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Abstract 

 

Analysis of biomarkers present in the blood stream can potentially deliver crucial information 

on patient health and indicate the presence of numerous pathologies. The potential of 

vibrational spectroscopic analysis of human serum for diagnostic purposes has been widely 

investigated and, in recent times, infrared absorption spectroscopy, coupled with ultra-filtration 

and multivariate analysis techniques, has attracted increasing attention, both clinical and 

commercial. However, such methods commonly employ a drying step, which may hinder the 

clinical work flow and thus hamper their clinical deployment. As an alternative, this study 
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explores the use of Raman spectroscopy, similarly coupled with ultra-filtration and multivariate 

analysis techniques, to quantitatively monitor diagnostically relevant changes of glucose in 

liquid serum samples, and compares the results with similar analysis protocols using infrared 

spectroscopy of dried samples. The analysis protocols to detect the imbalances in glucose using 

Raman spectroscopy are first demonstrated for aqueous solutions and spiked serum samples. 

As in the case of infrared absorption studies, centrifugal filtration is utilised to deplete abundant 

analytes and to reveal the spectral features of Low Molecular Weight Fraction analytes in order 

to improve spectral sensitivity and detection limits. Improved Root Mean Square Error of Cross 

Validation (RMSECV) was observed for Raman prediction models, whereas slightly higher R2 

values were reported for infrared absorption prediction models. Summarising, it is 

demonstrated that the Raman analysis protocol can yield accuracies which are comparable with 

those reported using infrared absorption based measurements of dried serum, without the need 

for additional drying steps.  

Keywords 

Raman Spectroscopy; Glucose; Background correction; Extended Multiplicative Signal 

Correction (EMSC); Centrifugal filtration 

 

 

1. Introduction 

 

Human bodily fluids (e.g. blood serum/ plasma, urine, saliva, tears and cerebrospinal fluid) are 

considered to be a rich reservoir of clinical biomarkers and are an interesting alternative to cells 

and tissues in terms of disease diagnosis and prognosis, owing to advantages such as minimal 

invasiveness, low cost, and rapid sample collection and processing (1–4). The biochemical 

composition of human serum can provide crucial information on patient health and indicate the 

presence of numerous pathologies, as it encompasses a vast range of proteins and biochemical 

products accumulated while perfusing various organs (5). Moreover, alterations in the 
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biochemical composition of the serum/plasma could reflect changes of physiological states due 

to disease, enabling early disease diagnosis and treatment (6–8). For example, it is reported 

that carcinoembryonic antigens, CA 15-3 and CA 27.29, can be considered as serum 

biomarkers for breast cancer (9), KL-40 and MMP-9 have been found to be potential serum 

biomarkers for high grade gliomas (10), prostate specific antigen was found in higher levels in 

the serum of patients with prostate cancer (11,12), and carcinoembryonic antigen has been 

reported to be serum biomarker for colorectal cancer (13). In recent decades, extensive studies 

have explored the detection of serum biomarkers for various diseases, and quite naturally the 

reference tools used are the conventional, complex analytical techniques such as 

chromatography, electrophoresis or mass spectroscopy (14–18). More recently, the field of 

serum proteomics has exploded in the literature, as this emerging field has gained world-wide 

attention due to its potential to reveal important information regarding the pathogenesis or 

progression of diseases (19–22). 

Analysis of serum biomarkers based on protein content is inherently challenging, because of 

the low concentrations and the vast variety and dynamic range of protein abundance. The 

complex nature of the serum poses as a huge problem for the detection of small molecule 

biomarkers (2,23). Human serum contains more than 10,000 different proteins, with an overall 

concentration ranging from 60-80mg/mL. Furthermore, circulating species present in the 

serum, such as metabolites, peptides, sugars, and lipids, add to its complexity. Conventional 

proteomic methods struggle to handle large dynamic range of abundances of its constituent 

components (17). The characteristics of serum are usually dominated by the high molecular 

weight fraction (HMWF) of proteins, which includes albumin (57-71%) and globulin (8-26%) 

and masks the features of low molecular weight analytes which are present in trace amounts 

(<5%) (24). Chromatographic fractionation can significantly enhance the sensitivity and 

specificity of the data recorded, and coupling with spectroscopic analysis techniques such as 
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IR absorption in hybrid techniques such as Liquid Chromatography (LC-IR) or Gas 

Chromatography (GC-IR) (25) can improve the performance further. Such chromatographic 

techniques, although extensively used in pharmaceutical, chemical or food science applications 

are time consuming and costly, however (26–28), and commercially available centrifugal filters 

have been employed to deplete the HMWF before analysis to facilitate analysis of the low 

molecular weight fraction (LMWF), including proteins and molecular biomarkers (29).  

