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Abstract:  

 

The potential of Raman micro spectroscopy as an in vitro, non-invasive tool for clinical 

applications has been demonstrated in recent years, specifically for cancer research. To 

further illustrate its potential as a high content and label free technique, it is important to 

show its capability to elucidate drug mechanisms of action and cellular resistances. In this 

study, cytotoxicity assays were employed to establish the toxicity profiles for 24hr exposure 

of lung cancer cell lines, A549 and Calu-1, to the commercially available drug, doxorubicin 

(DOX). Raman spectroscopy, coupled with Confocal Laser Scanning Microscopy and Flow 

Cytometry, was used to track the DOX mechanism of action, at a subcellular level, and to 

study the mechanisms of cellular resistance to DOX. Biomarkers related to the drug 

mechanism of action and cellular resistance to apoptosis, namely reactive oxygen species 

(ROS) and bcl-2 protein expression, respectively, were also measured and correlated to 

Raman spectral profiles. Calu-1 cells are shown to exhibit spectroscopic signatures of both 

direct DNA damage due to intercalation in the nucleus and indirect damage due to oxidative 

stress in the cytoplasm, whereas the A549 cell line only exhibits signatures of the former 

mechanism of action.  
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Abstract Figure: 

 

 

PCA of nucleolar, nuclear and cytoplasmic regions of A549 and Calu-1 with corresponding 

loadings of PC1 and PC2 
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Introduction:  

 

The potential of Raman micro spectroscopy as a non-destructive, label free, analytical 

technique in clinical, pharmaceutical development and biomedical applications, based on its 

ability to monitor the chemical, bio-physiological and physical changes at the molecular 

level, has been demonstrated. [1-3]  

Among the possible applications of Raman micro spectroscopy in the clinical setting, cancer 

research and diagnostics remain among the most promising, including cancer detection and 

typing, for example oral [4, 5], gastric [6, 7], breast [8, 9], cervical [10, 11], skin [12]
 
cancers 

as well as therapeutic follow up and response to chemotherapeutic drugs . [13, 14]  

Indeed, Raman micro spectroscopy has been used not only to detect and monitor drugs inside 

cells at a subcellular level but also to fingerprint the cellular response to this exposure and the 

adverse drug effect [15]. Therefore, it can be developed as a companion diagnostic tool, 

providing details about drug efficacy and safety, as detailed in the US FDA guidance 

document issued in August 2014, which defines such a tool as an in vitro diagnostic device 

that provides information that is essential for the safe and effective use of a corresponding 

therapeutic product. [16, 17] The use of in vitro models is also consistent with EU and US 

policies to reduce the use of animals for scientific testing (EU Directive-2010/63/EU and US 

Public Law 106-545, 2010, 106th Congress) and thus the demonstration of Raman micro 

spectroscopy as a companion diagnostic for screening and analysis of commercial 

chemotherapeutic agents could be of significant importance in cancer research.   

To this end, Doxorubicin (DOX), which belongs to the anthracycline family, commercially 

known as Adriamycin, and widely prescribed as a chemotherapeutic antibiotic, was employed 

as a model compound. Despite its extensive clinical use, DOX has many toxic and chronic 

side effects, notably cardiotoxicity [18], and therefore it is important to understand how it 

effects cancer cells and the sources of cellular resistance in order to optimise its clinical 

efficacy and reduce its toxicity to the surrounding environment. 

Routinely used clinically to treat aggressive and metastatic tumours, including lung cancers, 

DOX involves different mechanisms of action, not fully understood. Although originally 

thought to inhibit tumour cell proliferation by DNA intercalation, over the years, many other 

mechanisms of action have been identified, such as topoisomerase II inhibition, the formation 

of DNA adducts[19, 20], inhibition of DNA methyltransferase [21] and Transforming 

Growth Factor-β1 (TGFβ1) [22] and oxidative stress by generation of reactive oxygen 

species (ROS). The latter relates to its cytosolic metabolism and reduction to the doxorubicin 



semiquinone radical, leading to generation of superoxide and hydrogen peroxide, increased 

intracellular oxidative stress [23, 24],
 
changes in the mitochondrial permeability, a release of 

cytochrome C which activate caspase effectors causing DNA damage. [20, 25] All these 

mechanisms of action lead to apoptosis, a programmed cell death or “cellular suicide”, as a 

way to remove unwanted cells exhibiting dangerous anarchic development as tumour cells, 

initiated extrinsically by the engagement of receptors at cytoplasmic membrane or 

intrinsically by, for example, DNA damage, resulting from chemotherapy or oxidative stress 

or growth factor withdrawal. [26-29] 
 

The mitochondrial or intrinsic apoptosis pathway is controlled by two groups of proteins; 

pro-apoptotic and anti-apoptotic. Among the latter category, the bcl-2 (B cell lymphoma) 

family, an intracellular membrane protein generated as a direct result of DNA damage, 

represents the most important anti-apoptotic protein, which binds to almost all pro-apoptotic 

proteins [30] and so regulates the mitochondrial apoptosis pathways by mediating the 

mitochondrial outer membrane permeability (MOMP) and by local inhibition of free radical 

production suggesting an anti-oxidant mechanism, inhibiting cell apoptosis as a results 

including drug-induced. [31-36]
  

