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This paper discusses time series approaches, often used by Transmission System Operators (TSOs) to
forecast system demand, and applies them at an individual dwelling level. In particular, two techniques,
Fourier transforms and Gaussian processes were evaluated and used to characterise individual household
electricity demand. The performance of the characterisation approaches were evaluated based on
Pearson correlation coefficient, descriptive statistics and paired sample t-tests for electrical parameters:
Total Electricity Consumption, Maximum Demand, Load Factor and Time of Use of maximum electricity
demand. Finally, a number of time series tests were carried out to ensure certain properties remained
between the original and characterised series.

Both Fourier transforms and Gaussian processes were shown to be suitable techniques for charac-
terising domestic electricity demand. Depending on customer demand load profiles, each approach has
its own strengths and weaknesses. Fourier transforms are better at characterising the profiles of cus-
tomers who consume electricity more evenly across the day (>1 h). In contrast, Gaussian processes are
better at characterising customers whose demand is high for only short periods of time (<1 h)

throughout the day.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The European Union has set ambitious energy related targets by
the year 2020: to cut greenhouse gas emissions by 20%, to improve
energy efficiency by 20% and for 20% of EU energy demand to come
from renewable energy resources. Advanced Metering Infra-
structure (AMI) such as smart meters provide a mechanism to
achieve this by:

e improving network operations and peak load management
through time of use tariffs thus leading to more efficient
electricity generation and therefore helping to reduce green-
house gas emissions

e encouraging energy efficiency by providing real-time infor-
mation on customer demand and;

e provide a smart platform for selling power back and forth to
the grid thus facilitating the installation of renewable energy
generation and electric vehicle integration;

* Corresponding author. Tel.: +353 14023918; fax: +353 14024035.
E-mail address: fintan.mcloughlin@dit.ie (F. McLoughlin).

0360-5442/$ — see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.energy.2012.11.048

The introduction of large scale AMI is a relatively new concept to
the residential sector (within the last 5-10 years). Prior to this, AMI
was usually limited to large electricity consumers such as com-
mercial or industrial end-users, mainly due to cost. However, AMI
technology costs have decreased in the last decade and this, com-
bined with meeting EU 20/20/20 targets has encouraged interest in
the area with national policy makers willing to support smart
metering programmes for reasons outlined above. As a result
a wealth of new information now exists giving detailed electricity
consumption data for large sample sizes in the residential sector.

Also, advances in generation and storage technologies such as
micro-generation and electric vehicles has meant new opportu-
nities now exist for changing how energy is used in the home.
However, to assess the impact of such generation and storage
technologies a detailed understating of how energy is used in the
home is necessary. The smart metering trial carried out by Electric
Ireland (formally Electricity Supply Board) has made this possible
by recording half-hourly electricity demand for over 4200 resi-
dential customers in Ireland.

This paper identifies and summaries time series approaches that
can be used to characterise domestic electricity demand in the
home. Time series methods have rarely been used at an individual

(2013), http://dx.doi.org/10.1016/j.energy.2012.11.048
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dwelling level before and have more commonly been used to
characterise total system demand at an aggregate level. The paper
discusses the advantages and disadvantages of each method as
applied to the domestic sector and evaluates the most promising
techniques.

1.1. Electricity demand profiling

A large body of literature already exists for characterising
aggregate electricity system demand load profiles. However, char-
acterising electricity demand at an aggregate as compared to an
individual dwelling level are two very different tasks. Fig. 1 (dashed
line) shows a typical aggregate profile shape for total system de-
mand for the Irish Transmission System Operator (TSO), Eirgrid, on
the 1st July 2009 over a 24-h period. The profile shows consistent
peaks in the morning, lunch and evening times. The profile shape
varies slightly for different days of the week and over the course of
the year due to seasonality.

In contrast, Fig. 1 (continuous line) shows a distinctly different
electricity load profile shape for a single random dwelling on the
same day of the year. The profile shows a peak in the late morning
around 10 am which lasts until 4 pm in the evening and a later peak
at 10.30 pm that night. This pattern of electricity use across the day is
very different to that of an aggregate system demand, where a more
sporadic use is apparent rather than a gradual smooth profile.

Fig. 2 shows a standard load profile issued by the Meter Regis-
tration System Operator (MRSO) for the Irish domestic electricity
market for the same day. Standard domestic load profiles are used for
the purposes of settlement between suppliers in the electricity mar-
ket and are normalised over the period of one year. There are certain
similarities between Figs. 1 and 2 where the standard domestic
electricity load profile is comparable to both total system demand and
individual dwelling load profiles in terms of its shape. This is a result of
the methodology used to derive standard load profiles which is based
on a regression of mean electricity demand of a sample of dwellings
against various environmental and weekday parameters [1].

