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Abstract 

 

 Single walled carbon nanotubes have gained enormous popularity due to a variety of 

potential applications which will ultimately lead to increased human and environmental 

exposure to these nanoparticles. This study was carried out in order to evaluate the 

inflammatory response of immortalised and primary human lung epithelial cells (A549 and 

NHBE) to single walled carbon nanotube samples (SWCNT). Special focus was placed on 

the mediating role of lung surfactant on particle toxicity. The toxicity of SWCNT dispersed 

in cell culture medium was compared to that of nanotubes dispersed in 

dipalmitoylphosphatidylcholine (DPPC, the main component of lung lining fluid). Exposure 

was carried out for 6 to 48 hours with the latter time-point showing the most significant 

responses.  Moreover, exposure was performed in the presence of the pro-inflammatory 

stimulus tumour necrosis factor-α (TNF-α) in order to mimic exposure of stimulated cells, as 

would occur during infection.  Endpoints evaluated included cell viability, proliferation and 

the analysis of inflammatory mediators such as interleukin (IL)-8, IL-6, TNF-α and 

macrophage chemoattractant protein-1 (MCP-1). Crocidolite asbestos was included as a well 

characterised, toxic fibre control. The results of this study showed that HiPco SWCNT 

samples suppress inflammatory responses of A549 and NHBE cells. This was also true for 

TNF-α stimulated cells. The use of DPPC improved the degree of SWCNT dispersion in 

A549 medium and in turn, lead to increased particle toxicity, however, it was not shown to 

modify NHBE cell responses. 

 

Keywords:  

Nanoparticles, single-walled carbon nanotubes (SWCNT), dipalmitoylphosphatidyl-choline 

(DPPC), lung surfactant, inflammatory mediators, A549 cell-line, NHBE cell-line, lung 

epithelium 
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Introduction 

Carbon nanotubes (CNT) [Iijima, 1991] have gained enormous popularity due to their 

unique properties, offering a wide range of potential applications within commercial, medical 

and environmental sectors and have been included in the list of representative manufactured 

nanomaterials for testing by the OECD [Dreher, 2004; OECD 2008].  It is anticipated that 

this will ultimately lead to significantly increased occupational and public exposure to CNT 

[Bottini et al., 2006]. For appropriate safety measures to be put in place, knowledge on the 

potential human and environmental impacts of such new materials is necessary.   

The lungs are regarded as one of the main portals of entry for nanoparticles, which 

emphasises the importance of pulmonary toxicity evaluation.  Since epithelial cells are able 

to produce a number of pro-inflammatory mediators, these cells are regarded as regulators of 

airway inflammation in addition to alveolar macrophages and fibroblasts [Takizawa, 1998] 

and the lung epithelium plays a key role in the modulation of inflammatory processes by 

releasing inflammatory cytokines such as monocyte chemoattractant protein-1 (MCP-1), IL-8 

and TNF-α [Barlow et al., 2005; O’Brien et al., 1998].  

In a recent study by Poland et al. (2008) it was shown that long multi-walled carbon 

nanotubes (MWCNT) can result in asbestos-like pathogenic behaviour including 

inflammation and granuloma formation following direct exposure of the mesothelial lining of 

the body cavity of mice.  Similar to asbestos, SWCNT can have a large aspect ratio, 

consisting of long, thin fibres with aerodynamic characteristics that allow them to be inhaled 

deeply into the lungs.  Due to their length, they are difficult to remove by macrophages 

making them highly biopersistent, which is one of the main parameters of particulate toxicity 

[Donaldson et al., 2006].  The parallels drawn in terms of aspect ratio and fibrous nature 

highlight the need for further investigations of the comparative toxicity of CNT and asbestos 

fibres.  Cytotoxicity, pro-inflammatory and fibrogenic factors released by lung target cells 

are believed to play a key role in the pathogenesis of asbestos toxicity [Becker et al., 2005b; 

Mossman and Churg 1998; Shukla et al., 2003b].  Thus a systematic comparison of SWCNT 

bundles and asbestos fibres is advantageous and was therefore conducted in this study.   

Although individual SWCNT are only a few nanometers in diameter, they are grown in 

bundles and remain as such in aqueous media and when suspended in cell culture medium 

[Casey et al., 2007a].  Due to their highly adsorptive nature, it is most likely that during 
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human exposure, particles such as CNT would come into contact with a variety of different 

molecules leading to coating by various components present within a biological system 

[Casey et al., 2008; Hamilton et al., 2007].  Therefore, it was decided to use FCS as a media 

supplement in this study as it seemed to be the most relevant exposure scenario. However, it 

has been previously demonstrated that in presence of FCS the toxic potential of particles may 

be different compared to a FCS free environment as was seen with studies on the cytotoxicity 

of HiPco SWCNT and quartz particles where FCS supplemented culture medium 

significantly decreased the cytotoxicity of silica particles compared to particles suspended in 

FCS free medium [Davoren et al. 2007].   

Upon inhalation, it is hypothesised that particles may deposit in the lung and come in 

contact with lung surfactant which consists of lipids and specific proteins that line the air-

liquid interface of the alveolar surface as well as the bronchi and trachea [Hook, 1993; 

Schürch et al., 1992].  Lung surfactant is synthesized and secreted by alveolar type II cells 

where it is stored in lamellar bodies [Dobbs et al., 1987; King et al. 1982], and it is 

physiologically important for lowering the surface tension of the pulmonary alveolar 

hypophase surface [Scarpelli 1968].  Furthermore it protects against pathogens by opsonising 

bacterial, fungal and viral surface oligosaccharides through surfactant protein binding [Griese 

1999].  Experiments by Schürch et al. (1990) demonstrated that surfactant may aid in the 

displacement of particles from air to the aqueous phase and towards the lung epithelium.  In 

addition, studies showed that when particles were present in peripheral airways and alveoli 

they exist in a completely immersed, wetted state below the surfactant film [Schürch et al, 

1990].  Approximately 90% of bronchoalveolar lavage fluid (BALF) consists of 

phospholipids with dipalmitoylphosphatidylcholine (DPPC) being the most abundant and the 

substance mainly responsible for the surface tension lowering properties [Post and van Golde 

1988]. Therefore, DPPC dispersed into physiological saline has been used as a simple model 

of lung surfactant and it was concluded that employing DPPC as dispersant for in vitro 

particle toxicity studies helps to mimic the real world exposure situation more closely and 

increases biological relevance [Wallace et al., 1987; 2006].   