Vibrational spectroscopic techniques, both Raman and infrared absorption, have emerged over 

the past 20 years as increasingly routine analytical techniques for a wide range of applications, 

as they reveal specific biochemical information without the use of extrinsic labels. Although 

they are often considered complementary techniques (30) there are also specific considerations 

for each, for specific applications such as measurement of bodily fluids, as described by 

Bonnier et al.  (31). They provide intrinsic vibrational signatures of the material of interest in 

a non-destructive fashion, and the potential for diagnostic applications has been well 

demonstrated, notably in human serum and plasma (7,32–34). However, although both Raman, 

Fourier-Transform Infrared (FTIR) and Attenuated Total Reflectance-FTIR (ATR-FTIR) 

spectroscopy have been widely explored to study bodily fluids over the last two decades, most 

of these studies have been carried out on air dried samples, in order to avoid the water 

contribution in the case of FTIR, and to increase the concentration of the analytes in the case 

of Raman (35–40). Two major limiting factors in the use of dried samples are the drying time 

(41) and also the so-called “coffee-ring” effect, or, specifically in terms of blood serum, the 

Vroman effect (42–44), whereby different analytes precipitate from solution at different rates, 

giving rise to variations in the spectral features due to chemical and physical inhomogeneity. 

Previous studies have clearly shown that the IR spectrum of dried (aggregates of) molecular 

species is not the same as that in solution (45). It has further been shown that, for dried deposits 

from solutions of varying concentrations of analyte, the linearity of the Beer-Lambert law, and 
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therefore the quantitative nature of the measurement is compromised as the concentration of 

the analyte is increased (45). In the case of the “coffee ring effect”, the thickness, and therefore 

the quantitative accuracy of the measurement is spatially inhomogeneous, and the technique is 

not ideally suited for quantitative measurements, such as those considered here. Notably, 

Spalding et al. have used a serum dilution technique to improve the reliability of the technique 

for quantitative measurement (46). The issues with inhomogeneity can potentially be overcome 

by micropipetting and sampling the whole drop, and there have been studies that show excellent 

specificity/sensitivity of classification of diseased state using dried samples (40,47,48). 

Nevertheless, the requirement of a drying step adds considerably to the sampling time and 

complexity of the workflow (41, 49).  

 

Protocols for monitoring changes in HMWF serum proteins in their native liquid form using 

Raman spectroscopy have recently been demonstrated, however, without the need for drying 

(50). Analysing in the native liquid state, the chemical composition is averaged out by 

molecular motion over the measurement time, greatly reducing the variability of the 

measurement. Bonnier et al. compared FTIR and Raman for measuring gelatin in solution and 

described protocols for isolation of LMWF from serum (31). This study indicated that Raman 

in the liquid form could deliver similar sensitivities to ATR-FTIR for measurement of LMWF 

species.  

The aim of this study is to investigate the sensitivity and accuracy of Raman spectroscopy in 

the liquid state, coupled with centrifugal filtration, as a biochemical tool to detect clinically 

relevant changes in the biochemical composition of serum and compare to the ATR-FTIR 

technique, using the specific example of glucose. The study is specifically designed according 

to the ATR-FTIR study of glucose in serum by Bonnier et al., using identical parameters and 

protocols of ultra-filtration and multivariate regression analysis, such that a direct comparison 
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of the two techniques can be made (29). The protocol is first demonstrated using aqueous 

solutions and human serum spiked with systematically varied concentrations of glucose, before 

exploring the sensitivity and accuracy of the technique in patient samples.  

 

2. Materials and Methods 

2.1 Preparation of varying concentration of glucose in distilled water model 

D-glucose (G8769) was purchased from Sigma Aldrich, Ireland and 6 glucose solutions were 

prepared over the concentration range 100mg/dL to 1000mg/dL. Amicon Ultra 0.5mL 

centrifugal filter devices (Millipore- Merck, Germany), with 10kDa cut off point, were 

employed to concentrate and fractionate the serum samples. The centrifugation procedure 

previously reported by Bonnier et al. was followed (31). A further study published by Bonnier 

et al. reported 100% recovery of LMWF using 10kDa, hence only 10kDa cut off filtration has 

been used in the present study (45). Pre-rinsing of the filter devices with 0.1M NaOH prior to 

plasma analysis is essential to avoid glycerine interference in the analysis (32). The optimised 

washing and rinsing procedure includes spinning 0.5mL 0.1M NaOH at 14000×g for 30 

minutes followed by three rinses with distilled water by spinning 0.5mL distilled water for 30 

minutes at 14000×g. Every 30 minute wash and rinse must be followed by spinning the device 

in the inverted position at 1000×g for 2 minutes, to remove the residual solution contained in 

the filter. After washing, 0.5mL of glucose solution is transferred to the 10kDa filter and 

centrifuged at 14000×g for 30 minutes. The solution that passes through the 10kDa filter is the 

filtrate, which contains mostly water and molecules smaller than 10kDa. The remainder of the 

serum, known as the concentrate, is collected by placing the filter device upside down and 

spinning for 1000×g for 2 minutes. The resultant concentrate, ~50µL, contains molecules with 

molecular weight larger than 10kDa, concentrated by a factor of ~10, and can be employed for 

study of the HMWF (50). All the filtrate solutions were analysed using Raman spectroscopy 
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and five replicate measurements from different positions have been performed for each sample 

of ~50µL. In subsequent analysis, each patient is represented by all the spectra recorded from 

that patient, rather than the mean. 

