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Abstract:  

 

The biofabrication of large scaffolds from natural biomaterials into complex 3D shapes with 
controllable microarchitecture remains a major challenge. Freeze-drying (or lyophilization) is 
a technique used to create bioactive scaffolds with a porous architecture and is typically only 
used to generate scaffolds in planar 3D geometries. Here we report the development of a new 
biofabrication process to form a collagen-based scaffold into a large, complex geometry 
which has a large height to width ratio, and a controlled porous microarchitecture. This 
biofabrication process was validated through the successful development of a heart valve 
shaped scaffold, fabricated from a collagen-glycosaminoglycan co-polymer. Notably, despite 
the significant challenges in using freeze-drying to create such a structure, the resultant 
scaffold had a uniform, homogeneous pore architecture throughout. This was achieved 
through optimization of the freeze-drying mold and freezing parameters. We believe this to be 
the first demonstration of using freeze-drying to create a large, complex scaffold geometry 
with a controlled, porous architecture using natural materials. This study validates the 
potential of using freeze-drying for development of organ-specific scaffold geometries for 
tissue engineering applications, which up until now might not have been considered feasible. 
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Introduction 

In the field of tissue engineering (TE), biomaterial scaffolds provide a transitional framework 

which facilitates the development of new tissue, and the influence of scaffold physical and 

biological characteristics on this neotissue development is well recognized. Significant research 

has focused on the optimization of individual scaffold characteristics for particular therapeutic 

applications; however, where regeneration of a tissue with a complex shape is required, 

fabrication of a suitable scaffold geometry and microarchitecture presents a challenge. While 

synthetic biomaterial scaffolds can be fabricated using techniques that involve harsh chemicals 

and large temperature ranges, many of these same methods cannot be used in the fabrication of 

natural material scaffolds if bioactivity and functionality of the material is to be preserved [1–4]. 

Thus, the biofabrication of large scaffolds from natural biomaterials into complex 3D shapes 

with controllable microarchitecture remains a major challenge. Freeze-drying (or 

lyophilization) is a technique used to create bioactive scaffolds with a porous architecture and 

is typically only used to generate scaffolds in planar 3D geometries. Here we report the 

development of a new biofabrication process to form a collagen-based scaffold into a large, 

complex geometry which has a large height to width ratio, and a controlled porous 

microarchitecture. This biofabrication process was validated through the successful 

development of a heart valve (HV) shaped scaffold fabricated from a collagen-

glycosaminoglycan (CG) co-polymer. Notably, despite the significant challenges in using 

freeze-drying to create such a structure, the resultant scaffold had a uniform, homogeneous pore 

architecture throughout. We believe this to be the first demonstration of using freeze-drying to 

create a large, complex scaffold geometry with a controlled, porous architecture using natural 

materials. This study validates the potential of using the process for development of many 

organ-specific geometries for tissue engineering applications, in addition to the utilization of 

the freeze-drying process for applications which up until now might not have been considered 

feasible. For example, this technique could be used to create natural biomaterial scaffolds for 

patient specific geometries, without compromising the bioactivity or regeneration potential of 

the scaffold.  

In the field of TE, freeze-drying has typically been used to produce flat 3D sheets of 

biomaterials where the final geometry of the biomaterial solution is dictated by the shape of the 

container or mold in which it is fabricated. It is a well characterized technique for creation of 

collagen-based biomaterial scaffolds with a porous architecture, while preserving collagen’s 

rich bioactive characteristics. In fact, freeze-drying of collagen-based biomaterials not only 
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ensures retention of bioactivity, but also enhances their ability to regenerate tissue [5–10]. In our 

laboratory, we have focused on further enhancing this regenerative capacity by varying the pore 

architecture within the collagen scaffold to accommodate cells of different types in order to 

direct regeneration for specific applications [11]. In addition, macromolecules such as 

glycosaminoglycans have been incorporated to enhance biological activity[12,9,13] and the 

addition of bioactive molecules such as recombinant growth factors and nucleic acids using 

non-viral vectors (creating gene-activated scaffolds) have further improved the regenerative 

potential and functionality of these freeze-dried scaffolds [8]. In spite of these benefits, the 

potential range of therapeutic applications for flat 3D scaffold sheets is limited. Therefore, this 

study sought to develop a freeze-drying based biofabrication process for the creation of 

complex, large geometries. The overall goal of the study was to develop a biofabrication process 

to create a collagen-based scaffold with a homogenous porous microarchitecture in a large, 

complex geometry.  

