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Abstract 

A novel ambient pressure microwave-assisted technique is developed in which silver and indium 
modified ZnS is synthesised. The as prepared ZnS is characterised by X-ray diffraction, UV-Vis 
spectroscopy, X-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure 
produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to 
defects in the crystal which induce mid energy levels in the band gap and lead to indoor light 
photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to 
hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional 
chamber furnace, it is completely converted to ZnO at 600 °C. Both cubic blende and hexagonal ZnS 
show excellent photocatalytic activity under irradiation from a 60 watt light bulb. These ZnS samples 
also show significantly higher photocatalytic activity compared to the commercially available TiO2 
(Evonik-Degussa P-25).  

1. Introduction 

Zinc sulfide, a type II-VI semiconductor material, has been extensively studied due to its unique 
optical properties, luminescent properties and catalytic activity.1,2,3,4,5 ZnS exists in two structural 
polymorphs, cubic blende sphalerite and hexagonal wurtzite. Of the two polymorphs, the cubic blende 
is considered as the stable phase at standard temperature and pressure. Cubic blende ZnS has a face 
centered cubic structure in which both the zinc and sulfur atoms are tetrahedrally coordinated. 
Wurtzite phase ZnS is more thermodynamically stable at temperatures above 1020 °C, but can exist as 
a metastable phase at standard temperature and pressure. The wurtzite phase has a hexagonal close 
packed structure in which the Zn and S atoms are also tetrahedrally coordinated. In nanosized 
materials, many factors can change the phase transition temperature, including the small size, 
increased pressure, surface modification, and precipitation rates during the synthesis of the 
semiconductor.6,7,8,9,10,11,12 

 A low temperature preparation of hexagonal ZnS is desirable because the prepared wurtzite 
nanostructures can meet thermal stability required for reliable optoelectronic device operation, 
including the incorporation of these materials in flexible substrates such as plastics. The hexagonal 
structure is also the more desirable structure for its optical properties than the cubic blende structure.6-

12 Cubic blende ZnS has been synthesized in a number of ways including by precipitation, by 
hydrothermal synthesis, and using ultrasonic irradiation.13,14,15 Using these techniques for large scale 
synthesis limits the applications of ZnS as a photocatalyst due to the high cost, difficulty in 
separation, recovery and recycling in industrial environments. Some of these reactions also require 
high temperatures and the use of H2S as a starting material. Microwave synthesis has gained a lot of 



D. W Synnott, M. K.  Seery, S. J. Hinder, J. Colreavy and S. C. Pillai, Nanotechnology,  24, 2013,  045704  

 

 

attention in recent times for the preparation of organic compounds, molecular sieves and 
radiopharmaceuticals, and also for the fabrication of zeolites and inorganic materials. Compared to 
conventional techniques, the use of microwave has advantages of quick reaction times, rapid 
volumetric heating, small particle size, low cost and energy saving.16,17,18 

  

2. Experimental 

2.1 Preparation of Nanomaterials 

Powdered nanoparticles were prepared by a microwave assisted irradiation methodology. In a typical 
synthesis, an aqueous zinc acetate dihydrate solution (200 mL, 0.2 M) was added to an aqueous 
solution of thiourea (200 mL, 0.2 M). To this indium acetate (4 mL, 0.04 M) and silver nitrate (10 
mL, 0.04 M) were added. The open beaker containing these solutions was placed in a MARS 5 
industrial microwave system and was irradiated at 600 W for 30 min followed by a 5 min cool down 
period. After the time had elapsed the water had completely evaporated and dry yellowish brown 
powder was collected and characterized without further treatment. This produced a 1 % Ag – 0.4 % In 
ZnS sample. 

2.2 Characterisation 

The obtained ZnS was investigated using a combination of characterisation techniques including X-
ray diffraction using a Siemens D 500 X-ray diffractometer with the diffraction angles scanning from 
2θ = 20 – 80 °, using a Cu Kα radiation source. The diffuse absorbance spectra of the samples were 
measured by a UV-Vis-NIR Perkin Elmer 900 spectrometer between 800 and 200 nm, using a black 
KBr disc as a reference. Luminescence measurements were taken, with samples suspended in ethanol, 
by a Perkin Elmer LS 55 luminescence spectrometer. X-ray photoelectron spectrometer measurements 
were taken with a Thermo VG Scientific (East Grinstead, UK) Sigma Probe spectrometer using a 
monochromated Al Kα X-ray source (hν = 1486.6 eV), which was used at 140 W and the area of 
analysis was approximately 500 µm in diameter. Scanning electron microscopy images were obtained 
using a Hitachi SU-70 FE-SEM.  

