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Abstract 

 

 

 

 

Purpose 

An investigation was carried out into the effect of three image registration techniques on the 

diagnostic image quality of contrast-enhanced magnetic resonance angiography (CE-MRA) images.   

Methods 

Whole-body CE-MRA data from the lower legs of 27 patients recruited onto a study of asymptomatic 
atherosclerosis were processed using three deformable image registration algorithms.  The resultant 

diagnostic image quality was evaluated qualitatively in a clinical evaluation by four expert observers, 
and quantitatively by measuring contrast-to-noise ratios and volumes of blood vessels, and assessing 

the techniques’ ability to correct for varying degrees of motion.   

Results 

The first registration algorithm (‘AIR’) introduced significant stenosis-mimicking artefacts into the 

blood vessels’ appearance, observed both qualitatively (clinical evaluation) and quantitatively (vessel 
volume measurements).  The other two algorithms (‘Slicer’ and ‘SEMI’) based on the normalised 

mutual information (NMI) concept and designed specifically to deal with variations in signal intensity 
as found in contrast-enhanced image data, did not suffer from this serious issue but were rather 

found to significantly improve the diagnostic image quality both qualitatively and quantitatively, and 
demonstrated a significantly improved ability to deal with the common problem of patient motion.   

Conclusions 

This work highlights both the significant benefits to be gained through the use of suitable 
registration algorithms and the deleterious effects of an inappropriate choice of algorithm for 

contrast-enhanced MRI data.  The maximum benefit was found in the lower legs, where the small 
arterial vessel diameters and propensity for leg movement during image acquisitions posed 

considerable problems in making accurate diagnoses from the un-registered images. 
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Introduction 

 

Peripheral arterial disease (PAD) is a manifestation of cardiovascular disease in the extremities of the 

body with reported incidences of 11-16% in persons over 55 years old [1].  PAD has been linked to a 

6-fold increase in risk for myocardial infarction [2] and an at least 2-fold rise in the risk of ischaemic 

stroke [3], and hence the detection of this condition is critical for at-risk patients [4].  PAD involves 

the build-up of plaque in the arteries (a condition called atherosclerosis), and although patients usually 

present with a stenosis in one area (and hence diagnostic imaging tends to focus exclusively on that 

symptomatic area), it is likely that the disease will be manifest asymptomatically elsewhere in the 

body.  The entire arterial system can, however, be investigated using a whole body contrast-enhanced 

magnetic resonance angiography (CE-MRA) approach, with a view to determining the extent of the 

disease and whether any asymptomatic PAD can be revealed.  Whole body CE-MRA uses a moving 

table technique wherein the body is sub-divided into 4 or 5 “stations” which are sequentially scanned 

by automatically moving the anatomy covered by each station into the isocentre of the magnet.  

Initially, pre-contrast images are acquired at each station, followed by the rapid injection of a bolus of 

contrast agent and a re-acquisition of all images while chasing the bolus down the body.  The 

respective pre- and post-contrast images are subtracted to accentuate visualisation of the arterial 

system.   

 

However, mis-registration artefacts can cause significant deterioration of the resultant image quality, 

particularly evident when trying to visualise small vessels. This can occur due to patient motion, but 

also due to mis-alignment of the table following its movement in and out of the magnet between 

image acquisitions.  In the bolus-chase method, the pre-contrast images are acquired feet first and 

finishing at the head, so that the post-contrast imaging commences where the contrast agent arrives 

first (i.e. upper body regions) and is chased down the body thereafter.  As such, several minutes pass 

between the acquisition of the pre- and post-contrast images, particularly of the lower legs, while 

furthermore the table has twice moved the full extent of the body between acquisitions.  Leg 

immobilisation techniques go some way towards preventing patient movement artefacts but do not 

eliminate this completely, particularly for patients with advanced PAD who have difficulty remaining 

still. 

 

Image registration techniques are well established for dealing with patient movement artefacts, 

although routine clinical MRI applications focus predominately in the brain where robust registration 

techniques exist for a wide range of applications such as diffusion weighted/tensor imaging [5], 

functional MR [6], and serial imaging [7, 8].  Nevertheless, this remains an area of active research, 

with the continued evolution of registration algorithms tailored for specific applications even within 



the brain [9] or between imaging modalities (for example, MRI and PET [10]).  For an overview of 

the literature in MRI and other imaging modalities, including areas outside of the brain, the reader is 

referred to a recent comprehensive review [11]. 

