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Abstract 
 

Purpose: This work investigates the hypothesis that genetic background plays a significant role in the 

signalling mechanisms underlying induction and perpetuation of genomic instability following 

radiation exposure. 

Materials and methods: Bone marrow from two strains of mice (CBA and C57), were exposed to a 

range of X-ray doses (0, 0.01, 0.1, 1 and 3 Gy). Different cellular signalling endpoints: apoptosis, 

cytokine levels and calcium flux, were evaluated at 2h, 24h and 7d post-irradiation to evaluate 

immediate and delayed effects. 

Results: In CBA (radio-sensitive) elevated apoptosis levels were observed at 24h post X-irradiation, 

transforming growth factor-β (TGF-β) levels were additionally shown to increase with time and dose. 

C57 showed a higher background level of apoptosis compared to CBA, which was sustained 7 days 

after radiation exposure. Levels of tumor necrosis factor-α (TNF-α) were also increased at day 7 for 

higher X-ray doses. TGF-β levels were higher in CBA, whilst C57 exhibited a greater TNF-α response. 

Calcium flux was induced in reporter cells on exposure to conditioned media from both strains.  

Conclusions: These results show genetic and dose specific differences in radiation-induced signalling 

in the initiation and perpetuation of the instability process, which have potential implications on 

evaluation of non-targeted effects in radiation risk assessment. 
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Introduction 

In the classical model of ionizing radiation, damage is induced directly through energy deposition 

causing lesions within hit cells. Whilst this model holds true for some radiation effects, it fails to 

encompass the range of damage observed spatially and temporally separate from a direct radiation 

insult. These include genomic instability (GI), where increased rates of aberrations are observed many 

generations after radiation exposure (Kadhim et al. 1992, Ponnaiya et al. 1997), and bystander effects 

(BE) where non-hit cells exhibit damage when allowed to communicate with irradiated cells 

(Nagasawa and Little 1999). The phenomena of GI and BE are termed ‘non-targeted effects of 

radiation’ and have the potential to elicit an adaptive response (Morgan 2003 a and b). The 

manifestation of non-targeted effects of radiation have been described widely at the phenotypic 

level, however the mechanisms that underlie these processes are not fully defined at present. It is 

clear that certain factors have a strong influence in the appearance and manifestation of non-

targeted effects, these include: genetic predisposition (Kadhim et al. 1994, Watson et al. 1997, 

Watson et al. 2001) and radiation type and dose (Kadhim et al. 2006, Esposito et al. 2006). Cytokines, 

Ca2+ fluxes and reactive oxygen (ROS) and nitric oxide species (NO) have previously been shown to be 

involved in responses to radiation in a range of cell systems (Dieriks et al. 2010, Ivanov et al. 2010, 

Facoetti et al. 2006) and in how genomic instability is perpetuated through multiple cell divisions 

(Averbeck 2010), but definitive links remain elusive. 

 

Cytokines are involved in a range of cellular regulating pathways, and it is known that tumor necrosis 

factor-α (TNF-α) and transforming growth factor-β (TGF-β) levels are reported to change in response 

to irradiation (Facoetti et al. 2006, Lorimore et al. 2008, Burr et al. 2010). TNF-α is involved in 

inflammatory responses, activating nuclear factor kappa-light-chain-enhancer of activated B cells 

(NFκB), mitogen-activated protein kinases (MAPK) pathways and apoptotic pathways. In the case of 

ionizing radiation, DNA damage is proposed to initiate a cytoplasmic signalling cascade leading to NF-

κB activation through activation of inhibitor of kappa B kinase (IKK). The signalling molecules 

upstream of IKK have not been elucidated (Liu 2005) It is of note that some cell signalling molecules of 

the TNF pathway: receptor interacting protein (RIP), TNF receptor-associated factor 2 (TRAF2) and c-

Jun N-terminal kinases (JNK), are also key regulators of ROS/oxidative induced cell death (Shen et al. 

