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Abstract

Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to
elucidate the biochemical structure of human skin tissue sections, and the effects of tissue
processing. Both hand and thigh sections of human cadavers were analysed in their
unprocessed and formalin fixed paraffin processed (FFPP) and subsequently dewaxed forms.
In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum,
intermediate underlying epithelium and dermal layers for sections from both anatomical sites.
The stratum corneum is seen to be relatively rich in lipidic content; the spectrum of the
subjacent layers is strongly influenced by the presence of melanin, while that of the dermis is
dominated by the characteristics of collagen. For a given anatomical site, little difference in
layer structure and biochemistry is observed between samples from different cadavers.
However, the hand and thigh sections are consistently differentiated for all cadavers, largely
based on lipidic profiles. In dewaxed FFPP samples, while the stratum corneum, intermediate
and dermal layers are clearly differentiated by KMCA of Raman maps of tissue sections, the
lipidic contributions to the spectra are significantly reduced, with the result that respective

skin layers from different anatomical sites become indistinguishable. While efficient at



removing the fixing wax, the tissue processing also efficiently removes the structurally
similar lipidic components of the skin layers. In studies of dermatological processes in which
lipids play an important role, such as wound healing, dewaxed samples are therefore not
appropriate. Removal of the lipids does however accentuate the spectral features of the
cellular and protein components, which may be more appropriate for retrospective analysis of

disease progression and biochemical analysis using tissue banks.
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Introduction

Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, have
been widely used for the study of biological samples over the past two decades. The main
advantages of these techniques are that they provide a non invasive, label free molecular
fingerprint of the tissue and cells. Their potential in medical diagnostics has been well
demonstrated and many further reaching applications have been described, including in
radiobiology ', toxicology > and pharmacokinetics °. Coupled with adapted multivariate
analysis, the specificity of the information obtained can be used for the identification of
different pathologies * °, or variations in metabolism as a result of external agents 7 and

even subcellular analysis *°.

In the past, many studies have been carried out using vibrational spectroscopy to classify

tissue with a view to cancer diagnosis. Some of the tissue types examined by various groups

11 12, 15-17 18, 20

. . 10 13 .14 19
include cervical ™ ', lung , Brain ', oesophagus , colon , prostate 7,

nasopharynx *', larynx **, oral »*, breast ***’, liver **. In dermatological research, FTIR has

5,29, 30

been employed for tumour detection in colon and skin biopsies . Raman spectroscopy

has been demonstrated to provide an accurate diagnosis to distinguish basal cell carcinoma

31-33

from surrounding normal tissue and can also been used as an efficient tool for

34,35

examination of skin biochemical structure and content of interest for dermal application

of cosmetic and pharmacological agents.

A variety of different methods of sample preparation has been employed in these studies;
fresh, frozen, air dried, formalin-fixed paraffin-processed (FFPP) and subsequently dewaxed
tissue sections. Although considered the gold-standard, fresh or unprocessed skin tissue is
difficult to obtain and sectioning can be a delicate task. Embedding in paraffin wax is

36, 37

commonly undertaken to preserve the samples before histological analysis and archived



embedded tissue banks potentially serve as a significant resource for retrospective prognosis

studies.

For clinical relevancy, and indeed acceptance of the techniques by the clinical community, it
is important that the sample preparation protocols for Raman spectroscopic analyses are
consistent with current practice. The embedding wax itself can, however, contribute
significantly to the spectroscopic signature ** and although “digital dewaxing” has been
demonstrated °°, it is often important to compare spectroscopic profiling with parallel
histological analyses of dewaxed sections. It is critical however to consider the effects of
tissue processing on the biochemical integrity of the tissue structures. Cell fixation has been

40-42

demonstrated to impact on the spectroscopic signatures of cell populations and

commonly employed tissue processing techniques have been shown to have similar effects *®.

In this study, Raman spectroscopy is employed to characterize the biochemical profile of
sections of unprocessed human tissue. The layer structure is characterized by comparison to
pure biochemical components and keratinocyte cell lines, and the relative morphologies and
biochemical content of sections from human hand and thigh are compared. The sections are
subsequently dewaxed using standard clinical protocols and the spectral analysis is repeated.
It is demonstrated that the tissue processing has significant impact on the extracellular
structure, notably the lipidic content, such that tissue sections from different anatomical sites
are no longer distinguishable. In the processed tissue sections, however, the decreased lipidic
content renders the cellular and extracellular protein structures more distinct, which is
potentially advantageous for retrospective analysis of disease progression and biochemical

analysis using tissue banks.



Materials and Methods

Tissue samples

Skin tissue was provided through the Anatomical Gift Programme of the Royal College of
Surgeons of Ireland (RCSI). Details of the cadaver samples available for this study are
provided in Table 1. Skin samples were collected from 11 human cadavers. In each case, both
dorsal (back) hand and upper inner thigh sections were employed, and each sample was
measured in unprocessed and formalin fixed paraffin embedded (FFPP), and subsequently
dewaxed form. All samples are preserved at -80°C before cutting and analysis. Unprocessed
cross sections of 20 um thickness were cut with a cryomicrotome (Leica CM 1850 UV) and
were stored at -20 °C until used. Spectral profiling of hand and thigh sections, unprocessed

and processed, of the samples indicated by shading in Table 1 are presented in detail.

The skin tissue was automatically processed (Leica Histokinette 2000) to wax blocks using

four principle steps, as follows:

(1) Vacuum fixation in 10% buffered formal saline histograde ph 6.8-7.2 (J.T Baker,

Deventer, the Netherlands) and heating to 30°C.

