
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Other resources School of Computing

1999-4

An Investigation into the Causes and Effects of Legacy Status in a An Investigation into the Causes and Effects of Legacy Status in a

System with a View to Assessing both Systems Currently in use System with a View to Assessing both Systems Currently in use

and Those Being Considered for Introduction and Those Being Considered for Introduction

Patricia O'Byrne
Technological University Dublin, patricia.obyrne@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomoth

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
O'Byrne, P. An investigation into the causes and effects of legacy status in a system with a view to
assessing both systems currently in use and those being considered for introduction. Staffordshire
University, 1999.

This Dissertation is brought to you for free and open
access by the School of Computing at ARROW@TU
Dublin. It has been accepted for inclusion in Other
resources by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301305115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomoth
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomoth?utm_source=arrow.tudublin.ie%2Fscschcomoth%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=arrow.tudublin.ie%2Fscschcomoth%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

A dissertation submitted in partial fulfilment of the requirements of Staffordshire

University for the degree of M.Sc.

This research was carried out in collaboration with The Dublin Institute of

Technology

April 1999

An investigation into the causes and effects of legacy status

in a system with a view to assessing both systems currently

in use and those being considered for introduction

Patricia O’Byrne

ii

Abstract

This dissertation analyses the area of legacy systems and determines the effects that

are exhibited in legacy systems, presenting them in a legacy effect determination

framework, so that management can ascertain whether the system they have is a

legacy system. An analysis of legacy causal criteria is carried out, resulting in a table

of legacy causes. A new definition of legacy systems is put forward, by defining

legacy status as a status held by a legacy system. “A system exhibits legacy status if it

is deficient in terms of its suitability to the business, its platform suitability or

application software quality, with the effect that its asset value diminishes, as does its

ease of operation, maintenance, migration or evolution.” Legacy status is split into

three dimensions, that of system suitability, platform suitability and software quality.

These dimensions are analysed and practices shown that enable good quality within

them.

Solution strategies for handling legacy systems are analysed and broken down into

components. These components are analysed in regard to their impact on the legacy

causes. A mapping takes place between each strategy component and legacy cause.

A legacy causal criteria framework enables management to assess their systems for

possible legacy status. This framework can be used on current existing systems or on

new proposed systems. This legacy causal criteria framework is cross-referenced to

the legacy effect determination framework, allowing management to see the real or

potential effects that a weakness in one of the legacy causes may have. These

frameworks can be applied both to existing systems to evaluate their legacy status or

to potential new systems to evaluate how they will behave in the future.

 - iii -

Acknowledgements

I would like to thank my supervisors Dr. Bing Wu, for his advice, guidance and

encouragement along the way and Mr. Denis Kelly for providing me with information

and contacts relating to the ESB and for reviewing early drafts of my dissertation. I

am also grateful to staff in the D.I.T. and Staffordshire University who listened, read

and advised me.

My thanks also goes to Vivian Young in the ESB and all of the IT managers and staff

in CIE who discussed decisions made about systems and their outcome and issues

about which decisions need to be made.

My deepest thanks go to my husband Paul who acted as a sounding board and kept the

household running and my sons Daragh, Stephen and Brian who tolerated my

absences and tiredness due to working on this dissertation, without complaint.

I am eternally grateful to my parents, who fostered an interest in learning and a

tenacity to complete a task undertaken in all of their children.

 - iv -

Table of contents

Abstract ii

Acknowledgements iii

Table of contents iv

Table of tables ix

Table of figures x

Chapter 1 Introduction 1

1.1 Background 1
1.1.1 Legacy systems 1

1.2 Aim and objectives 2

1.3 Research method 3

1.4 Expected Deliverables and Potential Benefits 4

1.5 Organization of This Dissertation 5

Chapter 2 Effects and causes of legacy status 8

2.1 Introduction 8

2.2 Effects of legacy status 9
2.2.1 Characteristic effects exhibited by legacy systems 10
2.2.2 Derived effects of legacy status 12