Any alteration, resistance or failure in apoptosis, due for example, to a higher expression of 

anti-apoptotic protein bcl-2, allows tumour cells to survive and proliferate, leading to 

resistance to chemotherapy and a poor clinical prognosis. [37-39] The cytological 

mechanisms of drug resistance in cancer cells can be an increased detoxification of anticancer 

drugs by the glutathione system, a defective apoptotic pathway, enhanced DNA damage 

repair or increased tolerance to DNA damage leading to suppression of apoptosis, elevated 

expression of anti-apoptotic genes and proteins, decreased uptake of water-soluble drugs and 

enhanced drug efflux from cancer cells mediated by ATP-binding cassette (ABC) 

transporters. [40, 41]
  

Understanding the relative contributions of this array of potential contributing mechanisms is 

a challenging task, requiring a manifold of parallel analytical techniques and assays, which 

are costly and time consuming. Previous studies have shown that Raman micro spectroscopy 

is not only able to discriminate between cancer cells according to nucleolar region [42] but 

also to detect drugs inside cells, their effects on cell biology and the physiological response of 

the cell to this exposure. [14] The aim of the current study extend the previous investigations 

to fingerprint the DOX mechanism of action on non-small cell lung cancer cell lines A549 

and Calu-1 and the different cellular response using Raman micro spectroscopy and to 

investigate its ability to differentiate the effect of the chemotherapeutic drug in the two 



different lung cancer cell lines. To support this spectroscopic analysis, Confocal Laser 

Scanning Microscopy was employed to monitor the subcellular DOX localisation and bcl-2 

expression due to DNA damage was measured using Flow Cytometry and correlated to 

cellular levels of ROS, in relation to DOX mechanism of action. All observations were 

related to changes in Raman features for the three cellular compartments nucleolus, nucleus 

and cytoplasm. 

 

Materials and methods:  

Materials: 

A549 human lung adenocarcinoma cells with the alveolar type II phenotype were obtained 

from ATTC (Manassas, VA, USA) and Calu-1 human lung epidermoid carcinoma cell line, 

was kindly provided by Dr. Josep Sulé-Suso, Institute for Science & Technology in 

Medicine, Keele University, Guy Hilton Research Centre UK and Cancer Centre, Royal 

Stoke University Hospital, University Hospitals of North Midlands, UK.  

Doxorubicin hydrochloride
®
 powder (Sigma Life Sciences, Ireland) was diluted in 1mL 

sterile water to the required concentration (17.25 mM). 

Alamar blue (AB) (10X ready to use solution) and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl 

tetrazolium bromide (MTT) were obtained from Sigma Aldrich, Ireland.  

For cytotoxicity assays an AB/MTT solution, 1.5mL of AB and 3 mL of MTT stock solution 

(2.5mg/mL, 25mg MTT/10mL PBS) in 30mL of fresh medium was prepared. 

Fixation/permeabilization kit, BD Cytofix/Cytoperm (BD 554714), and FITC Mouse Anti-

Human bcl-2 set with an IgG1 isotype control (BD 556357) were purchased from BD 

Biosciences, Ireland.  

Nucred
®
 live 647 ReadyProbes

®
 Reagent, used to image the cellular nucleus, and [5(6)-

Carboxy-2',7'-dichlorodihydrofluorescein diacetate] (Carboxy-H2DCFDA) dye, used for the 

detection of Reactive oxygen species (ROS), were both purchased from BioSciences, Ireland 

(suppliers for Life Technologies).  

 

Cell culture 

A549 cells were cultured in DMEM (with 2 mM L-glutamine) with 10% foetal bovine serum 

(FBS) and Calu-1 cells in RPMI with 10% FBS, both at 37°C in a humidified atmosphere 

containing 5% CO2 and cells were split every two days to maintain ~60% confluence. 



For Confocal Laser Scanning Fluorescence Microscopy (CLSM) and Raman micro 

spectroscopic analysis, cell number was determined using a Beckman Coulter Particle Count 

and Size Analysis
®
 Z2 Cell Counter. 

 

Cytotoxicity assays: 

AB and MTT assays were performed in 96 well plates and a total number of 1x10
5 

cells were 

used to seed three plates (4x10
3 

cells/mL). After 24h incubation, plates were washed with 

phosphate buffered saline solution (PBS) and DOX was added in a concentration range from 

0µM (as a control) to 50 µM. 

AB and MTT assays were both measured with a Cytotox SpectraMax
®
M3 plate reader using 

Soft Max
®
 Pro6.2.2 software. After 24h incubation in DOX, plates were washed with PBS 

and 100µL of AB/MTT solution were added to each well. Plates were then incubated for 3 

hours and AB fluorescence and MTT absorbance were measured in the plate reader using, 

respectively, 540nm excitation, 595nm emission for AB and 570nm for MTT. All 

cytotoxicity assays were made in triplicate and repeated three times and viability data was 

fitted by a four parameter Hill equation analysis using SigmaPlot 10.0, to yield values of the 

mean inhibitory concentration, IC50. 

