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White light interferometric surface profiler

Brian Bowe
Vincent Toal
Dublin Institute of Technology
Kevin Street
Dublin 8
Ireland
E-mail: bbowe@dit.ie

Abstract. We describe an optical system for 3-D profilometry based on
the white light interferometer. Recently many different methods have
been used to analyze the data obtained from white light interferometric
profilers. Many commercially available white light profilers are also in use
today. We detail a simple way to construct a profiler that uses two simple
and efficient algorithms. It deals with the data in a fast and simple man-
ner, thus reducing both the acquisition and analysis time. The system
has a theoretically unlimited range and can profile both optically rough
and smooth surfaces. © 1998 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(98)02006-6]

Subject terms: white light interferometry; coherence region; profilometry.
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1 Introduction

The benefits of optical profilometry, compared to mechani-
cal profilometry, include the ability to perform noncontact
measurements of delicate surfaces, increased height resolu-
tion, and high-speed measurement. Optical interferometric
surface profilers are widely used for 3-D surface profiling.
These profilers usually involve phase-shifting interferomet-
ric ~PSI! techniques1–4 to obtain 3-D images of surfaces
that are smooth relative to the mean wavelength of the
monochromatic source. A number of techniques have been
developed to extend this range including heterodyne inter-
ferometry and multiple interferometry.5–10Many papers de-
tail a wide variety of algorithms that can be used with these
profilers.3,4,11,12However, these methods are still limited to
ranges of the order of 10mm.

A number of techniques that use white light interfero-
metric ~WLI ! methods13–15 were developed that overcome
the limitations of these PSI techniques. These interferom-
eters allow surface profiling with high accuracy over a vir-
tually unlimited range, making them more suitable for pro-
filing stepped or discontinuous surfaces. One of the first
techniques to utilize the short coherence of the white light
source was the scanning interference microscope.16–18This
shares many features with confocal microscopy and has
been used to inspect semiconductor wafers and integrated
circuits.19 The method we use is based on another WLI
profiler, called coherence radar.20 This detects the occur-
rence of interference while scanning the object in depth. It
differs from conventional WLI in which depth accuracy is
limited by the aperture. The entire image field is viewed at
one time without the need for scanning the surface in both
thex andy directions. However, a common problem is the
vast amount of data, which greatly increases the acquisition
and analysis time. Many different techniques have been
used with these profilers to speed up the analysis, including
Fourier and phase-shifting methods. Recently, a simple
phase-shifting algorithm was developed that is highly ef-
fective and can be used with these WLI profilers.21

In this paper, we use two algorithms that do not involve
Fourier or phase-shifting techniques. Instead, they deal
with the data in a simple manner requiring very little analy-
sis and involve simple computer programs, thus reducing
the acquisition time. Note that we realize that white light
profilers are commercially available. However, these profil-
ers are usually limited to relatively smooth surfaces as well
as being very expensive. They are normally scanning inter-
ferometers and do not image the whole surface at one time.
The aim of this paper is to present a white light interfero-
metric profiler that can be set up easily with standard opti-
cal equipment.

2 Optical Setup

The profiler is illustrated in Fig. 1. The optical setup is
essentially a Michelson interferometer with one of the mir-
rors replaced by the surface to be profiled. The reference
mirror is mounted on a computer controlled dc motor that
enables it to be moved along thez axis. A white light
source with a coherence length of approximately 1mm is
used. The rough surface is imaged onto a CCD camera and
the image is then sent to the computer. Before starting a
scan the helium-neon laser is used to ensure the reference
mirror is aligned. The reference mirror is then moved to the
end point of the scan and the laser is used to ensure it
moves parallel to thez axis. The reference mirror is then
returned to the starting point. To achieve maximum con-
trast a neutral density filter is placed in the path to the
reference mirror, so that the reflected intensities are ap-
proximately equal. However, this filter may distort the pro-
file of the surface if it is not of high quality. One possible
way of overcoming this is to use reference mirrors of ap-
propriate reflectivity. The profiler uses the short coherence
length of the light source. The visibility of the interference
decreases rapidly from its maximum at 0 optical path dif-
ference to 0 at optical path differences greater than the
coherence length.

