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ABSTRACT 

Certain minimally invasive cardiology procedures, such as balloon angioplasty and stent 

implantation, critically require that the site of an arterial blockage be crossed by an intraluminal 

guidewire. Plaques resulting in near or totally occluded arteries are known as chronic total 

occlusions (CTOs), and crossing them with conventional guidewires is a significant challenge. 

Among the most promising proposed solutions is the delivery of high power, low frequency 

ultrasonic vibrations to the occlusion site via an intraluminal wire waveguide. The vibrating 

distal-tip of the ultrasound wire waveguide is used to transmit energy to the surrounding plaques, 

tissues and fluids in order to ablate or weaken atherosclerotic plaque. Potential mechanisms of 

interaction with the plaque and adjacent fluids identified in the literature include; (i) direct 

contact with the waveguide distal tip, (ii) subcavitational acoustic fluid pressure fluctuations, (iii) 

cavitation, and (iv) acoustic streaming. This article will summarize developments in this area 

over more than two decades, describing experimental methods for device performance 

characterization, preclinical tests, early clinical investigations and, later, full clinical trials. The 

article will also review theoretical foundations, and numerical models suitable for device design 

and analysis. Finally, important issues for future research and for the development of this 

technology will be considered. 



I.  INTRODUCTION 

Interventions such as Percutaneous Transluminal Coronary Angioplasty (PTCA) and stenting are 

now widely used to restore blood flow through blocked or partially blocked arteries. These 

procedures involve threading a catheter and balloon assembly along a guidewire to the blockage 

site via the arterial lumen. A guidewire is a thin wire with distal geometry specifically designed 

to facilitate navigation through tortuous and branching vessels in order to establish a viable path 

to and across the site of a blockage. It acts as a guiderail for catheters to facilitate the positioning 

of balloon/stent assemblies prior to deployment. Once in position, the balloon is expanded to 

disrupt and displace the plaque in order to restore blood flow through the artery. A wire 

scaffolding structure, known as a stent, may also be expanded by the action of the balloon, and 

its purpose is to hold the artery open, preventing recoil once the balloon is removed.  

A major prerequisite for the use of these interventional procedures, therefore, is the ability to 

first traverse the lesion with an intraluminal guidewire. Depending on the nature of the blockage, 

this may be extremely difficult or impossible with conventional guidewires. Such cases are often 

characterised as chronic total occlusions (CTOs), referring to total closure of the vessel. Several 

novel approaches to overcome this problem have been proposed. Among the most promising is a 

technology involving the delivery of high power, low frequency ultrasonic vibrations to the total 

occlusion site via an intraluminal wire waveguide in order to assist the progression of the 

guidewire across the lesion by a process of plaque ablation or disintegration. 



II.  ATHEROSCLEROTIC PLAQUES 

II.A Atherogenesis 

Atherosclerosis is a thickening of the arterial medial layer which affects the artery by altering 

conduit function and reducing blood flow downstream. There are numerous hypotheses 

describing the origin and progression of the disease, which are beyond the scope of this review. 

It is known to be a time-dependent process with varying stages of severity (1-3) , as confirmed 

by extensive autopsy studies(4). The progression of atherosclerosis can be broadly classified into 

three stages; the fatty streak, the fibroatheromatous plaque and the complicated lesion (5, 6).  

Initially, a fatty streak formed by lipid deposits appears on the intimal surface of arteries but does 

not always progress into a fibroatheromatous plaque(5, 6). The fibroatheromatous plaque 

consists of a necrotic plaque core that is surrounded on one side by the underlying arterial wall 

and bounded on the other by a plaque cap as shown in Figure 1(5). 

The fibroatheromatous plaque is a clearly raised lesion and has a plaque core that consists of a 

mix of collagen fibres, soft lipid and calcified materials and is often known as a fibrous core(6). 

The lesions tend to progress further and are often associated with events such as the plaque core 

rupturing that can lead to haemorrhaging or clotting resulting in further loss or complete loss of 

lumen diameter as shown in Figure 1(5). 

For characterization of the degree of progression of atherosclerosis, some of the minor 

classifications are; superficial calcified nodules, yellow colour (high risk rupture), inter plaque 

haemorrhaging, endothelial dysfunction and remodelling. Some of the major classifications for 

this disease include; active inflammation (macrophage accumulation); thin cap with large lipid 

core; endothelial denudation; and fissured plaque caps.  



There are 6 or so histological classifications described by Stary et al(7) which characterise the 

pathogenesis of an atherosclerotic lesion. 

Initial lesions (I – III) - not detectable by angiography(7)  

• Type I: Lesion contains enough atherogenic lipoproteins to initiate the formation of 

macrophages and macrophage foam cells. 

• Type II: Lesions have appearance of fatty streak, lesion consists primarily of macrophages 

foam cells and lipid laden smooth muscle cells. 

• Type III:  Formation of extracellular lipid droplets and other particles that prevent the 

coherence of some intimal smooth muscle cells. 

Advanced lesions: (IV – VI) (7)  

• Type IV:  Atheroma is formed, lipid core formation by the gathering of the lipid 

droplets/pools, lesion has potential to be symptomatic. Initially is often an eccentric lesion. 

• Type V: Often have lipid core and may also contain fibrous connective tissue, a fibro-

atheroma lesion. 

• Type Va: May be multilayered, several lipid cores separated by fibrous layers. 

• Type Vb: These lesions are largely calcified. 

• Type VI: Lipid core, thick layers of fibrous tissue, with possibility of fissure, hematoma 

and thrombus. These complicated lesions represent much higher morbidity and mortality 

than any other previous lesions. 



Of particular interest are the complicated calcified plaques that have a plaque core and cap that 

are primarily composed of calcified minerals and tough collagen fibres(5). These fall under the 

classification of advanced lesions, partly due to the time they take to develop as they tend to 

occur later in the lesion progression. They are closely associated with chronic total occlusions 

and the success rate with standard procedures involving the mechanical loading of the lesion tend 

to be lower as the rigidity and stiffness of the calcified material and tough collagen fibres can 

resist these applied loads(5). 

