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Abstract: 

Raman spectroscopy has been used to identify the biochemical changes associated with the 

presence of the Hepatitis C virus (HCV) in infected human blood plasma samples as compared to 

healthy samples, as control. The aim of the study was to establish the Raman spectral markers of 

hepatitis infection, which could be used for diagnostic purposes. Moreover, multivariate data 

analysis techniques, including Principal Component Analysis (PCA), coupled with Linear 

Discriminant Analysis (LDA), and Partial Least Square Regression (PLSR) are employed to 

further demonstrate the diagnostic capability of the technique. The PLSR model is developed to 

predict the viral loads of the HCV infected plasma on the basis of the biochemical changes 

caused by the viral infection. 

Specific Raman spectral features are observed in the mean spectra of HCV plasma samples 

which are not observed in the control mean spectra. PCA differentiated the “normal” and “HCV” 

groups of the Raman spectra and PCA-LDA was employed to increase the efficiency of 

prediction of the presence of HCV infection, resulting in a sensitivity and specificity 98.8% and 

98.6%, with corresponding Positive Predictive Value of 99.2%, and Negative Predictive Value of 

98%. PLSR modelling was found to be 99 % accurate in predicting the actual viral loads of the 

HCV samples, as determined clinically using the Polymerase Chain Reaction (PCR) technique, 

on the basis of the Raman spectral changes caused by the virus during the process of the 

development of Hepatitis C. 

Key words: Raman spectroscopy, Hepatitis C Virus (HCV) infection, blood plasma, Principal 

Components Analysis, Partial Least Squares Regression 

  



Introduction: 

Hepatitis C is a virally infectious disease, which affects 3% of the world and 4.8 % of the 

Pakistani population 
[1-3]

, highlighting the demand for rapid, routine, reliable and cost effective 

diagnostic techniques. Presently, screening methods depend upon the detection of antibodies and 

pathogens in Hepatitis C virus (HCV) infected blood 
[4]

. The serology based method, Enzyme 

Linked Immunosorbent Assay (ELISA), targets specific antibodies arising in the blood from the 

response of the immune system due to HCV infection 
[5]

. However, although ELISA is very 

commonly employed, it is not a very reliable method for diagnosis of HCV infection. False 

positive and false negative anti-HCV results pose severe difficulties in medical practice and in 

blood screening 
[6-8]

. 

More direct virus detection based methods employ Polymerase Chain Reaction (PCR), in which 

HCV RNA, considered the most reliable disease marker, is detectable in serum or plasma as 

early as one week after infection and the technique is considered the gold standard for diagnosis 

of active HCV infection 
[9-10]

. The accuracy of the molecular based detection method depends 

upon the quality of the chemical reagents used and the sensitivity of the instrumentation. It 

involves very complex processes, and therefore an expert operator is required to carry out the 

test, which can otherwise lead to significant errors. More recently, “real-time” PCR techniques 

have been developed 
[11-15]

. A comparison of ELISA and PCR methods has been carried out 
[16-

17]
, leading to the conclusion that PCR based techniques are the most reliable, although they are 

very expensive, time consuming, laborious and less commonly available. There is a need, 

therefore, to develop a new, reliable, efficient, rapid, automated, cost effective, non-invasive and 

biochemical label free diagnosis method to screen the whole community for effective disease 

management. 



Over the last decade, Raman spectroscopy has shown great potential for the characterization of 

biological tissue 
[18]

 and the effect of external agents on the cell 
[19-24]

. In addition, Raman 

spectroscopy can provide high content information, as it can examine spectral changes in any 

bio-macromolecules including DNA, proteins, lipids simultaneously 
[25-27]

 and can lead towards 

the identification of the Raman spectral features which could be utilized as diagnostic markers of 

the disease. Moreover, Raman micro-spectroscopy has been employed to explore sub-cellular 

biochemical structure, as demonstrated by its use in studies investigating the action of various 

agents on biological macromolecules as well as their interaction with cancer cells 
[20,28-37]

. 

Recently, Raman spectroscopy has been successfully employed for the diagnosis and 

characterization of viral infections such as dengue 
[38]

, HPV 
[39-40]

 and others 
[41-42]

. 