In Fig. 1, if the light paths from pointP0 and from the
reference mirror are equal, interference will be seen in the
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pixels corresponding to that point and every other point on
the surface for which the optical path difference is 0. As the
reference mirror is moved along thez axis, the points of
interference change to new points corresponding again to
equal optical path lengths. Figure 2 shows a single pixel
intensity graph obtained from a detector placed in the im-
age plane of the profiler as the optical path difference is
varied through 0. The interference region occurs at 0 opti-
cal path difference and is only a couple of micrometers
wide. For each pixel in the frame, this region must be iden-
tified and the corresponding frame position within the scan
located. The rest of the distribution represents background
illumination, and to speed up the acquisition and analysis
times the profiler ignores this data. During profiling, the
reference mirror is moved along thez axis and frames are
grabbed continuously. These frames are analyzed so that at
the end of the scan, the interference region has been located
for each pixel in terms of the frame number in which the
interference, or coherence, region occurred.

3 Acquisition and Analysis

The first of the two algorithms locates the point of maxi-
mum modulation, within the coherence region, for each
pixel in the frame. Figure 3 shows a typical interference
signal. Four buffers, numbered 1 to 4, are used as memory
locations for data acquisition. Frames are continuously
grabbed as the reference mirror is moved through a prede-

termined distance. For instance, if the scan length was 50
mm, a frame could be grabbed every quarter of a microme-
ter. As each frame is grabbed, for every pixel in the frame,
the intensity values are compared to the values that oc-
curred in previous frames, so that at the end of the scan, for
each pixel, the lowest and highest intensities and frame
numbers in which these intensities occurred are stored in
the four memory locations, buffers 1, 2, 3, and 4, respec-
tively. Buffers 3 and 4 are then compared to one another to
ensure that, for every pixel, the difference, in terms of the
frame number, between the location of the maximum inten-
sity and the minimum intensity are a distancel/4 apart,
wherel is the mean wavelength of the source. Any pixel
where the difference is greater than this value can be de-
leted and a neighboring pixel averaging technique can be
used to fill in these pixels when the surface is imaged. The
frames in which the peak intensities occurred for each pixel
are then used to build an image of the surface. As the
distance traveled by the reference mirror is precisely con-
trolled, the relative positions of these intensities within the
scan are known. A simple 3-D curve-fitting technique is
used on these positions of maximum intensity to build an
image of the surface.

The profiler builds an image of the surface using the
points of peak intensity, which it detects with an accuracy
of the step size taken between each frame. The profiler has
a resolution that depends on the width of the peak intensity,
providing the reference mirror can move in steps smaller
than this width. Otherwise the resolution of the profiler is
the minimum step size the reference mirror can move. Our
profiler has a resolution of 0.06mm, as this is the smallest
step the reference mirror can move. This algorithm works
well if the profiled surface is smooth, as in Fig. 4, and has
been used successfully on smooth step heights.

If the surface is rough, however, scattering can cause
peak intensities to occur outside the coherence region. On
these surfaces we use an alternative algorithm that detects
continuous modulation; that is, it detects the coherence re-
gion for every pixel in the scan. Again, it does this by
continuously grabbing frames as the reference mirror is
moved through a predetermined distance. As each frame is
grabbed, the pixel intensity levels are recorded and com-
pared to that of the previous frame. If the difference be-
tween the intensity levels is greater than a set threshold
value, for any pixel, modulation is recorded. If the modu-
lation is recorded for four consecutive frames, then the
fourth frame number is sent to a memory location for that

Fig. 1 Setup of the coherence radar.

Fig. 2 Pixel intensity level as optical path length is varied through 0
optical path difference.