2.2 Preparation of glucose spiked in serum model 

Sterile, human serum (H6194) and D-glucose (G8769) were purchased from Sigma Aldrich, 

Ireland, for the preparation of in vitro spiked models. The commercial human serum was spiked 

with glucose in the concentration range that matches of the study of Bonnier et al. (29). Since 

glucose is already present in normal human serum at concentrations of  70-110mg/dl (51), the 

final concentration of the spiked samples covers the physiologically relevant ranges of normal 

(80-120mg/dL) (52), and hyperglycaemia (>120mg/dL). The centrifugal processing step 

described in Section 2.1 was performed on the spiked serum samples to obtain the filtrate. Note, 

in the analysis of Figure 3, the regression is performed over spiked, rather than total glucose 

concentration, consistent with the approach of Bonnier et al. (29). 

 

2.3 Glucose levels in patient serum samples 

Patient serum samples were donated by the University Hospital (CHU) Bretonneau de Tours 

(France) and the ethical procedures were followed. The blood samples were collected from the 

individuals as routine blood check-ups and 1 mL per patient was provided for spectroscopic 

analysis. A total of 25 patient samples were included in the present study. Samples were 

collected by personnel of CHU, under standard clinical protocols and approved ethical 

procedures (Comité de Protection des Personnes, Tours Region Central Oest 1- PP/ANSM- 

PHAO15-HB-METABOMU, registered internationally: ClinicalTrials.gov ID: 

NCT02670226). The samples were serologically profiled, for other purposes, and the 

anonymised, residual discard samples, along with their serological profiles were donated to the 

Université François-Rabelais de Tours, for further study. No further specific ethical approval 
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or patient consent is required. Glucose concentrations were obtained by routine biochemical 

analysis using a COBAS analyser, following the in house guidelines for routine biochemical 

analysis. The principle of the test is based on the enzymatic reference method with hexokinase, 

which catalyses the phosphorylation of glucose to glucose-6-phosphate by ATP methods 

(53,54). Subsequently, glucose-6-phosphate is oxidised by glucose-6-phosphate 

dehydrogenase, in the presence of NADP, to gluconate-6-phosphate. This reaction is specific, 

with no other carbohydrate being oxidised. The rate of NADPH formation during the reaction 

is directly proportional to the glucose concentration and is measured photometrically in the 

UV. Measured glucose levels in the patient samples are listed in Table 1, and can be seen to 

cover the range 55-435 mg dL-1. Note, that the distribution of glucose levels covers a broader 

range than that of the study of similar (n=15) patients by Bonnier et al. (61-208 mg dL-1) (29). 
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Table 1: List of measured glucose levels in patient samples. Glucose blood levels are quoted 

in terms of the SI unit of mmol L-1 as well as mg dL-1, commonly used in serology literature 

and in the study of Bonnier et al.(29)  

Sample number Glucose blood levels 

mmol L-1 mg dL-1 

1 2.9 52.25 

2 3.1 55.85 

3 3.9 70.27 

4 3.9 70.27 

5 4.2 75.67 

6 4.2 75.67 

7 4.3 77.47 

8 4.5 81.08 

9 5.1 91.89 

10 5.1 91.89 

11 5.2 93.69 

12 5.7 102.70 

13 6 109.10 

14 6.1 109.90 

15 6.4 115.31 

16 6.4 115.31 

17 7.2 129.72 

18 8.8 158.55 

19 9.9 178.37 

20 11.5 207.20 

21 11.7 210.81 

22 13.4 241.44 

23 15.7 282.88 

24 15.8 284.68 

25 24.1 434.23 
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2.4 Data collection using Raman spectrophotometer 

The measurement conditions used for screening HMWF proteins in solution have recently been 

detailed (50). Raman spectra of all the liquid samples were recorded at stabilised room 

temperature (18ºC) using a Horiba Jobin-Yvon LabRam HR800 spectrometer with a 16-bit 

dynamic range Peltier cooled CCD detector. The spectrometer was coupled to an Olympus 

1X71 inverted microscope and a x60 water immersion objective (LUMPlanF1, Olympus) was 

employed. The substrate used was a Lab-Tek plate (154534) with a 0.16-0.19mm thick glass 

bottom, 1.0 borosilicate cover glass, and was purchased from Thermo Fischer Scientific, 

Ireland. Since the scattering efficiency is inversely proportional to the fourth power of the 

wavelength, it is always desirable to use a short wavelength Raman source. In the filtered 

serum, there are no molecular species which are resonant with 532nm, and therefore neither 

fluorescence nor photodamage are limiting factors. 