The aims of this in-vitro study were to determine whether SWCNT exposure can 

trigger an inflammatory response in lung epithelium and whether lung surfactants can alter 

the extent of dispersion and thereby the toxicity of SWCNT samples in comparison to 
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medium suspended particles.  The effects of the SWCNT were compared to those obtained 

with asbestos to enable comparison between the toxicity of these two particle types. In order 

to mimic inhalation exposure of SWCNT dust, particle samples were minimally processed 

and dispersed. Lung epithelial surface area is mainly made of type I cells. However there is 

no reliable human in vitro model available for this cell type and therefore alveolar epithelial 

type II cells are commonly used as a substitute [Donaldson et al., 2008]. This is reasonable 

since type II cells are able to proliferate and trans-differentiate
 
into type I cells when the 

existing type I cell population is damaged in the lung alveoli [Bhaskaran et al., 2007]. The 

epithelial type II carcinoma cell line A549 were chosen as appropriate target cells for this 

study.  To assess whether A549 cells are representative of primary cells regarding the aspects 

studied here, normal bronchial epithelial cells (NHBE) were also tested in parallel. 
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Material and Methods 

 

Cell Culture  

A549 human lung epithelial cells 

A549 cells from a human lung adenocarcinoma with the alveolar type II phenotype 

were obtained from ATTC (Manassas, VA, USA).  Cells were cultured in RPMI 1640 (Gibco, 

Karlsruhe) supplemented with L-glutamine, penicillin and streptomycin (Gibco) and 10% 

foetal calf serum (FCS, Biochrom, Berlin) in a humidified atmosphere containing 5% CO2 at 

37 °C.  The A549 reporter gene cell lines, containing the promoter region of IL-8 or IL-6, were 

cultured as previously described by Oostingh et al. (2008).  All cell culture reagents were 

obtained from PAA Laboratories (Pasching, Austria). The culture medium used for A549 cells 

will from herein be referred to as “A549 medium”. 

 

Normal human primary bronchial epithelial cells 

Normal human primary bronchial epithelial cells (NHBE) were obtained from 

Clonetics
TM

 (Lonza, Switzerland) and were maintained in bronchial epithelial cell basal 

medium (BEBM
®

) plus SingleQuots
®
 supplements as recommended by the manufacturer.  

Cells were used between passages 3-7. In the course of this study, this medium will from 

herein be referred to as “NHBE medium”. 

 

Test Particles 

HiPco SWCNT 

HiPco derived single-walled carbon nanotubes (SWCNT) were purchased from 

Carbon Nanotechnologies, Inc. (Houston, TX) and contained 10 wt% iron catalyst residues.  

The diameter distribution of these nanotubes was previously determined by Raman 

spectroscopy and ranged between 0.8 – 1.2 nm [Hedderman, 2006].  Atomic force 

microscopy (AFM) revealed HiPco SWCNT in their “as produced” state to exist in bundles 

on average 800 nm long with estimated bundle sizes of 2.6x10
14

 m
2
.  A BET surface area of 

487.15 m
2
/g was measured based on nitrogen adsorption. 

 

Crocidolite asbestos 
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Standard reference crocidolite asbestos (UICC) was obtained from SPI Supplies 

(Structure Probe Inc., West Chester, USA) and is characterized as described by Bowes and 

Farrow (1997).  UICC crocidolite asbestos was reported to have a mean length of ≤ 5µm and 

a mean width of < 0.5 µm [Lang et al., 2001]. BET surface area was reported to be 5.6 m
2
/g 

[Ono-Ogasawara and Kohyama 1999]. 

 

Dispersion of SWCNT in cell culture medium 

 A stock concentration of 500 µg/ml of SWCNT was prepared in the appropriate 

culture medium by vortexing the suspension three times for 5 seconds followed by sonication 

for 1 min in an ultrasonic bath (Sonorex RK52, Bandelin, Berlin, Germany).  This procedure 

was repeated three times.  Working concentrations of 0.195 µg/ml to 50 µg/ml were prepared 

by serial dilutions on a 96-well plate.  Expressed in terms of mass per surface area, 

concentrations ranged from 0.06 µg/cm
2
 to 15.625 µg/cm

2
. Transmission electron 

microscopy (TEM) studies performed in our laboratory have indicated that SWCNT remain 

bundled at these concentrations after ultrasonic dispersion in culture medium [Casey et al., 

2007a].   

 

Dispersion of SWCNT in DPPC 

A DPPC (Sigma) solution of 2.5 mg/ml was prepared in PBS by sonication for 10 

minutes at 37°C using an ultrasonic bath.  A 500 µg/ml stock concentration of SWCNT was 

prepared in DPPC/PBS solution followed by vortexing three times for 5 seconds each and 

subsequently sonicating for 1 min (Sonorex RK52, Bandelin, Berlin, Germany).  This 

procedure was repeated three times.  From these stock concentrations, working 

concentrations of 0.195 µg/ml to 50 µg/ml (0.06 µg/cm
2
 to 15.625 µg/cm

2
) were prepared in 

A549 or NHBE medium containing 10% DPPC/PBS so that the DPPC concentration was 

kept constant at 0.25 mg/ml over the concentration range studied. 

 

Dispersion of crocidolite asbestos 

Stock concentrations of 500 µg/ml crocidolite asbestos 

[(Na2(Fe
3+

)2(Fe
2+

)3Si8O22(OH)2] were prepared by diluting in the appropriate cell culture 

medium or DPPC/PBS.  As asbestos was easily dispersible in aqueous solutions, no 
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ultrasonication was required but short-term vortexing was used in order to disperse the 

samples.  Working concentrations were prepared as described for SWCNT. 

 

Characterisation of SWCNT suspensions 

 

Dynamic light scattering (DLS) 

Dynamic light scattering of particle solutions were obtained using the Nano-ZS 

system (Malvern Instruments).    

 

Light microscopy of particle exposed cells 

Cell monolayers were exposed to SWCNT samples or crocidolite asbestos as 

described for cell viability assays. Micrographs were obtained using a light microscope 

(Olympus IX70).  

