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Abstract  

A method of forming a self-cleaning hydrophobic coating (SCHN) on glass substrates 

utilizing a scalable manufacturing process is described. The process initiates with roughening of 

planar glass surfaces using diamond micro-/nano-particle abrasives, which creates microscopic 

tortuous grooves. After cleaning the substrates, the roughened surface is vapor deposited with 

trichloro(1H,1H,2H,2H-perfluorooctyl)silane (TCPFOS) under enclosure with controlled 

humidity. TCPFOS chemically binds with the substrate via covalent linkage. Due to the greatly 

reduced surface tension between water and the self-cleaning surface, the water droplet slides down 

leaving no trail (sliding angle of 14° for 0.1 mL water droplet). Due to the reduced adhesion of dirt 

to the self-cleaning surface, the dirt particles are washed away by sliding or rolling water droplets. 

The SCHN shows no change in transmission as compared to the original glass substrate. The 

coating is resistant to multiple environmental factors including: abrasion cycles, acid rain (pH = 

3), saline exposure (10% w/v), and extreme temperature cycling (-10 to 60 °C).  

Keywords: Self-cleaning, Hydrophobic, Nanocoating, Perfluoroalkylsilane, Manufacturing 

1. Introduction 



 Solar energy is among the most reliable sources of renewable energy that can be harvested 

on Earth. Many types of research associated with photovoltaic materials and device fabrication 

techniques have been extensively studied to enhance the performance of solar cells. Solar power 

plant output performance can be greatly impacted by the accumulation of dirt or dust on the 

protective glass layer that shields the active solar cells from the elements. In the presence of dust 

or dirt, solar irradiance is likely to be reflected and scattered by dust particles, inhibiting light 

transmission to the solar cell, which subsequently causes the detrimental effects on photovoltaic 

cell output. According to the dust distribution pattern study, North Africa and the Middle East are 

identified to have the severe dust accumulation zones in the world [1][2][3][4]. For example, PM10 

(defined as particulate matter of diameter 10 µm or less) concentrations in Sudan and Saudi Arabia 

were recorded about 140 and 100 µg/m3 respectively in 2010 which were significantly higher 

compared to 25 µg/m3 of the United States [4]. A feasible solution to this issue is a self-cleaning 

hydrophobic coating (SCHN) for glass that prevents the accumulation of dirt and dust particles on 

the surfaces of solar panels. The objective of this study is to develop a technique and process to 

mass-produce glass panels coated with SCHN. The surface topography of glass, while a planar 

structure, is comprised of many microgrooves and microstructures with varying degrees of -OH 

functional group distribution. Consequently, the glass allows water to wet the surface, which 

attracts dust and dirt particles that eventually become stuck in the groves and cracks of the 

microstructures of glass - over time, cleaning grows more cumbersome with each iteration, often 

necessitating mechanical abrasion with caustic chemicals. 

Soiling and shading of solar panels are a major problem worldwide, affecting the power 

output, reliability, and lifetime of solar panels. Shading and soiling account for up to 5% power 

loss in solar panels yearly in the US - in China, it is far greater at 26% per annum [5][6]. Shading 

during a certain time of year in Saudi Arabia and North Africa can result in 30–65% loss in power 



[1][7]. To remove light dust particles requires at least 20 mm (or ¾ inches) of heavy rainfall; with 

any less, the rain will cause dust particles to stick rather than to be removed [5]. In some instances, 

the damage can be so severe that the soiling can cause actual damage to the silicon inside the solar 

panel due to hotspots [8]. Soiling will no doubt alter the power output and lifetime of the solar 

installation, which has a direct effect on reliability and warranties (lifetime) of panels. Salt water, 

available in many places where fresh water itself is scarce and very valuable, conventionally cannot 

be used for cleaning as it leaves salt particles behind, inducing hotspots and shading.	
Fundamentally, solar panels will naturally lose power over time due to degrading efficiency. Dirt 

and dust will have an additional negative impact on power output that can only be mitigated by 

keeping the protective glass surface clean. 