A semilunar HV shape was chosen as a model indication as it presented two major challenges- 

a large width to height ratio (25 mm diameter, 45 mm height) and also, complex leaflet 

components at the midpoint of the geometry. In order to freeze-dry such a complex structure, 

complete freezing and drying is critical to ensure the scaffold does not collapse once rehydrated. 

This is not a trivial issue as the large height to width ratio of the HV geometry impedes both 

heat transfer through the mold and the biomaterial suspension contained within it during 

freezing as well as reducing the efficiency of ice crystal sublimation during the drying process. 

A CG co-polymer suspension was used as CG scaffolds have demonstrated increased 

regenerative capacity over collagen-only scaffolds [9]. In the context of creating a complex 

scaffold geometry, using a CG rather than collagen alone also adds an extra layer of complexity 

to achieving a uniform pore architecture. Therefore, the specific aims of this study were to: (1) 

identify the optimal freeze-drying process parameters to reproducibly produce a CG-HV shaped 

scaffold by investigating the effect of different mold materials (using a custom designed mold) 

and different freezing temperatures on the resultant scaffold geometry and microarchitecture 

and (2) to establish the optimal collagen concentration for a HV shaped geometry, in terms of 

pore size and mechanical properties.  

Results 

The effect of mold materials and final freezing temperature  
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A CG-suspension was created as previously described [14] and pipetted into a custom-made HV 

shaped mold prior to freeze-drying. Molds from two different materials were created, each with 

different thermal conductivities, in order to assess the optimal mold material to use for the 

development of a CG scaffold with a large height to width ratio; an aluminum mold (with a 

thermal conductivity of 49.9 W/m2K in air and of 4072.5 W/m2K in water) and a 

polyoxymethylene (POM) mold (with a thermal conductivity of 22.3 W/m2K in air and of 44.6 

W/m2K in water). While aluminum more closely matches the thermal conductivity of the 

freeze-dryer shelf, POM more closely matches that of the CG-suspension and has previously 

been used to create fibrin based HVs using an injection molding technique [15]. The freezing 

process was initiated from room temperature and using a cooling rate of 1°C per minute, a final 

freezing temperature of either -10°C or -40°C was achieved. Varying the final freezing 

temperature affects the microarchitecture within the scaffold [16]. The temperature profile within 

the mold during the freezing process was monitored by using thermocouples placed at multiple 

positions in the suspension to map the temperature during freezing, and the ability of each mold 

material to create a CG-HV geometry was assessed. Results showed that the aluminum mold 

allowed the temperature of the CG-suspension to closely match the shelf temperature, 

regardless of the final freezing temperature, thus allowing tight control over the freezing process 

(Fig. 1 A & B). In contrast, the temperature within the POM mold did not follow the freeze-

dryer shelf temperature; the resultant scaffold showed large, random voids at the top of the HV 

shape, evidence of an uncontrolled cooling process.  

Microarchitecture of freeze-dried HV scaffolds 

Having established the capability of the biofabrication process to create a HV geometry, the 

microarchitecture of the resultant CG-HV scaffolds was investigated by taking samples from 

the top, leaflet and bottom positions of each of three scaffolds (n=9 for each position). The 

microarchitecture of the CG-HV scaffolds was characterized using Scanning Electron 

Microscopy (SEM) and a histological technique previously developed in house allowed 

quantitative measurement of scaffold pore size [14]. This revealed that the aluminum mold 

produced CG-HV scaffolds with a homogenous porous microarchitecture, indicative of a 

controlled freezing process [17] (Fig. 1 C, D, E, F). A scaffold with larger pores resulted from a 

final freezing temperature of -10°C and there was uniformity of microarchitecture across the 

