other “like-minded” users to share files. An interesting point
to note is that often texts and work especially within the research community aithough
never making it to a high profile status within its area are more than worthy of soine
form of publication. P2P gives the individual power to publish with ease. Also, it is
often the case that research is done in parallel and never has the opportunity to cross
paths, two seemingly distinct areas are in fact quite similar and would be of benefit to
both parties. The system developed as part of this work is designed to provide users
with a framework whereby researchers can meet and join together mto communities to
share content that would be of interest to the community. This type of framework
creates an interesting situation for identifying parallels between research, which through
the web or other means may never have been discovered. This framework is realised in
the form of a peer-to-peer network. This is not a new idea but one that hasn’t been
around since the first incarnation of the Internet.

Utilising the routing capabilities of some of the newest routing algorithms to
emerge from the recent wave of p2p research, the proposed system includes an indexing

service, which will facilitate the creation of virtual rendezvous points. These rendezvous

points serve as points of contact for users with similar interests (imanifested by shared
keywords). Users will be described by the content they store. Using Information
Retrieval and clustering techniques users can be grouped together to form communities
that are content sensitive in nature because a community only exists because of the type
of files that are in the system. Documents are placed loosely within the system,
positioned near other documents that are deemed similar instead of being grouped
together under one heading. This placement of texts facilitates the discovery of new
parallels between subjects and users. The system is built to serve as a distributed archive
of research papers. The system is also designed to improve search quality of service
(QoS) compared to current p2p file sharing applications. Search requests result in a
comprehensive set of relevant documents being returned as searching will be based on

semantic meaning rather than literal matching.

1.7 Thesis Qutline

Before continuing a brief outline of the thesis is provided for the reader.
Chapter two introduces a new breed of p2p routing algorithms that are both scalable
and robust in nature. Chapter three then introduces the subject of Information
Retrieval and the techniques used in information retrieval that may be adapted to a p2p
system to discover inter-document relationships. Chapter four discusses the design
evolution of the systemn and serves as the recipe for the various ingredients of the system
that are introduced to the reader in chapters two and three, Chapter four also introduces
the novel idea of node-vectors. Node-vectors are user identifiers that are rich in
semantics and used to assess a measure of “like-mindedness” between peers. Chapters
five and six present the software design process, implementation and a results and
evaluation discussion of the research idea in comparison to some of the systems
introduced at the begiming of this Chapter. They also discuss what advantages are
gained through employing the ingredients used to realise the system in contrast to the
other p2p systems surveyed as part of this work. Finally Chapter seven contains

conciuding remarks.

Chapter 2

Distributed Hash Tables

This chapter discusses the emergence of a new generation of peer-to-peer
routing systems based on the distributed hash-table (DHT) concept. These recent
additions to p2p have generated a lot of research interest in the new technology.
Distributed hash-tables act much in the way the nane suggests. It is worth first looking
at what a hash-table [29] is in order to be able to appreciate the concept of distributed

hash-tables.

2.1 Hash —-Tables

Array
subscript

——— o
(Key,value) ’ 4
[:
o | ... Aray

R | 3 i «—— Value
————— " Hssh Fenst:]
Key [__> enehan Jsubscript 4

[N — 5

.) Figure 2.1.B. Given a hash function ot of 3 the
Figure 2.14. Given a key-value pair the key is & 4 put of

. i value will be inserted into that position within the
applied to a hash function lo produce an array
array
subscript. This subseript is used to map the value (o '

an array position as in fignre 2.1.8.

A hash-table is a particular way in which data may be structured and stored.
Hash-tables achieve the constant insert/search time performance of arrays even without
suitable array subscripts. Constant time performance relates to the number of steps
needed to retrieve an object from the table. Although this is not strictly true for worst-
case scenarios such as when multiple collisions occur (discussed below) the probability
of this happening is very sinall and so because the best and average cases are O(l)

(O(1) = constant function using Big-O notation) it is said that hash tables do in general

achieve constant time performance. In order to store a value, the value must be
associated with a key. The idea is to map a key and an array subscript using some
function. Hash-tables use a hash function that takes keys as arguments and returns
subscripts of some appropriately sized array as values (sce figure 2.1.A). When
inserting an item into a hash-table, the hash function is applied to the key and then the
key and the value are recorded at the position according to the array subscripts that the
hash function generates (see figure 2.1.B); to recover the object again, the key is again
applied to the hash function and the value will be situated in the array at the location
indicated by the result. Hash-tables can be viewed as a dictionary in which keys are
mapped to array positions by a hash function.

Given an array of fixed size and a very large number of possible keys there
cannot be a one-to-one assignment. Inevitably the assignment of the different keys to
the same array subscript will occur, this is known as a colfision. Hash-tables must be
built to deal with this inevitability and be able to recover from it [30]. Obviously this
requires extra computational time. This fact would therefore lead to the conclusion that
in reducing the number of collisions one is improving the hash-table performance.
“Randomisation” of keys is an approach that is often used to cut down on collisions
[31]. “Randomisation” means that the values that the hash function produces do not
conform to any pattern that may characterise the keys. This property of hash functions
has been exploited to achieve load balancing in distributed hash-table systems; this will

be discussed later in this chapter.

2.1.1 Distributing the Hash Table

Some useful attributes of hash-tables have been noted in the above discussion.
One very important attribute associated with hash-tables is that with appropriate care,
access to an arbitrary element within a hash-table can be provided in roughly constant

time i.e. hash-tables have approximately, an insert time =O(1) and a search time =

(1) . This means that hash-tables have constant insert and search times. Switching the

focus to the problem of locating stored objects in a distributed environment. Building a
distributed system that exhibits qualities such as constant insert times and search times
of hash-tables is a very worthwhile venture. This point leads us to the discussion of

distributed hash tables.

‘ {Key obedt) @
Koy o oo, [Ty Mode address = 3
W

Funchon [—

HNode 2
€
Route (m)
tlode 1 Dbjectis
. Hode } Hode 3 Ghject
T T
T
s
/ d
Hode 3
Hetevork Stores
. Objet
.
b J
/ K
- L » — ‘K\\

“ah

Mode 4
Node &

Figure 2.2. Operation of a Distributed Hash-Table. Nodes correspond to computers connecled to a
network. Node 2 wishes to store an object within the sysiem. An Object and a key are provided (1). The
key is “hashed " and an address for the object to be stored is produced (2). The object is then forwarded

to the node corresponding fo the address {3) When the object arrives at the destination

node it is stoved (4},

Within a distributed hash-table system, a network is formed that consists of
many nodes that are organised in a p2p configuration. These nodes act as storage
locations for the objects that are placed in the “hash-tabie” and may be viewed as the
various memory locations in the array of a traditional hash-table. DHT systems provide
a “put” and a “get” function. In a distributed hash-table objects are assigned keys and
then mapped to nodes or storage locations using a hash function (see fig 2.2). Objects
are placed into the network by generating a cryptographic hash of, for example their
textual name. The hashing algorithm generates an output, typically a 160-bit digit
number that is associated with the object. Nodes are assigned Identifiers from the same

numbering space; these node identifiers are analogous to the array subscripts in a locally

stored hash-table. This technique also finds application in message authentication,
bucket hashing is one method used to optimise the technique for this application [32].

Only the number of unique identifiers available limits the number of nodes that
may join the network. Given the order of this number this limitation is unlikely to ever
be reached. Once each node within the network has an identifier associated with it; the
newly introduced object can be forwarded to and then stored on the node whose
identifier is related to the mapping from the key of the object being stored (which was
produced from the hashing function). This is the “put” functionality. Storage capacity
within the network is determined by the amount of memory each node allocates and the
number of nodes connected to the network. To retrieve the object again one must know
the key of the object they wish to retrieve. The key is again “hashed” to determine the
location of the object. This is the “get” functionality. Removal of objects from the
network is very much implementation dependant. DHT layers mainly provide the put
and get function. Higher layers such as the application layer built on top of the DHT
substrate provide mechanisms for the removal of objects introduced to the system. What
the DHT layer does provide is a means of accessing or referencing the object. As this
topic is very much implementation specific and this is a more general discussion the
reader is referred to section 2.5.1 for an example application.

There are a number of implementations of these types of p2p systems. These
implementations have many similarities but enough differences to warrant a closer
examination. The rest of this chapter is devoted to the discussion of these systems as
DHTs form a major part of this work and so these other distributed hashing solutions

provide a useful reference.

2.2 A New Beginning for P2P

In a 1997 paper by Plaxton et al [21] a simple randomised algorithm for
accessing shared objects was described. Plaxton’s algorithm satisfies each access
request with a nearby copy. The algorithm was based on a novel mechanism to
maintain and distribute information about object locations.

Plaxton’s technigue allows a node to have multiple roles. A node can be a server
(store objects), a message router (assist in the forwarding of messages to their
destination), and a client (requesting a lookup for a certain object). A term that has

become commonplace in p2p for this type of node is a servent. Servents and objects

within the network are assigned identifiers that are independent of location or semantic
properties of cither servent or object. This, as we shall see, achieves load balancing
within the network. The identifiers are in the form of random fixed-length bit-sequences
with a common base. The entry location of an object or node into the system is
determined by the numeric value of its identifier. The determination of these identifiers
can be achieved by using the output of hashing algorithms such as SHA-1 [33]. A
hashing algorithm such as SHA-1 is nonreversible, collision-resistant, and has a good
avalanche effect. The avalanche effect of hashing algorithins means that given two very
similar strings, two very different and non-numerically close hash codes will be
produced. This is the randomisation property of hash-tables that was discussed
previously. It is this property that is used to achieve load balancing, because nodes and
objects get placed randomly within the network.

Plaxton’s work involved designing a simple randomised access schenie. The
term access scheme refers to a set of algorithms for read, insert and delete operations.
The goal was to produce an access scheme that exploited locality and distributed control
information [21]. This distribution of control information achieves a low overhead in
memory because nodes only need to know about a fraction of the other nodes within the
network making it unnecessary to store large index tables containing network
information.

Routing

To get a better feel for Plaxton’s access scheme it is useful to examine its
operation in more detail. Examination of the read operation gives a good understanding
of how messages are routed throughout the network; the reason for focusing on the read
operation is that this operation will be the key element of the system that has been
developed. Before fully examining the read operation it is necessary to define a few
terms. The auxiliary memory of each node is partitioned into two parts, the neighbour
table and the pointer list.

Neighbour table:

Each node stores a neighbour table, This table is populated with the IP-addresses
[34] of neighbouring nodes within the network. The term neighbouring nodes refers to
nodes whose identifiers are numerically close to the identifier of the node storing the

neighbour table [21].

Pointer List:

Each node maintains a pointer list. This pointer list contains pointers or the
locations of copies of the objects within the network. The pointer list of x may only be
updated as a result of insert and delete operations [21]

Read

Consider a node x attempting to read an object A. Object A has associated with
it a unique alphanumeric object identifier. Objects inserted ito the network are
forwarded to a node whose identifier is numerically closest to that of the objects. The
node storing the object then becomes the root node of that object A. Now looking at
what happens when a read request is generated at node x. Node x first checks local
mermory for the object. Should the object not be found the read request is forwarded to a
neighbouring node whose address is contained within neighbour table of node x. The
choice of neighbour to which the read request will be forwarded is determined by
correcting the first few digits of the objects identifier. In this way the read request
operation is forwarded to the node within the neighbour table whose identifier is
numerically closest to the identifier of object A. In effect the read request re-traces the
steps taken to insert the object into the network so that the read request will end up at
the root node of the object being read.

For the purpose of illustration of the basic principles of the read operation let us
assume that neighbour lists are consistent. In this case the routing method of a read
operation guarantees that any object A existing within the network will be found within
at most Log,N logical hops, in a system with an N size Id space and Ids using base b
[21].

Plaxtons routing system provides several desirable properties. Due to the fact
that routing requires that nodes only match a certain number of digits before sending the
message, link breaks or server failures can be routed around by using different route
paths made up of connected nodes. This is possible because a node can choose a
different route path for the message by matching a different node in its routing table
with a similar identifier to forward the message to. This means that the routing 1s robust
to node failure along the path to the root node (the root node is the node hosting the

desired object or the destination of the read message), see figure 2.3.

Broken

route path } Node
Node x =i 7! Failure

N \ .
\ \ / roule message

\ \ 10 node x
\

. E—— Mode Can route to
node x through
different route path

Figure 2.3. Plaxton et al's routing scheme is robust because nodes can route around node

[failures by choosing a different route path

However the use of a root node for an object does leave the access scheme with
a single point of failure. This means that should the root node for an object fail the
object will become inaccessible. The access scheme is scalable due to the fact that all
routing is done using locally available data i.e. the neighbour lists. There is no
centralised control so the only place bottlenecking can occur is at the root node should
the object it’s hosting become popular. The routing of a message is achieved quickly
throughout the network. This is because the number of route hops drop geometrically
with each additional hop.

The valuable and interesting part of Plaxton et al’s work on p2p systems is that
the Plaxton data structure allows messages to locate objects and route to them across an
arbitrarily sized network, while using a small fixed sized routing map at each hop. This
means that the algorithm is scalable. Scalability is a very desirable property in p2p, the
lack of scalability of many p2p systems is the cause of many problems within p2p
networks, and this especially comes into play as a limiting factor in the provision of
good “quality of service” for search requests. As we have seen above the algorithm is
also robust to routing around node failures. The major problem with Plaxton’s
algorithm is that it assumes a static node membership. Applying this algorithm to a
situation where nodes are constantly joining and leaving presents significant problems.
In order to achieve a unique mapping between document identifiers and root nodes the
Plaxton scheme requires global knowledge at the time of creation. This global
knowledge greatly complicates the process of nodes joining and leaving the network.

The Plaxton scheme also incorporates a single point of failure. The use of a root node

for an object means that this root node becomes the node that every other node relies on
to provide the object’s location information. As a result, Plaxton’s work does not
directly translate to a dynamic p2p system; the algorithm is in need of modification to

be able to be used 1n a p2p sense.

2.3 Developing a Suitable Routing Substrate for P2P

Described as “a new generation of p2p systems”, as relative new comers to the
world of p2p, DHTs have generated much enthusiasm and some hope of solving some
of the principle problems that face p2p systems. As has been noted in chapter one, peer-
to-peer networks are one of the fastest growing technologies in computing. In
developing these systems two major problems have been noted, scalability and
robustness. Scalability problems have plagued systems such as Napster [3] and Gnutella
[4]; a system’s ability to scale well can be the determining factor leading to the success
of a system or its failure. Robustness is an essential ingredient for all practical p2p
systems; the concept of p2p almost implies it, yet a closer look at Napster reveals a
central point of failure. In developing a p2p system one has to take these and many
more issues into account. Distributed hash-tables are one attempt to conquer these
fundamental issues in p2p.

DHT overlay network implementations such as Pastry [22] and Tapestry [23]
have produced implementations that adhere to the principles of p2p, decentralisation,
robustness and scalability. These systems may be used as the basts for functional p2p
systems. They provide a routing substrate; a mechanism that efficiently locates objects
within a certain number of routing hops. DHTs in themselves do not present a fully
scalable robust p2p system but they do provide a mechanism for such systems to be
built. All of the systems described below take a key as an input. In response to this key
the routing layer forwards a message using the key as the route destination for the
message. When a node receives a message with a key that it is not responsible for, that
node then forwards the message to a node that makes most progress in resolving the
final destination of the message. Determining which node makes most progress is a
fundamental design of DHT systems and is discussed in detail below. Also known as
overlay networks or structured p2p overlay networks, these systems bring order to p2p.
This order means that lookups can be efficiently directed to their destination, thus

cutting down on Internet and network traffic

20

The following sections look at the various projects mentioned above. These
systems have many similarities and all derive their initial inspiration from the access
scheme developed by Plaxton et al. Each system has adapted the Plaxton access scheme

to work in a dynamic environment where nodes constantly join and leave the network.

2.3.1 Pastry

T

Ve

\

}ORARET6
- 0xABEE4
f;
S

I
< % GrA9TSS
L ¥ &
B 7

Cx756df

Figure 2.4. Pastry routes messages to nodes whose nodelds

are progressively closer to the message key.

Pastry nodes are organised around a circular id space. Each node within the
Pastry network is assigned a 128-bit unique identifier that is generated typically from
the cryptographic hash of, for example, its IP address and users name. For example,
using the SHA-1 hashing algorithm a string such as “computer science” will produce
the hash code “0bbb843c75b8ch93ceb9d5594e208668484448e¢”. Pastry has the ability
to route messages between nodes when given a message key (see figure 2.4). The
message is routed to the node whose nodeld is numerically closest to the message’s key.
Tn order to route efficiently each Pastry node maintains a routing table. A node’s routing
table is organized into /282° rows and 2% columns, b is a configuration parameter.
The 2° entries in row 7 of the routing table contain the IP addresses of nodes whose
nodelds share the first r digits with the current node’s nodeld. A routing table entry is
left empty if no node with the appropriate nodeld prefix is known, Each node also
maintains a neighbor set (called a “leaf set”). The leaf set is the set of / nodes with
nodelds that are numerically closest to the present node’s nodeld, with /2 larger and /2

smaller nodelds than the current nodes id. The value of / is constant for all nodes in the

21

overlay, with a typical value of approximately [8* log » N], where N is the number of

expected nodes in the overlay. The leaf set ensures reliable message delivery and is used

to store replicas of application objects.

2.3.2 Tapestry

Tapestry also takes its roots from Plaxton et al’s work. Again it is an augmented
framework that tackles some of the failings of the Plaxton scheme mentioned above.
Tapestry has also adapted the access scheme to work in a dynamic environment where
nodes are constantly joining and leaving the network.

At Tapestry’s core is a set of routing algorithms similar to the ones developed by
Plaxton. Tapestry bears much similarity o Pastry.

Tapestry implements a routing algorithm called surrogate routing. This
algorithm is deterministic; meaning that when routing to a node that is the root node of
an object (i.e. the node storing the object because it has the closest numerical nodeld to
the objects Id) it is possible to reach the same point or node from any other point within
the network. Within surrogate routing the root node for an object is found by matching
the objects 1d to a node 1d. It is likely that a node exactly matching the Object Id will
not in fact exist within the network. This is due to the large Id space and the fact that it
is not necessary to find an exact match. Tapestry attempts to route the object (o a node
that in most cases is non-existent. The object will be assigned to a node within the
routing process whereby the last node reached would in fact be the neavest existing
neighbour node to the non existing root node. This existing node now becomes the root
node.

Surrogate routing requires a few additional hops compared to systems based on
Plaxton’s algovithm. It was shown in [35] however that adaptable routing algorithm
with Tapestry has minimal routing overhead compared to the static global routing

algorithim of Plaxton.

2.3.3 CAN

CAN uses a d-dimensional Cartesian coordinate space (for some fixed d) fo
implement a distributed hash table that maps keys onto values. Each node maintains

O(d) state, and the lookup cost is O(dNi-4). In the CAN model, nodes are mapped onfo

the d-dimensional coordinate space on top of TCP/IP [36] in a way analogous to the

22

assignment of IDs in Tapestry and Pastry. The space is divided up into d-dimensional
blocks based on each servent’s density and load information, where each block keeps
information on its immediate neighbours. Because addresses are points inside the
coordinate space, each node simply routes to the neighbour whose coordinates are the
closest towards the destination coordinate. Location of objects is achieved by the object
server pushing copies of location information back in the direction of incoming queries.
There are several key differences between CAN and Tapestry and Pastry. Tapestry’s
hierarchical overlay structure and high fan out at each node results in paths from
different sources to a single destination that converge quickly. Consequently, compared
to CAN, queries for local objects converge much faster to cached location information.
CAN assumes objects are immutable, and must be reinserted once they change their
values. CAN, like Chord, does not attempt to approximate real network distances in
their fopology construction unlike Tapestry and Pastry. As a result, logical distances in
CAN routing can be arbitrarily expensive, and a hop between neighbours can involve
long trips in the undertying IP network. The main advantage a CAN has is that because
of the simplicity of the node addition algorithm, it can better adapt to dynamically
changing environments.

CAN focuses on providing distributed hash-table functionality where as Pastry

and Tapestry are more geared towards routing and locatimg.

2.3.4 Chord

Chord is an efficient distributed lookup system based on consistent hashing [25].
it provides, like all the other DHT systems discussed, a flexible high performance look
up scheme upon which the main features of a peer-to-peer system can be built. Like
Pastry, Chord also uses a one-dimensional circular key space. For Chord, in a network
consisting of n nodes each node maintains information about only O(logn) other
nodes, lookups require O(log2n) messages.

The focus is on providing hash-table-like functionality of resolving key-value
pairs. For a namespace defined as a sequence of m Dbits, a node keeps at most m
pointers to nodes which follow it in the namespace by 2', 2% and so on, up to 2™,
modulo 2. The ith entry in node # s routing table contains the first node that succeeds
n by at least 2”7, in the namespace. Each key is stored on the first node whose

identifier is equal to or immediately follows it in the namespace. Chord provides similar

Jogarithmic storage and logarithmic logical hop limits as Tapestry, but provides weaker
guarantees about worst-case performance. The main distinction worthy of note is that
there is no natural correlation between overlay namespace (i.e. the numerical space that
Ids are assigned from) distance and network distance in the underlying network,
opening the possibility of extremely long physical routes for every close logical hop.

This problem is partially alleviated by the use of heuristics.

2.4 Discussion of Distributed Hash Table Implementations

It has been noted that a common theme of discussion regarding these systems is
to compare them and contrast them in a “which is better” way. However in [37] it is
suggested that a more useful way of thinking would be to look at their similarities and
their strengths rather than their failings in regard to each other. It would then be possible
to suggest some improvements upon which one could build upon the strengths of all
systems.

In 2003 the designers of the DHT systems discussed produced a paper [38]
detailing the beginning of their work to define a common API for structured peer-to-
peer overlays. Their work attempts to define the fundamental abstractions provided by
the system and combine them together so to enable designers of p2p systems to be able
to interchange the substrates to evaluate them and thus not tying their system into one
substrate. The difference and similarities of the above DHT systems are discussed in

more detail in chapter four.

2.5 Projects Using Distributed Hash Tables

Structured p2p substrates have proved useful in building such systems as global
storage facilities, including PAST [26], CFS [39] and Oceanstore [28]. In particular
PAST, as we shall see has a lot in common with the system designed in the work for
this thesis. PAST is built on top of Pastry and uses the power of Pastry to route files

entered into the system to a particular point, given a file key.

2.5.1 PAST
PAST is a large scale Internet based global storage facility. PASTs use of DHTs

to store files at nodes with similar nodelds to the files Id is very similar to the method in
which our system builds an indexing service (see section 4.3.1). Due to this similarity it

is worth considering PAST in more detail. PAST is built upon Pastry’s location and

routing substrate and is comprised of nodes that contribute to the routing of client
messages to insert and retrieve files. A node may also contribute to the storage space of
the system by allowing files within the system to be stored on part of its hard drive.
Files are replicated among nodes of similar Ids and due to Pastry’s random placing of
nodes this means that files will be replicated in diverse geographical locations.

At the time of insertion, files are assigned a unique file identifier that is taken
from the same name space as the Pasiry node Ids. This fileld is also created in much the
same way, using a hashing algorithm and the file name plus for instance the name of the
papers author as the input into the hashing function. This means that files within the
system are immutable because files cannot be inserted multiple times with the same
fileld. Each file that is inserted in to the PAST system is assigned a 160-bit fileld
corresponding to the cryptographic hash of the file’s textual name, the owner’s public
key and a random sait. A file certificate is then produced, this certificate contains the
fileId and the replication factor &; the value of & determines on how many nodes the file
must be stored upon. The certificate also contains a cryptographic hash of the file’s
contents. Upon the actual insertion of the file into the system, the Pastry layer routes the
file to the k nodes whose identifiers are numerically closest to the 128 most significant
bits of the fileld. Each of these nodes will store a copy of the file. In order to “lookup”
this file, the fileld is firstly required. The lookup request message is routed throughout
the Pastry ring using the fileld as the message key to the live node agatn whose nodeld
is numerically closest to the message key or fileld. Presuming that any of the k nodes
storing the file related to the fileld are live on the network the file will be located within
the network and may be retrieved.

PAST does not support a delete operation. Instead, the owner of a file may
reclaim the storage associated with a file, which does not guarantee that the file is no

longer available.

2.6 DHTs versus the “Napsters” of P2P

The subject of keyword searching is of particular importance if DHT systems
are to stand alongside more mainstream p2p systems such as Gnutella or Kazaa [40].
However, DHTs currently provide only put and get functions. Introducing keyword-
searching capabilities into these systems is likely fo render them a more powerful tool

for file sharing than is currently available.

2.6.1 Limitations of DHTs

DHTs provide scalable exact match lookups, these lookups lack any kind of
“intelligent” matching such as is available through the use of modemn query languages.
In {41] the authors have pointed out two serious limitations of Peer-to-peer networks.
Poor Scaling and impoverished query languages. Napster and Gnutella are two
networks that have poor scaling properties; they also provide a basic query language
format [42]. DHTs largely solve the first problem of poor scaling presented in [41] as
they provide a set of lookup algoritluns that are extremely scalable. However because
DHTs only support exact lookups they fall down on the second problem presented.

DHTs are a substrate to provide a system with scalable and efficient lookup and
routing algorithms. They do not constitute a fully operational peer-to-peer system.
These systems may however be used to form the foundation for functional p2p systems.
They provide a routing substrate; a mechanism that efficiently locates objects within a
certain pumber of routing hops. A more advantageous approach would be to build a
system that tackles the second problem presented in [41] by providing not just keyword
searching but a system that supports rich search results by finding files that have
semantic meaning rather than just literal matching. Achieving this would place these
systems well above the popular file sharing systems that currently exist. One promising
solution is for the p2p community to look at more advanced search techniques.
Information Retricval is one area of study that deals with this type of work. Information
Retrieval seeks to find relevant information from a large corpus, the results of this area
of study has obvious advantages for distributed search techniques. In an effort to tackle
the problem of weak p2p search techniques a review of Information Retrieval and some
techniques that have been developed was undertaken. This is the focus of the next

chapter.

26

Chapter 3

Information Retrieval (IR)

Information Retrieval (IR) is concerned with retrieving relevant information
from a large collection of documents or data. Peer-to-peer file sharing systems attempt
to allow the user to retrieve files from a large distributed group of storage locations. The
challenges of searching for relevant files within this environment have already been
presented in the last two chapters. The answers to many p2p systems poor search
techniques may lie with the information retrieval community.

IR has traditionally been used in centralised sets of data [43]. In recent years
with the increasing use of distributed systems and of course with the increased
popularity of p2p systems, distributed IR is becoming not just a more common area of
study but also a necessary one [43]. On the World Wide Web designers of search
engines have also recognised the need for and the advantages of more intelligent IR
techniques [43]. Within p2p environments, search algorithins are somewhat lagging
behind other information systems; searches are generally basic and provide poor quality
search results to the user [44]. Search engines use web crawlers to search the “deep
web” (the deep web is made up of publicly accessible pages that are not indexed by
search engines) and with a move to more sophisticated IR techniques are becoming
more effective. However, there is still a huge resource of information that is stored on
users hard-drives of computers connected to the Internet that is inaccessible to search
engines and web crawlers. If the users wish, p2p networks can be used to publish this
information to an interested audience; the problem however exists of searching these
hard drives. A p2p text file-sharing system built on top of a DHT has many qualities but
lacks the IR techniques that are available on many centralised texts resources. The trend
towards distributed information systems has also sparked the need for similar text
retrieval systems. P2P file-sharing techniques require text retrieval systems that can
work in a distributed enviromnent. There is work underway in this area. A good

example of this is InfraSearch {15]. Information Retrieval provides a way of finding

inter-document relationships that are more accurate than through matching search words
with titles of texts alone.

Before tackling the issue of searching data stores shared over a p2p system, it is
necessary to consider the more general problem of locating the best storage locations to
search in this distributed environment. The work in the area of distributed IR 1s closely
related to the work on multi-agent systems [45]. In a pure p2p system where the clients
themselves act as servers and so as the storage locations, the problem is effectively
locating the ‘best’ peers or clients to search. Information retrieval can be used in
identifying peers that are most likely to be hosting the relevant data.

A good entry point for this discussion is to firstly introduce the idea of a Content
Network. A content network is an overlay IP network that supports content routing.
Content routing means that messages are routed based on their content rather than their
[P-address. It is intended in this research to use the idea of content routing for the
forwarding of search queries. Forwarding of queries based on the content it is created to
find, as will be shown gives a much stronger guarantee of reaching an appropriate site
containing desired texts. This can be achieved by creating a semantically rich identifier
for the search query. Also, this type of search technique when deployed over a network
organised based on communities of nodes hosting similar content cuts down on
arbitrary hops from node to node that occur with Gnutella. This type of system can be
categorised as a p2p content network. In recent years many types of content networks
have been developed, including content p2p networks. PAST, which has already been
discussed in section 2.5.1 is one such development that can be viewed as a content
network. Content networks can be classified into many different types. [46] This gives
taxonomy to the different types of content networks. Further discussions on the design
of semantically rich identifiers and organising a network into content sensitive
communities are given in the next chapter. For now it is necessary to introduce to the
reader the subject of Information Retrieval and IR methods that are used to accomplish

this task.

3.1 An Introduction to IR

Like Peer-to-peer systems, IR techniques continue to attract an increasing
amount of attention [47]. IR dates back to well before the advent of computers.

Computers were seen as a tool for facilitating information retrieval rather than the other

way around. IR techniques are more important than ever now. There has been an
enormous increase in the number of text databases available on-line, it is also worth
noting that a study in 1989 revealed that approximately 9,600 different periodicals are
published in the United States each year, the amount of information available doubles
every five years and the amount of books in a library doubles every fourteen years {438].
A more recent survey also shows similar trends of activity on the web with every 24
hours 4.3 million new web pages being created [49]. There are many consequences
resulting from this level of publishing activity, one is a need for better techniques to
access the vast quantities of information. Consequently there has been a strong
resurgence of interest in the research done in the area of IR. Again, this bears similarity
to the situation in peer-to-peer networking where the concept is relatively old but its
importance is only really being realised by a wider community in recent years. Both
areas of study have been placed into the “mainstream” research hot-topics category in
the hope that they can be used to solve some of the problems faced by modem
computing. In a world where the quantity of information available can simply be
described as vast, the need for a way to retrieve the right information from a huge
source highlights the importance of information retrieval techniques. It is interesting
that even though Information Retrieval has been around for some time the problem of
effective retrieval remains largely unsolved and is very much an active area of research

within a centralised environment.

