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Abstract  

Visible-light-induced antibacterial activity of carbon-doped anatase-brookite titania nano-heterojunction 

photocatalysts are reported for the first time. These heterostructures were prepared using a novel low 

temperature (100 °C) non-hydrothermal low power microwave (300 W) assisted method. Formation of 

interband C 2p states was found to be responsible for the band gap narrowing of the carbon doped 

heterojunctions. The most active photocatalyst obtained after 60 minutes of microwave irradiation 
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exhibits a 2-fold higher visible-light induced photocatalytic activity in contrast to the standard 

commercial photocatalyst Evonik-Degussa P-25. Staphylococcus aureus inactivation rate constant for 

carbon-doped nano-heterojunctions and the standard photocatalyst was 0.0023 and -0.0081 min
-1

 

respectively. It is proposed that the photo-excited electrons (from the C 2p level) are effectively 

transferred from the conduction band of brookite to that of anatase causing efficient electron-hole 

separation, which is found to be  responsible for the superior visible-light induced photocatalytic and 

antibacterial activities of carbon-doped anatase-brookite nano-heterojunctions. 

KEYWORDS: Titanium dioxide; Microwave synthesis; Carbon-doping; Visible-light induced 

photocatalysis; Antibacterial activity; Heterojunctions  

1. Introduction 

The hospital-acquired infections due to the spread of multidrug resistant bacteria, such as 

Methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile (C.diff) are a worldwide 

problem.1 In addition to this, the occurrence of severe acute respiratory syndrome (SARS) and avian 

influenza (H1N5) in recent years have affected the public health worldwide. Since these superbugs are 

resistant to most of the antibiotics available, it is necessary to develop efficient and eco-friendly 

antimicrobial techniques. Semiconductor photocatalysis is an efficient and inexpensive technique to 

solve the hospital acquired infections.
2
 In the recent years nanostructured semiconductors, especially 

titanium dioxide have attracted significant interest in the area of photocatalysis, organic synthesis, solar 

cells, electronic materials, cancer therapy, water and air purification and self cleaning antibacterial  

materials.
2-5

 This was mainly due to the high redox potential, nontoxicity, chemical stability and 

inexpensiveness of titanium dioxide photocatalysts.
3,4

 Among the three polymorphs of titanium dioxide, 

anatase is previously reported as the most photocatalytically active phase due to its higher charge carrier 

mobility and increased surface hydroxyl density.
3,5

 Various factors such as phase purity, surface area, 
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crystallite size, quantity and nature of dopants and method of preparation significantly affect the 

performance of titania photocatalysts.
2,4,5

    

The major disadvantage of anatase phase photocatalyst is its wide band gap (3.2 eV), which 

make it a good photocatalyst only under UV-light (λ ≤ 387.5 nm).5 This make the titania based 

photocatalysis a non-viable method for the real-world antibacterial applications under visible-light or 

normal room-light irradiation. The development of a highly visible-light active titania photocatalyst is 

necessary to effectively exploit the visible-light for antibacterial applications. There are a number of 

reports on the synthesis of graphene incorporated titania nanomaterials.
6-9

 These photocatalysts 

containing Ti-C and Ti-O-C bonds were harmful to bacteria and minuscule animals under solar-light 

irradiation.
6,7

 Recently, non-metals (e.g. C, N, S, F and B) doped titania has received much attention as 

the incorporation of these non-metals into titania result in the extension of photo-response from UV to 

visible regions.
10-12

 One of the major disadvantage of these anion-doped titania photocatalysts is the 

increased electron-hole recombination due to the additional energy levels and oxygen vacancies formed 

in the band gap.
3,5

 As a result, the photocatalytic and antibacterial activities of anion-doped anatase 

titania photocatalysts were not sufficient enough for practical applications. One way to overcome this 

problem is the proper designing of heterojunctions containing anion-doped titania and electron-hole 

separating agents such as metal or semiconductor nanoparticles. Significantly higher UV-light induced 

photocatalytic activities of anatase-rutile and anatase-brookite heterojunctions in contrast to pure 

anatase, rutile or brookite alone were reported previously.
13-15

 As part of a study to investigate the effect 

of anion doped heterojunctions, our group has recently reported superior visible-light induced 

photocatalytic activities of N-doped and S, N-codoped anatase-rutile nano-heterojunctions.
3,5

 From these 

observations, it was evident that the synthesis of anion-doped titania nano-heterojunctions is necessary 

to obtain a significantly higher visible-light induced antibacterial activity. 
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 Synthesis of nanocrystalline titania possessing very high surface area is a major challenge in the 

area of semiconductor photocatalysis. Conventionally, photocatalysts are produced by the heat treatment 

of amorphous titania precursor.
4,16

 However, high temperature treatment for attaining crystallinity often 

leads to particle agglomeration, poor surface area, extreme particle growth, sintering associated with the 

collapse of mesoporous structure and undesired phase formation.3,16 These result in an apparent decrease 

in the photocatalytic and antibacterial activity. In comparison to a variety of chemical synthesis methods, 

microwave assisted hydrothermal synthesis is a suitable low temperature process to prepare high surface 