Although the diagnosis of HCV in the sera samples from virally infected patients by employing 

Raman spectroscopy has been reported 
[43]

, there is no work published to date in which the 

technique has been applied to study the correlation of the biochemical signatures of the virus 

with the viral loads. In the current work, Raman spectroscopy is employed to identify the 

biochemical changes associated with the HCV virus infection by studying infected human 

plasma samples, along with healthy samples as control, in order to establish the Raman spectral 

markers associated with the HCV infection. Furthermore, the multivariate techniques of 

Principal Components Analysis (PCA), coupled with Linear Discriminants Analysis (LDA), and 

Partial Least Squares Regression (PLSR) were employed for Raman spectral analysis. PCA was 

used to discriminate the Raman spectra from the diseased blood sera from the healthy ones, and 

coupled with LDA, to improve the diagnostic potential, whereas, PLSR models are developed 

based on the Raman spectra of diseased and healthy samples to predict the viral loads of the 

HCV infected plasma on the basis of the biochemical changes caused by the viral infection. 



Materials and Methods 

Sample preparation 

Blood plasma samples from 10 healthy (control) and 10 confirmed Hepatitis C patients with 

different viral load (VL) values, given in the Table 1, were collected from PINUM Hospital, 

Faisalabad, Pakistan and approved for study by the ethical committee. These patients were 

diagnosed as infected with HCV by the Polymerase Chain Reaction (PCR) technique, currently a 

gold standard for the diagnosis of Hepatitis, which quantified the HCV loads in the patient 

samples (Table 1). A drop of each plasma sample (20 µl - around 5 mm in diameter) was placed 

on an Aluminium slide at room temperature. The Raman spectra were acquired from samples 

ensuring that the blood plasma samples did not dry during the measurement time. Blood plasma 

samples were handled according to the US National Institute of Health (NIH) recommendations. 

 

Raman spectral acquisition 

Raman spectral acquisition from all of the 10 control and 10 HCV positive plasma samples was 

performed using a Raman spectrometer (Peak Seeker Pro-785; Agiltron, USA). The Peak Seeker 

Pro-785 utilizes a 785 nm diode laser as the excitation source, delivering a laser power of ~70 

mW at the sample. The laser was delivered to the sample through a 10X. The CCD used for 

recording the Raman scattering was cooled by a thermoelectric cooler to minimize the electrical 

noise. The acquisition of the Raman spectra for all the samples was executed from 400 to 1800 

cm
-1

 and 30-35 Raman spectra per sample were acquired with an acquisition time of 30 seconds 

each. 

 

 



Data pre-processing 

All data processing of the Raman spectra was performed using MatLab 7.2 and established 

protocols 
[44]

. Data pre-processing included smoothing, baseline correction, vector normalization 

and substrate removal. All spectra, including substrate backgrounds, were vector normalized and 

smoothed using a Savitzky-Golay smoothing method (order 5, 13 point window). A rubber band 

correction for baseline removal for all the spectra was carried out and the substrate spectra were 

subtracted from each spectrum. 

Data analysis 

The Raman spectral data have been analysed by comparing the mean spectra of each patient, 

including control/healthy persons as well as HCV patients. The assignments of the Raman 

spectral features used in interpretation of the results were taken from the literature 
[24,35,45-46]

 and 

are described in Table 2. 

  



In order to further elucidate the biochemical basis of the development of HCV as compared to 

the healthy/control samples, PCA was performed. PCA is a mathematical procedure involving 

the transformation of possibly correlated variables into a smaller number of uncorrelated 

variables, known as principal components (PC), basically to reduce the dimensionality of the 

data whilst maintaining their variability. The first principal component accounts for the dominant 

source of variability in the data, and each succeeding principal component accounts for the next 

highest source of the remaining variability. The loadings of the PC can be understood as the 

orthogonal dimensions of biochemical differences which facilitate separation of different groups 

of spectra of Raman data along their variability as each spectrum scores along these dimensions. 

To improve the diagnostic potential, PCA-LDA was then performed on the whole dataset to 

produce confusion matrices using the scores 
[47]

. Specifically, the algorithm was performed using 

a stratified 10-fold cross validation, splitting the data into calibrations and test sets. For each 

virus load tested, 90% of the Raman spectra were used for calibration while the remaining 10% 

constituted the test sets. Ultimately, the confusion matrix built results from the 10 iterations and 

gives the overall classification from the 10 test sets. The classification which resulted in the 

maximum accuracy while keeping the number of latent variables to a minimum was chosen for 

all successive models. In the case of all HCV versus Control samples, the maximum accuracy 

was found when 3 principal components were used in the classification. Further addition of 

principal components only increased the complexity of the model without further improving the 

performance. 