Fig. 3 Interference signal.
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pixel. As the distance traveled between each consecutive
frame is controlled by the computer, the relative position of
this frame is known. Then all these positions, one for each
pixel, are used to build a 3-D image of the surface. The
obvious disadvantage of this method compared to the pre-
vious algorithm is the poorer resolution. The profiler is now
locating the coherence region that has a length of twice the
coherence length of the sourcel c . It does not know exactly
where within this region the frame is, so there is an uncer-
tainty in each reading of6 l c . This method has a resolution
of an optical path change of 2l c , which corresponds to a
movement of the mirror ofl c .

When using the first algorithm, it is important that the
distance that the reference mirror moves, between each
frame, be small enough so that both the highest and lowest
intensities are recorded. These intensities are a distancel/2
apart, which corresponds to a movement of the mirror of
l/4, so this is the maximum step size. Using this step size,
however, can result in a loss of relevant data. If the distance
between the frames is very small, the data recorded gives
an accurate description of the signal and so the results will
be more accurate. In the second algorithm, the step size
must be such that at least four frames are grabbed within
the coherence region. It cannot be too small, however, or
the modulation between consecutive frames will not be
greater than the threshold value. These restrictions mean
the acquisition time for the second algorithm is less than
that for the first.

These algorithms work very quickly and use a minimum
of memory as the frames are discarded immediately after
they are analysed. When using the second program, if a
high resolution is not required, the light source can be fil-
tered or replaced by an IR source, thus increasing the co-
herence length and so reducing the number of frames
needed for a complete scan, which in turn reduces the ac-
quisition time. The first program can also be used with a
bandpass filter, which lets through the desired frequency
band only, and as the average wavelength is known, this
band can be easily calculated. This enables the program to
be used on rough surfaces, as it filters out all unwanted
noise. The algorithms can be used in conjunction with one
another so that the second algorithm detects the interfer-
ence signal, and once this is located, the first algorithm
locates the point of maximum modulation within this sig-
nal. This means the profiler now has a resolution of 0.06
mm even when profiling rough surfaces. Practical consider-

ations associated with coherence scanning are discussed by
Dresel et al.20

4 Results

Figure 5 shows the results from the first program of a scan
of a smooth step height. It shows the result on a 2-D scale
where the pixel intensity level represents the frame number
in which maximum modulation occurred. Figure 6 shows
the same result in three dimensions. The height of the step,
in terms of the frames, is 200. The distance traveled by the
reference mirror between each frame was 0.5mm, so the
height of this step is 100mm. Figure 7 shows the result of
a scan of the letterp from an Irish 10 pence piece. This
represents a comparatively rough surface.

5 Conclusion

We developed two simple acquisition algorithms for WLI
profilers. We have shown that they both work well with the
coherence radar, simplifying the acquisition and setup. The
profiler works with a resolution of 0.06mm and a range

Fig. 4 This surface has a step profile but it is smooth.

Fig. 5 Result from the first program of a scan of a step height. The
gray level represents the frame number in which maximum modula-
tion occurred. The x and y axes show pixel coordinates on the sur-
face.

Fig. 6 Three-dimensional image of a surface with a step height of
100 mm. The x and y axes are shown in terms of the pixel positions
and the z axis represents the pixel intensity level.
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limited only by how far the reference mirror can move,
about 5 cm in our system. To scan over this distance it is
advisable to use a high-quality dc motor moving at a rela-
tively slow speed to ensure steady motion. A more advis-
able method is to use an Oriel ‘‘worm’’ controller, which is
made up of a series of piezoelectric transducers~PZTs!.
The profiler does not have the problems associated with
phase shifting and does not involve complex algorithms.
Optical profilers can be very useful in any metrology labo-
ratory. We have shown that the optical setup of a WLI
profiler and the acquisition can be easy to setup and use.
For optimum performance, the system should be made as
small as possible with small distances between the beam-
splitter and the reference mirror and surface. This reduces
the errors caused by air turbulence and vibrations. The sys-
tem should be well clamped and ideally should be con-
structed on an isolated optical table. The system will still
work without fulfilling these conditions, but the errors will
be noticeably greater.
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