area submicron and nano-sized semiconductors.
17-19

 The main drawbacks of microwave and 

conventional hydrothermal methods are the use of organic solvents and the risk of handling pressurized 

containers. Therefore, these methods for the synthesis of nano-sized titania photocatalysts are not 

environmental friendly and industrially viable. These factors demonstrate that the development of an 

aqueous non-hydrothermal (without using pressurized containers) microwave method is necessary for 

the synthesis of titania nanomaterials. To the best of our knowledge, there are no systematic studies 

reported for the non-hydrothermal microwave synthesis of anion-doped titania nano-heterojunctions. For 

the first time, carbon-doped anatase-brookite heterojunction nanoparticles possessing very high surface 

area, visible-light induced photocatalytic and antibacterial activity were synthesized through an aqueous 

non-hydrothermal microwave method. Formation mechanism, electronic structure, physical properties, 

visible-light induced photocatalytic and antibacterial activities of these nanostructured carbon-doped 

heterojunctions were explored. 

2. Experimental methods 

2.1 Microwave Synthesis of Carbon-Doped Heterojunctions. Carbon-doped anatase-brookite 

nano-heterojunctions were synthesized through a low temperature (100 °C) non-hydrothermal 

microwave method. All chemicals were purchased from Sigma Aldrich and used without further 
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purification. In a typical synthesis, titanium tetraisopropoxide (7.5 mL) was added dropwise to an excess 

of deionised water (75 mL) with continuous stirring to form hydrated titanium dioxide. The suspension 

thus obtained was then stirred for 30 min, and irradiated with microwave radiations of power 300 W in a 

microwave oven (CEM-MARS) for various time intervals (10, 20, 40 and 60 minutes). The aqueous 

TiO2 suspension was again stirred for 5 minutes after each 10 minutes of microwave treatment. The 

microwave treated titania samples were then washed with deionised water and dried in an oven at 80 °C 

for 12 h and powdered well using agate mortar and pestle. No external carbon sources were used for the 

synthesis of visible-light active anatase-brookite nano-heterojunctions. Carbon present in the 

heterojunctions was self doped by the decomposition of isopropyl alcohol (formed by the hydrolysis of 

titanium tetraisopropoxide) up on microwave treatment.       

2.2 Characterization Techniques. A Siemens D 500 X-ray diffractometer working with Cu-Kα 

radiation (λ = 0.15418 nm) was used for the phase analysis of anatase-brookite heterojunctions. The 

amount of anatase and brookite present in the heterojunctions were calculated using equation 1 and 

equation 2 respectively.  

 

 

 

 

WA, and WB represent the weight fractions of anatase and brookite respectively. AA and AB refers to the 

integrated intensity of anatase (1 0 1) and brookite (1 2 1) peaks. KA and KB are constants of 0.886 and 

2.721, respectively. Scherrer equation (Equation 3) was used for the precise determination of anatase 

and rutile crystallite sizes in calcined titania samples.  
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Where Φ is the crystallite size, λ is the wavelength of X-ray used; K is the shape factor, β is the full line 

width at the half-maximum height of the main intensity peak and θ is the Bragg angle. Raman spectra of 

heterojunctions were recorded with a Dilor ISA Labram 1 B micro-Raman system equipped with a 514 

nm Ar+ ion laser. Differential scanning calorimetry (DSC) measurements were performed using a 

Rheometric Scientific DSC QC instrument. A Perkin Elmer GX FT-IR spectrometer was used for 

recording the FT-IR spectra (4000-400 cm-1) of titania heterojunctions. A JEOL transmission electron 

microscope (JEM-2100 operating at an accelerating voltage of 200 kV) was employed for the analysis of 

particle-loaded formvar-coated copper grids.    

      The nitrogen adsorption and desorption isotherms were collected using a Quantachrome 

2000e surface area analyzer. The linear portion (P/Po = 0.05-0.2) of the Brunauer-Emmett-Teller (BET) 

model was used for the calculation of specific surface area. Pore diameter and volumes were calculated 

from the desorption branch of the Barret-Joyner-Halenda (BJH) model. A Thermo Fisher Scientific 

(East Grinstead, UK) Theta Probe spectrometer using monochromatic Al-Kα radiation (photon energy 

1486.6 eV) was used for the X-ray photoelectron spectroscopic (XPS) studies. Charge compensation 

was achieved using a low-energy electron flood gun. The binding energies of all of the elements present 

were determined by setting the CC/CH component of the C 1s peak at 284.5 eV. Quantitative surface 

chemical analysis was performed using high-resolution core level spectra after the removal of a 

nonlinear Shirley background. Overlapping signals were analyzed after deconvolution into 30 % 

Gaussian/70 % Lorenzian shaped components. Band gap values were calculated using a Perkin-Elmer 

Lambda 900 UV/Vis/NIR spectrometer equipped with an integrated sphere attachment using BaSO4 as 

the reference. The Kubelka-Munk function F (R∞) (which is equivalent to absorbance) was plotted 

against wavelength, and band gap values were calculated by extrapolating the lower wavelength cut-off 

region. Room temperature photoluminescence spectra of samples were recorded using a Perkin-Elmer 
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Luminescence Spectrometer (LS-55B) at an excitation wavelength of 260 nm. Powder samples were 

dispersed in deionised water (0.01 g in 100 ml) and sonicated for 30 min prior to the analysis. 

