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Abstract 

A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier 

transform infrared absorption as well as Raman scattering, of two commonly used 

anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten 

selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, 

IR and Raman spectra of anthracyclines in the solid state and in solution. The particular 

advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics 

is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and 

distribution of the drug in cells, using both 488 nm and 785 nm as source wavelengths, with 

submicrometer spatial resolution, although the cellular accumulation of the drug is different in 

each case. The high information content of Raman spectra allows studies of the drug-cell 

interactions, and so the method seems very suitable for monitoring drug uptake and 

mechanisms of interaction with cellular compartments at the subcellular level.  

Keywords: 

Anthracyclines, UV-Vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, 

doxorubicin in vitro, drug- cell interactions  
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Introduction 

Anthracyclines are a group of compounds, discovered over 50 years ago, which exhibit 

cytostatic activity and are used widely in anticancer treatment [1]. The first anthracycline 

isolated was daunorubicin (also called daunomycin), obtained from a bacterial strain of 

Streptomyces peucetius [2,3]. Another anthracycline also widely used in oncology is 

doxorubicin (Adriamycin
®

) [4]. 

Anthracyclines have tetracycline ring structures with a daunosamine group attached by a 

glycosidic linkage. They are multifunctional derivatives of anthraquinone and are composed 

of aglycone (4 rings connected to each other - A, B, C, D) and the sugar moiety (Figure 1A). 

The structure of 7-Deoxydaunorubicinone (7-Deoxy daunorubicinaglycone; DNR-ON) is 

presented in Figure 1B. Ring B of aglycone is a hydroquinone skeleton and ring C- a quinone 

group. At the C-4 position of the D-ring, a methoxy group is attached. To an A-ring at the C-9 

position, a sugar moiety (daunosamine) is connected via a glycosidic bond at the C-7 position. 

Daunosamine is derived from 3-amino-2,3,6-trideoxy-L-fructose. The only structural 

difference between doxorubicin (DOX) and daunorubicin (DNR) is that the side chain of 

DOX terminates with a primary alcohol (C14), whereas that of DNR terminates with a methyl 

group [1]. Chemical structures of DOX and DNR are presented in Figure 1A. This small 

structural difference between DOX and DNR has significant impact on the activity and 

cytotoxicity of these anthracyclines [1,5]. 

DNR antitumor activity led to an intensive search for analogs/derivatives compounds, which 

elicit comparable therapeutic effect but lesser cardiotoxity and vasotoxicity [6]. Within this 

group of compounds are included DOX and DNR epimers - epidoxorubicin (EDOX) and 

epidoxorubicin (EDOX) and epidaunorubicin (EDNR; not yet used in the treatment of cancer, 

EDNR) are semi-synthetic derivatives of DNR and DOX, respectively, obtained by 

epimerization of the hydroxyl group at C-4' in the daunosamine structure from equatorial to 

axial positions. Chemical structures of both isomers are shown in Figure 1.A. EDOX is an 

analog of the second generation, which has been proposed as an alternative to DOX with 

lower toxicity [7]. 
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Figure1.A: Chemical structures of doxorubicin and daunorubicin derivatives; B: 7-

Deoxydaunorubicinone; C: oxazolinodaunorubicin (DNR-OXZL). 

 

Despite the broad and relatively established usage of DNR, DOX, EDOX in antitumor 

therapy, their mechanism of action is still not fully understood. Anthracyclines belong to the 

anticancer cycle-dependent and phase-specific drugs [1]. They have a complex mechanism of 

action, which includes: intercalation into DNA, inhibition of the synthesis of macromolecules, 

formation of bonds between the nitrogenous bases of DNA, DNA alkylation, DNA cross-

linking, inhibition of topoisomerase I and II - key enzymes in DNA synthesis, and formation 

of free radicals, which damage DNA and lead to lipid peroxidation [1,8]. Initiation of DNA 

damage through the inhibition of topoisomerase II, leading to the apoptosis, is believed to be 

a dominant mechanism of therapeutic action of the anthracyclines [8–10] as well as of their 

cardiotoxicity mediated by topoisomerase-IIβ in cardiomyocytes [11]. Topoisomerases are 

enzymes, which cause the double helix of DNA to be untangled or unwound, a process which 

is necessary for DNA replication and transcription. Inhibition of topoisomerase II in cancer 

cells consists of the formation of the complex of anthracycline-DNA-topoisomerase II, 
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resulting in DNA fragmentation and, as a consequence, in the inhibition of cellular 

proliferation and cell death [1,8,9]. 

Anthracycline therapy is complicated by its cardiotoxicity, which can in some cases lead to 

symptomatic heart failure, and even death caused by cardiac diseases (Torti et al. 1986; Wu 

2002; Minotti et al. 2004b; Cortés-Funes and Coronado 2007; Cardinale et al. 2010; Smith et 

al. 2010; Sawyer et al. 2010; Toldo et al. 2013). These complications can occur both during 

active anti-cancer therapy (so called early cardiotoxicity), within one year after the end of 

treatment, and many years after the end of therapy with anthracyclines [18,19]. 