 One of the most important aspects of research associated with surface chemistry is the 

wetting behavior of solid surfaces by the liquids in contact. In recent years, considerable amount 

of research interests in superhydrophobic and self-cleaning surfaces/materials have been identified 

owing largely to their potential real world applications and the revived enthusiasm to understand 

the fundamental underlying of these phenomena [9][10][11][12][13][14][15]. Unfortunately, the 

terms “superhydrophobic” and “self-cleaning” are generally poorly defined and can cause 

confusion. For example, a superhydrophobic surface is usually “defined to have a minimum static 

contact angle of 150° and maximum sliding angle of 5°, but these numbers are inherently imprecise 

and somewhat arbitrary. In addition, the terms “superhydrophobic” and “self-cleaning” are 

sometimes used interchangeably, but fundamentally, they describe two totally different 

phenomena. 

A self-cleaning phenomenon is a situation when water drops of a set volume/mass can 

undergo sliding, rolling, or both when the self-cleaning substrate is titled beyond the critical angle. 

The water droplets slide down the surface leaving no trail by virtue of the significant reduction in 



surface tension between water droplets and self-cleaning surface. As a result, dust particles are 

easily washed off when water droplets roll/slide down the self-cleaning surface [9]. 

Self-cleaning surfaces are generally manufactured in two following ways: through the 

creation of hierarchial micro/nanostructures on hydrophobic surface or through the chemical 

modification of micro/nanostructured surface with molecules having low surface free energies. 

Man-made self-cleaning coatings use complicated deposition methods, such as chemical vapor 

deposition, layer-by-layer assembly, and micro-patterning which are arguably not suited for a 

deposition to large surfaces [16][17][18][19]. The method disclosed herein overcomes this 

limitation. This is achieved by first roughing the substrate surface and subsequently coating the 

roughed surface with appropriate chemical agents, such as fluoroalkylsilanes. 

 

2. Experimental Section 

2.1 Materials 

Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (TCPFOS) (97%) and isopropanol were 

purchased from Sigma-Aldrich and were used without any further modification. Nitric Acid (ACS 

reagent, 70%) was purchased from Sigma-Aldrich and was diluted down with deionized water to 

achieve a pH of 3. Polycrystalline 0.1 µm diamond suspension (MetaDi®) and polishing cloth 

(MasterTex, PSA, 8 in) were purchased from Buehler. Saline solution (10% w/v) was prepared by 

dissolving 100 g of NaCl in 1000 mL of water. 

 

2.2 Materials Characterization 

UV-Vis-NIR spectra were acquired using an Ocean Optics 2000 HR spectrometer with a 

deuterium/halogen light source (Ocean Optics DH-2000) to study optical transmission properties 

of pristine and TCPFOS coated glass. An Asylum MFP-3D-BIO Atomic Force Microscope was 

used to obtain insight on the surface topography of TCPFOS coated glass.  



Third party durability tests of TCPFOS coating were performed by PPG Industries, Inc., 

who also supplied glass coupons that were marked to indicate the tint side of the glass.  The coating 

was applied to the air side of the coupons, where PPG would perform condensing humidity 

exposure and UV exposure.  The performance of the coating was ultimately judged by the change 

in the contact angle throughout the duration of the test. At least three specimens were used for each 

test, where the data points for each test were calculated from averaging 5 separate manually 

measured contact angles for each specimen. Condensing Humidity Exposure: Three 2" x	 6" 

coupons were tested in a Q-Panel Cleveland Condensation Tester at a temperature of 60 °C and a 

relative humidity of 100%. UV Exposure: Four 3" x 4" coupons were subjected to a QUV 

accelerated weathering tester; model QUV 1 SE (Q-Lab Corporation) with UVB-313 lamps on a 

Solar Eye irradiance controller. The test comprised of a combination of UV and condensation 

exposure with the following cycle: eight hours of UV at 0.49 W/m2 and 70 °C, followed by four 

hours of condensation at 50°C.  The UV sensors were calibrated at 500 h intervals. 

2.3 Substrate Preparation and Coating Application 

A pre-cleaned plain glass slide (Corning) is polished for 3 minutes with a 0.1 µm 

polycrystalline diamond suspension (MetaDi, Buehler) using a polishing cloth (MasterTex, 

Buehler) attached to a mechanical polisher. The polished glass is cleaned with soap water and 

washed with de-ionized water and isopropanol thoroughly. After drying, the glass is transferred 

into a controlled environmental enclosure with a relative humidity level of 16% and exposed to the 

vapor of TCPFOS generated by heating the chemical in a quartz vessel on a hotplate. After 20 

minutes, the glass is removed from the enclosure and the surface is cleaned with isopropanol 

thoroughly.  