PLSR is a common chemometric method which aims to construct a generic model to describe the 

response variables (i.e. analyte concentration) in terms of the observed variables (spectra) from a 

set of training data (viral load). The least squares model is given by an equation system whose 



dependent result is given by the measured variables (i.e. viral load in this case). The independent 

variables (the spectra) are regressed towards those dependent variables with the regression 

parameter, leaving residuals (differences between measured and predicted variables) which are 

suitable to access the quality of the predictive model and the parameters for model optimisation. 

PLSR is similar to PCA, which produces factors based on variance solely within the data matrix, 

whereas PLSR considers both target and the data matrix, ensuring that the factors correlate the 

data matrix (spectra) to the target variable (viral load). In PLSR, the variables are regressed 

simultaneously, maximizing the covariance between both matrices to allowing direct correlation 

between the spectra and target. PLSR models in this work were constructed using the SIMPLS 

algorithm with root mean squared error of cross validation (RMSE) as the fitness value. Leave-

one-out cross validation was used to select the minimum number of latent variables (LV’s 

comparable to PC’s) to retain in order to create a robust and sufficiently ubiquitous model but 

still avoid over fitting. 

Results and Discussion: 

Mean Raman spectra of HCV samples 

As spectral signatures of the HCV infection are likely to be correlated with viral load, the mean 

Raman spectrum of the patient sample with maximum viral load was initially compared to that of 

the Normal plasma samples. Mean Raman spectra of plasma samples of the Normal (healthy) 

and maximally HCV infected patients (V.L. = 1,718,359 IU/ml- positive-10 of Table-1) and 

their difference spectra, calculated by subtracting HCV spectra from normal spectra, are 

presented in Figure 1 and Figure 2, respectively. The spectra are off-set for clarity. Notably, 

although plasma is derived from blood, it does not contain red blood cells (RBCs), white blood 

cells (WBCs) or platelets. It contains dissolved proteins (serum albumins, globulins, and 



fibrinogen), glucose and clotting factors. The healthy human plasma spectra thus contain the 

signatures of constituent proteins, lipids, antigens, antibodies. On the other hand, plasma from 

the HCV patients will also contain virus particles as an infection and hence Raman spectral 

signatures of the protein part of the virus or viral RNA (HCV is RNA virus) may contribute 

differentiating spectral features. The Raman signatures of the external micro-organism (HCV in 

the current study) are expected only in the infected samples and not in the control/healthy 

samples. Close examination of Figure 1 and Figure 2 reveals Raman spectral bands which are 

significantly changed during the development of the disease from normal to HCV. The most 

significant changes are highlighted as solid lines and other ones with dotted lines.  

Notably, among the Raman spectral features labelled with the solid lines, there are a few peaks, 

including those at 874, 880, 1054, 1065, 1072 and 1211 cm
-1

, which are encircled to show their 

significance as these are not observed in the mean control spectra but are very significant in the 

HCV ones. Of these, the features at 874 and 880 cm
-1

 (tryptophan ring breathing), 1054 cm
-1

 (C-

N stretching) and 1211 cm
-1

 (amide-III beta sheet or phenyl stretching in amino acids) are 

associated with proteins and mat be associated with Raman spectral markers of the proteinic part 

of the HPV itself, or its physiological impact.  

Raman spectral changes associated with proteins were observed. Among those peaks, it is 

important to mention that the peak ratio of the 748 cm
-1

 (CH2 bending) and 758 cm
-1

 

(Tryptophan ring breathing) features is changed in the HCV positive sample as compared to the 

Normal and the peak height of the peak at 748 cm
-1 

is increased in the HCV positive sample as 

compared to control. Moreover, a shoulder is observed at 606 cm
-1

 (CH2 bending), near 620 cm
-1

 

(C-C twisting). In addition, the peak ratio of the 1090 and 1099 cm
-1

 (C-N stretching) peaks is 

also changed and a decrease in the peak height is observed in the HCV positive sample as 



compared to the Normal. These changes may be attributed to some kind of structural changes in 

the proteins which might be involved in the development of the HCV infection, and hence can be 

taken as Raman spectral markers of the HCV infection. 