However, typical domestic electricity load profiles are far more
variable than that shown in Fig. 2 and can change in the time (on
a day to day basis) and space domain (between customers). Fig. 3
shows a single customer over a weekly period from 1st to 7th
July 2009. On a daily basis, the profile shape can change sig-
nificantly from one day to the next in terms of the magnitude of
electricity demand and the time at which it is used.

4

Similarly the profile shape can change significantly between
customers. Fig. 4 shows nine different customer profiles at random
for the 1st July 2009. The figure shows how the profile can change
considerably between customers in both magnitude and time of
use of electricity demand.

A seasonality component also exists within a domestic elec-
tricity load profile, mainly a result of changes in external temper-
ature and daylight hours for heating (albeit small in Ireland due to
limited penetration of electric heating) and lighting homes
respectively. This trend is shown in Fig. 5 where half-hourly periods
for an individual customer are plotted across the year (1st July 2009
to 30th June 2010). A quadratic polynomial function is fitted to the
data in order to show the seasonality trend where average elec-
tricity demand increases (by as much as 200 W) for the winter
period. Daily peaks are also evident from the figure, increasing in
magnitude during the winter. This trend is characteristic of the
typical change in profile shape over a yearly period for customers
living in Ireland. Total annual electricity consumption for this par-
ticular customer was 4537 kWh over the period which corresponds
with the average in Ireland. Fig. 5 also shows a period of approx-
imately two weeks in April where electricity demand decreases to
near zero. This period is very different to any other time of the year
and most probably identifies a time when the dwelling was
unoccupied.

Therefore, in order to characterise each individual domestic
electricity load profile successfully, an approach needs to consider
the following key factors:

O diurnal variations in electricity demand (Figs. 3 and 4);

O intra-daily variations in electricity demand (Fig. 3);

O electricity demand variations between customers (Fig. 4); and
O seasonal electricity demand effects (Fig. 5)

The scope of this paper is primarily focussed on characterising
the diurnal variations for individual customer demand load profiles
as their highly variable nature makes them the most difficult to
characterise effectively.

2. Methodology

Time series approaches have been used extensively for modelling
aggregate electricity system demand as shown in Fig. 1 (dashed line).

T
\

Domestic Electricity Demand (kW)
~

I\/\_MMK_/‘\/‘J

; 4000

1
Aggregate Total Electricity System Demand (MW)

1 I 1 I L L
0 00:30 02:30  04:30 0630 08:30 10:30 12:30

I I I 1 I
14:30 16:30 18:30 20:30 22:30

Time of Day

Fig. 1. Daily electricity load profile for total system demand (dashed line) and an individual dwelling (continuous line) across a 24-h period on 1st July 2009 (source: Eirgrid and

Smart Metering Data).
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Fig. 2. Daily electricity standard load profile for urban domestic across a 24-h period on 1st July 2009 (source: MRSO).

However, their use at an individual domestic scale has been some-
what limited, mainly due to the historic lack of data at this level.

In order to characterise electricity demand in a presentable
format, four electrical parameters were used from a previous paper
by the same authors [2]. These were found to reflect the main
characteristics of household electricity use such as Total Electricity
Consumption, Maximum Demand, Load Factor and Time of Use of
maximum electricity demand and are presented in Eqs. (1)—(4),

EtotaL is the total amount of electricity consumed over a yearly
period in kWh where E; is average electrical demand in kW for each
half hour period and [ is the total number of half-hourly periods
over the year.

l
Etota = 1/2ZEi (1)

i=1

demand in a day, averaged over the year where E; is average elec-
trical demand in kW for each half hour period, n is the total number
of periods in a day and m is the total number of days in the year.

1 & .
Emp = ﬁ]; max{E;,1<i<n} (2)

Daily load factor, Eif is a ratio and is shown in Eq. (3) below,
where E; is average electrical demand in kW over each half hour
period, n is the total number of periods in a day and m is the total
number of days over the year. It is a measure of daily mean to daily
maximum electrical demand and is a measure of the “peakyness” of
a customer’s load profile.

l n
1 EZEi
ELF:_Z =1 (3)

Eq. (2) describes mean daily maximum demand, Emp over m ~ max{E;,1 <i<n}
a yearly period in kW. Eyp refers to the largest value of electrical
4 4 b
" 31 Monday 31 Tuesday ) Wednesday
2 2
M W,JJV\f\f-ﬂ 2
1 1 \
0 1] 0
06:30 12:30 06:30 06:30 12:30 18:30 06:30 1230 18:30
4 4 4
5| Thursday Friday 3 Saturday
Electricity
Demand 2 2 2
"o AN ‘ MW/\JJU\/\M
0 0 0
06:30 12:30 18:30 06:30 12:30 18:30 06:30 1230 18:30
4
3| Sunday
2
i WMW\
0
0530 1230 1830
Time of Day -

Fig. 3. Daily electricity load profiles for a single randomly chosen customer over a weekly period showing intra-daily variations.
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Ay 4 4
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(k\N) 2 /\A/\/J\/\—v\}\/\ 2 A\J\,\“/\Jw 2
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Fig. 4. Daily electricity load profiles for nine randomly chosen customers illustrating variation between dwellings.