 

Conventionally, registration techniques work through a direct analysis of pixel signal intensities or by 

identifying features within the two images to be registered, and hence a common assumption is that 

both images have the same signal intensities in corresponding anatomical structures which are simply 

displaced somewhat relative to each other.  The earliest generation of registration algorithms were 

based on this rather simplistic approach, an example of which is the Automated Image Registration 

(AIR) algorithm originally described by Woods et al in 1992 [12] and still widely used today [9, 13, 

14]. 

 

An added complexity arises, however, in studies involving the administration of contrast agents 

whose purpose is specifically to change the localised signal intensity, whether in tumours in the case 

of dynamic contrast enhanced (DCE) studies [15], or blood vessels in CE-MRA examinations, 

rendering inaccurate the assumption of no signal changes between common image features the images 

to be registered.  To this end, a new generation of registration techniques have been developed for 

application in DCE studies specifically to deal with such image intensity changes.  The first such 

example was reported by Reuckert et al. in 1999 in a DCE study in the breast, where both signal 

intensity changes due to contrast agent and non-rigid tissue deformations were successfully corrected 

using a novel registration algorithm based on the concept of normalised mutual information (NMI) 

[16].  NMI stems from the field of information theory and expresses the amount of information that 

one image contains about another.  Simply put, NMI postulates that two images will be optimally 

aligned when one of the images is “definable” by the other, in other words when the (normalised) 

mutual information between them is maximised.  Hence, the registration problem reduces to shifting 

pixels such that the NMI between the resulting images is maximised.  This approach is thus capable of 

dealing with signal intensity differences, and furthermore has been shown to accurately and robustly 

align images from different modalities where variable signal intensities may be expected [17].  It has 

been used in several DCE studies to good effect, including studies in the breast [18-20], lung [21], 

kidney [22], liver [23] and prostate [24].  A recently reported improvement on the mutual information 

approach involved introducing spatial information into the registration scheme, wherein the original 

image is sub-divided into an array of local regions, with the MI-maximisation procedure performed 

separately and independently over each sub-region [25].  This method demonstrated significant 

improvements in performance in brain, cardiac and contrast-enhanced liver datasets. 

 



Many registration techniques designed to deal with signal intensity changes due to contrast agent 

uptake suffer from a particular misregistration artefact wherein enhancing regions undergo a volume 

change after the registration step [26].  Efforts to minimise this effect have focussed on imposing 

constraints on the allowable deformation, although this was achieved at the expense of the motion-

correction performance [19].  A recent study comparing three registration algorithms found that an 

algorithm based on sequential elastic registration best preserved tumour volume and shape in 16 

tumours distributed among the lung, liver, uterus and chest wall [27]. 

 

Despite the potential to improve the diagnostic image quality of CE-MRA images using registration 

techniques, there are very few studies reported in the literature in this field.  Hipwell et al. reported a 

technique for registering MRA images with those obtained with X-ray digital subtraction 

angiography, however the aim was to provide complementary information from both modalities and 

no improvement was reported in the native MRA image quality [28].  In a separate study, an 

improvement in image quality was reported in CE-MRA images in the lower legs following 

registration using the AIR algorithm, with non-linear (deformable) registration found to perform 

slightly better than more simple linear approaches [29].  It should be noted that this algorithm was not 

intended to be used to register images with differing signal intensity values (as occurs, for example, 

when one of the images was acquired with a contrast agent in the vessels).  To date, no applications of 

image registration algorithms designed specifically to deal with signal intensity changes in contrast-

enhanced studies have been reported in CE-MRA.   

 

The aim of the current study was to perform a critical evaluation of the performance of two NMI-

based deformable registration algorithms for CE-MRA data in comparison to that of the AIR 

algorithm used in the previous study [29].  It was hypothesised that the AIR algorithm may not be 

suitable for this specific application, and that superior performance would be achieved with NMI-

based algorithms, in particular with a novel NMI algorithm designed to incorporate spatial 

information into the registration scheme.  Changes in image quality following application of each 

registration algorithm were evaluated qualitatively and quantitatively via a clinical evaluation of the 

diagnostic image quality and measurements of the contrast-to-noise ratio respectively.  To check for 

inadvertent volume changes in enhancing regions, blood vessel volumes were also compared over 

identical sections in images generated using each algorithm. 

 

 

 



Materials and Methods 

 

Data Acquisition 

A protocol was devised to acquire very high spatial and temporal resolution CE-MRA data of the first 

pass of a single bolus of contrast agent through the entire arterial system in patients with 

asymptomatic atherosclerosis.  The use of a single bolus of contrast agent was mandated by the desire 

to minimise the risk of nephrotic systemic fibrosis in the patient cohort.  Images from 27 patients 

(average age: 57.8 years, 19 female) recruited onto the study were acquired using a 3 T MRI system 

(Achieva, Philips Medical Systems, The Netherlands) located in the National Centre for Advanced 

Medical Imaging (CAMI) in St. James‟s Hospital / Trinity College Dublin.  Approval for the study 

was obtained from the local Institutional Review Board (Ethics Committee, St. James‟s Hospital, 

Dublin) and informed consent was obtained from all patients. 