 

UV-vis-NIR spectroscopy 

The method was adopted from Priya and Byrne (2008). Stock solutions of 4000 

µg/ml SWCNT in DPPC/PBS were prepared as described earlier. This sample was then 

serially diluted using DPPC/PBS solution by a factor of 2, down to 1.95 µg/ml. Thus, the 

surfactant concentration was kept constant while that of the SWCNT was serially diluted. For 

SWCNT samples suspended in culture medium, a stock concentration of 500 µg/ml SWCNT 

was prepared in DPPC/PBS, A549 or NHBE culture medium. These stock concentrations 

were diluted 1:10 in A549 or NHBE medium to obtain concentrations of 50 µg/ml, followed 

by serial dilutions by a factor of 2 down to 0.195 µg/ml using the corresponding medium. 

Thus, the same test solutions were prepared as used for cell exposure studies. In addition, 

higher particle concentrations of up to 400 µg/ml were included. The absorbance at a 

wavelength of 633 nm was measured using a UV-vis-NIR spectrometer (Perkin-Elmer 

Lambda 900). This wavelength was chosen to be within the region of SWCNT absorbance 

while avoiding interference from components of the cell culture medium [Casey et al., 

2007a; Priya and Byrne, 2008].  
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Cell exposures 

 

For cell viability, luciferase and protein release assays, cells were seeded in tissue 

culture treated 96-well plates at a density of 1x10
4
, 5x10

3
, or 2.5x10

3
 cells/well and exposed 

for 6, 24 and 48 hours, respectively. Following seeding, cells were incubated for 24 hours to 

adhere and obtain their normal morphology.  Cells were then exposed to SWCNT samples, 

crocidolite asbestos dispersed in culture medium or DPPC/PBS at final concentrations of 

0.195; 0.38; 0.78; 1.56; 3.125; 6.25; 12.5; 25 and 50 µg/ml. Culture medium only or culture 

medium containing 0.25 mg/ml DPPC/PBS served as negative control media, respectively.  

In addition, all exposures were carried out on cells stimulated with recombinant 

tumour necrosis factor-α (rh-TNF-α; Immunotools) or lipopolysaccharide derived from 

Pseudomonas aeruginosa (LPS-PA).  A rh-TNF-α concentration of 10 ng/ml resulted in 

optimal cytokine induction of cells and was used as positive control stimulus.   

Decreases in cell viability, promoter activation or protein release seen following 48 

hours were always higher compared to 6 or 24 hours. Therefore, only results following 48 

hours exposures are presented. 

 

Cell viability assay 

Cell viability was determined using the resazurin based CellTiterBlue
®
 assay 

(Promega, Madison, USA) according to manufacturer’s instructions.  

As SWCNT have previously been shown to interact with a variety of organic 

molecules including colorimetric indicator dyes such as CellTiterBlue [Casey et al., 2007b], 

SWCNT were tested for interactions with the unconverted as well as the converted form of 

the CellTiterBlue dye resulting in a maximum decrease in fluorescence by 10%, indicating 

only small interactions.   

 

Luciferase reporter gene assay 

Luciferase reporter gene assays were carried out under the same conditions as the cell 

viability assays. Following cell exposures, the luciferase assay was performed as described 

by Oostingh et al. (2008).  Again, exposure over 48 h showed the most significant responses 
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so that only 48 h data are presented here. 

No significant interaction of SWCNT and the luminescence signal measured as 

endpoint for reporter-gene assays was found (data not shown).   

 

Real-time RT-PCR 

Cells were seeded at a density of 5x10
5
 cells/ well in 12 well plates and were allowed 

to adhere for 24 hours.  Cells were then exposed to a 500 µl suspension of SWCNT in A549 

medium with a final concentration of 0, 1, 10 and 50 µg/ml for 6 or 24 hours.  Following 

exposure, A549 cells were lysed using 1% β-mercapto-ethanol in RLT buffer and cell 

solutions were transferred into QIAShredder spintubes (Qiagen).  For RNA isolation and 

DNA removal the RNeasy Mini Kit (Qiagen) was used according to manufacturer’s 

instructions.  cDNA was generated using the first-strand cDNA synthesis kit (Amersham, 

Biosciences) and pd(N)6 as primer.  Using the Taqman-system in the SybrGreen format, 

according to the manufacturer’s instruction, quantitative PCR was performed using the 

following primers: 

α-Enolase 5’ primer: 5’-GTT AGC AAG AAA CTG AAC GTC ACA-3’, 3’ primer: 5’-TGA 

AGG ACT TGT ACA GGT CAG-3’; IL-8 5’primer: 5’- ATG ACT TCC AAG CTG GCC 

GTG GCT-3’, 3’ primer: 5’-TCT CAG CCC TCT TCA AAA ACT TCT C-3’. Amplification 

of the housekeeping gene α-Enolase served as internal control.  

 

 

Enzyme linked immunosorbent assays (ELISA) 

Enzyme linked immunosorbent assays (ELISA) were performed to determine if 

alterations in promoter activation also correspond to changes in protein secretion.  In 

addition, this method was used to compare the effects on A549 compared to NHBE cells.  

ELISAs were performed for the cytokines IL-8, IL-6, TNF-α (Immunotools) and macrophage 

chemoattractant protein 1 (MCP-1, BenderMed Systems) following particle exposures for 24 

or 48 hours (see table 1). Cells were exposed as described for the luciferase assay.  As with 

the luciferase assays, 48 hour exposures resulted in the most profound effects so that these 

results were chosen for presentation and discussion. 

The ELISAs were performed according to the manufacturer’s instructions.  The signal 

was developed by using 3,3',5,5'-Tetramethylbenzidin (TMB, Sigma, Wien, Austria) and the 
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reaction was stopped using 2 M H2SO4.  Absorbance was then read at 450 nm using a Tecan 

plate reader (Tecan, Grödig, Austria).  All tests were performed at least in triplicate. 

 

Carbon nanomaterials have been reported to be able to adsorb proteins including 

cytokines which could lead to false negative results during ELISA [Casey et al., 2007a,b; 

Monteiro-Rieviere and Inman, 2005; Zhang et al., 2007].  Following incubation of SWCNT 

and protein standards used for ELISA, no significant interactions could be observed for IL-8, 

IL-6 or MCP-1 independent of DPPC dispersion at the particle concentrations employed in 

this study.  However, incubation of culture medium dispersed SWCNT with TNF-α protein 

standard did result in a 20% decrease in protein concentration (data not shown).  

 

Statistical analysis 

At least three independent experiments were conducted for each type of nanoparticle 

and toxicity endpoint.  Test results for each assay were expressed as factor change compared 

to unexposed control ± standard deviation (SD).  Control values were set as 1.  Differences 

between samples and control were evaluated using the statistical analysis package SPSS 14.0.  