Cardiotoxicity and side effects of anthracycline therapy spurred researchers worldwide to 

explore analogs/derivatives of the parent drugs, especially since EDOX and EDNR have 

demonstrated improved performance in terms of balance of antitumor active versus 

cardiotoxicity. Modifications in the chemical structure by, for example replacement of the-

NH2 moiety at position 3’ in daunosamine by a formamidine group (-N=CH-NR
1
R

2
), which 

includes other cyclic amines of gradually increased ring size, for example piperidine  

(-NR
1
R

2
is -FPIP), morpholine (-NR

1
R

2
is -FMOR) or hexamethyleneimine (-NR

1
R

2
is -FHEX) 

[20,21] lead to the formation of new and promising anthracycline analogs 

(formamidinoanthracyclines). Chemical structures of these selected derivatives are also 

presented in Figure 1.A. It has been shown that these new derivatives of anthracyclines 

exhibit lower toxicity and cardiotoxicity, together with an ability to overcome the barrier of 

drug resistance in vitro, as well as high anticancer activity in comparison to the parent 

compounds (DNR, DOX, EDNR and EDOX) [10,20,22]. Another interesting analog of 

anthracycline antibiotics is a derivative of DNR - oxazolinodaunorubicin (DNR-OXZL) [23]. 

DNR-OXZL contains an oxazoline ring connected to the daunosamine moiety and seems to 

display improved properties (higher anticancer efficacy, lower cardiotoxicity, etc.) than DNR 

[23]. 

As these new compounds emerge, it is important to effectively characterize their structures, 

but also their efficacies and mechanisms of interaction and ultimately generate quantitative 

structure activity relationships, as a basis for predictive toxicological models to guide 

synthetic strategy. Anthracyclines, especially DNR and DOX have been widely investigated 

using various spectroscopic methods, e.g. Raman spectroscopy [24,25], Resonance Raman 

(RR) [26–28], Surface Enhanced Raman Spectroscopy (SERS) [29–32], UV-Vis absorption 

[26,33] and FT-IR absorption spectroscopy [24,34,35]. The visible absorption spectra of DOX 

and DNR are, however, almost identical, having a maximum of absorption near to 480-490 

nm. 
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Vibrational spectroscopy seems to be the most appropriate technique to better understand the 

molecular chemical structures and the interactions of these compounds with DNA [29,36]. 

The strong visible absorption maxima can be easily used to exploit the benefits of resonance 

enhancement in Raman spectroscopy. The resonance and pre-resonance Raman spectra of 

DOX and DNR are related to the first electronic band at 480 nm and complete band 

assignments have been documented [27,28]. 

Over the past decades, the potential of vibrational spectroscopy for biomedical applications 

has been well established [37–40]. Raman spectroscopy coupled with confocal microscopy 

has a great potential for biomedical and biopharmaceutical applications due to ability of non-

invasive, label-free detection of cellular changes at single cell level and imaging biomolecule 

distribution in an individual cell [41,42]. The high information content of Raman spectra can 

be used to characterize drug-cell interactions [43,44] and therefore serve as a suitable tool for 

drug screening. 

In this paper, we present spectroscopic characterization (UV-vis, FT-IR, Raman (RS) and 

Resonance Raman (RRS) spectroscopies) of the most common anthracyclines (DOX, DNR), 

their epimers (EDOX, EDNR) and ten selected analog (four morpholine (-FMOR) 

compounds, four piperidine (-FPIP) compounds, one hexamethyleneimine derivative of DNR 

(DNR-FHEX) and oxazolinodaunorubicin (DNR-OXZL)). This work shows the potential of 

Raman spectroscopy for the measurement and analysis of such a large collection of individual 

and structurally similar anthracycline antibiotics and their analogs. It can serve as a 

comprehensive vibrational spectral library, based on previously reported UV-vis, IR and 

Raman measurements. Several reviews have previously been resented (e.g.[24,27,45,46]), 

showing the potential of Raman spectroscopy, but they were  mostly based on the resonance 

effect, (and IR spectroscopy [24]) for the measurement and analysis of DOX and DNR. 

However, to the best of our knowledge, such a large collection of individual anthracycline 

compounds Raman spectra has not been provided and discussed in any paper. Additionally, 

Raman spectroscopy, can be used to monitor the in vitro uptake and distribution of drug 

carrier systems and the drug itself [47]. Here, we present the approach that comprises full 

spectral characterization of several chemotherapeutic agents and in vitro subcellular tracking 

of a known anthracycline compound (DOX) based on its unique spectral features. 

 

2. Experimental 

2.1. Anthracyclines samples 
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All investigated anthracycline compounds, of purity>97.5 % as determined using 

HPLC, were synthesized in the Institute of Biotechnology and Antibiotics, Warsaw, Poland 

and synthetized as described previously [20,22].  