2004). TGF-β has anti-proliferative action via the SMAD (a protein family sharing homology with 

drosophila 'mothers against decapentaplegic' (Mad) and the C. elegans Sma gene products) apoptotic 
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pathway, it is also involved in cell cycle regulation (G1 arrest), and plays a role in early stages on 

oncogenesis. Mutations/inactivation of the TGF-R/SMAD pathway are linked to several forms of 

cancer (Shi and Massagué 2003). TGF-β affects hundreds of genes in various combinations, leading to 

a range of final effects, which are influenced by cell type and conditions at activation (Shi and 

Massagué 2003). In recent publications both changes in TNF-α and TGF-β levels have been observed 

after exposure to low dose radiation in different model systems. Production of a range of cytokines 

has been observed in response to whole body irradiation of BALB/c with low doses of X-rays (Cheda 

et al. 2008), these included TNF-a, interleukins (IL) IL-1B and IL-12. TGF- β and reactive nitrogen 

species have been associated with bystander signalling following ‘low dose’ high linear energy 

transfer (LET; alpha particle) exposure (Han et al. 2010) in CHO cells. Whilst there is a clear role for 

cytokines in radiation responses, evaluation of the role of such signalling molecules in relation to non-

targeted radiation effects has not been conducted.  

 

Intracellular calcium signalling is involved in the control of cell functions including secretion, enzyme 

activation, cell cycle regulation, influence cell proliferation and differentiation and also modulates 

apoptosis (Orrenius et al. 2003). Calcium fluxes have previously been shown to be induced in HPV-G 

reporter cells exposed to irradiated cell conditioned media (ICCM) (Lyng et al. 2011, Shao et al. 2006, 

Mothersill et al. 2006), implicating Ca2+ signalling in the bystander signalling and/or response. This 

calcium response has been associated with a subsequent loss of mitochondrial membrane potential 

and ultimately increased apoptosis rates (Lyng et al. 2002, Maguire et al. 2005). Apoptosis is a form of 

programmed cell death, initiated through several distinct pathways. The role of apoptosis in radiation 

responses is linked to DNA damage and signalling events, providing a balance between DNA damage 

repair and removal of irreparable damaged cells (Takahashi et al. 2010). We and others have shown a 

genetic dependence in apoptotic response following both in vitro and in vivo exposure in mice 

(Gridley et al. 2011, Mothersill et al. 2005, Coates et al. 2008a).  

 

The aim of this study was to investigate signalling mechanisms involved in initiation and ongoing 

radiation-induced genomic instability events, with particular attention to genetic predisposition and 

radiation dose as factors influencing signalling and instability induction. In order to address the role of 

genetics in this process, bone marrow from two strains of mice known to exhibit different radio-
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sensitivities were used. Analysis of apoptosis levels, selected cytokine levels and calcium flux initiation 

were used to study strain specific signalling at several time points post low LET X-ray exposure.  
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Materials and methods 

Bone marrow harvest  

Femoral bone marrow cells from two in-bred mouse strains, CBA/CaH and C57BL/6J, bred in the Mary 

Lyon Centre, at the MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, UK, were 

used. All the mice were kept under the guidance issued by the Home Office code of practice and the 

Medical Research Council (MRC). All work had been ethically approved locally by the MRC, which was 

reviewed annually by their review committee. Briefly, 10-12 week old male mice were used to 

prepare a single cell suspension using 10% horse sera (Harlan Sera-Lab, Belton, UK).  

 

X-ray irradiation 

Cells were exposed in 30ml universal containers (Sterilin, Newport, UK) to 0, 0.01, 0.1, 1 and 3 Gy X-

rays (250 keV) at a cell concentration of 5 x 106 cells/ml (5ml per universal).  