Statistically significant differences were set at p≤0.05.  Normality of data was confirmed 

with Q-Q percentile plots and Kolmogorov-Smirnov tests.  Equality of variances was 

evaluated using Levène tests. One-way analysis of variances (ANOVA) followed by 

Dunnett’s multiple comparison tests were performed for normally distributed samples with 

homogeneous variances.  Non-parametric tests, namely Kruskal-Wallis followed by Mann-

Whitney-u-tests were applied to samples without normal distribution and/or inhomogeneous 

variances. 
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Results and Discussion  

 

This study aimed to evaluate the effects of SWCNT and crocidolite asbestos exposure 

on the inflammatory mediator response of lung epithelial cells.  Endpoints included cell 

viability, proliferation, cytokine promoter regulation of IL-8 and IL-6 and protein secretion 

of IL-8, IL-6, TNF-α and MCP-1. Special focus was placed on the modulating properties of 

DPPC dispersion on particle toxicity.  Furthermore, effects of particle exposure on rh-TNF-α 

stimulated cells were investigated.  The alveolar epithelial carcinoma cell line A549 and 

normal bronchial epithelial cells (NHBE) were chosen as target cells.  

 

Dispersion of HiPco SWCNT and asbestos fibres 

In this study, test particles were suspended in cell culture medium or DPPC/PBS 

solution. Concentrations of DPPC were chosen in order to assure complete particle coverage 

and mimic the degree of conditioning that would occur upon lung deposition.  Due to the 

large surface area of SWCNT, 2.5 mg/ml of DPPC in PBS was calculated to be appropriate 

[based on W. Wallace, personal communication].  Asbestos, despite having smaller surface 

areas, was suspended in the same concentration of DPPC in order to allow direct toxicity 

comparisons.  Due to the complexity of biological media, full characterisation of SWCNT is 

challenging and often not feasible.  In the present study, Raman spectroscopy, DLS, UV-vis-

NIR spectroscopy and light microscopy were carried out in order to assess the physical 

characteristics of SWCNT upon dispersion in DPPC and cell culture medium.  

SWCNT grow in bundles and are hard to separate so that they typically form micron-

sized agglomerates which have a greater aerodynamic diameter and expose a smaller surface 

area compared to individually dispersed tubes [Donaldson et al., 2001].  As can be seen in 

Fig. 1, light microscopy observations showed that SWCNT were never completely dispersed 

in any of the media used in this study.  Both dispersion of SWCNT in cell culture medium 

and DPPC did result in a certain degree of agglomeration, leading to cells being exposed to 

bundles of SWCNT rather than individual fibre shaped tubes.  DLS measurements confirmed 

that all SWCNT samples were highly poly-dispersed and tended to precipitate. However, this 

was also the reason why this method was not applicable for further analysis of the SWCNT 

samples used.  Alternatively, UV-vis absorption analysis was carried out to analyse SWCNT 
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suspensions as described by Priya and Byrne (2008).  A linear and constant increase in 

absorbance could be observed with increasing SWCNT concentrations for all dispersant 

vehicles used (Fig. 2).  This indicates that within the concentration range of SWCNT 

employed in this study, SWCNT were present as bundles and there is no evidence of a 

transition to dispersed isolated tubes at low concentrations, as is observed in water/sodium 

dodecyl benzene sulfonate suspensions at 0.07mg/ml.  This effect was independent of the 

type of suspension vehicle used.  Light microscopy confirmed the presence of SWCNT 

agglomerates of various sizes with diameters of micrometer range distributed on top of 

exposed cells (Fig. 1).  Light microscopy also showed that the relative agglomeration of 

SWCNT clearly differed between SWCNT dispersed in A549 medium (Fig. 1 a) and DPPC 

followed by addition to A549 medium (Fig. 1 b).  Dispersion in A549 medium resulted in the 

least uniform dispersion leading to the formation of large, condensed agglomerates of 

SWCNT.  In contrast, either DPPC or NHBE medium dispersion led to a more uniform 

SWCNT dispersion, resulting in greater exposure of cells to SWCNT.  Using UV-vis 

absorption spectroscopy, the same absorbance values were observed for SWCNT 

suspensions following DPPC or NHBE medium dispersion (Fig. 2).  However, dispersion 

with A549 culture medium in the absence of DPPC resulted in significantly lower 

absorbance, indicating higher amounts of SWCNT being suspended by DPPC or NHBE 

medium compared to A549 medium.  Improved dispersion of SWCNT would ultimately 

modify their toxicological behaviour as well as their aerodynamic and therefore deposition 

characteristics [Donaldson et al., 2001].  In contrast to SWCNT, the dispersion of asbestos 

was independent of the type of dispersion medium (Fig. 1 c, d) and it was easily dispersible 

leading to single fibres. 

The fact that DPPC may aid in the dispersion of SWCNT agrees with a study by 

Sager et al. (2007) who reported that DPPC in combination with bovine serum albumin 

(BSA) produces a satisfactory dispersion of carbon nanoparticles. In a recent study by Porter 

et al. (2008), authors also employed DPPC as a non-toxic the dispersant for MWCNT.  

Dispersion using DPPC may also lead to adsorption of surfactant components onto the 

particles.  This could lead to conditioning of particle surfaces which may affect their 

expression of cytotoxicity or genotoxicity [Wallace et al., 2006].  This was seen for diesel 

exhaust particles (DEP) and also silica particles conditioned by DPPC [Keane et al., 1991; 
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Murray et al., 2005; Wallace et al., 2006].   A recent study by Foucaud et al. (2007) 

demonstrated that the oxidative potential of Printex 90 carbon black nanoparticles can be 

modified by dispersion in medium containing DPPC and BSA.  DPPC dispersion resulted in 

greater oxidative potential of particles as compared to particles suspended in physiological 

saline.  On the other hand, coating with lung surfactant might mask their oxidative potential 

leading to decreased reactivity and attenuated toxicity [Gao et al., 2001].  Therefore, the next 

step of this study was to investigate the effects of SWCNT exposure on the inflammatory 

response of lung epithelial cells upon SWCNT exposure and examine if DPPC dispersion 

may modulate cell responses. 