Asset value 12

Ease of operation 14

Ease of maintenance 14

Ease of migration / evolution. 15
2.2.3 Asset value 16
2.2.4 Ease of operation 17
2.2.5 Ease of maintenance 18
2.2.6 Ease of migration / evolution 19
2.2.7 Legacy effect determination framework 19

2.3 Causes of legacy status 20
2.3.1 An analysis of causes that have been related to legacy status 21
2.3.2 Methods of assessment 23

 - v -

2.3.3 Derived causal factors 25
2.3.4 System suitability 28
2.3.5 Underlying platform suitability 29
2.3.6 Software quality 30
2.3.7 Summary of legacy causes 31

2.4 New Definition of Legacy Status 32

2.5 Summary 33

Chapter 3 System Suitability 34

3.1 Introduction 34
3.1.1 Definition 34

3.2 Current Practice in the Area 35
3.2.1 Information Engineering 35
3.2.2 Soft Systems Methodologies 37
3.2.3 Strategic Alignment Model 37
3.2.4 Portfolio Assessment 41
3.2.5 Sociotechnical considerations 43
3.2.6 Summary of current practice 44

3.3 Common Problems in the Area 44

3.4 Effects of Problems in the Area 45
3.4.1 Suitability of system to business process 45
3.4.2 Suitability of business process to organizational mission 46
3.4.3 Suitability of the system to the organizational environment 46

3.5 Effects of lack of System Suitability 47

3.6 Conclusion 50

Chapter 4 Underlying Platform Suitability 52

4.1 Introduction 52
4.1.1 Definition of Underlying Platform 52
4.1.2 Open systems 53
4.1.3 The ideal 53

4.2 Current Practice in the Area 55
4.2.1 Achieving the Ideal 55
4.2.2 Development environments 61
4.2.3 Attributes of hardware 62
4.2.4 Attributes of operating systems 63
4.2.5 Attributes of networks 64
4.2.6 Attributes of development environment 66
4.2.7 Attributes of data management 67
4.2.8 Platform Configuration 68

4.3 Common problems 68
4.3.1 Hardware 69
4.3.2 Operating system 70
4.3.3 Networking 71
4.3.4 Development environment 72
4.3.5 Data management 74
4.3.6 Platform configuration 76

 - vi -

4.4 Effects of problems 76
4.4.1 Hardware 78
4.4.2 Operating System 79
4.4.3 Network 80
4.4.4 Development Environment 81
4.4.5 Data Management System 81
4.4.6 Platform configuration 82

4.5 Conclusion 82

Chapter 5 Software Quality 84

5.1 Introduction 84
5.1.1 Software definition 84
5.1.2 Software quality aspects 85
5.1.3 Software Engineering 85
5.1.4 Software Quality in context 88

5.2 Mechanisms for Improving Software Quality 88
5.2.1 Component quality 90
5.2.2 Design quality 92
5.2.3 Quality of Change Management 99
5.2.4 Discussion on software quality 107

5.3 Common Problems in the Area 108
5.3.1 Component quality problems 108
5.3.2 Design quality problems 110
5.3.3 Change Management problems 111

5.4 Effects of Problems in the Area 111

5.5 Conclusion 113

Chapter 6 Frameworks used in assessing systems 114

6.1 Legacy Effect Determination Framework 114

6.2 Causal Criteria Framework 116

6.3 The Legacy Status Cause / Effect Framework 117

6.4 How to Use the Frameworks – the LACE Techniques 118
6.4.1 Assessing an existing system through effects 119
6.4.2 Assessing an existing system for legacy causes 120
6.4.3 Assessing a prospective system in a preliminary fashion 120
6.4.4 Assessing a solution system for potential legacy status 121

6.5 Usefulness of the frameworks 121

Chapter 7 Components of migration strategies 123

7.1 Introduction 123
7.1.1 Objectives of transition 124
7.1.2 Available transition options 124
7.1.3 Retire 124
7.1.4 Reassess 125
7.1.5 Redevelop 125