 

Bone marrow and reporter cell culture 

Conditioned media required for optimal growth of bone marrow was produced as follows: Rat AF1-

19T cells or L929 mouse cells (both cell lines kind gifts from Dr Barrie Lambert, St Bartholomew’s 

Hospital) are grown in complete media comprising of minimum essential media-α (MEMα) media, 1% 

L-Glutamine (Invitrogen, Paisley, UK),  10% Foetal bovine sera and 1% Penicillin-Streptomycin solution 

(Sigma, Gillingham, UK) in a fully humidified incubator at 37°C, 5% CO2. When the cells reached 90-

95% confluence the media was carefully removed from the culture flasks, aliquot into sterile 50ml 

tubes and centrifuged at room temperature for 10 minutes at 1200rpm. The resulting supernatant is 

the ‘conditioned media’, this was collected in sterile Duran bottles and stored at -20°C until required. 

 

For each experimental group, bone marrow cells were pooled from the corresponding universals and 

were then cultured in 75cm2 cell suspension culture flasks (2.5 x 107 cells/flask), containing 

MEMα media supplemented with 25% horse sera (Harlan Sera-Lab, Belton, UK), sources of pre-tested 

in-house ‘conditioned media’ (25% AF1-19T and 20% L929), 1% penicillin-streptomycin and 1% 

200mM L-glutamine (suppliers as above).  

 

Flasks were incubated at 37°C, 5% CO2 before harvesting of cells (for apoptosis studies) and collection 

of irradiated cell conditioned media (for cytokine and calcium flux analysis) at several time-points: 2h 
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(0 population doublings (PD); immediate), 24h (1 PD; early) and 7 days (13-15 PD; delayed). For 

calcium flux imaging assays, L929 murine fibroblast cells were cultured in the same type of media as 

the bone marrow cells. The L929 cells are mouse connective tissue fibroblasts established from the 

normal subcutaneous areolar and adipose tissue of a male C3H/An mouse. 

 

Apoptotic analysis using flow cytometry with Annexin V labelling 

Where possible 5 x 105 cells were used for each group, reagent volumes were adjusted accordingly if a 

lower number of cells were available. Samples were centrifuged at 67g for 7 min at room temp, and 

supernatant retained for enzyme-linked immunosorbent assay (ELISA) analysis. Subsequent steps 

were performed under low light conditions: For cell suspensions of 5 x 105, pellets were re-suspended 

in 400μl Buffer (1x), and samples transferred to fluorescence activated cell sorter (FACS) tubes. 12.5μl 

annexin V (BD Pharmingen, Oxford, UK) was added and gently mixed. Samples were incubated in the 

dark, at room temp for 15 min. 5μl propidium iodide (50µg/ml) was added, and samples were 

immediately analysed by flow cytometry. Due to limited samples the apoptosis was only performed 

once.  
 

Cytokine analysis by ELISA 

For each group, supernatants from the Annexin V and initial Western centrifugations were combined 

in Amicon® Ultra-15 filter columns (Millipore, Watford, UK) in order to separate out proteins greater 

than 5kDa in molecular weight. The columns were centrifuged at 4000g for 45 min at room 

temperature. Cytokine analysis of the supernatants was performed using Quantikine kits for detection 

of total TGF-ß (latent + active forms of TGF-β) and active TGF-β1, and TNF-α (R&D Systems, MN, USA).  

Cell supernatant samples were plated onto the appropriate ELISA plate with relative controls and 

standards as per manufacturer’s instructions.  

 

Ratiometric measurement of calcium 

A key requirement for reporter cells is that they be receptive to bystander signals, however not all cell 

lines possess this prerequisite. The mouse fibroblast L929 cells used in this study were exposed to 

media from irradiated cells and shown to undergo a clear bystander response (data not shown) and 

as such were considered a suitable candidate for a murine reporter cell line.  
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For imaging Ca2+ flux, L929 cells were seeded 24h prior to imaging; at a density of 200,000 per 35mm 

MatTek glass bottom culture dish (MatTek Corporation, MA, USA) in 2ml media, the cells grew to 50-

60% confluence at the time of use. Ratiometric imaging was performed as previously described (Lyng 

et al. 2006).  Briefly, cells were loaded with Fluo3/Fura Red and imaging performed by confocal laser 

scanning microscopy. Continuous image acquisition was used to take baseline measurements and 

then monitor the effects of addition to the dish of either control or irradiated cell conditioned media 

which had been taken from the bone marrow cultures at time points of 2h, 24h and 7 days post 

irradiation.  