2.3 Photocatalysis Testing 

Photocatalysis testing was carried out using methylene blue as a model pollutant and a 60 W bulb as a 
light source to simulate indoor lighting conditions. In a standard test, 60 mg of photocatalyst powder 
was added to methylene blue (50 mL, 1 x 10-5 M) and the powder and solution was stirred for 30 m in 
the dark, to allow for any adsorption of the dye onto the particle to occur. Then the dye and 
photocatalyst were irradiated for 2 h with samples taken every 30 m. The samples were centrifuged 
before the absorbance of the dye was measured by UV – Vis analysis.  

The degradation of the methylene blue was measured using a pseudo – first order kinetic plot where a 
plot of Ln(A/Ao) v time revealed the degradation rate, k.  

 

3. Results and Discussion 

The crystal structure of the as prepared powders was investigated by X-ray diffraction with Cu Kα 
radiation. As shown in Figure 1, the zinc sulfide prepared without silver and the samples with up to 2 
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mol % silver crystallize as the cubic blende form of ZnS with peaks at 28.55°, 47.55° and 56.3° 
corresponding to the (111), (200) and (220) planes respectively. When the mol % of silver is 
increased to 4 and 8 % the peaks at 27.15°, 28.75°, 30.7°, 47.7°, 51.75° and 56.45° are observed 
which correspond to the (100), (002), (101), (102), (110), (103) and (112) planes respectively and 
indicate that the wurtzite phase of ZnS is present. In the XRD patterns no peaks that show the 
presence of AgS or AgInS2 are observed, which suggests that the silver and indium ions are added 
into the lattice or on the surface of the ZnS crystal rather than a solid-solution of (AgIn)xZn2(1-x)S2 
being formed.19 The particle size is estimated from the X-ray diffraction patterns using the Scherrer 
equation,6 by measuring the line broadening of the (111) peak in cubic blende ZnS and the (002) peak 
for the wurtzite ZnS. For all samples up to 4 mol % silver the particle size is found to be 4 nm ± 1 and 
at 8 mol % silver the particle size increases to 8 nm. The broadening of the peaks suggests that the 
particles are nanosized. The small particle size is consistent with literature reports of ZnS prepared via 
microwave synthesis.7  
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Figure 1. X-ray diffraction patterns of (a) ZnS (b) 1% Ag - 0.4 % In – ZnS (c) 2% Ag – 0.4% – ZnS 
(d) 4% Ag – 0.4% In – ZnS and (e) 8% Ag – 0.4% In – ZnS  

Raman spectrocsopy was employed to further confirm the phase change from cubic blende to wurtzite 
with increased silver. Figure 2 (a) shows the raman spectrum of 0.4 % Ag – 0.4 % In ZnS which is 
cubic blende in phase. The peaks at 345, 546 and 700 cm-1 match those associated with the LO, 2TO 
and 2LO modes of cubic blende zinc sulfide. The peak at 261 cm-1 has previously been identified as a 
surface phonon mode. The expected peak for the TO mode at 285 cm-1 is absent in this case, under 
visible excitation (660 nm), due to poor scattering efficiency and the anti-resonant behaviour reported 
for the mode in cubic blende ZnS. Figure 2 (b) shows the raman spectrum for the hexagonal phase 4% 
Ag 0.4 % In ZnS. The peaks for cubic blende ZnS disappear for the 4 % Ag – 0.4 % In ZnS and peaks 
appear at 334 cm-1 and 532 cm-1. The peak at 334 cm-1 has been assigned to the surface optical, SO, 
mode in wurtzite ZnS.20,21,22,23,24,25  
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Figure 2. Raman spectra of (a) 0.4% Ag – ZnS (b) 2% Ag – ZnS 

 

The XPS spectra (Figure 3.) of 4 % Ag – 0.4 % In ZnS show peaks located at 368.5 and 374.3 eV are 
consistent with those of the Ag 3d peaks and the spin-orbit splitting of the 3d doublet of 5.8 eV is 
characteristic of metallic silver.26,27 The other spectra show peaks located at 1045.5, 1022.5 and 162.5 
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eV. These peaks correspond to the binding of the Zn 2p1, Zn 2p3 and S 2p1/2 electrons respectively 
and indicate the presence of ZnS. 

 

 

 

 

 

 

 

 

 

 

Figure 3. XPS spectra of Ag-3d for 4 % Ag – 0.4 % In ZnS 

Scanning electron microscopy images (Figure 4) show a significant difference between the samples 
containing 0.4 % Ag and 8 % Ag. In the 0.4 % Ag-0.4 % In ZnS, the agglomerates are less than 1 µm 
in size with regular shapes. The 8 % Ag-0.4 % In ZnS sample shows much larger agglomerate, with 
irregular shapes.  