(i) Vacuum dehydration in industrial methylated spirit IMS T100 (Lennox, Dublin

Ireland)
(iii)Vacuum clearing in xylene (Serosep, Limerick, Ireland) and heating to 35°C.

(iv) Vacuum impregnation with tissue 111 Embedding Wax with polymer added (Sakura,

Zoeterwoude, The Netherlands) and heating to 59°C.

After wax impregnation, tissue was embedded and sliced into 20 pum sections using a

microtome, mounted on a CaF, substrate and dried. The samples were immersed in a series of
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baths consisting of two baths of xylene (BDH, Dorest, UK) for five minutes and four minutes
respectively, two baths of Ethanol Absolute (Merck, Dorest, UK) for three minutes and two
minutes and a final bath of Industrial Methylated spirits 95% (Lennox Dublin, Ireland) for

one minute.
Cell cultures

HaCaT cells are spontaneously immortalized human epithelial keratinocytes derived from
adult skin, and have the characteristics of basal epidermal keratinocytes **. This cell line can

be used as an in-vitro model for highly proliferative epidermis **.

HaCaT cells were cultured in Dulbecco’s MEM :F12 (1:1) medium (Sigma, Dorset, UK)
containing 10% fetal calf serum (Gibco, Irvine, UK) 1% penicillin-streptomycin solution
1000 TU (Gibco, Irvine, UK), 2mM L-glutamine (Gibco, Irvine, UK) and 1 pg mL’
hydrocortisone (Sigma, Dorset, UK) in a humidified atmosphere containing 5% CO, at 37 °C.
HaCaT cells were seeded at a concentration of 4x10* cells per substrate onto CaF, substrate
(Hellma Ltd., UK), previously sterilised using ethanol then dried in a laminar flow. All
samples were incubated for 24 hours at 37°C, 5% CO, before measurement. Cells were

measured live, in NaCl solution, using the LUMPlanF1, Olympus immersion objective.

Biochemical compounds

For comparison to tissue spectra, a number of biochemical compounds were analysed by
Raman spectroscopy. The samples were purchased from Sigma-Aldrich (Ireland). Samples of
Ceramide, Sphingomyelin and L-a-Phosphatidylcholine  (1,2-Diacyl-sn-glycero-3-
phosphocholine, 99% from egg yolk) were dispersed in chloroform and small amounts of

material were drop cast onto CaF, substrates.



Raman Instrumentation

A Horiba Jobin-Yvon LabRAM HRS800 spectrometer with an external 300 mW diode laser
operating at 785 nm as source was used throughout this work. For the measurements, either a
x100 objective (MPlanN, Olympus) or a x100 immersion objective (LUMPIlanF1, Olympus)
was employed, each providing a spatial resolution of ~1 um at the sample. The confocal hole
was set at 100 um for all measurements, the specified setting for confocal operation. The
system was spectrally calibrated to the 520.7 cm™ spectral line of silicon and the intensity
response function was corrected using the Standard Reference Material (SRM) No. 2243 of
the National Institute of Standards, Boulder, Colorado, USA (NIST SRM 2243, 2242, 2241)
*. The Labram system is a confocal spectrometer that contains two interchangeable gratings
(300 and 900 lines/mm respectively). In the following experiments, the 300 lines/mm grating
was used, giving a spectral dispersion of ~1.5 cm™ per pixel. The detector used was a 16-bit

dynamic range Peltier cooled CCD detector. A step size of 2 um was employed for tissue

mapping.

Tissue samples were measured under water immersion to minimise the spectral background
and spectra were recorded using the immersion objective (LUMPlanF1, Olympus)*®. All
biochemical samples were recorded using the x100 objective (MPlanN, Olympus). Once all
spectra were acquired, a background of substrate measured under identical conditions was
subtracted. Minimal baseline correction, smoothing and normalization were also performed in

order to improve the quality of the acquired spectra.
Data analysis

The different data analysis steps were performed using Matlab (Mathworks, USA). Before
statistical analysis, a Savitsky-Golay filter (5 order, 7 point) was applied to smooth any

spurious peaks of the spectra and reference constituting the background signal.



K-means cluster analysis (KMCA) was employed to analyse the spectral variations in tissue.
It is one of the simplest unsupervised learning algorithms that solves the well known
clustering problem and is often used for spectral image analysis '°. In general, clustering is
the partitioning of a data set into subsets (clusters) so that the differences between the data
within each cluster are minimized and the differences between clusters are maximized
according to some defined distance measure. Using KMCA, the large amount of data in a
spectral map can be reduced to mean spectra and the spatial distribution can easily be
visualised. The Raman data was used as inputs for KMCA. The clustering analysis algorithm
was used to find groups of spectra with similar spectral characteristics (clusters), each one
representing regions of the image with similar biochemical profiles. After KMCA, a different
colour is assigned to each cluster. Each grid element of the spectral map is then assigned the
colour of the particular cluster to which its spectrum belongs. In this way, a pseudo-colour
image of the skin sections is created to visualise the organisation of the clusters in the original
image. As the tissue mapping step size was 2 um for all measurements, pixel size in the
KMCA maps is 2 um x 2 um. The data range for all KMCA was limited to the fingerprint

region, 400cm™ to 1800cm’.

