

Technological University Dublin ARROW@TU Dublin

Presentations

Engineering: Education and Innovation

2013-12-06

Comparison of Finite Difference and Finite Element (Telemac) Models of Dublin Bay

Garrett Keane Technological University Dublin, garrett.keane@tudublin.ie

Zeinab Bedri University College Dublin

John O'Sullivan University College Dublin

Follow this and additional works at: https://arrow.tudublin.ie/engineducpres

Part of the Bioresource and Agricultural Engineering Commons

Recommended Citation

Keane, G. (2013) Comparison of Finite Difference and Finite Element (Telemac) Models of Dublin Bay, Joint Symposium of Irish Mechanics Society & Irish Society for Scientific & Engineering Computation, Advances in Mechanics, at School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland.

This Other is brought to you for free and open access by the Engineering: Education and Innovation at ARROW@TU Dublin. It has been accepted for inclusion in Presentations by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

Comparison of Finite Difference (SW2D) and Finite Element (Telemac) Models of Dublin Bay

Garrett Keane^{1,2}, Zeinab Bedri¹, John O'Sullivan¹, Michael Bruen¹

¹School of Civil, Structural and Environmental Engineering, UCD ²School of Civil and Structural Engineering, DIT

Centre for Water Resources Research

Context of Study

- CWRR, UCD (Centre for Water Resources Research)
- Dublin Bay Hydrodynamic/Water Quality Models
- Qiang (93) Dublin Bay Water Quality Management Plan
- Hussey (96) SW2D Extended Area
 - Eulerian-Langrangian 2D Finite Difference Model
 - Dublin Bay Water Quality Management Plan Study
 - Howth Outfall Study
- Bedri (07)
 - 3D Hydrodynamic/Water Quality Telemac Model of Inner Bay

SW2D Model Domain

Model Domain

-6° 15' to -5° 50' E-W 53° 10' to 53° 30' N-S over 72000 grid boxes

Bathymetry

Admiralty Charts 1447 & 1468 Surveys for Various Studies

- Irish Hydrodata Ltd Howth
- BKS Tolka Mudflats
- ESB International Bull Island

Boundary Conditions

North and South - Elevations for Spring and Neap Tides East – "Glass Wall"

Objectives of Study

TELEMAC vs SW2D

- Accuracy
- Stability
- Computational Time
- Ease of use man hour costs.

Schedule of Simulations

Code	Description					
SW2D	The original finite difference Extended Dublin Bay model using					
	a grid size of 100.79m by 92.75m.					
T0	The Baseline TELEMAC finite element model with a uniform					
	mesh with a resolution of 104m between the nodes.					
	The four meshes used in the Telemac Convergence Study to					
	determine the optimum mesh.					
T1	12985 nodes					
T2	22611 nodes					
T3	31653 nodes					
T4	49381 nodes					

Field Measurements- Tides

- **Tidal Gauges**
- October 1998
- **Tidal Constituents**
 - North Wall Lighthouse
 - North Bank Lighthouse
 - Kish Bank Lighthouse
 - Howth Harbour
 - Dun Laoghaire

Field Measurements- Currents

- Spring and Neap Tides
- Locations 1-4 Environmental Study of Howth
 - Irish Hydrodata (98)
- Locations 5 -8
 Environmental Study of
 Liffey Estuary and Dublin
 Bay
 -Crisp (76)

Location of Current Meters

Depth Averaged Fluid Equations

Continuity Equation

$$\frac{\partial \xi}{\partial t} + \frac{\partial HU}{\partial x} + \frac{\partial HV}{\partial x} = 0$$

Momentum Equation in x-Direction

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} - fV + g \frac{\partial \xi}{\partial x} + \gamma U - \frac{\theta \rho_a W^2 \sin \psi}{\rho H} - k \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial x^2}\right) = 0$$

Momentum Equation in y-Direction

$$\frac{\partial V}{\partial t} + U\frac{\partial V}{\partial x} + V\frac{\partial V}{\partial y} + fU + g\frac{\partial \xi}{\partial y} + \gamma V - \frac{\theta \rho_a W^2 \cos \psi}{\rho H} - k\left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2}\right) = 0$$

SW2D - Momentum Equation

$$\frac{DU}{Dt} = fV - g\frac{\partial\xi}{\partial x} - \gamma U + \frac{\theta\rho_a W^2 \sin\psi}{\rho H} + k\left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial x^2}\right)$$