HV geometry, regardless of position within the scaffold; a pore size of 149.5 ± 22.6 µm at the 

top of the HV shape, 128.9 ± 39.3 µm at the leaflet position and 143 ± 27.9 µm at the bottom 

of the HV shape. The histological images (Fig. 1 C, E) are more indicative of the pore sizes 
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found in the scaffolds, as the SEM images show the 3D microstructure and thus the pore size 

cannot be clearly determined from these images (Fig. 1 D, F). In line with the results above, the 

microarchitecture produced by freezing the CG-suspension within the POM mold was 

inconsistent, with a large variation in pore size evident (an average pore size of 601.5 ± 97.2 

μm was produced at the top of the HV geometry; a pore size of 115.9 ± 56.6 μm at the leaflet 

position, and a pore size of 30 ± 15.3 μm at the bottom of the HV geometry). Following freeze-

drying, physical and chemical crosslinking methods were used to increase the stiffness of the 

CG-HV scaffolds [18]. This caused the CG-HV scaffolds to shrink by ~25%. 

 
Figure 1 The CG-HV scaffold produced in the aluminum mold was superior to that produced in the POM 
mold. The average temperature profiles recorded during freezing at a final freezing temperature of -40°C (image 
A) and -10°C (image B) show that the aluminum mold followed the shelf (reference) temperature more closely 
than the POM mold. Each line shown is an average of three individual positions (top, leaflet and bottom) within 
each mold. Image C shows the pore architecture of a CG-HV scaffold fabricated using the POM mold and image 
D shows the corresponding SEM images. Image E shows the pore architecture of a CG-HV scaffold fabricated 
using the aluminum mold at a final freezing temperature of -10°C and image F shows the corresponding SEM 
images.  
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Final freeze-drying mold and freezing parameters 

An optimized final mold was created (fabricated from aluminum with the base and sides of the 

mold having a thickness of 4 mm); this mold differed from the first aluminum prototype as it 

was upsized to accommodate shrinkage due to the crosslinking techniques used (Fig. 2 A & B). 

Based on the results described above, CG-HV scaffolds were fabricated using a cooling rate of 

1°C/min and a final freezing temperature of -10°C (Fig. 2 C & D). The dimensions post 

crosslinking were as required and the leaflets coapted perfectly. The temperature profile within 

the final mold closely followed the shelf temperature (Fig. 2 E); this control of heat transfer is 

essential in creating a homogenous pore architecture throughout the CG scaffold. Examination 

of CG-HV scaffold microarchitecture using both SEM and histology showed an average pore 

size of 137 µm across the HV geometry (an average pore size of 144.8 ± 23.2 μm at the top, the 

leaflet had an average pore size of 123.2 ± 14.7 μm and the bottom had an average pore size of 

145 ± 10.13 μm) (Fig. 2 F). This final mold, in tandem with the identified process parameters, 

facilitated repeatable, controlled fabrication of a collagen-based biomaterial into a HV 

geometry. The temperature profile observed during the freezing process, the geometry of the 

scaffold and the resultant homogenous pore architecture, provided validation of this 

biofabrication process.  
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Figure 2 The final mold facilitated fabrication of a CG scaffold in a HV geometry, with macro and 
microscopic homogeneity. Image A shows an exploded view and image B shows a closed view of the design of 
the final mold used to produce the CG-HV scaffolds. In image B, the location of the thermocouples for analysis of 
temperature profile during freeze-drying are indicated. Images C & D show an example of the CG-HV scaffold 
produced using the final mold. The graph shown in image E demonstrated that the temperature profile in the 
final mold showed efficient heat transfer through the mold, with the thermocouples placed at different positions 
within the mold closely matching the shelf temperature and profile. Image F demonstrated the pore size analysis 
of the scaffold which was 137 µm. Scale bar is 500 µm. 
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Varying collagen concentration for HV applications 

Having identified the optimal freeze-drying process parameters to produce a CG-HV scaffold, 

different concentrations of collagen (0.5%, 0.75% and 1%) were used to determine the optimal 

concentration in terms of scaffold pore size and mechanical properties (the glycosaminoglycan 

concentration was kept constant at 0.044% w/v). While no significant differences in pore size 

were measured in the resultant scaffolds, one of the interesting findings was that the mechanical 

properties were not linearly related to collagen concentration; the concentration of 0.75% 

collagen resulted in a scaffold with the highest compressive (3.83 ± 0.45 kPa) and tensile 

modulus (0.59 ± 0.04 MPa) (Fig. 3 A & B).  