Other Raman spectral features observed, related to the proteins, consist of those at 422, 426 and 

860 cm
-1

 (C-C stretching), 620 cm
-1

 (C-C twisting), 720, 758, 1360 and 1378 cm
-1 

(Tryptophan 

ring breathing), 838 cm
-1

 (Tyrosine ring breathing), 880, 898, 1150, 1197 cm
-1

 (C-C skeletal 

stretching), 934 cm
-1

 (C-C alpha helix of protein), 1090, 1099, 1157, and 1164 cm
-1

 (C-N 

stretching), 1222, 1228, 1242 and 1254 cm
-1 

(Amide-III beta sheet) and 1655 cm
-1

 (amide-I). 

These changes related to protein can be associated with the development of the disease. 

Moreover, the peaks at 1065 and 1072 cm
-1

, both associated with the fatty acids (lipids), may 

also be associated with the viral infection. Other lipid related changes observed include the 

features at 711 cm
-1

(C-N stretching), 984 cm
-1

 (C-C head groups) and 1393 cm
-1

(CH3 

deformation). The observed changes may be the result of an increase in the levels of the lipids as 

well as conformational changes in some lipidic structures, indicating their involvement in the 

process of the viral infection. It is reported that lipid droplets provide sites for the attachment of 

the HCV, necessary for replication in the infected host 
[48]

. 

In the case of the study of cervical cancer tissue samples, in which the Human Papilloma virus 

(HPV) is considered a primary aetiological factor, it was observed with Raman spectroscopy that 

proteinic indicators of the presence of the virus are readily identifiable, although the DNA/RNA 

signatures of the virus itself are not so prominent 
[37,40,49]

. It can hence be concluded that the 

effects of the virus are more evident than the virus itself. 

 



Principal Component analysis (PCA) 

In order to further explore the ability of the PCA to differentiate between one normal and HCV 

positive sample, PCA was applied to their Raman spectral data. Figure 3 and Figure 4 show the 

scatter plot and loadings of the PCA of Normal (one group) versus HCV plasma (one patient) of 

highest viral load (V.L. = 1,718,359 IU/ml, positive-17 of Table-1). There is clear differentiation 

of the two groups of Raman spectra observed by PC-1, explaining 87.7% of the variance in the 

data. The loadings of PC1, Figure 4, confirm the results discussed earlier in the case of the 

difference of the mean spectra, although they are inverted (Figure 2). Notably, the Raman 

spectra of the “normal plasma samples” are clustered in the negative side and HCV positive ones 

in the positive side of the PC1 axis of the PCA scatter plot and hence the spectral features 

associated with the HCV plasma are loaded positively, while those of the Normal plasma are 

loaded negatively 
[50]

. The features identified in Figure 2, also feature in the Loading of PC1, 

and are labelled with solid lines which are encircled to show their significance. Of these, those at 

874 cm
-1

 and 880 cm
-1

 (tryptophan ring breathing) and 1054 cm
-1

 (C-N stretching) and 1211 cm
-

1
, 1222 cm

-1
, 1228 cm

-1
, 1242 cm

-1 
and 1254 cm

-1
 (amide-III beta sheet or phenyl stretching in 

amino acids) are feature prominantly. PCA also confirms the significance of the lipidic derived 

features at 1065 and 1072 cm
-1

, 1157, and 1164 cm
-1

 (C-N stretching) which can be associated 

with the manifestation of the viral infection as lipid droplets. Moreover, PCA also confirms the 

change in the peak ratio of the 748 cm
-1

 (CH2 bending) and 758 cm
-1

 (Tryptophan ring breathing) 

features and that the peak height of the peak at 748 cm
-1

 is increased in the HCV positive sample 

as compared to control, observed as positive loadings, indicating its association with the HCV 

sample. Other positive features, indicating association with the HCV sample, include those at 

426 cm
-1

 (C-C stretching) 711 cm
-1 

(C-N stretching), 720 cm
-1

 (Tryptophan ring breathing), 838 



cm
-1

 (Tyrosine ring breathing), 880 cm
-1

 (C-C skeletal stretching), 1150 cm
-1

 (C-C skeletal 

stretching), 1360 and 1378 cm
-1 

(Tryptophan ring breathing) and 1393 cm
-1

(CH3 deformation). 