Results and discussion

1. Identification of the different skin layers in unprocessed samples

Figure 1-I shows a optical microscopic image of a 20 pum thick unprocessed hand section of
sample n°3. Visually, three different regions are apparent. Raman and FTIR spectroscopy,
coupled with KMCA can be used for the identification of different structures and

classification of tumoral regions in tissue sections” *’. It may therefore be anticipated that



distinct biochemical regions within the skin section can be identified. The maximum
biochemical information is contained within the so-called fingerprint region of the spectrum
(400 — 1800cm™) and therefore this region was initially analysed. In an automated spectral
map of the tissue sections, the spectra recorded on the edge of the tissue exhibit a high degree
of variability due to the transition from the outer layer of tissue to the substrate. The
variability between these spectra can interfere with the clustering analysis, resulting in the
creation of distinct clusters. Best visualization and reproducibility of the different structures
existing within the tissue was achieved by setting the number of clusters to 5. In this way, the
variability in the spectra obtained at the edge of the tissue is contained in distinct clusters and
does not interfere with the identification of different structures present in the tissue. The
spectra were assigned to the 5 different groups according to their similarities and a colour
attributed to each cluster. False colour maps were constructed representing the partition of the

different clusters in the tissue. The resulting image can be seen in figures 1-I1.

Three different structural layers can be found in the skin: the epidermis, the dermis and
hypodermis. The latter is too deep to be sampled in vivo using Raman microscopy and is not
examined in this study. The epidermis forms the protective layer against the surrounding
environment. The dermis provides a structural support to the skin and the hypodermis is a
connective tissue layer where fat is stored. The epidermis can also be subdivided into four
different layers, starting with the stratum basale, adjacent to the dermis, containing mainly
keratinocytes but also melanocytes responsible for the production of melanin, a pigment
which protects against UV radiation. The second layer is called the stratum spinosum and is
formed from dividing basale cells migrating towards the surface of the skin. The third layer is
named the stratum granulosum and is characterised by anuclear cells. As a natural process of
maturation, the cells flatten and lose their nucleus. Finally, in contact with the exterior

environment, is the stratum corneum. The cells have reached the last stage of their maturation



and are described as non-viable cornified cells, called corneocytes. A fifth layer, the stratum
lucidum, is found is the sole of the foot and palm of the hand and is therefore not present in

our samples.

Three different regions of skin can be well differentiated spectroscopically and figures 1-I11
shows KMCA mean spectra related to the three regions of unprocessed hand derived from the
subsection of figure 1-I (indicated by the white rectangle). Of the other two clusters
identified, the black (cluster 5) corresponds to the substrate, while the light blue (cluster 4) in
figure 1-1I is not associated to specific skin structure and represent either a loss of layer
integrity during the sectioning process or presence of debris on the substrate. Nevertheless,
the specificity of the information contained in the spectra recorded allows discrimination of
different skin layers using KMCA. A nalysis of a thigh tissue section yields similar results, as
shown in figure 1-IV/1-V/1-VIL. Notably, in both cases, the number of layers found is less
than that of the skin anatomy described above. It is thus of interest to analyse the spectral
features which differentiate these layers of skin, as well as skin from different anatomical

sites and elucidate the biochemical origin of their differentiation.

2. Characterisation of the dermis layer

Figure 2-1 presents a comparison between the KMCA cluster 3 mean spectra for unprocessed
hand and the equivalent cluster for thigh (figures 2-1 A and B) with pure collagen (figure 2-1
C). It can be easily seen that the spectrum of the skin layer is dominated by collagen and it is
therefore identified as the dermis. This is due to the high composition of collagen in human
dermis, constituting about 70% of the dry weight and 90% of the total protein content. There
are about 20 types of collagen that exist in the body, but 80% of skin collagen is type 1 and

15 % is type 3. The remaining 5 % is thought to be predominately type IV collagen **°.
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Assignments of most Raman bands of collagen have been made by Frushour and Koenig °'.
Specific features in the collagen spectrum are two intense bands at ~855 cm™ and ~938 cm™.
These bands originate from the amino acid side chain vibrations of proline and hydroproline
as well as from a C-C stretching vibration of the collagen backbone. Proline and
hydroxyproline make up about one-fourth of the amino acids in collagen, a higher proportion
than in most other proteins **. More generic protein bands present in the spectrum of the
collagen and the dermis appear at 1452 cm™, 1104 cm™ due to CH deformation and C-N
stretching, while features at 1004 cm™ and 1032 cm™ are due to symmetric ring breathing and

CH in-plane bending (Phenylalanine) 52-36

. These bands are also evident in the mean spectra
of the other layers, but the collagen specific peaks are absent and they are thus distinctive

signatures of the dermal layer.

3. Characterisation of the epidermal layers

Overlaying the dermis, although the anatomy of the epidermis divides it into 4 distinct layers,
KMCA of the Raman maps identifies only 2 layers. Analysis of the spectral information

elucidates the origin of the sub classification.

Figure 2-1I displays a comparison between the KMCA cluster 2 mean spectrum of
unprocessed hand (A) and the equivalent mean spectrum of unprocessed thigh (B) skin
section corresponding to the intermediate epidermal layer with the spectrum of pure melanin
(C). The pure melanin spectrum (figure 2-II C) is dominated by the broad fluorescence
emission spectrum and no prominent Raman peaks are apparent. The spectra of the
intermediate layers of unprocessed hand and thigh skin (figures 2-1I-A and 2-II-B) are a
superposition of the fluorescence spectrum of melanin itself and the spectrum of the

extracellular matrix present in the dermis of the skin. The basal layer of the epidermis is

11



primarily composed of melanocytes, which are responsible for the production of melanin.
Melanin is one of the most ubiquitous and biologically important pigments in the human
body’’. Although the melanin is produced by melanocytes, the pigment accumulates in
melanosomes which are transferred to the adjacent keratinocytes where they remain as
granules. Thus, the melanin is distributed beyond the basal layer and can be found in the
entire malpighian layer, a term that can be used to collectively describe the stratum spinosum

58, 59
and granulosum °”

. The organisation and distribution of the melanin vary between
individuals and in darkly pigmented skin, even the corneocytes can contain specks of melanin

also described as “dust”. However the number of melanocytes is relatively constant >'.