 

The acquisition protocol centres on a T1-weighted 3D fast gradient echo sequence with a 5-station 

protocol comprising:  head/neck, chest/abdomen, pelvis, upper legs, and lower legs.  The images were 

acquired in a coronal orientation using the MR system‟s body coil for signal reception, resulting in an 

isotropic spatial resolution of either 0.9 or 1.5 mm
3
 depending on the station (full details of the 

acquisition parameters are presented in Table 1).  A partial Fourier data acquisition scheme was used 

to maximise the acquisition speed (halfscan factor = 0.625).  The centre of k-space was acquired at the 

beginning of each scan using the CENTRA (Contrast ENhanced Timing Robust Angiography) [30] 

technique, timed so that the acquisition of the k-space centre data was correlated with the peak of the 

contrast agent bolus passing through that region.  Thirteen of the patients were given a single-bolus 

injection of 10 ml of Vasovist (Bayer Schering Pharma AG, Germany), with 2.5 ml injected at a rate 

of 0.5 ml/s followed by the remaining 7.5 ml at 0.25 ml/s.  The injection of a 40 ml saline flush was 

then administered at a rate of 0.25 ml/s.  During the course of the study, this agent was no longer 

commercially available, and hence the remaining fourteen patients were given a single-bolus injection 

of 20 ml of Multihance (Bracco, Milan, Italy), with 8 ml injected at 0.8 ml/s followed by 12 ml 

injected at 0.5 ml/s and a 40 ml saline flush injected at 1.0 ml/s.  For both contrast agents, the 

respective injection protocols were developed through prior experience with these agents to optimise 

the resultant contrast in the vessels. No differences in enhancement profiles for each contrast agent 

were noted by any of the 4 expert observers.  The patients‟ legs were strapped together and secured 

with foam material to restrict leg movement as much as possible.   

 

Pre-contrast images were acquired starting from the lower leg station moving upwards to the head 

station.  These images were used as mask images which were subtracted from the post-contrast 

images.  Once the contrast was injected, the post-contrast image acquisition began at the head station 



and proceeded down to terminate at the lower leg station.  At the beginning of the acquisition of the 

post-contrast images, a Smart Tourniquet (Topspins Inc., MI, USA) fitted around both thighs was 

inflated to reduce the blood flow to the lower legs, thereby minimising the appearance of venous 

enhancement in the images [31].  Total post-contrast image acquisition time was 106 seconds, 

including the four separate 4 s table movements that were required between stations. 

 

 

Image Registration 

The current study focussed on investigating the performance of deformable registration algorithms on 

improving the visibility of the small diameter vessels in the lower legs, since prior experience of 

image registration with MRA data indicated that no significant benefit was to be gained by 

performing deformable registration outside the lower legs (although performing a rigid registration 

was found to improve the diagnostic image quality in the upper legs and pelvis).  Three deformable 

algorithms were investigated (henceforth referred to as AIR, Slicer and SEMI), as described in the 

following: 

 

Automatic image registration (AIR):  One of the first widely-available deformable algorithms, this 

method was used in the only study reported to date on the use of deformable registration in CE-MRA 

[29], and hence was used as the reference method against which the newer methods were compared 

(AIR version 5.2.5, http://bishopw.loni.ucla.edu/AIR5/).   The alignment technique used by AIR is 

based on the idea that when the two images are correctly aligned, the difference between 

corresponding voxel values is equal to a single multiplicative factor.  If the images are not correctly 

aligned, this factor will vary throughout the image on a voxel by voxel basis.  Therefore, the 

algorithm attempts to minimise this variation in order to achieve the maximum alignment possible.  

Details of its functionality are available in the original 1992 publication by Woods et al. describing 

this algorithm [12]. 