3.1.1 Current IR Systems

Numerous IR systems are deployed in various contexts around the world at
present, The World Wide Web is one information source that heavily relies on IR
techniques to locate information. IR and the Internet were previously called Advanced
information Access. The Internet and the World Wide Web rely on search engines to
allow users to find web sites and documents contained in the “deep web”. Some of the
better-known search engines are Google [50] and Yahoo [51]. Search engines like these
use various techniques to match content or web pages to search queries. Web pages
mostly contain semi-structured and dynamic information. The key problem is how to
embed knowledge into information mining atgorithms. This will be discussed in more
detail later on. There are several advanced methods for Web information mining such as
Syntax analysis [52] Metadata-based search using RDF [53] (Resource Description

Framework) and KPS: Keyword, Pattern, Sample search techniques {54]. However, the

most common and basic technique is called literal matching or Boolean seaiches.
Literal matching takes words entered in a search query and matches them to titles of
documents, document keywords or Meta data associated with documents files and sites
available on the Internet. Results for searches are then ranked in order of importance
relating to the match with the search query. Literal matching is the technique that is
used by many p2p systems as a search solution and as we shall see suffers from many
inaccuracies. A goal of this research has been the improvement of these inaccuracies

through the use of more advanced IR techniques.

3.1.2 IR in P2P Systems

Many p2p systems such as Gnutella use literal matching to find relevant files
within their systems. This literal matching suffers from numerous inaccuracies. In the
case where a title is used to match words entered into a search query the quality of the
results can be impaired due to synonyms of words used in titles and by misspelling of
titles. There are a number of factors that add to the ability of a p2p system to retrieve
data. Gnutella is described as a loose guarantee system. A p2p system that is described
as a loose guarantee system means that search queries or the quality of service (QoS) to
search requests to a particular query are not gnaranteed to return a true representation of
the actual files within the system. The QoS of a system such as Gnutella as discussed in
section 1.4.1 gets worse as the number of nodes in the system increases. Systems that
employ DHTs (see chapter two) and JXTA [20] are sirong guaraniee systems. DHTs
assign a unique identifier to each file and the file may be retrieved by any user who
knows the file’s Id. DHTs do not however provide a mechanism for partial-match
lookup capability, so although loose guarantee systems provide a lower QoS to search
requests they are in general more open to loosely stated queries where the user is not
fully sure of the particular files they are looking for. It is important to note the
weaknesses of these two types of systems so as to suggest a sotution to the problems. As
has been stated, keyword or Boolean methods are the most popular way to search loose
guarantee systems. These types of searches add only more inaccuracies to the set of all
ready loosely guaranteed search results presented to users. There are however much
more accurate methods for the comparison of documents to search queries, these state of
the art IR techniques seek to improve on the inaccuracies found with literal matches.

Noting that the two main pitfalls with Gnuteltla are its lack of organisation and its

10

impoverished query language it is now useful to look at some methods to over come

these problems.

3.1.3 State-of-the-art IR Techniques

Several methods for matching queries to files have been mentioned with literal
matching being the most popular. One set of promising alternatives to these approaches
are veclor-space approaches, Vector space approaches to IR allow the user to search for
concepts rather than specific words and rank the results of the search according to their
relative similarity to the query. This type of search is becoming more and more
important as large, heterogeneous collections will become more and more difficult to
search due to the sheer volume of unranked documents returned in response to a query.
Vector-space approaches avoid the problem of synonyms and avoid categorising data
under one topic because the method for identifying data represents all of the data and
not just meta-data or keywords. The rest of this chapter focuses on vector space
approaches to information retrieval as it is proposed in this chapter to use these
techniques to solve the problem of organising peers and documents into communities

and the retrieval of these documents from these communities,

3.2 Vector Space Approaches

As discussed above literal matching and textual names or keywords for the
retrieval of documents has many inaccuracies and problems associated with it. A more
accurate approach to representing documents by headings or keywords is to develop an
identifier for a document that has semantic meaning. An identifier with semantic
meaning means that the value of the id tells something about the subject of the
document it represents. Documents and their identifiers can be compared to a search
query or other documents based on this semantically rich identifier. A method of
developing a semantically rich identifier is through Vector Space Modelling. There is an
effort to add semantics to the web and create what has been called the semantic web.
“The semantic web is an extension of the current web in which information is given
well-defined meaning, better enabling computers and people to work in cooperation”. --
[55). This effort stems from similar problems faced in this work; the semantic web is
based on the Resource Description Framework [53]. Here it is proposed to use vector
space modelling to achieve a semantic p2p system. Vector-space models were

developed to eliminate many of the problems associated with exact, lexical matching

K3l

techniques. In particular, since words often have multiple meanings (polysemy), it is
difficult for a lexical matching techmique to differentiate between two documents that
share a given word, but use it differently, without understanding the context in which
the word was used. Also, since there are many ways to describe a given concept
(synonomy), related documents may not use the same terminology to describe their
shared concepts. One area where this type of misinterpretation is of particularly
importance is for medical diagnosis, in an effort to tackle this problem giant complex
lexical systems have been developed over the last 20 years e.g. SNOMED [536],
GALEN [57], ICD10 [58], CEN [59].

The effects of polysemy and synonomy mean that a query using the terminology
of one document will not retrieve other related documents. In order to achieve a
semantically rich identifier that avoids this problem the first task when using vector
space modelling techniques is to generate a document identifier or representative that
captures the semantics of the data being represented. This is the subject of the next

section.

3.2.1 Generating Document Representations

An obvious but important observation to make about documents is that a
document is ‘about” a topic(s). The evidence to support whether a document is in fact
about a topic or not lies in the words of a document. Hans Peter Luhn is known as the
father of Information Retrieval and in one of his early papers [60] stated, “If is
proposed here that the frequency of word occurrence in an article furnishes a useful
nieasurement of word significance”. This statement implies the same observation made
above, that words give evidence to a documents topic(s). Luhn however, goes further to
recognise that it is in fact the word frequencies that give true meaning, Luhn’s
observation gave birth to the technique, which has evolved into a concrete method of
generating document representatives. Basically Luhn’s assumption was that frequency
data could be used to extract words and sentences fo represent a document. The next
sections describe in greater detail how Luhn’s observations can be practically

implemented.

3z

3.2.2 Vector Space Modelling of Documents

tl

A

D2 = (t1,42,43)
»

~

M oraem)

Figure 3.1. Documents can be compared by getting the cosine of the angle benween thefr vector

representations

Modelling of a document as a vector is called “document vector space
modeliing”[61]. In this model each document is considered to be a vector i the terni-
space. A weighted value associated with the number occurrences of a term or word
becomes a dimension of the vector. In its simplest form, each document is represented

by the ferm-frequency (TF) vector d, =(tf,,f,,....1f,) , where (fi is the frequency of

the ith term in the document. For example, a three-dimensional term space is shown in
figure 3.1. There are two documents that are represented by the vectors D1 and D2;
each document is plotted within the three-dimensional term space based on the
frequency of the three terms occurring within each document. A similarity measure
between each document can then be calculated by, for example getting the cosine of the
angle between each document. If the angle is zero then the documents are the same and
as the cosine of the angle approaches 1 the similarity of two documents decreases. A
widely used refinement in this model is to weight each term based on its inverse

document frequency (IDF) in the document collection, This is commonly done by

multiplying the frequency of each term i by log(;gr—) , where N is the total number of

f

documents in the collection, and df, is the number of documents that contain the /th

term (i.e. document frequency). This leads to the {/~idf representation of the document in

Eaqn 3.1.

33

N
— Y ’ —)). I .
d yr =t log()f2log(Ifz)"” o log(dﬁ;)) ghn 3.1

[62] it was shown experimentally, that any measure used should be
normalised by the length of the document vectors. In order to account for documents of

different lengths, the length of each document vector is normalised so that it is of unit

length, ie. ||d, {l,=1, where 2 signifies /°-norm. There are two major similarity

metrics for the comparison of documents using vector space modeling [63] [64]. One of
them is the angle-based metric that uses for example the cosine function. This 1s
achieved by calculating the cosine of the angle between the vectors as mentioned above.
The cosine function is given in Eqn. 3.2. Documents may now be compared and a
similarity index can be established between two documents represented by the

documents d, and d using this method.

d ed
cos(d,,d ;)= — Egn 3.2
fld I, *lid, il

Where “e” denotes the “dot product” of two vectors. Since the document

vectors are of unit length, the above formula simplifies to Eqn 3.3.

cos(d,,d,)=d, ed,. Lgn 3.3

The ability to represent and compare documents using vector space modelling is
very useful, enabling inter-document relationships to be determined more accurately
than through the use of keyword matching.

The above discussion describes a very useful tool for representing and
comparing documents to accurately determine inter-document relationships. This
technique takes its fundamental ideas from Luhn’s original assumption discussed above,

i.e. concerning the significance of word frequency.

34

3.2.3 Document Preprocessing

There are many efficiency improvements that can be applied to the above model;
some of them take their foundation from some of Luhn’s other ideas. Luhn also
produced two cut off points, an upper and a lower cut off point. Using Zipf’s law (which
states that; “the product of the frequency of use of words and the rank order is
approximately constant.”) as a null hypothesis Luhn developed a way of excluding non-
significant words. This technique is the removal of high frequency words that give no
semantic meaning to the document. These words are called stop words.

Stop Words

An example of stop words would be, “the”, “if”, “was”. These words give no
additional evidence to establish the topic or semantics of the document. There are
several stop lists available. One of the most commonly used is the Van Rijsbergen stop
list [43]. Words contained in the stop list are removed from the document before the
task of representing the document as a vector commences.

Stemming

The stemming of words is a process of removing “commoner morphological and
inflexional endings from words in English” [65]. This means that the suffixes of words
are removed or that words are reduced to their roots, often the roots of words convey
topicality better.

Example of stemming:
Information -> inform

Presidency -> presid

Presiding -> presid

Happiness -> happi

Happily -> happi
Discouragement -> discourag
Battles -> battl

This section has presented a method for generating document representatives
that give a document semnantic meaning. The following sections discuss how by using
these identifiers documents may be grouped or classed together. This method as will be
shown can be used in a similar way to group users with compatible research interests
together into communities within a p2p system. The reason for doing this is to provide a
system whereby searches may be directed at a specific area within the network. This is

discussed in more detail later on; first the background to the method is presented.

3.3 Classification of Documents

It has been discussed how a document can be associated with an identifier that
has semantic meaning. Using these identifiers, documents can be searched for and
compared together using the similarity metric discussed above. This technique has
proved fo be much more accurate than traditional literal matching approaches [66]. The
use of such advanced IR techniques can add greater search capabilities to p2p systems.
Documents can be represented by semantically rich identifiers to assess their similarity;
using this technique (as will be shown later) it is also possible to represent a user with a
semantically rich identifier. It is then possible to assess two users “like-mindedness™ to
enable the formation of communities using a similarity metric. It is then possible to
determine the ‘best’ placement of users within the network. This idea is discussed in
greater detail in chapter four. First however, it is necessary to give background to the
idea. The classification of users into communities within the system begmms with a
method of classifying documents.

During classification, a document is assigned to pre-specified topics. There are
many automatic categorisation techniques for texts, Text categorization is a difficult
task due to the large number of attributes that are present within a data set. The
following discussion deals with a centroid based classification technique; the reason for

this is it leads to a way of assessing users “like mindedness”

3.3.1 Centroid Based Classification

As discussed in section 3.2.2 a document may be represented as a vector. In
[67], a method called a centroid-based classification is presented. This technique has
been shown to out perform other classification techniques such as Naive Bayesian [68],
K-nearest-neighbors [69] and C4.5 [70}. The centroid-based scheme allows it to classify
a new document based on how closely its behavior matches the behavior of the
documents belonging to different topics. The technique calculates a centroid vector that
is used to represent the documents of each topic. First of all the documents are
represented as a vector using vector space modeling. Given a set of S documents and
their calculated vector representations, a centroid vector C can be defined, which is the

average vector of the set of document vectors Eqn 3.4.

C:L d Egn 3.4
1S5

36

The idea behind the centroid-based classification algorithm is extremely simple.
For each set of documents belonging to the same topic, the centroid vector of ali the
vectors representing the documents in the set is computed. The topic of a new document
is determined by generating its vector space representation and then computing the
similarity between the new document and all centroids this is done using the cosine
measure. Finally, based on these similarities, the new document is assigned to the topic
corresponding to the most similar centroid. In chapter four it is shown how this
technique is used to represent a node and compare nodes based on the content it stores,
the point of this is to be able to use a similarity metric to determine if two users are
‘similar’.

Tn addition to representing a node based on the content it stores, a method for
grouping similar nodes is needed. One method that could be used is clustering. It will be
seen in the next section that clustering techniques provide a method of grouping objects

together based on their identifiers. Clustering is introduced in the next section.

3.4 Clustering of Data
/,/ -1 ///1?
- -7 !
/'/_// -"// ‘}
: %
T, x| X x}(X
-~ - £ X x
1 < - < / ! = ,
; ___/'{ . r
e :
.i‘ \\\‘_ |
r T = !
/'// ‘\) e -"/
7 \ Tl
i ,// ‘\ ,//‘ ‘\"‘-\ bt
[i - Chister

M el Spae \
Ehi-at

Figure 3.3. Objects may be clustered together based on distance within an N-dimensional space.

Clustering is the unsupervised classification of patterns (observations, data
items, or feature vectors) into groups (clusters) [71]. Document clustering was
originally investigated as a means of improving the performance of search engines.
Since then document clustering or cluster-based techniques have been used in domain
identification in such areas as radio news [72] and imaging {73]. Cluster analysis allows
the identification of groups, or clusters, of similar objects in multi-dimensional space

(see figure 3.3). Hierarchic clustering has been put forward for its efficiency and

37

effectiveness in Infornation retrieval. There are numerous document-clustering
algoriths. Agglomerative Hierarchical Clustering (AHC)[74] algorithins appear to be
the most commonly used. However these algorithms have proved to be slow when
applied to large document sets [75]. Linear time clustering algorithms have been
suggested as the best candidates for large document sets. These clustering algorithms

include the K-means algorithim [76] and the single pass method [77].

Swimming p
Q occor
Y
8
Spod/
water g 73 /Ballgames
Herbie P56 /
Hancock (d
/ \ Rugby
P1 3‘ 45678 b
Waterpolo
Nina
Simone \
P1234
Music
Mozart
\?,O ,
O/ Classical
Bach

Figure 3.4 Example of a clustering tree.

Given a set of feature vectors such as document vectors discussed above, a
clustering tree can be constructed. If an identifier, such as a vector represents a node, a
cluster tree containing various nodes can also be constructed. Nodes that are deemed
similar, using a similarity index such as the cosie function are placed near each other
on the tree and those less similar are positioned farther away (see figure 3.4). There are
many methods for constructing clustering trees. [71] Provides a good overview and
discusses the pros and cons of each method.

Clustering trees provide a good way of grouping objects such as nodes together
based on semantically rich identifiers. Sections of the clustering tree can be considered
as communities of similar of “like-minded” users given that the clustering process has

been done using a semantically rich identifier. Documents stored by nodes are

38

somewhat grouped into a topic defined by different sections in the cluster tree. This

method is discussed in more detail in chapter four.

3.5 Information Retrieval and P2P

As discussed in section 2.6.1 it was stated that the authors of [41] have pointed
out two serious limitations of peer-to-peer networks. These are, inability to scale well to
an increasing number of nodes and impoverished query languages such as Boolean
searches. It has already been discussed how DHT systems largely solve the first
problem. This chapter has presented some ingredients that can be used to tackle the
second one. How this is achieved is dealt within the following chapter. It will be shown
how some of the techniques described in this chapter may be combined with a DHT
(discussed in chapter two) system to create a fully operational peer-to-peer system and
thus develop a p2p system that can form content sensitive communities. It is then
possible to perform intelligent and efficient searches and thus improving on some of the

searching and scalability issues observed in systems like Gnutella.

39

Chapter 4

Design Concepts and Solutions

The two previous chapters have introduced several “ingredients” and suggested
them as tools to solve the problems of scalability and poor searching presented in
Chapter one. This chapter gives a full description of how these tools may be used and
combined into a fully operational p2p system that tackles the issues of scalability and
search QoS. The end of the chapter gives an application overview of how the
ingredients and overall final design satisfies the application proposed in Chapter one as
well as incorporating design lessons learned from researching other p2p systems.

A full description of the potential design solutions considered is provided for the
reader. The initial stages of the project as presented in Chapters one, two and three
involved investigating the many p2p systems in operation. The survey of these systems
has provided some interesting design challenges to be tackled as part of this research.
As was seen in sections 1.3.1 and 1.4.1, Napster and Gnutella both suffer from some
fundamental problems. Both applications suffer from poor scaling capabilities. Also,
because Napster uses a ceniralised indexing approach the robustness of the system is
compromised.

Chapter two presented an overview of a new generation of p2p algorithms, DHT
systems. These systems solve some of the problems faced by many p2p systems.
However, despite their evident superiority to Napster and Gnutella they still only
provide a routing substrate layer and for instance do not provide any mechanisim for
keyword searching. DHT systems merely provide puf and ger functionality, which
places them in a different category to some of the mainstream network file sharing
applications. This chapter presents the design concept of a p2p application that utilises
the robust and scalable routing algorithm of a DHT system. The application provides a
mechanism to perform searches using loose search parameters and thus bringing DHT
systems in to direct competition with the mainstream file-sharing application. The

discussion shows how using the latest information retrieval techniques discussed in

Chapter three along with state of the art p2p routing algorithms; scalable and robust p2p

systems can be built.

4.1 The Substrate Layer

Chapter two introduced the idea of distributed hash-tables (DHTs). Deciding on
which DHT substrate to base a system on can be difficult due to the similarities of the
various overlays available. However, even though they are similar, some fundamental
differences exist. Each system has a different geometry, Tapestry and Pastry exhibit a
geometry that is a hybrid of a tree and a ring, Chord is based on a ring and CAN on a
hypercube. A ring topology has been shown to be more resilient to node failures and
failures of static roufes than the other topologies [78]. It has also been shown to be
better for routing performance. Tapestry and Pastry out perform Chord. Chord opens up
the possibility for long physical distances between hops because it does not attempt to
approximate real network distances [79]. Subsequently for this research Pastry was
chosen over Tapestry. This is because the node organisation within Pastry better
facilitated some of the design concepts such as fuzzy domains that were developed here.
This point witl become clearer in the coming sections where the design ideas that make

use of Pastry’s node structure are discussed.

\
Application
CAN - :
Chord Past 5
Pastry e astry
Tapestry
Key based Routing

Figure 4.1. A common DHT API allows for the interchange of routing substrates

It was mentioned in the last chapter that there is an ongoing effort to design a
global or common API for these DHT systems. In line with this, a central aim of this
work is to provide a way in which developers of p2p systems can develop independent
of the substrate they are working with. This feature of the system will make it possible
for future researchers to interchange substrates to evaluate and compare their
performance in a rcal working system and decide which is the most appropriate for a

particular situation. All DHT systems export a key-based routing mechanism that an

application can use to route messages to various nodes. The common API uses this

similarity to be able to interchange substrates (see figure 4.1).

4.1.1 Building on Pastry

Pastry is a scalable distributed object location and routing substrate for peer-to-peer
applications that are deployed over a wide-area network such as the Intemnet. It 1s a self-
organising overlay network of nodes that through the assignment of nodelds, positions
nodes within the network, Each node involved in the Pastry network is given a unique
identifier known as a nodeld. A Pastry node has the ability upon receiving a message
with an appropriate numeric key to efficiently route the message to a node with the
nodeld that is numerically closest to the key. Each node in the network keeps a table in
which it stores the nodeld of its neighbours, it notifies applications of new node arrivals,

node failures and recoveries (see section 2.3.1) [22].
4.2 Potential Solutions

4.2.1 Fuzzy Domains

It was desired to build a system that allowed researchers to share knowledge in a
p2p environment. A problem faced by pure peer-to-peer systems (i.e. completely
decentralised system) is that of distributed searches. One solution to the searching
problem would be to organise the network in communities. This would lead to a
situation similar to one encountered in a library where searching for a book becomes
easier because each book is categorised and placed within the library in a certain
section. Searching is made easier because it is now possible to go directly to a section of
the network where the sought object is most likely to be. In a p2p enviromment this
translates into a much more scalable searching mechanism because searches can now be
focused on a subset of nodes rather than hopping blindly around the network consuming
valuable bandwidth. Gnutella is an example of an application that incorporates a flood-
based search technique. Gnutella applications form an unorganised network where
nodes are placed at random points within the network. The documents that are stored in
the network are also unorganised, as nodes containing objects of a certain ‘type’ will
most likely be connected to or linked with a node containing objects bearing no
similarities. It has been observed in [80] that peers in a p2p network mainly search for

files similar to files that they are sharing or storing. Tt therefore makes sense to organise

42

or group peers that are sharing similar content together. This would mean that the
majority of searches would only need to be performed on the community a node has
been placed in and thus a flood-search based technique could be more effectively used
in a p2p network.

Another point to note is that documents obviousty span many different subject
categories. One could then argue that a library does not represent true book or document
relationships, as to categorise a book under one heading by placing the book in a certain
point on a shelf is not entirely accurate. Documents are in their nature fuzzy and
sometimes resist categorisation. Library indexing systems and taxonomies attempt to
solve this problem by categorising documents within a fixed hierarchy. This again
causes problems when two different taxonomies need to be combined as they have two
different fixed hierarchies. The search for a solution to this problem is curently very
active within the p2p community; one attempt is the Dubtin core [81]. The Dublin core
initiative attempts to define metadata standards for combining different taxonomies.
Given this, it would also be exciting to build a system that has the ability to re-
categorise a document or object, as at the time of entry into the system the full subject
span of an object may not be known or may not have even been forged. A flexible and
dynamic system to incorporate such object relations would certainly be an interesting
feature. The system is designed to facilitate the construction and the development of a
type of “fuzzy” community where objects fade into various categories and are not
constrained into just one.

P2P applications provide an ideal environment to do this due to the dynamic
nature of the networks. Furthermore, a DHT implementation brings scalability and
robustness to the system. Pastry was chosen for its geometry, which facilitated various
design concepts, (see below). In an attempt to discover inter-object relationships in
order to loosely categorise them, IR techniques can be employed. The following
discussion describes the various ideas that were investigated in order to build such a
system using Pastry as the substrate layer, the discussion describes in more detail,
specific TR methods that can be used with Pastry in an attempt to achieve the intended

system.

43

4.2.2 Algorithms and Avalanches

“uhject A
2\

\ \Sul:jecl B
\ \]
J

OxAOBTG...
0xA9884...

0xA0D14. .

Fignre 4.2 Fuzzy domains. Subjects fade into each other around the ring as nodes sharing similar

content are placed close together.

Having decided on the routing substrate to be used (Pastry), the first step in
implementing fuzzy domains was to investigate the routing substrate fully. The use of
hashing algorithms is a central facility within DHT systems. The output of the chosen
hashing algorithm with all DHT systems determines where nodes are placed within in
the system. The same techniques are used to place objects within systems built on fop of
DHT systems such as PAST see section 2.5.1. The first task was to investigate hashing
algorithms and to examine how they operate. The reason for this was that, if the output
of the hashing algorithm could be manipulated to represent something about the input
given to the algorithm; the placement of nodes could be controlled in this way.

Hashing algorithms have a feature known as the avalanche effect (see section
2.2). This eans that given two similar inputs, the two hash codes produced are
numerically different. This provides security to the hashing algorithm as the outputs are
random and no pattern may be observed, and so it is difficult to reverse the hash-
function and work out the input. The original idea for this part of the work was to find a
hashing algorithm with a “bad” avalanche effect. It was considered that this hashing
algorithm, when given two similar input strings would produce two numerically close
output numbers. Recall that in Pastry as we have seen nodes are organised around a
ring. The placement of a node on this ring is determined by its nodeld, which is derived
from a hashing algorithm. So nodes that are close together on the ring have numerically
close nodelds. So, if it were possible to manipulate the hash function to produce a

number that would change relative to the input string it would then be possible to

44

produce an identifier with semantic meaning. Nodes with similar mterests could
associate themselves with a string or sentence that describes their interest areas. These
strings would then be hashed along with their [P-address to form their node Ids. Nodes
sharing similar content will now have numerically ‘close’ nodelds and Pastry’s joining
mechanism will position them close together on the ring. This is one possible way to
form “fuzzy domains” using the Pastry substrate that was developed. In order to
accomplish this idea, various Hashing algorithms such as MD5 [82], SHA256 [83] and
SHA_1[33] were investigated in order to find an algorithm with a ‘bad’ avalanche
effect. It was found that the ADLER [84] algorithm had the worst avalanche effect but
was still not ‘bad enough’ for the purpose. To continue with this idea a specific hashing
algorithm would have to be designed, given the amount of work involved in designing
such an algorithm it was decided to investigate other means of forming communities on
top of the Pastry substrate. Nevertheless, in the author’s opinion, this remains an
interesting and worthwhile approach to clustering docunents holding similar content.
The basic problem is to find an identifier to represent a document and node that
tells something about the content contained in a document or the content the node
stores. Another possible solution is to look into other work done in comparing texts of
files. One interesting technique to identify whether files are similar is through the use of

compression algorithins such as zip technology. This is discussed next.

4.2.3 Zip Technology

Vitanyi et al. have worked on a novel way to identify and categorise music. In
their paper [85], zip compression algorithins are used to identify pieces of music with
no known composer. This is accomplished by “zipping’ several pieces from a particular
composer. The resulting compressed file is then saved. The same particular pieces are
again put together and the unknown piece is added to the files to be compressed. The
group of files ave again compressed. The size of the resulting compressed file is
compared with the size of the original compressed file. The new unknown file can be
said to be similar if there is little difference in the size of the two compressed files. The
zip compression algorithm works by identifying repeated binary sequences. These
binary sequences are indexed and replaced by one smatler identifier. This results i a
smaller file. When the file is uncompressed the binary sequences are reinserted at every
occurrence of the identifier. This attribute of zip compression can be used to assess

whether two files are similar. If an unknown file is similar as in the case of two musical

pieces written by the same composer, the resulting compressed file will be small due to
the fact that both files contain the same repeated binary sequences. If the music piece is
completely different the compressed file will be bigger due to the fact there is less
repetition of information.

This technique could aiso be used for identifying similarities in the content of a
particular node compared to another and thus form a link if the similarities satisfy a

certain threshold.

4.2.4 Vector Space Modelling

As was seen in chapter three, documents may be represented as vectors and inter
document relationships may be determined by using a similarity metric such as the
cosine of the angle between document vectors, This method of representing and
comparing documents provided a much easier way of representing nodes, this is
because it is possible to create centroids representing average content, Using the zip
method there was no obvious way to do this. For that reason it was decided to use
vector space modelling techniques to group nodes together into communities. The

following section describes how this can be done.

4.3 The Final Solution

The final solution for realising the system considered incorporates such
ingredients as Pastry and Vector Space Modelling; the following sections explain how
these ingredients can be used together to create a p2p system that supports the formation

of decentralised, scalable and robust content sensitive communities.

4.3.1 Building a Decentralised indexing service

One of the key elements of the proposed system is the Pastry routing scheme.
The routing scheme is Pastry’s algorithin for forwarding messages around the Pastry
ring (described in section 2.3.1). Pastry will provide the system with a scalable, robust

routing algorithm that is able to route to any node in {logzb N] steps on average, where

N is the number of nodes and & is a configuration parameter. As stated previously,
Pastry routes messages withiny the Pastry network to nodes whose nodelds are closest to
the key of the message. Within the system proposed here, it is intended to build a
decentralised indexing service where users who are ‘inferested’ in a certain topic may

join communities of nodes belonging to like-minded users. In order to facilitate this, a

46

rendezvous point where nodes can discover others that have similar interests needs to be
created. It will be shown in the following section that Pastry provides a routing

algorithm that can be used to build such a system without any central control.

4.3.2 Creating indexing nodes

Index Table
A
B
E
e F Control syslems
ol RN
7 N
‘/
-
-
‘/
e
-~
“Centrol systerns* (
*Computers® B e E
~_ /
™~ [/ Indes Table
i F
¢ RN \‘f)/-—') C
\\‘ "/_,- ‘-D D
= =
Computers

Figure 4.3. Node B routes a register message with 2 message keys that are the cryptographic
hash of the keywords “control systems ™ and “computers” throughout the Pastry ring. Index

tables registering all nodes sharing the same keywords are constructed.

Given a string of characters, a hashing algorithm such as the SHA | hashing
algorithm will produce a 160-bit hash code representing the string. This property forms
the basis for the indexing service. Once a node has calculated its unique nodeld it may
join the Pastry network. The joining mechanism is provided as a service by Pastry. A
node joining the network will have a set of keywords associated with it that best
describes the nodes ‘topics of interest’. These keywords will serve as the basis for
discovering those that share similar content. Each of the keywords provided by the
joining node is hashed to get a hash code for each word. These hash codes will be used
as message keys so that Pastry can route them around the Pastry ring to the live node
whose nodeld is numerically closest to the 128 most significant bits of the 160-bit key.
A registry-message is constructed; a registry message is an extension of the Pastry
message and contains the node details such as its [P-address. The same registry-message
is routed several times throughout the network for each keyword. Each registry-message

uses the 160-bit codes generated from the hashing of the keywords as keys. When the

47

registry messages have arrived at the destination nodes, each destination node is
required to register the new node (see figure 4.3). This means that every other node
stating “controls systems” as their keyword will end up registering at node F. If an
index does not exist at node F, one will be created. The node whose nodeld corresponds
to the 128 most significant bits of the hashed keyword will now serve as the rendezvous
point or indexing node for all other nodes using the same keyword. Nodes will register

at the same point for two reasons:

o A hashing algorithin given the same mput string will always produce the same
output key. Therefore a registry-inessage will always get the same key for the
same keyword.

» Pastry’s routing algorithm routes messages to the live node whose nodeld is
nuinerically closest to the message key. Therefore two nodes will always end up
registering at the same point once they share a keyword.

The above only holds true of course when the indexing node remains live on the
network. To deal with node failures and hence loss of indices, it is proposed to replicate
the index table among the indexing nodes k nearest neighbours. There are a number of
other systems (e.g. PAST) that use the properties of DHT systems for similar purposes.
When a file 1s inserted into PAST, Pastry routes the file to the & (k is a configuration
parameter that determines the number of neighbouring nodes where the index will be
replicated) nodes whose node identifiers are numerically closest to the 128 most
significant bits of the file identifier (fileld). These nodes then store the file, Other global
storage systems that are built on top of DHTs include QOceanStore [28] that is built on

top of Tapestry, and CFS [39], which uses Chord.