A maximum Time of Use (ToU) parameter, Eroy over a yearly
period is defined by Eq. (4) below where E; represents average
electrical demand in kW over each half hour period and jmax cor-
responds to the time in which maximum electricity demand occurs
across the daily period (where 1 = 00:00—00:30 and 48 = 23:30—
00:00), n is the total number of intervals in a day and m is the total
number of days in the year. ToU indicates the time of day at which
maximum electricity demand occurs.

Eroy = mOde{jmax

< m}}

Ejmax = maX{El’l +n(j_1) SIS n,l S]

(4)

A paired sample t-test was used to compare electrical parame-
ters between the characterised and original time series. A number

6 T T T T T

of assumptions were made such that: the observations are inde-
pendent and that the differences between the paired samples are
normally distributed. In addition, a number of tests were carried
out to ascertain whether certain temporal properties remained
between the original and characterised time series. These were first
presented in a previous paper by the same authors [3] and include
probability distribution function, autocorrelation function and
a spectral periodgram. In conjunction with Egs. (1)—(4), the authors
found the tests to be central to establishing the suitability of each
technique for electricity load profile characterisation.

When characterising aggregate electricity system demand load
profiles a number of key performance indicators are used to mea-
sure the accuracy of approaches: mean absolute error, root mean
squared error, mean absolute percentage error and root mean
squared percentage error. The most commonly used performance
indicator for measuring accuracy of electricity system demand

y=- 4.2¢-009% + 7.3¢-005'x + 0.31

FS

Electricity Demand (kW)
w

[N

—— half hourly electricity demand
«quadratic polynomial

h

Feb Mar April May June

Time of Year

Fig. 5. Electricity load profile for a single randomly chosen customer over a yearly period.
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forecasts is mean absolute percentage error (MAPE). However, this
parameter is unsuitable for measuring the performance of the
characterisation process with domestic loads due to the highly
variable nature of individual dwelling level demand leading to very
high errors. Instead, the performance of the time series technique is
measured by correlating the original and characterised time series
as described by Eq. (5) where pyy is the correlation coefficient be-
tween two variables X and Y with expected values uy and py, and
standard deviations o and gy.

pxy = corr(X,Y) = co:}(::;Y) = E[(X_";);L(:_HY)} (5)

The data used in the analysis was taken from a set of 345,645
residential households in Ireland. The set was divided into six
groups based on total annual household electricity consumption to
ensure an even spread of electricity consuming customers. An ini-
tial sample of 5574 was drawn on a randomised basis across all
profiles. This was subsequently reduced to 5375 households by
targeting certain groups to improve the representativeness of
dwelling and socio-economic variables within the sample size. A
control group sample size of 1170 customers was used to bench-
mark domestic electricity use across a yearly period. A final sample

size of 509 households from the control group was used, once non-
continuous data (a result of technology communication errors)
were removed. Anonymised half-hourly electricity demand data
were recorded over a twelve month period from 1st July 2009 to
30th June 2010.

3. Method selection and discussion

Based on the literature, the majority of time series approaches
for electricity load profiling can be grouped under the following
headings: Fourier transforms, Neural networks, Gaussian processes,
Autoregressive, Fuzzy logic, Wavelets and multiple Regression/
Probabilistic. The literature associated with these methods is
summarised in Table 1 where the main advantages and disadvan-
tages for each approach is presented. Table 1 also indicates whether
each approach was applied at an aggregate or individual dwelling
level before and the time resolution at which it has been applied.