 

Figure 3 Varying the collagen concentration of CG-HV scaffolds showed that a concentration of 0.75% 
collagen outperformed 0.5% and 1% collagen in terms of tensile and compressive moduli. Image A showed 
that the only significant increase in tensile modulus was between the 0.75% collagen and the 1% collagen 
concentration. Image B showed there was a significant increase between the compressive modulus of 0.5% 
collagen and the moduli of both 0.75% and 1% collagen. (P<0.05) 

Discussion 

Until the development of the biofabrication process described herein, the creation of complex 

geometries with a controlled porous microarchitecture using natural materials was challenging, 

especially if the bioactivity of the material was to be retained. Currently, the predominant 

fabrication methods used for manufacturing complex shapes are 3D printing and 

electrospinning, and they have significant limitations; 3D printing of natural materials is limited 

to a resolution of approximately 300 µm [19,20] while electrospinning creates smaller scaffolds 

with an unpredictable pore architecture, where the resultant mechanical properties are 

anisotropic and there is the added uncertainty as whether the bioactivity of electrospun natural 

materials is suitably retained. Indeed, this is especially relevant for collagen which is easily 

denatured into gelatin through electrospinning [1]. The freeze-drying process described in this 

study resulted in the development of a large, complex structure with a homogenous, predefined 

and inherently repeatable microarchitecture, something which cannot be achieved by 
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electrospinning. Furthermore, pore sizes achieved here are ~137 µm, and with lower freezing 

temperatures pore sizes of ~80 µm can be achieved. The thickness of the struts between these 

pores can also be manipulated based on collagen concentration. This demonstrates a level of 

control far superior than can be achieved by 3D printing of natural materials. The pore sizes 

achieved within the HV shaped CG matrix are comparable to those found in planar 3D CG 

sheets [11,21] which have facilitated successful long term culture of cells and regeneration of 

bone and cartilage in vivo [6,22,23], proving that scaffold pore sizes in this range provide a suitable 

environment for cell infiltration, attachment and differentiation as well as adequate diffusion of 

nutrients for TE applications. We suggest that the thicker pore walls in the 1% collagen scaffold 

group, resulting from the increased amount of collagen present, permitted less alignment of the 

pores under compression and tension [24]. Additionally, the increase in number of collagen 

crosslinks in the high concentration collagen group may have led to a decrease in elasticity in 

the 1% collagen compared to the 0.75% collagen group. Varying collagen concentration has 

previously been shown not to affect the ~99% porosity of CG scaffolds [25] and this was 

confirmed in this study through pore size analysis, where the high porosity of the CG-HV 

scaffold was observed. Additionally, the appropriate scaffold stiffness for HV tissue 

engineering applications has not been conclusively determined, as different cell types have 

different requirements [26]. Studies have shown that valvular interstitial cells have an activated 

phenotype (indicative of a disease state) when cultured on stiffer 3D matrices [27,28] and that this 

activation can be reversed when the compressive stiffness of the matrix is reduced [29]. The CG-

HV scaffold presented here had a compressive stiffness of ~3.8 kPa which is below the 

activation range reported for valvular interstitial cells, potentially enabling the culture of a 

healthy population of these cells and the use of this CG-HV scaffold for HV applications. Taken 

together, this study has demonstrated a biofabrication process for shaping of natural materials 

into complex shaped scaffolds with a consistent, controllable microarchitecture, ideally suited 

for tissue engineering applications. 

Freeze-drying is a technique that not only allows the shaping of natural materials into specific 

geometries with a porous microarchitecture, but also the tailoring of its structural and biological 

properties. Mechanical properties can be altered by changing the collagen concentration [25], or 

through incorporation of biomolecules, such as elastin, prior to freeze-drying, to create a 

biomaterial with improved viscoelastic properties [30]. Following freeze-drying, physical and 

chemical crosslinking techniques can be employed to tailor the stiffness of the scaffold [25,31]. 