2.2. Cell culture 

EA.hy926 cells were cultured at 37°C and 5% CO2 in Dulbecco's modified Eagle's 

medium (DMEM, Lonza) supplemented with 10% fetal bovine serum (FBS),1% penicillin-

streptomycin, 2 mM L-Glutamine (Invitrogen) and 2% HAT medium supplement. The cell 

cultures were incubated in a 37 °C, 5% CO2/95% air, humidified cell culture incubator and 

passaged three times a week. For Raman measurements, cells (EA.hy926) were cultivated on 

calcium fluoride slides (CaF2, 25×2 mm, Pike Technologies, U.S.) placed within wells of a 6-

well plate and fed with complete medium containing either no anthracycline (control) or1 µM 

DOX. After 24 hours, the cells were fixed with 2.5% glutaraldehyde (4 min) and stored in 

isotonic phosphate buffer (pH=7; 4
o
C), until the start of data acquisition. 

 A549 human lung adenocarcinoma cells were cultured in DMEM supplemented with 

2mM L-glutamine and 10% FBS at 37 °C in a humidified atmosphere containing 5% CO2 and 

passaged every two days. For Raman measurements, cells (A549) were seeded on CaF2 disks 

for 24hrs, after which medium was completely removed and cells were washed twice with 

PBS and fed with complete medium containing either no anthracycline (control) or 1 µM 

DOX. After 24 hours incubation, the cells were fixed with formalin (4%, 15 min) and kept in 

PBS until the start of measurement. 

 

 

 

2.3. UV-vis spectroscopy 

UV-vis spectra of sample solutions were measured in quartz cells with a path length of 

1 cm in the 190-750 nm spectral range using a Perkin Elmer Lambda-35 spectrometer. UV-

vis spectra were recorded using a scanning speed of 480 nm min
−1

 with a 1 nm data interval. 

 

2.4. FT-IR spectroscopy 
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FT-IR spectra of sample powders were obtained using a Bruker Alpha FT-IR 

spectrometer in Attenuated Total Reflection (ATR) mode, over the spectral range 400-4000 

cm
-1

. For optimal signal-to-noise ratio, 128 scans were averaged per sample spectrum and 256 

scans per background spectrum. 

 

 

2.5. Raman spectroscopy 

Anthracyclines samples 

Raman spectra were acquired using a WITec Raman microscope, with application of a 

20x air objective (NA= 0.45). Two excitation wavelengths were used: 488 nm (spectral range: 

0 – 4345 cm
-1

, laser power: 1.16µW) and 785 nm (spectral range: 0-3200 cm
-1

, laser power: 

246.5 mW). Solid state samples of anthracyclines as well as solution drops were deposited on 

calcium fluoride slides for measurements. 10-20 scans, with integration times of 2-5 s per 

scan for source wavelength 785 nm, and 15-30 scans, with integration times of 1-5 s per scan 

for source wavelength 488 nm, were collected and averaged. Pre-processing, including 

cosmic spike removal and background subtraction (using a polynomial fit, order 4) was 

performed using the WITec Project Plus software. 

 

Cells 

 EA.hy926 cells Raman mapping was done using a WITec Raman microscope (WITec 

alpha300 R, Ulm, Germany) with the application of a 60× water immersion objective (Nikon 

Fluor, NA =1). Excitation wavelength of 488 nm was used due to a high lateral resolution. A 

total exposure time was ca. 40–60 min per cell (integration time of 0.7 second per spectrum). 

Pre-processing included cosmic spike removal and background subtraction was performed 

using Witec Project Plus software. 

 A549 human lung adenocarcinoma cells were measured using Horiba Jobin-Yvon 

LabRAM HR800 spectrometer with 785 nm laser as a source. Spectra were acquired using 

100x objective (LCPlanN, Olympus) with integration time of 30 second per spectrum two 

times, from three cell locations: cytoplasm, nucleus and nucleolus, to finally produce a data 

set of 28 points per cell locations for each control and exposure to DOX cells. 

 

3. Results and discussion 



8 
 

 

3.1. UV-vis spectroscopy 

Spectral profiles of all UV-vis spectra shown are similar, with the exception of that of 

DNR-HEX (also DNR-OXZL and DNR-ON, due to use of different solvent), and the 

absorption spectra show maxima at 232, 252, 290 and 480 nm (Figure 2). The maximum at 

480 nm is assigned to a π-π
*
 transition of the quinonoid structure [27]. The UV-Vis spectrum 

of DNR-HEX can be distinguished by higher intensity of the bands at 195 and 256 nm and the 

absence of the band at 290 nm. Although they do not provide an easily distinguishable 

spectral fingerprint of the specific compound, at the spectral profile is dominated by the -

conjugated electronic system, common to all compounds, UV-vis spectra give useful 

information in terms of choosing the source wavelength for Raman spectroscopy 

measurements. The Raman spectra of anthracyclines obtained with an excitation within the 

electronic band at 480 nm can result in resonance or pre-resonance. 
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Figure 2. UV-vis spectra of investigated anthracyclines in water solution (for DNR-ON and 

DNR-OXZL due to high absorbance of DMSO used as a solvent the 200-260 nm region is not 

shown). 