 

Confocal Laser Scanning Fluorescence Microscopy:  

Approximately 1 x 10
4
 cells were allowed to attach on uncoated glass bottom Petri dishes 

(MatTek Corporation, USA) for two hours, after which they were covered with cell culture 

medium. After 24h incubation, the medium was removed and samples were rinsed twice with 

sterile PBS, new fresh medium containing DOX corresponding to the median inhibitory 

concentration, IC50, determined by cytotoxicity assays, was added and cells were incubated 

for a further 24h. After incubation, old medium was removed and 2mL of Nucred
®

 solution 

in medium was added and, after 15 to 30 min incubation, samples were rinsed twice with 

sterile PBS, fixed in formalin (4%, 15mn) and kept in PBS for imaging. Control samples 

without exposure to DOX were also prepared in parallel, and incubated for 24h.  

CLSM images were recorded using an inverted Zeiss LSM 510 confocal laser scanning 

microscope equipped with a x60 oil immersion objective. DOX fluorescence was excited 

with an argon ion laser at 488 nm, and the emission was collected at 530 nm, while Nucred
®

 

excitation and emission were respectively measured using 633 and 690 nm.  

 



Flow Cytometry:  

Cells (3x 10
4
/flasks) were cultured in T25 flasks over 24h, and then exposed to a range of 

DOX concentration (from 0.25x IC50 to 3.5x IC50). After 24h incubation, cells were 

trypsinised and centrifuged in 5 mL fresh medium at 4°C and 1100 rpm for 5 min, 

whereupon, they were re-suspended with 1mL ice cold Dulbecco's Phosphate-Buffered Saline 

(DPBS) buffer and centrifuged at 4°C and 2500 rpm for 5 min. 

Cells were re-suspended in 750 µL ice cold DPBS buffer and transferred to Eppendorf tubes 

to which 250 µL of fixation buffer were added. After 30 min incubation at 4ºC, the fixed cells 

were washed twice in perm/wash buffer, centrifuged (2500 Rpm for 5mn at 4ºC) and then 

gently re-suspended in 50 µL perm/wash buffer, after which 20 µL of the antibody were 

added and the cells were incubated for 60 min in the dark at 4ºC. The cells were then washed 

twice in perm/wash buffer, centrifuged (2500 Rpm for 5mn at 4ºC) to remove unbound 

antibody and finally re-suspended in 1mL stain buffer. 10,000 cells were analysed by Flow 

Cytometry using a BD Biosciences Accuri C6 Flow Cytometer (Becton Dickinson, Oxford, 

UK). The Accuri Flow cytometry software was used for the analysis of flow cytometry 

samples and data processing. 

Reactive oxygen species (ROS) expression:  

Carboxy-H2DCFDA dye was employed for the detection and quantification of ROS 

production in the intracellular environment. A solution at 10µM of Carboxy-H2DCFDA was 

made up in PBS and added to the cells for 1hr incubation. After incubation, cells were 

washed three times with PBS, then exposed to DOX for 24hrs. Fluorescence was measured in 

the plate reader using 488nm excitation and 535nm emission. 

Negative controls, consisting of healthy cells, untreated with DOX, analysed with or without 

Carboxy-H2DCFDA and DOX treated cells analysed without Carboxy-H2DCFDA, as well 

as positive controls of healthy cells exposed to a solution of hydrogen peroxide at 1µM, were 

prepared in parallel. 

Raman micro spectroscopy: 

Cells (~ 1x 10
4
/window) were seeded and incubated on CaF2 windows (Crystan Ltd, UK) for 

24h for both control and exposure to DOX. Medium was then removed and samples were 

rinsed twice with sterile PBS and covered with DOX at the IC50. After 24h incubation, cells 

were washed twice with sterile PBS and fixed in formalin (4%, 15min). 



A Horiba Jobin-Yvon LabRAM HR800 spectrometer with a 785nm, 300mW diode laser as 

source (100mW at the sample), Peltier cooled 16-bit CCD, 300 lines/mm grating and 100 μm 

confocal hole, was used to record spectra from the two cell lines, in the range from 400 cm
-1

 

to 1800 cm
-1

 using a x100 objective (LCPlanN, Olympus N.A. 0,85)), in dry conditions from 

three cell locations: cytoplasm, nucleus and nucleolus, for 30s two times , to finally produce a 

data set of 30 points per cell location (one spectrum from each cell compartment per cell) for 

each control and exposure to DOX, over a total of 120 different cells. 

 

Data analysis:  

Raman spectral pre-processing and analysis were performed in Matlab 2013 using algorithms 

developed in house. Prior to analysis, spectra were smoothed (Savitsky-Golay filter 5th order, 

7 points), vector normalised, baseline corrected (fifth order polynomial) and background and 

DOX spectral features were subtracted using a non-negatively constrained least squares 

(NCLS) algorithm. [43]  

After pre-processing, principal components analysis (PCA) was employed as an unsupervised 

multivariate approach to analyse data and the effects of doxorubicin in each cell localisation 

and in each cell line. The order of the PCs denotes their importance in the dataset, whereby 

PC1 describes the highest amount of variation. [44] 

Independent component analysis (ICA) was also employed as an extension to PCA. ICA is an 

unsupervised statistical technique able to identify latent variables called independent 

components. In case of Raman micro spectroscopy, ICA can be used to identify spectral 

contributions such as those from substrate, using the same number of ICs as PCs, which can 

then be removed or studied in their own right. [45, 46]  

 

Results and discussion:  

 

Cytotoxicity assays: 

A.                                                                 B. 



 

Figure 1: AB and MTT 24 hrs in vitro dose dependent cytotoxicity assays of DOX A. A549 

and B. Calu-1. Viability is expressed as % compared to control, and the error bars indicate 

the standard deviation of six independent replicate measurements 

 

Figure 1 shows the dose dependant cytotoxicity of DOX after 24hrs exposure, for both cell 

lines, A549 and Calu-1, according to the AB and MTT in vitro cytotoxicity assays. Viability 

is expressed as % compared to control (non-exposed healthy cells), and the error bars indicate 

the standard deviation of six independent replicate measurements.  