 

Fig 4. SEM images of (A) 0.4% Ag-0.4% In ZnS and (B) 8% Ag-0.4% In ZnS 

For the samples containing up to 2 mol % silver there is an absorption edge at 319 nm (Figure 5) 
which equates to a band gap of 3.9 eV. This band gap is greater than that of bulk ZnS and is due to the 
quantum size effect owing to the nanometre size of the particles. For these samples there is an 
absorption shoulder that stretches to 500 nm for the 0.4 and 1 mol % silver samples and up to 570 nm 
for the 2 mol % silver. These shoulders show that the samples absorb light in the visible region, as 
supported by the yellow to orange colours of the sample. The samples containing 4 and 8 mol % silver 
are a brown coloured powder and the diffuse absorbance spectra show the complete absorbance up to 
800 nm. 
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Figure 5. Diffuse absorbance spectra of (A) 0.4% Ag 0.4% In ZnS, (B) 1% Ag – 0.4 % In ZnS, (C) 
2% Ag – 0.4% In ZnS, (D) 4% Ag – 0.4% In ZnS and (E) 8% Ag – 0.4% In ZnS 

The luminescence spectra of the 0.4% Ag – 0.4% In ZnS sample (figure 6) show emission peaks at 
385, 427 and 489 nm which correspond to three point defects within the ZnS crystal. The peak at 385 
mm is related to the interstitial Zn, the peak at 427 being from S vacancies and the peak 489 nm 
relating to Zn vacancies. Peng et al.16 showed that these defects sites act as interband donor levels and 
reduce the energy required to promote an electron to the conduction band and leave a hole in the 
valence band and thus induce photocatalysis. Conversion to hexagonal causes a 10 nm redshift in the 
peak associated with the interstitial Zn. This shift is due to a rearrangement of the atomic structure 
when the phase change occurs. 

 

 

 

 

 

 

 

 

 

 

 

2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0

1

2

3

4

5

 

 

A
b

s
o

rb
a

n
c
e

W a v e le n g th  ( n m )

(E )

(D )(C )
( A )

(B )

300 350 400 450 500 550 600 650 700

0

50

100

150

200

250

300

350

400

 

 

In
te

n
s
it
y

Wavelength (nm)

(B)

(A)



D. W Synnott, M. K.  Seery, S. J. Hinder, J. Colreavy and S. C. Pillai, Nanotechnology,  24, 2013,  045704  

 

 

Figure 6. Emission spectra of (A) 0.4% Ag – 0.4% In ZnS and (B) 8% Ag – 0.4% In ZnS and inset is 
the band structure with the defects caused by zinc and sulfur vacancies 

The inset of figure 6 shows the proposed energy levels of the ZnS with the vacancies of  Zn and S 
providing steps for the electron to be promoted from the valence band to the conduction band by light 
of a lower energy than that of the band gap (3.9 eV). These extra energy levels within the band gap 
allow for excitation of the electron with visible light, with wavelengths up to 495 nm (2.5 eV). 

Photocatalysis tests were carried out by measuring the degradation of a methylene blue, a model dye, 
in the presence of the photocatalyst under irradiation from a 60 W incandescent light bulb. The 
samples containing silver showed greater photocatalytic activity than the unmodified sample and 
Degussa P25 titanium dioxide, which is a commercially available photocatalyst. The results in Table 1 
show that the sample containing 2 mol % silver had the highest photocatalytic activity while the 
sample containing 8 mol % silver showed no activity. The increase in activity can be attributed to the 
role of silver as an electron scavenger.27,28,29 Efficient photocatalysis requires a lower recombination 
rate of the photo produced electrons and holes. The holes in the valence band are primarily 
responsible for the formation of hydroxyl radicals, which degrade the pollutant on the surface of the 
photocatalyst. The optimum level of silver was found to be 2 mol% in this study. Above this 
concentration, the photocatalytic activity begins to drop and at 8 mol % the photocatalytic activity is 
reduced completely. This is due to the excess silver blocks photocatalytic sites on the surface of the 
photocatalyst. 

Table 1. Photocatalytic rates of microwave prepared ZnS and standard samples. 

Sample Name Photocatalytic Rate 

(min-1, x10-3) 

Degussa P25 TiO2 2.9 
ZnS 5.0 

0.4% Ag – 0.4% In ZnS 5.0 
1% Ag – 0.4% In ZnS 6.5 
2% Ag – 0.4% In ZnS 8.3 
4% Ag – 0.4% In ZnS 6.1 
8% Ag – 0.4% In ZnS 1.2 

 