4.3.3 Building Content Sensitive Communities

Now that it has been shown how nodes with similar interests can discover each
other in a pure p2p environment, it is necessary to show how the construction of content
sensitive communities 1s achieved. This section describes how nodes are compared
based on stored content, the organising of the p2p network into communities. It also
shows how this can be viewed as a two-layer network, which can be used as the basis

for content sensitive comimunities.

48

4.3.4 Comparing Nodes Based on Content Stored

Consider a node storing a set of documents that share the same subject content.
It can be said that a node’s set of documents can be classified under one general
heading. This heading will have a relation to the subject content of each of the
documents stored. Another way to look at this general heading would be to describe it
as the “average subject” of the documents. Consider again the situation where each
document has an associated vector representation, derived from the (fd-idf
representational model. It is now possible to generate an average vector of these
document-vectors. This average vector is representative of the average subject content
of a particular node’s document set. It therefore reveals something about the subject
content the node “is interested in”. A way of deriving such a vector comes from
Centroid based classification [67]. Given a set S of documents and their vector
representations, a centroid vector ' can be defined, which is the average vector of the

vectors d representing the set of documents. This is given by Eqn 4.1,

(_'.'=L d. Egn 4.1

| ST

Average vectors are called node-vectors. Nodes may now be succmctly
represented based on the content they store. it is also possible to compare a pair of
node-vectors to assess a similarity index between the corresponding pair of nodes by
using the cosine measure as described in section 3.2.2. These tools provide a means of
comparing and hence grouping together nodes that are similar within the network. This

process is described further in the next section.

4.3.5 Organising Network into Communities

Broeesacal

Cemrpudare C:m; ulers
Bizensdical
H) Finess
Ele: :m s
Pregrwening
Comnpulas

‘/

Controls

Conumiundy Table
DO | Barnedcal
N N Cawas CDfﬂ]'DIi

1 Coaresnoraty Takle
d I
L

Cotrernedy Table
figure 4.4, The effect of the community layer formed by conmmunity tables

Taking the simplest case that the nodes discussed in the previous section have a single
topic of interest then all documents stored at the node will be related in some way to this topic.
In the previous section it was seen that node-vectors represent the average of a set of document
vectors stored by the node. It is therefore possible to say that in general a node-vector captures
the average topic that a node is interested in. A node-vector can therefore be used to compare
nodes that store similar content. If each node stores a community table with a lst of nodes that
are similar (based on the similarity index from the vector space model described above),
document collections of a similar content will then be implicitly linked or grouped together
(Figure 4.4). This could be considered as organising the network into domains whose
boundaries are not strictly defined but have a “fadmg” effect as we jump from one community
table to the next. Consider the example in figure 4. 4. By moving along the path O—/—=N -1,
the document collection moves from “Confrols” to “Biomedical” and then to “Electronics”.
Node A can be seen as the node within the network that stores documents relating both to
“Biomedical” and “Comypniters” and thus is the point within the network where the two domains
overlap. Any linked group of nodes can be seen as a domain. Links are formed based on
comparing whether two nodevectors are similar with a certain threshold. Looking at figure 4.4
in this particular case it can be seen that although node A and M store similar information based
on the similarity metric nodes A and N are in fact deemed more similar and therefore form a

connection. Each domain can be categorised based on the nodes that have linked with each

50

other. As they all store similar content, these “communities” of nodes are confent sensitive in
¥

nature because only nodes that store similar content to the community will become part of it.

4.3.6 Two Layer Network

| ez [tz
A —_
[i
A,
i B
Ceriony i E .
Titd: H H

L
A ;
Y~ _F teydax — i
- - / 1 7
- P

Y ™y
/ \ i /{)/
/ / \‘, L Y \
i / 1 veete \
o (7 ,; / |

Ime; B\. Comariz (‘}—__L__i_ () Cenezray
ja | T E | 2 Tk
o\l / i ;

\
i .y vy S0 R
© ,,/"6)/ ! \(\\ r‘/)
_ ¢ - 1 :

Figure 4.3.4. The new node B lates ils] i
fgle oA IR REW NOAE T popuiales s Figure 4.5.8.Creating Community Links. Node B

communily table with A and I£ as their node- - .
4 then informs nodes A and E that they must add B to

vectors are most similar fo its own. .)
their community table.

The network is maintained and organised by employing two layers, the Pastry
Layer and the community layer. Pastry maintains routing tables and feqf sefs. Leafsets
are tables containing neighbouring nodes within a certain number of hops that each
node ‘knows’ about [86]. The Pastry layer provides a means for nodes to find indexing
nodes of certain subject areas. Nodes are organised based on the assignment of nodelds.
Nodelds are generated by computing the cryptographic hash of the nodes IP address and
name of the subscriber to the network. This technique ensures that with high probability
nodes with adjacent nodelds are not related in interests or for example geography. This
is a result of the type of hashing algorithm employed fo create their unique nodeld and
helps to achieve load balancing within the network. The second layer, the community
layer, is more organised. The ability of the second layer to organise itself is a direct
result of the indexing service that is built on top of Pastry. When a node is added to an
mdexing node’s index table, the indexing node is provided with the new node’s node-
vector and IP-address. Comparing its node vector to that of the already registered nodes,
the indexing node places the details of the registering node in the appropriate place
within a clustering tree (see section 3.4 for a discussion on clustering trees).

The new node then uses similar nodes within the cluster tree to populate ifs
community table (see figure 4.5.B). All nodes added to the community table are then

contacted and asked to add the new node to their community table. This step is taken for

51

cach keyword. After this procedure has been carried out, the new node has links to other
nodes that have similar node-vectors and hence have a good probability of ‘being
interested” and by extension sharing similar content. This means that nodes that “have
similar interests” know about each other and can share content directly. This type of
organisation makes searching within p2p networks much more efficient as all the
content is grouped together into communities and so searches can be directed to a

specific area of the network instead of being flooded blindly through the network.

4.4 Searching for Documents

Pure flood-based searches have become an essential operation in unstructured
p2p networks such as Gnutella [4] and LimeWire [87]. These systems rely on flooding
of scarch messages throughout the network in order to locate files stored by nodes.
Within these systems, pure flood search requests are given a time to live stamp (TTL),
this TTL sets the number of hops a search message is allowed to execute before
“dying”. Pure flood-based search methods have proved inefficient and non-scalable and
result in bottle necking within the Internet. However, Pure flooding has been shown to
scale well within the Gnutella network up to 10,000 nodes [11].

Within a more structured overlay network, flood-based searches can be used
while maintaining scalability and cutting down on unnecessary query messages. This is
achieved by performing a focused flood search where the search is focused on a specific
arca of the network. It is possible to target a particular part of the system and perforn an
exhaustive search on those areas that are more likely to contain the type of files being
requested. This is achieved by the proposed system as follows. First of all a list of
keywords are entered. A search-vector is then produced. In order to direct the search to
an arca of the network storing files relating to the keywords, the search-vector is
compared locally to nodes within the community table. The search request is then
forwarded to those nodes whose node-vectors are the most similar to the search vector.
The contacted node performs a flood-search on its community table using the original
keywords as the search parameters. The proxy searcher then compiles a list of “hits”
and returns them directly to the requesting node. The requesting node may choose to
download directly any of the files found or perforin another search on a different part of

the network.

Having given a detailed description of the final solution it is now useful to give a

brief overview of the system. This is presented in the next section.

4.5 System Overview

As was stated in Chapter one the purpose of the work presented in this thesis is
to develop a peer-to-peer system in order to allow users to join communities of other
like-minded users to facilitate the sharing of documents. The concepts presented in
section 4.3 describe the design solution of the system. This section gives an application
overview before discussing the implementation in the next chapter. Chapter one gave an
introduction to p2p computing and outlined the desired application. Grouping together
users into communities of other like-minded users is the central aim of the system. One
of the more challenging aspects of creating the desired system was finding a way to
assess users like-mindedness and led to the various ideas presented throughout this
chapter. Within the application “like-mindedness™ is assessed based on the files stored
by a user. This 1s achieved by taking the average subject content of all the document
topics (see figure 4.6). Each document is first of all represented as a vector. This vector
representation allows document semantics to be compared using a similarity measure.
In the same way, nsers may be represented by the average vector of all the document
vectors they store. This 1s a core design element of the system.

Take Averags

hY
7

— hNadeMeclar

—
I___|_“;[___L'LI Filevartor's

Figure £.6. A user stores documents and their associated filevectors; a node is then described by

the average vector of the dociment set, known as a NodeVector.

In-order to become a part of the network, each user will run an instance of the
application and store a number of files. The nodevector representing the average content
of the stored files is calculated locally on the users machine as in figure 4.6. A nodeld is
also calculated locally by hashing the users TP-address and name. Once these initial
steps have been completed the application then automatically joins the user to the pastry
layer of the network using the nodes nodeld. The next step is for the application to
populate its empty community tables, thus linking the user with other like-minded users.
Using the nodes nodevector it is possible to assess different users “like-mindedness™. It

ts also necessary for the user to be able to discover potentially similar users without

having to search the whole network. In a decentralised environment this can be achieved
through the use of rendezvous points, rendezvous points are nodes or users inachines
that act as meeting points for potentially similar users by storing an index table of users.
This means the any user running the application could potentially become a rendezvous
point, Rendezvous points are established using a similar method to that of the global file
storage system PAST [26] for establishing file storage locations. As with PAST,
messages are given a message key and routed to the node whose nodeld is numerically
closest to the message key. In the design solution presented here, registry-messages are
routed towards destination nodes. Registry messages are used to register a user at an
appropriate rendezvous point. When an application is being intialised, a user must
supply one or more keywords that best describe his/her interests. The keywords are then

hashed to become a key for a registry message (see figure 4.7).

o Documents relating 1o Choose keyword = Hash keyword:
i computer science “Carnputer Seience” 1 = oomsaz

Figure £.7. A user stores a certain mmnber of docwments, a keyword or keyphrase that best describes

the documents or in faci the users interests is chosen, the keyphrase is then hashed using the same
hashing algorithm used to prodhice nodelds. The resulting hash code becomes a key for a registry

message.

The registry message is then routed through out the Pastry layer and will end up
arriving at a node or users machine whose nodeld is numerically similar to the registry
message key. The application running on this machine is then required to register the
user that initiated the registry message and become a rendezvous point by establishing
an index table. All users stating the same keywords will also end up registering at the

same point (see figure 4.8).

P Ingey Tah
- ModeMertor = [——— ndex Tabls

S ; rlodeVector

ok venee e E—l '
s b s sage e IF-address

Re=o

L : ‘“D\ Ohbdiadl . :

e C Nade X f
o : ~. Registryhlessage arrives at

< i el vy rendezvous point

Mode A <_§\ Foute vath message J,:-*” =t
/ N\ hEr ChBhE? 4
I
I /

ReqgistryMessage is
created and sert

Figure 4.8. Node A registers itself'in the appropriate index tables (at Node X} by creating registry

messages and using the hash of keywords that describe the nodes interests as message keys.

Nodes register their IP address and nodevector within their index table. All users
nodevectors are compared by the application acting as the rendezvous point using a
similarity metric to assess similarity. If the nodevectors of two users are found to have a
similarity that is within the value represented by a similarity cut-off point (see section
6.1.7), they are deemed to have similar interests and a connection is established between
these users. Connections are maintained by the application at each node through the use

community tables (see figure 4.9).

w
wi

Cormmunity Table

index Table
184.211.26.3| _

__,_‘__%
) B Vectors
[}
|

98.243.52.8¢
'

Similan

98 243,52 64 ("

184.211.26.3
i

1 :
|
I IP-address - 198 243 52.89

Figure 4.9, Joining a Commuuiiy.,
! —the application nominated as a rendezvous point compares nodevectors to establish user “like-
mindedness”.
2 — the rendezvous application contacis the registering application and returns the results indicating that
node 198.143.52.89 satisfies the similarity cut-off point. The setting of this cut off point is discussed in
section 6.1.8.
3- the application running at 184.211.26.3 then contacts the application running at 198.143.52.89 to

establish a community Tink.

As the network becomes more populated, so do the community tables and a
community-based layer is formed. The purpose of this layer is to provide a mechanism
where it is not necessary to search through the entire network in order to find relevant
files but to direct a search over community links. As the community links are formed
with similar nodes sharing similar content and the fact that the majority of nodes search
for files similar to the ones they store themselves network traftic is reduced, as is search
time. Users now have direct connections to other like-minded users. Flood searching is
used to retrieve objects but because the network is now structured it is possible to
perform a focused flood as is described in section 4.4 above. Users enter keywords into

a search dialog box on the application. A searchvector is then produced and forwarded

56

throughout the systems to the relevant nodes. The users are then presented with a list of
files whose file vectors are deemed most similar to the searchvector based on the
similarity metric. Searching is also improved with the design as documents are searched
for using search vectors, which makes it possible to return more semantically relevant
documents that through traditional Boolean searches wéuld have been overlooked.
Having given a description of the final design solution the next chapter describes

the implementation of the application that realises the solution.

37

Chapter 5

Software Design and Implementation

Having given a description of the various potential solutions and the final design
concept detailed in the previous chapter, this chapter details the software design and
implementation of the system. The software design presented here is at a reasonably
mature state and is the result of a number of iterations of the software. The full software
design process and external APIs used to realise the application are discussed. The
system is split into various packages, each one containing classes all related to each
other. The system uses the idea of managers to handle the interactions between
packages. Managers act as interfaces between the various functionalities needed to
realise the system (see figure 5.1, Appendix D contains an explanation of the UML

version used).

1 DT PeerReach.community]

] DIT.PeerReach.segister [
& CommunityManager I
{H DIT.PeerReach - B
@ Registrytanager I
T T
i 1
RSP T (S 1
|

111 DIT PeerReach petsistence I

@ persistertStore

T

|
|
|
PRSOSE |

(1] DIV PeerReathrhessage I

@ MessageManager I

[
[
I
Ly

W mmn%arf;mm l

il DIT Peer le i
= =

[@ CnncPIW!:;xfactav |

Figure 5.1 Classes are grouped into packages; the application uses the idea of managers 1o handle
interactions benween some of the more complex packages. The package diagram has been simplified to

only show the interactions between the managers or interfaces for each package.

Using manager classes as interfaces to each package separates the different
functionalities of the system and allows for different implementations to be plugged or
unplugged from the application. This approach makes implementation more imanageable
and allows for the testing of each piece of functionality separately. Functional block
testing of code makes it easier to pinpoint design or implementation problems. This
design methodology also achieves abstraction of classes and helps the code to become
more readable and maintainable, Maintainable code is essential for future iterattons of
the system. The main packages of interest are the Community and Vector packages.
These packages will be discussed primarily within this chapter. The Community
package contains classes to maintain and handle connections between peers that have
ended up at the same rendezvous point as described in section 4.3.2. The Vecior
Package contains classes that provide the implementation of the vector space modelling
methods described in section 3.2.2. The application is also composed of a number of
other packages as can be seen in Figure 5.1. These packages will be discussed later in
the chapter. The system also extends various classes from some imported APls.

The most notable external APl is the Pastry API. Pastry routes messages to the
appropriate nodes given the appropriate key. This routing functionality is used to form a
distributed indexing service and creates various rendezvous points so nodes sharing
similar files can discover each other. The system is developed in Java, this is due to
Java’s suitability to writing applications that operate over network connections or that
are deployed over the Internet. The Pastry API is the first point of discussion. The
reason for this is that it is Pastry’s design and organisation of nodes that has inspired the
design of the community layer and provided a way in which the distributed indexing
service can be realised. In the initial stages of this research it was intended that Pastry
would play a more significant role in routing all messages throughout the system.
However, throughout the development process it was found that the development of a
second layer, the community layer would better serve connections and message passing
within the application. Pastry’s role is now to provide the basic services and
initialisation. Despite this, Pastry’s API provides the core functionalities for the system

and so will be discussed first.

59

5.1 The Pastry Application Programming Interface (API)

When building applications on top of Pastry, developers are given the freedom to
use Pastry in many different ways; this is due to Pastry’s extensibility and its low level
design. As has been discussed in section 2.3.1, Pastry provides a mechanism for sending
messages around the ring in which it has organised the various nodes. To achieve this,
any applications using Pastry must export the following operations [22]:

deliver(msg, key) called by Pastry when a message is received and the local
node’s nodeld is numerically closest to key among all live nodes, or when a message 18
received that was transmitted via send (), the application typically responds using the IP
address of the local node.

forward(msg, key, nextId) called by Pasiry just before a message is forwarded
to the node with nodeld = nextld. The application may change the contents of the
message or the value of nextld. Setting the nextld to sul! will terminate the message at
the local node.

The Pastry API exports the following operations:

NodeId = pastryInit(Credentials) when called by the application causes
the local node to join an existing Pastry network (or start a new one) and initialise all
relevant states; the method returns the local node’s nodeld. The credentials are provided
by the application and contain information needed to authenticate the local node and to
securely join the Pastry network.

routeMsg (msg, key) causes Pastry to route the given message (o the node
with a nodeld numerically closest to the key provided, among all live Pastry nodes.

send(msq, IP-addr) causes Pastry to send the given message to the node with
the specified IP address, if that node is live. That node then receives the message
through the deliver method. send differs from routeMsg as routeMsg forwards
messages based on a messageld. routeMsg attempts to match a nodeld of a node that is
known about locally to the messageld of the message in order to determine the best
node to forward the message to.

Applications that wish to use the native Pastry API must extend the class
rice.pastry.client.PastryAppl. This class implements the Pastry APL An
application may also extend rice.pastry.client.CommonArI to incorporate the
common API discussed in section 2.4. Each application that uses Pastry should consist

minimally of an application class that extends pastryAppl OF CommonAPI, and a driver

60

class that implements main (), creates and initialises one or more nodes. The application
for ease of implementation has been given the working title PeerReach (peer reviewed
archive). Within PeerReach dit.peerreach.PeerReachNode extends
rice.pastry.client.CommonAPI and dit.peerreach. PeerReachAppl acts as the

driver class that contains the main () method (see figure 5.2).

(4 ricezpastiy.clientzPastriyAppl

‘%

@} ricezpastnyzclientzCommonAPIAppI

dnterfaces @ PeerReachAppl
% javaio:Serializable
A + PeerReachAppld
o MakeNode(
H (O peerReachtode o Register(
2 setModeVeclor)
O PRGNS o PeeiReachNoda0 [T 71 o makerandomNode (|
+ PRModehandled o deliver) | & miing
o gBDlsNOdeHanOIe{.,‘__L— J, ;’-:\r:t::,l:;assaqeo — —
o getNodeVeclon))
2 qelRmiConneclion() nas 9 [geiAgdiass)
o getCredentials()
o gelMsgManager()
o gelPRNodehandle()
o getRMIPor)
o nobfyReady(
Qo

routeSetChanged

Figure 5.2. PeerReachNode extends the Common API class and PeerReachAppl acts the Driver

Sfor the application

Pastry provides the application developed here with a method for creating a
distributed indexing system. It is Pastry’s routing algorithm that is used to accomplish
this. PRMessage extends rice.pastry.messaging.Message, and it is this message
that is used to register nodes at particular rendezvous points around the ring, (see
section 4.3.2). When keywords inputted by the user are hashed, a registry message key
is produced. This registry message is then passed down to the Pastry layer using
routeMsg () which is an inherited method from the PastryAppl class (see figure 5.2).
routeMsg (), routes the given message to the live node whose Nodeld is numerically
closest to the message key. When the message arrives at the appropriate node Pastry
calls the forward () method which has been implemented by PeerReachNode (), this is

Pastry passing the message back to the application layer (see figure 5.3).

61

Application
| Pasty. roueMsg PRV Ess393)
Pastry Application
Teation dduePRMEssoge]
[W Pastry
<PRMessage> Roule Message to Node witha 1‘
» Nodeld closest to Messageld H <PRMessage>

Figure3. 3. Delivering a Message, used to register a nodes interest (o the node with a nodeld closest to the

registry messdge key

pecrReachNode provides an implementation for deliver (see figure 5.2); once a
message has arrived the message is passed on to a message reader that determines what
is done with it next, this will be discussed later. It is this attribute of Pastry that is used
to construct the distributed indexing service and provide an environment where nodes

with similar interests may discover each other.

5.2 System Classes and Packages

The classes implemented to create the application are grouped into various
packages. These classes are developed in order to satisfy the design ideas presented in
the previous chapter (see Appendix A for a code listing). Each package contains classes
that together perform certain tasks. DIT.PeerReach contains the classes that implement
the necessary classes to layer the application over Pastry, as discussed above.

Two of the more important packages are that of the Vector and Community
packages. These two packages will be discussed before moving on to the other

packages.

%)

5.2.1 The Vector Space Modelling Package

«nterfaces
PRVectar
@ TraningSet 0 addfaluz
© pputReader 0 addZeto)d
o TrainingSet) a 9) Arrayldst o compare)
o buldlaeingse) |—m————— — — — — — — — A e BuferedReade o du:Frcd_.n;u
drterfaces o skemmer) o geriag 0O getMairi
VSHStemmer o STIDUS!OA o raacfioed) O prrdvac)
0 updateTralringSel
o getsternmeclist [- T T
o stemUst) | |
11
‘} ' || | |
| dterfaces | |
| T 0 VectorFactory L @ NodeVector |
|
| : o buldT (I o Nodevacor) |
| 1 o gefMids) i i o Nodevactor) |
: Il O addvaue) |
(2 Stemmer A | | O addZero]
4 stemmedUst Arrantig ’ II" | ? ;gf:;an)w |
Q {TH
© addd | | o getatid I
' | ; |
o addd | | o get8ze]
O QeResURBUEIQ i | = | o printlecq O Fievector
o geResuiiLengthd | | o | o printVetlard
O gefStemmedLish) esimraea s | | » o Fitevactord
o elern) 1 upsstes | | | o FuaveutonQ
o stemUstd | | 1 | o addvaded
O loE¥ing) | I | | N 0 ssdZzn(
| | | — o compaed
| () vsaFeVedtorFactory | e j :ﬁ:::ulr
R [—
o vsMFiaVetoFatior) | | o getSzE0
0 bukdT) | | O prinfiec)
o buitdvechrd | s |
o getFileveclord | |
O gelTRA() | |
o stammerd 1 |
o staplisty @ VectorMenager | |
! creates 0 builiNodsYetlor)
JI o builaTianingSet)
0 gstFileQ
| ot o giNodeVector)
A NS © readTraning3eld
O WrdweightlList
= courtar it

of vadnightiis)

o vadieightistd
gstDiesonand

3 getHashMzp)

o selis¥)

o slarevirdiveighLizi)
9

[+]

o O

todsraplistd
updateWirdeight sl

Figure 5.4 Vector Space Modelling Package UML diagram.

The Vector Space Modelling package, DIT. PeerReach.vector; groups together
classes that implement the algorithms used to represent documents as vectors. This is
one of the two core packages within the application. The package provides 3 interfaces,
PR Vector, VectorFactory, and PRStemmer for extensibility. The package has been

designed using the Java pattern, Factory [88].

PRVector
PR Vector is an interface to any class that wraps an instantiation of the class
Jama.Matrix; Jama [89] is an external API that provides matrix algebra functionality.

Jama implements a Matrix class, a vector is a one dimensional Matrix, thus the Matrix

63

class provided by Jama can be used to represent a vector representation of files of nodes
etc. Jama is discussed in more detail below. Filevector and Nodevector currently
implement PRVector. FileVector is an abstract representation of the term frequency
vector discussed in section 3.2.2. All implementers of PRvector must provide methods

of comparing two vectors
- public double compare(FileVector fv);

The returned value of type double is the similarity metric that is used to
determine whether the two files represented by their Filevector are similar. The class
NodeVector that extends PRvector is an abstract representation of a centroid or node-
vector (see section 4.3 4), which represents the average interest of a node. Again the
compare method is used to assess whether two nodes are similar enough to add each

other to their community tables.

VectorFactory

VectorFactory is an Interface to a class that implements an algorithm to
construct a vector of the form prRvector. This class is currently tmplemented by
FileVectorFactory, which is used to construct FilevVector representations of text
files stored by a node. The reason for using an interface here is to allow other vector
factories to be developed. This allows the application to be extended to share other file

formats such as images or audio.

PRStemmer
PRStemmer is an interface to any class implementing a stemming algorithm,
stermning is discussed in section 3.2.3. All classes implementing this interface must

implement the two methods.
-~ public void stemList (Arraylist al}:
- public ArrayList getStemmedList();

These two methods take a list of words contained in an ArrayList stem the
appropriate ends and return the list of roots. Currently the interface is extended by the
porter-stemming algorithm [90] (see section 3.2.3), which is implemented in the class

Stemmer. PrStemmer allows the use of other stemming algorithms.

6d

TrainingSet

TrainingSet represents an abstract implementation of the global dictionary or

word frequency dictionary.

VectorManager

VectorManager is a class that handles all interactions between the ecror
package and the rest of the system. This class also controls the actions within the

package.

5.2.2 The Community Package

cinterfaces
% java:rmizRemote

I

«interfaces

& CommunityServer € RemoteCommunityManager
& CommunitySeiver(O createComrmunityLink(
O updateCommunityTahle(

)

(2 CommunityManager

———

(& CommunityTahle siteing o CommunityManager(

r | @ createCommunityLink(
O addNeighbour() @ informCaornmunity
O rermoveNeighbour() Q updateCormmmihtTabla?
o searchTahle()

Figure 3.5 Community package class UML diagram

The Community package contains classes for setting up and managing
community links (see figure 5.5). Community links are made through an RMI

connection. Community tables are kept up to date through the exported RMI methods:
- createCommunityLink (PRNodeHandle) ;

Called by the communityManager, and:
- updateCommunityTable (Vector nodeSet);

Called by the RegistryManager

65

CommunityServer acts as the server and CommunityManager acts as the client,
in a peer-to-peer environment each node is an RMI server and an RMI Client (see figure

5.6).

(_.M_Peer > (e)

Stubs
) v
Remote | Remote Remote | Remote
eference|Reference Reference [Reference|

‘h-

f Layer

r; i 1T
mwﬂhid ML I I Hm:'l 53 ml

| Trans)

SHPEER ﬁﬁl 7 bEE

Community Layer Link

Figure3.6 RMI links between two peers, each one act as a server and a client

66

5.2.3 The Register Package

@ IndexTable

4 inddable: Vector
4 Intble. Hashlable
« peernode PeeiReachN

2 addNode()
o removeMNode()
o =earchTablad

cinterfaces cresles
€ ricezpastry:HodeldFactory
& generateModeld(
¢ (D RegistryManager
M 1 o ReaistryManagei()
(9 ConcReglstryFactory) ConcRegistyidFactory < findSimilarNodes(
- o 1eqister)
2 ragistry. Sting a registry. Sling) o registeiNode)
o ConcRegistyFactorg) o ConcRegislldFaclory) [uses < retumsSimNodes(
o generaleModeld() o generateNodeld) o routeRegistfegst
o selRg) o selRg) o selinlerests()
o selNodelnstance()
o setNodeVeclor()

Figure 5.7 UML class diagram of the classes contained in the register package

The register package contains classes that are used for registering a nodes
interests and building index tables when a node receives a registry message. The
package contains one interface RegistryIdFactory to facilitate methods of creating
registry messagelds. The Registryld class is an abstract implementation of a
RegistryId and is created by hashing keywords entered by the user.
ConcRegistryIdFactory implements a method to create the RegistryId. This is done
using a hashing algorithm (see section 4.3.6), currently the SHA 1 hashing algorithm is
used. IndexTable is used to register any other nodes that are to be registered at this
node. If a registry message arrives at deliver () in PeerReachNode it is first sent to the
MessageManager to find out the type of message. The MessageManager then passes it
to the RegistryManager and it is added to the index table.

Below is a sequence diagram and accompanying description that illustrates the
process of registering a node at a rendezvous point. The registering node then returns
similar nodes to the registered node. The registered node then contacts the similar nodes

and sets up community links.

67

A::ReglsrtyManager A: :IndexTable B::RemCommManager B:Commitable X:: RernCommManager Y::RemCommManager Z::RemCommManager
* % laddNode(B::PR Pm{odeuanme) T i [|
(- " | [|

‘r l:lndsimilarﬂodles(B::PRNodeHandle) |

|
|
\
« 2 | | i
|
|
|
|

(1)

(2) |
| searchTabIe[BgyRHndeHnndle) | | |

l3]L et Vectomodﬂet
\

updatecomm]‘gble[nodmt) >)
‘) addNeighbour(flodeset)
; Lln!prmCommn
| ' i .
@, i
; createCommunityLink(B::PRNodeHandle) [
‘ F ** createCommunityLink(a,.rmmanB_)#' f
ﬁﬁ@mmﬂn_ﬂvl-lﬂk(!‘wmu >

*registerNode(B::PRNodeHandle)
** RMI Calls

Figure 5.8 Sequence diagram detailing the sequence of events to add a node to a nodes community table

Explanation of sequence diagram in Figure 5.8
(1) addNode () is called in the RegistryManager and a PRiodeHandle object is passed in
that contains the node to be registered details. This method adds the node to the register

using findSimilarNodes ()

(2) The registry Manager then attempts to find other similar nodes by searching the

index table using searchTable ().

(3) The search returns a nodeSet containing similar nodes using updateCommTable ().

(4) The Registry Manager then returns the nodeSet via an RMI link to the newly

registered nodes Community Manager using addiNeighbour ().

(5)The registering node then adds the nodeSet to its community table using

informComm (), createCommunityLink() .

(6)The community manager then contacts the community nodes to set up community

links

68

5.2.4 The Message Package

(2 ricexpastry=messaging-Message

d Wessage()
d Message)
d Message0

& wmessageq dntarfaces

o getCredentials() & Javazio=Serializable
o getDate(

o getDestnaton($

o gelSenderdd(

o qetStream(l

2 hasPrioniyQ |

O setSenderld(|

o slamp(© MessageManager

o MessageManager()
U reaoMessaged
o selmlode)

|
| L
@ PRMessage | -}

| f;
o nvec NodeVector & — — — —
> source Nodeld G HessageRoader
= 141yl Hudely o Mess Message
J PRMessage(o MessageReader()
2 QeliPaddr) o getMsgTyped
o gefhodevecton) o getlodeHandiz(
o gelPeerReachNods
O toSting(

Figure 5.9. UML Diagram of the Messaging Package

The Messaging package contains classes that represent messages and can deal
with messages that are sent between peers.
PRMessage extends the class rice.pastry.messaging.Message.PRMessage

and is used to register nodes at the various rendezvous points.