 

Effects of HiPco SWCNT and asbestos exposure on viability of lung epithelial cells 

To assess whether any effects on inflammatory mediator releases could be due to 

decreased cell viability, the resazurin-based CellTiterBlue assay was carried out in parallel 

with all assays. Exposure of A549 cells to culture medium dispersed SWCNT at the 

concentration range tested did not result in any reduction of cell viability, independent of cell 

stimulation with rh-TNF-α (Fig. 3 a, b).  In contrast, a dose-dependent increase in 

CellTiterBlue fluorescence was observed. This agrees with previous studies showing no 

cytotoxicity of A549 cells at concentrations up to and including 50 µg/ml [Davoren et al., 

2007; Herzog et al., 2007].  Therefore, any effects on inflammatory mediator response would 

not be due to loss of cell viability.  However, significant cytotoxic effects could be seen for 

A549 cells exposed to DPPC dispersed SWCNT (Fig. 3 a, b). NHBE cells did not show a 

loss in viability under any exposure condition (Fig. 4 a).    

Exposure of A549 or NHBE cells to asbestos resulted in some loss of cell viability of 

up to 20%. No differences between culture medium and DPPC dispersion could be observed 

for non-stimulated cells (Fig. 3 c, d; Fig. 4 b).  

 

Effects of HiPco SWCNT exposure on selected inflammatory mediators 

One of the main objectives of this study was to address the question whether SWCNT 

exposure has the potential of modulating the immunological response of lung epithelial cells.  

Inflammatory responses are mediated by a variety of signalling molecules, and airway 

epithelial cells are known to be a major source of pro-inflammatory cytokines [Driscoll 
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1997].  Stimulation of A549 cells to release inflammatory mediators upon particle exposure 

has been frequently used to discriminate between pathogenic and non-pathogenic particles 

[Ovrevik et al. 2005].  As a major attractor and activator of polymorphonuclear neutrophils 

(PMN) to the site of inflammation, IL-8 belongs to the group of pro-inflammatory cytokines.  

It is partly involved in the initiation and maintenance of airway inflammation and has been 

implicated in a variety of chronic inflammatory diseases [Luster and Simeonova, 1998].  In 

order to analyse immunological responses caused by particle exposure, stable transfected 

A549 cells containing the promoter regions for the cytokines IL-8 or IL-6 were used as a 

screening tool.   

Using A549-IL8 reporter gene cells, it was observed that exposure of cells to HiPco 

SWCNT resulted in a dose- and time-dependent reduction in IL-8 promoter activation as 

measured by decreased luciferase activity reaching levels of only 64% compared to control 

cells with significant decreases starting at 12.5 µg/ml (Fig. 5 a). Recombinant human TNF-α 

was used as positive control stimulus and resulted in increases in IL-8 promoter activation by 

a factor of 3 following 6 hours exposure which increased up to 8 fold following 48 hours. 

This demonstrates that rh-TNFα is suitable as positive control stimulus. Furthermore, it 

shows the validity and adequateness of the test systems and endpoints used. Stimulation with 

LPS-PA could only stimulate cells by a factor of 1.3, 1.7 and 2.2 following 6, 24 and 48 

hours exposures. 

 Real time RT-PCR was used in order to confirm the effects observed and it was 

shown that not only was the IL-8 promoter activation inhibited by SWCNT exposure but also 

IL-8 mRNA in A549 cells significantly decreased following 6 and 24 hours exposures. A 

decrease by 30% could be observed following 6h exposure of A549 cells to 50 µg/ml of 

HiPco SWCNT. Following 24 hours, IL-8 mRNA was decreased by 40% compared to 

unexposed control cells. In contrast, rhTNF-a exposure led to increases of up to 45 and 16 

fold for 6 and 24 hours, respectively. This confirms that the luciferase reporter-gene cell-

system used in this study is an adequate test method and as it represents a more suitable 

system for screening purposes, it was preferred to mRNA analysis for further investigations 

within the context of this study.  

In parallel to promoter activation of the IL-8 gene, IL-8 protein release was measured 

using ELISA and decreases of up to 40% were observed (Fig. 6 a).  On the one hand, this 
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confirms the effects seen using reporter gene assays and furthermore, it shows that the 

particles were also effective on the level of protein production of the cells. 

Similar to the effects observed with IL-8, HiPco SWCNT decreased the promoter activation 

and protein release of IL-6 in A549 cells.  Following 48 hours, decreases in IL-6 protein 

release of 27% could be observed following exposure to culture medium dispersed nanotubes 

in the absence of rh-TNF-α stimulation (Fig. 6 c).   

Levels of TNF-α protein release in A549 cells remained below detection limits of the 

test system and could therefore not be determined with the ELISA system used.  Instead, 

macrophage chemoattractant protein-1 (MCP-1) was included as a further endpoint and 

results for A549 cells are shown in Fig. 6 (e, f).  MCP-1 appeared to be more sensitive when 

compared to IL-8 and IL-6.  Following 48 hours exposure, MCP-1 levels were reduced by 

more than 40% (Fig. 6 e). 

In parallel to exposures carried out on A549 cells, the normal bronchial epithelial cell 

line NHBE was used in order to assess the effects of particle exposure on primary cells as 

this may be considered a more relevant model to mimic human exposure.  When NHBE cells 

were exposed to SWCNT, IL-8 and IL-6 were reduced by 22% and 36%, respectively, 

following 48 hours exposure (Fig. 7 a, c).  Levels of TNF-α and MCP-1 protein remained 

below detection limits and could therefore not be analysed. Overall, the responses of A549 

and NHBE cells to culture medium dispersed SWCNT did not differ significantly.  

No reductions in cell viability were found following exposure to cell culture medium 

dispersed SWCNT.  Furthermore, there were no significant interactions between SWCNT 

and the test systems employed within the concentration range tested.  This demonstrates that 

under the conditions employed, culture medium dispersed HiPco SWCNT exposure results in 

the suppression of inflammatory mediator response of A549 and NHBE cells which would 

indicate that epithelial cells do not elicit an inflammatory alarm response upon SWCNT 

exposure.  Suppression of inflammatory mediator responses by SWCNT would agree with 

studies by Shvedova et al. (2008) who have seen increased bacterial infectivity in vivo and 

decreased bacterial uptake and killing in vitro in mice exposed to SWCNT followed by 

induction of a pulmonary infection.  It also indicates that the particles are not significantly 

contaminated with lipopolysaccharide (LPS) which would otherwise lead to inflammatory 

activation. 
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In previous studies it was shown that SWCNT interact with components of cell 

culture media including FCS, riboflavin and phenol red [Casey et al., 2007a].  It was also 

demonstrated that these interactions can lead to indirect toxicity of SWCNT due to nutrient 

adsorption as seen by decreased cell viability and reductions in cell proliferation [Casey et 

al., 2008].  Therefore, indirect effects of SWCNT exposure on cell viability and IL-8 

promoter activation were assessed using the A549-IL8 reporter gene assay and no significant 

indirect effects were observed for the concentration range of SWCNT tested (data not 

shown). 