 

3D Slicer:  This open source software environment  (version 3.6, http://www.slicer.org/) implements 

the Insight Segmentation and Registration Toolkit (ITK) (www.itk.org) and uses a deformable 

registration algorithm originally developed by Rueckert et al. [16] to register contrast-enhanced breast 

MR images using a free-form deformation (FFD) model based on B-splines to describe the local 

breast motion.  The choice of Slicer was based on its wide availability and its use of NMI as the 

similarity metric, hypothesised to better deal with the contrast agent-mediated signal intensity changes 

within the MRA image data.  This worked by defining a mesh (labelled Φ) of control points ϕi,j,k with 

a uniform spacing that are placed throughout the image volume Ω.  The resolution of the mesh 

dictates the degree of non-rigid deformation that can be modelled using Φ as the transformation 

http://bishopw.loni.ucla.edu/AIR5/
http://www.slicer.org/
http://www.itk.org/


parameter.  As a result, increasing the number of control points will increase the number of degrees of 

freedom but also increase the computational complexity of the algorithm.  To achieve the best 

compromise between these, a hierarchical multi-resolution approach was used.  This involved 

beginning with a relatively low control point mesh resolution which was used to compute the local 

transformation.  Once completed, the distance between the control points of Φ
l
 and Φ

l+1
, where Φ

l+1 
is 

the subsequent iteration of Φ
l
, was decreased which results in a higher mesh resolution for Φ

l+1
.  The 

normalised mutual information metric, which is well suited to contrast-enhanced data, was then used 

as the similarity metric to measure the alignment between the two images.  To calculate the required 

transformation, the Slicer algorithm determined the optimal affine transformation parameters by 

maximising Csimilarity, defined as: 

Csimilarity (A,B)  =  [ H(A) + H(B) ] / H(A,B) 

where A and B denote the images, and H is the relevant entropy measure of the dispersion of 

information in the images.  This accounted for any relative global motion between the two images.  It 

then iteratively computed the optimal transformation of the control point mesh that was used for the 

non-rigid deformations by adjusting the cost function that provided an optimal compromise between 

maximising the NMI and keeping the transformation smooth. 

 

Spatially Encoded Mutual Information (SEMI):   This deformable registration algorithm was 

recently developed by Zhuang et al. [25] with the specific aim of dealing with images which have 

different intensity distributions in local regions, such as dynamic contrast enhanced data, and hence 

the interest was to compare its performance against the baseline AIR and NMI-based Slicer 

algorithms.  The SEMI algorithm, which also uses NMI as the similarity metric, attempts to overcome 

some limitations of standard NMI-based approaches by dividing the images into small sub-regions 

and computing the associated entropy measures of each sub-region separately, while also introducing 

spatially-varying weighting factors for each voxel within the sub-region in order to modulate the 

resulting deformation for each voxel depending on its position.  The weighting factors that were used 

monotonically decreased with distance from the voxel position.  This allowed the algorithm to 

increase the accuracy of the registration process by using the spatial information present in the 

images.  The transformation parameters were then iteratively altered using a local ascent optimisation.  

This optimisation scheme uses only the FFD control point associated with the spatial location of the 

entropy measure and excludes all others, which significantly decreases the computational time needed 

by using only these local control points but adjusting every registration parameter during each 

iteration.   Further details of this algorithm are available in [25]. 

 



The time required by each algorithm to perform the registration was recorded based on the use of a 

standard desktop computer with a 2.4 GHz quad core CPU and 4 GB of RAM. 

 

 

 

Clinical Evaluation 

The unregistered and registered images were clinically evaluated in an independent and blinded 

manner by four expert observers (three radiologists ranging from 2 to 28 years‟ experience, and one 

imaging physicist (AJF) with 17 years‟ experience), with the images loaded onto a computer 

workstation with a high-quality monitor (Extended MR WorkSpace, Philips Medical Systems, The 

Netherlands).  A display protocol was set-up which loaded the four datasets in a randomised manner 

into one of 4 viewing windows, wherein each window could display either the native subtracted 

images or the maximum intensity projection (MIP) of the respective datasets (that is, MIPs of the 

unregistered or three registered datasets). The settings within each viewing window were linked, 

allowing the observers to adjust the brightness and contrast levels, the image magnification, and the 

slice position displayed, in a co-ordinated fashion across all 4 windows simultaneously. 

 

The observers were asked to rank the images based on overall diagnostic image quality, paying 

particular attention to the effect on vessel integrity/sharpness, the loss of any small vessels following 

registration, the ability to delineate stenoses, the degree of background tissue suppression, and the 

number and severity of artefacts evident in the images.  The four images from each patient were 

independently ranked by each observer on a scale of 1 - 4 (where 1 was best).   