5.2.5 The Node Package

cintarfaces
€ ricezpastry:NodeldFactory

& generateNodeld(

| l G javaztang:String

| T
| |
(@ ConcPRNodeldFactory | — — —
o nid Hodeld © rice: :
(2 javazsecurity:MessageDigest IG | * userinfo: Sting KiGR:pastry. g
o concPRNodeldFactorsd | — — 3 o Nodeldo
o generateNodeld(o Nodeld()
o gelNodeld(o Nodeld()

Figure 5.10. UML Diagram of the Node Package

69

The Node package contains classes for constructing nodelds. Currently the Node
package contains ConcPRNodeIdFactory, which has methods to construct and return

nodelds based on user information.

5.3 Imported APIs

Aside from the native Java API imports, a number of other important APIs are
used to realise the system which require more discussion. Pastry is one of the main APIs
imported and has already been discussed above. In this section JAMA a matrix algebra

API is discussed as well as the PJX API [91] that is used to read text from PDF files.

5.3.1 JAMA: A Java Matrix Package

JAMA is a basic linear algebra package for Java. It provides user-level classes
for constructing and manipulating real, dense matrices. The Matrix class is the main
class provided by JAMA and it provides the fundamental operations of numerical linear
algebra. Various constructors create Matrices from two-dimensional arrays of double
precision floating point numbers. Various gets and sefs provide access to sub-matrices
and matrix elements. The basic arithmetic operations include matrix addition and

multiplication, matrix norms and selected element-by-element array operations.

<<Interface>>

G PRVector

(D Flievector | {*) NodeVector

sales
crexles ciedtes

() Jama.Matrix [

Figure 5.1.1. UML Diagram of the Jama.Matirx interactions Package

70

JAMA is used in this system within the dit.peerreach.vector package.
Dit.peerreach.vector.FileVector and dit.peerreach.vector.NodeVector act
as wrapper classes for Jama.Matrix, which is used to represent a vector. There are a
number of useful methods that are implemented by the Jama.Matrix class. norm2 () may
be used to normalise the vector as was described in section3.2.2. Filevector and
NodeVector use the norm2 () method so as to compare vectors and obtain a similarity

metric.

5.3.2 PJX

PIX {91] is a Java class library for PDF software development. Initially this
application has been developed to deal with conference papers. As the majority of
papers come in PDF format it is necessary to provide a mechanism for automatically
extracting text from a PDF document in order to be able to represent the docwmnent as a
vector within a term space. The PdfReader class within the PIX API provides low-level
access to an existing PDF document. Once the PdfReader instance has been constructed,
a PdfManager instance can be associated with it. The text from a PDF may then be
extracted and saved into a text file for further processing.

This chapter has described the software design and implementation of a
prototype that implements some of the main functionalities needed to realise the
proposed solution outlined in Chapter 4. Code for the major classes is contained in
Appendix A. This implementation does not constitute a fully operational system but has
served to develop a working prototype to demonstrate and evaluate the ability of the
system to satisfy the basic requirements of the proposed system. It was desired to
develop a p2p system that demonstrates an improved performance in the areas of
scalability and robustness compared to other systems detailed in Chapter 1. This has
been done through the development of a software prototype that allows users to form
communities using the vector space modelling of stored documents and the creation of
node vectors. The prototype also realises search vectors, Using these functionalities the
system is able to search for objects based on semantics rather than keywords in a more
organised fashion. The implementation also provides the functionality needed for the
routing and receiving of messages from the Pastry substrate.

Before developing a second version it is first of all necessary to test the current
code. Testing of the code will evaluate its performance in order to assess how well it

realises the system requirements and show what other considerations need to be taken

71

into account at this stage of the development process. The next chapter discusses the
simulation and evaluation of some of the core assumptions and functionalities
implemented within the discussed prototype and draws conclusions and suggestions for

the next stage of development.

72

Chapter 6

Evaluation and Discussion

The previous chapter detailed the prototype implementation of the p2p system that was
described in Chapter four. It is necessary to cvaluate the core functionalities of the
developed prototype to assess how well it might perform when deployed over a large
number of nodes in comparison to a less structured p2p node configuration. In addition,
the system has a number of configurable settings and attributes. One example of a
configurable setting is the cut off value of a similarity metric that determines whether
two documents are similar. The values that are chosen for these attributes influence the
efficiency, speed and scalability of the application. In order to optimise and choose
appropriate settings and values, some simulation and evaluation was required. It was
also necessary before developing the system, to assess the vector space modelling
algorithms that were discussed in Section 3.2.2. It was also important to investigate how
a system with a community layer performs in comparison to a non-structured p2p
system. This chapter provides a discussion of the evaluation and simulations performed.
Specifically, the simulations were intended to answer the following questions. Can the
vector space modelling of documents and the idea of a centroid vector be used to
accurately identify a document that is similar to a group of documents? When using the
implemented Java vector package, what is an approximate threshold or similarity metric
cut off point to determine whether two documents are similar? Does the addition of a
community layer for the organisation of nodes into content sensitive communities
improve searching compared with a non-structured node organisation? The chapter is
split into two major sections. The first part of the chapter presents the experiments and
simulations that were cartied out to answer the above questions. The second part of the
chapter includes a discussion of the overall application, observations made from the

work and points to possible future related work.

73

6.1 Evaluation and Simulation

This section describes the initial exercise of becoming familtar with the method
of representing and comparing documents as vectors. At the time, this task was seen
more as a personal exploratory exercise than a formal research task. The intended
outcome was to gain experience and to evaluate the Vector Space Modelling methods
described in section 3.2.2. Despite this, it provides a useful means of describing m

further detail the task of deriving vector representations and so it is included here.

6.1.1 Evaluation of Vector Space Modelling Algorithm

In order to assess the ability of a centroid vector (see section 3.3.1) to represent
the average subject content, a group of documents and the corresponding node vectors
(see section 4.3.4) ability to represent the average content of a node, an experiment was
undertaken using Matlab (see Appendix B for code listing).

Matlab [92] is a tool for perforiing numerical computations with matrices and
vectors. Desired tasks in Matlab can be described in the form of an m-file, which 1s a
file containing a series of Matlab commands that are executed in sequence. The vector
space algorithm described in section 3.2.2 was implemented as a Matlab m-file. This
type of evaluation or simulation environment is a more sensible choice in performing a
task of this type. Matlab’s extensive support for matrix mathematics through ifs
toolboxes increases implementation time compared with coding in other languages. The
first step was to gather 15 research papers in PDF format. These 15 papers were selected
from three main topics. 7 of the papers detailed research on peer-to-peer networking, 3
contained work done in the area of control engineering and 5 papers dealing with RF
standards. The text was stripped from all PDF files and a plain text file was created for
each one. The m-file was implemented to read in each text file individually. After
reading each word a space in an array was created for each new word. For each re-
occurrence of the word, a frequency counter was incremented and stored in the array.
The number of documents that the word had occwmred in was also recorded. A list of the
thousand most common words in the English language was obtained and compared
against the constructed airay; any word occurring within the 1000 most common
English words was removed from the array, so only words that contained semantic
meaning remained. This is the removal of stop words described in section 3.2.3. A

second m-file was then developed in order to calculate a vector representation of the

74

frequency of occurrence of words within each text file. This vector is known as the
term-frequency (TF) vector as discussed in section 3.2.2.

The array of words constructed from the 15 documents contained 8,556
individually occurring words that did not fall into the 1,000 most common words
category. This number of words is quite large, although not implemented here there are
a number of other optimisations to reduce this size discussed in section 3.2.3. This
meant that each vector representation would contain an 8,556-term space. Each term
was then weighted as described in section 3.2.2. At this point, the array contained the
number of documents a word occurred in, denoted & , and the frequency or the number

of times the word occurred within the document set, denoted df, . This now gives the /-

idf representation of each document as represented by Equation 3.1.

A centroid vector for each set of documents belonging to the same class was
then constructed. This centroid vector is computed from the average of the vectors
representing each of the files in the document set. A third n-file was developed to
perform this task. Given a set of documents S and their corresponding vector
representations, as previously calculated, the centroid vector (' can be calculated using
Equation 3.4.

To test whether the centroid-based classifying method could correctly determine
document similarity to a centroid vector, 3 new documents were introduced to the
experiment. Each of the three documents was similar to one of the three topics of the
original sets of documents. In order to identify their subject, a vector representation for
each document was found using the array of terms/words found from the 15 documents.
Each new document was taken and the similarity between each document and the three
constructed centroid vectors was found using the cosine measure given by Eqn 3.3.

As can be seen from figure 6.1. A centroid vector representing the average
content of each of the three sets of documents was produced. A documents similarity to
the centroid vector is measured between 0 and 1 (1 completely the same and 0 having
no similarity). As can be seen in each case, the document vector representing the three

new documents correctly matched the documents to the centroid vectors.

75

C ontral Centroid RF-starclards Centroicl
(]

o 15 081 & 08 06729
+= i}
(IEJ gg c06 —
£ £04 -
€04 - S 1, | 01814
F 021 R 00493]
'(% 0 @ g [E] —— |

1 2 3 1 2 3

Docurmnerts Documents
Peer-to-Peer Certroicd

204 4 03601
o : Peei-to-Peer Document
€ 03 1—=
g 02 1| . Control Document
8 01 1] 00832
g 011 [H84296 RF-Standaids Document
G ol 100 wem []

| 2 3

Documernts

Figure 6.1.Results from Matlab vector space implementation.

This exercise provided a good way of understanding the idea of the vector space
representation of documents. It is important to note that the results that were observed
although very promising the experiment cannot be used as a full proof of concept
regarding the vector space modelling and classification of documents. There have been
numerous more exhaustive performance evaluations of the method that have proved its
ability to identify semantics in natural language based texts, one example can be found
in [93]. Given this, the experiment serves mainly as a preliminary implementation
evaluation. For this reason only small number of documents were necessary to perform
the exercise. This helped to keep the processing necessary to a minimum yet still
gaining the required outcomes from the exercise. The algorithm was used in its basic
and most crude form without any optimisations but made the transition to implementing
in Java much smoother. The success of this experiment led to the integration of the
vector space modelling algorithm into the application, this was implemented as the

Vector package, see section 5.2.1. As Matlab and Java support different levels of coding

76

support the transition to Java was not as straight forward as translating the code line for
line. In order to reduce coding time, JAMA [89] an external API that supports matrix
mathematical functions much in the same way the Matlab toolbox does was imported.
This significantly reduced the complexity of the transition. Java’s support for object
oriented design techniques also made implementing the functionality cleaner than the

more structured coding techniques needed to write m-files.

6.1.2 Simulation of Peer-to-Peer Networks

As was stated above, it was required to simulate the system to determine
appropriate configuration parameters. It is also necessary to get an accurate idea of how
a peer-to-peer system will perform in the real world. Deploying p2p systems on the
Internet for the purpose of testing is impractical and prohibitively expensive.

In order to produce realistic results, it is necessary to develop simulations that
resemble real-world p2p networks. P2P algorithms and protocols need to be tested by
simulation under network models that attempt to mimic typical node interactions, traffic
patterns etc. Decentralised p2p systems are more sensitive to performance issues than in
comparison to many other centralised systems and thus require such simulation. The
reason for this is that decentralised p2p systems are highly dependent on
communication between peers; as a result the system becomes highly dependant on the
network. In the case where node connection speeds are low, bottlenecks can occur. As a
result of this bottlenecking, it also takes more effort to search through a p2p system as
nodes are not responding within a given interval of time and messages, are forwarded
many times to an ever-increasing number of nodes. This in tum adds to bandwidth load
and affects the time needed to respond to a query. Since algorithms and protocols are
often sensitive to traffic and network behaviour, there is a clear need for accurate p2p
network models. At this point it is useful to consider some p2p modelling concepts and
systems that may help in predicting the performance of the system that has been

described in this work.

6.1.3 Simulating a Peer-to-Peer File-Sharing Network

The simulation of p2p file sharing networks has mainly been carried out for
specific algorithms and systems [80]. Although it is clearly important to model the
underlying network is also important to model the behaviowr and interests of the various

users. This is especially important in the case of the system discussed in this thesis, as

77

connections from a node are reliant on content stored of that node. In order to simulate
and model some of the important interactions between nodes, it is very important to
model the content distribution and the interests of peers. Schlossler and Kamvar in [80]
classify these parameters into two types, content distribution parameters, and peer
behaviour parameters.

Content Distribution — It is necessary to accurately model the type of content
each peer carrics. P2P networks are far from heterogeneous in terms of type and volume
of data shared; hence a model reflecting real world p2p networks is required.

Peer Behaviour — It is also necessary to accurately model peer behaviour, 1.e.
what kind of content is a peer most likely to search for, as this will affect the queries
being generated.

One observation that can give hints on how to model the behaviour of users who
search and store content is presented in [94]. It is observed in [94] that many storage
systems such as WWW follow a Zipf distribution. A Zipf distribution implies that small
occurrences are extremely common, whereas large instances are extremely rare. Within
a p2p file-sharing network a Zipf distribution would mean that a large number of users
search for a small but popular selection of the documents stored. Observations of Zipf
distributions have strong implications for the design and function of the Internet. To
model the community layer it is proposed to take the above observations on content
distribution and Zipf’s law along with Schlossler and Kamvar‘s method in [94] to

develop a simulation model. It is first necessary to discuss the model in more detail.

6.1.4 Modelling Content Distribution

It has been shown in section 4.3.6 how the community layer of the application
creates and manages connections to other peers that are based on the interests of the
users within the system. Within this model, # categories are assigned as follows (see
Eqn 6.1). The set of categories C that are available within the simulated community is

defined as.
c={c.c,.c..C, Eqn 6.1
Where ¢, is an integer between 0 and »n that represents a category from the set

of n categories. Each peer i within the model is assigned a selection of content
categories from the set C. This selection happens according to the Zipf distribution. This

models the observations discussed above about the distribution of content on the web.

8

Equation 6.2 {94} is a Zipf distribution model, where p(c,)is the probability of a peer
being interested in the category c, .

1

CJ

ple) = Egn 6.2

2

!
;i

i

The content categories for each node are assigned using equation 6.2. Consider
the case where a peer has only two interest categories, the two categories with the
highest probability for a particular peer will be chosen. After assigning content
categories to each peer, a peer’s “interest level” is assigned for each of the assigned

categories ¢, . The interest level determines what number of files from each assigned

category a node will “store”. The reason for this is that not all files from the assigned
categories will be stored by the peer. A peer is assigned files by randomly choosing a
number of files from the categories that have been assigned to satisfy the nodes
calculated interest. In other words if a peer has the capacity to store 10 files, first of all a
nuinber of categories are assigned to the peer as in equation 0.2, it is then necessary to
decide how many files from the categories chosen will be stored within the storage

capacity of the peer. The calculated interest level in ¢, deternines the percentage of the
storage capacity that will be taken up with files from ¢, . The interest level is calculated

by a uniform random distribution. Each file may be uniquely identified by a file number

and the category it belongs to i.e. {c,,r}, where ¢, is the category the file belongs to

i?'

and 7 is the files identifier within that category. Therefore a file may be identified using

S

In order to model the types of queries that will be generated by each peer it has
been observed in [80] that peers search for files that they arc interested in, as in the
same category as the files they store. Within the proposed model, /ifeVectors (see
section 4.3.4) stored by peers are used as search queries. This means that peers will
search for content similar to that of the content that they already store.

Having described the simulation model, it is now necessary to describe the

implementation of the simulator and the steps taken to realise the model.

79

6.1.5 Implementation of the Simulator

It is interesting to note that simulations of p2p systems and algorithins are
mainly constructed for specific p2p algorithms and cannot be easily adapted to other
implementations. More general simulators that meet the needs of p2p designers do not
currently exist. As a consequence p2p designers are forced to design their own
simulators, which is quite a large undertaking. There are however network simulators
that aid in the development of network models, These simulators can be adapted to give
the low-level network implementation upon which a p2p simulator can be built. It 1s
then possible to model the desired p2p system to gain insight about how it may behave
on the Internet and to determine appropriate configuration parameters for the system.

As was mentioned above, it was required to create a simulation environment that
could assess the performance of the community layer compared to other methods of
creating node links. The first task in implementing an appropriate simulator was to
review the available low-level network simulators. The first prerequisite in choosing a
simulator for this work was that it must be compatible with Java. Using a stmulator that
is compatible with Java allows the reuse of much of the code already written for the
implementation described in chapter five. The following section gives a review of some

of the more interesting and potentially useful simulators that were encountered.

6.1.6 Network Simulators

The following section gives a brief overview of some of the simulators that were
evaluated. Although the simulators evaluated were not designed to model p2p networks
specifically, their design was flexible enough to allow for them to be used in this way.
From the literature it was found that the NS simulator and the later version ns-2

appeared to be the most popular, For that reason the NS simulator was evaluated first.

80

Network Simulator (NS)

o] »| .| Error Model
Application Application
Queue
" Error Model

Agent Agent
Delay ——'
A
Node Link Node

Figure 6.2. Block Diagram showing the NS Network Model.

The Network Simulator (NS) [95] was developed at U.C. Berkeley, the
simulator is a discrete event simulator. This means that the system is considered only at
selected moments in time (the observation points). NS is mainly targeted at networking
research. It gives substantial support for the simulation of TCP [36], routing and
multicast protocols. NS is written in C++ and uses a scripting language known as Tcl
[96] (tool command language) as a cominand and configuration interface. The simulator
is event driven and runs in a non-real-time fashion. NS also includes single or multipte
traffic generators and statistical generators it also allows such functionality such as FTP
[97] and Telnet [98] to be attached to any node. Network transport protocol behaviour is
simulated by attaching agents to nodes (see figure 6.2). Links between nodes are than
modelled as simplex or duplex links with the option of defining capacity, delay etc. NS
also provides a way of outputting trace data. NAM (the Network Animator) is a Tcl
based animation tool that can be used for viewing NS trace files.

The NS simulator appears to be a very popular simulator and appears in many
texts and papers [{99] [100] [101}, this is why it was the first simulator to be
investigated. However, although NS and consequently the ns-2 simulator provided very
desirable qualities, it wasn’t Java compatible. It was also recommended that NS should
not be run it Windows, which is the current operating system used in the development

of this work. For this reason NS and ns-2 was not investigated any further.

SSFNet
SSFNet [102] is another well-documented simulation environment. SSFNet

provides a collection of Java SSF-based components that can be used for modelling and

81

simulation of Internet protocols and networks at and above the IP packet level. SSFNet
models can be written and configured in DML [103] (Domain Modelling Language) a
scripting language that is used in the same way Tcl is used by NS.

Having evaluated a number of models in SSFNet, it was found that the code was
somewhat difficult to wrap around the existing PeerReach implementation. A
significant rework of the PeerReach code would be needed to perform the necessary

simulations. So, this simulator was also rejected.

Java Network Simulater

The Java Network Simulator (JNS) [104] is a Java implementation of ns-2. INS
is platform independent unlike ns-2. Again, this simulator allows developers of
protocols to simulate and test their protocols in a controlled environment. JNS is purely
Java based and does not provide any scripting configuration. The simulator also
provides trace outputs that may be viewed in Javis [105]. This simulator satisfies the
minimum set of desired attributes but as we shall see below, it was not chosen, as a

more suitable simulator exists.

JiST
One of the main motivations for the development of JiST [106] is the observation
that most published ad-hoc network results are based on simulations of few nodes
(usually less than 500 nodes), for a short duration and over a limited field. Larger
simulations usually compromise on simulation detail or duration, reduce density or
restrict node mobility. JIST has complied with several self-inflicted constraints from the
outset [1006]:
e Do not invent a simulation language, since new languages, and especially
domain-specific languages are rarely adopted by the broader community
s Do not create a simulation library, since libraries often require developers to
clutter their code with simulation specific library calls and impose unnatural
program structure to achieve performance
s Do not develop a new system Kernel or language runtime for simulation, since
custom kernels or language run-times are rarely as optimised, reliable, featured

or portable as their generic counterparts.

82

JiST transparently introduces simulation time execution semantics to simulation
programs written in Java and they are executed over an unmodified Java virtual
machine. JiST converts a virtual machine into a simulation system that is both flexible
and surprisingly efficient and scalable.

One can write JiST simulation programs in plain, unmodified Java and compile
them to bytecode using a regular Java language compiler. These compiled classes are
then modified, via a bytecode Jevel rewriter, to run over a simulation Kernel and to
support the simulation time semantics.

The main reason to choose this simulator would be that it greatly minimises the
fearning curve and facilitates the reuse from building simulations. However as we shall

see a more suitable simulator was found.

JavaSIM/J-Sim

Jsim [107] was formerly known as JavaSIM and is a component based
simulation environment. This means that the basic entities in J-Sim are components, but
unlike other component-based software packages/standards such as CORBA or
JavaBeans, components in J-Sim are autonomous and are a software realisation of
integrated circuits (ICs) found in electronic hardware design. The behaviour of J-Sim
components is defined in terms of contracts. A system can be composed of individual
components in much the same way that a hardware module is composed of IC chips.
Also, components can be plugged into a software system, even during execution. J-sim
has been completely developed in Java, which makes it platform independent and
extensible.

J-Sim is fully integrated with a Java implementation of the Tcl interpreter (with
the Tcl/Java extension), called Jacl. J-Sitn was chosen as the appropriate simulation
environment. The reasons for this were [107]:

e J-Sim is written in Java, this makes it platform independent and thus may run on
Windows, it also means that it can be integrated with classes already developed
for the p2p application. This also works in reverse; the development of the new
classes required for simulations could be useful for future implementation.
Development of simulator and the implementation become a single development

process.

83

e J-sim provides Tcl scripting support that makes the integration of projects even
easier as well as enabling online dynamic testing.

o J-Sim developers have also provided clean and easy to read documentation and
tutorials on their website [107].

e The idea of components within J-Sim creates aide the development of
simulations, it was found that this was a much more natural way to visualise the
simulator class interactions than was found while evaluating the other simulators
such as SSFNet, JNS and JiST.

o J-Sim has also been recommended over some of the other simulators by the

well-respected NS research team as a Java alternative to NS or ns-2.

6.1.7 Simulating with J-Sim

As has been mentioned above J-Sim is a component-based simulator. This
means that each element within the system is a component. When writing classes to
represent network elements on top of J-Sim each element class should extend

drcl.comp.Component .. Components are connected together through ports.

O drcdzcompzComponant
| O Simuation
[& starfereStarrp ong
C K
o wlaNcOFIes il phol
Sotsup .
o simulsyond & Nemwrg -
2 Hode

| o gevghzightour) _[ﬁ —
o gelorfManagerl
o geMeDescrigtoriDO
| 0 gerlosed
O geMumbaoNEs)] outs racematen
O numbeHs10 <
O numbeHAsI o1 ‘_
o printTopategn) T
|o sy |
e B ; © pecrReachiode |

] A & Peeeainiodz)

<

I S o getheighborisi)

4 O getNsigrcE(

| O gEtNoceIs)

0 s2aRFIR10

v
[© oir-peerrescrevectorstiodevecter | seanrEe20 000 |————— 4

o
0 ssthielgrciis)
>
o

4

0 satNeighbcurtiodaVerkorisi() s " '_—I
satioceVe:otoNode DTaLI(i oon or=F il I

O satRardomMeighborlisi)

Figure 6.3. UML diagram of PeerReachNode class and simulation elements extending J-Sim 's

Component class.

Within the developed simulator (see Appendix C for code listing),

PeerReachNode was written to represent a node within the system model.

peerReachNode extends drel.comp.Component, see (figure 6.3 above).
peerReachNode has one port attached to it. This port is called the “commandPort™.
PeerReachNode can be connected to other elements within the simulation through this

port {see figure 6.4).

,/) T s~ Component

CommandPort

PeerReachNode () i [
7—L Data to other

elements connected

to port
\\ /

Figure 6.4. Components within J-Sim are connected together through poris.

When a class extends component it may override the method, process(Port p,
object data). This method is callied by J-Sim when data has arrived at the specific
port. The implementation of process() within the extended class defines the
components behaviour and acts as the components ‘contract’. PeerReachNode is a
representation of a node, within PeerReachNode process () . This method implements
the proposed p2p algorithm developed as part of this work. When data arrives at
PeerReachNode’s port, it is processed by this method. The data that has arrived may be
in the form of a query. A query is processed by first checking the files assigned to the
specific node to ascertain if there are any query matches. This is done using the
similarity metric. A file is considered to be similar if it exceeds a similarity metric value
cut-off point. The similarity mefric between two files x and y is calculated from the
x.compare (y) method from the Filevector class. If there is a query match /hit, the
node will return a query hit to the issuing node. The query may also be forwarded to the
most similar nodes within the node’s community table. Similar nodes are determined
again by using the compare () method but in this case the searchvector is compared to
nodevectors. Search queries will only be forwarded if the TTL of the query has not
reached zero.

The simulation environment can be seen as a wrapper around the existing
application code where the application outputs and inputs are stubbed and the

functionality already designed is “exercised” by the simulation code.

(RendezVous T
- @ javaautit:Arrayist [
':::ﬂzz';%"‘o T | ——3 O netutder
2 J
o 1emoveMode() r' . - vmm—
IT' le.”::)s:m:z.ﬂ L l o getCommuink()
e o sloreOtjec - @ simulation ! 5 getiodet
o getNode2
| 1 = slatTimeStamp: long ® ConfigManager 9 ‘g 220 .
b4 —| = IntalNoOFiles Int o getlumcConnectonsi
ITzPeetReachopersistencezPersistentStore = o otganiseConneclions
@b heperstely & Simulation o ConfigManager
a o gelAvgNelghbout(o getEventsConfiguration)
? :‘:E‘-"Dtl?‘:o o getConfigManagerd o geffilasConfiguration()
oW [o getiedDescriptonpy- 3 © 9ewiobalsConfiguration © contentManager
= o getlode) o getodeVetlorList) .
o getumberofiodes o getNodeVectortoModeldiis
[© oir=peerReachivoctorztiotevector | ‘ A o > geladesConturatond | r
s nfamston | o numbertds20 o gefTopologyConfguration0] | @ NodesConfig
(] @ prinfTopology) o selNodevectorList]) b
o stanp o ModesConfig)
o updatePlot)) o getNoOModes(

o getlodeConfiglist)
o getNodeConfiguration()
o getNodeVactorFromus!
I o regster(

o updateModeVetlorList)

stz [0

Boaiaciiite == q)[© piT=PeerReachovectorFileVector
2 PeerReac [

Figure 6.5. UML diagram showing the interactions of the main Simulation class with the

configuration classes.

The first step in setting up a simulation involves configuring the nodes. The
simulator is not required to model the Pastry routing layer as analysis of Pastry is
outside the scope of this work. In order to provide rendezvous points for nodes to
discover each other, the Rendezvous class sets up N arrayLists (see figure 6.5 above
for class interactions), one for each category being modelled as in equation 6.1. The
ContentManager then assigns content categories to each node within the simulation.
The content categories are assigned by way of the content distribution model that was
described in section 6.2.4. When the content categories have been assigned, the nodes
register themselves in the ArrayLists corresponding to the category they have been
assigned. Nodes also store a number of files. Each category has a number of files
associated with it. A node is also assigned a number of files from the appropriate
category. From these files and the file’s associated filevectors, a node has the
information required to calculate its nodevector. All Nodes and their associated nodelds
and nodevectors are stored and managed by a configuration manager (see

ConfigManager in figure 6.5).

86

topology:
node: B (3]
neighhovs: 6 11 13 17 ghbows :
bhanduidthCinsout)>: 520,520 banduwidth<insout)
node: 1 nod 11
neighbors: 2 § 14 15 neighbors: B 6 13 17
Rnnduidl‘h(insout): 520/520 banduidth{insoutd>: 528,520
node: 2
neighbhors: 1 5 14 15 rpighbors: 9 17 H 19
]mmluuth(in‘out): 520,520 520,528
3 13

3 > u]hhm--*: 11 17
: 528/520 banduidthC¢insout?: 520,528
nndr node: 14
neighbors: b 8 neighbors: 1 2 5 1§
lmmluullh(m/uut): 528/520 banduidthdinsout?>: 528,528
) node: 15
15_|Inhuur"- 1 2 14°15 neighbors: 1 2 5 14
hamluulth(ln/out): handuyidehCinsout?>: 528,520
node: 6 node: 16
neighbhors: 4 7 18 8 neighbors: 1 2 5 14
banduidth¢insout): 520/520 handuidthCinsout): 520,528
node: 7 node: 17
neighbors: 4 6 18 9 neighhors: B8 6 11 13
b, vidth¢insout): 526,528 banduidth<insout)>: 528,528
8 node: 18
313 8 neighhbors: 4 6 7 9
nsoutd: 520520 banduidthdin/outd>: 520,520
9 node: 19
hbors: 12 17 18 19 neighhors: 9 12 17 18
lnllll"N‘l]l(lll/(’llt) 520,528 banduidth{in/out 520,520
the average neighour size is3.8

Figure 6.6. A dos print output of the topology of a simulated 20 node network; nodes discover

neighbours through rendezvous points.

The next step is to populate each of the node’s community tables. This happens
through the classes TopologyConfig and NetBuilder. TopologyConfig and
NetBuilder read in each ArrayList or category list and return a list of neighbours or a
community list for each node. These lists are then stored within the PeerReachNode

class (see figure 6.6).

® drcl:comp:Component

@ drel:comp:Port

() Connection |

A delay. double

o Connection(
o gelinBandwidth()
O getOutBandwidthg)

Figure 6.7 UML diagram of the connection class used to represent network conmections from

nodes.

Once the nodes have been configured, the next step is to configure the

simulation network and the simulated physical connections for each node. Connections

are simple TCP/IP connections and are modelled by the connection class. Each node
has a bandwidth associated with it that must be set. Each node is connected to the
network via a “connection” (see figure 6.8). The connection class is also a component

with associated ports for sending and receiving data.

Node
(\\J Carnectiza
1
WA .
Pars—— {-L\ ll_’lgm;*f‘?) Node

— \CS'J / &

v _£)
(" Cennecien

Cesneeusn

Node o—) =
N Network

Figure 6.8.4 representation of the network simulation. Each element within the network simulation is a
component. Simulated nodes are connected to the simulated network via connections; simulation data is

passed between elements through ‘port’s.

