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Abstract— Vibrational spectra of biological species suffer 
from the influence of many extraneous interfering factors that 
require removal through preprocessing before analysis. The 
present study was conducted to optimise the preprocessing 
methodology and variable subset selection during regression of 
and confocal Raman microspectroscopy (CRM) and Fourier 
Transform Infrared microspectroscopy (FTIRM) spectra against 
ionizing radiation dose. Skin cells were γ-irradiated in-vitro and 
their Raman and FTIRM spectra were used to retrospectively 
predict the radiation dose using linear and nonlinear partial least 
squares (PLS) regression algorithms in addition to support vector 
regression (SVR). The optimal preprocessing methodology (which 
comprised combinations of spectral filtering, baseline subtraction, 
scaling and normalization options) was selected using a genetic 
algorithm (GA) with the root mean squared error of prediction 
(RMSEP) used as the fitness criterion for selection of the 
preprocessing chromosome (where this was calculated on an 
independent set of test spectra randomly selected from the dataset 
on each pass of the algorithm). The results indicated that GA 
selection of the optimal preprocessing methodology substantially 
improved the predictive capacity of the regression algorithms over 
baseline methodologies, although the optimal preprocessing 
chromosomes were similar for various regression algorithms, 
suggesting an optimal preprocessing methodology for 
radiobiological analyses with biospectroscopy. Feature selection of 
both FTIRM and CRM spectra using genetic algorithms and 
multivariate regression provided further decreases in RMSEP, 
but only with non-linear multivariate regression algorithms.  
Keywords—genetic algorithm, preprocessing, vibrational spectra, 
multivariate regression, radiobiology 

I.  INTRODUCTION  
Evidence has accumulated in the recent literature of the wide 
variety of applications of vibrational spectroscopy in the 
elucidation and modelling of the effects of complex processes 
in the cell (viral transfection, changes to the extracellular 
matrix, effects of chemotherapeutic agents etc.) on its total 
biochemical composition[1-5]. Recent studies have also 
confirmed the applicability of infrared and Raman 
spectroscopies for the analysis of radiobiological effects at the 
cellular level[6, 7], particularly in relation to the retrospective 

prediction of radiation dose from Fourier Transform Infrared 
microspectroscopy (FTIRM) spectra of γ-irradiated cells[8]. 
In the retrospective prediction of radiation dose from 
vibrational spectra of the cell, as with many other applications, 
removal of spectral features that are not related to the 
biochemical composition of the cell is required. In FTIRM 
spectra, it is common to observe a broad oscillating baseline 
that has its origin in optical scattering effects (such as resonant 
and non-resonant Mie scattering) from subcellular organelles 
and other structures [9-13]. It has been shown that such effects 
can be modeled and extracted from the spectra using the 
extended multiplicative scatter correction (EMSC), including 
resonant effects [11, 14, 15]. Corrections for the absorptions 
of water vapour and CO2 may be performed using machine-
specific algorithms [16]. Spectral normalization, scaling and 
filtering may be used to account for point-to-point variations 
in biochemical composition in the sample and spectral noise 
respectively. Similar procedures are employed in respect of 
the spectral pre-treatment of confocal Raman 
microspectroscopic (CRM) data of the cell [1, 2, 17]. 
 

Preprocessing methods themselves have been demonstrated 
to affect the results of a classification [18, 19] or regression 
[20, 21] analysis of FTIRM or CRM spectral data and implies 
that an optimal preprocessing strategy must be employed. 
Selection of the optimal preprocessing strategy from a set of 
preprocessing options can proceed iteratively [18-20], or using 
evolutionary algorithms [21] which reduce the overall solution 
search time substantially. In this paper a genetic algorithm 
(GA) was used in an evolutionary search to establish an 
optimal preprocessing methodology and define the optimal set 
of preprocessing options for treatment of FTIRM and CRM 
with regression by various models against radiation dose. In 
addition, a multivariate analysis which employs the GA as a 
feature selection technique was used to further optimize the 
regression by the elimination of spurious variables. Three 
regression algorithms were chosen; a partial least squares 
regression (PLSR) algorithm and a non-linear version 
(NLPLSR) which respectively analysed spectral effects having 
a linear and quadratic relationship to radiation dose. The third 



algorithm chosen was a support-vector regression algorithm 
(SVR) which analysed non-linear spectral effects occurring 
with dose, where those non-linearities could adopt any 
functional form. It was found that the SVR algorithm 
outperformed both PLSR and NLPLSR algorithms in 
prediction of radiation dose with feature selection, highlighting 
the non-linear nature of the spectral variation with dose and 
time after irradiation [8]. The change in the performance of the 
algorithms as a result of these treatments is highlighted. 