 

3.2. FT-IR spectroscopy 

FT-IR spectra of 15 studied anthracyclines over the spectral range of 500-2000 cm
-1

 

are presented in Figure 3. A spectral signature of each anthracycline is clearly evident, and 

therefore it is possible to uniquely identify the investigated compounds. However, lack of 

sufficient literature data together with the complex molecular structure of anthracyclines 

encumbers the assignment of bands observed in acquired spectra. The assignment of spectral 

bands proposed here is made according to [24].  

Despite the complexity of the fingerprint of anthracyclines, there are several characteristic 

bands present in each illustrated spectrum. Bending vibrations of C=O and C-OH of 

anthraquinone are observed in all spectra presented in Figure 3 in the range of 978-1000 cm
-1

, 

as well as bands between 1111-1120 cm
-1

, assigned to ring breathing coupled with C-C=O 

group bending vibrations. Another characteristic band is present in the range of 1274-1286 

cm
-1

 and can be assigned to hydrogen bond bending vibrations (δO-H
…

O) with contributions 

of ring vibrations. Bands attributed to ring vibrations are also observed in the range of 1573-

1582 cm
-1

 and 1613-1625 cm
-1

. Additionally, a strong, isolated carbonyl band in the range of 

1690-1730 cm
-1

 is present in each collected infrared spectrum of studied anthracyclines. 

Detailed assignments of observed bands are listed in Table 1, the most characteristic ones 

being highlighted.  
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Figure 3. FT-IR spectra of investigated anthracyclines in the solid state. 
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Table 1. An assignment of FT-IR bands of investigated anthracyclines in the solid state. Grey lines show the most characteristic bands. 

v, δ, ω, ou – belong to the stretching, bending, wagging vibrations;  

a- antraquinonepart,d- daunosamine part 

s, m, w - strong, medium, weak intensity of bands 

Assignment DOX 
DOX-

FPIP 

DOX-

FMOR 
EDOX 

EDOX-

FPIP 

EDOX-

FMOR 
DNR 

DNR-

FPIP 

DNR-

FMOR 

DNR-

FHEX 

DNR-

OXZL 
DNR-ON EDNR 

EDNR-

FPIP 

EDNR-

FMOR 

δC-H, CO-C (a-

d), O-C-O (a-d) 
948 (w) - 949 (w) - 952(w) - - 949(m) - 949(m) 935(m) 944(v) - - - 

δC-C (d), 

C-OH(d), δC-O 

(d) 
967(m) - - 957(w) - 963(w) - - - - 998(w) - - 951(w) - 

C-H2 (a), δC=O, 
δC-OH (a) 

990(s) 986(s) 986(s) 984(s) 989(s) 990(s) 985(s) 990(s) 983(s) 980(s) 1003(s) 988(s) 978(s) 979(s) 989(s) 

vC-O-C (a-d), 

vC-OH (a), 
1004(m) 1015(s) 1015(s) 1022(w) 1034(m) 1016(m)  1015(m) 1015(m) 1013(m) 1028(m) 1033(m) 1034(w) 1034(w) 1038(w) 

δC-OH (a), 

δC-C=O, δC-H (a) 
1071(m) 1075(m) 1076(m) 1068(m) 1063(m) 1069(s) 1084(m) 1067(m) 1068(m) 1070(w) 1070(m) 1068(m) 1061(m) 1063(m) 1067(m) 

v ring, ωC-H2 (a), 

ωC-H3 (d) 
- - - - 1080(m) - - 1088(m) - 1090(w) 1090(m) 1082(m) 1086(w) 1081(w) - 

Ring breathing, 

δC-C=O (a), 

C-H3 (a) 
1113(m) 1115(m) 1111(m) 1113(m) 1120(m) 1113(s) 1113(m) 1119(m) 1109(s) 1124(m) 1120(m) 1119(m) 1118(m) 1118(m) 1115(s) 

C-H2 (d), C-H (d), 

O-H (d), C-O-C 

(d) 

1198(m) 1208(s) 1186(s) 1205(m) 1210(m) 1211(s) 1208(m) 1204(m) 1205(m) 1206(s) 1205(m) 1209(m) 1208(s) 1209(s) 1212(m) 

δCO-H 1233(m) 1235(s) 1225(m) 1238(m) 1230(m) - 1225(w) 1255(m) 1229(m) 1229(m) 1230(m) 1236(s) - 1230(m) 1245(m) 

δO-H…O, Ring, 

ouC-H2 (d) 
1283(s) 1283(s) 1274(s) 1281(s) 1284(s) 1289(m) 1283(s) 1280(s) 1278(s) 1282(s) 1276(s) 1283(s) 1280(s) 1282(s) 1286(s) 