J-Sim Plotter

Having described the simulator it is also necessary to discuss the J-Sim Plotter.
Using the drcl.comp. tool.Plotter class, it is possible to plot xy data gathered from
running simulations. In-order to add plot functionality; the plotter must be connected to
the simulation. The plotter is implemented as a component (i.e. extends the Component
class) and must be treated as such within the simulation. As stated in the previous
section, all data is passed between components through ports and, the plotter is no
exception. Any xy data to be plotted must be passed to the plotter via its port. Within the
simulator developed here, the plotter is attached directly to the simulation class. The
simulation class then gathers the desired data during simulation and passes it to the

plotter. The plotter then displays the data on a xy axis display.

6.1.8 Simulations and Results

The last sections described the implementation of the simulator merged with
PeerReach implementation code. This section describes the simulations that were
carried out using the above simulator and presents the results and the implications of

these simulations.

Determining an Appropriate Similarity Metric

Determining an appropriate similarity metric cut-off point for assessing whether
a search query has returned a search hit or not is difficult. It is unrealistic to suggest that
it is possible to determine an accurate cut-of point for all situations and users needs.
However, for the purpose of simulation and to give an approximate value for the
implementation of vector space modelling developed, the calculation of an approximate
value was investigated.

From one of the subject categories chosen for simulation, one PDF file and its
associated vector representation was selected. The file’s vector was then compared to all
other vector representations of files within the same category. Note that the files
contained within the category were compiled from a search on the IEEE database of
conference papers [108]. It was thus thought that all similarity metrics would be quite
high (i.e. close to 1). This was not the case. One file when compared, gave a similarity
metric of 0.08. This was quite a surprising result, as on first glance the two papers
appeared to contain similar content. However, upon closer examination of the topics of
the two documents it was found that, although the documents did contain similar
keywords and titles, the subject of the content was very different. This is interesting, as
comparing all titles of the documents using a Boolean search techniques would have
deemed them all to be ‘very similar’ documents. Table 6.1 gives a list of the similarity
metrics calculated. After examining each document in detail and considering the
similarity metric returned in each case it is the author’s opinion that a value of 0.3
represents a reasonable cut-off point when using the vector package of classes
developed as part of this work. It is important to note that 0.3 seems like an arbitrary
value but it should be taken into account that it is impossible to quantify an appropriate
cut-off point that will satisfy the requests of every query. This is the human factor. To
deal with this, search applications must allow the human user to configure this

parameter based on their experiences with the system. One can see a similar situation

89

with such search engines as Google [50] or in many every day search algorithms where
on occasion the user may need to perform several searches each time varying the search
parameters to find the desired object. This is an acceptable aspect of keyword searches
and could be described as allowing for a margin of error from one, the search algorithm

and two, the user not fully knowing what exact document is desired.

Similarity metric compared to Doc 1
Doc 1 0.99%
Doc2 0.086
Doc3 0.287
Doc4 0.254
Doc 5 0.284
Doc 6 0.441
Doc 7 0.652

Table 6.1. Simitarity metric of Document 1 when compared to other document

within the same category.

1t was also noted that while running the simulator, the value of similarity metrics
produced from comparing searchvectors to nodevectors to determine what nodes a
query should be forwarded to were generally of the order x.0* 107* . This would suggest
that it is important not to lose any precision with the value of the similarity metric or

that an additional way of highlighting the differences between nodevectors is needed.

Community Based Searches Vs Non-Structured Searches

It was required by way of simulation to evaluate how well the use of community
links performs when compared to a network with random connections. This can be
measured by analysing how many hops and consequently the time it takes for a search
query to return a certain number of results. In order to do this it was necessary to
compare the duration of a query request on an unstructured network to that of a
community-based network. To investigate this effect the p2p simulator was configured
to set up a network of 20 nodes, each node had two different tables containing node
links for forwarding queries. The first table was constructed by way of the community
approach described in this thesis and the other table was chosen randomly. Two queries
were generated with the same scarch criteria but one was forwarded over community

links and the other over the random links. The number of hops ‘travelled’ by each query

90

versus the time taken was plotted until 3 hits were returned for the search query. 3 hits
in such a small document represents a good margin of error should the first hit not be
the desired document. Hits were determined by the file similarity metric determined
above (a value of 0.3). The simulation was run a number of times {o ensure accuracy
and an average plot was taken. As can be seen from figure 6.9, the dashed line plot
representing the query forwarded over community links consistently took less time and
required a significantly smaller number of hops to return 3 query hits than the search
using the random links.

These results suggest that a more structured approach to forming links within a
p2p environment can reduce the number of hops a query must be forwarded over and
the amount of time it takes to return a query hit. This simulation validates the
assumptions made in the initial chapters that suggested a network such as Gnutella
would benefit from more structured community based node links. Note: the sharp
increments seen on the plots are a result of queries forwarded from one node
simultaneously. The different intervals between sharp increments are the result of
different nodes taking different times to search their stored files before forwarding
queries. Nodes contain a different number of files due to the way in which content is
assigned to nodes. Also the diagonal lines observed on the plot do not imply any useful
information, and are the way in which the JavaSIM Plotter has represented the data.
Point A is the point at which the search over community links returned 3 hits (it took 8
hops and a time of 0.24 simulation seconds) and point B is the point when the search
over random links returned 3 hits (it took 15 hops and a time of 0.33 simulation
seconds). The two plots begin at different times because they are issued by the same
node, the lag represents the time taken for the node to determine the appropriate forward

routes and arrive at the first hop.

91

& 1-5im Plotter M [=] E3
<Community V's Non-Stiuctured Links (20 nodes)>
' ! ' ! ' l ' Id____.- B Communtt; Sach @
n J e
121 o -1
10 .
Mumber . J
of hops gf " i 1
6 |:_/—l
2| . |]
8.50 8.55 8.60 8.65 870 8.74 8.80 8.85
Simulated Time

Figure 6.9. Simulation results showing that queries forwarded over community based links return query

hits in significantly less time and over a lesser number of hops.

The same simulation was then run with an increased number of nodes of 100. It
is both interesting and important to note how the two searches performed with an
increased number of nodes. It can be seen looking at the plot in figure 6.10 that the
search over the unstructured links increased by an even greater number of hops to return
the required search results. It would seem to suggest that adding an equal number of
extra nodes to the unstructured network and the community based network the
unstructured network performance gets progressively worse in comparison to the
community based network. This gives initial evidence to the original assumption that a

community based approach would prove to be more scalable

92

& 1-sim Plotter . |Of x|

<Community V's Non-Stuctured Links {100 nodes)=

T T T T T T T T T T T T

-~ Communtty Search W

30 ’ ln-Shuctursd
__.--r seach -

257 J

Number 20 [I
of hops —~
15 [—_

5t - ::-:}_‘:l:-vj
N S o

850 855 260 865 870 875 280 885 890 895 9.00 9.05 9.10
Simulated Time

Figure 6.10. Plot comparing searches over community links and un-structured links over a 100-nade p2p network.

6.2 Discussion and Future Work

Because of the increase in scale and complexity from the original idea, the work
and application presented in this thesis forms the basis of an ongoing research question.
The research has produced the groundwork for a fully functional system. However,
continuations of this work will need to investigate a number of other aspects of the
system. As discussed in section 4.3.6, cluster trees could be used as a possible method
of optimising the community table. Currently the system uses a simple ArrayList
object to index nodes. The system could also be extended to deal with objects other than

research papers. These and other points are discussed below.

6.2.1 Possible Optimisations

As the number of nodes within the network increases, index tables at rendezvous
points become larger. For a node to populate its community table, a subset of similar
nodes from an index table needs to be selected. The reason for this is that creating links
between all nodes found at a rendezvous point would be too expensive in terms of
network bandwidth. Currently the index table is a flat ArrayList. In order to optimise
this, it may be beneficial to organise nodes in a clustering tree using NodeVectors. This
idea has been introduced in section 3.4.

Another potential problem that exists with the current implementation is the size
of vectors representing both files and search queries. The size of a vector in a search

query is a particular problem because search queries wrapping search vectors need to be

93

forwarded over many hops. This can use up a significant amount of bandwidth
compared to keyword matching. The first optimisation would be to investigate whether
a sufficiently accurate vector representation could be calculated from the abstract or
even keywords. This optimisation would only cut down on initial computation time.
The vectors are still of the same dimension. One possible solution to this is dimension
reduction. Singular value decomposition [109] (SVD) is one method that seeks to
reduce the number of dimensions to a singular dimension or value. With this method
vectors may be reduced to one dimension thus significantly cutting down on the size.
This would greatly improve searching, as search requests would require significantly
less bandwidth. SVD is an important step in the process of latent semantic indexing
[110] (LSI). LSI has many similarities to vector space modelling, and uses much of the
same techniques. However, the key step in LSI is decomposing the term frequency
matrix using SVD. An investigation into this fechnique could greatly improve the

current method.

6.2.2 Future Investigation

Another point that needs to be addressed is that of node failure. This is
especially important in the case of maintaining the persistence of index-tables. Other
systems such as PAST have used replication of files to combat this problem. To what
degree index-tables need to be replicated and a recovery mechanism for the reformation
of the index-table needs to be investigated

Also, the use of a “keyphrase” to find users may not provide the accuracy
needed in discovering other users with similar interests. Words have different meanings
and one topic may be classed under several different keywords so an additional meta-
layer may need to be added to form true “interest group” communities. Another point
that needs more attention is the use of node-vectors in classifying a user’s document set.
This use of the nodevector could prove to be naive and a more accurate implementation
of this idea may need to be investigated.

Further evaluation of the proposed idea is needed. The simulations show the
reader that the system described in this thesis has the potential to perform well when
compared with other systems, however more simulation is required. A full investigation
of the system is needed; this would include the optimisations presented in the previous
section and a full simulation model including the DHT routing fayer. Along with this

the simulation model does not accurately model real network connections. Simmulations

94

have also only been run on a small number of nodes. To produce more accurate and
realistic results a more scalable simulator needs to be developed. The current simulator
can only simulate up to a small amount of nodes on a Pentium 4 machine running
windows 2000, Increasing the scalability of the simulator also means it is possible to
assess how well the system scales to a larger number of users joining and how well it

can deal with larger cominunity tables.

6.2.3 Possible Extensions of the Work

Currently the system is being developed to deal with documents containing text.
The system has the ability to deal with PDF files; this is through the use of the PJX Java
API [91] for PDF software development. However the system has been designed to
incorporate enough levels of abstraction so as to facilitate the sharing of other types of
objects. It has been shown that vector space modeling and clustering methods have been
extended to many data formats [71]. The system is open to this type of extension. This
gives the system the ability to deal with objects other than documents containing text.
Another useful application of this system is in the area of music file sharing. There has
been much research done recently into the clustering of music through compression
algorithms. For instance, the method described in [85] could be used to enable the
formation of music communities with the developed system

Another application of this type of system is tackling the difficult problem of
sharing fragments of Electronic Healthcare Records (EHCR) [111] [112] across an
intranet or virtual private network. Notwithstanding obvious security difficulties, the
work presented here could also form the basis for discovering and sharing record
fraginents between healthcare providers. For example, by integrating the indexing
service presented here with a patient identification management system such as PIDS
(patient identification service) [113], nodes storing “istands of information™ could be
grouped into a secure healthcare provider community. This would enable healthcare
providers who were caring for a single patient to form a temporary community in order
to link the scattered fragments of an EHCR for the patient in their care. This could be
the focus of future work.

Building content sensitive communities using state of the art IR techniques has
many far-reaching applications some of which have been mentioned above. The list and
discussion is only limited by ones imagination. The underlying mechanisms presented

in this thesis used to realise these communities may also be extracted and used to

93

provide a decentralised indexing service for many purposes. The true usefulness of p2p
applications in general is still only being realised. As the technology moves forward
new and interesting challenges like the challenges this thesis has addressed will come to
light. P2P provides the curious researcher with a wealth of possibilities and numerous

potential applications.

96

Chapter 7

Conclusion

Peer-to-peer networks have recently emerged into the spotlight as a research hot
topic. P2P systems give users the power to search for and share content in a more free
and non-restrictive environment. P2P is an exciting area of research with many
interesting possibilities. However, p2p implementations such as Gnutella and Napster
suffer from scalability and robustness issues. Also p2p systems for the most part only
employ impoverished query languages. The scalability of systems like Gnutella is
compromised by its search techniques and node organisation. Napster’s robustness is
comprised by the use of a centralised indexing service. Both systems employ basic
search techniques such as Boolean or lexical keyword matching.

This thesis details the research and development of a system that aims to address
the above problems. Robustness issues within a p2p system can be tackled through the
use of a completely distributed approach to search, such as Gnutella. However as was
stated above, Gnutella’s architecture has been shown not to scate well. This thesis
argues that a principle factor contributing to Gnutella’s scalability issues is with its lack
of node structure. Nodes join together in a random fashion, not taking into account the
content a node is hosting or content it is interested in. Searches hop blindly from node to
node consuming bandwidth. In an effort to overcome this problem, a content sensitive
community layer approach to organising nodes was proposed and developed. The
concept draws on the fact that nodes generally search for content that is similar to the
content that they host. A node is described by the content it stores in the form of a
content sensitive identifier, which is the average topic of content a node stores. It is
proposed in this thesis that this gives a reasonable representation of the interests
associated with that node. Node identifiers may be compared together to assess
similarity between nodes and thus organise them into communities. This organisation
means that nodes will be placed in contact with other nodes sharing similar content and
with similar interests. As a result, searches can be directed at nodes where the content
being searched for is more likely to be. This cuts down on the number of hops a search

query must be forwarded over to find content. The idea and prototype presented here

97

has been implemented over a distributed hash-table (DHT). The DHT substrate layer
provides a decentralised indexing service. This indexing service provides rendezvous
points for nodes to discover other nodes and assess their similarity.

The system incorporates Vector Space Modelling (VSM) techniques to construct
node identifiers. VSM is a state of the art information retrieval (IR) technique. VSM has
proved more accurate than traditional Boolean or lexical searches. Employing VSM
means that the system has improved search capability compared to other p2p systems.
This thesis suggests that this technique may be employed in other p2p systems to tackle
the issue of impoverished query languages associated with many p2p systems.

Tn conclusion, by building an indexing service on top of Pastry, it is possible to
create a virtual space where users/researchers with similar interests can meet and
discover each other in a distributed environment. This enables the construction of
communities of users, Organisation of the network in this way has many advantages; it
creates a more searchable and scalable file-sharing system. It also creates a more
realistic representation of links between files by discovering the semantic relationships
that exist through the use of Vector Space Modelling of documents. Structured p2p
overlay systems provide exciting and interesting possibilities when combined with
Information Retrieval (IR) techniques. These two emerging technologies complement
cach other in providing a way to share files and data in a distributed environment.
However more work is needed to full reatize this technique so as to be able to deploy it

in a real world environment such as the Internet.

98

Bibliography

[1] www.dictionary .com. (Last accessed Aug 2005).
[2] The World Wide Web Consortium: www.w3.org. (Last accessed Aug 2005).
[3] Napster: www.napster.cont.

[4] Gnutella Community. Gnutella Protocol Specification v0.4.
http: - www9. limewire.com developer-gnutella_protocol 0.4.pdf. (Last accessed Aug
2005).

[5] Salus, P.H. “Casting The Net: From ARPANET to INTERNET and beyond...”.
page: 104, Addison Wesley 1995.

[6] Kazaa: www.kazaa.com. (Last accessed Aug 2005).

[7] Riidiger Schollmeier, "A Definition of Peer-to-Peer Networking for the
Classification of Peer-to-Peer Architectures and Applications". Proceedings of the IEL
2001 International Conference on Peer-to-Peer Computing (P2P°2001), Linkoping,
Sweden, page: 101, IEEE Aug 2001.

[8] Stephen Pizzo. “Not waiting for godot™. O Reilly Open P2P [Online], Dec 2000.
wwiw.openp2p.com pub: a‘network - 2000-05:12-magazine napsfer-himl. (Last accessed
Aug 2005).

[9] NullSoft, Inc. “The WinAmp MP3 Player”. Attp: 'www.winamp.com . (Last accessed
Aug 2005).

[10] America Online, Inc. “AOL”: www.aol.com’. (Last accessed Aug 2005).

[11] Marius Portmann, Pipat Sookavatana, Sebastien Ardon, Aruna Seneviratne. “The
Cost of Peer Discovery and Searching in the Gnutella peer-to-peer File Sharing
Protocol”. Proceedings of the Ninth IEEE International Conference on Networks,
Bangkok, Thailand, page: 263, IEEE Oct 2001.

[12] E. Adar and B. A. Huberman. “Free Riding on Gnutella”. First Monday, Vol 5, No.
10, Oct 2000.

[13] S. Saroiu, P. Gummadi, S. Gribble. “A Measurement Study of Peer-to-Peer F ile
Sharing Systems”. Proceedings of Multimedia Computing and Networking, 2002.

[14] E. Korpela, D. Werthimer, DD. Anderson, J. Cobb, and M. Lebofsky. “Seti@home-

massively distributed computing for SETI”. Computing in Science & Engineering,
pages: 78-83, IEEE 2001.

99

[15] A. Oram. “PEER-TO-PEER: Harnessing the Power of Disruptive Technologies™.
CA 95472, USA, O'Reilly & Associates, Inc. March 2001. ISBN 0-596-001 10-X pages:
432,

[16] A. Oram. “Opencola: Swarming Folders”. O '‘Reilly Open P2P Online publications,
O'Reilly July 2001.

[17] D. Qui, R. Srikant. “Modelling and Performance Analysis of BitTorrent-like Peer-
to-Peer Networks”. In Proceedings of ACM Sigcomm, Portland, Aug 2004.

[18] lan Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. “Freenet: A
Distributed Anonymous Information Storage and Retrieval System™. The 1CST
Workshop on Design Issues in Anonymity and Unobservability”. Proceedings Series:
Lecture Notes in Computer Science, Vol. 2009, pages:46-67 Federrath, Hannes (Ed)
July 2000.

[19] Kelly Truelove and Andrew Chasin. “Morpheus out of the underworld”. O 'Reifly
Open P2P [Online], O'Reilly Nov 2001.
www.openp2p.com’pub a p2p:2001 0702 morpheus.himl. (Last accessed Aug 2005).

[20] L. Gong. “JXTA: A network programming environment™. /EEE Internet
Computing, pages: 88-95, IEEE May/June 2001.

[21] C. Greg Plaxton, Rajmohan Rajaraman, Andrea W. Richa. “Accessing Nearby
copies of Replicated Objects in a Distributed Environment™. Theory of computing
systems. Vol. 32, No. 3, pages: 241 — 280, Springer-Verlag 1999.

[22] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems”. /FIP:ACM International Conference on
Distributed Systems Platforms (Middleware}, Heidelberg, Gernmany, pages: 329-350,
Springer-Verlag Nov 2001,

[23] B. Y. Zhao, 1. D. Kubiatowicz, and A. D. Joseph. “Tapestry: An infrastructure for
fault-resilient wide-area location and routing”. Technical Report UCB//CSD-01-1141,
pages: 27, U. C. Berkeley April 2001.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. “A scalable
content- addressable network™. In Proc. ACM SIGCOMM'01, San Diego, CA, pages:
161 - 172 ACM Press Aug. 2001

{25) 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord: A
scalable peer-to-peer lookup service for Internet applications™. In Proc. ACM
SIGCOMM'0!1, San Diego, CA, August, 2001. Pages: 149 — 160 ACM Press

[26] A. Rowstron and P. Druschel. “PAST: A [Large-Scale, Persistent Peer-to-Peer
Storage Utility”. HorOS Viii, Schloss Elmau, Germany, page: 75-81, IEEE May 2001,

[27] N.J.A Harvey, M.B. Jones, S Saroiu, M Theimer, A. Wolman. “Skipnet: A scalable
overlay network with practical locality properties”. In Proceedings of the 4™ USENIY
Symposium on Internet Technologies and Systems (USITS '03). Seattle, WA, March
2003,

[28] John Kubiatowicz, Davic Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, Ben Zhao “OceanStore: An Architecture for Global-Scale
Persistent Storage” Proceedings of ACM ASPLOS, pages: 190-202, ACM Press May
2001.

[29] Hash-table definition: Atip: -www.nist.gov-dads HTMI. hashtab. html. (Last
accessed Aug 2005).

[30] A V Aho, J D Ulhnan, J. E. Hoperoft. “Data Structures and Algorithms™. Addison
Wesley, ISBN: 0201000237, January 1983.

[31] Kaufiman, C., Perlman, R., Speciner, M. “Network Security: Private
Communication in a Public World”. Page: 53 of 504, Prentice Hall 2002.

[32] P. Rogaway, “Bucket hashing and its application to fast message authentication,
Advances in Cryptology”. CRYPTQ '95, Lecture Notes in Computer Science, Vol. 963,
Springer-Verlag, pages 313-328, 1995.

[33] D. Eastlake, 3rd and P. Jone. RFC 3174: US secure hashingAlgorithm 1, Sept.
2001.

[34] Jon Postel. “Internet Protocol”. Infernet Request for Comments, RFC 791, Internet
RFC/STD/FYT/BCP Archives, September 1981.
hitp:-www. fags.org:rfes/rfc791 himi. (Last accessed Aug 2005).

[35] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,
and John Kubiatowicz. “Tapestry: A resilient globai-scale overlay for service
deployment”. JEEFE Journal on Selected Areas in Comniunications, Vol, 22, No. 1,
pages. 41-53, IEEE Jan 2004.

[36] G. Kessler, S. Shepard. "A Primer On Internet and TCP/IP Tools and Uulities",
Internet Request for Comments, RFC 2151, Internet RFC/STD/FYI/BCP Archives, June
1997. hitp: - www.fags.org/rfesrfe2 151 htmi. (Last accessed Aug 2005).

[37] S. Ratnasamy et al. “Routing Algorithms for DHTs: Soine Open Questions™. /n
Proceedings of the 1st International Workshop on Peer-to-Peer Systems, pages: 45 —
52, Springer-Verlag March 2002.

[38] Dabek, F_, Zhao, B., Druschel, P., and Stoica, 1. “Towards a common API for

structured peer-to-peer overlays”. In 2nd International Workshop on Peer-to-Peer
Systems IPTPS'03. Pages: 33-44, Springer-Verlag Feb. 2003,

101

[39] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, lon Stoica.
“Wide-area cooperative storage with CFS”. fn Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP '01), pages: 202 — 215 ACM press
2001.

[40] Stacey P., Berry D., Coyle E., “Using Structured P2P Overlay Networks to Build
Content Sensitive Communities”. In Proceedings of the Tenth International Conference
on Parallel and Distributed Systems,{ [CPADS'04), Newport Beach California, pages:
281-288, IEEE 2004,

{41] Ryan Huebsch Boon T. Loo Scoit Shenker Matthew Harren, Joseph M. Hellerstein
and lon Stoica. “Complex queries in DHT based peer-to-peer networks”. Electronic
Proceedings for the 1st International Workshop on Peer-to-Peer Systems (IPTPS '02),
2002, pages: 242 — 250, Springer-Verlag 2002.

[42] Pietro Braione, Politecnico di Milano. “A Semantical and Implementative
Comparison of File Sharing Peer-to-peer Applications”. In Proceedings of the Second
International Conference on Peer-to-Peer Computing (P2P'02), pages: 165-166, IEEE
2002.

[43] C.J. van Rijsbergen. “Information retricval (second edition)”, in London:
Butterworths. 1979.

[44] E. Cohen, H. Kaplan, and A. Fiat, "Associative search in peer-to-peer networks:
Harnessing latent semantics”. The 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies. San Francisco 2003, pages: 1261 - 1271, IEEE 2003.
[45] K. P. Sycara. “Multi agent Systems™. Artificial Intelligence Magazine, Vol. 19:2
pages: 79-92, 1998.

[46] Kung, H. T., Wu, C. H. “Content Networks: Taxonomy and New Approaches.” In
Proceedings of the Internet as a Large scale Complex System”. Oxford University
Press, Santa Fe Institute Series, 2002,

[47] Ricardo Baeza-Y ates, Berthier Ribiero-Neto, Berthier Ribeiro-Neto. “Modern
Information Retrieval”. Page: 7 of 513, Pearson Education 1999. ISBN:
020139829X.

[48] R. Wurman. “Information Anxiety”. Doubleday, New York, 1989. ISBN:
0385243944,

[49] S. Lawrence, C.L. Giles. “Accessibility of Information on the Web”. Nature, pages:
107-109, Feb 1999.

[50] Google: www.google.com. (Last accessed Aug 2005).

[51] Yahoo: www.yahoo.com. (Last accessed Aug 2005).

102

[52]1 C. F. Reynolds. “The Use of Colour in Language Syntax Analysis™. /n Software-
Practice and Experience, Vol. 17, [ssue 8, pages 513-519, John Wiley & Sons, Inc
1987.

[53] “Resource Description Framework (RDF) model and syntax specification”. W3C
Working Draft WD-rdf-syntax-19981008. See htp:www.w3.0rg TR PR-rdf-syntax’,
W3C 1999.

[54] T. Guan and K. F. Wong. “KPS - A Web Information Mining Algorithm™. 7he
Eighth International World Wide Web Conference, pages: 1495 - 1507 , Elsevier 1999.

[55] T. Berner-Lee, J. Hendler, O. Lassila. “The Semantic Web”. Scientific American,
Vol. 284, No. 5, pages: 34-43, 2001.

[56] K.A. Spackman, K.E. Campbell, and R.A. Cote. “Snomed rt: A reference
terminology for health care”. In AMIA Annual Fall Symposium, 1997. pages: 640-644,
PubMed: PMID: 9357704,

[57] Rector AL, Gangemi A, Galeazzi E, Glowinski AE, and Rossi-Mori A. “The
GALEN CORE model! schemata for anatomy: Towards a re-usable application-
independent model of medical concepts”. In Proceedings 12th International Congress
on Medical Informatics MIE 94, Lisbon, pages: 229-233, Lisbon 1994.

[58] ICD-10. http: - www.cdc.gov-nchs about otheract icd9/icd! Ocm.htm. (Last accessed
Aug 2005).

[59] A. Rossi-Mori and CEN Project Team PT003, "Medical Informatics - Categorial
structure of systems of concepts - Model of Representation of Semantics (ENV12264)”,
1995.

{60] Luhn, H.P. “A statistical approach to mechanised encoding and searching of library
information”, IBM Journal of Research and Development, 1, pages.309-317, IBM 1957.

[61] Salton, G., Wong, A, and Yang, C. S. “A Vector Space Model for Automatic
Indexing”. Communications of the ACM, pages: 613 - 620, ACM Press, Nov 1975.

[62] Willet P. “Similarity coefficients and weighting functions for automatic document
classification an empirical comparison”. International Classification, 3, pages:138-142,
1983.

[63] Jones, W., and Furnas, G. “Pictures of Relevance: A Geometric Analysis of
Similarity Measures”. Journal of the American Society for Information Science, Vol 38

No.6, pages: 420-442 Wiley Nov 1987.

[64] Satton, G, McGill M.J. “Introduction to Modern Information Retrieval™. MeGranw-
Hill, New York, 1983.

{65] Computer Programming Algorithms Directory: htip: “www.algosort.com-. (Last
accessed Aug 2005).

103

[66] G. Salton and C. Buckley. “Term-weighting Approaches in Automatic Text
Retrieval”. Information Processing and Management, 24, pages: 513-523, Pergamon
Press Ltd. 1998.

[67] Han, E-H. and Karypis, G. “Centroid-Based Document Classification: Analysis
and Experimental results”. /n Proceedings of the 4th Enropean Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD), page: 424
Springer Sep 2000.

[68] B. Zadrozny and C. Elkan. “Obtaining calibrated probability estimates from
decision trees and naive bayesian classifiers”. In Proceedings of the Lighteenth
International Conference on Machine Learning, 2001, pages: 609-616, Morgan
Kaufimann 2001.

[69] A. Rowstron and P. Druschel, “Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility”. ACM Symposium on Operating Systems
Principles (SOSP'01), Banff, Canada,. Pages: 188 — 201 ACM Press Oct 2001.

[70] Quinlan, J. R.. “C4.5: Programs for machine learning ”. Morgan Kaufinann.
1993, ISBN :1-558-60238-0.

[71] Jain, A.K., Murty M.N., and Flynn P.J. “Data Clustering: A Review”. ACM
Computing Surveys, Yol. 31 No. 3, pages: 264-323 ACM Press Sept 1999.

[72] Y. Suzuki, F. Fukumoto, Y. Sekiguchi. “Keyword Extraction using Term-Domain
Interdependence for Dictation of Radio News”.Coling-ACL, pages: 1272-1276, 1998.

[73] Jones. W.P. and Furnas, G.W. “Pictures of relevance: A geometric analysis of
similarity measures”. Journal of the American Sociely for Information Science. Vol. 38
No. 2, pages: 207-227. 1987

[74] P. Willet. “Recent trends in hierarchical document clustering: a critical review”.
Information Processing and Management, Vol. 24 No. 5 pages: 577-597 Elsevier
Science 1988.

{75] E. M. Voorhees. “Implementing agglomerative hierarchical clustering algorithms
for use in document retrieval”. Information Processing and Managenient, pages:
Vol. 22 No. 6, pages 465-476, Elsevier Science 1986.

[76] J.J. Rocchio. “Relevance feedback in information retrieval”. In The SMART
Retrieval System--Experiments in Automatic Document Processing, pages 313-323,
Englewood Cliffs, NJ, Prentice Hall, Inc. 1971.

[77] D. R. Hill. “A Vector Clustering Technique”. Mechanised Information Storage,
Retrieval and Dissemination, North-Holland, Amsterdam, edited by Samuelson 1968.

[78] Krishna Guminadi, Ramakrishna Gummadi, Steve Gribble, Sylvia

Ratnasamy, Scott Shenker, lon Stoica. “The Impact of DHT Routing Geometry on
Resilience and Proximity”. In Proceedings of ACM SIGCOMM, pages: 381 - 394 ACM
Press 2003 .

[79] Ben Y. Zhao. “A Decentralized Location and Routing Infrastructure for Fault-
tolerant Wide-area Applications”. Ph.D. Qualifying Examination, pages: 13,April 18,
U.C. Berkley 2001.

[80] Mario T. Schlosser, Tyson E. Condie, and Sepandar D. Kamvar, “Simulating a
P2P file-sharing network”™. Appears in the First Workshop on Semantics in P2P and
Grid Computing, pages: 69-80 December 2002.

[81] Dublin core: htip: dublincore.org . (Last accessed Aug 2005).

[82] Ronald L. Rivest. “The MD3 message-digest algorithm™. /nternet Request for
Comments, RFC 1321, Internet RFC/STD/FYT/BCP Archives, pages: 21, April 1992.
http: www fags.org rfes vfe3797 html.