3. Results and Discussion 

3.1 Application Process of Self-cleaning Hydrophobic Coating 



In this work, a self-cleaning surface on glass substrates is produced by abrading the 

substrate (abrasive I) to generate microscopic, random patterned grooves. Critical angle 

requirements for different applications may vary dramatically, such as < 90° for windows, roughly 

30° for solar panels and automobile windshields, and roughly 10° for sunroofs. Therefore, the 

substrate might need to be roughened with a second abrasive (abrasive II) to generate secondary 

microscopic feature as illustrated in Fig. 1a. The preferred choice of abrasive is such that the 

hardness of the abrasive (e.g., polycrystalline diamond solution, Moh’s scale of hardness = 10) is 

greater than that of substrate (glass, Moh’s scale of hardness = 5.5) [20], and preferred abrasive 

grain sizes range from 10 nm to 10 mm. After cleaning, the resulting surface is then treated with a 

hydrophobic chemical agent, which renders the surface hydrophobic and also generates a 

nanoscopic topography. To generate the desired nanoscopic topography, a well-controlled 

environment is needed for the hydrophobic treatment. A schematic illustration of the enclosure Fig. 

1b illustrated the enclosure for conducting the hydrophobic treatment on a large substrate such as 

a solar panel. The panel to be treated is inserted into the treatment container with the help of a 

conveyor belt. A small amount of TCPFOS is placed on a glass petri dish, and 80 oC solution 

temperature is maintained using a heating element (hot plate). In order to generate nanoscopic 

topography, extra water molecules may be needed to promote polymerization of the hydrophobic 

chemicals. Hence, the humidity level is maintained inside the container using a dehumidifier to be 

about 16% of related humidity. An extra opening on top is used for ventilation. After the reaction 

between the hydrophobic chemicals and the surface is completed, the excess amount of the 

chemical solution is removed and the surface is washed with isopropanol. The resulting substrate 

is removed from the enclosure and dried under ambient conditions. The mechanism by which 

TCPFOS covalently links with a glass substrate is presented in Fig. 1c [21].  

The resulting self-cleaning coatings show no apparent loss of transmission of the visible 

light to the substrate.  Such self-cleaning coatings are therefore well suited for a range of 



applications including the self-cleaning of solar panels. Other applications include but are not 

limited to products that require regular cleaning of their surface in order to maintain their proper 

functions, such as for example automobile windshields, windows, and sunroofs. The self-cleaning 

coatings may also have the desired properties for corrosion protection and anti-fouling of metallic 

structures. 

 

Fig. 1. (a) Schematic illustration of the self-cleaning hydrophobic coating application procedure, 

(b) the enclosure for conducting the hydrophobic treatment, and (c) generalized illustration of a 

reaction mechanism by which TCPFOS covalently links to a glass substrate. 

3.2 Surface Topography 

Surface topography of TCPFOS coated glass was studied using atomic force microscopy 

(AFM) techniques. Fig. 2a and 2b show phase contrast and tapping-mode topography micrographs 

of TCFOS coated glass, respectively. The micro-/nano-scale grooves resulting from mechanical 

abrasion in tandem with a  polycrystalline diamond abrading suspension. These largely rectilinear 

intersecting grooves are highly desired to enhance the adhesion of TCPFOS molecules to the glass 

surface as well as generating a more uniformly roughened surface. Fig. 2c shows the height profile 



plot of the TCPFOS coating on the glass, where we can see the coating thickness ranges between 

1-10 nm. This reveals the high uniformity in the thickness of the TCPFOS coating. In addition, the 

lack of contrast between AFM micrographs in Fig. 2a and 2b further support the sub-10 nm 

thickness of the coating. The white artifacts appeared on AFM images may be due to the presence 

of residual abrasives. 

 

Fig. 2. AFM study of TCPFOS coated glass (a) phase contrast image, (b) tapping-mode topography 

image, and (c) height profile evaluation of coating. 