2.3 Visible-Light Induced Photocatalytic and Antibacterial Activity Evaluation. Methylene 

blue degradation technique was employed for investigating the visible-light induced photocatalytic 

activity of carbon-doped anatase-brookite heterojunctions.
3-5

 A Q-Sun solar simulator and a primary 

blue filter with a transmission intensity of 45 % at 450 nm (Figure S1) were used for the generation of 

polychromatic visible-light. The filter opaque to 530-680 nm light was intentionally selected to avoid 

the photosensitized and photolytic decomposition of methylene blue. In a typical photocatalytic 

degradation experiment, 50 mL of an aqueous solution of 10
-5 

M methylene blue was stirred well with 

0.06 g of titania powder in a 100 mL glass beaker. The suspension thus obtained was kept under the dark 

for 30 minutes and then irradiated with visible-light (0.68 W/m
2
) with stirring. An air cooler and 

thermostat were connected to the solar simulator to maintain the temperature of suspension at 25 °C. 

Aliquots (3 mL) were withdrawn from the suspension under visible-light irradiation at equal time 

intervals of 1 h and the absorption spectra were recorded using a Perkin-Elmer Lambda 900 

UV/Vis/NIR spectrometer. The photocatalytic rate constant (k) for methylene blue degradation was 

determined from the first order plot using equation 4.  

 

                                                                                  

Where k is the first order rate constant, A0 is the initial absorbance and A is the absorbance after a time 

t. Photocatalytic degradation experiments were repeated three times and the calculated rate constants 

were within 5 % error limit. A control photocatalytic experiment was also performed without using 

TiO2, which confirmed almost no decomposition of methylene blue (Figure S2).  










A

A0ln = kt      (4) 



 

V. Etacheri, G. Michlits, M. K. Seery, S. J. Hinder, S. C. Pillai* ACS Appl. Mater. Interfaces, 2013, 5 (5), pp 1663–1672 

 

 

 

8

In order to evaluate the visible-light induced antibacterial activity, titania powder (0.01 g) was 

stirred with 5 mL of sterile maximum recovery diluent (MRD) for 15 minutes. The resulting suspension 

was then inoculated with 500 µL of overnight grown Staphylococcus aureus ATCC 25923 bacterial 

culture (10
5
 CFU/mL). These inoculated test suspensions were then irradiated with polychromatic 

visible-light (0.68 W/m2) generated by Q-Sun solar simulator and primary blue filter (450 nm). Aliquots 

(100 µL) of test suspension samples were withdrawn at regular time intervals (1 h, 3 h and 5 h), diluted 

and spread on freshly prepared Mueller Hinton agar plates. These plates were kept over night in an 

incubator at 37 °C and bacterial colonies were counted on next morning. Control experiments 

(Staphylococcus aureus + catalyst without light) were also performed. The bacterial inactivation 

efficiency of heterojunctions was calculated using equation 5.  

 

 

Where N0 is the number of colony forming units (CFU) at 0 min, Nt is the number of CFUs after 

irradiation for t minutes, k is the inactivation rate constant and Nt/N0 is the survival ratio.
20

 The survival 

ratio was calculated by normalizing the resultant CFUs on any plate to that on the plate without light 

exposure. Visible-light induced antibacterial experiments were triplicated and the calculated 

Staphylococcus aureus inactivation rate constants were within 10 % error limit. 

 

3. Results and discussion 

3.1. Formation of Carbon-Doped Heterojunctions 

The effect of microwave treatment on the amorphous to crystalline transition and crystallite size 

of titania was investigated using X-ray diffraction (XRD) studies. Absence of any characteristic peaks in 

the diffraction pattern of the precursor material before microwave treatment has confirmed its 

amorphous nature. Amorphous to crystalline transition and an increase of crystallite size was identified 

 
kt

N

N t −=








0
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on microwave treatment (Figure 1A). For example, after 20 minutes of microwave irradiation, the XRD 

pattern consists of peaks corresponding to anatase and brookite phase titania with an average crystallite 

size of 7 ± 2 nm. Whereas 10 minutes irradiation was found to be not sufficient for the formation of 

crystalline titania.  A crystallite growth was also observed with an increase of microwave irradiation 

time, and no significant increase of crystallite size was observed after 10 ± 2 nm, which was achieved 

after 40 min of microwave irradiation. Irrespective of the irradiation time, the crystalline titania contains 

80 % of anatase and 20 % of brookite (peak at 2θ = 31.16).15 The more surface sensitive Raman 

spectroscopic results were also in strong agreement with the phase composition obtained from XRD 

results (Figure 1B). Raman spectra of amorphous titania before microwave treatment were featureless, 

and bands observed at 147, 197, 396, 516 and 638 cm
-1

 for crystalline titania obtained after microwave 

treatment can be assigned to the presence of the major anatase phase.
3-5

 Whereas the additional peaks at 

247, 318 and 366 cm
-1

 are characteristic of brookite phase.
21

 The effect of heat treatment on amorphous 

and microwave treated nanocrystalline titania were investigated using differential scanning calorimetry 