As material stiffness can affect critical cell functions such as differentiation and cytoskeleton 

organization [31,9,29,32–34], easy manipulation of the mechanical properties of a biomaterial is an 
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attractive advantage for tissue engineering applications as it enables modification of the 

material to suit its selected application. For certain applications, dimensional stability is critical 

for functionality and hydrogels such as fibrin can be reinforced with a freeze-dried collagen 

scaffold to create a natural biomaterial composite that is dimensionally stable in contact with 

contractile cells [18]. Freeze-drying has further advantages as a fabrication technique; freeze-

dried collagen based scaffolds have been used as activated platforms for delivery of bioactive 

molecules such as recombinant proteins and genes to cells [35,36]. For TE, the ability for 

biochemical cues to be locally delivered to cells provides a range of potential uses including 

encouragement of relevant extra cellular matrix (ECM) deposition, the ability to turn cells from 

an activated, to a quiescent phenotype over time, the introduction of plasmid DNA into cells in 

order to enhance protein production or interfering RNA in order to silence specific genes [8,37]. 

Furthermore, freeze-drying potentially allows addition of these factors prior to freezing 

resulting in a homogenous distribution of 100% biomolecule incorporation throughout the 

collagen matrix unlike most fabrication methods which require growth factor addition after 

fabrication [8,30,38].  

We propose that this study has developed a technique that now allows the advantages of freeze-

drying to be exploited for use in many applications which have not been possible until now. 

Collagen is the most abundant protein found in the human body, hence the ability to create 

collagen-based biomaterials of complex shapes and sizes holds great potential for numerous 

soft and hard tissue applications. One potential application of the biofabrication process 

outlined here is in the development of scaffolds with organ-specific geometries. Patient MRI or 

CT scans, could be imported into software such as Mimics®, where the patient specific anatomy 

can be identified and mapped. The freeze-drying mold could then be CNC machined from the 

3D model to create patient specific structures. As discovered in the study presented here, this 

mold should be fabricated from aluminum and have a 4mm thick wall and base. (Aluminum is 

inexpensive and easy to machine into different shapes, this allows for easy production of large, 

complicated molds.) Having created a patient specific mold this could be used to freeze-dry a 

collagen-based scaffold, matching the sought after anatomical dimensions. We thus propose 

that this new biofabrication method for producing porous scaffolds from natural materials 

potentially allows the fabrication of mechanically appropriate, anatomically correct structures 

with practically unlimited anatomical features. In addition to therapeutic applications, these 

scaffolds have significant potential as 3D in vitro models for disease characterization, drug 

development and testing [39].  
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Conclusion 

In summary, this study presents a biofabrication method for forming of natural materials, 

demonstrated through production of a large scaffold in a complex HV shape. Through control 

of parameters such as the mold material and final freezing temperature, a repeatable process for 

producing complex structures with a homogenous porous microarchitecture has been 

established. This biofabrication technique expands the possibilities of using natural materials 

for tissue engineering applications. While this study has provided proof of principle for creation 

of complex porous collagen biomaterials with a large height to width ratio, this biofabrication 

method could be used for the fabrication of other natural polymer scaffolds, in an unlimited 

variety of geometries, providing a novel approach for creation of large complex, porous shapes 

suitable for a range of applications, which until now were not conceivable. 

 
Experimental Section  

Scaffold fabrication 

CG-HV scaffolds were fabricated by freeze-drying in a Virtis Genesis Freeze-dryer (Biopharma, 

UK) using specifically designed HV molds based on the dimensions of designs by [15,40]. CG-

suspensions with a concentration of 0.5%, 0.75% or 1% w/v collagen (collagen type 1 bovine; 

Integra Life Science, Plainsboro, NJ, USA), 0.044% w/v glycosaminoglycan (chondroitin 

sulphate; Sigma, Arklow, Ireland) in 0.05 M acetic acid (Fisher Scientific), were produced as 

described previously [16]. Freeze-drying was carried out using a freezing rate of 1ºC/min, final 

freezing temperatures of -10ºC and -40ºC, with drying carried out at a vacuum pressure of 200 

mTorr over 18 hours. 