3.3 Effect of Self-cleaning Coating on Light Penetration 

We did not observe any apparent optical differences between pristine and TCPFOS coated 

glass panels when viewed side-by-side. Fig. 3 shows the UV-Vis-NIR transmission spectra of 

pristine and TCPFOS coated glass samples, where both spectra fairly overlapped with each other 

in the range of 300–1000 nm. Due to the thin nature of the coating layer coupled with no UV-Vis-



NIR light absorption means chemisorbed TCPFOS layers do not block or hinder any light passing 

through to the solar cells and thus will not cause any shading problems. 

 

Fig. 3. UV-Vis-NIR transmission spectra of pristine and TCPFOS coated glass panels.  

3.4 Self-cleaning Property of TCPFOS Coating 

Here we describe a phenomenon where a water droplet slides down a tilted substrate surface 

that has been previously treated with a “self-cleaning” coating.  Due to the greatly reduced surface 

tension between water and the coated surface, the water droplet slides down without any remnant 

of the droplet adhering to the surface.  Fig. 4a shows the water droplet sliding down the TCPFOS 

coated solar panel glass without leaving a water trail.  In addition, the adhesion between the dust 

particles and the coated substrate surface is also reduced so the particles are easily washed away 

by the movement of a water droplet. Fig. 4b shows a water droplet sliding down the TCPFOS 

coated solar panel glass in the presence of dust particles. This phenomenon allows the force of 

water to remove the dust and dirt collected on the surfaces of solar panels by gravitationally pushing 

the soiling to the bottom of the panels, keeping the panel clean. 

To demonstrate the effectiveness of dust particle removal using SCHN, an experiment using 

continuous droplets of water to simulate rainfall or a water sprinkler system dripping from the top 

of the panel was conducted. Referring to Fig. 4b, cleaning a 1.0 cm width of accumulated dust 



particles on a standard glass solar panel requires 22 mL of water when the panel is titled over 30°. 

On the other hand, a TCPFOS coated glass solar panel requires only 10 mL of water when the 

panel is tilted to only 6°. 

	 	

Fig. 4 (a) A water droplet sliding down a TCPFOS coated solar panel (no dirt). (b) A coated solar 

panel soiled with dust - the water droplet picks up dust when sliding down. 

3.5 Effect of Salt Water on Solar Panels 

Analogous to dust and dirt, salt deposits on solar panel surfaces can greatly impact their 

lifetime and power output efficiency. During dew formation in the morning, atmospheric dust 

having soluble/insoluble salts forms micro-salt droplets on solar panel and upon drying, leaves 

precipitated salt on the panel, which is often not easy to clean and causes shading problems 

[22][23]. In order to test the effects of salt solutions on deposited TCPFOS coatings, we performed 

saline resistant tests on both the pristine and TCPFOS coated solar panels (each with area ~ 1.7 

m2). Both pristine and TCPFOS coated glass panels were subjected to drizzling of 500 mL of 10% 

w/v (aq.) saline solution four times a day for 7 days. The TCPFOS coated panel shows little to no 

salt deposit, maintaining the initial contact angle (104o) unchanged after a week. On the other hand, 

the pristine panel shows substantial salt deposit, as shown in Fig. 5. 



 

Fig. 5. Saline resistance tests on uncoated and TCPFOS (SCHN) coated solar panels. 

3.6 Impact of Abrasion Studies 

 In real world scenarios, surface coatings are inevitably exposed to various elements that 

cause abrasion and erosion, eventually damaging the coating. The durability of a coating is, 

therefore, an important factor for an ideal surface coating. To examine SCHN’s ability to withstand 

abrasion, we conducted a test consisting of rubbing the coated panel with a 1.5-inch diameter cotton 

round pad (SPI Lint Free Cotton Wipes #5151-SA) loaded with a 500 g weight traversing a straight 

path back-and-forth 10,000 times – the abrasion pad was changed every 600 rubs. After 10,000 rub 

cycles, the water contact angle decreases from 105 ± 3° to 98 ± 3°. The linear trend line of contact 

angle versus abrasion cycles plot in Fig. 6a shows a ~ 3° decrease / 10,000 rubs. The sliding angle 

of 0.1 mL water drop ideally remains the same from 14° (after treatment) to 15° (after 10,000 rubs). 