 

 

Contrast-to-Noise Ratio Measurement 

Contrast-to-noise ratio (CNR) measurements were compared between the registered and unregistered 

images in order to quantify the performance of the algorithms in removing background tissue while 

maintaining signal intensity in the vessels themselves.  To this end, regions of interest (ROIs) were 

manually defined in the poplitaeal artery and in the immediately surrounding tissue for all patients;  

the ROIs were drawn on the MIP images from the unregistered datasets and copied to the 

corresponding registered datasets.  The poplitaeal artery was selected for this purpose since it was 

possible to consistently draw a ROI of reasonable size within this artery while avoiding the arterial 

wall.  A typical ROI placement is shown in Figure 1, although in four patients the field of view 

scanned necessitated drawing the ROI in the anterior tibial artery.  Corresponding background tissue 

ROIs were drawn within a distance of 5 voxels from the artery. 

 



The contrast-to-noise ratio was calculated using CNR = (SIArtery – SITissue) / SDTissue, where SIArtery and 

SITissue refer to the average signal intensity in the artery and background tissue ROIs, respectively, 

while SDTissue refers to the standard deviation in the background tissue ROI.   

 

Blood Vessel Volume Measurements 

The integrity of vessel reproduction is essential in MRA, and hence any artificial reduction in vessel 

volume following the registration process could have significant clinical implications.  To investigate 

the degree to which this occurred, if at all, for any of the registration algorithms used in this study, the 

volume of carefully-defined sections of the anterior tibial artery were measured in the registered and 

unregistered datasets.  To do this, a section of the artery was delineated by defining an upper and 

lower cut-off plane, orientated perpendicular to the artery, in the unregistered image dataset, which 

were subsequently copied to the corresponding registered datasets.  The artery was then segmented 

within these planes by selecting a seed point within the artery section and using a segmentation 

algorithm to propagate a volume of interest (VOI) through the vessel until the upper and lower bounds 

were reached.  This was done using the ITK-SNAP software, version 2.2 (http://www.itksnap.org), 

which uses an active contour segmentation algorithm implemented using level set methods to grow 

the initial seed volume (placed in the centre of the artery‟s lumen) circularly out to the edges of the 

artery and longitudinally until the boundary planes are reached [32]. All segmented volumes were 

visually inspected to ensure no bleeding of the segmented volume into the background tissue 

occurred; however, in all cases, the high contrast of the contrast-enhanced blood vessels relative to the 

surrounding background tissue, even in the unregistered datasets, lead to a successful segmentation of 

the vessel.   

 

Movement Correction Performance 

Another important feature of registration algorithms is the degree of movement that they can 

successfully correct for.  This is of particular concern when imaging the legs of patients suffering 

from PAD, who often have extreme difficulty lying still and consequently one often observes 

significant movement of one leg relative to the other.  To investigate this, a phantom mimicking the 

major arteries of the lower legs was constructed.  The phantom was made using a 3% agar gel, doped 

with 0.1 mM of MnCl2 to mimic the relaxation properties of tissue, and with embedded vessels of 

internal diameter 3.2 mm, 2.4 mm, and 1.6 mm through which the same concentration of contrast 

agent as used in the clinical study was introduced.  The phantom was scanned using the same protocol 

as outlined earlier, with varying shifts between the pre- and post-contrast images (ranging from 0 to 

25 mm in 1 mm steps in the direction perpendicular to the vessels).   

 

Statistical Analyses 

http://www.itksnap.org/


Statistical analysis was performed in SPSS (version 21, IBM Corporation, USA) using the Friedman 

nonparametric two way analysis of variance (ANOVA) on ranks with the algorithm used as the factor 

for the clinical evaluation, while a paired-samples t-test was used to analyse the CNR and vessel 

volume for each algorithm.  A value of p < 0.05 was set as the criterion for statistical significance. 

 

 

RESULTS 

 

The average time taken for each algorithm to register the images was 36.7, 0.9, and 33.1 minutes for 

AIR, Slicer, and SEMI respectively.  It should be noted that the SEMI technique was not yet 

optimised for speed, and in fact only used one core of the central processing unit (CPU) on the 

computer, so it is expected that significant improvements on the processing speed will be achieved in 

future versions of this software.  Nevertheless, the average time of only 54 seconds for Slicer to 

process the images demonstrates the practicability of performing this relatively complex 

computational process, aided by efficient algorithm design and modern computing power (even on a 

very standard desktop computer). 