(DSC). Both amorphous and microwave treated crystalline titania samples have endothermic peaks 

below 100 °C (Figure 2A), which represents the removal of water molecules and other volatile 

impurities.
3
 The amorphous titania has an exothermic peaks characteristic of anatase phase 

crystallization at 403 °C. Where as the absence of such exothermic peaks for 20 minutes microwave 

treated titania confirmed its 100 % crystallinity. These results demonstrate that 20 minutes non-

hydrothermal microwave treatment of amorphous titania result in the formation of crystalline anatase-

brookite nano-heterojunctions. The rapid crystallization observed can be attributed to the effective 

molecular level heating resulting from microwave irradiation. 

The effect of microwave treatment on the structure of titanium tetraisopropoxide (TTIP), 

formation of crystalline titania and nature of dopants were also identified from the FT-IR analysis 
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(Figure 2B). TTIP has peaks corresponding to Ti-O bonds at 620 cm
-1

, and peaks at 2920, 1463 and 

1005 cm
-1

 are characteristic of C-H stretching, scissoring and bending modes respectively.
22

 Additional 

peaks at 1371 and 1141 cm
-1

 represent CH3 deformation and C-O stretching of TTIP.
23

 None of these 

peaks were present in the FTIR spectra of microwave treated crystalline titania, which proved the 

complete hydrolysis of TTIP and the phase purity of anatase-brookite heterojunctions. Formation of Ti-

O-Ti network in the microwave treated nanocrystalline titania was detected from the peak at 630 cm-1. 

In addition, existence of carbon as carbonate ions were identified from its distinctive peak at 798 cm-1.24 

A sharp peak at 1623 cm
-1

 and broad peaks at 3000-3600 cm
-1

 are characteristics of bending and 

stretching vibrations of the OH group of surface adsorbed water molecules.
5,25

 Transmission electron 

microscopic images of the heterojunctions have demonstrated the uniform particle size distribution of 

carbon-doped anatase-brookite heterojunctions (Figure 3). In addition, the particle sizes of 

heterojunctions obtained from the TEM analysis were consistent with the average particle sizes obtained 

from the XRD studies. For instance, the average particle size of 60 minutes microwave treated titania 

was 10 ± 2 nm, which was in good agreement with the average particle size obtained from XRD 

analysis. Nitrogen adsorption isotherms of carbon-doped anatase-brookite heterojunctions showed type 

IV characteristics with H1 type of hysteresis (Figure 4). Superior textural properties were observed for 

these titania samples prepared through non-hydrothermal microwave method. For example, the specific 

surface area and the pore volume of the C-doped heterojunctions were significantly higher than the 

standard commercial photocatalyst Evonik-Degussa P-25 (Table 1). As mentioned earlier, maintaining 

the mesoporosity and surface area during amorphous to crystalline transition is a major challenge in the 

synthesis of semiconductor photocatalysts. In the present case, non-hydrothermal microwave treatment 

results in the crystallization of nanostructured carbon-doped anatase-brookite heterojunctions without 

compromising textural properties. For instance, photocatalytically most active heterojunctions obtained 
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after 60 minutes microwave treatment has a surface area and pore diameter of 231 m
2
/g and 4.61 nm 

respectively (Table 1).  

Presence of carbon in the heterojunctions was identified from the X-ray photoelectron 

spectroscopy (XPS) results. In the deconvoluted C 1s high resolution XPS-spectra (Figure 5A), peak at 

285 eV is characteristic of C-C C=C and C-H bonds (adventitious carbon).
3,4

 Additional peaks at higher 

binding energies of 287.5, 289 and 291 eV can be assigned to C-O, C=O and carbon bound to the three 

oxygen atoms in the carbonate ions.
10,26-28

 C 1s peak characteristic of Ti-C bond was absent in these 

XPS-spectra, which rule out the doping carbon in the TiO2 lattice. Independent of the microwave 

irradiation time, all the heterojunctions contains 6 atom % of carbon impurities. The presence of 

carbonate ions in the anatase-brookite heterojunctions was in agreement with the FTIR peak at 798 cm
-1

, 

and previous studies by Sakthivel et al.
10,24

 The Ti/C and O/C ratios of heterojunctions determined from 

XPS results were 3.935 and 9.855 respectively, which are comparable to previous reports of carbon-

doped titania.
29

 Existence of carbon as carbonate ions were further confirmed by Raman spectral 

analysis (Figure 5B inset). Raman bands at 1064 and 1415 cm
-1

 are characteristic of carbonate ions 

present in the carbon-doped heterojunctions.30 It was previously shown that metal oxide semiconductors 

such as TiO2 and ZnO can photo-reduce and decompose carbon materials.6,8,9,31-34 In order to investigate 

the chemical stability of carbon-doped heterojunctions, XPS analysis was performed after 20 hours of 

visible light irradiation (Figure S3). No change in the chemical state of carbon impurities was observed 

for the visible-light irradiated samples, which demonstrate the superior chemical stability of carbon-

doped titania heterojunctions. 