Because of this pigmented nature, the cluster spectra show a strong background, potentially
due to the fluorescence of the melanin, which is resonant at 785 nm °, although distinct
Raman peaks can be clearly identified. As a result, the intensity of the spectrum is also
exceptionally high. The presence of a strong background in the spectra does not allow to
specifically discriminate the basal layer from the malpighian layer and KMCA of the Raman
map identifies the combination as an intermediate epithelial layer. An increase in the cluster
number to 7 or 10 differentiates more “outlier” regions associated with the interface between
sample and substrate, indicating that the variations in this region are larger than those in the
intermediate layer, dominated by the melanin fluorescence. The strong background to the
Raman spectrum makes it difficult to quantify the melanin levels based on Raman
spectroscopy. Moreover, these layers, being mostly composed of keratinocytes, albeit at

different stages of maturation, are more likely to be spectroscopically very similar.

Most of the Raman bands in the KMCA spectrum of cluster 1 for unprocessed hand and the

equivalent cluster for thigh sections are in agreement with results obtained from FT-Raman

61-64

measurements on isolated stratum corneum . The stratum corneum spectra are dominated

by contributions from keratin and lipids. Figure 2-III represents a comparison between the

12



Raman spectra of the KMCA cluster 1 for unprocessed hand (A) and the equivalent cluster
for unprocessed thigh (B) with spectra of the pure lipids ceramide (C), sphingomyelin (D)
and L-o-Phosphatidylcholine (E). The position of the amide I band at 1655 cm™ indicates that
keratin in the human stratum corneum adopts predominantly and a-helical conformation® .
Additionally, the spectra of cluster 1 hand and the equivalent for thigh have prominent
contributions of lipids, observed at 1064 cm™, 1085 cm™ and 1130 cm™ due to chain C-C
stretching, 1296 cm™ and 1302 cm™ due to CH, twisting, as well as 1446 cm™ and 1442 cm™
due to CH scissoring. All bands can be compared to strong features in the Raman spectra of
ceramide, sphingomyelin or phosphatidylcholine. However, the most abundant classes of
lipids present in the stratum corneum are ceramide, cholesterol and fatty acids, wherein they
play a pivotal role in the skin barrier function. The absence of the intense Raman features at
717 cm”, 1157 cm™ and 1526 cm™ clearly highlights that sphingomyelin is absent from the
stratum corneum. Similarly, the absence of a strong peak at 717 cm™ in the spectrum of the
skin seems to indicate that no contribution from the phospholipids can be observed. However
the presence of a small feature at 1747 cm’ remains identifiable. The exact lipidic
composition of the stratum corneum remains difficult to evaluate. The presence of sebaceous
lipids, composed of squalene, wax esters, and triglycerides, coating the skin surface can be a
result of contamination during sample preparation ¢’. However, in recent studies, the stratum
corneum is commonly described as mostly composed of ceramides, fatty acids and
cholesterol although other lipids may be present in small quantities. Earlier studies indicated
that phospholipids in the stratum corneum account for about 5% of the total lipids from
samples taken from the legs or abdomen but smaller proportions in other location such as the

68,69 70
face , .

The absence of characteristics features of carotenoids in the stratum corneum is also notable.

The distribution of these powerful antioxidants in the skin was recently investigated in-vivo

13



using Raman microscopy based on the prominent Raman line at 1525 cm-1 (C=C

71-73

vibration). It is assumed that they are degraded due to the oxidative stress induced by

death.

Raman spectroscopy, coupled with KMCA, is clearly a powerful tool to differentiate the
layers of skin, as well as layers from different anatomical sites, based on biochemical content.
The images reveal significant differences between the morphology and thickness of the
stratum corneum and basal layer of the two different anatomical sites. Using the false colour
images reconstructed from the KMCA, the dermis can be easily differentiated due to the high
content of collagen, and therefore the delimitation between the dermis and the epidermis is
easily discernable. The two remaining clusters are attributed to the stratum corneum and an
intermediate combination of the basal and malpighian layers. Across the sections of
unprocessed hand examined, the total thickness of the epidermis appears to be about 70 + 15
pum whereas in the thigh sections it is within the range 35 + 5 pm. Although the thicknesses
vary somewhat from sample to sample, these differences between sections of hand and thigh
are consistent across samples from all 11 cadavers measured. The cluster identified as the top
layer of the skin without any features of the melanin can be attributed to the stratum corneum,
and was found to be respectively 40 + 10 um for the unprocessed hand and 25 + Sum for the

thigh.

Epidermal thickness is of considerable significance in dermatological research and a

4,75 .
%75 and ex vivo from

considerable amount of work has been done and reported, both in vivo
biopsy samples "°7®, defining the variations of epidermal thickness of different anatomical
sites. The observations here are consistent with those expected for primarily sun-exposed
sites (hand) and sun-protected sites (thigh). It has also been observed that the degree of

variability on normally clothed body sites is less than that on the normally unclothed sites .

Variations in normal skin related to age and gender have also been reported ’’. Published

14



values of the thickness of the viable layer (basal layer) and the stratum corneum have been
variable. Moreover, the thickness of stratum corneum and other layers of the epidermis are
known to be different from different anatomical sites. In recent studies, the total thickness has
been found to be between 60 pm and 100 pum depending on the body sites considered, but

80, 81 .
%" . However, less is

more importantly the techniques employed for the measurements
known about the biochemical differences, and Raman spectroscopic analysis can potentially
shed further light on chemical differences between the skin layers, and between layers from
different anatomical sites. Important for generalisation of deductions is the consistency of the
differentiation between specimens. Figures 3-I1 and 3-1I compare the average spectra of the

epidermis of unprocessed hand and thigh sections from different anatomical sites. The results

are representative of all 11 cadaver measured samples.