 

Before the images could be submitted for the clinical evaluation, it was necessary to remove an edge 

artefact introduced by all registration algorithms.  These artefacts were most prominent at the anterior 

and/or posterior edges of the subtracted image volume, and originated from the registration process 

encountering edges of the image volume – in these locations, the (3D) algorithms were most likely 

forced to extrapolate the deformation field to regions outside the images field of view where no pixel 

information exists, resulting in a warped deformation field near the edge and hence to the observed 

artefacts.  They were easily removed by deleting the edge slice(s) from the subtracted image stack 

before generating the MIP images.  An example of this artefact is presented in Figure 2, which shows 

the manifestation of the artefact in the first slice of the subtracted image stack, together with the 

corresponding uncorrected and corrected MIPs .  Although all three algorithms produced this artefact 

in all patients (with Slicer producing no artefact in two patient datasets), its manifestation was least 

prevalent for the Slicer algorithm which required the least intervention.  Care was taken to ensure that 

all CNR measurements were performed on the images after the removal of any slices containing these 

prominent subtraction artefacts, while background ROIs delineating the „noise‟ component were 

placed to avoid any further subtraction artefacts in the images. 

 

 

Clinical Evaluation 

 



The results from the blinded clinical evaluation of the 27 patient datasets are presented in Table 2.  In 

all cases, it was felt that the three registration algorithms significantly improved the diagnostic image 

quality compared to the unregistered images;  an example of this improvement is presented in Figure 

3.  SEMI was found to produce a significant improvement compared to AIR (p < 0.01), and although 

Slicer improved the quality compared to AIR in 74.1% of reads (80/108) the improvement was not 

significant (p = 0.09).  When compared to Slicer, the SEMI technique improved the quality in only 

33.3% of reads, with an equal ranking given in 54.6% of reads, hence the improvement was not 

significant (p = 0.19).  Table 3 presents the kappa values illustrating the degree of interobserver 

agreement.  The relatively small differences between the Slicer- and SEMI-produced images in many 

cases was reported to make the categorisation difficult and may account for the less than perfect 

agreement.  

 

It is interesting to note that AIR was found to perform best among the registration algorithms with 

regards to general background tissue signal suppression;  an example is shown in Figure 4, where the 

different processing methods are compared for the left leg of one patient.  However, all observers also 

commented on a quite noticeable deleterious effect that the AIR algorithm had on the appearance of 

the blood vessels in all patient images examined, wherein the vessel integrity appeared to be severely 

compromised in many instances, and in fact this was cited as the primary reason why AIR was ranked 

worse than the other two registration algorithms.  Examples of these artefacts introduced by AIR are 

presented in Figure 5, which compares the unregistered and registered MIP images for one 

representative patient.   

 

Quantitative Measurements 

Results from the quantitative measurements are presented in Table 4, in which differences in the mean 

(and standard deviation) contrast-to-noise ratio and vessel volumes between the unregistered and three 

registration algorithms are shown together with p-values indicating the significance of the differences 

across the 27 patient datasets.  The CNR difference measurements reflect the findings of the clinical 

evaluation in that all three registration algorithms improved the CNR significantly (p < 0.05).  

Interestingly, despite the superior background tissue suppression reported by the expert observers for 

AIR, its CNR values were lower than those of Slicer in 74% of cases (20/27), although the difference 

was not significant at a 95% confidence level (p = 0.066).  However, the SEMI algorithm performed 

significantly better than both AIR (p < 0.01) and Slicer (p < 0.014) 

 

The clinical evaluation findings were also reflected in the measurements of the vessel volumes:  while 

those of Slicer and SEMI were unchanged compared to the un-registered images, AIR was found to 

introduce a significant decrease in vessel volume (p < 0.001), with an average decrease of 17.9% 



compared to the unregistered images.   An example of this artefact is presented in Figure 6, in which 

the segmented vessel volumes at the location of the branching of the poplitaeal and anterior tibial 

arteries are compared for the raw and registered datasets;  the artefactual narrowing of the anterior 

tibial artery caused by the AIR algorithm, as seen in Figure 6(b), could potentially lead to a 

misdiagnosis in this patient.  No decrease in volume was produced by either Slicer or SEMI, 

demonstrating the fidelity of registration produced for these contrast-enhanced structures. 

 

Movement Correction Performance 

AIR was the first algorithm to struggle with the motion challenge, which manifested as the 

disappearance of the 1.6 mm diameter vessel when the phantom was displaced by a mere 1 mm 

between the pre- and post-contrast image acquisitions (Figure 7(a)). The background suppression 

remained constant for all motions investigated. 

 

In images produced by the Slicer algorithm, artefactual white dots appeared in the registered images 

following 6 mm of movement, increasing in prevalence with increasing movement, while the 

background suppression began to fail above 10 mm of movement, particularly towards the centre of 

the images (Figure 7(b)).  At 11 mm and above, a further artefact was noted, manifested as a mirror 

vessel appearing next to a real vessel, as illustrated for the 3.2 mm diameter vessel in Figure 7(b), 

indicating that the algorithm did not successfully associate the pre- with the post-contrast vessel.  