 

2.5 Data pre-processing and analysis 

The raw spectra were subjected to pre-processing techniques in Matlab before further analysis, 

to remove the background signal and reduce the noise. Smoothing of the raw data was done 

using the Savitzky–Golay method, with a polynomial order of 5 and window 13 and the 

Extended Multiplicative Signal Correction (EMSC) algorithm was applied to the smoothed 

spectra to remove the underlying water spectrum, whose OH bending feature at 1640 cm-1 can 

interfere with the protein spectra, particularly at low concentrations (55).  

The principle of EMSC for subtraction of a specific measureable background spectrum and the 

associated Matlab codes have previously been published by Kerr and Hennelly, 2016 (55), and 

their description has been adapted in the following. In the case of measurement in aqueous 

solution, the raw sample spectrum, S, consists of Raman spectrum of the analyte of interest, R, 

a baseline signal, B, and the water signal, W. 

S = R + B + W (55)                                                                                        (1) 
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The Raman spectrum of interest can be represented by a reference spectrum of the analyte of 

interest, r, and it can be assumed that R is the product of this reference spectrum and a certain 

scalar weight, Cr, which describes the concentration dependence (56,57).  

R ~ Cr x r  (55)                                                                                                (2) 

Similarly, a spectrum, w, is recorded from water directly in order to represent the spectral 

contribution of water in W, as the product of pure water spectrum and a certain scalar weight. 

W = Cw x w   (55)                                                                                              (3) 

The baseline, B, is now represented by a polynomial: 

BN = C0 + C1X + C2X +……+ CNXN      (55)                                                     (4) 

where N is the order of polynomial and Cm for m = 0  N represents various coefficients of 

polynomial (58). The EMSC algorithm is used to obtain estimates of the scalar values Cr, Cm 

and Cw. These estimates are obtained from an optimal fit of the various vectors in Equation 5. 

S~ [𝐶𝑟 × 𝑟] + [𝐶𝑤 × 𝑤] + [∑ 𝐶𝑚𝑋𝑚 ]𝑁
𝑚=0   (55)                                                 (5) 

The background corrected, concentration dependent analyte spectra, T, can be represented as: 

T =
S−[𝐶𝑤 ×𝑤]−[∑ 𝐶𝑚𝑋𝑚]𝑁

𝑚=0

𝐶𝑤
    (55)                                                                          (6) 

Note, that division by Cw has the effect of scaling the analyte spectra, assuming a constant 

water contribution to all sample spectra. The Raman spectrum of the stock glucose solution 

(450g/L) is used as the reference for EMSC, and polynomial of order 5 was used in all cases. 

The glucose reference spectrum and water spectrum used in EMSC were recorded using the 

532nm laser line and Lab-Tek plate as substrate. The x60 objective brings the laser to a focus 

within the liquid, beyond the thin (0.16mm-0.19mm) glass substrate. No significant 

contribution from the glass to the recorded spectrum was apparent, and therefore no correction 

was required. The Rubberband method (59) was used to baseline correct the glucose reference 

spectrum after smoothing it using the Savitzky–Golay method.  
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2.5.2 Partial Least Squares Regression  

 

Partial Least Squares Regression (PLSR) was employed to establish a model that relates the 

variations of the spectral data to a series of concentrations. This regression model can be used 

to improve the limit of detection of Raman bio-sensing (60).  Constructed based on the spectra 

of samples of known glucose content, either solutions of varying concentrations of glucose (in 

water or in commercial serum), or those of the patient serum, the model is then validated using 

a rigorous cross validation procedure which evaluates its performance in accurately predicting 

glucose concentrations. A 20 fold cross validation approach has been employed to validate the 

robustness of the method. This approach involves randomly dividing the set of observations 

into approximately equal size, 50% of the spectral data were randomly selected as test set, 

while the remaining 50% is used as the training set (61). In the current case, (5 x 25 spectra) 

were divided into two groups of 65 (test) and 60 (training) spectra. The cross-validation process 

is then repeated 20 times (the folds), with all observations are used for both training and testing, 

and each observation is used for testing exactly once. The results from the folds can then be 

averaged to produce a single estimation. The Root Mean Square Error of Cross Validation 

(RMSECV) is calculated from the 20 iterations to measure the performance of the model for 

the unknown cases within the calibration set. The correlation between the concentration and 

spectral intensity is given by the R2 value. The standard deviation was calculated to find the 

variation between each spectrum calculated from the same sample. The number of latent 

variables used for building the PLSR model is optimised by finding the value that is equivalent 

to the minimum of the RMSECV 

 

3. Results  
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In this study, Raman spectra of the samples were recorded in the inverted geometry using a 

x60 water immersion objective with a 532nm laser and the Lab-Tek plate was used as the 

substrate. The 532nm laser was chosen as it is compatible with the thin glass bottomed Lab-

Tek plate and provides a strong Raman signal of the sample with minimal background 

interference. This set-up was previously reported by Bonnier et al. (31) to yield better analysis 

of serum using Raman spectroscopy when the sample was analysed in the inverted geometry 

using a water immersion objective with a 785nm laser and CaF2 substrate. The added advantage 

of this setup is that it provides high quality, consistent Raman spectra from sample volumes as 

low as 1μL. The protocol using 532nm was more recently further explored for analysis of 

HMWF serum proteins (50).  