 

Effects of crocidolite asbestos exposure on selected inflammatory mediators 

The second question to be addressed within this study was whether the response seen 

following SWCNT exposure resembles that of asbestos exposure.  Crocidolite asbestos 

belongs to the group of amphibole asbestos, has a high iron content and is often considered 

the most pathogenic and oncogenic type of asbestos [Albin et al., 1994; Heintz et al., 1993; 

Mossman et al., in press;].  It consists of long, rigid, rod-like fibres that are more difficult to 

be broken down in tissue compared to chrysotile forms [Shukla et al., 2003b].  Fibre 

morphology but also chemical composition are believed to be crucial determinants of 

bioreactivity of asbestos [Mossman et al., 2007; Shukla et al., 2003a], so that the same might 

be true for nanoparticles such as SWCNT.  The inflammatory cytokines IL-8 and IL-6 have 

been shown to play a direct role in asbestos toxicity and are reported to be produced by lung 

epithelial cells in direct response to asbestos fibres [Luster and Simeonova 1998].  Therefore, 

cytokine production was regarded as a valuable endpoint for this study and to our knowledge, 

no studies comparing the toxicity of SWCNT and crocidolite asbestos on epithelial cells in 

vitro exist to date.  

Reporter-gene cell assays and ELISA revealed comparable data. Illustrated are data 

from protein analysis as this endpoint seemed to result in lower data variability.  When A549 

cells were exposed to asbestos, decreases could only be measured for MCP-1 protein release 

which was inhibited by up to 40% (Fig. 8 e). The same decrease in MCP-1 could be seen 

following SWCNT treatment.  In contrast to the effects of SWCNT, IL-8 and IL-6 protein 

levels slightly increased following culture medium dispersed asbestos exposure for 48 hours 

(Fig. 8 a, c). No effect could be seen following 24 hour exposure.  In NHBE cells, small 
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decreases of up to 11% were seen for IL-8 and no effect was seen for IL-6 (Fig. 9).  Due to 

the reductions in cell viability observed following asbestos exposures it was concluded that 

crocidolite asbestos has no significant effects on IL-8 or IL-6 responses of NHBE cells in this 

study.  However, it stimulates cytokine responses of A549 cells and significantly decreases 

their MCP-1 release (Fig. 7).  Other studies evaluating the effects of crocidolite asbestos on 

A549 and NHBE cells reported much stronger increases of IL-6 and IL-8 than observed here 

which might be due to differences in exposure conditions or asbestos origin [Luster and 

Simeonova 1998; Simeonova et al., 1997]. 

 

Effects of particle exposure on rh-TNF-α stimulated cells 

The next question of interest was whether the effects of particle exposure differ 

between cells in a healthy and a diseased state.  It is reported that nanoparticle exposure of 

individuals with pre-existing diseases may exacerbate some respiratory effects due to 

inflammation and oxidative stress [Ferin et al., 1992; Utell and Frampton, 2000a, 2000b; 

Seaton et al., 1995].  Therefore, evaluating the effects of SWCNT exposure on rh-TNF-α- or 

LPS-induced cells may give an indication of whether the presence of an infection may give 

rise to increased SWCNT toxicity compared to normal, unstimulated cells or whether the 

presence of SWCNT can modulate inflammatory responses during infections. It has also 

been proposed that bacterial products such as LPS associated with particles may have 

stimulatory effects on the cytokine production of macrophages and maybe also epithelial 

cells [Becker et al., 2005a; Hofer et al., 2004].  While epithelial cells only slightly respond to 

LPS when compared to macrophages, they do express TLR receptors and have been shown 

to release IL-8 in response to treatment with different kinds of LPS with LPS from 

Pseudomonas aeruginosa (LPS-PA) being most effective [Hansen et al., 1999].  There are 

also reports of diesel particles having suppressive or synergistic effects on LPS-induced 

cytokine production [Amakawa et al., 2003; Hofer et al, 2004; Yang et al., 2001].   

TNF-α is a known inflammatory mediator that leads to the induction of IL-8 and IL-6 

and is expressed in response to infection in a variety of cell types including airway 

epithelium and macrophages.  A rh-TNF-α concentration of 10 ng/ml was identified as most 

suitable as it results in a medium stimulation of cells allowing decreases as well as further 
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increases of cytokine production.  In addition, it could serve as positive control for the 

induction of IL-8 and IL-6. 

Stimulation with rh-TNF-α resulted in an increase in IL-8 promoter activation by an 

average factor of 8.3 (830 %) compared to non-stimulated control cells (data not shown). 

Protein release of IL-8 and IL-6 was increased by up to 10 fold following TNF-α stimulation. 

However, SWCNT exposure did not result in any further increase in the stimulation induced 

by rh-TNF-α. Cell viability following SWCNT exposure was independent of TNF-α 

stimulation (Fig. 3 b).  In contrast, compared to stimulated control cells, the presence of 

SWCNT decreased IL-8 promoter activation of A549 cells by more than 20%, similar to the 

effects seen for un-stimulated cells (Fig. 5 b).  The decrease in IL-8 and IL-6 protein release 

seen in non-stimulated cells upon SWCNT exposure was significantly inhibited by the 

presence of rh-TNF-α stimulation leading to reduction of only 16% for IL-8 and no 

significant reductions in IL-6 (Fig. 6 b + d) compared to 40% and 27% for non-stimulated 

cells, respectively.  Therefore, co-stimulation with rh-TNF-α seemed to decrease the 

suppressive effects of SWCNT on IL-6 and IL-8. MCP-1 protein response was independent 

of rh-TNFα stimulation (Fig. 6 f).   