Increased Ti 2p and O 1s binding energies of carbon-doped heterojunctions (Figure S4) in 

comparison to pure titania can be attributed to the formation of bidentate complexes between titanium 

cation and carbonate ions. It is previously reported that in the presence of water, extremely reactive 
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titanium alkoxides hydrolyze and subsequently polymerize to form a three-dimensional amorphous 

oxide network.
16

 The size, stability and morphology of the amorphous titania particles obtained from 

alkoxide is strongly dependent on the H2O:Ti molar ratio. The formation of colloidal TiO2 at a high 

H2O:Ti ratio is of great interest because of the small size of particles (< 100 nm) formed under these 

conditions. These amorphous titania particles obtained can be converted to crystalline titania by proper 

heat treatment. In the present case, microwave treatment of amorphous titanium dioxide nanoparticles 

formed by the hydrolysis of TTIP with excess water (H2O: Ti = 10:1) result in the formation of carbon-

doped anatase-brookite nano-heterojunctions possessing superior textural properties.   

3.2. Electronic Structure of Carbon-Doped Heterojunctions  

Significant red-shift in the UV-Vis absorption spectra was observed for carbon-doped anatase-

brookite heterojunctions compared to pure anatase titania (Figure 5B). The calculated band gap values 

of carbon-doped titania heterojunctions and pure anatase titania were 2.90 eV and 3.16 eV respectively. 

Similar red-shift for carbon-doped TiO2 had been also identified by previous researchers, and visible-

light absorption was attributed to the presence of Ti3+ species and oxygen vacancies formed as a result 

of carbon doping.
10,11

 Based on density state calculations, previous researchers also concluded that C-

atom substitute for O
2-

 in the TiO2 crystal structure, and the band gap narrowing results from the mixing 

of C 2p states with O 2p states (Ti-C bond).
35,36

 It was also previously shown that chemical bonding 

between TiO2 and carbon of graphene sheets can be occurred in a TiO2/graphene composite by 

formation of chemical Ti-C bond.
6,37-40

 In those works, formation of Ti-C bond was distinguished as the 

important parameter in the photocatalytic performance. However, the local density approximation 

(LDA) calculations of anion doped anatase TiO2 conducted recently revealed that the band gaps of anion 

doped TiO2 are actually not narrowing, and the observed visible-light absorption results from the 
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isolated impurity states in the band gap.
41

 These theoretical calculations also proved that lattice doping 

of anions is not necessary for band gap narrowing.  

As identified from the XPS and FTIR studies, carbon-doped anatase-brookite heterojunctions 

contains carbonate ions. Valence band (VB) XPS was also performed in order to investigate the effect of 

carbonate impurities on the electronic structure of titania (Figure 6A). The VB maximum of 1.95 eV 

obtained for the undoped and carbon-doped anatase-brookite heterojunctions was identical to the 

previously reported VB-maximum level of pure anatase titania.
4,5,42

 Moreover, the equal width of their 

VB of 9.5 eV represents almost similar mobilities of the photo-generated charge carriers. These results 

rule out the possibility of band gap narrowing due to mixing of C 2p bands with O 2p bands. The 

electronegativity of dopants atoms is an important factor that extensively determines the nature of 

doping.
3,5,41

 As a result of the low electronegativity of carbon atoms in contrast to oxygen (3.44), only 

poor mixing of C 2p bands with O 2p bands can be expected for C-doped TiO2.
41

 In contrast, three 2 p 

bands of carbon atom still lie in the band gap of TiO2, which can greatly reduces energy for the valence 

band to the conduction band electronic transition.
41

 Therefore, the band gap narrowing for the carbon-

doped anatase-brookite heterojunctions can be explained by the isolated C 2p states of carbonate ions in 

the band gap of TiO2 rather than the C 2p and O 2p mixing theory. Since the band gap value of pure 

anatase and carbon-doped heterojunctions are 3.16 eV and 2.90 eV respectively, the C 2p states should 

be 0.26 eV above the valence band of undoped titania (Figure 6B). It should be noted that XPS peaks 

characteristic of Ti-C bonds (281.9 eV) were absent in the C 1s XPS spectra of the C-doped 

heterojunctions, which rule out the replacement of O
2-

 ions of TiO2 lattice carbon atoms.
35,36

 

Furthermore, slightly higher Ti 2p and O 1s binding energies of carbon-doped heterojunctions compared 

to pure anatase titania exclude the band gap narrowing related to Ti
3+

 ions and oxygen vacancies (Figure 
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S4). Thus it can be concluded that, the additional energy levels created by carbonate ions are responsible 

for the band gap narrowing of the carbon-doped anatase-brookite heterojunctions.  