δO-H…O, ring, C-

H2 (a) 
- - 1346(w) 1346(w) 1352(m) - 1353(m) 1344(m) 1349(m) 1352(m) 1351(m) 1354(m) 1351(m) 1351(m) 1355(m) 

δC-H (a), δO-

H…O, δC-C 
1376(m) 1379(m) 1376(m) 1369(m) 1379(w) 1360(m) 1377(m) 1375(m) 1375(m) 1376(w) 1371(m) 1379(m) 1377(m) 1378(m) 1382(m) 

Ring, C-H(aro) 1413(s) 1409(s) 1416(m) 1400(m) 1412(s) 1410(s) 1409(s) 1407(m) 1409(s) 1405(s) 1412(s) 1416(s) 1409(s) 1410(s) 1411(s) 

Ring, δC-H3 (a) 1462(m) 1443(m) 1465(w) 1462(w) 1444(m) - 1444(m) 1439(w) 1443(m) 1442(m) 1447(m) 1444(m) 1443(m) 1444(m) 1441(m) 

δC-H2 (a), 

δCO-H (a) 
1524(m) - 1507(w) 1515(w) - - 1531(w) - - - - - 1515(w) - - 

vRing, δC-H(aro) 1578(s) 1577(s) 1582(s) 1574(s) 1577(s) 1573(s) 1579(s) 1576(s) 1577(s) 1576(s) 1576(s) 1574(s) 1576(s) 1576(s) 1578(s) 

Ring breathing, 
ring (Phe) 

1614(m) 1615(s) 1620(m) 1620(s) 1615(3) 1615(s) 1614(s) 1612(m) 1616(s) 1616(s) 1625(s) 1614(s) 1613(m) 1614(m) 1615(m) 

vC=O, δC-H2 (a) 1730(m) 1694(s) 1704(s) 1719(m) 1695(s) 1697(m) 1707(s) 1698(s) 1698(s) 1689(s) 1714(m) 1707(s) 1711(m) 1694(s) 1694(s) 
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3.3. Raman spectroscopy  

Non resonant Raman spectra of solid state anthracyclines were acquired with 785 nm 

source wavelength in the spectral range of 290-2000 cm
-1 

(Figure 4). They show characteristic 

spectral profiles with several marker bands (Table 2, the assignment of bands was performed 

based on literature [24,27]). Bands at ~344 cm
-1

 can be attributed to carbonyl coupled with 

ring bending [27] or ring bending and C-O-H wagging vibrations of the side chain of DOX 

[24]. The presence of this primary alcohol is the only structural difference between DOX and 

DNR as well as between EDOX and EDNR. 

Strong bands at 444 and 462 cm
-1

 have comparable intensity in the DOX spectrum. Both can 

be assigned to ring and carbonyl group bending vibrations [24,27]. The intensity ratio of the 

444 and 462 cm
-1 

bands changes among the spectra of all investigated compounds. The 444 

cm
-1 

band can be observed with a strong intensity for all anthracyclines except for EDOX, 

while the 462cm
-1 

band is diminished in spectra of EDNR and its derivatives, DNR, DNR-

FMOR, EDOX-FPIP, DOX-FPIP and DOX-FMOR, although not so for EDOX. A weak band 

at 792 cm
-1

 is assigned to the ring bending vibration and C-H3 wagging vibration of the 

daunosamine moiety [24]. This band is present in DOX, DNR and spectra of their derivatives. 

However, it disappears for EDOX, EDNR and their derivatives. This can be correlated with 

the equatorial position of the hydroxyl group at C-4’ in the daunosamine moiety. The band at 

this wavenumber is also not evident in the spectrum of DNR-ON (7-Deoxydaunorubicinone; a 

DNR derivative with no sugar moiety). Another characteristic band located at 1083 cm
-1 

is 

attributed to ring breathing and an aromatic carbon hydrogen bending, although an alternative 

assignment is to the methoxy carbon-oxygen stretch [27]. Hydroxyanthraquinones typically 

show two or three bands in the 1200-1300 cm
-1

 region due to coupled phenolic carbon-oxygen 

stretching and oxygen-hydrogen bending [28]. In the DOX spectrum, there are three bands 

present in this region at 1205, 1235 and 1290 cm
-1

, all attributed to hydrogen bond bending 

vibrations (O-H
…

O) [24]. Additionally, bands at 1205 and 1290 cm
-1

 are assigned to ring 

vibration; bending of C-O-H groups contribute at 1235 cm
-1 

[24,27]. All three bands are 

present in the Raman spectrum of each compound studied, suggesting a common origin. 