The decreases in mediator responses seen in TNF-α stimulated cells upon addition of 

SWCNT may also be explained by the adsorbing properties of these particles. As seen in 

previous studies, SWCNT with their large surface area can interact with a  variety of organic 

molecules [Casey et al., 2007a,b; Casey et al., 2008; Guo et al., 2008] and have been shown 

to reduce TNF-α levels in culture medium by up to 20% in this study (see section on 

materials and methods). Therefore, decreased inflammatory mediator responses with 

increasing concentrations of SWCNT may also be due to decreased levels of TNF-α available 

for the cells due to binding if TNF-α onto SWCNT. 

In general, the decreases in inflammatory mediator responses seen for SWCNT 

exposures even in the presence of inflammatory stimulation would again agree with rodent 

studies by Shvedova et al. (2008) reporting enhanced pulmonary infectivity following 

SWCNT exposure. 

Following asbestos exposure, rh-TNF-α stimulated cells decreased their IL-8 and IL-6 

protein release compared to un-stimulated cells (Fig. 8 b + d).  Again, no modulating effect 
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of rh-TNF-α stimulation could be seen for the effects of SWCNT or asbestos exposure on 

MCP-1 release or viability of A549 cells (Fig. 6 e, f; Fig. 8 e, f; Fig. 3 d).  

NHBE responded differently to A549 cells and seemed to be significantly more 

responsive to rh-TNF-α treatment.  While non-stimulated NHBE cells showed reductions of 

22% and 36% upon SWCNT treatment for IL-8 and IL-6 (Fig. 7 a, c), the cytokine levels of 

stimulated cells exposed to SWCNT decreased by 51% and 64%, respectively (Fig. 7 b, d). 

This difference may be explained by the differences in cell type with NHBE cells being 

normal primary epithelial cells of bronchial origin and A549 cells being a carcinoma cell line 

originating from alveolar epithelium.   

SWCNT exposure of A549 cells stimulated with LPS-PA showed significantly higher 

decreases in cytokine responses (Fig. 5 c) but also high levels of cytotoxicity (data not 

shown). A LPS-PA concentration as high as 25 µg/ml was needed in order to achieve 

significant cytokine induction in A549 cells, leading to increases of IL-8 promoter activation 

and protein release by an average of 2.2 fold following 48 hours exposure, so that it was 

assumed not to be a realistic exposure scenario and LPS stimulation was not included in any 

of the further studies.  

Taken together, rh-TNF-α treated cells did show responses different to that of non-stimulated 

ones.  However, neither SWCNT nor asbestos particles were able to further increase 

inflammatory mediator responses of stimulated cells.  

 

The effects of DPPC dispersion on SWCNT and asbestos toxicity 

The final objective of this study was to determine whether DPPC dispersion 

influences the toxicity of particle exposure. Exposure of cells to medium containing DPPC 

did not alter cell responses compared to cells exposed to culture medium only. However, as 

can be seen in Fig. 6 and 7, DPPC dispersion of SWCNT did result in increased suppression 

of IL-8, IL-6 and MCP-1 in A549 cells compared to culture medium dispersed nanotubes.  

This effect was even more pronounced when cells were stimulated with rh-TNF-α (Fig. 5 b 

and Fig. 6 b, d, f).  Therefore, it seems that during an ongoing inflammation, these cells 

might be more vulnerable to the effects of SWCNT in DPPC.   

As can be seen in Figure 8, DPPC dispersion could also modulate the effects of 

asbestos on un-stimulated A549 cells, leading to decreases in IL-8 and IL-6 of up to 50 and 
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20%, respectively (Fig. 8 a, c) whereas increases by around 20% were seen in the absence of 

DPPC for both endpoints. Dispersion in DPPC also led to decreases in IL-6 protein of rh-

TNF-α stimulated cells by up to 23% which was not apparent in the absence of DPPC (Fig. 8 

d). The MCP-1 release by A549 cells to asbestos seems to be independent of DPPC (Fig. 8 e-

f) and so were the effects of particle exposure on NHBE cells (Fig. 7 and Fig. 9). Cell 

viability of non-stimulated A549 cells post asbestos exposure was independent of DPPC 

dispersion (Fig. 3 c). Dispersion in DPPC only caused decreased viability of cells stimulated 

with TNF-α (Fig. 3 d). The same was true for the viability of NHBE cells (Fig. 4 b).  

As seen in Figures 1 and 2, DPPC improved SWCNT dispersion, resulting in more 

cells being exposed to SWCNT which may in turn result in increased loss of cell viability 

and therefore inflammatory response. It was thus hypothesized that the type of dispersion 

vehicle used for studying SWCNT in vitro greatly influences their cellular effects. In 

previous studies it was demonstrated that improved dispersion of carbon black nanoparticles 

can lead to increased in vivo inflammation and damage compared to poorly dispersed 

nanoparticles [Shvedova et al., 2007].  Therefore, improved dispersion of SWCNT may 

explain the increases in particle toxicity seen in this study. 

The degree of SWCNT dispersion was the same for NHBE medium with or without 

DPPC (Fig. 2).  This can be explained by the fact that NHBE cell responses were not 

modified by the presence of DPPC. No significant influence of DPPC on asbestos dispersion 

or cytotoxicity was observed. Therefore, it remains unknown why DPPC dispersion can also 

modify the inflammatory response of A549 cells to asbestos fibres.  As a surfactant, DPPC 

forms micellar structures through their interaction with the particles.  Therefore, it could be 

hypothesised that while “unstructured” DPPC may not affect cell responses, changes in the 

arrangement of hydrophilic and hydrophobic regions of DPPC molecules due to the presence 

of particles may render it more toxic to A549 cells. DPPC dispersion may also lead to 

changes in particle surface chemistry [Buford et al., 2007; Wallace et al., 2006]. Particle 

coating by DPPC may modify or increase particle uptake by cells leading to particles coming 

into contact with different cellular compartments/targets which could change toxic responses. 

Different degrees of particle uptake may also explain the discrepancies observed between 

A549 and NHBE cells. In contrast to bronchial epithelial cells such as NHBE cells, A549 

cells represent alveolar type II cells, that are able to produce lung surfactant. In addition, they 
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possess surface receptors that recognize and internalize surfactant for recycling which may 

lead to increased interaction and uptake of DPPC coated particles by A549 cells compared to 

NHBE cells. This may also explain the changes in cell responses seen following asbestos 

exposure, which seems to be independent of the degree of particle dispersion. Therefore, 

future studies will investigate the effects of DPPC dispersion on particle uptake. 