For both in vitro assays, a partial loss of cell population viability is observed. However, 

whereas the AB and MTT for the A549 cell line and the MTT assay for the Calu-1 cell line 

show similar responses, the AB assay is relatively insensitive to the Calu-1 exposure. The 

differences in the responses between AB and MTT in the two cell lines, as demonstrated by 

Figure 1, suggest different sensitivities and/or resistances of the respective cell-lines to the 

drug, and should be analysed in terms of the mode of response of the assays. 

The MTT test is a colorimetric assay that measures the reduction of yellow 3-(4, 5-

dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) by mitochondrial succinate 

dehydrogenase into purple formazan crystals, insoluble in aqueous solution. [47, 48] 

Succinate dehydrogenase or succinate-coenzyme Q reductase (SQR) or respiratory Complex 

II is an enzyme complex, bound to the inner mitochondrial membrane of mammalian 

mitochondria and many bacterial cells. It is the only enzyme that participates in both the citric 

acid cycle and the electron transport chain, so the MTT assay is the reflection of 

mitochondrial activity. Alamar blue (AB), on the other hand, is a water-soluble dye and one 

of the most highly used cytotoxicity assays for in vitro quantification of the cell viability. [49] 

When added to cell cultures, the active dye, resazurin or 7-hydroxy-10-oxidophenoxazin-10-

ium-3-one, diffuses into the cytosol and acts as an intermediate electron acceptor allowing the 

oxidised blue non-fluorescent form to be reduced by both mitochondrial and cytosolic 



enzyme activity to the fluorescent pink one which is easily measured by its absorption or 

fluorescence. [47, 48, 50]  

Its response is thus considered the expression of general cellular metabolism. Therefore, 

although reduced conversion compared to controls is used as a measure of reduced cellular 

viability for both AB and MTT assays; the MTT response is more specifically sensitive to 

mitochondrial enzymes while AB is related to both mitochondrial and cytosolic activities. 

As illustrated by Figure 2, A549 cells and Calu-1 exhibit somewhat different IC50 values, as 

measured using the MTT cytotoxicity assay, determined to be 0.55±0.16 µM and 0.90 ±0.24 

µM for the A549 and Calu-1 cell lines respectively. The most notable differences observed, 

however, are in the AB cytotoxicity profiles, which are characterised by IC50 values of 0.42 

±0.06 µM and 0.69 ± 0.13 µM for the A549 and Calu-1 cell lines respectively. For the same 

DOX dosage, although similar changes in mitochondrial activity (as recorded by the MTT 

assay) and the overall cellular metabolism (as recorded by the AB assay) are observed for the 

A549 cell line, the overall dose dependent change in cellular metabolism, as recorded by the 

AB assay, is considerably less in the Calu-1 cell line. 

The differing cytotoxic profiles for the two cell lines, is consistent with the contribution of 

multiple mechanisms to the toxic response, and a greater intrinsic resistance of the Calu-1 

cell line to one or more of these mechanisms. The underlying mechanisms will be studied in 

more detail in the following sections. Since cells will be analysed after 24h exposure, the IC50 

determined using the MTT assay was used for the rest of the study, for both cell lines. 

 

Figure 2: MTT 24 hrs dose dependent cytotoxicity of DOX to A549 and Calu-1 

 



 

 

 

 

 

 

 

Confocal Laser Scanning Fluorescence Microscopy: 

A.   B.  

   

Figure 3: Confocal Laser Scanning Fluorescence images of A. A549 and B. Calu-1 after 24h 

DOX exposure and Nucred
®
 staining confirming the DOX nuclear localisation. 

 

CLSM was employed to visualise the DOX intracellular internalisation and localisation in 

both cell lines. Figure 3 illustrates the images for A549 and Calu-1 cells after 24hr DOX 

exposure, at the respective MTT IC50 concentration for each cell line, and Nucred
®
 staining. 