The samples available for this study have been taken post-mortem from patients over 80
years (Table 1). The thickness of the different skin layers can be affected by aging or sun
exposure and therefore can vary significantly from individual to individual. The observations
made can thus not be considered to be representative of the whole population. However, as
the samples have been taken from different locations (hand and thigh) for each cadaver,

direct comparison between two samples from the same patient remains relevant.

Spectra of the stratum corneum and dermis of different individuals show strong similarities,
but some structural and conformational differences are apparent, as illustrated in figures 3-1
and 3-II. Overall, the Raman signatures vary significantly and consistently according to body
site (hand and thigh). Apparent shifts in the features at 1446/1442 cm™ and 1296/1302 cm’!
are consistently observed from thigh to hand stratum corneum (figure 3). The relative
intensity of the signal at 1296 cm™ and 1302 cm™ with respect to the peak at 1266 cm™ also

varies. Similar differences are observed between unprocessed hand and thigh sections in the
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case of the intermediate epithelial layer (figure 2-1I) and the dermis (figure 3-1I). The band
located at 1302 cm™ in thigh dermis (figure 3-II) is assigned to CH, twisting and this is
absent in hand dermis, while the Amide III band located at 1246 cm’ in hand dermis is
absent in thigh dermis. Figure 3 illustrates that these are regions of strong lipid contributions,
however, and so, rather than spectral shifts, these characteristic differences are more likely

due to differing contributions of lipids to the spectra relative to those of proteins.

Thigh stratum corneum and dermis also display a small peak at 1747 cm™, which is absent
from hand stratum corneum and dermis. This peak is evident in the spectrum of L-a-
Phosphatidylcholine (figure 2-11I-E) and derives from the C=O0 ester vibration, also present in
triglycerides, which are not normally present in the stratum corneum. Triglycerides are esters
derived from glycerol and three fatty acids, and their prominence in the thigh tissue may be

evidence of higher levels of lipids and fatty acids.

4. Study of the CH region

Differences in lipidic content of the different layers can be more clearly visualised in the high
wavenumber region of the Raman spectrum, in which the CH vibrations of the aliphatic
chains feature strongly. Figure 4 presents a comparison between the average, baseline
corrected, Raman spectra of unprocessed stratum corneum (A), unprocessed intermediate
layer (B) unprocessed dermis (C) in the region from ~2700cm™ to ~3200cm™, compared with
pure ceramide (D) sphingomyline (E) and L- a- phosphatidylcholine (F). The strong
contributions of the lipids can be seen clearly in the spectra of all three layers of the frozen
skin section, although their relative contributions vary. The spectra can be fitted with
individual Gaussian/Lorentzian bands, and the results are summarised in table 2. Spectral

positions of the fitted peaks vary somewhat from spectrum to spectrum, and so are quoted
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+3cm’. Fitted peak intensities are reproducible within 10% and are normalised to the band at
~2932 cm™. The peaks in the high number region predominantly originate from CH, CH, and
CHj; stretching, and from literature, many can be assigned to lipids, the remainder being

. . 34,35, 82,83
assigned to proteins ~ 70",

In general, the stratum corneum is seen to be relatively rich in lipidic content, essential for the
barrier function of the skin against external agents. The stratum corneum is made up of
keratinized cells that are embedded in lipid matrices like bricks in mortar *, or more
specifically corneocyte cells surrounded by a three dimensional multi lamellar lipid domain
53-8 " As part of the cell maturation the keratinocytes, enzymes degrade the cellular viable
components such as nucleus and other organelles. Therefore, corneocytes are anucleated
cells, and no DNA or histones should be found in this layer of the skin. The major lipid
components of the stratum corneum are ceramides (sphingosines and phytosphingosines),
long-chain free fatty acids, and cholesterol *"*°.

The main lipids in the basal layer are phospholipids, cholesterol and to a lesser extent
triglycerides, which provide energy for metabolism. The lipids are subject to maturation and
it starts with the apparition of lamellar bodies in the stratum spinosum which contain

phospholipids, sphingolipids and cholesterol *!

. The lamellar granules present in the stratum
granulosum are particularly rich in glucosylceramides. These granules are released in the
intercellular space of the stratum corneum where they will be converted into ceramides via

hydrolysis by beta (b)-glucocerebrosidase ** *>.

Overall, it can be deduced that that lipid/ protein compositions are not uniform in the layers
of hand and thigh of the same human cadavers. The sun exposed hand skin is relatively low
in lipidic content compared to the thigh. This is consistent with reports that a decrease in lipid

content is associated with increased susceptibility to exogenous insults, which will naturally

94

increase with age ~'. The observations may provide unique advantages in skin disease

17



diagnosis and this body-site difference needs to be factored into in vivo skin Raman
assessment and disease diagnosis. However, it is noted that for both anatomical sites, the
Raman spectra of the stratum corneum and dermis of skin sections are strongly influenced by
the lipidic and extracellular protein content, rather than the cellular features, which may
provide the most direct biochemical information on tissue pathology. Raman spectroscopy
can be used, not only to elucidate the structure of the lipids involved in the stratum corneum
barrier function (ceramides, cholesterol and free fatty acids), but also to provide a direct
insight on the conformational order and the lateral packing of these lipids. It has been shown
that the barrier function is directly related to the compactness of the lipid structure and that

the later can be affected by external insults such as UV radiation.” >’

5. Comparison with processed FFPP sections

For histological analysis, tissue samples are commonly preserved in paraffin wax % *’.