Figure 1 presents the spectra of the fingerprint region of the pure glucose solution recorded in 

the inverted geometry. The raw spectra of the glucose were baseline corrected using the 

rubberband method and smoothed using the Savitzky–Golay algorithm (polynomial 5, window 

13). Example signature peaks of glucose (indicated by asterisks) appear at ~450cm-1, associated 

with an endocyclic δ(C-C-O) ring mode, δ(C1-H1) vibration at 911cm-1, a peak at 1060cm-1 

due to ν(C1-OH) stretching, a relatively sharp peak at 1125cm-1 which can be assigned to the 

δ(C-O-C) angle-bending mode and the sharp peaks at 1340cm-1 and 1460cm-1, related to the 

δ(C-C-H) vibration and pure CH2 group vibration, respectively(62). 
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Fig.1. Raman spectrum of an aqueous glucose solution, concentration 450g/L. Example 

signature peaks at 450cm-1, 911cm-1, 1125cm-1, 1340cm-1 and 1460cm-1 are labelled in the 

figure. 

3.1 Monitoring the concentration dependence of glucose in distilled water 

 

In order to establish the analysis protocol for the patient samples, a PLSR prediction model 

was first built and applied to the set of varying concentrations of glucose in distilled water, as 

well as spiked into serum. The first step in this study was to optimise the measurement protocol 

and also to evaluate the efficacy of the centrifugal filtration technique in separating and 

concentrating glucose from the HMWF proteins. For this, different amounts of pure glucose 

were spiked into the distilled water. The normal glucose concentration and the concentration 

and hyper-glycaemia were deliberately included to simulate physiologically relevant 

concentrations. Figure 2 A displays examples of the EMSC (polynomial order 5) corrected low 

(5 x100mg/dL), medium (5 x 450mg/dL) and high (5 x 1000mg/dL) datasets, showing glucose 

features (indicated by asterisks) of greater intensity at higher concentration, whereas the lower 

concentrations shows weaker features of glucose. The groups of spectra are off set for clarity. 

*

*

*

*

*

*
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The concentration 1000mg/dL was deliberately included in the dataset to evaluate the 

consistency of the glucose spectral features as the concentration increases from 100mg/dL to 

1000mg/dL. In order to analyse the spectral variations and the glucose concentrations, the 

PLSR algorithm was applied.  

 

 

 

Fig. 2. (A): EMSC corrected Raman spectra of filtrate obtained after centrifugal filtration with 

10kDa filters of varying concentrations of glucose (5 x100mg/dL, 5 x 450mg/dL and 5 x 

1000mg/dL, offset for clarity), in distilled water and signature peaks of glucose are highlighted 

with asterisks, (B): Evolution of the RMSECV on the validation model, (C): plot of PLSR 

coefficient with glucose features, (D): Predictive model built from the PLSR analysis. The 

value displayed in the PLSR model is an average of the concentration predicted with the 

corresponding standard deviation calculated from the 20 iterations of the cross validation. The 

RMSECV and R2 values were calculated as 10.93mg/dL and 0.9705 respectively. 

A B

C

*

*

*

*
**

A

D



16 
 

 

Based on the percent variance explained by the latent variables and the minimum value of 

RMSECV (Figure 2B), the optimum number of latent variables to reach the best performance 

is determined to be 4. The PLSR coefficient plot displayed in Figure 2C confirms the 

correlation of the data in Figure 2D is based on glucose features, such as the peaks at ~1060cm1, 

~1125cm1, 1450cm-1 and ~1340cm-1. Finally, after selecting the optimum number of 

components for the data set analysed, a predictive model is built from the PLSR analysis 

(Figure 2D), to compare the observations to the known concentrations of glucose in the samples 

with the estimated concentrations from the spectral data sets. Figure 2D indicates that a 

satisfactory linear model could be obtained with the raw data set and that the concentration 

dependence of the sample set is conserved by centrifugal filtration. From the results shown in 

figure 2, it is evident that the predicted values are in good agreement with the reference 

concentrations and the corresponding correlation coefficient (R2) is calculated as 0.9705. Note, 

each concentration point has five independent measurements, and the mean standard deviation 

of each measurement is 4.8mg/dL. The RMSECV calculated from the 20 iteration of cross 

validation is 10.93mg/dL,, thereby indicating that PLSR provides accurate predictions for the 

glucose Raman data over the entire concentration range of 100mg/dL to 1000mg/dL.  