3.3. Visible-Light Induced Photocatalytic and Antibacterial Study 

Visible-light induced photocatalytic and antibacterial activities of carbon-doped anatase-brookite 

heterojunctions (80 % anatase + 20 % brookite) were significantly higher than the standard commercial 

photocatalyst Evonik-Degussa P-25 (70 % anatase + 30 % rutile). Among the different microwave 

treated samples, photocatalytic activity increased with an increase of microwave irradiation time (Table 

S1), and there was no significant increase in the activity after 40 min of microwave irradiation. Very 

poor photocatalytic activity of the amorphous titania and an increase in the activity up on microwave 

treatment can be related to an increase in the crystallinity during microwave irradiation. The most active 

heterojunction obtained after 60 min microwave treatment exhibited 2-fold higher visible-light activity 

compared to the standard commercial photocatalyst Evonik-Degussa P-25 (Figure 7). The calculated rate 

constants for methylene blue degradation using Evonik-Degussa P-25 and carbon-doped heterojunctions 

were 0.004 min
-1

 and 0.008 min
-1

 respectively. In addition, the increased blue shift of UV/Vis spectra 

during the photocatalytic degradation of methylene blue with carbon-doped heterojunctions (Figure S5) 

can be correlated to the faster dye degradation through N-demethylation mechanism.3-5 Under similar 

experimental conditions, the photocatalytic rate constants of Kronos VLP 7000 titania and brookite 

titania (synthesized by thermolysis of TiCl4) were 0.0028 and 0.0016 min
-1

 respectively (Figure S6).  

Superior photocatalytic activity of Evonik-Degussa P-25 in contrast to Kronos VLP 7000 and 

brookite titania can be attributed to the synergetic effect due to the presence of 70 % anatase and 30 % 

rutile phases in P-25. In order to further confirm the photocatalytic activity of heterojunctions, 

methylene-blue degradation experiments were also performed under visible-light generated by Q-Sun 

solar simulator and a primary green filter with a transmission intensity of 35 % at 525 nm (Figure S7). In 
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this case, Evonik-Degussa P-25 and the most active carbon-doped heterojunction exhibited 

photocatalytic rate constants of 0.001 and 0.007 cm
-1

 respectively (Figure S8). More over, methylene 

blue solution containing heterojunctions appeared to be colourless after 5 hours of continuous visible-

light irradiation (Figure S9). The long term photocatalytic activity of carbon-doped heterojunctions was 

investigated by repeating the methylene blue degradation experiments with the same photocatalyst. After 

20 hours of methylene blue degradation, carbon-doped heterojunctions exhibited 90 % of the initial 

photocatalytic rate constant (Figure S10). These results clearly demonstrate the superior visible-light 

induced photocatalytic activities of carbon-doped anatase-brookite nano-heterojunctions. 

In the absence of visible-light Both Evonik-Degussa P-25 and the most active carbon-doped 

heterojunctions were inactive towards Staphylococcus aureus (Figure 8A and B). On the other hand, 

carbon-doped heterojunctions exhibited significantly higher visible-light induced antibacterial activity in 

contrast to the standard commercial photocatalyst Degussa P-25 (Figure 8C and D). The agar plates 

containing the standard photocatalyst was the bacterial colony rich (116 colonies) after 5 hour visible-

light radiation, whereas those containing the visible-light active carbon-doped heterojunctions contains 

only 3 bacterial colonies. This means that the survival ratio of bacterial colonies in presence of TiO2-xCx 

heterojunctions is much lower compared to that in presence of the standard photocatalyst (Figure 9). 

Photocatalytic inactivation rate constant for Staphylococcus aureus in presence of carbon-doped nano-

heterojunctions and Evonik-Degussa P-25 was 0.0023 and -0.0081 min
-1

 respectively (Figure 9 inset).  

Mild antibacterial activity of Evonik-Degussa P-25 can be related to the visible-light absorption by 30 % 

of small band gap (3 eV) rutile phase. The inactivity of carbon-doped heterojunctions towards 

Staphylococcus aureus in the absence of visible-light confirmed the fact that photo-generated electron-

hole pairs are responsible for the antibacterial activity. 
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The mechanism of UV-light induced bacterial killing using titanium dioxide has been well 

documented.
43,44

 The primary step involves the photo-induced generation of electron hole pairs. Electron 

in the conduction band can reduce O2 to produce superoxide radicals (•O2
−
). Further oxidation of •O2

−
 

by photogenerated holes results in the formation of singlet oxygen (
1
O2).

45
 The hole in the valence band 

can also react with H2O or OH− adsorbed on the surface to produce hydroxyl radicals (•OH), hydrogen 

peroxide (H2O2) and protonated superoxide radical (•HO2). H2O2 in the valence band is reported to be 

resulting from the coupling of two •OH.46 Further reaction of H2O2 with •OH to form protonated 

superoxide radical (•HO2) that function like •O2
−
 to inactivate the bacterial cells.

47
 Thus •OH is 

suggested to play to play a crucial role in the production of H2O2 and •HO2 in the valence band. The 

photo-generated electron-hole pairs and the reactive oxygen species (ROS) resulting from their reaction 

with H2O, OH
-
 and O2 results in the decomposition of bacteria.  