Paraffin embedding facilitates tissue cutting, but also is commonly employed, worldwide, for
archiving tissue samples. The availability of a wide range of pathologically characterized
samples for study potentially enables extensive retrospective studies using spectroscopic and
other techniques. However, the paraffin wax itself gives rise to strong Raman signals that
overlap the molecular vibrations of the biomolecules of the samples, necessitating chemical
removal for spectral analysis *°. Although it has been demonstrated that the contributions can
be removed digitally °®, histological staining, considered a gold standard, necessitates
chemical removal of the wax and thus the procedure is employed here. Furthermore, although
it has been demonstrated that dewaxing using hexane is more efficient than the commonly

employed xylene, xylene is used here for consistency with clinical protocols *.

Figure 5-1 shows an optical microscopic image of the dewaxed hand section of human skin of

20 um thickness. As for the unprocessed sections, three different regions are visually
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apparent, the dermis at the bottom and the stratum corneum at the top, separated by an
intermediate underlying epidermal layer. In contrast, the optical images of dewaxed hand and
thigh skin sections in figures 5-1 and 5-IV indicates no major differences between the
thicknesses of the total epidermis, which are ~40 um in both thigh and hand. The stratum
corneum also appears to have similar thicknesses in both locations, ~20 um, despite the large
differences observable in the unprocessed sections from the same cadavers. Through the
processes of formalin fixation, paraffin embedding and dewaxing, as well as cutting, the
tissue sections likely undergo a considerable degree of chemical and physical changes, and it
is important to consider the effects of the processing on the biochemical content and structure

of the skin layers.

Spectroscopically, the three regions of the sections are quite distinguishable, as illustrated by
the KMCA mean spectra of figure 5-111, taken within the subsection of figure 5-I indicated by
the white rectangle. The KMCA map of figure 5-II further supports classification of dermis,
basal/malpighian layer and stratum corneum. The mean spectra of the principle regions are
plotted in figure 5-II1. The mean spectrum of cluster 4 is similar to that of cluster 1. Similar
results are observed for dewaxed thigh tissue sections and are shown in figure 5-1V/5-V/5-VI.
For both anatomical sites, at first glance, the mean spectra of the 3 identified regions are
similar to the corresponding regions for the unprocessed skin sections, but closer examination

reveals important differences.

Figure 6-1 presents a comparison between the spectra of KMCA cluster 1 of dewaxed skin hand
stratum corneum (A) and the equivalent cluster of dewaxed thigh stratum corneum (B) with that of the
HaCaT cell line (C), DNA (D), histone (D) and pure paraffin wax (F). Firstly, it is noted that the
KMCA spectra of dewaxed epidermis of hand and thigh reveal little or no contributions from the

paraffin wax, indicating that the dewaxing procedure has been effective. The characteristic bands of

wax (figure 6-1-F) at 1062 cm™, 1131 cm™, 1296 cm™ and 1441 cm™, are completely absent
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in the mean spectra of the epidermis of the dewaxed skin hand and thigh (figure 6-I-A and 6-
I-B). Hence, the wax contribution of the epidermis has been completely removed by the
dewaxing procedure. Notably, however, the mean spectra of dewaxed hand and thigh dermis
are devoid of lipidic contributions. Both paraffin wax and biological lipids are long chain
aliphatic molecules. The spectra of wax and pure lipids show remarkable resemblances
(figure 6-I-F-, figure 2-11I-C, D, E). The Raman contributions of pure lipids at 1064 cm™,
1296 cm™ and 1442 cm™ in cluster 1 of unprocessed skin hand and thigh (figure 2-I-A and 2-
I-B) are almost identical to those of pure wax in the wavenumber region of 1000 cm™ to 1700
cm”. The results indicate, therefore, that while the dewaxing procedure is successful in
completely removing the wax in the tissue, due to the molecular similarity, the process is also

effective in the complete removal of the naturally occurring tissue lipids.

Despite minor differences, the spectra of the clusters corresponding to the dewaxed stratum
corneum of hand and thigh (figure 6-1-A and 6-I-B) show remarkable resemblances. Proteins
bands, such as those at 1450 cm™ and 1340 cm™ due to protein CH deformation, 1255 cm™ to
protein Amide IIT and 756 cm™ due to tryptophan ring breathing modes are also present in the
spectra of HaCaT cells (figure 6-I1-C). Notably, however, the signature bands of nucleic acids,
visible in the spectrum of the HaCaT cells at 785cm™ and 1580 cm™, are absent in the mean
spectrum of the stratum corneum.

Although the stratum corneum is rich in lipidic components, after dewaxing it clear that most
of the lipids have been lost and the main molecules contributing in the spectra recorded are
the proteins, contained within the corneocytes. Although the lipids of the stratum corneum
are widely investigated and often considered as the most important component of the skin,
the proteins are also subject to a certain degree of reorganisation during the maturation of the
keratinocytes from the deepest layers until they reach the surface of the skin. The large

insoluble protein named profilaggrin will be converted to filaggrin which is associated to the
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keratin filament in the deepest layers of the stratum corneum. The proteolysis of filaggrin

7099 The final form is

converts it to its constituent amino acids, and amino-acid derivatives
known as natural moisture factor (NMF) and it can represent up to 10% of the corneocyte dry
weight. The complex composition of the NMF mixture can explain the presence of numerous
features of the spectrum recorded from the stratum corneum. The pattern of the Raman
spectra presented in figure 6-1 is consistent with data that can be found in the literature
focusing on the study of the corneocyte maturation *°. Moreover, the protein features are
highlighted in the absence of the normally strong lipidic spectral features.