DOX is predominantly localised on the nuclear area and, for both cell lines after exposure, 

cells appear smaller in size and round or oval in shape and exhibit noticeable nucleoli 

fragmentation, known as karyorrhexis, and membrane blebbing. The cytoplasm is more 

tightly packed as a result of cellular shrinkage. All these morphological changes indicate that 

cells are going under apoptosis. [28, 29, 51-54]
  



Using ImageJ software, after fluorescence background subtraction, the mean fluorescence 

intensity of the nuclear area was measured for 10 cells for each cell line. The average DOX 

fluorescence intensity was determined to be, respectively 644±29 AU for the A549 cell line 

and 725±11 AU for Calu-1, indicating that a larger amount of DOX is present in the Calu-1 

nucleus, despite the fact that the IC50 value for Calu-1 is almost twice that of A549 and the 

global nuclear volume is slightly higher for A549 than Calu-1. [42] 

 

 

Flow Cytometry and bcl-2 expression: 

Bcl-2 is an intracellular nuclear membrane anti apoptotic protein synthetised in direct 

response to DNA damage, in this case due to intercalation of DOX. As shown in Figure 4, a 

similar expression profile of up regulation followed by down regulation of the bcl-2 protein, 

as a function of DOX concentration, was observed for the two cell lines and this expression 

profile has been reported to be responsible for the resistance to apoptosis up to certain doses, 

above which DNA damage becomes prominent and bcl-2 levels decrease as cells enter 

apoptosis.[55]  

A. 

 

B. 



 

Figure 4: Expression level of bcl-2 due to DOX exposure and control healthy cells for A. 

A549 and B. Calu-1 determined by Flow Cytometry.  

The differences between the two bcl-2 expression profiles for each cell line, as a function of 

MTT IC50 are manifest in the maximum level of bcl-2, and the dose at which this is reached. 

It is notable that the bcl-2 level in Calu-1 cells is consistently higher over the dose range than 

A549, with a maximum expression at 2 IC50 for A549 (1.1M) and 3 IC50 for Calu-1 

(2.7M).  

 

ROS production monitored by DCFDA: 

In addition to the mode of action of DNA intercalation, internalised DOX can also lead to the 

generation of intracellular ROS in the cytosol by redox activation in the presence of NADPH, 

forming a quinone radical via one electron transfer and generating peroxide and superoxide, 

[56, 57] resulting in DNA, mitochondrial and cell membrane damage by oxidation, 

responsible for its most significant chronic side effect, cardiotoxicity. [58, 59] 

ROS were measured by the DCFDA dye, a highly fluorescent compound in presence of ROS 

which can be detected by fluorescence. As detailed in Table 1, and illustrated schematically 

in Figure 5, significantly higher ROS levels are present in Calu-1 cells than A549 (Test 

(DOX+DCFDA)), after 24 hr exposure to the DOX IC50 concentration, as measured by the 

MTT assay. In fact, Calu-1 has higher ROS levels compared to A549 even without any DOX 

exposure and this expression becomes even higher after DOX exposure, emphasising the 

difference between the two cell lines. ROS are usually generated through a cascade of 

reactions resulting from the distinct oxidation status of O2, including its radical forms, such as 



the superoxide radical, and non-radical forms such as hydrogen peroxide, H2O2. [60] Cancer 

cells have a high level of ROS, recognized to be signalling molecules in various biological 

processes, eliciting proliferation, genomic instability and inflammation[61] but a considerable 

increase of ROS level induces damage and promotes apoptosis. [59, 61] Although the 

relationship between DNA mutations, ROS generation, and drug sensitivity remains unclear, 

the ROS mediated apoptosis mechanism appears to be activated in the Calu-1 cell line to a 

significantly greater extent than in A549.  

 

 

 

Table 1: ROS production in A. A549 cell line and B. Calu-1 cell line, negative controls using 

healthy cells and no DCFDA, exposed cells and no DCFDA and healthy cells with DCFDA 

and H2O2 1 µM solution as positive control 

A. 

 Negative controls (Arb.Units) Positive control  

(Cells+H2O2+ 

DCFDA) 

(Arb. Units) 

Test 

(DOX+DCFDA) 

(Arb. Units) 
 Healthy 

cells +PBS 

(no 

DCFDA) 

DOX + PBS 

(no 

DCFDA) 

Negative 

control 

(healthy cells 

+DCFDA) 

Average 70.85706 254.6403 80.57879 190.1014 279.9507 

STD 10.88444 12.0606 6.892106 28.31797 25.60829 

Ave %  87.93512 316.014 100 235.9199 347.4248 

STD % 13.50783 14.96746 8.55325 35.14321 31.78044 

 

B. 

 Negative controls Positive 

control 

(Cells+H2O2+ 

DCFDA) 

Test 

(DOX+DCFDA)  Healthy 

cells +PBS 

(no 

DCFDA) 

DOX + PBS 

(no 

DCFDA) 

Negative 

control 

(healthy cells 

+DCFDA) 

Average 47.589 312.8539 309.0865 356.7716 1214.652 

STD 10.91059 23.91193 21.34131 24.93965  63.87997 

Ave %  15.39666 101.2189 100 115.4277 392.9813 

STD % 3.529947 7.736324 6.90464 8.068825 20.66734 

 

 

 



 

 

Figure 5: Reactive oxygen species generation expressed on percentage of control for Calu-1 

and A549 cell lines. 

Raman micro spectroscopy:  

Raman spectrosopy has previously demonstrated that A549 and Calu-1 cells are 

distinguishable, based on the spectral profile of their nucleoli. [42] Furthermore, it has 

previously been employed to profile the interactions of DOX within the nuclear and nucleolar 

regions of A549 cells. [14] In order to further elucidate the subcellular differences of the 

responses and potential resistance mechanisms of the A549 and Calu-1 cell lines to DOX 

exposure, Raman spectra, for both A549 and Calu-1 cells, were taken from the three cellular 

compartments after 24hrs exposure to the MTT IC50 concentration of DOX corresponding to 

each cell line. For PCA analysis, figures corresponding to spectral differentiation according 

to PC1 and PC2 were plotted and, for clarity, the corresponding loadings are off set, and the 

dashed horizontal line in all cases indicating zero loading. 