It is reported that the photocatalytic killing mechanism initially damages the surfaces weak 

points of the bacterial cells, before totally breakage of the cell membranes.
43

 The internal bacterial 

components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction 

oxidizes the cell debris. Complete oxidation of Escherichia coli cells to carbon dioxide using UV-light 

active titanium dioxide has been reported previously.48 In the present case, when carbon-doped anatase-

brookite heterojunctions are exposed to visible-light, electrons are promoted from the localized C-2p 

mid-gap level to the conduction band. Various ROS thus generated attacks and decompose the 

Staphylococcus aureus bacterial cells (Figure 10). Reduction of  graphene oxide materials by bacteria 

(in the absence of TiO2) have been recently reported by a number of researchers.
49

 These reports point 

out a serious question regarding the stability of carbon impurities present in visible-light active titania 

during the antibacterial reaction. However in our opinion, electrons, holes and other reactive oxygen 
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species (ROS) produced by visible-light active TiO2 result in the rapid decomposition of bacteria, 

making the bacterial reduction of carbon oxides almost impossible.            

The superior visible-light induced photocatalytic and antibacterial activity of carbon-doped 

anatase-brookite heterojunctions can be explained on the basis of band gap narrowing, nanocrystalline 

nature of titania, improved textural properties and coexistence of multiple phases. It is clear from the 

XRD, Raman, FTIR, XPS and UV-Vis spectroscopy results that the hydrolysis of titanium isopropoxide 

followed by non-hydrothermal microwave treatment result in the formation of carbon-doped anatase-

brookite heterojunctions. In the present study, additional energy levels due to carbonate ions cause an 

effective band gap narrowing, which result in the superior visible-light induced photocatalytic and 

antibacterial activities. In addition, an increase in the surface acidity of TiO2 due to the electron-

withdraws inductive effect of carbonate ions on the Ti
4+

 ion also result in an enhancement of 

photocatalytic activity. Nanocrystalline nature of the heterojunctions may be another critical reason 

responsible for the improved visible-light induced photocatalytic activities. It is clear from the XRD and 

TEM results that the low temperature non-hydrothermal microwave method results in the formation of 

nanocrystalline titania without excessive particle growth. These anatase-brookite heterojunctions 

possess extremely higher surface area, increased pore diameter and superior pore volume compared to 

the Evonik-Degussa P-25 (Table 1). Consequently, these heterojunctions can adsorb and decompose 

methylene blue more efficiently. For example, the most active carbon-doped heterojunction with a 

surface area of 231 m
2
/g adsorb more MB than the Evonik-Degussa P-25 with a surface area of 46 m

2
/g 

(Figure S11). Increased surface area of the heterojunctions can also facilitate effective bacterial 

decomposition by increasing the contact between the catalyst nanoparticles and the bacteria. Thus it can 

be concluded that the improved textural properties of anatase-brookite heterojunctions due to the 
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nanocrystalline nature is a key factor responsible for their superior photocatalytic and antibacterial 

activities. 

In order to investigate the effect of brookite phase on the efficiency of charge carrier trapping and 

their recombination single phase and heterojunction titania samples were subjected to 

photoluminescence (PL) spectroscopy. This technique has been employed previously to investigate the 

fate of photo-excited charge carriers, and demonstrated a strong correlation between the PL intensity and 

the photocatalytic activity.
3-5

 PL spectrum of pure anatase and brookite phase titania has characteristic 

band-band peaks at 386 nm and 378 nm respectively (Figure 11). Band-band PL emission of 

heterojunctions were broad due to its nanocrystalline nature and mixed contribution from individual 

anatase/brookite phases. Additional low-intensity excitonic emission peaks appeared at higher 

wavelengths of 425 nm and 488 nm. Much higher band-band and excitonic PL intensities were 

identified for pure anatase and brookite titania in contrast the photocatalytically most active carbon-

doped anatase-brookite heterojunctions. This demonstrates the fact that the coexistence of anatase and 

brookite phase is responsible for the decrease in PL intensities and superior photocatalytic activity of 

carbon-doped anatase-brookite heterojunctions. 

Phase composition of titania is an important factor determining the PL intensities and 

photocatalytic activity of titania.
3-5,13,14

 Photocatalysis involves the formation of electron-hole pairs 

through the photo-excitation of valence band electrons and their competitive recombination. Any factor 

reducing the electron-hole recombination rate results in a decrease of the PL intensity and an increase of 

the photocatalytic activity. Superior photocatalytic activities of titania heterojunctions related to their 

lower PL intensities have been reported previously.
3,5

 As discussed previously, photocatalytically most 

active carbon-doped heterojunction contains 80 % anatase and 20 % brookite, both possessing an 

average particle size of 10 ± 2 nm. Since the conduction band of brookite phase is ~0.2 eV higher than 
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that of the anatase titania, highly mobile photo-excited electrons (from the mid gap C 2p level) would 

rapidly transfer from the conduction band of brookite to that of anatase and leave the holes behind 

(Figure 11 inset).
50

 This electron-hole separation stabilizes the photo-generated electron-hole pairs and 

slows down the charge carrier recombination, which results in an increase of visible-light induced 

photocatalytic and antibacterial activity. Additionally, photo-excited electrons formed on brookite can be 

transferred to the defect states of the anatase phase. It is therefore proposed that the efficient electron-

hole separation due to brookite to anatase electron transfer is responsible for the superior visible-light 

induced photocatalytic and antibacterial activities of carbon-doped anatase-brookite heterojunctions. 