II. METHODS 
2.1 Cell Culture and Sample Preparation 

 
Human keratinocytes (HaCaT) were cultured in Dulbecco’s 
MEM:F12 (1:1) whole medium (Sigma, Dorset, UK) 
supplemented with 10% fetal calf serum (Gibco, Irvine, UK), 
1% penicillin-streptomycin solution 1,000 IU (Gibco, Irvine, 
UK), 2 mM L-glutamine (Gibco, Irvine, UK) and 1 μg/mL 
hydrocortisone (Sigma, Dorset, UK) in an incubator at 37°C 
with 95% relative humidity and 5% CO2. The cells were 
routinely subcultured at 80% confluency using a 1:1 solution 
of 0.25% trypsin and 1mM versene at 37°C. Triplicate samples 
for FTIRM were prepared on MirrIR slides as detailed 
elsewhere[8] and were analysed at 6, 12, 24, 8 and 96 hours 
after irradiation with ten γ-radiation doses over the range from 
0Gy to 5Gy. They were fixed in 4% formalin in phosphate 
buffered saline at each time point after irradiation and were 
stored in a desiccator until the time of analysis. 
 
Triplicate samples for CRM were also prepared by depositing 
suspensions of 2.5 × 104 HaCaT cells onto fused quartz disks 
coated in a sterile solution of 2% w/v gelatin in dH2O (the 
preparation of the coating and its polymerization on the quartz 
substrate is detailed elsewhere[3]) and cultured in DMEM-F12 
with all supplements. The cells were allowed to effect initial 
attachment to the substrate for two hours and were then 
covered in fresh DMEM-F12 with all supplements. 
Approximately 24 hours after initial sample preparation the 
cells for FTIRM and CRM analysis were given γ-radiation 
doses over the range from 0Gy to 5Gy, and were fixed in 4% 
formalin at 96 hours after irradiation. Samples for CRM were 
stored in dH2O at 4°C until analysis.  
 
2.2 FTIRM and CRM Measurements 
 
FTIRM measurements were performed as detailed 
elsewhere[8]. Briefly, a Perkin-Elmer GX-II spectrometer was 
employed to record cell spectra over the 4000 to 720 cm-1 
wavenumber range, using an aperture size of 100 μm ×100 
μm, with a spectral resolution of 4 cm-1 and with 64 scans per 
spectrum. All spectra were recorded in transreflection mode 
with 300 spectra recorded at each dose and time point. 
 

CRM data were acquired using a Horiba-Jobin Yvon HR-
800 CRM spectrometer with a 785 nm laser as source. Spectra 
were acquired using a confocal hole diameter of 100µm and 
dispersion from a grating ruled with 300 lines/mm. The 
instrument was calibrated using the 520.7 cm-1 line of silicon. 

A spectrum of a neon lamp source was also taken as a 
reference for verification of the wavelength calibration of the 
spectrometer CCD detector. A water immersion objective with 
a ×100 magnification (Olympus LUMPlanFL 0.9 NA) was 
used for all spectral measurements, which were taken in dH2O. 
Spectra of the quartz substrate were acquired in triplicate prior 
to, and at the end of, each measurement. CRM spectra of 
HaCaT cells at each dose point were acquired in a line scan 
across the cell with a step interval of 3µm such that spectra of 
the cell nucleus, cytoplasm and membrane were recorded. The 
spatial resolution of the system was determined to be 
approximately ±1.6 µm in separate measurements[22]. In the 
initial pre-processing of the CRM spectra, the signature of the 
quartz background was subtracted from all spectra and a 
rubberband algorithm, developed in house, was used to remove 
any residual baseline[2]. The line-scan spectra were then 
averaged for each cell to reduce further the measurement noise 
and provide spectra whose content comprised components 
from the membrane, cytoplasm and nucleus. No further 
preprocessing of either the FTIRM or CRM spectra was 
performed, although outliers were then removed in each dose 
category using Grubb’s multivariate test for outliers[23]. 