 

Statistical analysis 

One-way analysis of variance (ANOVA) with Bonferroni post-test was performed on cytokine data 

using GraphPad InStat 3 (GraphPad Software, CA, USA). Two proportions test (Minitab 15, PA, USA) 

was used to calculate p values for the apoptosis data.  

 

Results 

Levels of TGF-β and TNF-α show strain specific differences 

Levels of TGF-β and TNF-α were measured in ICCM (irradiated conditioned cell medium) from 0, 0.01, 

0.1, 1 and 3 Gy irradiated CBA and C57 haemopoietic cells at 2h, 24h and 7 days following X-ray 

exposure. For CBA there was a small (but not statistically significant) increase in TGF-β levels (Fig 1.A) 

after 2h for the 1 and 3Gy samples. Levels of TGF-β declined at 24h but were elevated above control 

levels in all irradiated groups at day 7, mainly following a dose-dependent increase (with the 

exception of 0.1Gy). Levels of TGF-β in all C57 samples were far lower than those for CBA, showing no 

increase above control levels for all time points (Fig 1C). There were no detectable levels of TNF-α at 

the 2h time point for either strain (Fig 1B and 1.D). In CBA there was detectable TNF-α at 24h in the 

0.1 - 3 Gy groups, following a dose-increase trend. At 7 days post-irradiation TNF-α was barely 

detectable in the CBA supernatant samples. In contrast, at the 24h time point C57 showed a marked 

decrease in TNF-α levels in all irradiated groups when compared to the sham irradiated control (Fig 

1.D). Whilst on day 7, levels of C57 TNF-α were highest, with the 1 and 3 Gy samples showing an 

increase above control, however, levels in the 0.01 Gy and 0.1 Gy C57 7d samples fell below the sham 

control level. The 0.01 Gy sample had levels approximately half to that of the concentration of the 

corresponding control group.  Overall, there were marked strain specific differences in the selected 
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cytokines observed, with TGF-β levels in CBA samples higher than those for C57 samples at all time 

points, whilst C57 samples showed a greater TNF-α response at day 7, though CBA did show a small 

peak of TNF-α at 24h. Due to variability in concentration measurements differences in the levels of 

TGF-β and TNF-α observed changes did not reach statistical significance.  

 

 

Initiation of calcium flux in L929 reporter cells 

Calcium flux was induced in the L929 reporter cells on exposure to irradiated conditioned media from 

both CBA and C57. The 2h ICCM CBA samples all induced calcium fluxes of similar magnitude and with 

following similar temporal dynamics (Fig 2.A). The 2h 0.01 – 1 Gy C57 samples all initiated fluxes; 

however the 3 Gy sample exhibited no clear calcium flux activity (Fig 2.B). The lower dose 24h post X-

irradiation CBA media, showed a higher magnitude of flux compared to the 3 Gy samples (Fig 2.C). 

Whereas the 24h ICCM C57 samples all initiated calcium fluxes of similar type (Fig 2.D). The 0.01 and 

1 Gy CBA 7d samples gave rise to a sustained calcium flux, not observed with the other media 

samples (Fig 2.E). The 3 Gy media gave rise to a small gradual increase in calcium levels over the 

duration of monitoring and the 0.1 Gy sample initiated a flux similar in form to the 2h and 24h time 

points. At the 7d time point for C57 samples, Ca2+ flux was initiated by all the ICCM samples (Fig 2.F) 

with the lower dose (0.01 and 0.1 Gy) media showing a greater magnitude of flux than the higher 

dose samples (1 and 3 Gy). Sham irradiated control media for each strain and time point showed no 

initiation of calcium flux (Fig 2.G and H).  