Thermal conductivity of mold materials on freeze-drying temperature profile 

The effect of the thermal conductivity of mold materials on freeze-drying of large complex 

structures was examined during the freeze-drying of a 0.5% CG-suspension. Two custom 

designed HV molds were fabricated; one composed of a polymer (polyoxymethylene; POM) 

and the other of aluminum. The temperature profile during freezing was recorded at two minute 

intervals using thermocouples (type T), and associated Wizard 2.0 software (Virtis) with 

thermocouple elements placed (1) on the freeze-dryer shelf (2) in the CG-suspension at the top 

of the molds, and (3) at the position of the leaflet, within each of the molds. Based on results 

from these experiments, an optimized final mold was created and used in the remaining 

experiments.  
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Scaffold Crosslinking 

Following freeze-drying, all scaffolds were sterilized and physically crosslinked using a 

vacuum oven (Vacucell, MMM Group, Munich, Germany) at 105°C, 0.05 bar for 24 hours [31]. 

A support structure was designed to provide structural support to the  CG-HV scaffold during 

chemical crosslinking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) in 

combination with N-hydroxysuccinimide (NHS) as described previously [31] with ethanol used 

as the solvent to increase the number of crosslinks formed [41]. EDAC (6mM) was calculated 

per mass of collagen, dissolved in ethanol and filter sterilized. A molar ratio of 5:2M EDAC/M 

N-hydroxysuccinimide (a crosslinking catalyst) was used [31].  

Assessment of pore architecture 

The pore architecture within the CG-HV scaffolds was examined histologically. Using a biopsy 

punch, three samples each from the top, leaflet and base positions of the structure were cut, 

fixed in 10% formalin solution and dehydrated. Following preparation with a JB-4 

glycomethacrylate embedding kit (Polysciences, Inc., Warrington, USA) samples were 

sectioned using a rotary microtome (Leica RM 2255, Leica, Germany). Slides representing each 

area of the scaffolds were stained with toluidine blue (1%; Sigma) and imaged using a 

microscope (Eclipse 90i, Nikon, Japan) with a digital camera (DS Ri1, Nikon, Japan). The 

captured images were analyzed using a MATLAB (The Math Works Inc, MA, USA) program 

specifically developed in our lab to construct a best-fit ellipse for each individual pore and 

calculate the average pore cross-section from each image [14]. 

Scanning electron microscopy (SEM) (Hitachi SU6600 VP-SEM; Hitachi High Technologies 

America Inc., Clarksburg, USA) at an accelerating voltage of 15 kV, utilizing the secondary 

electron detector was used to reveal the microarchitecture at different locations within the CG-

HV scaffolds. Cross-sections were taken from the top, the leaflets and the base of the valves, 

formalin-fixed, critically point dried (Quorum E3000 CPD, Quorum Technologies, East Sussex, 

UK) and sputter coated with gold using a Polaron sputter coater (Quorum Technologies).  

Mechanical properties of different collagen concentrations 

Uniaxial compressive and tensile tests were performed to examine the effect of different 

collagen concentrations (0.5%, 0.75% and 1% CG) on the mechanical properties of HV leaflets 

and wall structures. Samples were kept hydrated during testing on a mechanical testing machine 

(Zwick/Roell, Ulm, Germany) fitted with a 5 N load cell. Compressive and tensile tests were 
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conducted at a strain rate of 10% per minute [31,42]. The modulus was defined as the slope of a 

linear fit to the stress–strain curve over 2–5% strain. Each sample was tested in triplicate.  

Statistical analysis 

Results are expressed as mean ± standard deviation. Statistical significance was assessed using 

one-way analysis of variance (ANOVA), followed by Tukey post-hoc analysis for the pore size 

analysis experiments and mechanical testing where three individual groups were analyzed. P < 

0.05 values were considered statistically significant. The sample size was n=3, where n 

represents a unique HV scaffold. Pore size analysis and SEM imaging was carried out across 

multiple samples, from multiple HV scaffolds, at each position evaluated. 
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