2.3 Multivariate Regression and Genetic Algorithms 
 

Multivariate regression against dose was performed using 
PLSR, NLPLSR and SVR regression algorithms. PLSR and 
NLPLSR algorithms were implemented in the Matlab v.7.2 
environment (The Mathworks Inc., USA) with the PLS 
Toolbox v.5.0.3 (Eigenvector Research, Wenatchee, WA, 
USA). The SVR was implemented using the LIBSVM 
Toolbox [24]. Genetic algorithms were constructed using the 
Genetic Algorithm and Optimisation Toolbox [25], which 
allows the incorporation of binary and real valued genes 
within the GA chromosome. 
 
2.4 Selection of Preprocessing Parameters 
 
Selection of preprocessing parameters for multivariate 
regression was performed according to the method described 
by Jarvis and Goodacre [21]. A genetic algorithm constructed 
in Matlab was used to select from preprocessing options, 
whereby the GA chromosome contained genes that coded for 
each preprocessing option using a combination of binary digits 
and integers as shown in table 1. All of the preprocessing 
options were available for the preprocessing of FTIRM 
spectra, while all but the ‘EMSC’ option were made available 
to the GA for preprocessing of CRM spectra, as it was 
assumed that the rubberband correction algorithm removed 
much of the slowly varying background from the cellular 
Raman spectra. 



 

TABLE I.  STRUCTURE OF THE CHROMOSOME USED IN THE SELECTION 
OF OPTIMAL PREPROCESSING STEPS FOR PLSR, NLPLSR AND SVR WITH FTIRM 
AND CRM DATA; SG=SAVITSKY-GOLAY FILTERING, MA=MOVING AVERAGE 

FILTERING 

Preprocessing 
Options 

Gene Type  Possible Values 

Derivation Real Integer 1 – Off; 2 – 1st Order; 3 – 2nd Order 
EMSC Binary 0 – Off; 1 – On; 

Filtering Binary 0 – Off; 1 – On; 
Filtering Type Binary 0 – SG; 1 – MA; 
SG window Real Integer Number from 7 to 21 

SG order Real Integer Either 3 or 5 
MA window Real Integer Number from 2 to 21 

Normalisation Real Integer 1 – Vector Area; 2 – Vector Length.;  
3 – Min-Max 

Scaling Binary 0 – Off; Auto-scaling; 1 - Range-scaling; 
 
In the GA algorithm, 60% of the total spectral data matrix was 
randomly selected for calibration of each of the regression 
models and the remaining 40% was retained for testing of the 
model with unseen data. This process was repeated for every 
execution of the regression algorithms. The RMSEP on the 
test set was used for evaluation of the performance of each 
regression model with a particular set of preprocessing 
parameters, and this constituted the fitness of the 
preprocessing chromosome, whereby the RMSEP was 
minimized during each evolution of the algorithm. At each 
initialization of the GA, the values of each of the genes were 
assigned randomly, and a total of twenty-five individual 
chromosomes with minimum RMSEP were selected for 
further evaluation. In total the GA was run for fifty separate 
initializations on each dataset, with thirty crossovers (p=0.6) 
and fifty mutations (p=0.05) per generation. The overall best 
chromosome of preprocessing parameters was determined 
from the median of the GA chromosomes giving the lowest 
RMSEP for each regression algorithm at the end of evolution. 
In defining the best value for the SVR regression parameters 
the gamma, γ (defining the regression kernel width) and 
penalty, C (defining an acceptable loss function for 
implementation of the regression) parameters were also 
assigned by the GA during evolution, via the incorporation of 
two extra genes to the chromosome in table 1. 
 