 

3.2 Monitoring the glucose concentration in spiked serum 

In an attempt to extend the optimised protocol to a more complex environment, PLSR analysis 

was performed on the EMSC corrected data set recorded from the filtrate of the serum samples 

with spiked glucose concentrations varying from 0mg/dL to 220mg/dL. When the entire 

fingerprint region was selected for PLSR analysis, the resultant PLSR coefficient displayed a 

negative peak at ~1000cm-1 which could potentially derive from other LMWF species such as 

urea (63) (Figure S1C in Supplemental). Therefore, the spectral region from 1030cm-1 to 
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1400cm-1, which contains strong glucose features at ~1050cm-1 and at~1340cm-1 but minimal 

interference from urea, has been chosen for PLSR analysis (62).  

 

 

 

 
 

Fig. 3. (A): EMSC corrected Raman spectra of filtrate obtained after centrifugal filtration with 

10kDa filters of glucose spiked in serum (spiked concentrations 5 x 0mg/dL, 5 x 120mg/dL 

and 5 x 220mg/dL, offset for clarity) and the signature peaks of glucose are highlighted by 

asterisks, (B): Evolution of RMSECV of the data set (C): plot of PLSR coefficient with glucose 

features, (D): Predictive model built from the PLSR analysis. The value displayed in the PLSR 

model is an average of the concentration predicted with the corresponding standard deviation 

calculated from the 20 iterations of the cross validation. The RMSECV and R2 values were 

calculated as 1.66mg/dL and 0.9914 

 

 

B

C

A

D

* * 

* 
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Figure 3A shows the glucose data set after background correction using the EMSC algorithm 

(offset for clarity by 5.0 units). The optimum number of latent variables were chosen by 

calculating the lowest value of RMSECV (Figure 3B). Six latent variables were chosen for this 

model and the resultant PLSR coefficient exhibits strong glucose features, as shown in Figure 

3C. A linear predictive model can be defined from the EMSC corrected data set of varying 

concentration of glucose in serum Figure 3D. The RMSECV was found to be 1.66mg/dL and 

R2 value was calculated as 0.9914. The mean standard deviation of each measurement from 20 

iterations of cross validation was calculated to be 3.2mg/dL. The results suggest that this 

optimised protocol can be applied to the patient samples to build a quantitative model. 

Bonnier et al. have previously illustrated the strategy of centrifugal filtration to fractionate the 

samples to eliminate the influence of HMW in order to screen potential LMWF biomarkers 

using glucose as a model analyte, measured by ATR-FTIR [33]. The results of the analysis of 

similarly centrifugally filtered, glucose spiked samples of commercial serum are reproduced in 

Table 2, and directly compared to the results of the current study using Raman spectroscopic 

analysis in the native liquid state. Although each method yields similar R2 values, the RMSECV 

of Raman spectroscopic analysis is significantly lower, which indicates an increased accuracy 

of the measurement protocol in the liquid state.  

Table 2. Comparison of the results of ATR-FTIR and Raman spectroscopic analysis of human 

serum spiked with varying concentrations of glucose.  

 

Measurement 

type 

 

Concentration 

range (mg/dL) 

RMSECV(mg/dL) Standard 

deviation 

R2 

FTIR (Min-

Max 

normalised) 

 

0-220 2.199 0.250 0.995 

Raman 

spectroscopy 

 

0-220 1.665 3.2 0.991 
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3.3 Monitoring the glucose concentration in patient samples 

Figure 4A displays the Raman spectra from patient samples after performing background 

correction using the EMSC algorithm, in the reduced spectral range of 1030-1400 cm-1. The 

spectra are offset for clarity by 5.0 units. The glucose bands at 1340cm-1 and 1460cm-1, related 

to the δ(C-C-H) vibration and pure CH2 group vibration, and the peak at 1060cm-1 due to ν(C1-

OH) stretching can be clearly seen. Based on the minimum RMSECV value (Figure 4B), 12 

latent variables were found to be optimal for constructing a PLSR based model.  The PLSR 

coefficient clearly shows glucose features (Figure 4 C), indicating that the prediction is based 

on the variation in the glucose peak intensities. In the prediction model of Figure 4D, the 

minimum value of RMSECV is 1.84mg/dL and the R2 value is calculated as 0.82, indicating a 

high prediction capacity. The mean standard deviation was determined to be 3.48mg/dL, 

indicating acceptable repeatability between the cross validation iterations.   
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Fig. 4. (A): EMSC corrected Raman spectra of filtrate obtained after centrifugal filtration with 

10kDa filters of patient samples (5 x 52.25mg/dL, 5 x 75.67mg/dL, 5 x 93.69mg/dL, 5 x 

210.81mg/dL and 5 x 434.35mg, offset for clarity) and the signature peaks are marked by 

asterisks, (B): Evolution of RMSECV of the data set, (C): plot of PLSR coefficient with glucose 

features, (D): Predictive model built from the PLSR analysis. The value displayed in the PLSR 

model is an average of the concentration predicted with the corresponding standard deviation 

calculated from the 20 iterations of the cross validation The RMSECV and R2 values were 

calculated as 1.84mg/dL and 0.84 respectively. 