As discussed in Section 1.1, in order to characterise domestic
electricity load profiles effectively an approach needs to consider
the diurnal, intra-daily, seasonal and demand variations between
customers. Therefore, ideally it would be advantageous to charac-
terise domestic load profiles based on the temporal and magnitude

Table 1
Advantages and disadvantages by approach for electricity load profiling.
Characterisation type  Applied to Applied to Time Time resolution —  Advantages Disadvantages
aggregate individual resolution — Low (>1h)
demand dwelling High (<1 h)
demand
Fourier Series Yes [4—6] No Yes [4,5] Yes [6] Temporal and magnitude Fourier transforms are
components represented poor at characterising
in the variable coefficients small “sharp” intervals
with the latter scalable. of electricity demand.
Neural Networks Yes [7-9] Yes [10—12] Yes [7—9] Yes [10—12] Good at characterising Black box approach.
highly non-linear Variable coefficients
relationships such as do not represent the
domestic electricity temporal and magnitude
load profiles. components of an
electricity load profile.
Gaussian Processes Yes [13—15] No Yes [13—15] No Good at approximating Less good at approximating
small intervals of “sharp™ “smother” average
electricity demand. electricity demand profiles.
Autoregressive (incl. Yes [16—19] Yes [3,20] Yes [3,16,18—20] Yes [17] Widely used in aggregate Variable coefficients vary
Markov chain) electricity system demand unpredictably with small
load profiling. Markov changes in profile shape
chains are able to characterise and don’t represent
the variable component of temporal and magnitude
domestic electricity load profiles. components. Markov
chains unable to
characterise the temporal
component unless each
half hour period is
characterised separately
(i.e. leading to a large
number of variables).
Fuzzy Logic Yes [21-23] No Yes [21-23] No Cause and effect clearly Temporal component
defined between input not characterised unless
and output. each half hour period
characterised separately.
Wavelets Yes [24—-27] No Yes [24—-27] No High and low frequency The time series is
components represented effectively split in half,
by two different series with each section
analogous to base load characterised separately
and peak load for thus doubling the
electricity load profiling. number of variables
required.
Multiple Regression/ Yes Yes Yes Yes [30,31,38] Widely used for generating Load profiles tend to be
Probabilistic [28—31] [1,32-38] [1,28,29,32—37] standard load profiles average rather than variable

(as shown in Fig. 2)

unless each half-hourly
period is characterised
separately.

(2013), http://dx.doi.org/10.1016/j.energy.2012.11.048
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Table 2 Table 4
Descriptive statistics for mean Pearson’s correlation coefficient. Descriptive statistics for paired sample t-test for total electricity consumption.
Characterisation Mean Median Standard Maximum  Minimum Paired samples Mean Standard  Std. Error ¢ Sig.
method deviation deviation mean (2-tailed)
Fourier Transforms 0.8743 0.8761 0.0418 0.9878 0.6774 Original-Fourier 0.0009 0.0164 0.0007 1.2140 0.2250
Gaussian Processes  0.9447 0.9473 0.021 0.9931 0.7843 Time Series
Original-Gaussian ~ 98.5679  57.4282 2.5455 38.7230  0.0000
Time Series

properties of the time series since this will result in cyclical pat-
terns (i.e. diurnal, intra-daily, etc.) being captured in the variable
coefficients. This would also allow demand variations between
customers to be investigated by determining the influence of
dwelling and occupant characteristics on the load profile shape
throughout the day, however, this is beyond the scope of the paper.
In addition, it would also be of benefit if the characterisation pro-
cess were as simple as possible. The smaller the number of variables
used to represent the electricity load profile, without sacrificing
accuracy will ultimately lead to a simpler characterisation of the
time series overall. Also, keeping the number of variables small, will
generally lead to a less computationally demanding characterisa-
tion process.

The principal advantage of Fourier transforms is their ability to
characterise the temporal and magnitude components within the
data, with the latter scalable, an additional desirable quality [4].
This means that comparable profile customers that show similar
patterns of electricity use can be grouped together. The dis-
advantage with Fourier transforms, as will be seen later, is that they
have difficulty characterising small intervals of large electricity
demand [39]. Neural networks are especially good at characterising
non-linear relationships and are therefore well suited to the highly
variable nature of domestic electricity load profiling. However, they
are seen as a black box approach and it is often difficult to establish
a relationship between input and output [23]. This is not ideal,
particularly in this case where a clear understanding of the change
in profile shape across the day is required. The structure is often
quite complex too, involving multiple neurons and layers that
require a significant number of variables to describe the daily load
profile accurately. Nor do the variable coefficients reflect the tem-
poral and magnitude components of the electricity load profiles;
rather they represent the weights and biases of input to output for
the time series. In contrast to Neural networks, Fuzzy logic has the
advantage that the relationship between input and output is clearly
defined [23]. However, the number of variables required to char-
acterise the output is usually large, particularly when the load
profile shape changes considerably across a daily period.