2.6 Feature Selection Approaches 

 
Feature selection was performed with PLSR, NLPLSR and 
SVR using a genetic algorithm (GA) constructed in Matlab. 
The method of Yoshida et al. [26, 27] was used for variable 
selection to prevent the overfitting that has been previously 
observed when GA’s are used with a large search domain[26]. 
Briefly, a number of short GA runs were implemented for an 
evolution for 20 generations with 30 crossovers per generation 
(p>0.9) and 50 mutations per generation (p<0.05) to minimize 
the feature set selected by the algorithm. After this, a more 
extensive search (for 50 generations with the crossover and 
mutation rates as above) was performed on the feature set 
most often selected by the GA at the initial stage. A subset of 
one hundred spectra was randomly selected for calibration of 

the multivariate regression models with each preprocessing 
chromosome, and a separate one hundred spectra were also 
randomly selected for testing of the performance of the 
chromosome. Variables were encoded as binary digits. The 
fitness criterion for testing of the chromosome was the 
RMSEP of the regression with the unseen testing set of 
spectra. In total, the GA was run on fifty separate occasions. 

III. RESULTS 
3.1 Investigation of the effect of preprocessing parameters on 
regression performance  

 
The content of the GA chromosomes that were selected for 
regression of FTIRM data versus radiation dose using PLSR, 
NLPLSR and SVR are shown in table 2. In this table a 
‘consensus’ from the analysis (giving the most often chosen 
preprocessing parameters) is taken as the median of the GA 
chromosomes at the end of evolution at each time point. In 
addition, the NA entry in the tables indicates a preprocessing 
option that is not applicable by virtue of the parent option not 
having been selected (eg. the order of SG filtering is irrelevant 
if filtering has not been selected as an option by the GA). The 
associated change in regression performance with FTIRM 
spectra over baseline RMSEP values (taken from earlier 
work[8]) is shown in tables 3, 4 and 5 (where SD denotes the 
standard deviation on the mean). An example of the evolution 
in the RMSEP from two separate GA-PLSR executions is 
provided in Fig. 1 for illustration. This demonstrates that the 
algorithm approaches a consistent level of performance over 
the course of its evolution regardless of the randomly assigned 
values of the chromosome genes at the initiation of the 
algorithm, and as such implies that the preprocessing solution 
generated by the GA is optimal and consistent. 

 
Figure 1. Typical evolution of a GA for selection of pre-processing 
parameters with PLSR RMSEP as fitness criterion utilizing FTIRM data 
at 6 hours post-irradiation. In the 50th execution of the GA, the optimal 
solution is found in the first generation of its evolution, and 
subsequently does not improve. 

 



TABLE II.  STRUCTURE OF THE CHROMOSOME USED IN THE SELECTION 
OF OPTIMAL PREPROCESSING STEPS FOR PLSR, NLPLSR AND SVR WITH FTIRM 
AND CRM DATA; SG=SAVITSKY-GOLAY FILTERING, MA=MOVING AVERAGE 

FILTERING 

Time (hours) 
 

Preprocessing 

6 12 24 48 96 Consensus 

Derivation Off Off Off Off Off Off 
EMSC On Off On On On On 

Filtering Off Off Off Off On Off 
Filtering Type NA NA NA NA SG NA 
SG window NA NA NA NA 9 NA 

SG order NA NA NA NA 5 NA 
MA window NA NA NA NA NA NA 

Normalisation Vector Min/Max Vector Min/Max Vector Vector 
Scaling Auto None Auto Auto Auto Auto 
 

TABLE III.  IMPROVEMENT IN PLS RMSEP FOR FTIRM DATA THROUGH THE 
SELECTION OF OPTIMAL PREPROCESSING WITH THE GA. THE ORIGINAL PLS 

DATA IS TAKEN FROM EARLIER WORK[8] 

 

Time 
PLS RMSEP 

(Preprocessing) 
(Gy) 

SD 

Original 
PLS 

RMSEP 
(Gy) 

SD Percentage 
Change 

6 0.26 0.01 0.31 0.02 -16 

12 0.72 0.01 0.79 0.03 -8.8 

24 0.33 0.01 0.33 0.02 0 

48 0.52 0.01 0.46 0.02 +11 

96 0.35 0.03 0.37 0.01 -13.5 

 

TABLE IV.  IMPROVEMENT IN NLPLS RMSEP FOR FTIRM DATA THROUGH 
THE SELECTION OF OPTIMAL PREPROCESSING WITH THE GA. THE ORIGINAL 

NLPLS DATA IS TAKEN FROM EARLIER WORK[8] 