 

Apoptosis levels at different time points post X-irradiation  

Levels of apoptosis showed deviation from control at the higher radiation doses (p=0.000 CBA 3 Gy; 

C57 1 Gy and 3 Gy) for both strains at the 2h time point (Figure 3), notably C57 showed a slightly 

higher background level of apoptotic cells compared to CBA (C57 mean = 10.7% apoptotic cells; CBA 

mean = 8.7% apoptotic cells). In CBA significantly elevated apoptosis levels were observed at 24h post 

irradiation (Fig 3.A), at 0.01, 0.1, 1 and 3 Gy with the higher doses showing apoptosis levels around 

15% (p=0.000 for all samples compared to control). The C57 samples (Fig 3.B) showed a dose-increase 

response starting at 0.1 Gy, peaking at 3 Gy (13.2% apoptotic cells), all irradiated samples showed 

significant difference from control (p=0.000). At day 7 CBA showed very low levels of apoptosis, with 

significant elevation above control in the low dose range (0.01 and 0.1 Gy, p=0.000), and also at 3 Gy, 
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but at minimal levels (below 2% apoptotic cells). Whilst C57 showed perpetuation of significantly 

elevated apoptotic levels 7 days after exposure compared to control cells (p=0.000), peaking in the 1 

Gy group at 8.8% apoptotic cells.  
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Discussion 

It is becoming increasingly clear that non-targeted effects are not universally expressed following 

irradiation, which is the cause of much controversy in the field. This heterogeneity of response is 

likely due to a range of influencing factors (Salomaa et al. 2010)), including radiation type and dose, 

cell type, tissue type and genetic predisposition, amongst others. Whilst these factors have been 

studied separately the links between them are less understood. The focus of this study was to 

investigate the relationship between these factors, in particular genetic background and radiation 

dose in the context of signalling events. Simultaneously, temporal aspects were also evaluated to 

study whether initiation events (2-24h post-irradiation/0-1 PD) are linked to the outcome of delayed 

effects of radiation (genomic instability, here taken as 13-15 PD).  

 

The results show clear strain specific differences for signalling and molecular endpoints, particularly 

with respect to levels of cytokines, TGF-β and TNF-α, and as such likely contribute to the respective 

radio-sensitivity and resistance shown by the two strains. Radiation responses independent of dose 

were also observed, in the case of calcium flux induction, media generated from both CBA and C57 

stimulated responses in reporter cells, down to the lowest dose tested (0.01 Gy). Our results also 

showed that apoptosis levels differed between the strains with CBA apoptosis levels higher at 24h 

compared to C57, but C57 showed a higher level of apoptosis at the 7d (delayed) time point. C57 

showed a higher baseline level of apoptosis than CBA. Results here provide evidence for a significant 

influence of the genetic component in levels of apoptosis induction and type of cytokines.  

 

Our study also explored the role of dose dependency in the above endpoints in these strains of mice. 

The results/discussion above showed TGF-β (CBA) and TNF-α (C57) followed a dose-increase response 

at the delayed time point. A radiation dose increase response of levels of cytokines IL-12 and IL-18 has 

previously been reported (Shan et al. 2007). The two cytokines we have measured in this study both 

play significant roles in apoptotic induction, TGF-β via the SMAD or death-associated protein 6 (DAXX) 

pathways and TNF-α via MAPK/JNK or caspase 8 activation. The elevated levels of TGF-β in CBA at the 

delayed time point does not correlate with increased apoptosis, so it is possible that TGF-β at the 

delayed time point is involved in pathways other than apoptosis induction e.g. cell cycle control 

(blocks G1 progression). It is possible that in CBA increased TGF-β levels precede apoptosis, and our 
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sampling time point for detecting apoptosis did not capture this rise. Levels of apoptosis were 

elevated in C57 at day 7, so this may correlate with TNF-α signalling.   