In contrast to Neural networks, Gaussian processes provide
a much simpler representation of the load profile shape. Each
profile is characterised by three moments: mean; variance; and
a weight coefficient that describe each probability distribution [13].
Compared to Fourier transforms, Gaussian processes can suffi-
ciently characterise small intervals of large electricity demand.
However, it must be noted that the characterisation order needs
careful consideration as if it is too high redundant distributions will
lead to over fitting and if it is too low the profile peaks will not be

fully represented. Autoregressive approaches are well established
in electricity system demand load profiling. They are usually
combined with a moving average process to form an autoregressive
moving average (ARMA) or autoregressive integrated moving
average (ARIMA). Due to the highly variable nature of individual
domestic loads, autoregressive processes find it difficult to char-
acterise without using high order methods, leading to a large
number of variables. The variable coefficients also vary significantly
with small changes in load profile shape and this makes it difficult
to group or compare customers [4]. Another type of autoregression,
Markov chains can characterise the highly variable nature of a do-
mestic load profiles; however, they have difficulty capturing the
temporal properties unless a large number of variables are used to
represent each half hour period in a day [3].

Wavelets are similar to Fourier transforms as they apply the
same spectral decomposition technique. However, their advantage
over Fourier transforms is the separation of the electricity load
profile into high and low frequency components before applying
the transform. This results in two or more characteristic curves
representing distinctly different patterns of electricity use for in-
dividual customers. The advantage in doing this is that certain
dwelling and occupant characteristics have different periods of
influence over electricity consumption in the home [26]. However,
the disadvantage is that it effectively doubles the number of vari-
ables required to characterise the time series.

Finally, multiple regression is a technique that has been used
extensively in electricity load profiling. Similar to autoregression it
is most often applied at an aggregate level for system demand load
forecasting and with time intervals greater than one day. It is the
method of choice for the UK grid operator, National Grid, to develop
standard load profiles for the purposes of electricity settlement as
discussed earlier [1]. However, a large amount of variables are
required to characterise these which are in effect average load
profiles, such as that shown in Fig. 2. Monte Carlo analysis is the
most common probabilistic approach to load profile characterisa-
tion. The advantage of this technique is that it is ideal for generating
variable load profiles and so is well suited to domestic electricity
load characterisation. However, using Monte Carlo to characterise
domestic loads would require each half hour interval to be repre-
sented independently with a probability distribution function
leading to a large number of variables.

Overall, Fourier transforms, Wavelets and Gaussian processes all
appear to represent the temporal and magnitude components
sufficiently within the variable coefficients. Fuzzy Logic,

Table 3
Descriptive statistics for mean total electricity consumption.
Characterisation Mean Median Standard Maximum Minimum Scale Shape
method deviation parameter (n)* parameter (B)?
Original Time Series 4146 kWh 4008 kWh 1870 kWh 9651 kWh 414 kWh 4687 2.38
Fourier Transforms 4146 kWh (0%) 4008 kWh (0%) 1870 kWh (0%) 9651 kWh (0%) 414 kWh (0%) 4687 (0%) 2.38 (0%)
Gaussian Processes 4047 kWh 3903 kWh 1835 kWh 9462 kWh 413 kWh 4576 237
(—2.39%) (—2.62%) (-1.87%) (—1.96%) (—0.24%) (-2.37%) (—0.42%)

2 Weibull Probability Distribution Function.

(2013), http://dx.doi.org/10.1016/j.energy.2012.11.048
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Table 5
Descriptive statistics for mean customer daily maximum demand.

Characterisation method Mean Median

Standard deviation Maximum

Minimum Scale parameter (1)* Shape parameter ($)*

Original Time Series 2.34 kW 2.29 kW 0.92 kW

Fourier Transforms
Gaussian Processes

1.68 kW (—28.21%) 1.66 kW (—27.51%) 0.68 kW (—35.29%) 3.89 kW (—58.87%) 0.09 kW (—55.56%) 1.8904 (—28.10%)
223 kW (—4.70%) 2.20 kW (~3.93%) 0.88 kW (~4.35%) 5.99 kW (—3.07%) 0.13 kW (~7.14%) 2.5082 (—4.61%)

6.18 kW 0.14 kW 2.6293 2.7425
2.6885 (—1.97%)

2.7394 (~0.11%)

2 Weibull Probability Distribution Function.

Table 6
Descriptive statistics for paired sample t-test for maximum demand.