Figure 6 shows the mean spectra of nucleolus, nucleus and cytoplasm for Calu-1 cell lines 

along with the spectrum of DOX powder dissolved in sterile water. Nucleolar size for both 

control cell lines is of the order of 2–4 μm, although it reduces to ~ 1-2 μm due to DOX 

exposure inducing fragmentation (Figure 3) [ref]. Nevertheless, it remains larger than the 

Raman laser spot (1 μm), allowing Raman spectra acquisition specifically from the nucleoli.   

 



 

Figure 6: Spectrum of Doxorubicin (A) and mean spectra of Nucleolus (B), Nucleus (C) and 

Cytoplasm (D) of the Calu-1 cell line, highlighted regions indicating discriminating 

Doxorubicin features.  

As shown in previous study of the A549 cell line by Farhane et al. [14], and as seen in Figure 

6 for the Calu-1 cell line, obvious DOX features (indicated by highlighted regions) at 440 and 

465 cm
−1

 respectively C–C–O and C–O and 1085, 1215 and 1245 cm
−1

 related to C–O, C–O–

H and C–H are observed in the nucleolar and nuclear region for both cell lines, confirming 

the predominant localisation of the drug in these regions.  

 

Figure 7: Mean spectra of the nucleoli of Calu-1 cells highlighting the spectroscopic changes 

after DOX exposure; control (brown) and after DOX exposure (black)  



Additionally, in the mean spectra of the nucleolus of Calu-1, before and after DOX exposure, 

an evident diminishment of peaks at 847 and 960 cm
-1

 can be seen (highlighted in Figure 7), 

indicating a modification of ribose phosphate backbone due to DOX intercalation. Moreover, 

obvious decreases of DNA peaks at 669, 728, 782 and 830 cm
-1

 in the spectra of the 

nucleolus of treated cells compared to non-treated ones are observed, due to DOX-DNA 

interactions inducing DNA synthesis interruption [57] and changes in DNA conformation 

(decrease of DNA B form) [62]
 
inducing early cell apoptosis. [54, 63] (Similar results were 

found for nuclear spectra, data not shown). In addition to the decrease in DNA peaks, a shift 

towards lower wavenumbers is observed for the peak at 1095 cm
-1

, corresponding to O-P-O 

stretching, which indicates that DOX is also able to bind to DNA externally. [62] Besides the 

effects on DNA related spectral features, it appears that proteins and lipids are also affected, 

as evidenced by the decrease of their corresponding peaks, for example, respectively at 1450 

and 1665 cm
-1

. The peak at 1450 cm
-1 

is influenced by DOX peak proximity but, after DOX 

subtraction, it can be clearly seen that this peak is diminished (data not shown). [64] 

A more detailed analysis of the changes in the spectral features as a result of DOX exposure 

and comparison between the responses of the two cell lines is facilitated by PCA. Figure 8, 

showing PCA of nucleolar, nuclear and cytoplasmic regions, for A549 and Calu-1 cells after 

exposure to DOX, exhibits a separation between the three cellular compartments and the 

corresponding loading of PC1, differentiating the combined nuclear region from the 

cytoplasmic one, is dominated on the positive side by DOX features, confirming once again 

its predominantly nuclear and nucleolar subcellular localisation, for both cell lines. The 

negative side is dominated by lipidic features at 1450 cm
-1 

(CH2 deformation) and 1661 cm
-1 

(Lipids C=C stretching), corresponding to biochemical changes in the cytoplasmic region. 

[13, 65, 66] 
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Figure 8: PCA of nucleolar, nuclear and cytoplasmic regions of A. A549 and Calu-1 with 

corresponding loadings of PC1 and PC2 B. PCA of each cell localisation for A549 and Calu-

1 and the corresponding loadings of PC1 and PC2 

Nucleolus     Nucleus     Cytoplasm     A549 cell line 

Nucleolus     Nucleus     Cytoplasm     Calu-1 cell line 

 

A pairwise PCA of the three cellular regions was performed, and it is notable in Figure 8B, 

that PC1 clearly differentiates the nucleolar and nuclear regions between the two cell lines 

and the corresponding loading of PC1 clearly exhibits positive DOX features, indicating that 

there is more DOX in Calu-1 than in A549 cells, supporting the ImageJ analysis of the CLSM 



images. Negatives features at 1320 and 1450 cm
-1

 (CH2 deformation) and 1661 cm
-1

 (Lipid 

C=C stretching) are also observed in the loading of PC1 for nucleolar, nuclear and 

cytoplasmic areas, indicating that there is higher lipidic content in A549 cells than in Calu-1. 

 

 

Figure 9: PCA of nucleolar compartment of Calu-1 and A549 after DOX spectral features 

subtraction and corresponding loadings of PC1 and PC2 

Nucleolus    A549 cell line after DOX subtraction 

Nucleolus    Calu-1 cell line after DOX subtraction 

 

The differing cellular responses, in the subcellular regions, can be better visualised after 

subtraction of the DOX spectral signature from the cellular spectra. [14] Figure 9 shows the 

PCA of the nucleolus of A549 and Calu-1 after subtraction of DOX spectral features. 