Figure 6-1I shows a comparison between cluster 5 of dewaxed hand skin and the equivalent
cluster for thigh skin with pure melanin. As described in section 3, both clusters (figure 6-11-
A and 6-11-B) can be attributed to a combination of the basal and malpighian layer of the
human skin, both rich in melanin. Again, the intensities of the spectra are exceptionally high
and the spectra are dominated by the fluorescence spectrum of melanin. The spectra are
similar to the corresponding spectra from the unprocessed tissue sections (Figure 2-1I-A and
2-1I-B). However, no lipidic peaks are observable and, notably, no differences between the
spectra of cluster 5 of dewaxed hand and the equivalent thigh spectrum are apparent (figure
6-1I-A and 6-11-B). The process of waxing and dewaxing therefore substantially reduces the
lipidic content of the intermediate epithelial layers, such that intermediate epithelial layers

from different anatomical sites such as hand and thigh cannot be distinguished from each

other.

Figure 6-111 presents a comparison between the KMCA spectra of cluster 2 of dewaxed hand
dermis and the equivalent cluster for thigh (figures 6-III-A and 6-I11-B) with pure collagen
(figure 6-II1-C). As is the case with the epidermis layers, no lipidic peaks are observed. In
contrast to the spectra of dermal clusters of unprocessed hand and thigh (figure 2-1-A and 2-I-

B), the spectra look identical. The process of waxing and dewaxing appears to have removed

21



all lipidic constituents, and therefore the dermis from different anatomical sites such as hand

and thigh cannot be distinguished.

The Raman spectra of the stratrum corneum and dermis of the dewaxed skin sections from
different anatomical regions and from different human cadavers are shown in (figure 3-1 and
3-1I). Remarkably, comparing the Raman spectra of dewaxed epidermis and dermis of human
skin from three different cadavers, no significant differences can be found. As in the case of

unprocessed sections, the results are representative of all 11 cadavers measured.

To confirm the depeletion of the lipidic content of the tissue, Figure 7 shows the high
wavenumber regions of the spectra of dewaxed human thigh stratum corneum, intermediate
epithelial layer and dermis. As for the unprocessed sections, the spectra were fitted with a
series of Gaussian/Lorentzian bands, and the spectral positioning (+3cm’™), intensities (+10%)

and assignments are listed in table 3.

Comparison of the relative intensities of the lipid peaks of unprocessed and processed tissue
sections of hand and thigh in table 2 and table 3 confirms that the dewaxing procedure has
significantly reduced the lipidic content and altered the tissue composition of the skin.
Strikingly, however, the remaining biochemical structure of the skin layers is remarkably

consistent across different cadavers and anatomical sites.

The lipidic content is the key to the permeability barrier function of skin and is of significant
importance to the cosmetics industry and for transdermal drug delivery. Abnormalities in
barrier function associated with lipid content are also associated with atopic dermatitis and

. 100
other common cutaneous diseases

. UV radiation has been shown to effect the free fatty
acid and triglyceride composition '°' and decrease in lipid content with age is associated with

increased susceptibility to exogenous insults,”*. Therefore, a detailed knowledge of lipidic

content, composition and structure is critical to many studies of skin function, malfunction
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and abnormality. Although archived tissue sample can serve as an important source for
retrospective studies, this study demonstrates that, in their dewaxed form, no information
related to their lipid content can be gleaned. Nevertheless, the study shows that the cellular
content of the tissue and the protein extracellular matrix remain largely intact, and that the

spectral profiles are enhanced by the removal of the lipidic content.

Conclusions

Raman spectroscopy and K-means cluster analysis successfully discriminates the layers of
the unprococessed and dexwaxed skin from two different anatomical sites, hand and thigh. K-
means cluster analysis further shows that distinct biochemcial regions within the skin tissue
can be identified, corresponding to the top layer stratum corneum and the bottom layer
dermis. However, the strong contibution from melanin fluoresecene prevents a clear
discrimination between the stratum basale and stratum spinosum. In the unprocessed skin,
the spectrum of the stratum corneum has strong contributions from the cellular components,
the spectrum of the intermediate epithelial layer is strongly influenced by melanin while that
of the dermis is dominated by collagen. In all cases, lipidic contibutions to the spectra are
discernible, notably in the stratum corneum, which is relatively rich in lipidic content. The
lipidic content can also be used to differentiate between anatomical sites. The process of
tissue fixation, embedding and dewaxing has the effect of significantly reducing the lipidic
content of all skin layers. This has the implication that antomically different tissue sections
which may differ significantly in terms of fat content become indistinguishable, and it is no
longer possible to study skin functions or abnormalities accociated with lipid content.
However, the cellular and extracellular structures remain relatively intact and the spectral
features are accentuated in the absence of lipidic contributions, and so processed archived

tissue banks present a valuable resource for the retrospective study of skin diesase.
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Figure 1: I) Optical image of unprocessed hand tissue section; IT) K-means cluster analysis of
Raman maps of unprocessed hand; III) KMCA mean Raman spectra of unprocessed hand
illustrating the differentiation of the superficial stratum corneum (cluster 1 = A), the
intermediate epithelium (cluster 2 = B), and the dermis (cluster 3 = C); IV) Optical image of
unprocessed thigh tissue section; V) K-means cluster analysis of Raman map of unprocessed
thigh; VI) KMCA mean Raman spectra of unprocessed thigh, illustrating the differentiation
of the superficial stratum corneum (cluster 5 = A), the underlying epithelium (cluster 3 = B),

and the dermis (cluster 4 = C).
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Figure 2: I) KMCA mean spectra of unprocessed hand skin dermis cluster (cluster 3) (A),
unprocessed thigh skin dermis cluster (cluster 4) (B) and spectrum of pure collagen (C); II)
KMCA mean spectra of the intermediate epithelial layer cluster (cluster 2) of unprocessed
frozen hand skin (A) , the intermediate epithelial layer cluster (cluster 3) of unprocessed thigh
skin (B) and spectrum of pure melanin (C); III) KMCA mean spectra of the stratum corneum
cluster (cluster 1) of unprocessed hand (A), the stratum corneum cluster (cluster 5) of
unprocessed thigh (B), spectra of Ceramide (C), Sphingomyelin (D) and L-a-