Paired samples Mean Standard  Std. Error ¢t Sig.
deviation = mean (2-tailed)
Original-Fourier 0.6554 0.3094 0.0137 47.7900  0.0000
Time Series
Original-Gaussian ~ 0.1053  0.0680 0.0030 34.9490 0.0000
Time Series

Autoregressive, Neural Network and Regression also have this
capability but would require each half hour period to be charac-
terised independently by at least a single variable. This is a dis-
advantage as a minimum of forty eight variables would be required
to characterise the temporal and magnitude components for each
of these methods. Autoregressive approaches such as ARIMA have
been used extensively in the past to forecast aggregate electricity
system demand for markets all around the world. The Moving
Average (MA) component lends itself well to characterising the
smooth transitions between half-hourly periods which is typical of
aggregate electricity system demand load profiles as shown in Fig. 1
(dashed line). However, this component is not as well suited to
individual residential applications where electricity consumption
changes very quickly over short periods of time. Regression, Prob-
abilistic and Fuzzy logic techniques all take a descriptive approach
and are deemed unsuitable in this instance as too many variables
would be required to characterise the load profile shape. Neural
networks are notoriously complex requiring a number of variables
to represent the weights and biases at different layers to charac-
terise the output successfully. As a result it is difficult to compare
variable coefficients between customers because of this compli-
cated architecture. Wavelets use Fourier transforms to decompose
the time series into high and low frequency components so
therefore there is some overlap between these two methodologies
with the former requiring double the amount of variables.

Due to the fact that both Fourier transforms and Gaussian pro-
cesses appear to be complimentary to each other, as well as being
able to characterise the temporal and magnitude components with
a relative small number of variables, both approaches were eval-
uated in the next section. In both cases an eighth order character-
isation process was applied to the data.

4. Results and discussion

The following section presents characterisation results for
both Fourier transforms and Gaussian process time series tech-
niques. Both approaches were used to characterise half-hourly

Table 7
Descriptive statistics for mean customer load factor.

electricity demand on a daily basis over the entire year for each
individual customer. Table 2 shows descriptive statistics for mean
Pearson’s correlation coefficient between the original and the
two characterised time series for all customers over the entire
year. Both characterisation approaches performed well with
Gaussian processes on average 7% more accurate than Fourier
transforms.

A number of electrical parameters were calculated using Egs.
(1)—(4) from the original data and both characterisation tech-
niques, with the results shown in Tables 3—9. Percentage error is
calculated with the following equation (%error=((Character-
ised—Original)/Original)*100%) between original and characterised
parameter values and is shown in brackets in the following tables. A
Weibull probability distribution function was found to be the best
fit to parameters Total Electricity Consumption and Maximum
Demand whereas a Log-Logistic probability distribution function
was found to be the best fit to Load Factor.

Table 3 shows descriptive statistics for mean Total Electricity
Consumption for all customers over the yearly period. Both Fourier
transforms and Gaussian processes characterised parameter Total
Electricity Consumption with less than 5% percentage error. Fourier
transforms produced accurate results, with errors less than 1/10th
of a percent. This is not surprising since Fourier transforms employ
a data integration process. Gaussian processes on the other hand
was less accurate but still within acceptable limits overall (<5%
percentage error).

Table 4 shows results for a paired sample t-test between the
original and characterised time series for parameter Total Elec-
tricity Consumption. A 2-tailed significance value of 0.225 for
Fourier transforms indicates that there is little difference between
the original and characterised parameters. This finding is supported
by the small differences observed between the means and standard
deviations of the Fourier transforms. In contrast, results for Gaus-
sian processes indicate that there is a significant difference be-
tween the characterised and original time series for the same
parameter.

Table 5 shows results for mean daily Maximum Demand for all
customers over the year. Fourier transforms were poor at capturing
the daily peak demands characteristic of almost all individual
dwellings. Descriptive statistics in Table 5 show percentage errors
in excess of 20% for Fourier transforms, with the largest errors at
the extremities for Maximum and Minimum. In contrast, Gaussian
processes were better at characterising this parameter with per-
centage errors of less than 5% in most instances. This highlights one
of the more significant advantages of this particular characterisa-
tion method over Fourier transforms, which will be discussed fur-
ther later.

Characterisation method Mean Median Standard deviation Maximum Minimum Scale parameter (1)* Shape parameter (f)*
Original Time Series 23.23% 22.35% 5.76% 48.69% 11.29% —1.4935 0.1299

Fourier Transforms 31.79% (36.85%) 30.76% (37.63%) 6.59% (4.41%) 66.72% (37.03%) 18.05% (59.88%) —1.1703 (-21.64%)  0.109 (—19.17%)
Gaussian Processes 24.74% (6.5%) 23.74% (6.22%)  6.54% (13.54%) 51.76% (6.31%)  11.89%(5.31%) —1.434 (—3.98%) 0.138 (6.24%)

¢ Log — Logistic Probability Distribution Function.