Time 

NLPLS 
RMSEP 

(Preprocessing) 
(Gy) 

SD 

Original 
NLPLS 
RMSEP 

(Gy) 

SD 

 
 

Percentage 
Change 

6 0.35 0.01 0.48 0.05 -27 

12 0.64 0.19 0.76 0.06 -13 

24 0.38 0.10 0.40 0.04 -5 

48 0.43 0.15 0.46 0.03 -6.5 

96 0.44 0.15 0.52 0.02 -15 

 

TABLE V.  IMPROVEMENT IN SVR RMSEP FOR FTIRM DATA THROUGH THE 
SELECTION OF OPTIMAL PREPROCESSING WITH THE GA. THE BASELINE SVR 

DATA WAS DETERMINED THROUGH REGRESSION OF SPECTRAL DATA AGAINST 
RADIATION DOSE, WITHOUT ANY FURTHER PREPROCESSING. 

Time SVR RMSEP 
(Preprocessing) (Gy) SD Baseline SVR 

RMSEP (Gy) SD Percentage 
Change 

6 0.62 0.01 0.88 0.07 -29 

12 0.94 0.01 1.08 0.06 -13 

24 0.39 0.01 0.51 0.04 -23 

48 0.54 0.01 0.70 0.05 -23 

96 0.31 0.01 0.46 0.04 -33 

 The optimal preprocessing solutions for regression of the 
CRM data against radiation dose at 96 hours after irradiation 
are shown in table 6, together with the mean RMSEP after 
evolution of the GA-PLSR, GA-NLPLSR and GA-SVR 
algorithms in table 7 (where SD denotes the standard deviation 
on the mean). Each regression is performed separately with 
each individual algorithm, and a consensus estimate of the 
optimal preprocessing solution is again determined as a median 
of the GA solutions for each of the individual algorithms. 
Baseline performance for all algorithms is established through 
multiple evaluations (10 times each for PLSR and NLPLSR 
algorithms and 50 times for the SVR algorithm) with each 
regression algorithm on the raw spectral data. The spectral data 
matrix was randomly sorted on each pass of the algorithm 

In respect of preprocessing of FTIRM data for multivariate 
regression, the consensus from table 2 is that the optimal 
solution is provided by using vector normalized and auto-
scaled raw spectral data (i.e. not first or second derivative 
spectra) subjected to the extended multivariate scatter 
correction without filtering. Similarly, the consensus from 
table 6 is that the optimal preprocessing of CRM data for 
multivariate regression is provided by the use of raw spectral 
data that is not filtered. The consensus in relation to 
normalization of the data is in favour of the use of vector 
normalization. 

TABLE VI.  PREPROCESSING PARAMETERS FOR MULTIVARIATE 
REGRESSION OF CRM DATA AT 96 HOURS AFTER IRRADIATION SELECTED BY 

THE GA. 

Time (hours)  
 

Preprocessing 

PLS NLPLS SVR Consensus 

Derivation Off Off 1st Order Off 
EMSC Off Off Off Off 

Filtering Off Off On Off 
Filtering Type NA NA SG NA 
SG window NA NA 19 points NA 

SG order NA NA 5 NA 
MA window NA NA NA NA 

Normalisation Vector Vector None Vector 
Scaling None None Auto None 
 

TABLE VII.  PLS, NLPLS AND SVR RMSEP FOR CM DATA AFTER THE 
SELECTION OF OPTIMAL PREPROCESSING PARAMETERS WITH THE GA. THE 

BASELINE DATA WAS DETERMINED THROUGH REGRESSION OF THE RAW 
SPECTRAL DATA AGAINST RADIATION DOSE, AND ARE MEANS OF THE RMSEP 

FOR MULTIPLE EXECUTIONS OF EACH ALGORITHM AS DESCRIBED IN THE TEXT. 