II.B Mechanical Characteristics of Atherosclerotic Plaques 

Knowledge of the mechanical and physical properties of various plaques and of the healthy 

arterial wall is of great benefit when developing methods and devices to treat specific lesion 

types. Plaque mechanical properties are largely responsible for problems experienced with the 

use of standard interventional procedures for chronic total occlusions. As biological materials, 

these plaques exhibit complex properties in response to mechanical compression or indentation. 

Specific plaque mechanical properties vary depending on the pathogenesis of the lesion. Early 

stages of the disease exhibit time dependent behaviour under constant mechanical loading (i.e. 

viscoelastic behaviour). Over time, the plaques often exhibit non-linear and inelastic mechanical 

behaviour. Stress-strain curves for loading and unloading of lesions also exhibit hysteresis.  

As time progresses, the lesion can become harder and more brittle. From an experimental 

perspective and given the variability in properties and composition, it is challenging to study the 

mechanical composition of lesions, since they only occur in humans, although some lesions 

types can be artificially induced in animals.  



Some studies have highlighted the mechanical properties of the various types of atherosclerotic 

lesions. Loree et al excised specimens in the circumferential direction and classified them 

histologically as cellular (12 samples), hypocellular (9 samples) or calcified (5 samples)(8). The 

hypocellular plaques were found, on average, to be 1-2 times stiffer than cellular plaques and 

calcified plaques were 4-5 times stiffer than cellular plaques.  

Topoleski and Salunke(9) also report the mechanical behaviour of various plaque types as well 

as contiguous arterial tissue. Segments of human aortoiliac artery were excised during autopsy 

and atherosclerotic lesions (plaque cap and core) removed and cut into small specimens. A 

pathologist classified each specimen as calcified (hard), fibrous (medium) or atheromatous core 

(soft). The samples were subjected to uniaxial compression tests, compressing samples in the 

radial direction. The plaque response was indeed non-linear and the plaques could be 

characterised into three distinct mechanical behaviour patterns. A wide variation in the properties 

of the plaque types was clearly seen, with the hard calcified and fibrous plaques (containing 

some calcium) showing a distinct behaviour, with a considerably stiffer response under 

compression than the medium and soft plaques and the healthy arterial tissue. 

 

II.C Complications Associated with Percutaneous Coronary Interventions 

The American College of Cardiology and American Heart Association has developed a widely 

used classification system for coronary atherosclerotic lesions, treatment options and the 

likelihood of successful treatment. 

• Type A, are most ideal for PTCA, they are less than 10mm long and concentric with 

thrombus absent, drug treatment may be preferable. 



• Type B, lesions are intermediate with 100% occlusion less than 3 months, 10-20 mm 

long, eccentric with some thrombus present.  

• Type C, are the most challenging. They are larger than 20 mm and 100% occluded for 

longer than 3 months(10). 

Early stage lesions can be treated by the typical PTCA. However CTOs are challenging as they 

do not lend themselves to be accessed by the guidewire. Guidewire access and ability to cross the 

lesion is critical to the success of standard dilations procedures and has been reported to be the 

key success indicator in 80% of cases(11). 

In many cases, traditional guidewires are not stiff enough to transverse the tough fibrous cap and, 

indeed, the higher forces applied could carry an associated risk of arterial perforation. Therefore, 

bypass graft surgery is often required, which is a more invasive and less desirable treatment 

option. CTOs are a significant cause for coronary bypass graft surgery referral (12). Not only are 

there problems traversing the CTO, but other issues lie with safe re-entry into the target lumen. 

CTOs are known to have micro-vessels which are formed within the organising thrombi (a result 

of endothelial cells invading the fibrin lattice) that may hinder successful dilation by 

angioplasty(13). 

More advanced lesions can be unstable and potentially hazardous. Death and myocardial 

infarction may occur during CTO angioplasty by shearing off the collateral circulation, thrombus 

formation, perforation, arrhythmia or damaging the proximal epicardial coronary artery or 

proximal side branches(14). 

Chronic total occlusion of a coronary artery is usually defined as “an obstruction of a native 

coronary artery for greater than 30 days with no luminal continuity and with thrombolysis in 

myocardial infarction (TIMI) flow grade 0 or 1” (15). CTOs are generally found in small arteries 



such as those in the coronary artery tree. Chronic total occlusion of the right coronary artery is 

identified in approximately 20% of angioplasty patients, and angioplasty of the CTO is attempted 

in between 10-15% of all cases(16). However, standard techniques, using contemporary 

guidewires, are unsuccessful in approximately 20% of these cases(14, 17). Due to the difficulty 

in dealing with CTOs, a number of patients with these types of lesions are referred to by-pass 

surgery. Success rates in CTOs have steadily increased over the last 15 years because of greater 

operator experience, improvements in equipment, and procedural techniques. However, 

minimally invasive procedures on these types of lesions are the most likely to fail. The majority 

of failures are due to the inability to successfully pass a guidewire across the lesion (89%)(17). 

The ability to cros{{}}s the lesion with a guidewire is the main determinant of interventional 

success and if this cannot be achieved, dilation devices, such as balloon angioplasty and stents, 

cannot gain access to the lesion site to reopen the blockage.  

Even if guidewire access can be achieved, calcifications can lead to a requirement for higher 

balloon pressures during dilation procedures. Siegel et al expressed concern regarding a link 

between high balloon inflation pressures and deep vessel injury and acute procedural 

complications, known as barotraumas, all resulting in greater localised damage and higher 

restenosis rates(18). 

While plaques can develop around the entire lumen structure, resulting in a concentric lesion, 

progression is often eccentric (19-21). Calcified eccentric lesions pose further complications as 

during dilation procedures the rigid calcified side of the artery can potentially remain non-dilated 

while the healthy and often thinner side of the arterial wall over-dilates, meaning that mechanical 

dilation-based interventions with eccentric lesions can be less effective(19). Thus, standard 

interventional procedures work best with concentric lesions as the pressure is divided relatively 



evenly over the lesion. However, dilation of eccentric lesions can be problematic because less 

diseased walls becoming overstretched, increasing the risk of cell necrosis and of tearing, and 

also increasing the risk of restenosis.  

Interventional procedures for these applications should ideally incorporate a means of 

establishing access to the site by navigating the vascular structure, be capable of disrupting total 

blockages due to plaque or thrombus so that a guidewire can be advanced, and also be able to 

selectively damage calcified material while leaving healthy tissue largely unaffected. 