[83] “Descriptions of SHA-256, SHA-384, and SHA-512”, pages: 48, National Institute
of Standards and Technology, Washington, 2000.

http: “csre.nist.govicrypival shs sha256-384-512.pdf (Last accessed Aug 2005).

[84] ADLER-32, http: -www fags.org rfcs rfcl950.himl. (Last accessed Aug 2005).
[85] R. Cilibrasi, R. de Wolf, P. Vitanyi. “Algorithmic clustering of music”, ERCIM
News R&D AND TECHNOLOGY TRANSFER, No. 54, ERCIM News July 2003,

hitp: www.ercim.org publication - Ercim_News enw3 Avitanyi.html. (Last accessed Aug
2005).

[86] M. Castro, P. Druschel, Y. C. Hu and A. Rowstron, “Exploiting network proximity
in peer-to-peer overlay networks”. International Workshop on I'uture Directions in
Distributed Computing (FuDiCo), pages: 52-55, Springer-Verlag 2002.

[87] LimeWire. htip:www.limewire.com. (Last accessed Aug 2005).

[88] Stephen A. Stelting, Olav Maassen “Applied Java Patterns”. Pages: 608, Prentice
Hall 2001, ISBN: 0130935387

[89) JAMAL: htip:“math.nist.govjavanumerics:jame’. (Last accessed Aug 2005).

[90] “Porter Stemming Algorithm” Readings in Information Retrieval, pages: 513,
Morgan Kaufmann, ISBN 1-55860-454-4.

[91] PIX: hitp: www.etymon.com:epub.html.

[92] The MathWorks Inc. “MATLAB Reference Guide”, http:- www.nathworks.com’.
(Last accessed Aug 2003).

105

(93] D. L. Less, H. Chuang, K Seamons. “Document Ranking and the Vector-Space
Model”. IEEE Sofiware, Vol 14, no 2, pages: 67-75, March/April 1997,

[94] Carlos R Cunha, Azer Bestavros, Mark E Crovella, “Characteristics of WWW
client-based traces”. Technical Report TR-95-010, pages: 18, Boston Untversity June
1995.

[95] UCB/LBNL/VINT “Network Simulator NS (version 2)” http:www-mash.
cs.berkeley.edu‘ns . (Last accessed Aug 2003).

[96] J. K. Qusterhout. “Tcl and the Tk Tootkit™. Addison-Wesley, 1994,

[97]I. Postel, J. Reynolds. “File Transfer Protocol (FTP)”. RFC 959, October 1985.
[98] J. Postel, J. Reynolds. “Telnet Protocol Specification”. RFC 845, May 1983.

[99] A. Felmann, A. Gilbert, P. Huang, W. Willnger. “Dynainics of IP Traffic: A study
of the Role of Variability and the Impact of Control”. Proceedings of ACM'SIGCOMM,
pages: 301-313, 1999.

{100] A. Veres, M. Boda. “The chaotic Nature of TCP Congestion Control”.
Proceedings of IEEE INFOCOM, pages: 1715-1723, March 2000

[101] P. Sinha, T. Nandagopal, N. Ventitaraman, R. Sivakumar, V. Bharghaven.
“WTCP: A Reliable Transport Protocol for Wireless Wide-Area Networks™. Wireless
Networks, Vol. 8, No. 2-3, pages: 301-316, 2002.

[102] Scalable Simulation Framework (SSF). http:- www.ssfnet.org. (Last accessed Aug
2005).

[103] J. H. Cowie, D. M. Nicol, A. T. Ogielski. “Modeling the global internet".
Computing in Science and Engineering, January 1999.

[104] The Java Network Simulator (JNS)
hitp: “homepages.cs.ncl.ac.uk/einar.vollset honte formalifns.html.

[105] Javis, Network Visualisation tool,
http:/ cs.baylor.edu~donahoo/NIUNet javis.html . (Last accessed Aug 2005).

[106] JiSt (Java in Simulation Time), http:/ jist.ece.cornell.edu’. (Last accessed Aug
2005).

[107] J-Sim, www.j-sim.org. (Last accessed Aug 2005).
[108] TEEE Explore, htip: /ieeexplore.icee.org’. (Last accessed Aug 2005).
[109] M. T. Heath, A. J. Laub, C. C. Paige, R.C. Ward. “Computing the SVDof a

product of two matrices”. SIAM J. Sci. Statist. Comput., Vol. 7, pages: 1147-1159,
1987.

[110]S. T. Dumain. “Latent Semantic Indexing (L.SI)”. The Second Text Retrieval
Conference (TREC2), National Institute of Standards and technology Special
Publication, pages: 105-116, 1994.

{111] Jane Grimson, William Grimson, Damon Berry, Gaye Stephens, Eoghan Felton
Dipak Kaltra, Picter Toussaint, Onno W. Weier. “A CORBA-based integration of
distributed electronic healthcare records using the Synapses approach”. IEEE
Transactions on Information Technology in Biomedicine, pages: 124-138, [EEE
Engineering in Medicine and Biology Society 1998

[112] Jane Grimson, Eoghan Felton, Gaye Stephens, William Grimson and Damon
Berry. “Interoperability issues in sharing electronic healthcare records - the Synapses
approach”. Proceedings of Third IEEE International Conference on Engineering of
Complex Computer Systems, pages: 180-185, IEEE 1997.

[113] “Person Identification Service Specification (PIDS”). Formal specification,
formal/01-04-04, version 1.1, OMG 2001.

http: www.omg.org docs formal 01-04-04.pdf (Last accessed Aug 2005).

[114] “Unified Modeling Language (UML), v1.5”. Formal specification, formal/03-03-
01, version 1.5, OMG 2004,

http: www.omg.org cgi-bin-doc?formal 03-03-01. (Last accessed Aug 2005).

[115] Omondo EclipseUML: Attp. - www.omondo.com . (Last accessed Aug 2005).

[116] Eclipse: http: www.eclipse.org . (Last accessed Aug 2005).

107

Glossary

Access scheme - Plaxton et al’s set of algorithms for read, insert and delete access to
objects within their proposed network.

Agent - A concept associated with network simulation. Agents attach to the application
and are used to simulate network protocol behaviour.

Agglomerative hierarchical clustering - A clustering algorithn used to group together
“simitar” objects.

AHC - See Agglomerative hierarchical clustering.

Angle based metric — A similarity metric deternined by the angle between two
vectors.

API - See application programming interface.

Application programming interface — A set of external program libraries imported
into new programs to reuse already developed software functionality.

Avalanche effect - A property of hashing algorithms refers to the algorithms ability to
produce two non-numerically similar hash-codes given similar input strings.

Avalanche effect collision - When a hashing algorithm produces the same output key
for two different inputs.

Average vector — The vector resulting from taking the average of a group of document
vectors, see also centroid vector.

C++ - An object oriented programming language.

CAN — A DHT p2p algorithm, where nodes are organised based on a cartesian
coordinate systen.

Cartesian Coordinate Space - The coordinates of a point measured from an origin
along an (horizontal) axis from left to right (the x-axis) and along a perpendicular
(vertical)} axis from bottom to top (the y-axis).

Category — Refers to the definition of the “type” of a document based on the
document’s contents.

Centroid classification — A document classification method.
CFS - A global storage system that uses the Chord p2p substrate.

Chord - A DHT p2p substrate. Nodes are organised in a ring similar to Pastry.

F0B

Cluster — The act of grouping together “similar” objects.

Clustering tree — A method for grouping “similar” objects. Objects that are deemed
similar using a similarity metric are positioned close on a tree where as non-similar
objects are positioned further away.

Community — A group of users of the Peerreach application who are deemed to have
similar interests and as a result are virtually connected to each other.

Community based search — A search performed over a community of users machines.

Community Layer — Level of network activity, where connections are maintained
based on user similarity, thus implementing the community concept.

Community table — A storage location used to keep track of the addresses of nodes
within a community.

Cosine function — A mathematical function, which calculates the cosine of the angle
between two vectors.

Cryptographic hash - Bit strings of a fixed length produced from a hash function by
mapping bit strings of arbitrary length.

Decentralised p2p system — A computer network of nodes with no centralised form of
control.

Density — (of nodes) The number of nodes populating a specific area within the
network.

Destination node — The node a message is destined for, i.e. its intended point of
delivery.

DHT - see Distributed Hash-Table.

Distributed Hash-Table — A distributed system that attempts to model its self on a
hash-table but is implemented in a distributed manner.

Document frequency — The number of documents a particular word occurs from a
particular set of documents,

Document vector - A vector space representation of a text document, calculated using
the word frequency within a particular document and using the document frequency
from a set of documents.

Dot product - A number (scalar) equal to the product of the magnitudes of any two
vectors and the cosine of the angle formed between them.

EHCR - See electronic healthcare record.

109

Electronic healthcare record - the set of electronic information that is stored about a
single patient over their lifetime.

File Id - See File Identifier.

File Identifier- A number that is used to uniquely identify a particular file.

File Vector - See document vector.

Fan out — The number and diversity of neighbouring nodes that a particular node in a
DHT substrate has.

Feature vector - A feature vector characterises a document for classification in the
peerreach application.

Flooding - sce flood searching.

Flood searching — A method of searching for objects within a network where the
search request if not forwarded to any specific node but to all possible nodes.

Fuzzy community — A group of nodes that are virtually linked together based loosely
on the type of content they store.

Get function — The function used to return an object from the hash-table.
Gnutella — A specific implementation of a p2p network.
Hash-code — The output of a hashing algorithm.

Hashing algorithm — See hash function.

Hash function — A hash function takes a variable length data message and creates a
fixed size message digest.

Hierarchic clustering — A specific method of clustering “similar™ objects.

{ndex table — A list of nodes and the associated node information that is stored at an
indexing node.

Indexing node — The node storing an index table, an indexing node acts as a
rendezvous point within Peerreach, registering “similar” nodes.

IR — See Information Retrieval.

Information retrieval — The science of finding stored information.

Inverse document frequency — The inverse of the number of documents a particular
word occurs from a set of documents. Used in the calculation of a document vector.

110

J2SE - The current (at time of writing) standard edition of the Java programming
language.

JAMA — A basic linear algebra package for Java that is compatible with J2SE.
Java Network Simulator — A network simulator implemented in Java.

Java — An object oriented programming language.

JavaSIM — A Network simulator implemented in Java.

JDK - The Java development Kit by SunSoft.

JisT — A network simulation software package written in Java.

JNS - See Java Network Simulator.

JSIM - A network simulation software package, written in Java.

Kazaa — P2P file sharing application that uses the idea of super nodes to aid the
indexing of files.

KBR - See Key based Routing.

Key - A number that used to direct a message over a network to its destination.

Key randomisation ~ The process of randomly assigning key’s or object Id’s.

Key based Routing — A message routing algorithm that uses keys, a message is routed

to a point within the network that corresponds to the key, messages progress by
forwarding the message to closer and closer to the destination point

Latent semantic indexing - A statistical information retrieval inethod desi gned to
OVErcole Synonomy.

Limewire — A p2p file sharing application,
Linear time clustering — A specific type of clustering algorithm.

Leaf Set — A table containing information about neighbouring nodes within a Pasty
DHT.

Load — The level of network traffic concentrated at a specific point within the network
Load Balancing — Method of evenly distributing network traffic to avoid bottlenecking.

Logical hop — A hop between nodes within a DHT, ignoring the underlying network
topology.

LSI - see Latent semantic indexing.

1

Matlab 1y - A programming language for mathematical modelling that employs matrix
arithmetic.

Multiple traffic simulator — A simulator that can simulate multiple sources of traffic
within a simulated network.

NADM - See network animator.

Neighbour Table ~ A storage location used to keep track of “neighbouring” nodes
within a network.

Network animator — A network visualisation tool.

Network distance — The “real” distance a packet or message must travel, i.e. takes into
account the physical under lying distance.

Network simulator — A software tool used to simulate the behaviour of a network
under various scenarios

Node — Physically a node is a computer running an instance of the PeerReach
application. Virtually a node is a point within the network containing routing tables and
community tables. A node acts as a servant, 1.e. it serves information to the network and

also becomes a client within the network. A node also represents a user within the
network.

Nodeld — A number used to uniquely identify a node within a network

NodeVector — A representation of a node based on the documents the node stores
locally.

Non- structured search — see flood search.
NS - A network simulator.
NS-2 - A network simulator.

Object Id —Number to uniquely identify an object.

Object Location — The location of a stored object within a distributed hash table.

Observation point - Selected moments in time where a network simulator records
values.

Ocean Store - A global storage system that uses the Tapesiry DHT substrate.

Overlay namespace distance - The numerical difference between two nodes nodeld’s.

P2P - See Peer to Peer.

PAST - A global storage system that uses the Pastry DHT substrate.

112

Pastry - A DHT routing substrate.

Pastry Layer — The position occupied by the Pastry substrate within a system layer
view.

PDF - See portable document format.
Peer - A node within a p2p system.
Peerreach — The name of the application described by this thesis.

Peer to Peer — Distributed system with no centralised control.

Person Identification service - A specification produced by the object management
group that describes how multiple identities existing in distributed systems can be
merged.

PIDS - see Person Identification service.

PJX - A Java API for manipulating PDF files.

Pointer List — A list containing connection information to nodes.

Proxy searcher — A node that searches on behalf of another node.

Put function - The functionality of a hash-table that is used to store an object in the
hash-table.

Registry message — An extended pastry message used to register a nodes details at a
rendezvous point.

Rendevous point — A node within the network where other nodes sharing simtlar
content can be indexed in order to discover each other.

Root node — the node, whose nodeld is numerically similar to a specific key, that
becomes the root node for that key.

Routing schema — A set of routing algorithms that facilitate the reading, writing and
insertion of objects within a DHT.

Routing Substrate — The software layer that handles the routing of network messages.
Search query — A message forwarded to nodes requesting a particular file.

Search vector — A vector derived from search keywords, that are used to search for
documents by being compared to a documents FileVector.

Self organising — A network that organises itself with out any centralised control

Semantic — Relating to the meaning of a particular document or string of text.

SHA-1 - A hashing algorithm.

SHA-256 - A hashing algorithm.

Similarity metric — A metric to represent the similarity between two objects.

Single point of failure — A node that stores the only copy of network link information

Singular value decomposition — The process of mapping a multi dimensional space to
a one-dimensional space.

SSFNet — A network simulator.

Stop word — A commonly occurring word within a document that contains no semantic
meaning.

Structured (p2p) substrate — A substrate that organises nodes in a structured fashion.

Substrate (p2p) — A routing layer that sits under the application layer in a p2p software
system.

Surrogate Routing — Tapestry’s distributed algorithm for incrementally calculating a
root node.

SVD - See singular value decomposition.

Synenyms - a word or phrase, which has the same or nearly the same meaning as
another word or phrase in the same language.

Tapestry — A DHT substrate.

Taxonomy - A system for naming and organising things, especially plants and amimals,
into groups, which share similar qualities.

TCL - A scripting language for issuing commands to interactive programs.

TCP/IP - A set of protocols developed for the Internet in the 1970s to get data from one
network device to another.

Term space — The global dictionary of terms or words used in the vector space
modelling of documents.

Term frequency — The number of occurrences of a word within a specific document.
Time to live stamp — The number of logical hops a message may jump before “dying”.
TTL - See time to live stamp.

UML - See unified modelling language.

114

Unified Modelling Language - The Unified Modelling Language is the industry-
standard language for specifying, visualising, constructing, and documenting the
artefacts of software systems.

Vector space modelling — A information retrieval technique where documents are
represented as vectors from a term-space. Vector space modelling allows the user to
search for concepts rather than specific words.

Zipf Law - The probability of occurrence of words or other items starts high and tapers
off. Thus, a few occur very often while many others occur rarely.

Zipf Distribution - A distribution of probabilities of occurrence that follows Zipf's law

Appendix A

This chapter gives a code listing for the more important classes that were

implemented to realise a prototype application, described in chapter five.

A.lL Package DIT.PeerReach

This is the main package within the system. This package contains the driver

classes that contain main ()and extend the Pastry Application interface.

A.Li PeerReachAppl

PeerReachAppl is the driver class for the application. The main method is

defined within this class.

package DIT.PeerReach;

import java.net.InetSockethddress;
import java.util.*;

import java.io.*;

import java.net.*;

import rice,pastry.”;

import rice.pastry.direct.*;
impoxt rice.pastry.dist.*;
import rice.pastry.standard.>;
import DIT.PeerReach.node.*;
import DIT,PeerReach.register.*;
import DIT.PeerReach.vector.*;

s

/

This class is the driver class for the applicatien. This class and PeerReachNode
take the same format as the similar classes provided in the Pastry API testing
example “Pastry HelloWorld” At present the main creates
nodes to run on one local machine, this for the purpose of testing the prototype
+ Rauthor Paul Stacey
*/
publie class PeerReachippl {

PR

private static int i;

private PastryNodeFactory factory;
private DistPastryNodeFactory factoryran;
private Vector helloClients;

private NodeHandle hint = null;

private static Registryilanager rm;
private NodeIdFactory idfact:

private NetworkSimulator sinmulator;
private DistPastryNode node;

private static int port = 510;

private int bsport = 5107

private String userInfo;

private Vector pastryNodes;

private statiec String bshost = null;
private String ulnfo;

private String[] interesttopic = { "x", "
private String interesttopicx;

//use the Pastry RMI protocol to send messages between peers
//Pastry also provides the direct and wire protocol

public static int protocel = DistPastryNodeFactory.PROTOCOL_RMI;
private NodeVector nodeVector = null;

private static int rmiport = 1099;

yn, wav o };

/**
* Constructor.

116

* Initialise the class variables
*/
public PeerReachiAppli} {
pastryNodes = new Vector(};
factoryran = DistPastrylodeFacteory.getFactory!
new RandomNodelIdFactory(),
protocol,port);
)
/+
+ This method looks for a bootstrap node to jeoin the network, at the moment
» it will return a null, this null is handled within the pastry class
* RMIPAstryNodefactory
=/
private DistNodeHandle getBootstrap(boolean firstNode) |{

InetSocketaAddress addr = null;
if {(firstNode && bshost != null)
addr = new InetSocketAddress(bshost, bsport);
else |
try |
addr =
new InetSocketAddress|
InetAddress.getlocalHost () .getHostName(),
bsport}:

//bottom line used when connecting to a reomte computer

// addr = new InetSocketAddress ("192.168.0,1", bsport};

} cateh (UnknownHostException e} {
System.out.printlnie);

]

DistNodeHandle bshandle =
(DistNodeHandle) ({(DistPastryNodeFactory) factory).ge
tNodeHandle (addr);

return bshandle;

}

/*
* Creates a Pastry node

*

=/
public void Makelode (boolean firstNode} |

BufferedReader in =

new BufferedReader (new InputStreamReader{System.in));
system.out.println{"\nptease enter your ip address\n");
//The user input string is used to create the HNodeld for the node
try |

uInfo = in,readiine(};
} ecateh {IOException e) {

System.out.printlnie);

System.exit (i};
}
idfact = new ConcPRHodeldFactory(ulnfo):
factory = DistPastryNodeFactory.getFactory (idfact, protocol, port);
node = (DistPastryNede} factory.newNode (getBootstrap{firstiode)};
pastrylNodes.addElement {node) ;
//create a new PeerReachNode
pPeerReachlode prnode = new PeerReachiode (node, rm, rmiport, nodeVector);
if (Log.ifp(5))

System.out.println("\nplease enter your interest subjectin”);
try |

interesttopicx = in.readLine{);
} eatch (IOBxception e) [

System.out.println{e);

System.exit{l);
]

System.out printin("\n You entered "+ interesttopiex+ " please wait while you

are connected with others having the same interest");

Reqister(interesttopic, prnode) }

117

/&*
* Causes this node to be registered at various rendezvous points around the
* Pastry Ring.
+/
public void Register(Stringfl interests, PeerReachNode prn) |
rm.setNodeInstance {prng;
rim.setInterests{interests);
rm. setNodeVector (nodeVector) ;
rm. register {);
}
public void setNodeVector [NodeVector nvector}
nodeVector = nvector;
}
/*i‘
* This method is for testing purposes, it creates a random node. This is
+ used in main to £ill the Pastry ring with random nodes
*
£/
public void makerandomNode {(boolean firstNode} |
NodeHandle bootstrap = getBootstrap{firstiode);
DistPastryNode pnn = {DistPastryNode) factoryran.newNode (hootstrap);
// internally initiateJoins
pastryNodes.addElement(pnn};
PeerReachliode app = new PeerReachNode (pnn, rm, rmiport, nodeVector);
}
/1
> Main
=/
public static void main{String args 1) |

PeerReachAppl preachappl = new PeerReachhAppl () ;
VectorManager vii = new Vectortanager ()
vm.buildTrainingSet (};
vm.buildNodeVector{};
NodeVector nv = vm.getMNodeVector(};
preachappl . setNodeVector (nv) ;
rm = new RegistryManager (rmiport};
preachappl.Makelode {tzue};
rmiport++;
for (int 3 = 1; 1 < 4; i++) |
rm = new Registrydanager {rmipoert);
preachappl.makerandembode (£alse) ;
rmiport++;
i
for (i = 1; 1 <= 1; i++) {
rm = new RegistryManager (rmiport);
preachappl.MakeNode(false);
rmiport++;
System.out.printin{rmiport);

A.Lii PeerReachNode

package DIT.PeerReach;

inport
import
import
import
import
import
inmport
inport
import
impoxt
import

/'i’*

rice.pastry.*;
rice.pastry.client.*;
rice.pastry.security.*;
rice.pastry.messaging. *;
rice.pastry.routing.*;
rice.pastry.dist.*;

DIT. PeerReach.message. *;
DIT. PeerReach.register.*;
DIT.PeerReach.community.*;
DIT.PeerReach.vector.*;
Java.net.*;

* This class extends the Pastry API, CommonAPIAppl.
* Gauther Paul Stacey

=/

puklic

slass PeerReachiode extends CommonAPIAppl |

118

private static Address addzr;

private static Credentials cred = new permissiveCredentials({);
private MessageManager mm;

private RegistryManager regmy

private int rmiporty

private PRNodehandle prnh;

/1—*
* Constructor.
* TInitialises the nodes attributes.
*/
public peerReachNode {DistPastryNode pn, RegistryManager rm, int port, NodeVector
nodevec) [

super (pn);
rmiport = port;
DistiNodeHandle dnh = (DistNedeHandle) ph.yetLocalHandle () ;

InetSocketAddress ipaddr = dnh.getAddress(};
regm = rm;
mm = new MessagelManager {regm};
regm = LW;
CommunpityServer cm = new CommunityServer (this, port);
Integer p = new Integer{port);
String Port = p.toString{};
string RmiConnect = "Communityifanagex//127.0.0.1/" + Port:
prnh = new PRNodehandle (nedevec, RmiConnect, dnh);
}
/i—k
* Returns a PRNodehandle for this necde
'

public pRiodehandle getPRHodehandle () {
return prah!
1
/iri'
* Returns the port number this node is registered at

o

public int getRMIPort() f{
raturn rmiport;
}
/t*
*+ Returns a reference to this nodes Messagelanager
*/
public Messagetlanager getMsgtianager (} {
return mm;
}
/i'!c
+ Tnis is an internal class that implements the Pastry class Address
x/

private static class HellohAddress implements Address {
private int myCode = 0x1284abcd;
public int hashCode(} {
return myCode;

H

public boolean equals{Object obj) |
return (obj instanceof HelloAddress};

)

public String toString(} (
return " [HelloAddressli™;
H
}

// The remaining methods override abstract methods in the PastryAppl API.

/ir*
* Returns the address of this application.
=/

public Address getAddress() {

addr = new HelloAddress();
return addr;

119

)
/**

*+ Reuturns this nodes credentials.
*/

public Credentials getCredentials () |
return cred;

}

/i*
+ Invoked on intermediate nodes in routing path.

x/

public boeclean enrouteMessage {
Message msqg,
Id key,
NodeId nextHop,
SendOptions opt) |
if {(Log.ifpi{5)}
System.out.println("Enroute " + msg + " at " + getHodeId{});
raturn true;

}

/*#

£ Tnvoked upon change to routing table.

>/
public veid routeSetChange (HodeHandle nh, boolean wasAdded) {

if (Log.ifp(5}) {
System.out.print{
nip

getNodeTd (]
"!'s route set,
"node "
nh.getNodeld()
" was ")}

+ o+ 4+ o+ o+

if {(wasAdded)
System.out.println("added");

alse
System.out.println{"removed");
1
]
/lr*
* Invoked when this node forwards a message
*/

publiec veid forward(Routelessage msg} |

System.out.println("\nmsq is passing through" + getNodeId(});

return;
}
/ivir
* called by the Pastry layer when a message destined for this node arrives,
* the message is passed to the message manager. The message manager then
* forwards then reads the message to find out what type of message it is
xf

public void deliver (Id key, HMessage msg) |
mm. setpriNode (this};
mm.readiessage {msq) ;
return;
}
/**
* Invoked by {RMI,Direct}PastryNode when the node has something in its
+ leaf set, and has become ready to receive application messages.
=/
public void notifyReady() |
if {(true /*Log.ifp{6)*/
)
System.out.println{
"Node " + gerNodeId() + " ready, waking up any clients"};

120

A.lLiii PRNodehandle

package DIT.PeerReach;

import java.io.*;
import pIT.PeerReach.vector.*;
import rice.pastry.dist.*;

/*t
* This class is a handle to a node, it is a PeerReach implementation of the Pastry -

idea. This class produces cbjects that contain the details of a particular node

* such as a ncedes nedevector etc. The class implements serializable so it may be

passed over a network connection

* @author Paul Stacey

*/

*

public class PRNodehandle implements Serializable {

private NodeVector nodevec;
private String rmiConnect;
private DistNodeHandle distnh;

/*:—
* Constructor.
a

*
*/
public PRNodehandle(
NodeVector nv,
String rmiConnecktion,
DistHodeHandle dnh} |
nodevec = nv;
rmiConnect = rmiConnection;
distnh = dnh;

Takes in a nodes main attributes and sets them within this class

}
/*;r

*

*/

Returns a HodeVector

public NodeVector getNodeVector() {
return hodevec;

}

/*i'

*

*/

Returns the rmi connection for the associated nade
public String getRmiConnection() {
raeturn rmiConnect;
}
/knr

* Refurns the distributed nodehandle for the assoctiated node

*
*/
public DistNodeHandle geDistNodeHandle{) |

return distnh;

A.IL Package DIT.PeerReach.community

The community package contains classes that are used to manage and maintain
community links between community nodes. Community nodes are nodes within the

network that are deemed similar using a simtlarity metric

121

A.ILi CommunityManager

packaga DIT.PeerReach.community;

import DIT.PeerReach.*;
impoxt java.rmi.*;
import java.rmi.server.*;
import java.util.*;

/k*
This class acts as the manager of the classes contailned within the community
* package, it handles interactions with other managers of the application.
* Bauthor Paul Stacey
*/

public class CommunityManager extends UnicastRemoteObject implements
RemoteCommunitydanager |

private CommunityTable commtable;
private PeerReachNode pn;

/tt
* Constructor.
*

* Takes a reference to the node that instantiated this class a an argument
* alsc sets up the community table
*/

public CommunityManager (PeerReachNode prn} throws RemoteException {

pn = prn;
commtable = new CommunityTable{}:

* fThis method is called by other nodes using an rmi connection

< it is used to inform a community manager that they should update there
« community tables to include a particular node

*f

public void updateCommunityTable(Vector nodeSet) throws RemoteException |

int nodSetS5ize = nodeSet.size(};}
for (int i = 0; 1 <= nodSetSize - 1; i++) |
PRMNodehandle prnhandle = (PRNodehandle) nodeSer.getii);

commtable.addiNeighbour (prnhandle);
}
informCommunity {nodeSet] ;

}
/ki'

+ 8ets up an rmi link between the community nodes
»/
public veoid createCommunityLink (PRHodehandle prnhan)
throws RemoteException |
commtable.addNeighbour {(prnhan);

}

/i*
* galled to tell a recently connected neighbour to update its community link
* this method is exported as a remote rmi call

*/

public veid informComuunity{Vector nset) |
int nodeSetSize = nset.size();
for (int i = 0; i <= nodeSetSize - 1; i+t+) |

pPRModehandle prnh = {PRNodehandle) nset.get (i),
String port = prnh.getRmiConnection():
try

RemoteCommunitytanager rcm =
(RemoteCommunityHanager} Naming.lookup({pert);
rcm. createCommunityLink{(prnh);
} catch (Exception e} {
$ystem.out.printin("Community update client
exception2: " + e);

A.ILii CommunityServer

package DIT.PeerReach,community;

import java.rmi.*;
import DIT.PeerReach.*;

/kk
* This class binds the community manager to the rmiregistry
¥

* Rauthor Paul 3Stacey
*/
public class CommunityServer |
public CommunityServer (PeerReachi¥ede prn, int port) {
tey |
Naming.rebind/(
"Communityianager//127.6.0.1/" + port,
naw Communitylanager (prn));
System.out.println({
"CommunityManager Server is ready. it is bound to
communityManager//127.0.0.1/"
+ port};

} eatch {Exception e) (
System.out,println{"Communitylanager failed" + e);

}

}

A.ILiv RemoteCommunityManager

package DIT.PeerReach.community;

impoxrt DIT.PeerReach.*;

impoxrt java.rmi.*;

import java.util.*;

/i’*
* Interface

An Interface to any class that is aimplemented as the community manager

* abstract methods

* Gauthor Paul Stacey

=/

public interface RemoteCommunitylanager extends Remcte |

public void updateCommunityTable(Vector nedeSet) throws RemoteException;

public wvoid createCommunityLink (PRNedehandle prnhan)
throws RemoteException;

A.II. Package DIT.PeerReach.message

The message package contains classes that are used to read and create messages.
Within the prototype the Message Manager assumes a registry message. All messages

that arrive in the detiver method of PeerReachNode are passed to the message manager.