Bands in the 1410-1455 cm
-1

 region can be assigned to aromatic ring vibrations [24]. There 

are three bands observed for DOX at 1413, 1428 and 1455 cm
-1

, similar to DOX-FMOR, 

EDOX, DNR-FPIP and DNR-OXZL. However, spectra of other investigated compounds 

show one strong band at ~1440 cm
-1

 with a shoulder at ~1413 cm
-1 

in this region. Raman 

features at 1579 and 1643 cm
-1

 (DOX) originate from ring vibrations [24]. However, bands at 
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1428, 1455 and 1579 cm
-1

 can be assigned to aromatic C=C stretch coupled with stretch 

vibrations of hydrogen bonded carbonyl [27]. Similarly, a band located at 1643 cm
-1 

is 

attributed to hydrogen bonded stretching of C=O [27]. 

 

 

Figure 4. Raman spectra of investigated anthracyclines in the solid state (785 nm source). 

In terms of in vitro studies, studies of anthracyclines were used in a form of solutionin 

solubilised form are more appropriate, as they are exposed to, and uptaken by, the cells in this 

form. , and apposite Raman measurements were performed. For this purpose, water aqueous 

solutions of almost all investigated compounds were measured, except DNR-ON and DNR-

OXZL, where for which DMSO was used as solvent. Raman spectra obtained for compounds 

studied in solution with a source wavelength of 785 nm (Figure 5) share theexhibit 

comparable spectral profiles as to those obtained for the solid state anthracyclines (Figure 4), 

indicating a minimal effect of aggregation on the molecular degrees of freedom, although 

some differences are evident. As expected, in solutionThe solid state microcrystalline 

environment can cause splitting and dampening of some peaks, bands are broadened and 
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some of them additionally exhibit lower intensity. In aqueous solution, DOX characteristic 

DOX bands are present at 350, 440, 1083, 1210, 1573 cm
-1

, however although they are 

slightly shifted compareding to those of the Raman spectra of solid state samples. The solid 

state Bbands at 1428 and 1455 cm
-1

 are not evident separately – onerepesented by a single  

band at 1441 cm
-1

 is presentsolution. 

 

 

Figure 5. Raman spectra of anthracyclines in the liquid state (785 nm source). Bands marked 

with * originate from DMSO used as a solvent. 

Generally, as can be seen in Table 2, bands characteristic for anthracycline and their 

derivatives are mainly related to the highly polarizable ring derived vibrations and not the 

substituents themselves. The position of individual modes for investigated derivatives is 

shifted only a few cm
-1

 between the compounds. More significant changes are observed for 

FT-IR spectra. However, this method is limited when applied for in vitro study, as discussed 

later in Section 3.4.  

 

 

Comment [A1]: Do you need to refer 
to the supplementary figure? 
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Table 2. An assignment of Raman bands of investigated anthracyclines in the solid state (785 nm excitation line). Grey lines show the most 

characteristic bands. 

Assignment2 DOX 
DOX- 

FPIP 

DOX-

FMOR 
EDOX 

EDOX-

FPIP 

EDOX-

FMOR 
DNR 

DNR- 

FPIP 

DNR-

FMOR 

DNR-

FHEX 

DNR-

OXZL 

DNR- 

ON 
EDNR 

EDNR-

FPIP 

EDNR-

FMOR 

  324(w) 324(w) 319(w) 342(w) 340(w)  324(w) 330(w) 330(w) 324(w) 330(w) 330(w) 330(w) 335(w) 

δRing, ωC-O-H (a), 
ωC-H2(a) 

344(w) 349(w) 349(w) - - - 344(w) 348(w) 348(w) 354(w) 350(w) 364(w) - - - 

ωO-H…O, ωC-H 444(s) 440(s) 440(s) 444(s) 438(s) 438(s 439(s) 438(s) 440(s) 439(s) 440(s) 436(s) 441(s) 442(s) 442(s) 

δRing(phe), 

ωC-H (d), δC=O (a) 
462(s) - - 460(s) 460(sh) 465(s) 460(sh) 460(s) - 460(s) 461(s) 462(s) - - - 

ωC-OH (a), ωC-O-C 

(a-d) 
501(w) 504(w) 504(w) 508(w) 503(w) 503(w) 505(w) 503(w) 505(w) 503(w) 501(w) 507(w) 503(w) 503(w) 503(vw) 

δRing (C-H), ωC-

H(d), ωC-H3(d) 
792(w) 800(w) 802(w) - - - 792(w) 795(w) 792(w) 794(w) 794(w) - - - - 

C-H2 (a), δC=O, 

δC-OH (a) 
990(w) 990(w) 990(w) 990(w) 990(w) 995(w) 990(w) 990(w) 990(w) 990(w) 990(w) 987(w) 990(w) 993(w) 985(w) 

Ring breathing, 
δC-H (a), δC-C-C (a) 

1083(m) 1080(m) 1083(m) 1081(m) 1081(m) 1081(m) 1083(m) 1080(m) 1083(m) 1083(m) 1083(m) 1083(m) 1081(m) 1081(m) 1081(m) 

δO-H…O, ring, 
δO-H (a) 

1205(s) 1210(s) 1192(s) 1202(s) 1208(s) 1208(s) 1208(s) 1206(s) 1208(s) 1205(s) 1205(s) 1203(s) 1208(s) 1208(s) 1208(s) 