Algorithm RMSEP (Gy) SD 
Baseline 
RMSEP 

(Gy) 

 
 

SD 

 
Percentage 

Change 
PLS 0.32 0.01 0.43 0.02 -11 

NLPLS 0.34 0.006 0.53 0.03 -36 
SVR 0.26 0.03 0.40 0.03 -35 

 

The improvement in regression performance accruing through 
the employment of selection of optimal preprocessing 
methodology is quite substantial in some instances, ranging 
from 5% to in excess of 30% of baseline RMSEP depending on 
the time point after irradiation and the regression algorithm in 



question. This demonstrates that the identification of the 
optimal preprocessing methodology can improve the overall 
performance of the regression algorithm and should be 
considered as a component in the use of vibrational 
spectroscopic data for non-invasive radiological dosimetry. 
The consensus spectral processing methodologies for both 
FTIRM and CRM data have been used in treatment of both sets 
of data for the feature selection studies that follow. 

 
3.2 Change in prediction of radiation dose with feature 
selection by GA  

 

 

Selection of spectral features with the genetic algorithm 
involves minimization of the RMSEP with an independent set 
of test spectra, which should lead to an overall improvement in 
the prediction of radiation dose at each time point using each of 
the PLSR, NLPLSR and SVR algorithms. In the present 
analysis, the overall effect on prediction performance with GA 
feature selection and regression using either the GA-PLSR or 
GA-NLPLSR approaches was either marginal improvement or 
disimprovement of their performance. Contrastingly, the 
performance of the GA-SVR algorithm with GA feature 
selection increased after selection of the optimal preprocessing 
options. Features selected by the GA-SVR algorithms in 
regressing FTIRM data against radiation dose are shown in Fig.  
2, while those selected by the GA-PLSR, GA-NLPLSR and 
GA-SVR algorithms in regressing CRM data versus radiation 
dose are shown in Fig.  3. In these figures the frequency with 
which a variable is selected by the algorithm is represented by 
the height of the bar. 

From the data in table 8, it is clear that feature selection 
with the SVR algorithm increases the prediction performance 
at each time point for FTIRM data. This correlates well with 
the performance characteristics seen previously[8], where non-

linear regression algorithms were seen to outperform both 
linear and linear-quadratic approaches in regressing spectral 
data versus radiation dose. It is clear therefore that selection of 
features that vary either linearly or according to a simple non-
linear model with radiation dose only captures a small part of 
the spectral variation with dose, as it appears that most of the 
spectrum, or many of the spectral features at certain dose 
points, vary in a higher order non-linear manner with dose. 

TABLE VIII.  IMPROVEMENT IN SVR RMSEP FOR FTIRM DATA THROUGH 
VARIABLE SELECTION WITH THE GA, WHERE THE SELECTED VARIABLES AT 
EACH TIME POINT ARE THOSE DISPLAYED IN FIG. 2 (A-E). THE REFERENCE 

RMSEP VALUES ARE THOSE OBTAINED AFTER SELECTION OF PREPROCESSING 
METHODOLOGY (FROM TABLE 6) 

Time 

SVR RMSEP 
(Variable 
Selection) 

(Gy) 

SD 
SVR RMSEP 

(Preprocessing)  
(Gy) 

SD Percentage 
Change 

6 0.30 0.02 0.62 0.01 -51 

12 0.59 0.04 0.94 0.01 -37 

24 0.31 0.02 0.39 0.01 -21 

48 0.43 0.05 0.54 0.01 -20 

96 0.35 0.03 0.31 0.01 +13 

 

TABLE IX.  IMPROVEMENT IN SVR RMSEP FOR CRM DATA THROUGH 
VARIABLE SELECTION WITH GA-SVR, WHERE THE SELECTED VARIABLES AT 

EACH TIME POINT ARE THOSE DISPLAYED IN FIG.  3(C). THE REFERENCE RMSEP 
VALUES ARE THOSE OBTAINED AFTER SELECTION OF PREPROCESSING 

METHODOLOGY (FROM TABLE 6) 

Time 

SVR RMSEP 
(Variable 
Selection) 

(Gy) 

SD 
SVR RMSEP 

(Preprocessing)  
(Gy) 

SD Percentage 
Change 

96 0.096 0.004 0.26 0.03 -63 

 

This is confirmed by the analysis of the CRM data at 96 hours 
after irradiation (table 9) in which a significant improvement 
in the performance of the prediction of dose with the SVR 
algorithm is observed after feature selection. A similar 
improvement in performance with the PLSR and NLPLSR 
algorithms was not seen.  

 

Figure 2. (a-e) Features of FTIRM spectra selected by GA-SVR from 6 
hours (a) to 96 hours (e) after irradiation. The spectrum in black is the 
mean spectrum of control cells (0Gy) at each time point. 