 

Table 3. Comparison of the results of ATR-FTIR (29) and Raman spectroscopic analysis of 

patient sample set for monitoring the glucose levels. FTIR results are normalised. 

Measurement 

type 

 

Concentration 

range (mg/dL) 

RMSECV(mg/dL) Standard 

deviation(mg/dL) 

R2 

ATR-FTIR 

(Min-Max 

normalised) 

61.25-210 3.1 1.90 0.9957 

C
D

BA * *

*
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Raman 

Spectroscopy 

52.25-210 

 

1.6 2.31 0.91 

52.25-440 1.84 3.48 0.84 

 

 

Table 3 directly compares the results of analysis of a similar patient sample-set, with glucose 

levels which varied over the range 0-210mg/dL, similarly centrifugally filtered and analysed 

using ATR-FTIR (29) and the results of the current study of patient samples over the same 

(patients 1-21, Table 1) and extended (patients 1-25, Table 1) range using Raman spectroscopic 

analysis in the native liquid state. It is noteworthy that Raman spectroscopy yields significantly 

lower values of RMSECV for all the Raman prediction models, suggesting higher sensitivity 

and accuracy. However, the standard deviation was found to be higher and the R2 value was 

found to be considerably lower for the shorter as well as larger concentration range. The 

reduced R2 value and higher standard of deviation could be attributed to the variability in the 

spectral response of the patient samples. Nevertheless, the precision of the model expressed by 

the RMSECV values indicates the suitability of this technique to discriminate patients with 

very close concentrations of blood glucose. The results demonstrate that Raman spectroscopy 

is able to detect subtle variations in the glucose concentrations with similar accuracy in the 

native liquid state, to the ATR-FTIR method in dried samples. 

In order for a glucose detection method to be viable, it should be able to detect glucose in the 

clinically relevant range (10-450mg/dL). Post PLSR analysis, the dataset is presented in the 

Clarke’s error grid (Figure 5), the most common standard for evaluating the performance of a 

glucose detection method used since 1987 (64). Data points that fall in zone A and B are 

acceptable values. Values that fall outside A and B result in erroneous diagnosis. On the 

Clarke’s error grid of patient samples (Figure 5), 98% of the PLSR validation dataset falls 
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within zone A and B, which is the zone of clinical accurate measurement with no effect on 

clinical actions. Error can be attributed to the intrinsic variability of patient samples which 

reflects their physiological state on the day. However, the results from this study are promising, 

indicating that Raman spectroscopy coupled with multivariate analysis and centrifugal 

filtration techniques can be used as a biochemical tool for detecting potential small biomarkers 

from human serum/plasma. 

 

Fig.5. PLSR validation of patient samples on Clarke’s error grid. The RMSECV was found to 

be 1.84 mg/dL and R2 value was calculated as 0.84 

 

 

4. Discussion 

The potential advantages of using vibrational spectroscopy for biomarker assessment in bodily 

fluids have been extensively explored in the last two decades. However, little consideration has 

been given so far to protocols involving Raman analysis in the native liquid state of proteins.  

Liakat et al. reported the in vitro prediction of physiologically relevant concentration of glucose 

using mid-IR transmission light with respect to a Clarke error grid (52). Near IR and Raman 
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spectroscopy was also used for measurement of glucose from artificial plasma with high 

precision and accuracy (65). Although these are initial steps towards developing Raman 

spectroscopy into a biochemical tool for serum/plasma analysis, measurements should be 

performed on patient samples in order to ensure the relevancy of these methods. Using Raman 

spectroscopy as a biochemical tool, it has been possible to detect differences in peak intensities 

of altered serum compared to normal ones for glucose and lipid compounds (66), 

multicomponent blood analysis (67) and also to determine blood glucose concentration of 

blood samples with above-physiological levels of glucose within 5 min (68). 

 Using glucose as a model analyte, this study successfully demonstrated the feasibility of 

employing Raman spectroscopy for detecting small biomarkers in serum after depletion of 

HMWF proteins. It has been shown that optimal experimental set up for Raman analysis for 

this experiment is Lab-Tek plates as substrate and measurement in the inverted geometry using 

water immersion objective and the sample volume can be as small as 1μL. This experimental 

set up is advantageous for clinical purposes where the volumes of patient samples are minimal. 

After the depletion of the abundant proteins, the dominant water peak from the filtrate collected 

after centrifugal filtration using 10kDa can be removed by using the EMSC algorithm, and 

PLSR analysis applied to obtain a prediction model relating the glucose concentrations and the 

intensity of glucose features. Even though the EMSC algorithm removed the underlying water 

spectra effectively, there could be interference from other LMWF analytes, namely, urea (7-

20mg/dL). Thus, as presented in the present study, the spectral range from 1030cm-1 to 1400cm-

1 was chosen for data analysis, as this region does not contain signature peaks of urea.  