Phosphatidylcholine (E).
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Figure 3: I) A: Average Raman spectrum of the unprocessed hand SC; B: Average Raman
spectrum of the dewaxed hand SC ; C: Average Raman spectrum of the unprocessed thigh
SC; D: Average Raman spectrum of the dewaxed thigh SC. II) A: Average Raman spectrum
of the unprocessed hand dermis; B: Average Raman spectrum of the dewaxed hand dermis ;
C: Average Raman spectrum of the unprocessed thigh dermis; D: Average Raman spectrum

of the dewaxed thigh dermis.
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Figure 4: Average Raman spectra of high wavenumber region of unprocessed thigh stratum
corneum (A), unprocessed intermediate epithelial layer (B), unprocessed dermis (C),

ceramide (D), sphingomyline (E) and L- a- phosphatidylcholine (F).
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Figure 5: 1) Optical image of dewaxed hand tissue section; I[I) KMCA of Raman spectral ;
map; [II) KMCA mean Raman spectra of processed hand illustrating the differentiation of the
superficial stratum corneum (cluster 1 = A), the intermediate epithelium (cluster 5 = B), and
the dermis (cluster 2 = C); IV) Optical image of processed thigh tissue section; V) KMCA of

Raman map; VI) KMCA mean Raman spectra of processed thigh, illustrating the
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differentiation of the superficial stratum corneum (cluster 3 = A), the intermediate epithelium

(cluster 5 = B), and the dermis (cluster 4 = C).
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Figure 6: I) KMCA mean spectra of cluster 1 from dewaxed skin hand (A) cluster 3 from
dewaxed thigh (B), Raman spectra of HaCaT cells (C), DNA (D), Histone (E) and pure
paraffin wax (F).II) KMCA mean Raman spectra of cluster 5 from dewaxed skin hand (A),
cluster 5 from dewaxed thigh (B) and spectrum of pure melanin (C). III) KMCA mean

Raman spectra of cluster 2 dewaxed skin hand (A) cluster 4 dewaxed thigh (B) pure collagen

(C).
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Figure 7: Average Raman spectra of the high wavenumber region of dewaxed human thigh

section from stratum corneum (A), intermediate epithelial layer (B), dermis (C) and pure

collagen (D).
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Table 1: Human cadavers. Spectral profiling of hand and thigh sections, unprocessed

and processed, of the samples indicated by shading are presented in detail.

Identification No. Sex Age Cause of death
Sample n°1 Female 82 Pancreatic Malignancy
Sample n°2 Female 98 Bronchopneumonia
Sample n°3 Female 88 Myocardial infarction
Sample n°4 Female 88 Sepsis (SBO)
Sample n°5 Female 89 Cerebrovascular Accident
Sample n°6 Female 78 Bronchopneumonia
Sample n°7 Female 93 Sepsis (UTI)
Sample n°8 Male 77 COPD
Sample n°9 Male 89 Cerebrovascular Accident
Sample n°10 Male 81 Myocardial Infarction
Sample n°11 Male 73 Motor Neuron Disease
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Table 2: Fitted peak positions, relative intensities and assignments for the high wavenumber

region of average Raman spectra of unprocessed skin sections.

Peak Position (cm'l) Stratum Dermis Intermediate Assignment
corneum Epithelium
Thigh 2730 0.12 0.08 0.07 CH stretching
(lipid)
Hand 0.06 0.05 0.02
Thigh 2850 0.73 0.56 0.80 CHj; stretching
(lipid)
Hand 0.65 0.24 0.65
Thigh 2863 0.67 0.43 0.73 CHj3 stretching
(protein)
Hand 0.70 0.45 0.59
Thigh 2880 0.42 0.46 0.03 CHj; stretching
(lipid)
Hand 0.13 0.08 0.002
Thigh 2905 1.03 0.93 1.16 CH stretching
(protein)
Hand 0.80 0.67 0.94
Thigh 2933 1 1 1 CHj stretching
(protein)
Hand 1 1 1
Thigh 2968 0.59 0.50 0.82 CHj3 stretching
(protein)
Hand 0.50 0.53 0.64
Thigh 3065 0.05 0.03 0.07 Amide B
(Protein)
(CNH bend)
Hand 0.05 0.06 0.07
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Table 3: Fitted peak positions, intensities and assignments for high

wavenumber region of average Raman spectra of dewaxed thigh skin section.

Peak Position (cm™) | Stratum Dermis Intermediate Assignment
corneum Epithelium

2730 0.05 0.04 0.04 CH stretching (lipid)
2850 0.17 0.18 0.35 CHj; stretching (lipid)
2863 0.59 0.28 0.63 CHj stretching (protein)
2880 0.02 0.16 0.09 CHs; stretching (lipid)
2905 0.87 0.57 0.93 CH stretching (protein)
2933 1 1 1 CHj stretching (protein)
2968 0.69 0.49 0.79 CHj stretching (protein)
3065 0.10 0.02 0.07 Amide B (Protein)

(CNH bend)
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