II.D Recent Clinical Progress 

A conventional approach to the problem involves the design of specialized passive guidewires. 

The attributes of typical commercial devices are summarized in Table 1, and are more 

comprehensively reviewed elsewhere(22). Godino et al list the critical characteristics of a 

guidewire as “tip load, tip stiffness guidewire flexibility, ability to shape, shaping memory, shaft 

support, torque transmission, trackability and resistance to tracking of the wire within the 

occlusion”(22). The majority of current guidewires have a main shaft diameter of 0.35mm or 

less. The tips vary from 0.2-0.35mm in diameter, depending on the guidewire. Guidewires fall 

into two classifications; Hydrophilic, which give better tactile feedback, and Non-hydrophilic 

which have lower resistance and better maneuverability (22). Guidewires are also classified as 

soft, intermediate or stiff. Soft wires are normally used for advancement of the catheter and 

crossing occlusions with small lumens. Intermediate wires are used for recently occluded lesions 

or tortuous vessels and stiff wires are used for advancing through CTOs. The suggested method 

for crossing CTOs is to use a soft or intermediate wire to explore the area. A stiffer guidewire 

can then be used to cross the proximal cap if needed. An even stiffer guidewire can again be 



used, if necessary, to cross the CTO and penetrate the distal cap. After the occlusion has been 

crossed the stiff guidewire is then replaced by a soft guidewire(22).  

Lefevre(23) reports that, during procedures involving CTOs, crossing lesions may take 

up to 35 minutes and, with the possibility of guidewire changeovers, entire procedures may take 

1.5 hours. This has implications for the cost of procedures. A soft guidewire with the capability 

of crossing CTOs would offer major advantages, reducing the need for changing wires, and 

therefore reducing the time required for crossing CTOs and increasing the likelihood of success 

for the procedure. 

As an alternative approach, therapeutic ultrasound transmitted via wire waveguides has 

long been identified as a technology with the potential to disrupt atherosclerotic lesions with 

mechanical vibrations transmitted via long, low profile, flexible superelastic wire waveguides. 

Several prototype devices have been developed in an attempt to meet this challenge, including a 

recent 20 kHz ultrasound wire waveguide clinical device, which delivers high power low 

frequency intravascular acoustic energy to the sites of chronic total occlusions(24).  

In early 2005, Flowcardia™ Inc., (Sunnyvale, California, USA), received approval to market this 

ultrasonic waveguide (the Crosser© System) in the European Union for the treatment of chronic 

total occlusions following failure to cross by conventional guidewire techniques(24), and the 

device was granted FDA approval in 2007. 

 The device, based on a monorail concept, is approved specifically for use on chronic total 

occlusions (CTOs). The system used is run at a frequency of approximately 20 kHz and with a 

working length of 146cm. The ultrasound is transmitted via a nickel-titanium wire waveguide to 

a 1mm diameter stainless steel tip.  Apart from the tip, the ultrasound wire and guidewire are all 



housed in a 6F catheter, which acts as an irrigation system. The system works by moving a 

guidewire to the point of the lesion and then the stainless steel tip is advanced over the 

guidewire, fragmenting the lesion as it is pushed forward. 

 In one trial, 55 CTO‟s in 53 patients were treated using the system. The device showed a 

success rate of 76% with no major cardiac events or coronary perforation(25). In a second study 

with 30 lesions in 28 patients success was achieved with 63% of procedures(24). However there 

was one guidewire perforation with no serious adverse effects and one peri-procedural 

myocardial infarction. 

III Fundamentals of High Power, Low Frequency Therapeutic Ultrasound 

Angioplasty 

III.A Background 

In the present context, therapeutic ultrasound refers to the use of high-amplitude low-

frequency ultrasound in clinical interventions (26). The mechanical effect this form of ultrasound 

has on biological tissues was first noted by Conte and de Lorenzi (cited in Atar et al(27)) and its 

effectiveness is based on the fact that at the right combination of frequency and amplitude 

inelastic rigid tissue is vigorously disrupted while elastic tissue can absorb the energy(28, 29). 

It was therefore conceived that this form of energy may be useful in the treatment of 

cardiovascular disease and could potentially have advantages over standard dilation procedures 

in the targeting of specific lesions, especially complicated rigid calcified and fibrous plaques(26). 

Development and testing of experimental devices began as early as the 1970s but were 

extremely limited for practical use. Sobbe et al (30) showed that ultrasound delivered through a 



large diameter wire probe resulted in a longitudinally vibrating distal-tip that had the effect of 

disrupting blood clots in animals. 

During the mid-1980s particular design issues were addressed by two groups, headed by 

Siegel and by Rosenschein, with the goal of making an actual working prototype for initial 

clinical testing and potentially for use in trials. No specific design issues appear in the literature 

and the majority of work focuses on the end clinical results. Some general information is 

reported and is included in this review(31-33). 

Both teams based their design efforts on the system developed by Sobbe et al(30) 

delivering the ultrasonic waves to the lesion via a wire waveguide. This sets up longitudinal 

stress waves and a longitudinal peak-to-peak displacement at the distal-tip of the wire waveguide 

with the potential to disrupt both lesions and clots. 

III.B Ultrasound generation 

In order to displace the distal-tip a wire at the frequencies and high amplitude 

displacements required to cause disruption to lesions a source capable of delivering these 

ultrasonic displacements was required. Both Siegel et al (33) and Rosenschein et al(31, 32) 

describe the use of a piezoelectric transducer as a source for the ultrasound. 

The piezoelectric effect is a property of certain classes of crystalline materials including 

natural crystals of Quartz, Rochelle Salt and Tourmaline plus manufactured ceramics such as 

Barium Titanate and Lead Zirconate Titanates (PZT). When a mechanical pressure is applied to 

these materials a voltage is produced proportional to the pressure applied. Conversely, when a 

voltage is applied the structure changes shape; acting as an electromechanical transducer. These 

shape changes are usually very small, usually in the order of a few microns. 