δO-H…O (a), δC-O-

H (a), δC-H 
1235(s) 1239(s) 1243(s) 1237(s) 1244(s) 1244(s) 1237(s) 1233(s) 1237(s) 1243(s) 1233(s) 1240(s) 1237(s) 1240(s) 1239(s) 

δO-H…O, Ring, δC-

OH 
1290(w) 1298(w) 1292(w) 1284(w) 1297(w) 1296(w) 1297(w) 1290(w) 1295(w) 1291(w) 1291(w) 1291(w) 1297(w) 1300(w) 1301(w) 

Ring-O, Ring=O, 

δC-H2 (d) 
1428(s) - 1426(s) 1428(s) - 1434(s) - 1413(m) - 1436(s) 1413(s) - - - - 

Ring, Ring-O, δN-H, 1455(s) 1444(s) 1455(s) 1457(s) 1440(s) 1455(s) 1444(s) 1454(s) 1440(s) 1454(s) 1455(s) 1442(s) 1444(s) 1440(s) 1442(s) 

Ring breathing, 
ring(Phe), δC-H(aro) 

1579(m) 1576(m) 1558(m) 1573(m) 1573(m) 1572(m) 1575(m) 1580(m) 1570(m) 1575(m) 1578(m) 1571(m) 1573(m) 1572(m) 1571(m) 

Ring 1643(w) 1639(w) 1639(w) 1641(w) 1637(w) 1637(w) 1641(w) 1639(w) 1637(w) 1638(w) 1638(w) 1638(w) 1641(w) 1638(w) 1640(w) 

v, δ, ω, ou – belong to the stretching, bending, wagging vibrations 

a- antraquinonepart,d- daunosamine part 

s, m, w - strong, medium, weak intensity of bands 
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Resonance Raman spectra obtained with the 488 nm laser for the solid state anthracyclines 

(Supplementary Materials, Figure 1S) are dominated by fluorescence. The maximum of the 

fluorescence in DOX Raman spectrum at 4140 cm
-1

 (611 nm) corresponds to the maximum 

seen in DOX fluorescence spectra [27]. This maximum shifts to shorter wavelengths for 

EDOX, DNR-FPIP, DNR-FMOR and to higher wavelengths for the other investigated 

compounds. Resonance Raman spectrum of DOX ( 488 nm excitation wavelength) in water 

solution is, similarly, dominated by fluorescence (Supplementary Materials, Figure 2S). 

This demonstrates a strong laser influence on the quality of Raman spectra of anthracyclines: 

characteristic Raman bands of the solid state anthracyclines are clearly observed in spectra 

recorded by using 785 nm laser (Figure 5). However, they are hardly seen when the 488 nm 

laser line is used as source due to the dominance of the fluorescence emission. On the other 

hand, both laser lines are suitable for in vitro investigation of anthracycline treated cells, as 

discussed in section 3.4. 

 

3.4. Tracking of doxorubicin in vitro  

The biological impact of DOX is broadly investigated and well described in literature, 

especially in the context of its interaction with DNA [26,29]. The impact on cells of DOX 

exposure has been assessed in various in vitro tests [14,17,48–50]. Spectroscopic methods 

have also been employed to study the interactions in vitro [25,51–53]. The development of a 

new therapeutic agent always involves a preclinical screening stage. During this stage, the 

pharmacodynamic, pharmacokinetic and toxicological properties of the candidate drug are 

analysed. The preclinical investigation is based on both in vitro models and in vivo 

experiments in various animal species [54]. However, due to regulatory developments in the 

EU [55], there is currently much promotion of the development of in vitro models, which can 

accurately indicate in vivo results [56,57]. In addition to ethical considerations and the 3Rs 

principle [58], animal drug testing has certain limitations. While different mammalian species 

share key physiological principles, they differ enough to be rather deficient for inter-species 

pharmacological and toxicological prediction [59]. There is, therefore, increasing emphasis on 

the development of in vitro tests as critical toxicological tools, capable of complementing and 

reducing animal testing, particularly at the preclinical screening phase of drug development.  

The laser dependency of the spectroscopic properties (fluorescence/Raman) of 

anthracyclines, discussed in Section 3.3, is also evident when cells treated with DOX are 
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investigated with two different excitation wavelengths. Previous work [60] demonstrated the 

utility of the Raman spectroscopy modality in the assessment of nuclear accumulation of four 

anthracyclines in endothelial cells when measurements were conducted with the use of the 

488 nm laser line. The maximum of fluorescence for the anthracycline standards (3820–4245 

cm
-1

, Figure 1S) coincides with the range in which the increased background is observed in 

the Raman spectra from anthracycline-treated cells, and, therefore, the fluorescence in this 

spectral range, observable as a background to the Raman spectrum, is a good marker for the 

presence of anthracycline in the cells. The integration of spectra obtained from the mapping 

allows the study of the distribution of the drug in the cell [60].  