Similar artefacts appeared next to the smaller diameter vessels for larger lateral movements.  These 

various artefacts, while fairly obvious in this simplified phantom model, could pose problems in a 

clinical image dataset where the more complex vasculature / anatomy would complicate their 

identification. 

 

The SEMI algorithm performed best, and was found to work well even with the maximum attempted 

displacement of 25 mm with all vessels faithfully retained,, although some spotting artefacts and a 

slight deterioration of the background suppression occurred for displacements of 15 mm and above 

(Figure 7(c)).  Table 5 summarises the image artefact manifestation as a function of displacement for 

the three registration algorithms, illustrating the robustness of the SEMI algorithm against motion.  

 

 

 

Discussion   

 



The key finding of this paper is that the image quality of CE-MRA images may be significantly 

improved using readily-available off-the-shelf registration techniques, although care must be 

exercised in the choice of registration algorithm used.  This is borne out by the finding herein that 

registration artefacts were introduced by a conventional algorithm used in a previous MRA study but, 

critically, which was not designed to deal with the signal intensity increase in blood vessels caused by 

the introduction of the contrast agent.  A new generation of algorithms have been developed over the 

past decade to address this specific contrast-enhancing problem yet they have not, to date, been 

explored for use with MRA image data.  This study demonstrates for the first time the significant 

improvement in diagnostic image quality to be gained from their use. 

 

The AIR algorithm was originally developed to register brain images between positron emission 

tomography (PET) and MRI, and the method it employs to perform the registration (based on 

anticipated signal intensity ratio variations for brain tissue from both modalities, the variance of which 

it attempts to minimise) is clearly not suitable for CE-MRA data.  Despite producing reasonably good 

background tissue suppression across the image as a whole, the algorithm‟s inability to deal with the 

contrast-enhanced vessels was manifest in both the introduction of artefacts in the vessels‟ 

appearance, which could quite easily hide a real stenosis or lead to a misclassification of a stenosis, 

and its poor contrast-to-noise performance close to the vessel themselves.  Furthermore, its inability to 

deal with vessel displacements in excess of 1 mm is of concern, given that motions of this magnitude 

can be expected in a clinical whole-body MRA study [29];  the disappearance of a small artery could 

easily be misdiagnosed as a blockage. 

 

The results from the current study demonstrate that the use of algorithms based on the normalised 

mutual information metric such as Slicer and SEMI are suitable for registering CE-MRA images.  

Both algorithms worked consistently well for all patient data investigated, producing significant 

improvements in diagnostic image quality throughout the images.  The SEMI algorithm is a recent 

improvement on the NMI approach, and its inclusion of localised spatial weighting factors in the 

computations was found to improve its performance when registering DCE data [25].  In the current 

study, although the improvement of SEMI compared to Slicer that was noted in the clinical evaluation 

did not reach significance, the improvement in its CNR performance was significant.  However, its 

improved ability to deal with motion may prove to be the most significant feature of this algorithm 

when implementing deformable registration into a routine clinical environment, where a reproducible 

and robust performance of such an image processing step is essential.  This is particularly relevant for 

patients with compromised blood flow in the legs who often experience difficulty in keeping their legs 

steady for any length of time, and for whom strapping the legs together to prevent motion can be 

extremely uncomfortable and even painful.  In this context, a deformable registration algorithm which 

can deal with large-scale motions is a highly desirable feature.   



 

Despite the fact that 3D deformable registration is a computationally intensive process, the Slicer 

implementation carried out this processing step in an average time of 54 seconds using a standard 

desktop computer.  The longer time taken by the SEMI algorithm is a consequence of the additional 

computation steps required by this algorithm due to its incorporation of the spatial information into 

the registration process, designed to make it more accurate and robust against the intensity non-

uniformities found in contrast-enhanced MR images.  The additional time required by the SEMI 

algorithm stems from (i) the computation of the cost function and the derivatives, and (ii) the 

convergence speed of the optimisation.  On-going work involves the implementation of the SEMI 

algorithm using parallel computing via a 1024-core graphical processing unit (GPU) system, which is 

expected to reduce the computation time to less than one minute.  Indeed, the rapid pace of 

development of GPU systems, driven in recent years by the rapacious demand for graphics handling 

capabilities from the gaming industry, are beginning to be exploited for medical image processing 

applications [33] and further improvements in performance are to be expected. 

 

There is growing interest in the development of MRA techniques which do not involve the use of 

contrast agents, for example phase-contrast angiography using bipolar flow-encoding gradients. 