Dynamic voltages can also be applied which result in a dynamic displacement or shape 

change in the material. In this arrangement the material behaves very much like a mechanical 

system with resonant frequency characteristics. The transducer‟s output will be at a maximum at 

the first resonant frequency, a characteristic of the material and geometric configuration.  Using a 

stack arrangement as shown in Figure 2a, mechanical amplitudes of vibration of 0 –5 μm peak-

to-peak at frequencies less than 100 kHz can be achieved. An ultrasonic generator provides the 

electrical source to drive the transducer at the resonant frequency of the piezoelectric stack (34, 

35). 

These types of transducer are used mostly for sonochemistry applications where agitation 

of chemical and biological samples is required. The frequencies and amplitudes discussed are 

chosen for their ability to cause cavitation, a desirable effect in processing chemical solutions. It 

is largely due to availability for this reason that transducers used for generating the ultrasound in 

intravascular therapeutic ultrasound have been adapted from sonochemistry applications (33). 

For sonochemistry and the generation of cavitation, the displacements (at the frequencies used) 

from the converter (transducer) are still too small for sample processing. An acoustic horn or 

waveguide is usually attached to the transducer to amplify the displacements. 

Acoustic horns are solid metal rods that are designed to couple to the front-end mass of 

the converter. They achieve an increase in output displacement by two means. Firstly, their 

geometry is such that the input wave is compressed through a progressively smaller cross-

sectional area as it travels the length of the rod resulting in a larger displacement at the output. 

This can be clearly seen in both linear and exponentially tapered horns (35) [ 



Secondly, horns can be manufactured to resonate at the frequency of the ultrasonic 

converter. Stepped horns, as shown in Figure 2b, appear most useful for adaptation to the natural 

frequency of the driving transducer and are often easiest to manufacture (36).  

In most practical applications a combination of both stepped and tapered sections are 

used in horn design. Horns are manufactured from materials that have high dynamic fatigue 

strength and low acoustic loss, such as titanium alloys. With a horn attached to the converter 

output amplitudes of vibration greater than 150μm can be achieved and at frequencies less than 

100 kHz. 

Acoustic horns, being of solid metal configuration, lack the flexibility necessary to 

navigate the tortuous vascular geometry. In order to deliver these ultrasonic peak-to-peak 

displacements over sufficient lengths and with the flexibility necessary in minimally invasive 

vascular surgery the idea of using wire waveguides was developed(30, 31, 33). 

III.C Minimal invasive delivery of ultrasound by wire waveguide 

Most of the initial work in the area was based on finding methods to deliver this form of 

ultrasound over waveguide lengths and small diameters capable of being used in surgical 

applications. While little detailed description of the exact design and construction methods is 

given, some general conclusions were drawn from early design and testing. 

Rosenschein et al (32) described the use of a solid flexible aluminium transmission wire 

mechanically coupled to the acoustic horn. Details surrounding the coupling method were not 

included. Fischell et al describe the use of a solid 1.5F (≈ 0.5 mm diameter) titanium wire 

waveguide(37). This system also appears to have been used by Ariani et al (38) and Demer et 

al(28). 



These authors work, in general, detail the use of solid wires manufactured from 

aluminium, titanium or alloys of both to form the transmission member or wire waveguide to 

transmit the ultrasound from the acoustic horn to the lesion location. This ultrasonic transmission 

results in longitudinal displacements at the distal tip of the wire waveguide. 

 In addition both teams located a ball-tip or enlargement at the distal end of the wire. This 

increases the surface area in contact with the lesion and the surrounding fluid. Demer et al (28) 

describes the use of a 2.0 mm diameter ball-tip and Siegel et al(18) a 1.7 mm diameter ball-tip in 

conjunction with the wire waveguide. 

III.D Mechanical effect of wire waveguide tip displacement 

Atar et al (27) suggested that the ultrasonic longitudinal vibration of the wire waveguide 

distal-tip results in four major potentially disruptive events; direct contact ablation, pressure 

wave components, cavitation and acoustic micro-streaming and all these appear to be related to 

the distal-tip displacement amplitude, frequency and geometry(39-42). A diagram of the distal 

section of the wire waveguide and location of disruption mechanisms is shown in Figure 3. 

1. Direct contact ablation 

The oscillating distal-tip of the wire waveguide acts as an ultrasonic reciprocating micro-

drill. Research in ultrasonic micromachining has shown that it is associated with low material 

removal rates by microchipping, and is ideal for ablating brittle ceramic materials(43).  

Direct contact between the oscillating tip and the plaque in the arterial lumen results in 

the fragmentation and ablation of the plaque into microscopic particles and is considered to be 

one of the major effects of ultrasound angioplasty(29). 



Also, it appears that due to the varying material properties of the plaques this form of 

fragmentation technique ablates less distensible rigid calcified and fibrous plaques faster than 

flexible material such as the healthy arterial wall tissue(31). 

2. Acoustic pressure waves and cavitation 

As a result of the direct contact between the oscillating distal-tip and surrounding fluid an 

oscillating acoustic pressure field, superimposed on the ambient pressure, is established around 

the distal-tip. Of particular interest is the fact that if the pressure amplitude is sufficiently high, 

cavitation in the fluid may occur. 

Cavitation occurs when on the negative side of a pressure cycle, such as when the wire 

waveguide tip is retracting, with sufficient amplitude and frequency, suspended gas bubbles in 

the fluid, in channels within the tissue or trapped at solid interfaces expand and collapse with the 

generation of shock waves. Burdic (39) has suggested a simplified relationship between pressure 

and cavitation threshold, discussed in section IV.B. Cavitation is a potentially significant erosion 

event, undesirable in most acoustic applications but necessary in cavitation cleaning baths and 

sonochemistry(39, 40). 

Yock and Fitzgerald(26) concluded that cavitation is a major contributing factor in the 

disruption of plaque and thrombus and that ultrasound ablation of lesions was only present above 

the cavitation threshold and that the rate of disintegration correlates with the amount of power 

delivered above this threshold. 

Makin and Everbach(44) investigated the acoustic pressures developed by an 

ultrasonically vibrating wire waveguide submerged in a liquid with acoustic properties similar to 

blood. The experiment consisted of a 2.46 mm diameter spherical tipped wire oscillating in a 



cylinder of fluid (peripheral arterial phantom) at 22.5 kHz. Their experiment comprised of an 

ultrasonic emitter-receiver submerged in a tube within a 355 mm high acrylic tank with an 

internal diameter of 203 mm. The tank was filled with water or a glycerine-water mix. The 

experiment was described as having a 355 mm high tank filled to 345 mm with fluid. Pressures 

were measured in the range of 12-250 mm from the vibrating tip using an acoustic hydrophone; 

measurements in the vicinity of the tip were restricted due to the limitations of their measuring 

equipment.  