SW2D - Continuity Equation

$$\begin{pmatrix} 1 + AAU_{i+\frac{1}{2},j}^{n} + AAU_{i-\frac{1}{2},j}^{n} \\ + AAV_{i,j+\frac{1}{2}}^{n} + AAV_{i,j-\frac{1}{2}}^{n} \end{pmatrix} \xi_{i,j}^{n+1} \\ - AAU_{i+\frac{1}{2},j}^{n} \xi_{i+\frac{1}{2},j}^{n+1} \\ - AAU_{i+\frac{1}{2},j}^{n} \xi_{i+\frac{1}{2},j}^{n+1} \\ - AAU_{i-\frac{1}{2},j}^{n} \xi_{i-\frac{1}{2},j}^{n+1} \\ - AAV_{i,j+\frac{1}{2}}^{n} \xi_{i,j+\frac{1}{2}}^{n+1} \\ - AV_{i,j-\frac{1}{2}}^{n} \xi_{i,j-\frac{1}{2}}^{n+1} = B_{i,j}^{n} \xi_{i,j}^{n}$$

$$\zeta \Longrightarrow \zeta \Longrightarrow \zeta$$

$$(1) \qquad (1) \qquad (2) \qquad (2)$$

SW2D - Reverse Particle Tracking

• Euler Method

$$U_{i+\frac{1}{2}-a,j-b}^{n}$$

$$x^{n+\frac{1}{10}} = x^n + U\Delta t_s$$

$$y^{n+\frac{1}{10}} = y^n + V\Delta t_s$$

Bottom Friction Parameter

Surfer Grid & SW2D Pre-Processor

Excel VBA – Preprocessor

SW2D – Vector Plots

Low Water

Mid-Flood

SW2D – Vector Plots

High Water

SW2D-Tabulated Results

		North Wall	North Bank	Dun Laoghaire	Kish Lighthouse	Howth Harbour
Low Tide (m)	model	-1.607	-1.575	-1.597	-1.542	-1.750
	measured	-1.720	-1.560	-1.665	-1.530	-1.730
	% diff	6.6%	-1.0%	4.1%	-0.8%	-1.2%
High Tide (m)	model	1.890	1.880	1.870	1.800	2.025
	measured	2.060	1.900	1.93	1.900	2.080
	% diff	8.3%	1.1%	3.1%	5.3%	2.6%
Tidal Range (m)	model	3.497	3.455	3.467	3.342	3.775
	measured	3.780	3.460	3.595	3.430	3.810
	% diff	7.5%	0.1%	3.6%	2.6%	0.9%
Time of Low Tide	model	09:11	09:20	09:11	09:06	09:05
	measured	09:07	09:06	09:01	09:11	09:45
	diff (mins)	+4	+14	+10	+5	-40
Time of High Tide	model	15:16	15:18	15:18	15:14	15:13
	measured	15:20	15:16	15:23	15:11	15:56
	diff (mins)	-4	-2	-5	+3	-43

Telemac – Structured Mesh

Prepared with Blue Kenue Canadian Hydraulics Centre of the National Research Council Canada

Telemac Structured Mesh - Results

• A finite element solution is generally considered to be unique if the "entropy" condition is satisfied (Hervouet, 2007). In the Saint-Venant equations, the entropy is equal to the total energy of a column of water written as:

$$E = \frac{hu^2}{2} + g\frac{h^2}{2} + ghZ_f$$

- The entropy condition is given by: $\frac{\partial E}{\partial t} + div \left[u \left(E + g \frac{h^2}{2} \right) \right] \le 0$
- The energy flux into the model domain increases as the mesh is refined at an open boundary. The entropy condition is not satisfied if the energy flux becomes too large, resulting in the possibility of an infinite number of solutions of the Saint-Venant equations and instability.

Telemac – Unstructured Mesh

Tidal Elevations Measured, SW2D & Telemac

Location 1 – Spring Tide

Location 2 – Spring Tide

Location 3 – Spring Tide

Location 4 – Spring Tide

Location 5 – Spring Tide

Location 6 – Spring Tide

Location 7 – Spring Tide

Location 8 – Spring Tide

Simulation Times

- Dell OptiPlex 780 Intel Pentium CPU G840 @ 2.80GHz chip.
- Equivalent Simulation Time 5 cycles.

Model	Nodes (1000)	Timestep (s)	CPU time (s)
SW2D	72	30	121,000
Т5	75	5	5428
Т5	75	15	2007
Т3	25	5	1645
Т3	25	15	601
тз	25	30	341