Although the differentiation is not absolute, the A549 data is predominantly distributed with 

positive loadings of PC1, and vice versa for Calu-1. The loading of PC1 indicates that there is 

a more pronounced increase in some protein features in Calu-1 cells, than in A549. These 

include those at 645 cm
-1 

(C–C twist Tyrosine), 936 cm
-1 

(C–C stretching), 1176 cm
-1 

(Tyrosine), 1450 cm
-1 

(C-H) and 1665 cm
-1 

 (Amide I). Similar changes are apparent in these 

protein related features in the mean spectra of Figure 6, although they are less pronounced in 

the mean spectra of A549. [14]  

A further notable difference in the Raman profiles of Calu-1 compared to A549 cells is seen 

in the cytoplasmic region. Figure 6 reveals traces of DOX features for Calu-1, most apparent 

in the region from ~400-450 cm
-1

, which suggests the presence of a small amount of DOX in 

the cytoplasm, undetectable by CLSM. These are completely absent in the case of A549. [14] 

The same DOX features are obvious in the loading of PC2, separating the two cytoplasmic 

regions, in Figure 8B, further indicating the presence of DOX in the cytoplasm of Calu-1 



cells, while it is not detectable in A549. This observation highlights the sensitivity of Raman 

spectroscopic profiling to even small quantities of drugs inside cells and indicates that the 

sub-cellular distribution of DOX after 24hr exposure differs between the two cell lines. 

In order, to investigate the DOX mechanism of action in more details, and to support and 

complement the PCA observations, ICA was performed using three components, as estimated 

by PCA, explaining the majority of variance, and only the first conponent for each cellular 

compartment was plotted and off set for clarity.  

 

 

Figure 10: A. DOX spectrum and A549 ICA component B. Nucleolus C. Nucleus and D. 

Cytoplasm 

Figures 10 and 11 represent the ICA signals for the nucleolar, nuclear and cytoplasmic 

regions, respectively for the A549 and Calu-1 cell lines, plotted with the raw DOX spectrum 

for comparison. It is notable that the nucleolar and nuclear components exhibit DOX features 

at 440, 465 cm
−1

, 1085, 1215 and 1245 cm
−1 

for both cell lines, while these features are only 

strongly observed (Figure 11) in the cytoplasm of Calu-1, confirming the PCA results.  

 



 

Figure 11: A. DOX spectrum and Calu-1 ICA component B. Nucleolus C. Nucleus and D. 

Cytoplasm 

 

In both Figure 10 and 11, the peak at 795 cm
-1

 in the IC for both the nucleolus and nucleus 

(absent in the cytoplasm) corresponds to nucleic acid and confirms the nucleic DOX 

intercalation, while the negative peak at 1665cm
-1 

represents a decrease in the protein Amide 

I response, consistent with the analysis of the mean spectrum of nucleolus and nucleus before 

and after DOX exposure. The IC for both the nucleolus and nucleus also exhibit obvious 

features at 1430-1456 cm
-1

. These peaks are not visible in mean spectra, due to the proximity 

of lipid peaks and are absent in ICA of the control cells before exposure to DOX (data not 

shown). While these signatures could be attributed to DOX, they also correspond to 

signatures of Guanine and Cytosine. [67] The increase in these nucleic acid signatures could 

be due to DOX-DNA intercalation. DOX intercalates preferentially between two adjacent GC 

bases [20],
 
inducing changes in DNA conformation, damage of the DNA double helix 

structure and the observed spectral changes may therefore be evidence of DOX intercalation 

between Guanine and Cytosine bases. There is also a hyperchromic effect observed for the 

peak at 1376 cm
-1

 corresponding to Thymine, Adenine, Guanine (ring breathing modes of the 

DNA/RNA bases). [68-70] 

 

 



 

Figure 12: A. Spectrum DOX and B. Cytoplasm Calu-1 cell line ICA component.   

 

In the ICA of the cytoplasm of DOX exposed Calu-1 cells (Figure 12), DOX features are 

clearly evident, confirming DOX localisation in the cytoplasm. However, the spectral profile 

of the IC is considerably different than that of pristine DOX, and the IC of the nuclear and 

nucleolar regions. This is consistent with a metabolisation of the DOX molecules within the 

cytoplasm, and the resultant cellular interaction is manifest as the spectral features at 720 and 

877 cm
-1

 corresponding to C–C–N+ stretching, ones at 1024, 1343 cm
-1

 and 1456 cm
-1

, 

related to C-H vibrations and 1661 cm
-1

, corresponding to lipidic C=C stretching. [14, 71] 

 

Discussion 

The analysis of the dose dependent cytotoxic response of the two cell lines to DOX exposure, 

after 24 hrs shows a notably different profile, particularly for the case of the Alamar Blue 

assay. The results are consistent with an increased resistance of the Calu-1 cell line to the 

drug, compared to A549. The traditional cytotoxic assays shed little light on the origin of the 

different cellular responses, in terms of the cellular pharmacokinetics, however. The flow 

cytometric analysis indicates that DOX exposure elicits significantly higher upregulation of 

the anti-apoptotic protein bcl-2 in the Calu-1 cell line, while analysis of the induced oxidative 

stress reveals substantially higher levels of ROS in Calu-1. 