Their results demonstrate two important effects of the ultrasound in vivo: 

1) While the authors were not able to directly measure pressures at the tip, „cavitation 

activity‟ was determined using a 20 MHz focused transducer. They concluded that 

cavitation was evident and related to the distal-tip displacement and the distal tip 

geometry.  

2) A standing wave in the acoustic domain of significant amplitude was also 

detected. They concluded that this standing wave was caused by an impedance 

mismatch between the liquid and the surrounding air. This is similar to the tissue-

air interface encountered in peripheral limbs in vivo, the result of reflection at the 

interface of layers/materials of different acoustic impedance. The sound power 

reflection coefficient is given as(45): 
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 where: αr = sound power reflection coefficient 

   c= speed of sound in fluid medium 

 

Assuming no energy loss, the reflection of the incident energy must correspond to a unity 

value of reflection coefficient. The speed of sound for air and blood/tissue was taken as 340 m/s 

and 1580 m/s respectively and with densities of 1.2 kg/m
3
 and 1050 kg/m

3
 respectively. Using 

equation 9 and the material properties shown, the sound power reflection can be calculated to be 

99.9% at a tissue-air interface.  

If the acoustic field produces sufficiently low pressures, cavitation may occur. This is 

considered to be the most powerful destructive mechanism of the ultrasonic ablation(46). 

3. Acoustic streaming 

Two general forms of fluid motion are set up around an oscillating sphere in a fluid. The 

first can be considered as the oscillatory fluid motion very close to the wall of the tip and, 

secondly, a unidirectional fluid motion in an external acoustic streaming layer as shown in 

Figure 4(40, 41).  

It is the combined presence of direct contact, acoustic pressure waves, cavitation and 

acoustic streaming that led investigators to believe that ultrasound delivered via a wire 

waveguide could disrupt arterial lesions and some analytical theory further describing these 

disruptive mechanisms is discussed later. 



IV. Theoretical Foundations 

This section focuses on the theoretical mechanics which govern the response of a uniform 

rod (waveguide) to a harmonic input displacement and also the fundamental principles of 

acoustic pressure field generation by an oscillating sphere (such as a distal ball-tip) in a fluid.  

IV.A Wire waveguide mechanics 

1. Steady-state vibration of a uniform rod 

The steady-state analytical solution of motion for an undamped longitudinally vibrating 

rod, as shown in Figure 5, subjected to a sinusoidal input vibration motion of  u(t) =b sin (ω(t)) 

is shown in Equation 1 (47). This is similar to the condition set up in ultrasound transmitted via a 

wire waveguide where the distal-tip of the acoustic horn applies a sinusoidal input of particular 

amplitude and frequency to the proximal end of the wire waveguide. 

t
c

x

c

l

c

x
btxu sin)sintan(cos),(    (1) 

The steady-state amplitude of vibration at any point (0 ≤ x ≤ l) can be determined 

although this is an undamped solution and therefore limited. The solution can also be used in the 

determination of resonant response. 

The solution for the resonant response from Equation 1 is shown in Equation 2 where nf  

are the resonant frequencies of vibration for a thin rod of length l  and where the speed of sound 

(longitudinal) in the rod material is c .  

l

nc
fn

4
  n = 1, 3, 5…   (2) 



Similarly, for a constant frequency Equation 3 gives us the lengths where resonance 

occurs (n = 1, 3, 5, 7...) and the lengths where non-resonance occurs (n = 0, 2, 4, 6, 8…). This is 

more important to the ultrasound wire waveguide as the displacement input from the distal-tip of 

the acoustic horn is at a constant prescribed frequency determined the ultrasonic generator. 

f

nc
ln

4
     (3)  

The literature describes ultrasound transmission resulting in vibration of the distal-tip of 

the wire waveguide and that the presence of a spherical or near spherical ball-tip enhanced 

transmission to the fluid (44). An analytical solution for the pressure field developed in the fluid 

near to an oscillating sphere exists, proposed by Morse(42), as shown in Equation 4. Figure 6 

illustrates the parameters appearing in this solution.  

IV.B Distal Tip Interactions 

1. Acoustic pressure field around and oscillating sphere 

In this solution the maximum pressure at any point, Pmax, developed in the field 

surrounding an oscillating sphere can be determined.  

   
2

2

0

22

max

cos
2

r

R
dRfP      (4) 

where f is the frequency of oscillation, d0 is the displacement amplitude of oscillation and 

ρ is the fluid density. This solution shows that pressure amplitudes are at a maximum on the 

surface of the sphere and axially ahead of it. 

2. Cavitation 



From the pressure amplitude field it is possible to infer when and where cavitation is 

likely to occur. While the occurrence of cavitation is dependent on numerous factors such as the 

temperature and the amount of dissolved gas in the fluid, Burdic(39) suggests a simplified 

cavitation threshold intensity, as shown in Equation 5.  

     
c

P
T

2

2

max
     (5) 

According to Perkins(48) this threshold intensity for degassed water at room temperature 

is approximately between 2 and 3 Watts/cm
2
 in the frequency range of 20 – 30 kHz.  

It is worth noting here, that the acoustic intensity required to cause cavitation increases 

significantly above a frequency of 100 kHz, and is one of the main reasons why sonochemistry 

and therapeutic ultrasound is performed at the low-frequency ultrasound bands of between 20 

and 45 kHz. 

3. Acoustic streaming 

Analytical solutions related to acoustic streaming phenomena that occur around a 

vibrating sphere are available in the literature(40, 41). These primarily refer to the boundary 

layer thickness between the inner oscillatory motion and the outer acoustic streaming layer, as 

shown in Figure 4 and will not be discussed here in any great detail.  

There is also, however, a solution for the velocity field of the outer streaming layer given 

by Lee and Wang (41) and this outer streaming layer can be observed experimentally (40). 