123

A.IILi MessageManager

package DIT.PeerReach.message;

import rice.pastry.messaging.*;
import DIT.PeerReach.*;

import DIT.PeerReach.register.”;
import DIT.PeerReach.vector.*;

import java.ioc.*;

/tir

* This class handles interactions between the messaging package and the rest of the
* application., The Message manager deals with any messages passed from the pastry

* Layer

* @author Paul Stacey

*/

public class Messagelanager implements Serializable {

private PeerReachNode pn;
private RegistryManager rm;

/**
* Constructor
* Takes in a reference to the registry manager
*/
public MessagelManager (RegistryManager regm) |
rm = regm;
}
/}'}'
* Reads messages passed up from the pastry lavyer
*/

public void readMessage {Message msqg) {

System.out.println("\nMessage manager 1s reading message!");

PRIMessage message = [(PRMessage] msqg;

MessageReader read = new MessageReader (msg);

String type = read.getlsgType(};

// at the moment assumes a registry message

if (true) |
PeerReachilode prn = message.getPeerReachNode(};
NodeVector nv = message.getHodeVector();
rm.registerNode {prn, nv);

)
/:l—*
* Sets the the instance of the node

*f
public veoid setprNode{PeerReachiNode prn) {

pn = prn;

A.IILiii PRMessage

package DIT.PeerReach.message;

import
import
impoxt
import
impoxt

/**

java.net.*;
rice.pastry.messaging.*;
rice.pastry.tiodeld;
DIT.PeerReach.vector.™;
DIT.PeerReach.*;

> This class represents a message that can be passed to the pastry layer. PRlMessage
is an extension of a Pastry Message

*

* Bauthor Paul Stacey

*/

public

class PRMessage extends Message |

124

public NodeId source;
public NodeId target;
public NodeVector nvec;
private int msgid;
private PeerReachNode prn;

[+

* Constructor

Ed

+ Initialises all the attribute of the message
*/

public PRMessadge(
Address addr,
NodeId src,
NodeId tgt,
int mid,
HodeVector nv,
PeexrReachNode pn) |
supar (addr) ;
source = src;
target = tgt:
msygid = mid;
nvec = nv;
prn = pn;

}

/k*

* Returns the HodeVector from the message
&

/
public WodeVector getNodeVector() |

return nvec;

!

A
* Returns a reference to the node that sent the message

=/
publiec PeerReachNode getPeerReachNode{} {

return prn;

l

/**
* returns the IP address of the node, currently just returns the lccal IP.
*/

public InetAddress getIPaddr{) {

InetAddress Ipaddr = null;
try |
Ipaddr = InetAddress.getLocalHost (};
} eatch (UnknownHostException e) {
System.out.println(e};

}
raturn Ipaddr;

A.VI. Package DIT.PeerReach.register

A.VLiii IndexTable

package DIT.PeerReach.register;
import java.util.*;

import DIT.PeerReach.vector.*;
import DIT.PeerReach.*;

/*k
+ This class contains methods used to register nodesin an index table, currently a
+ hashtable is used, future implementations of this class will create and maintain
clustering tree.
®
* @author paul stacey
*/

public class IndexTable|

vector indxtable = new Vector(}); // note this will eventually hecome a cluster tree!
Hashtable intkle = new Hashtable(};
PeerReachNode peerncde;

/k*
* Add node to the index table
>/
public veoid addNode (PeerReachiede pnnn, NodeVector nv) |
peerncde = pnnn;
PRNecdehandle prnh = pnnn.getPRNoedehandle(];
indxtable.addElement (prnh});
intble.put (pnnn, nv};

}

/**
* Removes a node from the index table
*/

public void removeNode () {

}
P

* search the index table for a similar node to the given nodevector
*/

public Vector searchTable (NodeVector search)(
f/int i = 0;
//PeerReachNode prn = (PeerReachiode) indxtable.get{i};
//NodeVector nodev = {(NodeVector) intble.get{prn):
//return prn;
return indxtrable;

A.VLiv RegistryManager

package DIT.PeerReach.register;

import rice.pastry.Nodeld;
import rice.pastry.join.*;
import rice.pastry.NodeHandle;
import DIT.PeerReach.*:

import DIT.PeerReach.message.*;
import DIT.PeerReach.community.*;
import rice.pastry.messaging.?*;
import rice.pastry.routing.?*;
import rice.pastry.security.*;
import DIT.PeerReach.vector.*;
import java.rmi.*;

import java.util.*;

*

/
This class handles interactions between classes in the registry package and the
rest of the application. Registy Manager contains methoeds to register nodes,
search the index tables and forwards search gueries.

@Gauthor paul stacey
/

L

public class RegistryManager |

private int msgid = 07

private static Address add:r;

private static Credentials cred = new PermissiveCredentials{);
private ConcRegistryldFactory crif;

private PeerReachNcde prn;

126

private IndexTable indx = new IndexTable();
private NodeHandle hint = null;

private String() registryWrds;

private NodeVecter nodeVector;

private int Port;

public RegistryManager{int port) {

//Port = port;

crf = new ConcRegistryIdFactoryl();
i

/*i—
¥ Set the nedevector
*/
public void setNodeVector {NodeVector nvec) |
nodeVector = nvec;
}
/.**
* Routes the registry request to the node with the nodeId nid
£/

public veoid routeRegistryRegst (Hodeld nid) {
Message msg =
new PRMessage (addr, prn.getNodeld(}, nid, ++msgid, nodeVector,
prnj;
prn.routelisg (nid, msy, cred, new SendCptions{)};

)

AR
* Registers the node pnn and its nodevector nv in the index tables
=

public void registertode(
PeerReachNode pnnn,
NodeVector nv) { //mayhk add in & node Handle here
indx.addNode (pnnn, nv);
//this will change to update the community or be a community table
findSimilarNodes (nv, pnnn);

}

/tir
+ sparches the index table for similar necdes to the given ncde and its
* nodevector
*/

public veid findSimilarlodes (NodeVector nodevec, PeexReachiNode pnr} |

Vector prn = indx.searchTable {nodevec};
returnSimNodes (prn, pnr);

}

/**
* Returns a set of nodes that were found to be similar to a given node
*/

public void returnSimNodes (Vector nodeSet, PeerReachNode prnnn) {

int port = prnnn.getRMIPort{);
System.out.println(
“in the registry manager/retunrSimNedes this is the port:" + port);
try |
// RemoteCommunityManager rcm = {RemoteCommunityManager} Naming.lookup
("rmi://127.0.0.1/CommunityManager");
RemoteCommunityManager rcm =
(RemotetommunityManager) Naming.lookupi{
"CommunityManager//127.0.06.1/" + port):
system.out.printin("The rmi connection appears to be
successful !} ;
rem. updateCommunityTable {nedeSet) ;
} cateh (Exception e) |
system.out.println ("Community update client exceptionl: " + e};

H

127

/**
* Registers a given node in the index table, this metheod is called by
* PeerReachAppl
*/

public veoid register() {

JoinAddress addr = new JoinAddress({};
String regq;
NodeId regid = naw NodeId():
Credentials cred = new PermissiveCredentials();
int size = registryWrds.length;
for (int i = 0; 3 <= size - 1; i++} |
reg = registryWrds(i];
crf.setRyg(reg):
regid = crf.generateNecdeld(};
routeRegistryRegst (regid};

}

/!rt
* Sets the interests or keywords of the node that instantiated this registry *
manager
*/
public void setInterests{String[) interests) {
registryWrds = interests;
}
/*k
* sets the reference of the node that instantiated this registry manager.
*/

public void setNodelnstance{PeerReachNode pn) [
prn = pn;

H

A.VII Package DIT.PeerReach.vector

A.VILi FileVector

package DIT.PeerReach.vecter;

import Jama.*;
import java.ic.*;

/!rt
* This class implements the interface PRVector, it is the vector representation of
* a file within the system. The actual vecter is a Jama one dimension natrix.
* @author Paul Stacey
+/
public class FileVector implements PRVector, Serializable {

privata Matrix wvec;
private int size;
/x*

* Constructer

*/

public FileVector() {
}
/**
* Constructor
* initialize the size of the matrix, at tprsent this is the size of the
* training set
*/
public FileVector {(int s} {

size = s5;
vec = new Matrix(size, 1);

128

/:'tir
* Returns the size of the vecteor/matrix

*/
public int getSize{} |{

return size;
3
/**
* Adds a zero to the wvector at the specified point
*/
public void addZerc{int index) {

double zero = 0;
vec.set (index, 0, zero);
}
/ir*
* Adds a value at the specified peint within the vector
*f

public void addvalue(double value, int index} {

vec.set{index, 0, wvalue);
H
/*ir
* Qutputs the vector to the screen
x/

public void printVec{} |
vec.print(l, size);

}
/**
* returns the Jama Matrix wrapped by this class
*/
public Matrix getMatrix(} {
raturn vec;
1
/iri-
* Compares another filevector to this FileVector and returns a similarity
* index hetween 0 and 1
>/
public double compare{FileVector v} {
Matrix compare = v.getMatrix{j;
double cmpn2 = conpare.norm2();
system.out.println{”this is the 12 norm of the vector
compare' + cmpnz};
double vecn2 = vec.norm2();
System.out.println("this is th 12 norm of the other vector” + vecnzj;
double n2prod = cmpn2 * vecnz;
System.cut.println{"this is the product of the two 12 norms" + n2prod) !
double dprod = dotProduct{vec, compare);
System.out.println(
"this is the value returned from the dot product method" + dprod):;
double simindex = dpred / n2prod;
System.out.println{simindex);
return simindex;
]
/*I:
* performs the dot product of two vectors
*/
public double dotProduct (Matrix v, Matrix c) {
doubla product;
double dotproduct = 0;
for (int i = 0; i <= 54; i++) {
double velem = wv.get(i, 0):
double celem = c.get (i, 0};
product = velem * celem;
dotproduct = dotproduct + product;
)

return dotpreduct!;

129

A.VILii NodeVector

package DIT.PeerReach.vector;

import Jama.*;
import java.io.*;

/*i—
* This class implements the interface PRVector, it is the vector representation
+ a Node within the system. The actual vector is a Jama one dimension natrix.
+* RBauthor Paul Stacey
*/

public class NodeVector implements PRVector, Serializable {

private Matrix centroid;
private int size;
/i-*
* Constructor
*/
publiec NodeVector{) {
}
/**
* Constructor
* 4initialize the size of the matrix, at tprsent this is the size of the
* training set
*/
public NodeVector {Matrix cent} ({

centreid = cent;

H

/}ir
+* Returns the size of the vector/matrix
*/

public int getSize{} |

return size;

}

/k*
* Adds a zero to the vector at the specified point
*/

public veid addZero({int index) {

double zero = 0;
centroid.set{index, 0, zero);

I

/-l-i
* pdds a value to the vector at the specified peoint
*/

public veid addValue{double value, int index) {

centroid.set({index, 0, value);

!

/iri'
* Prints the NodeVector to screen
*/f

public void printVec() {

centreid.print (1, size);

}

/*i
*Returns the Jama Matrix wrapped by this class
*f

public Matrix getMatrix{) {

return centreid;

1

/ir*
* Compares a FileVector to this NodeVector
*/

public double compare{FileVector v) |
Matrix compare = v.getMatrix{};

130

of

double cmpn2 = compare.norm2();
System.out.println("this is the 12 norm of the vector compare” + cmpn2);
double vecn? = centroid.norm2();
System,out.println{"this is th 12 norm of the other vector" + wvecn2);
double n2prod = cmpn2 * vecn2;
System.out.println(“*this is the product of the two 12 norms" + nZprod);
double dprod = dotProduct{centroid, compare);
System.out.println{
Uthis is the value returned from the dot product method" + dprod};

double simindex = dprod / n2prod;
System.out.println{simindex):
return simindex;

1

/ir*

* Ccompares a WodeVector to this NodeVector
*/

public double compare (NodeVector v} {
Matrix compare = v.getMatrix();
double cmpn? = compare.norm2();
System.out.println("this is the 12 norm of the vector compare" + cmpn2};
double vecn? = centroid.norm2({):
System.out.println(”this is th 12 norm of the other vector” + vecn2);
double n2prod = cmpn2 * wvecn2;
system.out.println{”"this is the product of the two 12 norms" + n2prod);
double dprod = dotProduct(centroid, compare) ;
System.out.println{

"this is the value returned from the dot product methed" + dprod};

double simindex = dprod / nZprod;
System.out.println(simindex};
return simindex;

}

/t\v
+ performs the dot product of two vectors
/
public double dotProduct(Matrix v, Matrix c) |
double product;
double dotproduct = 0;
for (int i = 0; i <= 54; i++) {
double velem = v.get (i, 0):
double celem = c.get{i, 0);
product = velem * celem;
dotproduct = dotproduct + product;
}

return dotproduct;

package DIT.PeerReach.vector;
impoxrt Jama.*;
Jr*
* This is an Interface te a class that is a vector representation of an object
* @author Paul Stacay
*/
public interface PRVector |
public void addZero{int index);
public void addvalue{double value, int index);
publie void printVec(}:

public Matrix getMatrixi();

public double compare (FileVector v
public double dotProduct (Matrix v, Matrix c);

131

A.VILiii TrainingSet

package DIT.PeerReach.vector;

import java.util.*;

/**
This class implements the TrainingSet used in vector space modeling of files and
* nodes
*
Bauther Paul Stacey
*/

public class TrainingSet {

private WrdWeightList wl = new WrdWeightList();
private String stoplist = "";

private Vector vector = new Vector();

private ArrayList stpfilelist = new ArraybList{);
private ArrayList stmdfilelList = new ArrayList();
private ArrayList removedwords = new ArrayList(};
private ArrayList stpList = naw ArrayList(};
private int stpIndx = 0;

private int fleIndz;

private int flesize;

private int stpsize;

private int initflesize;

/**
* This class implements the TrainingSet used to calculate vector space
* representations of files and nodes
&
* @dauthor Paul Stacey
*f

public TrainingSet {ArrayList file, String stList, WrdweightList wwl) |

wl = wwil;

stopList = stList;

stpfileList = stopList(file, stopList);
stmdfileList = stemmer (stpfileList);
buildTraining$Set (file);

}

/**
* Returns an stemmed list of words of the arraulst al
*/

public ArrayList stemmer (ArrayList al) |{
ArrayList stL = new ArrayList({);
Stemmer st = naw Stemmer();
st.stemList (al};
stL = st.getStemmedList();
return stlL;
H
/**
* Returns the arraylist with stopwords removed
*/

public ArrayList stoplList{ArrayList file, String stoplist) |
boolean test = true;
flesize = file.size(); // get size of Lhe array
initflesize = flesize;
//read in stop list file and convert to a arraylist
InputReader ip = new InputReader{};
stpList = ip.getFile(stoplist); // read in stop list to arralist
stpsize = stplist.size(); //get size of array
//first element of stoparray list
for {int 3 = G; Jj <= stpsize - 1; J++) |
fleIndx = 0;
test = true;
Obrject stpElement = stplist.get{stpIndx);
String stpElem = stpElement.toString{):

while (test) {

Object fleElement = file,get(flelIndx);

String fleBlem = fleElement.toeString{};

int ans = fleElem.compareTe(stpElem);

// compares lexically if equal

if (ans == 0) {
Object removedsStrng = file,remove{fleIndx);
String remove = removedStrig.toStringl};
flesize = file.size();
removedwords.add (remove) ;

1

fleIndx++;

if (flesize - flelndx <= 0) !
test = false;

}
}
stpIndx++;
1
file.trimToSize ()
raturn file;
1
Vi
* Builds the trainingset
*/
public void buildTrainingSet (ArrayList filelist} {

Object word;

int arraysize = filelist.size{);
Hashiap tF = new HashiMap(arraysize};

fox (int 1 = G; 1 <= arraysize - 1; 1++) {

word = filelist.get(i);
boolean contain = vector.contains(word);

if {(ceontain == true) {

} alse |
vector. add{word)} ;
updateTrainingSet (word);

1
/**
* Updates the TrainingSet
=/
publie void updateTraining3et (Object word} {

wl.updateWrdWeightList {word);
System.out.println(”........ ... we are updating the word list!™);

A.VILiv VectorFactory

package DIT.PeerReach.vector;

import java.util.*;
/**

* Interface to a class that can create vector space representations
*

* fauthor Paul Stacey
*/
public intexface VectorFactory {
public HashMap getTfidf (ArrayList tf);
public HashMap buildTf{ArrayList file}:

A.VILv VectorManager

package DIT.PeerReach.vector;

133

impert java.util.”*;

import DIT.PeerReach.persistence.”;
import Jama.*;

,**
* Tnis class is the manager of the vector package
*
* (@author Paul Stacey
*/

public class VectorManager ({

private ArrayList flevectorlist;
private int initcapacity = 300;
private ArraylList list = new ArrayList(}:
private HashMap wwwl = new HashMap(};
private Peraistentstore 5 = new PersistentStorel(};
private TrainingSet tset;
private VSHFileVectorFactory fileVector;
private String stoplist =
"C:feclipseZ/eclipse/workspace/masters/DIT/PeerReach/vector/van rijshergen stop
list.txt";
private WrdWeightlList wwl = new WrdWeightListi{);
private ArrayList fleVector = new ArrayList();
private int count = 0;
private String name =
private String path =
"C:/eclipse2/eclipse/workspace/masters/DIT/PeerReach/vector/";
private int countdown = 10;
private String countdwn = "building training set";
private NodeVector nvec = null;
public ArrayList getFile(String Path) |
InputReader reader = mnaw InputReader();
list = reader.getFile{Path);
return list;

nu,
;

/";*
* Build Training Set
*
*/
public void buildTrainingSet () {
for (int i = 0; 1 <= 10; i++} [
Integer cnt = new Integer (count);
name = cat.toString{};
String file = path + name + ".txt";
//read test file into an array list of words
fleVector = getFile{file};
//construct the file vector
//Heed to change this design, too slow
tset = new TrainingSet(fleVector, stoplist, wwl);
count++;
System.out.println{countdwn + "\n" + countdown);
countdown—-;
countdwn = "';
]
s.WriteObject(wwl, "trainingset'};
System.cut.printin("the traininig set has heen saved"):
}
/i-i
* Read the hard saved training set and retrun it as type WrdWeightList
*

*/

public WrdWeightList readTrainingSet () {
WrdWeightList wrdwl = (WrdWeightList} s.readObject{"trainingset'};
return wrdwl;
}
/*'ir
¥ puilds HodeVector from the FileVectors of the saved files
*
*/
publiec void buildiodeVector () {

flevectorlist = new ArrayList();
Matrix centroid = null;
count = 0;
WrdWeightList wrdwl = readTrainingSet();
foxr {int i = 0; 1 <= 10; i++) {
Integer cntnrame = naw Inteder (countj;
3tring fname = cntname.toString(};
String filename = path + fname + ".txt";
fleVector = getFile{filenane);
HashMap wrddocfrgset = wrdwi.getHashMap{);
Arraylist trainwrdst = wrdwl.toArrayList(}:
int wwlsize = trainwrdst.size(}:
fileVector = new VSMFileVectorFactory{fleVector, stoplist,
wrdwl) ;
System.ocut.println{"We are now building the file vectors!"):;
FileVector fVector = fileVector.getFileVector();
s.WwriteObject{fVector, fname);
flevectorlist.add(fVector);
System.cut.println("filevector added" + flevectorlist);
count ++;

1

int size = flevectorlist.size();

for (imt 1 = 0; i <= size - 1; it+t+) |
Object fv = flevectorlist.get(i};
FileVector fvwv = (FileVector) fvw;

int vsize = fvv.getSizel();
System.out.printin("size of matrix is
System.out.printin("File Vectox™ + fww};
Matrix vector = fwv.getMatrix();
if (i == 0} {

centroid = vector;

+ vsize};

1
if (i 1= 0} (
centroid = centreid.plus{vector};
H
)

nvec = new HodeVector (centroid):
s.writedbject (nvec, "HodeVector");
1
/}*
* Returh NeodeVector, reads it from the persistent storage
-
*/
public NodeVector getHodeVector() {

NodeVector savedNvec = (NodeVector) s.readObject ("NodeVector");
raturn savedNvec;

A.ViLvi VSMFileVectorFactory

package DIT, PeerReach.vector;
import java.util.*;

import DIT.PeerReach.persistence.*;

/*A—
* This class provides methods of building vector representaticns of Objects
* Q@author Paul Stacey
*/

public elass VSMHFileVectorFactory implements VectorFactory |

private int stpIndx = 0;

private int fleIndx;

private int flesize;

private int stpsize;

private int initflesize;

private ArraylList tf = new ArrayLast():

private ArrayList fileList = new ArrayList();
private ArrayList stmdfilelist = new ArrayList(};
private ArrayList stpfileList = new ArrayList();
private ArraylList stplist = new ArrayList():

private ArrayList removedwords = naew ArrayList{):
private HashMap termFrequency = new HashMapi();

private HashMap training = new HashMap{):;

private String stoplist = "";

private FileVector fleVector;

private FilevVector fileVector = new FileVector{};
private PersistentStore store = new PersistentStore();

/*
* Constructor
* Initialises the class variables

*

*/

public V5MFileVectorFactory({
ArrayList file,
String stList,
WrdWeightList wwl) {
stopList = stlist;
fileList = file;
stpfilelist = stopList(filelist, stopList];
stmdfileList = stemmer(stpfilelist);
System.out.println("Building the term-frequncy table and updating the
training set this may take a while please wait!\n"};
termFrequency = getTfidf (stmdfiieList);
fileVector = buildVector (wwl, termFrequency);

}

public FileVector getFileVector() |
raturn fileVector;
1
/iar
* This method instantiates an object that implements a
* stemming algorithm to stem the words with the file

*

*/
public ArraylList stemmer (ArrayList al) f

ArrayList stL = new ArrayList();
Stemmer st = new Stemmer{;;
st.stemlist(al);
stL = st.getStemmedList();
return stL;
H
/;*
* This method removes all the stoplist words from the file
* a the stop list can be easily changed and passed to this method
*
*/
public ArrayList stoplist(ArrayList file, String stoplist) |

boolean test = true;
flesize = file.size(); // get size of the array
initflesize = flesize;
//read in stop list file and convert to a arraylist
InputReader ip = new InputReader();
stpList = ip.getFile{stoplist); // read in stop list teo arralist
stpsize = stpList.size{}; //get size of array
//first element of stoparray list
for (int j = 0; 3 <= stpsize - 1; J++} |
fleIndx = 0;
test = true;
Chject stpElement = stpList.get{stplndx);
5tring stpElem = stpElement.toltring():;
while {test) (
Ohject fleElement = file.get(fleIndx);
String fleElem = fleElement.toString();
int ans = fleElem.compareTo(stpElem);
// compares lexically if equal this may not be what we
//want, check!
if (ans == 0) {
Chject removedStrng = file.remove (flelIndx):
String remove = removedString.toString{};
flesize = file.size(});
removedwords. add (remove) ;

136

fleIndx++;
if {(flesize - flelIndx <= G) {
test = False;

}
}
stpIndx++;
]
file.trimTosizel():
raturn file;

H

/*
* tethod that returns the tf-14f representation of the file
*/

public Hashtlap getTfidf (ArrayList cf) |

HashMap test = buildTf(tf);
return test;

}

// buildTf is quite slow, there is definitely room to speed up this algorithm,
f/review latter
public Hashbap buildTf{ArrayList file} |{

tf = file;

int numOccour = 0;

Object searchOb;

Object search = null;

int arraysize = tf.size();
HashMap tF = new HashMap{arraysizej;
foxr (int 1 = 0; 1 <= arraysize - 1; 1i++} |{

numOccour = 0

searchGCk = tf.get{i});

for (imt j = 0; §j <= arraysize - 1l; Jj++) {
search = tf.get(3);
String searchl = searchOb.tostring():

String search? = search.toString(};
int compare = searchl.compareTo{search2):
if {(compare == 0} {

num@ccour = numOccour + 1;

]

Integer numOce = new Integer {(numGccour);
boolean contain = tF.containsKey(searchOb):
if {contain) |

} else |

1
Object x = tF,put{searchfb, numbcc):
//recheck positioning of this update, may have performance
//implicatiens
}
int size = tF.size();
//System.out.println{"the size of the idf is ="+ size};
return tF;
H
/i*
* B8uilds a vector given the training set and a term frequency list

*
*/
public FileVector buildVector (WrdWeightList training, HashMap termFreq) |

int N = 10;
Vector dict = training.getDictionary{};
int size = dict.sizel);
HashMap wrddocfregset = training.getHashMap():
ArrayList trainwrdset = training.toArrayListi};
fleVector = new FileVector{size):
for {int i = 0; 1 <= size - 1; i++4) |
Cbject term = trainwrdset.get(i);
Integer docfi = (Integer) wrddocfregset.get{term);
double dfi = docfi.doubleValue():
boolaan contains = termfFreg.centalnsKey(term);
if {contains) {

Integer trmfreq = (Integer) termFreq.get{term};
double tfreg = trmfreqg.doubleValuel}:

double vecterm = tfreg * Math.log(N / dfi);
fleVector.addvValue {vecterm, 1i};

i else |
fleVector.addZerc(1};

}

return fleVector;

A VILvii VSMStemmer

package DIT.PeerReach.vector;
import java.util.*;

/k*
* An Interface to a class that implements a stemming algorithm

* @author Paul Staceay
*/

public interface VSMStemmer |
publie void stemList (ArrayList al);

publiec ArrayList getStemmedList();

138

Appendix B

This Appendix lists the m-files written in the initial experiments on Vector Space
modeling techniques detailed in section 6.1.1. Three m-files were programmed to realise

the experiment.

B.1. M-File 1

% Create an array tc store results
ext = '.txt';}
resultsarray = [}

zRead in 1000 mest commen english words
common = textread!'l000mostcommonEnglwords.txt','=s', 'delimiter','\n ', 'whitespace',
R
COMMCN = upper (common};
commonlen = length{commen);
repeat = 1;
for repeat = 1:3;
i= 1;
counter = 1i;
doccount=textread{ 'doccount.txt', '*s', 'delimiter’', '\n', "whitespace',' '};
docpointer = 1;
5 = length({doccount);
for decpeinter = 1:8
if docpointer == 1
docnum = 'one'
elseif docpointer == 2
docnum = 'two'
elseif docpeointer == 3
docnum = 'thr'
elseif docpeinter == 4
docnum = 'for'
elseif docpointer == 5
docnum = 'fiv’
elseif docpointer == 6
docnum = 'six’
elseif docpointer == 7
docnum = 'sev'
elseif docpointer == 8
docnum = 'eig'
elseif docpointer == 9
docnum = 'nin’
elseif docpeinter == 10
docnum = 'ten'
elseif docpointer == 11
docnum = 'elv'
elseif docpointer == 12
docnum = *twl'
elseif docpointer == 13
docnum = ‘tur'
elseif docpecinter == 14
docnum = *frt'
else
decnum = "£it’
end
doc = doccounti{docpointer};
doc = char (doc);
document = (doc,ext];

% Create cell array by reading in the txt file
file = textread{document, '%s', 'delimiter','\n (} . , " , ','whitespace',' '}:
* Converts all text to upper case because Matlab is case sensitive
file = upperi{file);
¥ Extract all common words
for counter = l:commonlen
word = common{counter};

139

cemmonmatch = strmatch (word, file, 'exact');
file (commonmacch)= "'"';
counter = counter +1;

end

: get the length of the cell array
1 =1;
L ing2str{l);
y = length{file):

% (Create wvariable cellnum and set it equal to 1
cellnum = 1;
ri= 1;
j= 1;

for loop to read all elements of cell array and find out how may
times they occur

for cellnum = l:y;
Read element corresponding to cellnum of %cell array

o

N

% = file{cellnum};
X = char(x);
% Compare % to elements in array to see if it exists, if not add it
i to array
L = strmatch(X,resultsarray, 'exact'};

RAlen = length(resultsarray}:;
p = length(k};
if p == 0;
resultsarrayf{1i,]} = X}
resultsarrayf{i,j+2} = L;

i Do a str match on file to see how many times X occurs in document
match = strmatchix, file, 'exact'};
matchsize = length (match);
MATCHSIZE = int2str (matchsize;};

% store matchsize 1in array ;
resuitsarray(i,j+1} = MATCHSIZE;
resuitsarray{i, j+3}= docnum;

i = i+l;
elseif k > RAlen
resultsarray{i,j} = ¥;
resultsarray{i,j+2} = L;

% Do a str match on file to see how many times x occurs in document
match = strmatch(x, file, 'exact’);
matchsize = length{match]);
MATCHSTZE = int2str{matchsize);
% Store matchsize in array
resultsarray{i,j+1} = MATCHSIZE;
resultsarray{i, j+3}= docnum;
i= 1+1;
else

$If it is in the array already and occurs in the new document we iwant to

and increment the number of times it has *cccurred
matchl = strmatch({x,resultsarray, 'exact'};
matchl = matchl(1);
matchN = resultsarray(matchl, j+3);
MATCHN = char {(matchi):

if MATCHN == deocnum
celinum = cellnum +1;
else

match? = strmatchi{z,file, 'exact'}:
matchsize = length{match?);
m = resultsarray(matchl, Jj+1};
orgmatch = char(m);
orgmatch = str2num{orgmatch};
orgmatch = orgmatch + matchsize;
MATCHSIZE = intZ2str (orgmatch);
resultsarray[matchl, j+1} = MATCHSIZE;
h = resultsarrayi{matchl, J+2):
H = char(h):
H = strZnum{H};
H = H+1;
H = intZstr{H);

resultsarrayf{matchl, j+2} = H;
resultsarray{matchl, j+3} = docnum;
end
end
resultsarray;
end

140

increment N

docpeinter = docpointer+l;
end
repeat = repeat + 1;
end
save resultsarray
vectorconstruct

B.II M-File 2

% Program to calculate the wvector representation of a document given * an already
constructed array of words

% load in new text doc

file = textread{'ld.txt’, "%s', 'delimiter','\n', ’whitespace',"' ');
len = length{resultsarrayt}:
3 =1;
vec = zeros(len,l};
for 1 = l:len;
i
3 read first line of results array
¥ = resultsarxay(i);

» does doc contain this word?
match = strmatchix, file, 'exact');

p = length(match);
if == 0;
~ noe? -> add zero to vector
wvec{j, 1) = 2 ;
% yes? get frequency multiply by log(N/dfi)
else
freq = lengthimatch);
N = resultsarray(i,3};
N = char({N);
N = strZnumi{N);
afi = resultsarray(i,2);
afi char (dfi};
dfi = str2num{dfi);
term = freg*log{N/dfi);

vec({j,l) = term;

j = j+l; % increment vector pointer

i = i+l; * increment pointer in resultsarray
end

end
vecnew = vec;

B.I11. M-File 3

% program to calculate the vector Tepresentation of a docwment given

% an already constructed array of words load in new text doc

ext = '.txt';
docpointer = 1;

for docpoint = 1:8

doc = doccount {docpointer};
doc = char {doc};
document = {doc,ext];

file = textread(document,'ss', 'delimiter', '\n', 'whitespace'," ')’
len = length{resultsarray);

j =1;

vec = zeros(len,1l};

for i = l:len;

%+ read first line of results array
X = resultsarray(i);
% does doc contain this word?
match = strmateh(x, file, "exact');

14

p = length{match};

if p == O;
= no? -> add zero to vector
vec(j,l) = 2 ;
: yes? get freguency, multiply by log(N/dfi)
else
freq = length(match};
H = resultsarray{i,3);
N = char (H);
N = str2num(N);
dfi = resultsarray(x,2);?
dfi = char(dfi};
gfi = str2num{dfi);
term = freq*log(N/dfi);

vec{j,l) = term;
j = j+1; % increment vector pointer
i = i+l; % increment peointer in resultsarray

end
end

It
—

if docpeinter =
vecl = vec

elseif docpointer == 2
vec?Z = vec

elseif decpointer == 3
vec3 = vec

elseif docpointer == 4
vecd = vec

elseif docpointer == 5
vech = vec

elseif docpointer == 6
vech = vec

elseif docpointer == 7
vecl = vec

elseif docpointer == 8
vec8 = vec

eiseif docpointer == 98
vecd = vec

elseif docpointer == 10
wvecl0 = vec

elseif docpointer == 11
vecll = vec

elseif docpointer == 12
vecl2 = wvec

elseif docpointer == 13
vecl3d = vec

elseif docpointer == 14
vecld = wvec

else
vecld = vec

end

tvecl = vec
docpointer = decpeinter + 1;
end

save vecl
save vec?
save vec3l
save vecd
save vecH
save Vecbt
save vecT
save vecH
save vec9
save vecld
save vecll
save veclZ
save vecl3
save vecl4
save wecl5

Appendix C

This Appendix contains the java code written to realise the simulator. The
Appendix only lists two classes, Simulation and PeerReachNode. These two classes are

the main classes of interest within the simulator.