DOX is reported to induce cell death by two principle modes of action, and the results are 

consistent with different relative contributions to the cytotoxic response in the two cell lines. 



DOX is rapidly trafficked to the cell nucleus (and mitochondria), where it binds with the 

DNA by intercalation, inducing DNA damage and initiating an apoptotic cascade, registered 

by the MTT assay. The MTT assay registers similar cytotoxicity profiles for the two cell 

lines, and the somewhat higher IC50 value for Calu-1 is consistent with the observation from 

CLSM that there is a higher uptake of DOX in the nuclei of Calu-1. The DNA damage in cell 

nuclei triggers the upregulation of the anti-apoptotic protein bcl-2, which inhibits the 

apoptotic process. This response is significantly stronger in the Calu-1 cell line, and this 

greater resistance to apoptosis is consistent with the substantially lower loss of cell viability 

as registered by the AB assay. Concomitantly, a significantly higher degree of oxidative 

stress in the Calu-1 cell line is observable. ROS generation in the cytosol, resulting in DNA 

damage in the nucleus, is the second reported mode of action of DOX. The process is the 

result of a complex cascade initiated by the reduction of DOX in the presence of NADPH 

and, in comparison to the direct interaction of DOX with the nuclear DNA, is a relatively 

slow process. 

The combination of the cytotoxic assays, Flow Cytometry and CLSM can help to understand 

the underlying mechanisms of the different responses of the two cell lines to DOX exposure, 

and the apparent higher resistance one to cell death. As a label free, high content analysis 

technique, Raman spectroscopy can provide similar insights in a single measurement. 

Notably, Raman spectroscopy gives a clear indication of the presence of DOX and/or its 

semiquinone metabolite in the cytoplasm of Calu-1 cells, whereas it is not apparent in A549 

cells. This observation is indicative of a retarded transport of the drug to the nuclei of Calu-1 

cells, and an increased contribution of oxidative stress to the cellular response mechanism. 

Contained in the spectral changes of the cytoplasm are also signatures of cell damage, 

characteristic of the response mechanism. In the cell nuclei, DOX exposure produces clear 

signatures of DNA intercalation, as well as external groove binding, in both cell lines. In the 

nuclei of Calu-1 cells, there is a significantly higher increase in protein activity, consistent 

with the upregulation of the cellular anti-apoptotic resistance mechanism. 

The results of the Raman micro spectroscopic investigation therefore clearly demonstrate 

signatures of the interaction of the DOX with the two cell lines, and the mechanisms of 

cellular response. The differences in response are consistent with the differences observed 

through the combination of established techniques of cytotoxic assays, flow cytometry and 

CLSM.  



However, the spectroscopic signatures are obtained in a single, label free measurement. It is 

noted that the chemotherapeutic agent chosen here, DOX, is a relatively strong Raman 

scatter, due to is -conjugated anthracycline structure, and much is already known about its 

mechanisms of interaction. Nevertheless, the study serves as a further illustration of the 

potential of Raman spectroscopy as an in vitro companion diagnostic tool. Although the 

screening was performed at a single time point, ongoing technological developments such as 

in nonlinear Raman techniques promise significantly enhanced signals, and therefore reduced 

sampling times, and ultimately real time monitoring of cellular uptake of drugs and other 

external agents such as nanoparticles, and the subsequent cellular responses.  

Conclusion: 

The study further demonstrates the potential of Raman micro spectroscopy as a high content, 

label free in vitro tool, not only to localise drugs within cells, but also to monitor their 

interactions in the cytoplasm and nucleus of the cells at a molecular level, and to characterise 

the subsequent cellular responses on a subcellular level. Spectroscopic signatures of DNA 

intercalation, binding and damage are clearly identifiable in the cell nucleus, and cellular 

responses such as the upregulation of anti-apoptotic proteins and cytoplasmic damage can be 

monitored. The technique has previously been employed to differentiate the two cancer cell 

lines, A549 and Calu-1 based on the spectroscopic signatures of their nucleoli, and in this 

study the differences of the responses of the two cell lines to DOX exposure are clearly 

identifiable in their post exposure spectroscopic signatures. Notably, due to the sensitivity of 

the detection system, Raman spectroscopy can detect the presence of the drug in the 

cytoplasm in the Calu-1 cell line, but not in A549, which is a key to understanding the 

difference in the cytotoxic responses, and therefore in cell resistance to the drug, coupled 

with the increased upregulation of anti-apoptotic proteins in the nucleus. The technique 

corroborates the results of classic cytotoxicity assays, bcl-2 monitoring using flow cytometry, 

ROS monitoring using confocal microscopy, but does so in a single, label free measurement, 

clearly indicating the benefits of the technique for high content screening and in vitro 

companion diagnostics. 
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Graphical Abstract: 

 

Raman microspectroscopy is employed to investigate and compare the in vitro mechanisms 

of action of Doxorubicin and cellular resistances of cancer cell lines A549 and Calu-1. 

Results show the potential of Raman not only to distinguish the different mechanisms of 

action and subcellular response but also to elucidate drug resistance in the different cell lines. 
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