(2013), http://dx.doi.org/10.1016/j.energy.2012.11.048
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Table 8 Gaussian processes percentage errors on the other hand were
Descriptive statistics for paired sample ¢-test for load factor. slightly greater and on average tended to predict peak time elec-
Paired samples Mean Standard ~ Std. Error ¢ Sig. tricity use slightly earlier in the evening. However, because the
deviation mean (2-tailed) parameter has a bi-modal distribution such descriptive statistics do
Original-Fourier ~ —0.0829  0.0228 0.0010 -81.9350  0.0000 not show the full extent of the variation. As a result, a probability
Time Series distribution function was not fitted to the Time of Use parameter
O”_ﬁ'r?lael‘sce:;SSS'an -00123 00109 00005 -25.5020 0.0000 and a paired sample t-test was not carried out as it would break the
assumption of normality between the characterised parameter

values.

Table 9 Therefore, in order to test the temporal properties of the time

Descriptive statistics for mean customer time of use, (ToU) for daily maximum de-
mand (where 1 = 00:00—00:30 and 48 = 23:30—00:00).

Median Standard deviation

Original Time Series 30.7 31.16 3.52
Fourier Transforms 3144 (2.41%) 31.84(2.18%) 3.62(2.84%)
Gaussian Processes 29.63 (—3.49%) 29.91 (—4.01%) 3.3 (—6.25%)

Characterisation method Mean

Table 6 shows a paired sample t-test for Maximum Demand
parameter. As discussed above, Gaussian Processes were better at
representing the characteristics of this parameter. However, the
results also show that the Maximum Demand parameter for both
characterised time series were significantly different from that of
the original time series at the 95% p-value level.

Table 7 presents results for mean Load Factor for all customers
over the yearly period. It can be seen that, Fourier transforms were
unable to accurately characterise mean customer Load Factor with
percentage errors exceeding 30% in most instances. However, this is
not surprising as Load Factor is a function of Maximum Demand.

Table 8 shows results for a paired sample t-test for the Load
Factor parameter. Fourier transforms over estimated Load Factor
compared to the original time series more than Gaussian processes.
The results show that Gaussian processes are better at representing
Load Factor but the t-test shows that both time series techniques
were significantly different compared to the original data at the
95% p-value level.

Table 9 shows results for mean Time of Use (ToU) for daily
Maximum Demand for all customers over the yearly period. Fourier
transforms appear to be the more accurate of the two techniques,
with less than 3% percentage error, but tended to overestimate its
value indicating later use of maximum electricity demand.

series more rigorously a number of additional tests were also car-
ried out. For example domestic electricity demand could be char-
acterised by a simple Monte Carlo simulation where a customer’s
load over a daily period is represented by a probability distribution
function and could theoretically produce accurate parametric re-
sults for: Total Electricity Consumption, Maximum Demand and
Load Factor. However, equally important to characterising magni-
tude of domestic electricity demand is the timing of its use. The
Time of Use (ToU) parameter tests for the occurrence of maximum
electricity demand but does not test for other periods of use. The
Autocorrelation function and Spectral Density Periodgram test
these properties for the time series.

A period of one day, 1st July 2009, is chosen for two random
customers to illustrate graphically typical characterising perfor-
mance for both Fourier transforms and Gaussian processes and is
shown in Fig. 6. Customer 1, shown on top in Fig. 6 shows both
techniques replicating the time series within a reasonable degree of
accuracy across the daily period. It is interesting to note that
Gaussian processes were unable to sufficiently replicate the late
peak at night at around 11 pm. In contrast, Customer 2, shown on
the bottom of Fig. 6, shows a slightly different profile shape with
three distinct short periods of electricity demand across the day.
Gaussian processes almost identically replicate these peaks with
Fourier transforms showing a smoother demand load profile at the
same times. This shows the main difference between the two
characterisation approaches already mentioned above. Due to their
nature, Fourier transforms tend to be better at characterising pro-
files where electricity is consumed more evenly over a number of
hours in the day. In contrast Gaussian processes are better at
characterising short intervals of high electricity consumption
(<1 h) across the day. Therefore depending on the customer
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Fig. 6. Time series plot of daily electricity demand on the 1st July 2009 for two random customers.
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Fig. 7. Frequency histogram of electricity demand for a random customer between 1st,and 7th July 2009.

electricity demand profile shape and end-user requirements each
characterisation approach has its advantages.

Fig. 7 shows a frequency histogram over a weekly period for
a single random customer. It is evident from Fig. 7 that Fourier
transforms have difficulty replicating sharp high electricity peaks,
as already discussed. However, aside from this both approaches
replicate the magnitude component of the electricity load profile
well. A disadvantage of both techniques is that they show negative
values of electricity demand which is clearly an unrealistic situation
where no on site generation exists. However, the frequency
occurrence of negative values is small and where it does occur, is
very low in magnitude.