4. Recent Progress in Numerical Modelling and Design 



The use of computational modelling is well reported for focussed ultrasound applications, 

predicting the pressure amplitudes, focused field effects and thermal effects in fluid and 

surrounding biological tissues. Frequencies modelled, however, are generally in the Megahertz 

range and with acoustic pressures predictions up to 6 MPa. For high acoustic pressure 

fluctuations, non-linear effects may become significant (49).  

Gentry et al have studied the formation of lesions in bovine muscle by a high frequency 

intracardiac ultrasound ablation catheter, which uses a 10 MHz ring transducer for ablation(50), 

and have developed a finite element model to predict lesion size based on temperature 

distribution. No computational models for predicting lesion or damage formation are yet 

available, however, for high power, low frequency ultrasound wire waveguide procedures, 

despite the recent emergence of such medical devices. 

Gavin et al originally contributed a finite element model of a slender rod subject to high 

frequency mechanical displacements at the proximal end, and presented predictions of the effect 

of wire length on distal output (peak-peak displacements). The model predictions were validated 

by comparison with experimental measurements made using an optical microscope. Figure 7(a) 

shows experimental measurements and finite element analysis predictions of the distal output 

peak to peak displacement amplitude for a range of wire waveguide lengths. This graph reveals 

the critical dependence of output on wire length, and also illustrates the usefulness of the 

numerical model for waveguide design. Figure 7(b) shows the peak to peak displacement 

amplitude at locations along the length of the wire waveguide, also well predicted by the model.  

This study also considered the effect of the damping characteristics of the wire, and showed that 

the NiTi wire waveguides exhibited significant damping over waveguides of approximately 300 

mm length, consistent with a damping factor of 4.5%. In later work, an acoustic fluid structure 



interaction finite element model of the waveguide and surrounding fluid was developed which 

accounted for the interaction of the wire distal tip with the surrounding fluid, and also provided 

predictions of acoustic pressure in the fluid at the distal tip  

Gavin et al present an acoustic fluid-structure model of a therapeutic angioplasty device that can 

predict the pressure amplitudes in the fluid field surrounding a vibrating waveguide tip (51, 52). 

The coupled fluid structure acoustic model assembles the following matrices of equations, where 

the M and K matrices represent mass and stiffness matrices for the solild (subscript S) and the 

fluid (subscript F) respectively.  
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The u and P vectors represent nodal displacements and pressures respectively, and the R 

matrices are coupling matrices representing an effective area associated with each node.  

The model is capable of predicting the effect of waveguide geometry changes, such as wire 

length, on the instruments resonant response, and on the transmission of acoustic energy to the 

surrounding fluids.  

Figure 8 (a) shows the predicted acoustic pressure field around the distal tip of a wire waveguide 

with a 1.0 mm diameter ball tip, and Figure 8 (b) shows a comparison with published results for 

that configuration. This supports the validity of the finite element model for predicting acoustic 

pressure fields generated by the waveguide, which is relevant to the determination of the onset of 

cavitation. Figure 9 (a) illustrates visually the fluid (water) response at various peak to peak 

displacements, showing cavitation developing from around 63 m peak to peak displacement. 

Based on a cavitation threshold of 2.5 W/cm
2
, this agrees with the predictions of the numerical 



model. Figure 9 (b) shows a visualisation of the acoustic streaming phenomenon. The present 

form of the numerical model does not have the capability to predict this effect.  

 

V.  Device Performance Characterisation and Validation 

V.A. Transmission of ultrasound delivered via wire waveguide 

While the theoretical analysis discussed provides valuable insight to the mechanics of 

ultrasound transmission via wire waveguide and through surrounding fluids, they are of limited 

use in analysing complex geometries and conditions. 

The use of the finite element method may be of benefit in assessing effects such as the 

inclusion of specific distal-tip geometries on the waveguide, material damping in the waveguide 

and ultimately the modelling of various distal-tip shapes and their effects on the surrounding 

acoustic pressure field developed, with consequences for the ablation mechanisms 

Further, the method may be applied to the coupling of the waveguide and surrounding 

fluid and modelling the acoustic fluid-structure behaviour of the system. No previous modelling 

of therapeutic ultrasound in small diameter wire waveguides or the coupling with a distal-tip 

fluid appears in the literature. This technique, however, has been used in the modelling of 

ultrasonic acoustic horns (53). 

V.B. Mechanical performance evaluation 

Gavin et al (51) measured distal-tip displacements for short 1.0 mm diameter wire waveguide 

optically using a microscope with a magnification of 40 (Figure 4).  This was carried out over 

various power inputs setting of the generator.  



 Gavin et al (54) examined the 1mm diameter wire waveguides over multiple lengths and 

each length was tested at various power level settings.  It was found that as the power input is 

increased then the output peak-to-peak displacement is also increased. This is not true for all 

wire waveguide lengths; some lengths result in poor or no transmission 

The study suggests that the resonant length of the wires affects the transmission. Wire 

waveguide lengths were examined between 118 and 303mm at intervals of 5mm and again using 

the 1mm diameter wire waveguides at a constant power setting input. 

The study shows that the wire waveguide has specific resonant and anti-resonant lengths.  These 

results also showed stable ultrasound transmission was attained at anti-resonant lengths. The 

performance decreases as the wire length approaches resonant lengths, for the same power input.   

V.C. Prototypes and Clinical Devices 

Ariani et al used an ultrasound waveguide to disrupt human thrombus in vitro and in 

vivo(38). While no exact mode of disruption is determined their results show an inverse 

relationship between acoustic horn distal-tip power and time to dissolve the clots; higher powers 

dissolved the clots in a shorter time period.  

Other authors have published similar results in the treatment of thrombus both in vivo and 

in vitro (32, 55) . 

In addition to this experimental work conducted on thrombus other authors have tested 

the effect of the ultrasound delivery on atherosclerotic lesions. Siegel et al (29) experimentally 

tested a 19.5 kHz system on 50 lesions of which 34% were calcified. The results showed that 

ultrasound delivered via a wire waveguide could recanalise the arteries affected by the lesions 



and that the calcified arteries treated with therapeutic ultrasound could subsequently be dilated at 

lower pressures than before suggesting an overall increase in the distensibility of the lesion.  