4. Conclusions 

Carbon-doped anatase-brookite nano-heterojunctions were synthesized for the first time through 

a non-hydrothermal microwave method. XRD and Raman spectroscopic techniques demonstrated 

revealed the fact that a low power microwave (300 W) irradiation for 20 minutes was enough for the 

amorphous to crystalline transition of titania. Presence of carbon as carbonate ions were identified from 

the FTIR and XPS results of heterojunctions. The electronic structure analysis using UV-Vis and 

valence band XPS revealed the fact that the formation of interband C 2p states was responsible for the 

band gap narrowing. The visible-light induced photocatalytic activity of the most active heterojunction 

was 2-fold higher in comparison to the standard commercial photocatalyst Evonik-Degussa P-25. 

Carbon-doped heterojunctions and Evonik Degussa P-25 exhibited Staphylococcus aureus inactivation 

rate constants of 0.0023 and -0.0081 min
-1

 respectively. It has been proposed that the efficient electron-

hole separation at the anatase-brookite interface is responsible for superior visible-light-induced 

photocatalytic and antibacterial activity of carbon-doped anatase-brookite nano-heterojunctions. The 

studies described herein demonstrate that carbon-doped anatase-brookite nano-heterojunctions can be 

effectively utilized for visible-light induced antibacterial applications. 
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Figure 1. (A) XRD patterns of carbon-doped anatase-brookite heterojunctions prepared by microwave 

irradiation (a) before irradiation (b) after 10 min. (c) after 20 min. and (d) after 40 min. and (e) after 60 

min. irradiation (B) Raman spectra of carbon-doped anatase-brookite heterojunctions prepared by 

microwave irradiation for 20 min. (A = anatase, B = brookite) 
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Figure 2. (A) Differential scanning calorimetric pattern of (a) amorphous TiO2 (b) carbon-doped 

anatase-brookite heterojunctions prepared by 20 min. microwave irradiation (B) FT-IR spectrum of (a) 

carbon-doped anatase-brookite heterojunctions prepared by 20 min. microwave irradiation (b) titanium 

tetraisopropoxide 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (A, B) Transmission electron micrograph of carbon-doped anatase-brookite heterojunctions 

prepared by 60 min. 

microwave 

irradiation  
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Figure 4. N2 adsorption-desorption isotherm and the pore size distribution (inset) of  (a) Amorphous 

TiO2 (b) 20 min. microwave irradiated TiO2 (c) 40 min. microwave irradiated TiO2 (d) 60 min. 

microwave irradiated TiO2 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5. (A) C 1s XPS peaks and (B) Optical absorption spectra of (a) anatase TiO2 and (b) carbon-

doped anatase-brookite heterojunctions prepared by 60 min. microwave irradiation. Inset: Raman 

spectra demonstrating the presence of carbonate ions in carbon-doped anatase-brookite heterojunctions 
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Figure 6. (A) Valence band XPS spectra of (a) anatase TiO2 and (b) carbon-doped anatase-brookite 

heterojunctions prepared by 60 min microwave irradiation (B) Electronic structure of carbon-doped 

TiO2 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Photocatalytic kinetic study of visible-light induced methylene blue degradation using (a) 

Evonik-Degussa P-25 and (b) carbon-doped anatase-brookite heterojunctions prepared by 60 min. 

microwave irradiation (error ± 5 %) 
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Figure 8. Bacterial colony growth in presence of titania nanoparticles (A) Evonik-Degussa P-25 without 

visible-light irradiation (B) carbon-doped anatase-brookite heterojunctions without visible-light 

irradiation (C) Evonik-Degussa P-25 with visible light irradiation and (D) carbon-doped anatase-

brookite heterojunctions with visible-light irradiation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Survival ratios as a function of exposure duration for Staphylococcus aureus in presence of 

carbon-doped anatase-brookite (TiO2-xCx) heterojunctions and Evonik Degussa P-25. Inset: kinetic study 
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Figure 10. Mechanism of visible-light induced photocatalytic bacterial killing using carbon-doped 

anatase-brookite heterojunctions 
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Figure 11. Photo luminescence spectra of (a) carbon-doped anatase-brookite heterojunctions prepared 

by 60 min. microwave irradiation (b) brookite TiO2 (c) anatase TiO2. Inset: electron transfer mechanism 

in carbon-doped anatase-brookite heterojunctions 

 

 

Table 1. Textural properties of carbon-doped anatase-brookite heterojunctions (error ± 5 %). 
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       Composition         Surface area 

            (m2/g) 

  Pore diameter            

         (nm) 

Pore volume 

      ( cc/g) 

Amorphous 260 4.28 0.28 

20 min microwave 242 4.32 0.28 

40 min microwave 233 4.63 0.27 

60 min microwave 231 4.61 0.27 

Evonik-Degussa P-25 46 3.89 0.13 
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