However, these techniques have not gained widespread clinical use due to their long acquisition times 

and reduced contrast performance.  As such, contrast-enhanced MRA studies involving the 

subtraction of pre- from post-contrast images remain ubiquitous in the clinical arena.  Most such 

examinations focus on localised body areas where the symptom presents, for example only imaging 

the legs, and hence the time difference between the acquisition of the pre- and post-contrast image 

datasets, and hence the potential for movement artefacts, are reduced compared to that described in 

the current whole body study.  Nevertheless, given the asymptomatic nature of atherosclerotic disease, 

scanning the whole body is preferable, and since MR technology is beginning to allow for the 

acquisition of high quality images in sufficiently fast times to follow the first pass of the contrast 

agent bolus through the vasculature, measures to deal with the inevitable mis-registration artefacts in 

the subtracted datasets need to be developed and critically assessed. 

 

 

Conclusions 

 

Image registration is a powerful post-processing tool that is used routinely in many areas of medical 

image analysis, although its use in CE-MRA is extremely limited due primarily to the inability of 

conventional registration algorithms to deal with the large signal intensity changes between the pre- 



and post-contrast enhanced images.  In the current study, significant qualitative and quantitative 

improvements in the diagnostic image quality were measured for two recently-developed registration 

algorithms based on the normalised mutual information metric.  The SEMI algorithm was also found 

to correct for large patient movements, upwards of 25 mm, which is particularly relevant for the 

implementation of a registration processing step into a routine clinical protocol.  These features 

demonstrate the potential for detecting subtle stenoses in arteries, which is particularly important in 

whole body studies aimed at detecting the extent of atherosclerotic disease.  A further significant 

finding in this work was the serious potential for mis-diagnoses arising from an inappropriate choice 

of registration algorithm.  In this case, an algorithm used in a previous CE-MRA study was shown to 

cause a dramatic degradation of the integrity of the vessels in the registered image datasets in all 

patients examined.  Registration algorithms could be easily incorporated into the routine image 

acquisition and processing pipeline in MR scanners using the powerful computing hardware present 

therein. 
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Figure Legends 

 

 

Figure 1:  Typical positioning of the  vessel (red) and background tissue (yellow) regions of interest 

(ROI) used for the contrast-to-noise ratio measurements.  In four patients, the field of view 

necessitated drawing the ROI lower along the anterior tibial artery. 

 

 



Figure 2: Example of the edge artefact introduced by all registration algorithms.  Top row: 

manifestation of the artefact in the first slice of the subtracted image stack, together with the 

corresponding uncorrected (middle row) and corrected (bottom row) MIPs.  The columns (left to 

right) show the images created using AIR, Slicer and SEMI. 

 

 

 



Figure 3:  The diagnostic image quality was found by the four expert observers to be significantly 

improved following application of all three registration algorithms.  The images were presented to the 

observers in a randomised, blinded manner;  in this example, these MIP images represent (a)  no 

registration, and registered with (b) AIR, (c) Slicer and (d) SEMI.    

 



Figure 4:  Comparison of the MIP images for the left leg for one patient with (a) no registration, and 

registered using (b) AIR, (c) Slicer, and (d) SEMI.  The improved background tissue suppression 

achieved by the AIR algorithm is evident. 

 



Figure 5:  Images from one patient demonstrating the introduction of artefacts into the blood vessels 

including the loss of vessel integrity introduced by the AIR algorithm, manifest by the numerous 

signal drop-outs along the vessels (examples indicated by the arrows) which could be mis-diagnosed 

as stenoses:  (a) no registration, and registered using (b) AIR, (c) Slicer, and (d) SEMI. 



Figure 6:  Surface-rendered view of a segmented vessel section at the location of the branching of the 

popliteal and anterior tibial arteries for the case of (a) no registration, and with registration using (b) 

AIR, (c) Slicer and (d) SEMI.  The arrow indicates an artefactual narrowing of the vessel in the AIR-

generated image, which could give rise to a misdiagnosis in this patient. 

 

 



Figure 7:  MIP images of the phantom subtraction images after registration by: (a) AIR following a 

lateral displacement (from left to right in this image) of 1 mm, (b) Slicer following a lateral 

displacement of 15 mm,  and (c) SEMI a lateral displacement of 25 mm.  The solid white arrows show 

the position of the 1.6 mm diameter vessel which was removed by the AIR algorithm in (a) but not by 

the others.  The spotting artefacts introduced by Slicer and SEMI are evident in both (b) and (c), while 

examples of the mirror vessel artefacts introduced by Slicer are illustrated by the arrow heads in (b).  

Note also the reduced overall background tissue suppression in (b), particularly towards the centre of 

the image.   
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