This effect is further supported by work conducted by Demer et al (28) when the 

distensibility of calcified lesions was shown to increase following ultrasound delivery. This was 

assessed by pressure-volume inflation curves from a standard dilation catheter as shown in 

Figure 10. Following the administration of ultrasound the inflation curve shifted to the right 

indicating increased distensibility and allowed standard balloon dilation at lower pressures. 

This increase in distensibility is thought to be further increased during intervention and 

immediately afterwards by a phenomenon called vasodilation; the relaxation of the fibres in 

arteries in the vicinity of low frequency ultrasound (37). This is thought to be a biological 

response and beyond the scope of this work but its effects are worth noting. 

V.D. Patent Literature 

This section is not intended to cover all patents but rather to give an oversight of the main 

technical design issues and to show technical progression and suggested solutions. The overall 

external electromechanical systems are similar, resulting from earlier technology, requiring an 

ultrasonic generator, transducer (piezoelectric or magnetostrictive) and acoustic horn attached to 

some small diameter waveguide effectors for insertion into the body. In addition, many other 

design concepts are also patented from pulse mode operation to user interfaces etc.; these are 

considered peripheral and will not be covered in detail. 

Early patents such as that obtained by Balamuth(56) describes a device that utilises ultrasonic 

energy for the removal of warts, tumours and skin cancer but makes no mention of operating 

within blood vessels. Kuris (57) obtained one of the earliest patents to disclose the use of 



vibratory displacements transmitted through a catheter inserted into a blood vessel that is 

surgically exposed. One of the first patents on the line to current approaches, by Boyd(58), 

describes the use of a semi-flexible ultrasonic vibratory catheter for the treatment of atheromas 

including coronary atherosclerosis. In this invention the hollow catheter itself vibrates and has a 

sharpened tip to facilitate the removal of tissue.  

Limitations of these early patents include, open surgery, stiff transmission probes not suited to 

minimally invasive access, associated risks of arterial perforation and other complications. In 

order to overcome these, devices needed to be designed that could deliver ultrasonic vibrations 

via small diameter flexible waveguides (lengths approx. 1.6 m and diameters < 1 mm), similar to 

other minimally technologies, such as balloon dilation catheters. 

As a result, the focus of the detailed technical design, solutions and subsequent patents, in the 

area of minimally invasive ultrasound catheter systems for the ablation and disruption of arterial 

plaques, are in three critical areas: 

1. wire waveguide design and material choice. 

2. method by which the waveguide is connected to the acoustic horn. 

3. wire waveguide distal-tip configuration. 

Two key patents filed in 1989 describe ultrasonic angioplasty systems incorporating flexible 

waveguides, detailed connection methods and peripheral tip designs.  

Bernstein and Rosenschein(59) describe an ultrasonic angioplasty waveguide system using an 

aluminium based alloy (AL-7075 etc.) for the waveguide material in order to reduce attenuation 

of the ultrasonic energy over long working lengths. They state that the distal tip should 

preferably be „flat‟. Their method of connecting the wire waveguide to the acoustic horn uses a 



connector that applies a gripping force to the waveguide by two radially opposing grub screws. 

Heat shrink fitting the connector and waveguide is also mentioned. 

DonMicheal, Siegel and DeCastro (60) describe an apparatus that can induce both longitudinal 

and transverse motions to the wire waveguide. They propose a cobalt-nickel alloy as a suitable 

waveguide material. It is also suggested that a bulbous (enlarged) distal-tip efficiently transfers 

the ultrasonic energy while reducing the risk of „perforating the artery‟. Suggested connection 

methods to the acoustic horn include a „vibration fitting‟ but no specific details are provided. 

Post 1991 many patents became increasingly more detailed.  

In 1995, a patent by Pflueger, Nita et al (61, 62) including some inventors from above (Siegel 

and DeCastro) proposes an ultrasonic device comprising an elongate ultrasound transmission 

member (including tapered waveguides) formed of one or more super-elastic alloys such as NiTi 

(50 at. % Ni). A range of wire waveguide distal-tip designs are disclosed including surface 

finishes with grooves and dimples to enhance material disruption and cavitation. A ferrule grip 

was suggested as a means of connecting the waveguide to the acoustic horn. Also mentioned was 

using the wire waveguide in an „over-the-wire‟ configuration similar to balloon angioplasty and 

more common interventional methods. In 1999, Levin, Rosenschein et al (63) describe a system 

with a waveguide comprising of a series of transitions, multiple wires in parallel and ideal 

transition locations based on the standing wave setup in the waveguide. Waveguides consisting 

of multiple materials transitioning along the length such as aluminium and titanium alloys are 

included. 

Nita and Sarge (62) disclose an ultrasound system with wire waveguides made from a material 

that includes nickel (50.5 – 51.5 at.), having tapered sections and in their embodiment they 



suggest NiTi superelastic alloys. A number of connection methods and distal-tip configurations 

are disclosed, including a balloon to facilitate off-centre positioning of the wire waveguide 

distal-tip. 

 In 2009, Nita et al (64) describe an ultrasound catheter device for the disruption of 

occlusions of blood vessels. In their embodiment they describe a wire waveguide catheter system 

including irrigation ports for cooling of the waveguide, an „over-the-wire‟ configuration and a 

detailed connection system to eliminate lateral movements of the waveguide near the connection 

point. All with the goal of reducing heat in the waveguide and increasing its longevity. 

 

VI. Future Directions 

Much work is still required to further understand this form of ultrasound energy delivery 

and the subsequent affects this has on plaque material and biological response.  

Regarding the fundamental principles of the process, there is a lack of clarity surrounding 

the relative importance of the various proposed disruption mechanisms. Work is needed to 

understand the conditions required to cause cavitation in blood in vivo, and to determine its 

importance in plaque disruption. There is also a need to isolate tissue or plaque effects due 

principally to acoustic streaming, and evaluate the role that this mechanism can play. Of greatest 

importance, perhaps, is the need to develop an understanding of the fracture behaviour of plaque 

caps and lipid pools under contact with a surface vibrating at low ultrasonic frequencies.  

There is a need to develop a greater understanding of the mechanics of wave transmission 

through long, flexible wire waveguides with complex material characteristics (as exemplified by 



Nickel Titanium (NiTi) superelastic shape memory alloys). Significant damping of wave 

amplitude has been observed in straight NiTi wires at low ultrasonic frequencies, and the effect 

of tortuous pathways, necessitating significant bending, require much greater investigation with a 

view to controlling losses. It is essential that the distal tip vibrations can be precisely and 

consistently controlled by the cardiologist, and are not unduly influenced by variable factors 

associated with individual procedures.  