Moreover, a shoulder is observed at 606 cm
-1

 (CH2 bending), near 620 cm
-1

 (C-C twisting) as a 

loading in the positive again associated with HCV sample. In addition, the peak ratio of the 1090 

and 1099 cm
-1

 (C-N stretching) peaks is also changed and a decrease in the peak height is 

observed in the HCV positive sample as compared to the control indicated by their observation 

as negative loadings. These changes may be attributed to some kind of structural changes in the 

proteins which might be involved in the development of the HCV infection, and hence can be 

taken as Raman spectral markers of the HCV infection. 

Other Raman spectral features observed as negative loadings (associated with normal sample), 

related to the proteins, including those at and 860 cm
-1

 (C-C stretching), 620 cm
-1

 (C-C twisting), 

898 cm
-1

 (C-C skeletal stretching), 934 cm
-1

 (C-C alpha helix of protein), 1090, 1099, (C-N 

stretching), may also be associated with structural changes in proteins. Notably, the Raman 

spectral feature at 1655 cm
-1

 (amide-I) is observed at 1659 cm
-1 

in Figure 4 (loading plot of 

PCA) which indicates a shift in this band and can be associated with the changes in the 

secondary structure of the proteins which may be involved in the development of the disease. 

 

PCA-LDA 

Having demonstrated the capability of Raman spectroscopy to identify spectral differences 

consistent with and indicative of the presence of HVC in blood plasma samples, the diagnostic 

potential to identify the presence of viral infection in patient samples over the range of viral 

loadings can be assessed using PCA- LDA. This approach becomes quite relevant when facing 



large data sets scattered over multidimensional plots such as PCA scatter plot. While the 

graphical representation can be useful to visualise patterns in the data distribution, the specificity 

of the classification is not quantifiable. PCA-LDA allows taking into account the whole data set 

(783 spectra from 10 patients of varying viral load) and computing a confusion matrix according 

to a 10-fold stratified cross validation model. As a result, the accuracy of the classification 

between control and HVC samples can be estimated based on the variations in the spectral 

features highlighted by the PCA analysis. Table 3 shows the confusion matrix built using the 3 

first PC, which was found to be the optimal. It can be seen that, out of 293 spectra collected from 

control samples, only 4 are misclassified as HCV infected, while 6 of the 490 HCV spectra are 

misclassified as control. The overall sensitivity and specificity of the model are thus, 

respectively, 98.8% and 98.6%, resulting in a Positive Predictive Value of 99.2%, and Negative 

Predictive Value of 98% 
[51]

. 

Partial Least Square Regression (PLSR) model for prediction of viral load 

Raman micro spectroscopy can clearly fingerprint the biochemical changes associated with the 

development of Hepatitis C due to viral infection. PCA has been used to identify specific spectral 

changes which are correlated with the viral load values in the plasma of the HCV patients. PCA-

LDA can be employed to improve the diagnostic capability of the technique. Here, it is 

demonstrated that PLSR modelling can be employed for the prediction of the viral load values 

based on the Raman spectroscopic response. Once established, such predictive models could be 

used to evaluate and monitor the viral loads of the patients before and after treatment of the 

disease. 



PLSR models of Raman spectra acquired from the plasma of the control and HCV patients 

versus HCV loads were constructed to determine the ability of the spectral data to predict the 

level of viral infection. Spectra of all normal and HCV infected patients were compiled into a 

matrix, and were randomly selected for modelling. A total of 60% of the spectra were used to 

train the PLSR regression model and 40% of the total was retained as an independent test set to 

assess the performance of the model in predicting the viral loads, with unseen data. Leave-one 

out cross validation with the calibration set was used to determine the optimal model complexity 

for use in testing 
[52]

. This process was performed with randomization of the data matrix and 

splitting of the data to prevent data bias 
[53]

. Control of over fitting was achieved using a 

procedure previously described by Martens and Naes 
[54]

. The procedure involves selection of the 

optimal number of latent variables (LV) to retain within the PLSR model via cross-validation (in 

this case 10 fold) with the calibration data set. The optimal number of LV's was then selected on 

the basis of the number which provided the lowest root mean squared error after cross validation. 