 
Figure 3. Features selected by (a) GA-PLSR, (b) GA-NLPLSR and (c) 
GA-SVR of CRM spectra against radiation dose at 96 hours after 
irradiation. The spectrum in black is the mean spectrum of control cells 
(0Gy) at 96 hours after irradiation. 

 



Several important and interesting characteristics are apparent 
from the variable selection exercise that may have significance 
for the types of spectral effects observable after radiological 
damage of cells. In Fig. 2 variables within the FTIR spectra 
are selected by the GA-SVR algorithm that are both positioned 
at the peaks of the spectral bands and across their breadth also. 
This is suggestive of radiological damage having an effect on 
the breadth of spectral bands (broadening or narrowing) rather 
than positional shifts in the position of the peak of the band. In 
addition, a number of variables are selected which are 
associated with the remaining baseline in the spectra (between 
~1780 cm-1 and ~2500 cm-1) where no features of biochemical 
origin are present. A broad undulating feature in the baseline 
of FTIR spectra has previously been seen, having its origin in 
non-resonant and resonant Mie scattering effects [12, 13]. This 
scattering, when non-resonant, produces a broad curved 
baseline over the whole spectrum, whose curvature has a 
dependence on the diameter of the transparent scattering 
object within the cell (which can be any cellular organelle) 
[12]. It is well known that radiation damage can generate 
transparent subcellular membrane-bound bodies termed 
‘blebs’ which encapsulate components of the cell and may 
scatter IR light in a similar manner to that observed with non-
resonant Mie scattering. In the present work the EMSC 
algorithm was intentionally employed for scatter correction 
without correction for resonant Mie effects. It is possible, 
therefore, that the selection of spectral variables associated 
with the baseline in the in the 1780 cm-1 to 2500 cm-1 region is 
due to Mie scattering as a result of radiation-induced cellular 
blebbing. 
 
It is also a point of interest in Fig. 3 that the features selected 
by GA-PLSR and GA-NLPLSR algorithms are distributed 
across the Raman spectrum while those selected by the GA-
SVR algorithm are concentrated in the region containing 
strong modes of vibration associated with nucleic acids and 
their residues. This is not the case for the corresponding FTIR 
data in figure 2, where variables are selected corresponding to 
all molecular species including protein, lipid and nucleic 
acids. However, it has been demonstrated that variables 
selected in data with a high degree of covariation are highly 
dependent on the classification or regression algorithm and the 
wrapping algorithm [28]. In addition GA’s do not consider 
any relationship between adjacent spectral variables but 
merely attempt to minimize a target classification or 
regression variable. In this context the GA selection of any 
particular set of variables in the FTIR data would not be 
expected to correlate molecularly with those selected in the 
Raman data. Overall the Raman variables selected in Fig. 3c 
suggest that molecular changes having a non-linear 
relationship to radiation dose at 96hrs after irradiation are 
predominantly associated with nucleic acids, and are perhaps 
due to structural modifications in DNA that are connected to 
mechanisms of ionizing radiation damage and repair.  
 
These results highlight that selection of an optimal 
preprocessing methodology and selection of a feature subset 

can improve the performance of regression algorithms for 
radiobiological dosimetry using vibrational spectra. 
 

IV. CONCLUSION 
This study demonstrates that FTIRM and CRM, in addition to 
their potential in cytometry and tissue pathology, provide a 
platform form the non-invasive measurement of radiobiological 
damage as they are sensitive to the complex series of molecular 
responses produced in the cell. It has been demonstrated that 
powerful multivariate techniques can offer the means to 
analyse the changes in the biochemical fingerprint occurring 
with dose and time after irradiation as a platform for 
retrospective biological dosimetry. It has also been 
demonstrated that a suitable choice of preprocessing 
parameters and spectral variables can result in substantial 
increases in prediction performance of multivariate regression 
algorithms when used for biodosimetry with FTIRM and CRM 
spectra of irradiated cells. The study raises questions regarding 
the nature of the non-linearities in these changes that are 
suggested by the performance of the SVR algorithm in 
modelling the biochemical fingerprint, which will be the 
subject of future reports. 
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