 - vii -

7.1.6 Renew 125

7.2 Component strategies and their effects on legacy criteria 125

7.3 Time-based Strategy 127

7.4 In-House or Outsource 129

7.5 Assessment 130

7.6 Architecture 132
7.6.1 Components 132
7.6.2 Object orientation 132
7.6.3 Layering 134
7.6.4 Bespoke components 135

7.7 Data Reuse 136
7.7.1 Data wrapping using ODBC 136
7.7.2 Data warehousing 137
7.7.3 Data migration 139

7.8 Code reuse 140
7.8.1 Application wrapping 141
7.8.2 Horizontal wrapping 142
7.8.3 Vertical wrapping 143

7.9 Redevelop 144

7.10 Renew 147
7.10.1 Iterative enhancement 147
7.10.2 Code restructuring 148
7.10.3 Re-hosting 148

7.11 Mapping of Strategy Components against Causal Criteria. 150

7.12 Summary 152

Chapter 8 SAP – evaluating a solution strategy against the causal
criteria framework 153

8.1 Introduction 153

8.2 Enterprise Resource Planners and SAP 153
8.2.1 Description of SAP R/3 155

8.3 Assessment using the Strategy Component / Causal Criteria Table. 162

8.4 Assessment using the Causal Criteria Framework 164
8.4.1 System Suitability 164
8.4.2 Underlying Platform Suitability 168
8.4.3 Software Quality 171

8.5 Conclusion of the assessment of SAP R/3 173

Chapter 9 .Summary and conclusion 176

9.1 Introduction 176

 - viii -

9.2 Summary of the Dissertation 176

9.3 Conclusions 177
9.3.1 Restatement of aim and objectives 178
9.3.2 Delivered Results 179
9.3.3 What are the possible effects that could result from these innate criteria? 182

9.4 Comparisons with other research 182

9.5 Further work 184

9.6 Concluding remarks 185

References I

Bibliography XIII

 - ix -

Table of tables

Table 1 Effects of Legacy Status 16

Table 2 Legacy Effect Determination Framework 20

Table 3 Causes of legacy status 28

Table 4 Effects of failure of system suitability 50

Table 5 Downsizing considerations 63

Table 6 Effects of platform unsuitability on legacy status 78

Table 7 Effects of poor quality software 112

Table 8 Legacy effect determination framework 115

Table 9 Legacy Causal Criteria Framework 116

Table 10 Legacy status cause / effect framework 117

Table 11 The 4R Portfolio Assessment Matrix(Slee & Slovin 1997) 124

Table 12 Causal criteria enabled and inhibited by time-based component 127

Table 13 Causal criteria enabled / inhibited by choice of in/outsourcing 129

Table 14 Causal criteria enabled / inhibited by assessment component 131

Table 15 Causal criteria enabled / inhibited by component choices 136

Table 16 Causal criteria enabled / inhibited by data reuse 140

Table 17 Causal criteria enabled / inhibited by code reuse 144

Table 18 Causal criteria enabled / inhibited by redevelopment 146

Table 19 Causal criteria enabled / inhibited by renewal 149

Table 20 Mapping of strategy components against causal criteria 151

Table 21 Preliminary Assessment of SAP R/3 using strategy components 163

Table 22 Thorough assessment of SAP R/3 against causal criteria framework 171

Table 23 Effects indicated by SAP R/3 assessment 174

 - x -

Table of figures

Figure 1 Sneed (1995) evaluates legacy systems 22

Figure 2 Dimensions of legacy status 24

Figure 3 Strategic alignment model (Henderson & Venkatraman 1993) 36

Figure 4 Strategy execution (Henderson & Venkatraman 1993) 37

Figure 5 Technology transformation (Henderson &Venkatraman 1993) 37

Figure 6 Competitive potential (Henderson & Venkatraman 1993) 38

Figure 7 Service level (Henderson & Venkatraman 1993) 38

Figure 8 Three-tier architecture 54

Figure 9 Inter-application communication without a message broker 58

Figure 10 Inter-application communication with a message broker 59

Figure 11 Layered Technology of Software Engineering (Pressman 1997) 84

Figure 12 Components of a development approach (Parkinson 1991) 84

Figure 13 Sources of error in systems development (Parkinson 1991) Error!