 

TGF-β1 is known to play a role in suppression of genomic instability/maintaining genome stability 

(Glick et al. 1996), and its absence in C57 demonstrated here, in combination with induction of 

delayed chromosomal instability, would suggest that in the in vitro model system TGF-β has a role in 

long term signalling. Indeed, TGF-β1 association in inter-cellular signalling has been described 

previously (Shao et al. 2008), where it was demonstrated that TGF-β induced Ca2+ flux in reporter 

cells, which in turn led to generation of reactive nitrogen species. Our observation of Ca2+ flux 

induction by the ICCM of both CBA and C57, suggest that factors other than TGF-β can induce flux, as 

C57 show very low levels of TGF-β. The effects resulting from a lack of TGF-β, and associated 

implications in DNA damage response and genomic instability, may also be exacerbated by increased 

levels of TNF-α which have been shown to be a potential soluble bystander signalling molecule, 

capable of inducing genomic instability in bystander cells via generation of ROS (Natarajan et al. 2007, 

Gibbons 2008). Evidence for TGF-β involvement in bystander signalling has been demonstrated in 

other systems (high LET radiation, high dose) e.g. Han et al. 2010, Kruse et al. 2009, Burdak-

Rothkamm et al. 2007). 

 

Conversely, TNF- α is a pro-inflammatory cytokine, able to induce DNA damage (Fehsel et al. 1991), 

and is also involved in other signalling pathways. TNF-α has been implicated in bystander signalling, 

when anti-TNF-α, (and dimethyl sulfoxide (DMSO)and 2-(4-Carboxyphenyl)-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO)) were added to media from 4 Gy gamma whole body 

irradiated CBA and C57 incubated for 1h and placed onto fresh cells, a decrease in the chromosomal 

damage manifested in bystander cells was observed (Lorimore et al. 2008), with no cross-signalling 

between C57 and CBA. In vivo production of TNF-α (and other cytokines) by peritoneal macrophages 

and splenocytes after whole body irradiation of BALB/c mice with single low doses of 0.1 or 0.2 Gy X-

ray has previously been shown (Cheda et al. 2008). Release of anti-tumour cytokines including TNF-α, 

IL-1B and IL-12 from peritoneal macrophages, for TNF-α levels begin to elevate on day 1, significantly 

different from day 2-9 (end of experimental period), thus demonstrating that low dose X-ray exposure 

can lead to detectable signalling changes in vivo.   
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The link between genetics and dose response in apoptosis is less clear cut. With CBA apoptosis levels 

showing no dose response increase, whereas C57 levels rose with dose (up to 3 Gy at early time point 

and up to 1 Gy at the delayed time point). Recent work by Zyuzikov et al. (2011) showed that at an 

immediate/very early time (3h) post-radiation strain and dose specific responses were apparent 

following in vivo exposure, they demonstrated a strain specific apoptotic response, with C57 having a 

threshold of 0.05 Gy and 0.1 Gy for CBA in induction of p53/p21 dependent apoptosis. With respect 

to Caspase-3 induction for both strains no increase in activity was seen below 0.1 Gy (0.2 Gy triggered 

response in both strains), and 0.5 Gy for terminal deoxynucleotidyl transferase dUTP nick end labeling 

(TUNEL) assay (Zyuzikov et al. 2011) indicating that choice of biological response measurement is a 

crucial element of investigation/interpretation of data. The annexin V assay used in this study 

measures phosphatidylserine (PS) on the outer surface of the plasma membrane, which is an early 

marker of apoptosis, PS transfers from inner to outer face of the plasma membrane soon after 

apoptosis induction (Koopman et al. 1994). Our Annexin V apoptosis induction data shows no 

apparent effect at the immediate (2h) time point, but a dose increase response for C57, beginning at 

0.1 Gy, whilst CBA shows a biphasic dose response (with peaks at 0.01 and 1 Gy) at 24h. Interestingly, 

in a parallel study to the work presented here, C57 showed more complex chromosomal damage than 

CBA at delayed time points (data not shown) following low LET irradiation suggesting that the 

timing/triggering of apoptotic clearance has an impact on later manifestations of instability.  