Investigations undertaken in the present work with the 785 nm laser line reveal similar 

information on the distribution of the drug, based, however, on the characteristic doxorubicin 

Raman marker bands [25] and both approaches are suitable for intracellular tracking of DOX 

at a subcellular level. However, spectra collected with the use of 785 nm source allow for 

more specific investigations of the modes of interaction of the drug, as, in the absence of the 

strong fluorescence background, the molecularly specific vibrational profiles of the drug itself 

as well as the biochemical environment of the cell can be monitored (Farhane et al. 2015b). 

On the other hand, for fast Raman imaging with better spatial resolution, application of the 

488nm laser line is preferable. Here, we present the comparison of spectra collected from cell 

compartments i.e. nucleus, nucleolus, cytoplasm of control and cells treated with DOX, using 

the 488 nm laser line as well as 785 nm (Figure 6). Highlighted regions correspond to DOX 

spectral features : 3820- 4245 cm
-1

 (fluorescence region for the 488 nm laser line), 400-505 

cm
-1

 and 1200-1290 cm
-1

 (characteristic bands for 785 nm laser line). 
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Figure 6. Raman spectra obtained from nucleus, nucleolus and cytoplasm of cells incubated 

with DOX, A: EA.hy926, with a source wavelength of 488 nm B: A549, with a source 

wavelength of 785 nm; black: a control cell, red: a cell treated for 24h with DOX 1 µM. Grey 

blocks show regions with characteristic DOX spectral features.  

Raman investigations using both 488 nm and 785 nm laser lines confirm the predominant 

localization of DOX after 24hrs exposure in the nuclear region. Imaging of the fluorescence 

observed using 488 nm shows, however, that the intranuclear accumulation of DOX is not 

homogeneous over the whole nuclear area [60], potentially due to presence of 

transcriptionally active and inactive regions in the nuclear chromatin. Moreover, 

accumulation seems to be slightly higher in the nucleus itself than in the nucleoli. Notably, all 

spectra from treated cells, including those of the cytoplasm, seem to be affected by slightly 

increased background in comparison to the control. However, since fluorescence efficiency in 

general is extremely sensitive to local environment, the results provide more qualitative than 

quantitative information about presence of the drug in the cell. It should be further noted, that 

the presence of the enhanced background in the RR spectra of DOX affects strongly the level 



19 
 

of signal to background ratio of the other Raman features and makes investigation of Raman 

spectra for DOX treated cells more complicated.  

Although the use of the non-resonant 785 nm laser source does not provide the guidance of 

the distinctive DOX fluorescence as an indicator of the presence of the drug, the strong 

Raman marker bands in the fingerprint region provide unambiguous evidence of its presence, 

and those of the neighboring biochemical environment can provide further clues to the 

molecular interactions involved in, for example, receptor binding, and subsequent 

biochemical responses of the cell [Farhane et al. 2015b]. 

Analysis of the DOX Raman profiles at 785nm confirms the predominant localization of the 

drug in the nuclear region; notably, significant, although lower contributions are present in the 

nucleolar regions. Previous in vitro studies showed the importance of nucleolus as a 

discriminative subcellular region between cancer cell lines [40] highlighting its importance 

not only in differentiating cancer cell lines but also as a major site of drug cellular effects 

such as DOX [25]. 

No evidence of DOX features in the cytoplasmic region of A549 cells was found, however, 

although comparison of the profiles of A549 cells and those of the human lung epidermoid 

carcinoma cell line, Calu-1, indicate that substantial DOX distribution in the cytoplasm can be 

found, and that this may be an indicator of the contribution of alternative modes of action of 

the drug, potentially the origin of the differing sensitivities/resistances of different cell lines to 

the drug (Farhane et al. 2016). 

 

Conclusions 

The potential of UV-vis and FT-IR spectroscopies for anthracycline characterization is 

presented. However, it is argued that Raman spectroscopy is the method of choice for 

antibiotic study both in the isolated form as well as after incubation with cells. We have 

demonstrated a strong laser influence on the quality of Raman spectra of anthracyclines. 

When the 488 nm laser is used, a strong fluorescence is recorded, but by using 785 nm, 

characteristic bands of anthracyclines are clearly observed. On the other hand, both laser lines 

are suitable for in vitro investigation of anthracycline treated cells, although different levels of 

information are obtained when spectra collected from cell compartments (nucleus, nucleolus, 

cytoplasm) are analyzed. Ultimately, Raman spectroscopy provides a potential route towards 

in vitro screening of chemotherapeutic agents, to explore their uptake, nuclear accumulation 

interaction mechanisms , and subcellular distribution.  
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Supplementary 

 

 

 

Figure 1S. Raman spectra of anthracyclines in the liquid state (488 nm laser excitation).  
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Figure 2S. Comparison of Raman spectra of DOX , A: 488 nm excitation wavelength, B: 785 

nm excitation wavelength, top panel: solid state DOX, bottom panel: liquid state DOX. 
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