The depletion of HMWF proteins using centrifugal filtration to detect glucose in serum using 

ATR-FTIR was previously reported by Bonnier et al. (29). While the work carried out by 

Bonnier et al. showed excellent results, the requirement of a drying step is potentially a major 

drawback. Indeed, the drying process required for ATR-FTIR has been identified by Cameron 
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et al. as a potentially significant impediment to translation of the technique to clinical 

applications (41). Since Raman is compatible with aqueous samples, sample drying can be 

avoided and data can be recorded from the native environment, which makes the proposed 

method an ideal alternative to IR. The results summarised in Table 2 and Figure 3 suggest that 

Raman spectroscopy maintained high level of accuracy and predictive power and the 

relationship between spectral variation and protein concentrations is linear, with minimal 

standard deviation. The PLSR model built on varying concentration of glucose spiked in serum 

provided an accurate prediction model (R2=0.9914, RMSECV= 1.66mg/dL) after applying pre-

processing steps using the EMSC based algorithm. Having established the optimal sample 

preparation and analysis protocol using the spiked serum model, the same protocol was applied 

to patient samples. In the case of patient samples, RMSECV and R2 values were calculated to 

be 1.84mg/dL, and 0.84 respectively. Although ATR-FTIR provides better standard deviation 

and higher R2 value, the Raman prediction model gives lower a RMSECV value, indicating 

higher accuracy. The PLSR coefficient plot shows clear features of glucose, indicating the 

prediction model is built on variations in glucose concentrations. The added advantage of 

Raman spectroscopy is that the analysis can be performed on liquid samples and no additional 

time delays associated with sample drying are introduced. Although the quantitative capability 

of Raman can be easily demonstrated using glucose spiked with a pooled serum model, the 

analysis of patient samples can be more complicated, the reason being the intrinsic variability 

of individual samples depending upon the physiological state of the individual on that day.  

For the purposes of a direct comparison of the two techniques, glucose concentration in human 

serum was chosen, and the results detailed in Table 3 indicate that Raman in the liquid state 

provides higher accuracy than FTIR-ATR. Although vibrational spectroscopic techniques are 

unlikely to replace current techniques for routine glucose monitoring, in a more general sense, 

an argument for serological applications of vibrational spectroscopic techniques has been made 
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(28, 37). The advantages of using Raman spectroscopy over common biochemical assays to 

quantify urea and creatinine has previously been reported(63). Moreover, Raman spectroscopy 

as a biochemical tool for serum analysis is cost effective, rapid and a non-destructive method 

as compared to currently employed gold standard clinical methods such as spectrophotometric 

analysis ( e.g. COBAS analyser) (69). The COBAS analyser has a standard deviation of 0.04 

mmol.L-1 (which is equivalent to 0.721 mg.dL-1), as mentioned in the Material and Methods 

section, and the lower detection limit is 2mg/dL (70) with a correlation coefficient of 0.975 

reported for  immunoassays (71) and R2
  of 0.990 for urea, creatinine, sugar, total protein and 

calcium (72). Similar R2 values were calculated for pure glucose solutions and glucose spiked 

serum solutions using Raman spectroscopy, suggesting that Raman spectroscopy is well-suited 

for routine use as a biochemical tool for glucose analysis. However, the analysis using COBAS 

analyser is complex and uses various enzymatic reagents, increasing the cost and chance of 

inaccuracy in the results obtained. Employing well trained personnel to operate the equipment 

enhances the reliability but increases the cost. Hence, Raman spectroscopy offers several 

advantages as it is a onetime investment, easy to operate and provides rapid results with wider 

information without destroying the medium. This could be translated as an alternative method 

for glucose monitoring, especially in the case of hyperglycaemia.  Further studies need to be 

conducted to investigate other LMWF metabolites from human serum using Raman 

spectroscopy. However, to further ensure relevancy of the results, the study should ultimately 

be conducted on large number of patient samples.  

5 Conclusion: 

Summarising, the work presented showcases the development of an optimal methodology for 

the detection of LMWF analytes from human serum using Raman spectroscopy with minimal 

sample preparation steps and without the use of any extrinsic labels. The proposed approach 

can be expeditiously employed for early detection of pathological disorders associated with 
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high or low serum/plasma proteins/biomarkers. Disease diagnosis from bodily fluids can be 

developed into a dynamic diagnostic environment that will enable early disease diagnosis even 

before the disease becomes symptomatic. Thus, analysis of bodily fluids has emerged as one 

of the promising approaches to deliver crucial information about patient health and monitor 

disease progression and/or therapy. Given the remarkable advances in the field over the last 

two decades, including sample preparation, protein fractionation, quantitation and 

chemometrics, it is conceivable that vibrational spectroscopic techniques can be developed as 

a point-of-care disease monitoring system. Ultimately, the proof of concept presented in this 

study can be easily transferable to any other low molecular weight biomarkers or therapeutic 

drugs. 
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