 

Radiation-induced apoptosis is a key radiation response, removing cells with irreparable levels of 

damage which would otherwise be unstable or unviable. Our data showed a genetic trend in 

apoptosis levels. The difference in apoptosis may be due to inherent differences in radiation 

sensitivity of the respective strain cells, or could be influenced by the mix/type of cells present in the 

liquid culture and differing strain specific traits therein. Coates et al. (2008b) demonstrated that in 

vivo CBA and C57 have differing macrophage types, CBA having pro-inflammatory M1-like, and C57 

M2-like (anti-inflammatory). Post 4 Gy gamma in vivo exposure C57 show decreased nitric oxide 

synthase 2 activity and increased arginase activity indicative of increased M2 response, whilst CBA 

showed no changes, consistent with M1 macrophage response. In vitro alterations were not detected. 

As macrophage activation is associated with phagocytic clearance of apoptosing cells – it is proposed 

that the different strains use different pathways/activation for cell clearance. The lack of in vitro 

response in Coates et al. was ascribed to the fact that radiation responses are at the tissue level. 
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However the data presented here is in contrast to this – showing differential cytokine levels in vitro 

and ergo, changes in protein expression – and further on impacts on a number of different signalling 

pathways with different potential biological results. 

 

These results highlight the necessity to sample at more than one time point to obtain an indication of 

the temporal dynamics of apoptosis induction, or indeed any other response. These results suggest 

that sampling time is time is critical when evaluating non-targeted effects, especially in the case of 

low LET radiation which has biphasic cellular response/effects (Ghandhi et al. 2010) thus measuring 

responses at only one time point can potentially lead to ‘missing’ cellular responses.  

 

Induction of apoptosis following irradiation leads to the removal of damaged cells and thus reduces 

the likelihood of transmission of genetic damage to cell progeny. As such strains which have a greater 

tendency to undergo apoptosis will show less long term genomic instability as a greater proportion of 

the cells that will initiate/propagate the GI will survive. In contrast, strains with a propensity for lower 

apoptosis will retain more cells and thus the perpetuation of GI in later generations will be higher. 

This has been previously demonstrated with CBA and C57 mice strains, where CBA show lower rates 

of apoptosis and higher rates of GI and are thus termed ‘radio-sensitive’ whilst C57 has a higher 

apoptotic rate, lower GI and are thus ‘radio-resistant’ (Watson et al. 1997). Media from irradiated C57 

samples has been shown to initiate calcium flux in HPV-G reporter cells (Mothersill et al. 2006, Singh 

et al. 2011), whilst CBA irradiated and control media showed no effect on calcium flux in this system. 

This suggests that irradiated C57 cells produce signalling molecules which affect neighbouring cells, 

potentially enhancing the apoptosis rate in non-irradiated bystander populations. Results presented 

here are in partial agreement with this data, as C57 ICCM initiated a calcium flux in the L929 reporter 

cells, but in addition CBA also initiated calcium flux in the reporter cell line. The L929 cells were 

chosen for this experimental design in order to keep species continuity within the experiment, with 

the rationale that data would be better extrapolated to the in vivo state than in a situation where 

human reporter cells are used with mouse derived media samples. As stated above, calcium flux 

induction was observed in L929 reporter cells exposed to ICCM from all radiation doses, but not in the 

corresponding control groups. Such global induction of calcium fluxes on incubation with ICCM is in 

agreement with similar observations in human cell lines (Lyng et al. 2011). Lyng et al. (2011) used the 