 The role of silver is significant in phase change from cubic blende to hexagonal. It is known 
that the phase transition temperature can be reduced when the particles are nanosized and that the 
addition of addition elements also affects the transition temperature.29 In order to understand the phase 
change of ZnS, the Ag-In-ZnS prepared under microwave conditions is annealed at various 
temperatures in a chamber furnace. When the cubic blende phase 2% Ag – 0.4% In ZnS prepared in 
the microwave is heated, for 2 h, at temperatures up to 600 °C, no phase transition to hexagonal ZnS 
occurs. At 200 and 400 °C the ZnS remains in the cubic blende phase. At 500 °C there is a mix of 
cubic blende ZnS and ZnO. The ZnO forms as oxidation occurs at higher temperatures. At 600 °C, the 
ZnS has completely transformed to ZnO. The XRD data confirming these phases is shown in Figure 
7.  
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Figure 7. XRD spectra of (A) 2% Ag-0.4% In ZnS, (B) 2% Ag-0.4% In ZnS calcined at 400 °C, (C) 
2% Ag - 0.4% In ZnS calcined at 500 °C and (D) 2% Ag – 0.4% In ZnS calcined at 600 °C 

 

Under conventional synthesis methods when silver and indium are added to ZnS, mixed layer 
polytypes can form.30,31 However, in the current study pure cubic blende or wurtzite ZnS is formed 
with different concentrations of silver added. Indium was selected as an additive to get the optimum 
photocatalytic properties. A preliminary study was carried out on indium modified ZnS by microwave 
irradiation to understand its photocatalytic activity. The level of indium was varied from 0.05 % to 2 
%.  From that study it was shown that ZnS with 0.4 % In addition was at the optimum level for 
improving the photocatalytic activity of the ZnS sample. When the Ag was introduced to the system 
(to study its impact on phase change), it was concluded that the level of indium should remain 
constant at its optimum level. The role of indium in the system from a synthetic point of view is to 
improve the photocatalytic activity under indoor light irradiation. The indium achieves this in two 
ways. The first is to provide n type doping by inserting a band in the semiconductor close to the 
valence band. This allows for electrons to be promoted to the conduction band from the indium at 
lower wavelengths than is required for promotion of an electron from the valence band to the 
conduction band. The second way in which indium improves the photocatalytic activity of the doped 
ZnS under indoor light irradiation is the increased number of defects in the crystal in the presence of 
indium. Indium incorporation into the ZnS crystal lattice can lead to an increase in faults in the crystal 
and in lattice distortion. This is due to the difference in the ionic radii of trivalent indium ions (0.80 
Å) and the bivalent zinc ion (0.74 Å).32 The difference in the valence of the Zn2+ and the In3+ also 
leads to an increase in the number of sulfur vacancies, which act as stepping stones for the electrons 
travelling from the conduction band to the valence band.33  This is incorporated in the supplementary 
information as Table 1. The silver has two roles in the system. The first is that the metallic silver 
formed during the microwave irradiation affects the crystal growth of the ZnS and causes the 
formation of wurtzite as opposed to sphalerite which forms when only the precursors for Zn and S are 
involved in the reaction. The silver particles act on the surface of the crystal and affect the surface 
energy which leads to the transition and formation of wurtzite particles.18

 Supplementary figure 1 
shows the XRD patterns for ZnS prepared with the addition of silver and no indium added. The 
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patterns match those of the silver and indiums co-modified material and confirm the influence of the 
silver on the ZnS with the hexagonal form identified when levels of silver at 4 % and above is used.  
(It should be noted that the composition was calculated as the molar ratio of the reagents used in the 
reaction. The authors acknowledge that the XPS analysis is a surface technique and is not the best 
method for determining composition of the bulk of the sample. It is often difficult to determine the 
small amount of dopants/additives using XPS or XRD. The XPS analysis shows an increasing amount 
of silver relative to the zinc and sulfur in a ratio that matches the recipe of the precursors). The second 
is the affect of the silver on the surface of the particle on the photocatalytic activity of the material. 
Silver particles have been shown to act as electron traps on photocatalysts. This electron trap reduces 
the recombination rate of the electron – hole pair and increases the photocatalytic activity.26,34-36 
Further studies are underway to understand the complete mechanism of the low temperature phase 
transition and look at the applications including photocatalysis and optoelectronic devices. 

Conclusions 

In summary, it was found that the formation of ZnS under the microwave irradiation is significantly 
influenced by the addition of silver and indium precursors to the precursor solutions. The addition of 
silver above 4 mol % causes a total phase transition from cubic blende to wurtzite ZnS. The influence 
of the microwave synthesis also produces a pure ZnS crystal with no silver sulfide or silver indium 
sulfide produced with the ZnS. The addition of silver also leads to an increase in the photocatalytic 
activity of the ZnS under irradiation from a 60 – watt light bulb. The silver and indium modified ZnS 
shows twice the photocatalytic activity compared to the commercially available TiO2. The open 
beaker microwave method is shown to be a quick, straight-forward method for producing pure, 
photocatalytically active materials which can used without further treatment or heating. 
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