The use of DPPC may also modify the oxidative potential of SWCNT and asbestos as 

has also been shown for carbon black particles [Foucaud et al., 2007]. However, further 

physical and chemical characterization of the interactions between DPPC and particles/fibres 

are needed for better understanding of the mechanisms taking place. Investigations into the 

oxidative potential of SWCNT under the conditions employed in this study are currently 

underway.  As DPPC dispersion significantly modulated cellular responses following 

SWCNT and asbestos exposure, the use of DPPC as dispersant vehicle may be of great 

importance and relevance for any in vitro studies investigating the effects of particle 

exposure on lung target cells.  

 

 

Conclusion 

 

To conclude, this study showed that exposure to HiPco SWCNT samples can lead to 

the suppression of a variety of inflammatory mediators including IL-8, IL-6 and MCP-1 in 

vitro.  This was true for human type II alveolar epithelial cells (A549) as well as primary 

normal human bronchial cells (NHBE).  Even though this means that SWCNT exposure does 

not seem to activate inflammation in A549 and NHBE cells, suppression of an 

immunological response may have negative consequences as the normal status quo of the 

immune system has changed and may render the immune system less reactive towards 

infections.  Furthermore, activation of an immune response is needed in case of oxidative 

stress triggered by these particles and cell signalling by lung epithelial cells is of utmost 

importance in order to attract phagocytic cells such as monocytes and macrophages, which 

represent the first line of defence against invading particles and are needed for tissue 

clearance, to the site of particle deposition.  
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Comparing the two cell types employed in this study, NHBE and A549 cells appeared 

to respond similarly to the presence of medium dispersed SWCNT. However, NHBE cells 

stimulated by rh-TNF-α seemed to be significantly more sensitive to SWCNT exposure. 

Stimulation with rh-TNF-α was used as a model for diseased epithelium and it was 

demonstrated that cell responses selectively differed from that of un-stimulated cells.  

No definite conclusion can be drawn as to whether HiPco SWCNT samples have the 

potential of reacting in an asbestos-like manner.  Only asbestos was able to slightly increase 

IL-8 and IL-6 responses.  In contrast, both particle types were able to selectively decrease IL-

8, IL-6 and MCP-1 and changed their reactivity following DPPC dispersion.  However, 

suppression of IL-8 was generally greater following HiPco SWCNT exposure compared to 

asbestos.  Therefore, HiPco SWCNT exposures showed similarities but also differences to 

crocidolite asbestos so that risk assessment needs further comparative studies.  Dispersion of 

particles in DPPC helped to mimic pulmonary exposure more closely.  Effective dispersion 

of nanoparticles and the use of biologically relevant media are important for accuracy in 

toxicity assays. In this study it was shown that DPPC can improve SWCNT dispersion in 

A549 medium which in turn leads to significant increases in particle toxicity.  
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Tables 

 

Table 1: ELISA antibodies and supernatant dilutions 

Protein Coating and detection AB Highest Standard 

concentration 

Supernatant 

dilution 

IL-8 

4 µl/ml 

BD Biosciences (Schwechat, 

Austria) 

10 µg/ml 1:5 

IL-6 

3 µl/ml 

BD Biosciences (Schwechat, 

Austria) 

1 ng/ml 1:2 

TNF-α 10 µl/ml 10 µg/ml 1:1 

MCP-1 4 µl/ml 1 ng/ml 1:2 
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Figures 

 

 

 

Figure 1: A549 cells exposed to 12.5  µg/ml of HiPco SWCNT (a; b) or crocidolite asbestos 

(c; d) dispersed in A549 culture medium (a; c) or DPPC followed by addition to A549 culture 

medium (b; d). 

 

 

Figure 2:  Absorbance values of SWCNT dispersed in A549 medium (       ), DPPC followed 

by addition to A549 medium (    ), NHBE medium (      ), DPPC followed by addition to 

NHBE medium (    ).  

 

 

Figure 3: Cell viability of A549 cells following 48 hours exposure to HiPCo SWCNT (a;  b) 

or crocidolite asbestos (c; d) dispersed in A549 medium or DPPC in the presence (b;  d) or 

absence (a;  c) of stimulation with 10 ng/ml rh-TNF-α as measured using the CellTiterBlue 

assay. * Denotes a significant difference from the control (p ≤ 0.05). 

 

 

Figure 4: Cell viability of NHBE cells following 48 hours exposure to HiPCo SWCNT (a) or 

crocidolite asbestos (b) dispersed in NHBE medium or DPPC in the presence or absence of 

stimulation with 10 ng/ml rh-TNF-α as measured using the CellTiterBlue assay. * Denotes a 

significant difference from the control (p ≤ 0.05). 
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Figure 5: IL-8 Promoter activation of A549-IL8 reporter gene cells following 48 exposure to 

HiPco SWCNT with or without DPPC dispersion as measured by luciferase assay. a. no 

stimulation, b. stimulation with rh-TNF-a, c. stimulation with LPS-PA. * Denotes a 

significant difference from the control (p ≤ 0.05). 

 

 

Figure 6: IL-8 (a; b), IL-6 (c; d) and MCP-1 (e; f) protein release following 48h exposure to 

HiPco SWCNT dispersed in culture medium or DPPC of unstimulated A549 cells (a; c; d) 

and cells stimulated with rh-TNF-a (b; d; f) as measured using ELISA. * Denotes a 

significant difference from the control (p ≤ 0.05). 

 

 

Figure 7: IL-8 (a;  b) and IL-6 (c;  d) protein release following 48h exposure to HiPco 

SWCNT  dispersed in culture medium or DPPC by un-stimulated NHBE cells (a; c) or cells 

stimulated by rh-TNF-a (b; d) as measured by ELISA. * Denotes a significant difference 

from the control (p ≤ 0.05). 

 

 

Figure 8: IL-8 (a; b), IL-6 (c; d) and MCP-1 (e; f) protein release following 48h exposure to 

Crocidolite asbestos dispersed in culture medium or DPPC of unstimulated A549 cells (a; c; 

d) and cells stimulated with rh-TNF-a (b; d; f) as measured using ELISA. * Denotes a 

significant difference from the control (p ≤ 0.05). 
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Figure 9: IL-8 (a;  b) and IL-6 (c;+ d) protein release following 48h exposure to Crocidolite 

asbestos dispersed in culture medium or DPPC by un-stimulated NHBE cells (a; c) or cells 

stimulated by rh-TNF-a (b; d) as measured by ELISA. * Denotes a significant difference 

from the control (p ≤ 0.05). 
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