The fatigue of superelastic metals under cyclic strain at low ultrasonic frequencies has not 

been extensively studied, even though the reliability of these devices depends on these 

properties. Designs must, in any case, be configured such that wire fatigue failures (more likely 

at locations of mechanical connection, in the experience of the authors) do not result in being 

unable to retrieve all the distal elements of the device. 

VII. Summary 

Calcified and totally occluded arteries pose significant complications during standard 

balloon angioplasty interventions and stent implantations. The use of therapeutic ultrasound 

transmitted via wire waveguides has been shown in initial clinical testing to be capable of 

disrupting thrombus, calcified and fibrous plaque without significant damage to healthy arterial 

tissue. 

Potential end clinical benefits in the use of therapeutic ultrasound delivered via small 

diameter wire waveguides includes increasing distensibility of calcified plaques with the 

potential of reducing barotraumas and restenosis rates. This technology has also the potential in 

crossing chronic total occlusions, therefore allowing for standard balloon angioplasty and stent 

implantation to be used. 



Little detailed analysis is provided on the design aspects of these devices or how 

ultrasonic displacements are delivered to the distal-tip of these small diameter wire waveguides 

at the frequencies and amplitudes required and the disruption mechanisms these cause. With the 

launch of products to the U.S. and European markets potentially imminent, sophisticated models 

for the design and optimisation of these devices are urgently required. 

This challenge demands a combination of experimental and clinical investigation, and 

computational modelling. A validated finite element model of the mechanical behaviour of a 

small diameter wire waveguide and it‟s interaction with surrounding fluids is necessary. Any 

such model would prove highly beneficial in determining the crucial wire waveguide distal-tip 

displacements and should be capable of predicting when the highly disruptive cavitation events 

occur. 



 

Manufacturer Wire Shaft Diameter 

(mm) 

Guidant Whisper 

Pilot 50 

Pilot 150 & 200 

HT Intermediate 

HT Standard 

Cross-IT 100-400 

0.35 

0.35 

0.35 

0.35 

0.35 

0.35 

Boston Scientific Choice PT & PT2 

PT Graphix & P2 

0.35 

0.35 

Cordis Shinobi & Shinobi Plus 0.35 

Medtronic Vascular Persuader 

Persuader 9 

0.35 

0.35 (tip diameter 0.27) 

Abbott Vascular 

Asahi 

Confianza 

Confianza Pro (Conquest) 

Medium 

Miraclebros 

0.35 

0.35 (tip diameter 0.22) 

0.35 

0.35 

Table 1: Variety of guidewires with shaft and tip diameters 

 

Study Frequency of 

Operation 

(kHz) 

Distal Peak-

to-peak 

Displacement 

( m) 

Wire Data 

Rosenschein et 

al [21] 

20 

 

150 ± 25 Aluminium 

Alloy Wire 

1.6mm 

No Ball Tip 

Ariani et al [7] 20 

 

63.5 - 111 Titanium Wire 

.72mm 

2mm Ball-Tip 

Demer et al 

[51] 

 

20 50 ± 25 Titanium Wire 

.5mm 

2mm Ball-Tip 

Makin et al[62] 

 

22.5 200/ 130 Titanium Wire 

1.98/2.46 mm 

Ball-Tip 

Table 2: Waveguide Tip Displacements from the literature 

 



  

Year Patent Number Inventor Assignee 

1969 US 3,433,226 Boyd Aeroprojects Inc. 

1970 US 3,526,219 Balamuth Ultrasonic Systems 

1971 US 3,565,062 Kuris Ultrasonic Systems 

1989 US 4,870,953 DonMicheal, Siegel and 

DeCastro 

- 

1989 WO 89/06515 Bernstein and Rosenschein - 

1995 US 5,397,301 Pflueger, Nita, Siegel, Bacich, 

Bond and DeCastro 

Baxter International Inc 

1999 US 5,971,949 Levin, Saltonstall, Nguyen and 

Rosenschein 

Angiosonics Inc. 

2006 EP 1649,817 A2 Nita FlowCardia Inc. 

2009 US 2009/0216246 Nita, Sarge and Spano FlowCardia Inc 

 

Table 3 Patent Literature 
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Figure 1 Progression of atherosclerosis (adapted from Salunke and Topoleski (5)). 



 

 

 

Figure 2 (a): Generation of mechanical ultrasonic displacements: converter and acoustic horn 

 

Figure 2 (b): Assembled Acoustic Horn and Converter 
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Figure 3: Schematic of ultrasonic wire waveguide in catheter and the regions surrounding the 

longitudinal vibrating distal-tip where disruptive mechanisms can occur. 
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Figure 4: General features of acoustic microstreaming near a small vibrating sphere. Adapted 

from Nyborg (40) 
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Figure 5: Diagram of a uniform rod, of length l, with an input displacement motion of u = b sin 

ωt. Adapted from Steidel (47). 

 

 

P

r

θ

2R

Direction of Motion
 

Figure 6: Diagram relating to the pressure field developed around an oscillating sphere. Adapted 

from Nyborg (40). 
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Figure 7 (a)  Wire waveguide distal 

displacement amplitudes (51). 

 

Figure 7 (b) Wire waveguide internal 

displacement amplitudes. (52) 
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Figure 8 (a)  Predicted pressure amplitude field 

around the distal tip of the wire 

waveguide with 1.0 mm spherical 

tip.  

Figure 8 (b) Comparison of predicted pressure 

amplitudes and experimental results 

published by Makin and Everbach 

(44). 

 

 



 
 

 

Figure 9 (a) Images of the distal tip of the 1.0 mm diameter 

wire waveguide at ambient temperature for 

various input power dial settings between 1.5 

and 6.5. (52) 

 

Figure 9 (b)  

Acoustic streaming at distal 

tip (1.0 mm diameter) (52) 
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Figure 10: Example of pressure-volume curves obtained pre (left curves) and post (right curves) 

ultrasound energy application. The rightward shift indicates increased distensibility. 

Data digitised from Demer et al (28) (using xyextract© digitising software). 
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