The static contact angles remain the same (or smaller than the errors of the contact angle 

measurements). This demonstrates that constant wear on the coatings will not inhibit the 

hydrophobic action of the coatings. 



 

Fig. 6 (a) Impact of abrasion studies (orange line is the linear fit). (b) TCPFOS coated glass shows 

minimal degradation after 10,000 abrading cycles using a cotton pad with a 0.5 kg load.  

3.7 Effect of Humidity and UV Exposure 

Durability tests against long-term condensing humidity (100% RH at 60 oC) and UV 

exposure were independently performed by PPG Industries, Inc. The test results are compared with 

a current PPG hydrophobic surface treatment (PPG baseline) and typical values measured by PPG 

for a commercially available rain repellant product for automotive glass. The key measure of failure 

of a coating is the time at which the water contact angle falls below 60o. At this point, consumers 

would lose the ability to differentiate a clear advantage of the coating. Fig. 7a and 7b show the 

results of condensing humidity and UV exposure tests.  

Condensing humidity test on three TCPFOS coated glass samples performed for a long 

period of time resulted in a gradual decrease in water contact angle of the coated surface from 105 

± 1.5o to 64.6 ± 1.5o in 1,400 h. Coating performance was comparatively far superior to PPG’s 

baseline (400-800 h) and commercially available product (< 100 h).  

Likewise, a UV exposure degradation study was carried out on three samples coated with 

TCPFOS coating. An approximate linear decrease of water contact angle from 107 ± 1.2o to 63 ± 

1.0o was monitored during a course of 2,422 h, which is quite remarkable as compared to the 

performance of PPG’s commercially available coating (< 100 h) and comparable to PPG’s baseline 

(2000-3000 h). 



 

Fig. 7. Durability testing of TCPFOS coating using a) condensing humidity and b) UV exposure 

tests. The plots are expressed in terms of water contact angle as a function of time 

3.8 Acid Resistance, Temperature Degradation/Tolerance: 

Apart from the aforementioned environmental elements, there are various other factors that 

can deteriorate the long term durability of environmental surface coatings, such as acidic rain and 

extreme temperature variations. To simulate exposure to acid rain conditions, the TCPFOS coated 

glass panel was submerged in a nitric acid solution (pH < 3) at 80 oC for 30 min. No change in the 

initial contact angle (104o) was observed after the test. For thermal degradation study under 

extreme environmental conditions, TCPFOS coated glass panel was tested via multiple heating and 

cooling cycles at temperatures between -10 and 60 oC. The initial contact angle (104o) remained 

constant after 12 cycles. In order to study the thermal breakdown temperature of the coating, 

TCPFOS coated Corning glass slides were heated to 360 oC, where no change in the contact angle 

of the coated glass was observed (measured after it was cooled to the room temperature). Therefore, 

the thermal breakdown of the coating was expected to be well above 360 oC. This result agrees 

with the thermogravimetric studies on TCPFOS done by Kaynak et al. [24]. 



Table 1 presents a summary of results obtained for all tests carried out on SCHN coated 

glass. 

Table 1. Summary of SCHN coated glass test results. 

Specifications  Test Results 

Critical Sliding Angle 14° (0.1 mL of water droplet) 

Transparency No change in optical transmission across a range of 300-1000 nm 

compared to pristine glass  

Abrasion Resistance No degradation after 10,000 rubbing cycles with a 1.5-inch diameter 

cotton round pad (SPI Lint Free Cotton Wipes #5151-SA) loaded 

with a 500 g weight (traversing a straight path - the pad was changed 

every 600 rubs) 

Saline Resistance No degradation after drizzling 500 mL of 10% (aq.) saline solution 

four times a day for a week 

Temperature Tolerance No degradation after temperature cycling 12 times between -10 °C 

and 60 °C 

Thermal Breakdown 

Temperature  

> 360 °C (Coatings on a Corning glass slide)  

 

4. Conclusions 

We successfully demonstrated a simple and facile process for large-scale production of 

a robust and transparent self-cleaning hydrophobic coating for glass. The coating exhibits 

excellent saline resistance, acid resistance, abrasion resistance, and thermal breakdown 

temperature together with an exceptional critical sliding angle of 14o for 0.1 mL of water.  
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