same ICCM incubation approach with HaCaT (human keratinocytes) irradiated at 0.005, 0.05 and 0.5 
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Gy (well within the low dose range). They went further and demonstrated by inhibition of ROS, NO 

and extracellular calcium, that ROS and calcium were involved in bystander signalling and response, 

whilst NO was involved in bystander response only. They also demonstrated lipid-raft mediated 

signalling leads to calcium flux in bystander cells treatment with filipin (a membrane signalling/lipid 

raft inhibitor) abolished changes in membrane permeability and calcium flux. TNF-α, TGF-β, IL-33 and 

insulin-like growth factor 1 (IGF-1) all signal via lipid rafts and have been implicated in bystander 

signalling (reviewed by Hamada et al. 2011). Yamazaki et al. (2006) demonstrated cytokine signalling 

via lipid rafts in haemopoietic niche cells and this could be applicable to the murine model used in this 

work. The lack of low dose cut-off for calcium flux induction highlights that bystander signalling is 

occurring at very low doses, and whilst this may not correlate with significant damage induction in the 

short to medium term, one cannot discount the possibility of more subtle cumulative effects 

contributing to the overall damage burden of an organism.   

 

In conclusion, this work has shown that genetic background plays a significant role in the signalling 

mechanisms underlying induction and perpetuation of genomic instability following radiation 

exposure. All groups were capable of inducing calcium flux, and as such indicates signalling induction 

including at very low irradiation doses. Higher apoptosis levels were observed for CBA than C57, CBA 

preferentially used TGFβ and C57 TNFα responses. This highlights a link between initial signalling 

events and longer term effects, which warrants deeper investigation to identify possible points for 

exploitation e.g. in targeting therapy/ameliorating abscopal effects.  
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Tables and Figures 
 
Figure legends 
 
Figure 1. Total levels of cytokines (pg/cell) of TGFβ and TNFα in CBA and C57 at 2h, 24h and 7d post X-

irradiation (0-3 Gy). Error bars ± SEM. A: Levels of TGFβ/cell in CBA, B: Levels of TNFα/cell in 
CBA, C: Levels of TGFβ/cell in C57, D: Levels of TNFα/cell in C57. 

 
Figure 2. Calcium flux in murine fibroblast reporter cells (L929) on addition of irradiated cell 

conditioned medium. A: CBA ICCM 2h post irradiation, B: C57 ICCM 2h post-irradiation, C:  CBA 
ICCM 24h post irradiation, D: C57 ICCM 24h post irradiation, E: CBA ICCM 7d post-irradiation, 
F: C57 ICCM 7d post irradiation. Media from both CBA and C57 samples induced calcium flux 
in most instances. Controls showed no flux induction. G: Calcium levels following addition of 
2h, 24h and 7d sham irradiated CBA ICCM. H: Calcium levels following addition of 2h, 24h and 
7d sham irradiated C57 ICCM. 

 
Figure 3. Levels of apoptotic cells in CBA and C57 haemopoietic cells 2h, 24h and 7d after exposure to 

a range of X-ray doses (0 - 3 Gy). A) Percentage of apoptotic cells in liquid cultured CBA bone 
marrow cells. B) Percentage of apoptotic cells in liquid cultured C57 bone marrow cells.  

 
 





Figure 2. Calcium flux in murine reporter cells (L929) on addition of irradiated cell conditioned 
medium. A: CBA ICCM 2h post-irradiation, B: C57 ICCM 2h post irradiation, C: CBA ICCM 24h 
post irradiation, D: C57 ICCM 24h post irradiation, E: CBA ICCM 7d post irradiation, F: C57 
ICCM 7d post irradiation. Media from both CBA and C57 samples induced calcium flux in most 
instances. Controls G: CBA and H: C57 both showed no flux induction.

A CBA 2h B C57 2h

C CBA 24h D C57 24h

E CBA 7d F C57 7d

G CBA control H C57 control
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