C.1. Package DIT.PeerReach.simulator

C.1.i Simulation

package DIT.PeerReach.simulator;

import java.util.ArrayList;

import java.util.Date;

import java.util.Hashtable;

import java.util.LinkedList;
import java.util.Random;

import drecl.comp.Component;

import drcl.comp.Port;

import drcl.comp.Util;

import drcl.sim.event.SESimulator;
import drcl.data.DoubleOb3;
import drcl.comp.teol.Plotter;
import DIT.PeerReach.vector.NodeVector;

/4-*
+# This is the main simulation class, this class sets up the
* simulation parameters and variables. The plotter is also
configured within this class to + putput simulation data
* @author Paul Stacey
“/

public class Simulation extends Component {

private Plotter plot;

144 number of nodes a node can create links with
private int communityCennectivity = 4;

private double queryHops plot = 0;

private double queryHops plotl = 0;

private int numberofNodes;

private int cat = 8;

public static final int DESCRIPTOR_ID = 0

private ConfigManager configManager;

privatae double finishTime = T1641000,17365;

public int totalNoOfFiles;

public static final int SOURCE = 1;
public static final int QUERY = 2;
public static final int QUERY_HIT = 3;
private Port forkPort:

private Port commandPorts([};

private Port plotterPort;

private Port plotterPortl;

private Port thisPlotterPort;

private Port thisPlotterPortl;
private PeerReachNode[} nodes;

public static Hashtable fileHashtable;
public static Hashtable confusionHashtable;
private Connection(] connections;
private Network network;

private ArraylList bandwidthhrray;
private SESimulator runtime;

private int descriptorIbDCounter;
private int satisfiedConnectivity = 0;
private int totalConnected = 07

143

private boolean endl = false;
private boolean end? = false;
private int hits = 0;
private double hitTime;
long startTimeStamp;
/*J«
* Contructor
*
* Sets up simulation parameters
*f
public Simulation(String configFilesPath, int numberNodes) |
System.out.println{"starting simulation™}:
System,out.println{"loading cenfiguration files"};
nunbercfNodes = numberhlodes;
plot = naw Plotter({};
// Setting up the Rendezvous points
// This bypasses the use of Pastry for simulation
// purposes
for (dint i = 1; i <= cat; i++) |
RendezVous RV = naw RendezVous (};
integer catnum = new Integer(i);
String catNumber = catnum.toString();
RV.storeObject ("C" + catNumber};
}

configlanager = new ConfigManager (configFilesPath, nunberofiodes) ;

System.out.println{"initialising simulator"};
//initialise datastructures

nodes = new PeerReachNode (numbercfNodes]:;
runtime = naw SESinulator(};

fileHashtable = new Hashtablel();
confusionHashtable = new Hashtable{):
commandPorts = new Port[numbercfNodes];
connections = naw Connection[numberofNodes];
forkPort = addForkPort("forkfort");
createTopology (configlanager);

network = new Network{numberofNodes):
setConnections (hetwork});

Util.setRuntime (this, runtime);
Util.setRuntime {network, runtime):;

//set up the plotter

Port plotPortl = new Port();

Port plotPort2 = new Port(});

plotterPort = plot.addPort(plotPortl, "0", "ory;
plotterPortl = plot.addPort (plotPortz, "0%, "1"};
thisPlotterPort = addPort("PlotterPort"):;
thisPlotterPort.connect (plotterPort);
thisPlotterPortl = addPort{"PlotterPortl”);
thisPlotterPortl.connect (plotterPortl);
Util.setRuntime{plot, runtime);
descriptorIDCounter = 0;

/ivi’
* Method that builds the topology or the links between nodes
*/

private void createTopology(CenfigManagex configianager) {

int connectivigy;
Random random = new Random{System.currentTimeMillis());

TopologyConfig topconf = confignanager.getTopoloquonfiguration():

Arraylist nodevVectorlist = confighanager.getNodeVectorList ()

Hashtable nodeVectortcoNodeIdList =
configManager.getNodeVectortoNodeIdList ()

HedeVector currentNodeVector;

NodeVector currenthvV;

NodeVector currentprunedNodeVector;

NodeVector currentprunediodeVectorl;

ArrayList neighbourNodeVectorlist = null;

int neighbourID = 0O;

int neighbor;

//set up random links between nodes

for {int i = 0; i < numberofNodes; i++) |
PeerReachNode node = new PeerReachNode{{int} i,
nodes{i] = node;

144

this);

Util.setRuntime {node, runtime);
commandPorts{i] = addPort{"commandPort" + i}/
commandPorts[i] .connect {node.getPort ("commandPort™));
}
//Set up node links from the rendezvous points
for !int i = 0; i < numberofNodes; i++) |
peerReachlode currentNede = nodes(i];
neighbourlodeVectorlist = new ArrayList(};
LinkedList currentNeighborList =
configHanager.getTopologyConfiguration().getPeerList(i);
LinkedList prunedNeigbourList = new LinkedList () ;
LinkedList randomiieigbourList = new LinkedList(};
int(] temp_prunedNeigbourList;
//need to prune list, max 4
Integer{] neighborArray =
{Integer[}) currentiNeighborList. toArray {new Integer [0]}};
//setup randem node link topclogy
Random generator = naw Random(} ;
for {(int x = 0; x < 3; x++) |
int gnode = generator.nextInt (numberciNodes);
randomNeigbourList.addLast {naw Integer {gnode) };
H
currentihode. setRandomieighborList (randomieigbourList);
for (int j = 0; j < randomNeighourList.size{}; j++) (
neighbor = ((Integer)
{randomteigbourList.get{j})).intValue(};
PeerReachNode neighborNode = nodes [neirghbor};
currentNode. connectHessageRouteTo {(neighborNode) ;

}
//setting up the network topology
for {int 3 = 0; j < currentNeighborList.size{}; i+ |

neighbourID = neighborArray(3].intvalue();
if (prunedNeigbourList.contains(new Integer (neighbourIb))}

System.out.println{"neighbour already registered");

} else if (neighbourlID == i) [
system.out.println("Cant connect to self");
} else |
currentiodeVector =
(NodeVector)

nodeVectorlist.get (neighbourIiD);
neighbourNodeVectorlist.add(currentNodeVector);
prunedieigbourList.addLast { (new
Integer (neighbourID})};
System.out.printlni{
"This is the pruned list" +
prunedieigbourList);
}
if {prunedNeigbourList.size{) >= communityConnectivity) |
break;
1
}
currentﬂode.setHeighbourNodeVectorlist(neighbourNodeVectorlist);
currentHodE.setHodeVectortoNodeIDTable{nodeVectortoNodeIdList);
currentNode.setNeighborList (prunedieigbourfist);
//Set up the cmessage connection routes
for (int j = 0;] < prunedNeigbourList.size(}; BRI
neighbor = ((Integer)
{prunedNeiqbourList.get(j)]).intValue():
PeerReachNode neighborNode = nodes [neighbor];
currentNode . connectiessageRouteTo (neighborNode) ;

}
i
}
/*i’
+ Set the connections within the Network, this connects all the necessary ports
/
private void setConnections (Network network) |
for (int i = 0; i < numberofNodes; it++) |
int inBandwidth =

configtanager
.getNodesConfiguration ()
.getNodeConfiguration{i)
.getInBandwidth{};
int outBandwidth =

configlanager
.getNodesConfiguration()
.getNodeConfiguration (i)
.getOutBandwidth();
Connection connection =
new Connection({int) i, inBandwidth, outBandwidth);
connections[i]l = connection;
peerReachiode currentNode = nodes([i};
currentNode.getPort("connection?ort").connect(
connection.getPort ("nodePort™));
currentNode.getPort("connectionEventPort"}.connect(
connection.getPort ("nodeEventPort™));
connection.getPort{"networkPort").Connect(
network.get?ort("nodeConnectionPort“ + i)}
connection.get?ort("networkEventPort“).connect(
network.getPort ("nodeConnectionBventPort” + i));
Util.setRuntime{connection, runtime};

¥

/*é

+ Method to return a reference to the configuration manager
*/

public Configllanager getConfighlanager{j {
return this.confighlanager;

H

/k*
+ Method te return a reference to the PeerReachNode with id 1
*/
public PeerReachlcde getNode (int i} |
return nodes1]:
}
/**
+ Method that returns the number of nodes currently active in the system
*f
public int getNumberoffiodes(} {
return numberofNodes;

}
/‘\-r
* Method that returns the next descriptor Id
*/
public int getWextDescriptorID{) |
return descriptorIDCounter++;

}
/ici’

* Method, this is the contract that describes the behaviour of this component,
« data arriving on the simulations ports is handled within this method
*
/
protectad void process(Object data, Port inPort) {
if {data instanceof String) [
if (data.equals("START_SIHULATION“)) {
startSimulation{);
forkAt (forkPort, "END SIMULATION", finishTime);
startTimeStamp = {(new Date()).getTime{);
} else if {data.equals("END‘SIMULATION“)) {
EndSimulation(};
System.exit (3] ;

}
/r*
+ Methed, starts the simulation and runs it until finishTime is reached.
* The time unit of finishTime is in second.
*/
publie veoid start() |
GlobalVariakles.start {};
Util.injeCt("STRRT_SIHULATION", forkPort);
}
/**
+ Method Lo update the plot when any relevant data is produced
*/
public void updatePlot (String type) {
System.out.println{"updating plotter™);

146

long currentSimTime = runtime.getWaliTimeElapsed ()

//update the relevant plot

if {type == "gueryl" & endl == false) |{
System.out.printin("Updating plot™};
DoubleDbj testset = new DoubleChjl);
queryHops plot = queryHoeps_plet + 1;
testaet.setValue (gqueryHops_plot);
send(thisPlotterPort, testset, (double) 0.0);
plot.show{0);

}

//update the relevant plot

if (type == "query2" & end2 == false) {
DoubleObj testsetl = new DoubleOb] (1} ;
gueryHops_plotl = gueryHops plotl + 1;
testseti.setValue{queryHops_plotl);
send{thisPlotterPortl, testsetl, {double) 0.0);
plot.show(0};

)
/**
Method to keep track of the number of hits are returned from query 1
=/
public void numberHitsl({) |
hits = hits + 1;
if (hits == 3} {

endl = true; //finishes plotl
}
i
/**
+ Method to keep track of the number of hits are returned from guery 2
*/

public void numberHitsZ () {
hits = hits + L1;
if (hats == 3} {
end2 = true; //finishes plet 2

}

/+*

» mMethod that initiates the actual simulation, called when the set up has been
done

*f

private void startSimulation{) {
for {(int i = 0;
i< configHanager.getEventsConfiguration().getNoOvaents();
i++)y |
EventConfig eventConfig =

Configmanager.getEventsConfiquration().getEventConfiguration(i);

String acticn = eventConfig.getAction():

if (action.equals{"QUERY")} {

System.out.printin(
" quexry time="

eventConfig.getIssueTime(}
" node="
eventConfig.getNodeID ()
" fileID = "

+ eventConfig.getActionParameterID()};
QueryEvent queryEvent =

new Quervaent(eventConfig.getnctionParameterID()}:

+ + o+ +

sendAt |
commandPorts [(int) eventConfig.getNadeID{)],
queryEvent,
{double) {eventConfig.getIssueTime(})};
}
sendAt {
commandPorts [{int) eventConfig.getNodelD()},
action,
{doubla) (eventConfig.getIssueTime()});

/**

147

+ Method, ends simulation, called when the finishtime has bheen reached
*/
private void endSimulation() {
System.out.println{"Exiting NOW");
printTopelogy();
double avyg = getAvgNeighbour();
System.out.println('"the average neighour size is" + avy);
plot.showAll();
// a wait for loop to give the plotter time to be displayed
for (imnt f = 0; f <= 1000000000; f++);

/i*
* Method, Prints the simulation topology
*/
public void printTopology () {
gystem.out.println("topolegy:"};
for (int i = 0; i < nodes.length; i++) {
PeerReachiode node = nodes[1];
System.out.println(" node: " + i};
LinkedList neighborList = node.getNeighborList(};
Integexr [} neighbordrray =
(Integer []}) neighborList.toArray(new Integer [D]);
string neighbors = "";
for (imt 3 = 0; j < neighborArray.length; J++) A
neighbors += " " + neighborArray([]]};
]
System.out.printin(” neighbors:" + neighbors);
Connection connection = connections(i);
System.out.println(
" bandwidth{in/out): "
+ connection.getIinBandwidthi()
+ I!/'l
+ connection.getOutBandwidth()):
}
System.out.println{
"this is the number of hits"
hits
"it took"
hitTime
"to get the first hit"):

o+

]
/ir#
* Method, calculates the average size of the nodes community tables
*/
public double getAvgieighbour() {
ArrayList neighboursizes = new ArrayList{);
int tot = 0;
double avgium;
int numMeighbours:;
for (int i = 0; i < neodes.length; i++) |
peerReachNode node = nedesii);
LinkedList neighborList = node.getNeighborList():
Integer[] neighborhArray =
{Integer(]) neighborList.toArray{new Integer (0]},
numdeighpbours = neighborArray.length;
neighbourSizes.add (i, new Integer (numNeighbours))
]

for (int 7 = 0; 3 < neighbourSizes.size(); Jj++) {

if (73 == 0) {
tot = ((Integer) neighbourSizes.get (})) .intValue(});
1 else {
tot = tot + {(Integer) neighbourSizes.get(]j)).intValue(};

}
}
avgNum = tot / neighbourSizes.sizel];
return avghum;

H

/ari-
* Main method
*

*/

public static veid main(String args[)) {

145

string configFilesPath = "C:/config/";

simulation simulation = new Simulation{configFilesPath,

simulation.starc();

C.Lii PeerReachNode

package DIT.PeerReach.simulator;

import
import
impert
import
import
import
import
import

/**

java.util.ArrayList;
java.util,Hashtable;
java.util.LinkedList;
java.util.Random;
DIT.PeerReach.vector.FileVector;
DIT.PeerReach.vector,NodeVector;
DIT.PeerReach.persistence.*;
drcl.comp. Port;

* Represents the community level PeerReach tode

*

* @auther Paul Stacey

*/

public

class PeerReachNode extends Node |

private int nodelD;

private Random rand = new Random{);
private int connectivity;

private String fileMatchingPolicy:
private int tC1;

private int routingTableSize;
private int hostCacheSize;

10}

private int maxUploads; //need to use this in the upload section
private int maxDownloads; //need to use this in the download section

private Simulation simulation;

private NodeConfig nodeConfig;

private HodeVector nodeVector;

private int{i () routingTable;

private int insertPos; // for routingTable
private int hostCache[];

private ArrayList neighbourNodeVectorlist;
private Hashtable nodevecteortoNodeIdList;
private Arraylist nodeldHintList;

private LinkedlList communityList;

private LinkedList randomNeighbourlist;

private int numHints = 4; //number of community nodes to forward

private int[] FileVectorList;

private int[] randomiodeList;

private float simMetric;

private Port commandPort;

ptivate boolean firstQueryHitReceived;
private int availableConnectivity;
private long speed;

private boolean active;

private PersistentStore s = new PersistentStore();
private String path = "C:/config/";
private String catl;

private double filesimMetric = 0.3/

private String cat2;

/**
* Constructor
*

+ Initialises node variables

=/

public PeerReachNode (int nodelD, Random randem, Simulation simulation)

super (nodeID, random)/
this.nedeID = nodelD;
this.simulation = simulation:

149

to.

nodecenfig =
simulation
.getConfigianager (}
.getNodesConfiguration(}
.getNodeConfiguration{
{int) this.ncdelID);
connectivity = nodeConfig.getMaxConmectivity(};
FileVectorList = nodeConfig.getFileVectorList();
catl = nodeCenfig.getCatl{);
cat?2 = nodeConfig.getCatl{};
nodeVector = nodeConfig.getNodeVector();
trl = nodeConfig.getPingTTL ()
routingTableSize = nodeConfig.getRoutingTableSize (]
hostCacheSize = routingTableSize;
active = nodeConfig.getActivel();
availableConnectivity = connectivity;
communityList = new LinkedList({);
insertPos = 0;
initRoutingTablel{);
commandPort = this.addPort ("commandPort");
firstQueryHitReceived = false;
}
/*k
* Returns the list of node Ids of nodes directly
+* connected to this node
=/

publie Integer (] getNeighbors({) {
return (Integer{]) communityList.toArray{new Integer [Q));

}

+# Sets up a list of nodes and their asociated vectors
*/

public wvoid setNeighbourNodeVectorlist(ArrayList avvectorList) |
neighbourNodeVectorlist = nvvectorList;

1

/t*

+ Sets up a list of nodes and their asociated vectors

*/

public void setNodeVectortoNodeIDTable (Hashtable nedIdtoNodevVector)
nodeVectortoNodeTdList = nodIdtoNodeVector;

H

/*f

* Returns a list of handles to nodes ceohectedto this node

=/

public LinkedList getdNeighborList({) {
raturn communityList;

}

/**

+ Sets the community tables for this node

*/

public void setNeighborList(LinkedList list) |
communityList = list;

}

/k*

* Sets up the randomly connected neighbour tables

=/

public void setRandomNeighborList (LinkedList randomlist) {
randomNeighbourList = randomList;

t

/**

* Initiates the routing tabkle

*/

private void initRoutingTable () [
routingTable = new int(routingTableSize] {2};
for (int i = 0; i < routingTableSize; i++) |

routingTable[i][Simulation.DESCRIPTOR_ID} = ~1;

}
/i*
* Adds new route to the routing table

*/
private void insertRoute(int messageDescripterID, int sourcelD) {
routingTable[insertPos][Simulation.DESCRIPTORiID] = messageDescriptorID;

routingTable[insertPos][simulation.SOURCE] = sourcelD;
insertPos = (int) (4+insertPos % routingTableSize);

}

/ii

* Checks if messageDescriptorID is present

*/

private boolean hasRoute{int messageDescriptorID} |
for (int i = 0; i < routingTableSize; i++) |
if (routingTable[i}[Simulation.DESCRIPTOR_ID]
== messageDescripterID) |
return truea;
}
1

raturn false;

t
/*k

+ gearches for files similar to searchVector

s/

public bkoolean searchFilel {(FileVector searchvector) {
boolean hit = false;

for (int i = 0; 1 < FileVectorList.length; i++4) [
int file = FileVectorList[il:
f/read in file

FileVector fv =
{FileVector) s.readOhject{path + w4 ocatl + "/" o+ file);

double result = fv.compare{searchVector};
if (result >= filesimMetric} {
hit = true;

simulation.numberHitsl ()

}

System.out.println{"Ho matching files forwarding guexry");
raturn hit;

}

* &
* searches for files similar to searchVector
*/

public boolean searchFile2({FileVector searchVector) |
boolaan hit = false;

for {(int i = 0; 1 < FileVectorList.length; i1++) |
int file = FileVectorList(i}:
//read in file

FileVector fv =
{(FileVector) s.readObject{path + "/" + catl + "/" + file};

double result = fv.compare{searchVector};
if {(result »= filesimiMetric} |{
hit = true;

simulation.numberHits2 ()

}

System,out.println{"No matching files forwarding query”};
return hit;

}
/**
* The J-Sim process, data srrives through this nodes port
* into this method,
* this is the contract of this component
*/
protected void process{Object data, Port inPort) {
//System.out.println{"received something in the node");
if (inPort == commandPort) |
System.out.println("received on command pert®};
//received a command from Simulation
if (data instanceof QueryEvent) |
int fileID = {(QueryEvent) data) .getEventParameterID () ;

if {fileID == 1) {

generateQuery{filelD);
} else if (filelD == 2) {
generateQueryRandom(£filelID)

}

} else if (inPort == connectionPort})
System,out.println{"received on the connection port");
if (data instanceof ProtocolPacket) |

ProtocolPacket inPacket = {ProtocolPacket) data;
receiveProtocolPacket ((ProtocolPacket) data);
Query query = {Query) inPacket;

int type = query.getFileld(};
System.out.println{
"the type of the guery that has arrived is" +
type)
if (type == 1) {
processQuery (query);
System.out.printin(
"received a query for community based
approach....now processing”);
} else if (type == 2) {
System.out.println{
“received a query for random based
approach....now processing”};
processQueryRandom{query) ;

]

} else [
System.out.println{”sending to super node"};
super.process {(data, inPort);

}

/t+

* Process a guery over random node links

-/

private void processQueryRandom(Query query) |

simulation.updatePlot ("query2");

if {!hasRoute (query.getDescriptorID()}) {
insertRoute (query.getDescriptoriD(}, query.getSenderID(});
FileVector searchCriteria = query.getSearchCriterias(};

if (query.getTTL({) > 1) [
relayQueryRandom(guery);

J

boolean hit = searchFileZ{searchCriteria);

/**
* Return the id of this node
*/
public int getNodeId{) {
return nodelD;

H
/**

* Return the list of nodes this node is randemly connected to
*/

private int[] getRandomNedeIdlist () |

randomNodeList = new int[randomNeighbourList.sizel}];
for (int i = 0; i < randomNeighbourList.size(); i++} {

Integer randomnode = (Integer) randomNeighbourList.get (i)
int node = randomnede.intValue();
randomilodelist[i] = node;

H

return randcmilodeList;

I+

+ Return best nodes to forward search query to

s
private ArrayList getHint {FileVector searchVec) {

ArrayList nodeVectorHintList = new ArrayList{):
ArrayList similarityList = new ArrayList{):
ArrayList closestHodeVectorList = new ArrayList{);
for (int i = 0; i < neighbourNodeVectorlist.size(); i++) |
NodeVector currentNodeVector =
{NodeVector) neighbourNodeVectorlist.get(i};
//convert searchvec to a nodeVector vector to comapre both
//NodeVector currentSearchVector = new
NodeVector (searchVec.getMatrix());
double simmetric = currentNodeVector.compare(searchVec});
nodeVectordintList.add{i, currentModeVector});
similarityList.add(i, new Double{simmetric)}:
if (i > 2y {
for {int j = 0; 3 <= 2; j++) |
double currentSimMetric =
[{Double}
similarityList.get{j)).doubleValue();
if (simmetric > currentSimMetr:ic) |
nodeVectorHintList.add (i,
currentModeVector);

!
]
for {int j = 0; 3 <= 2; 3++) |
NodeVector closestNodeVector =
{(HodeVector} nodeVectorHintList.get(J}:
closestNodeVectorList.add{closestNodeVector);
H

return cleosestNodeVectorList;

}

/i—*
* Generate a query to be forwarded over random nede connections
*
/
private void generateQueryRandom{int fileID) |

System.out.printin{
"A qguery 1Ls being generated..... and forwarded randomly™};
int filel = FileVectorList{Q];
Integer Filel = new Integer({filel)’
String filecone = Filel.toString({);
String pathl = path + catl;
FileVector searchVector =
{(FileVector) s.readObject{pathl + “/" + fileone)’
int[}! randomiodeIdList = getRandomNodeIdlist(};
int size = 25;
int descriptorID = simulation.getNextDescriptorID();
for (int i = 0; i < randomNodeIdList.length; i++) |
this,insertRoute{descriptorID, nodelD);
int receiwverID = randomNodeIdList[i];
Query guery =
new Query(
nodelD,
receiverID,
size,
descriptorIbl,
Simulation.QUERY,
ttl,
{int) 0,
{int} 20j};
System.out.println{
“this is the query attribute:”
nodeID

won

receiveriD

0o

noa

descriptorlD

nwon

+
+
+
¥
+ size
+
+
+

Simulation.QUERY

(L)

ttl

{int)} D

"o

{int) 20} ;
guery.setFileld (filelID);
query.setMinSpeed{0);
query.setSearchCriterias(searchVector);
sendProtocolPacket (query);

o+ o+ o+

+

]

/{v&

* Generate a guery to be forwarded over community links
*/

private void generateQueryiint filelID) {

System.out.println{"A gquery is being generated..... "y
int filel = FilevVectorList([0];
Integer Filel = new Integer {filel);
straing fileone = Filel.toString():;
string pathl = path + catl;
FileVector searchVector =
(FileVector) s.readObject{pathl + "/" + fileone}:
nodeTdHintList = getHint(searchVector};
int size = 25;
int descriptoriD = simulation.getNextDescriptorID();
if {nodeTdHintList.size() == 0} {
System.out.println{"Nede has no community connections!"};
1
for {int i = 0; i < nodeIdHintList.size(); i++) |
this.insertRoute{descriptorll, nodelID);
System.out.println{
" Hode: "
+ nodelD
" generated QUERY with descriptorID ™
descriptorID
" for FILE "
fileID);
//get the ncdlId asociated with this NodeVector
HodeVector currentnv = (NodeVector) nodeldHintList.get (i);
int receiverIp =
({Integer)
nodeVectortoNodeIdList.get{currentnv)).intValue();
Query query =
naw Query(
nedelD,
receiveriID,
size,
descripterID,
Simulation.,QUERY,

+ o+

ttl,
(int) O,
{int) 20);
System.out.println{
" Hode: "
+ nedelD

+ " sent QUERY with descriptorID

+ descriptorlD

+ " to Node: "

+ receiverlID);
query,settlinSpeed(0);
query.setSearchCriterias(searchVector);
query.setFileId{filelID};
sendProtocolPacket {query)

/i*
+ Process a query that has arrived to be forwarded over
* community links

~/

private void processQuary (Query query) [
simulation,updatePlot {"gueryl™);
if (1hasRoute (query.getDescriptorID(}))} {
insertRoute (query.getDescriptoriD(), query.getSenderID());
FileVector searchCriteria = guery.getSearchCriterias(};
if {query.getTTL() > 1} {
relayQuery{query);
i

boolean hit = searchFilel{searchCriteria);

}

/k*

* Forward query over random links

*/

private void relayQueryRandom{Query guery} {
FileVector searchCriteria = gquery.getSearchCriterias{);

int([] randomNodeIdList = getRandomNodeIdlist();

int size = 25}

int descriptorID = simulation.getNextDescriptorID();

for {int i = 0; i < randomiodeIdList.length; i++) |

int receiveriD = randomNodeIdList[i};

System.out.println("Fo:warding query to' + receiverlIb):

if (query.getSenderID(} != receiverID) |
Query newQuery = query.propogate (receiverIb);
newQuery.setFileId{query.getFileId({}};
sendProtocolPacket (newQuery}

)

/**
* Forward gquery over comunity links
v/
private void relayQuery{Query query) (
FileVector searchCriteria = guery.getSearchCriterias(};
nodeIdHintList = getHint (searchCriteria):
int size = 25;
int descriptoriD = simulation.getNextDescriptorID{};
if (nodeIdHintList.size{} == 0} {
System.out.printlin("Node has no community connections!"});
1
Integer (] neighbors = (Integer(}) communityList.toArray(new Integer{0]):
For (int i = 0; i < nodeIdHintList.size(); i++) {

NodeVector currentnv = {HodeVector) nodeldHintList.get (i);

int receiverID =
{{Integer)

nodeVectortoNodeIdList.get (currentnv)).intValue({);

System.out.println{"Forwarding query to" + receiverlID};
if (query.getsenderID{) != receiverID) {
Query newuery = query.propogate{receiverIDj;
newQuery.setFileld{query.getFileId{}):
sendProtocclPacket {newQuery):

Appendix D

This Appendix supports the unified modelling language [114] (UML) diagrams
that are included within the main text. The UML diagrams have been generated using
the Omondo UML plugin [115] developed for the Eclipse Java development studio
[116]. Omondo supports the OMG UML version 1.5 specification. The discussion
below gives an explanation of the various components that appear in the UML

diagrams.

D.1. Unified Modelling Language 1.5

To give a brief explanation of the UML diagrams that appear in the main text a
UML example is presented. A class is drawn with three compartments separated by
horizontal lines. The top name compartment holds the class name; the middle list
compartment holds a list of attributes; the bottom list compartment holds a list of

operations or methods.

(3 ClassName

© setElement()

Figure D.i. UML Class

An association between two classes is drawn as a solid line.

@ Class_1 @ Class_2

© setElement() S O getElement(

Figure D.ii. Association

A dependency is represented by a dashed line with an open arrow.

@ Class_1 O Class_2

O setElement() e e O setElement()

Figure D.iti. Class Dependency

156

Inheritance between two classes is represented by a sold line with a closed rectangle.

@ Class_1

O setElement()

@ Class_2

O setElement()

Figure Div. Inheritance

An interface is a classifier and is shown using only the name compartment with the
name of the interface and the <<Interface>> tag. The relationship from a classifier to an

interface that it supports is shown by a dashed line with a solid triangular arrowhead.

z<interface==

@ Interface

/
/

(9 ClassName

O setElement()

Figure E.v. Relationship from a Classifier to an Interface

A group of classes grouped within the same package is represented as is seen below in

figure D.v.i. Interactions between packages are shown using associations and

dependencies as described above.

[l Package |
I (@ Class_1 |

I
|

e |
OClass 3 l

Figure D.vi.. Representation of a Package

	Peer-to-peer Searching and Sharing of Electronic Documents
	Recommended Citation

	tmp.1218036952.pdf.0PkaG