Figure 5 represents the PLSR model development and the optimal number of LVs, which 

appears to be 20 (Figure 5-A), which is the most applicable prediction of the HCV viral loads 

(with an accuracy of 99.8 % as shown in Figure 5-B). In other words, the Root Mean Square 

Error of Prediction (RMSEP) is 0.2 %. Notably, the models were built with up to 20 latent 

variables which gave the minimum prediction error (predicted viral loads), as shown in Figure 6 

(every circle represents the prediction response vs. fit response of a training spectrum). However, 

the actual viral load of a sample can be predicted sufficiently, according to its spectral response, 

with an accuracy of 99.8 % with a model that has 20 latent variables. The R
2
 value was 

determined to be 0.96. Low numbers of latent variables improve the likelihood that the model 

will be transferrable to unseen data and minimise the possibility of over fitting 
[54]

.  



Conclusion 

Although the analysis of the available data can only be understood as a preliminary proof of 

concept study, Raman spectroscopy in conjunction with multivariate data analysis has been 

shown to be a potentially powerful technique for the identification of the biochemical changes 

associated with the development of HCV infection in human blood plasma samples. Specific 

Raman spectral features are identifiable in HCV infected patients, which are absent in normal 

patients. Peaks at 874 and 880 (tryptophan ring breathing) and 1054 cm
-1

 (C-N stretching) and 

1211 cm
-1

 (amide-III beta sheet or phenyl stretching in amino acids) are associated with proteins 

and may be considered as Raman spectral markers of the proteinic part of the HCV. Moreover, 

peaks at 1065, 1072 cm
-1

, both associated with the fatty acids (lipids), may be associated with the 

viral infection. The combination of PCA and LDA improves the diagnostic power of analysis, 

and for the combined set of normal and variable viral load samples, the diagnostic sensitivity and 

specificity is determined to be 98.8% and 98.6%, with corresponding Positive Predictive Value 

of 99.2%, and Negative Predictive Value of 98%. The PLSR model successfully predicts the 

viral loads of the HCV infected plasma on the basis of the biochemical changes caused by the 

viral infection with 99.8 % accuracy. These models can potentially be employed for monitoring 

the HCV loads in the samples before and after the treatment of the disease, and their robustness 

can be further enhanced by extending the patient sample base. 
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Table 1: Viral load values of the HCV positive human blood plasma samples used for the Raman 

spectral acquisition. 

  

Sr.No Sample name Viral load value (IU/ml) 

1 Positive-1 67,070 

2 Positive-2 125,236 

3 Positive-3 166,260 

4 Positive-4 185,297 

5 Positive-5 390,058 

6 Positive-6 442,365 

7 Positive-7 846,668 

8 Positive-8 873,417 

9 Positive-9 907,874 

10 Positive-10 1,718,359 



 

 

 

 

 

Wave number (cm
-1

) Raman Assignments 

422 C-C stretching 

426 C-C stretching 

606 CH2 bending 

620 C-C twisting 

711 C-N stretching 

720 Tryptophan ring breathing 

748  CH2 rocking  

758 Tryptophan ring breathing 

838 Tyrosine ring breathing 

851 Tyrosine ring breathing 

860 C-C stretching 

874 C-C-N symmetrical stretching 

880 C-C skeletal stretching 

898 C-C skeletal stretching 

934 C-C skeletal stretching; alpha helix 

984 C-C head groups 

1054 C-N stretching 

1065 fatty acids (lipids) 



 

 

 

 

 

 

 

 

 

 

Table 2: Raman peak assignments for proteins, DNA, RNA and lipids. 

  

1072 fatty acids (lipids 

1090 C-N stretching 

1099 C-N stretching 

1150 C-C skeletal stretching 

1157 C-N stretching 

1164 C-N stretching 

1197 C-C stretching 

1211 amide-III beta sheet or phenyl stretching in amino acids 

1222 Amide-III beta sheet 

1228 Amide-III beta sheet 

1242 Amide-III beta sheet 

1254 Amide-III beta sheet 

1360 Tryptophan ring breathing 

1378 Tryptophan ring breathing 

1393 CH3 deformation 

1655-1680 Amide I: α helix 



 

 

Table 3: Confusion matrix of PCA-LDA of control (10 samples) versus HCV (10 samples) 

infected patients (Table 1). 
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