In terms of temporal properties, both characterisation tech-
niques performed well. This is illustrated in Fig. 8 with the auto-
correlation function where both Fourier transforms and Gaussian
processes follow the original data over the weekly period from 1st
to 7th July 2009 for an individual random customer. The first
autocorrelation coefficient is excluded in Fig. 8 as this represents
perfect correlation when the time series is regressed onto itself

with a zero time lag. Subsequent coefficient values for the weekly
period fall between +0.4. A value of 1 represents perfect correlation
of the time series, O indicates no correlation and —1 represents
anti-correlation. As Fig. 8 shows, a highly cyclical pattern of elec-
tricity demand over a 24 h period is apparent. Both Fourier trans-
forms and Gaussian processes were able to replicate this pattern,
however, both approaches tended to either over estimate or un-
derestimate the peak values.

Fig. 9 shows the Power Spectral Density Periodgram for 1st July
2009 for a random customer, as calculated by the Fast Fourier
Transform. The figure illustrates that both Fourier transforms and
Gaussian processes can represent the series in the frequency
domain, thus confirming that the temporal properties are retained
between the original and characterised times series. The high
spectral density component near the origin is the daily period (1/
(60 s x 3030 min x 48 periods)) for the time series. The cyclical
daily electricity demand pattern is typical of all dwellings with
some customers having smaller frequency patterns throughout the
day.

04 T T T
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Fig. 8. Autocorrelation coefficients for electricity demand for a random customer between 1st,and 7th July 2009.
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Fig. 9. Single-sided spectral density for electricity demand for a random customer on 1st July 2009.

Overall both Fourier transforms and Gaussian processes char-
acterised the highly variable nature of domestic electricity demand
profiles well. The most significant advantage to both these tech-
niques is their ability to replicate the temporal characteristics of
domestic electricity demand patterns with a minimum of half the
number of variables compared to if each half hour period was
characterised independently. In addition, both approaches have
variable coefficients that are scalable which means they bear some
resemblance to the magnitude and temporal characteristics of an
electricity load profile. This effectively means that dwelling and
occupant characteristics can be compared against variable co-
efficients for individual dwellings and their influence on the elec-
tricity load profile shape quantified, if required.

5. Conclusion

This paper discusses a number of time series approaches to
electricity load profile characterisation at an individual dwelling
level. The most promising time series techniques are evaluated and
the results presented. This approach was taken so as to take
advantage of the large body of literature that already exists in the
area of aggregate electricity system demand load profiling but has
yet to be applied at an individual dwelling level before.

Fourier transforms and Gaussian processes showed the greatest
potential for characterising domestic electricity demand load pro-
files. Each technique was evaluated based on correlating the orig-
inal and characterised time series as well as comparing certain
electrical parameters. Descriptive statistics were presented for the
parameters and a number of time series tests carried out. Fur-
thermore, paired sample t-tests were also carried out in order to
compare the differences between original and characterised elec-
trical parameters.

Overall, Gaussian processes were found to be the more accurate
of the two techniques when compared using mean Pearson’s cor-
relation coefficient. The two characterised time series were then
compared using descriptive statistics and paired sample ¢-tests for
four electrical parameters: Total Electricity Consumption, Max-
imum Demand, Load Factor and Time of Use. Total Electricity
Consumption was successfully characterised using Fourier trans-
forms, with very small percentage error (less than 1/10th of

a percent) and was found not to be significantly different at the 95%
p-value level to that calculated from the original time series. Fourier
transforms on the other hand were less successful at characterising
Maximum Demand, where a mean percentage error of 28% was
recorded. In contrast, Gaussian processes were more successful at
replicating this parameter, with a much smaller percentage error of
less than 5%, however, both were found to be significantly different
than the original time series. Similar results were calculated for
Load Factor for both Fourier transforms and Gaussian processes.
Fourier transforms out-performed Gaussian processes marginally
when calculating Time of Use of maximum electricity demand,
with the former over-estimating the time (i.e. later in the day) and
the latter underestimating (i.e. earlier in the day) however this is
most likely skewed by the presence of a bi-modal distribution for
the parameter.

In addition, a number of tests were also carried out and pre-
sented graphically to determine whether the characterised time
series were temporally representative of the original data.
Depending on the electricity demand pattern of the customer, each
approach had individual strengths. Fourier transforms were better
at characterising customers who consumed electricity more evenly
across the day whereas Gaussian processes were superior at
describing customers who consumed higher amounts of electricity
over shorter time intervals. As a result Fourier transforms often
underestimated Maximum Demand for individual customers. The
autocorrelation and spectral properties remained between the
original and characterised time series thus showing that the tem-
poral properties remained for both techniques.
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