Bookmark not defined.

Figure 14 Resources required to correct errors (Parkinson 1991) 89

Figure 15 Linear sequential model (Royce 1970) 91

Figure 16 The Prototyping Paradigm (Brooks 1975) 92

Figure 17 The RAD model (Martin 1991) 93

Figure 18 Incremental Model (McDermid & Rook 1993) 94

Figure 19 Boehm's (1988) Spiral model 95

Figure 20 Component Assembly model - engineering construction and release

activity (Nierstratz 1992) 96

Figure 21 Table structure overview of SAP R/3 (Hinquat & Kelly 1998) 155

1

Chapter 1 Introduction

1.1 Background

1.1.1 Legacy systems

As the computer industry ages, more and more organizations are relying on systems

that are so established within the organization that they are taken for granted. As

such, these systems can be treated almost like a family member, whose idiosyncrasies

are indulged and whose failings are forgiven. It is often only when a system‟s failure

to keep up with the changing environment becomes critical, that a decision is made

that something needs to be done about it. Such a system is classified as a legacy

system. Definitions of legacy systems vary greatly, with many definitions focussing

on one aspect of what it means to be a legacy system. Ning et al. (1994) describe

legacy systems as systems that inhibit an organization‟s business growth and capacity

to change. Arnold (1989), Sneed (1995), Adolph (1996) and Gibson (1998) are

among those who recognise the difficulty of maintaining many of these systems,

because of frequent modification over their life span and diminishing resources of

staff with the necessary skills to maintain them. Gold (1998), Fitzgerald (1998) and

Alderson & Shah (1998) state that the occurrence of an event or series of events

trigger legacy status, as a system that was previously compatible with business

requirements can become incompatible due to changes in its external environment. A

system‟s legacy status is highly dependent on how it matches business requirements.

Another aspect of an information system that can cause it to become legacy is the

platform on which it exists. Sneed (1995), Ning et al. (1994), Ward (1995), Bennett

(1995) and Bancroft et al. (1997) discuss the limitations that can be imposed on a

system due to the hardware or system software on which they are based. The suite of

programs within and the design of an application can cause problems if they are not

properly developed in the initial stages, or if change is not managed in such a way as

to preserve the integrity of the design or implementation of the application. Arnold

(1989), Sneed (1995), Adolph (1996) and Bancroft (1997) address different aspects of

this problem.

Introduction

 - 2 -

Despite the fact that much research has been done in the area of legacy systems, it is

only recently that analysis has been focused on a broad description of what constitutes

a legacy system (Gold 1998, Alderson & Shah 1998, Ransom et al. 1998). There is,

however, in the opinion of this author, a need to be able to evaluate a system that is

suspected to be a legacy system, so that a more suitable solution can be chosen to

solve the inherent problems. To do this, there is a need to identify the characteristic

effects of legacy systems and the related causal criteria, in such a way that a problem

or set of problems can be identified in a given system.

These same characteristics can be used to assess a solution, so that a more suitable

solution can be chosen and the risks associated with this solution weighed.

1.2 Aim and objectives

The aim of this dissertation is to research into the concept of legacy status and related

issues regarding transition from that status and develop a set of frameworks that can

be used by management to identify legacy status in a current or planned business

information system. The results can be used to provide guidelines to management to

enable them to choose a suitable solution to any legacy aspects that are present and

avoid immediate potential legacy status in the new system.

In order to achieve this aim, the following objectives need to be met:

1. To identify the characteristic effects that are evident in legacy systems so that they

can be related to a legacy problem.

2. To develop a Legacy Effect Determination Framework so that a system‟s legacy

effects can be documented.

3. To identify the characteristic causes of legacy systems and define legacy status.

4. To develop a thorough definition of causal criteria, to enable assessment to take

place.

5. To develop a legacy Causal Criteria Framework, so that the causal criteria of

legacy status can be identified within a system.

Introduction

 - 3 -

6. To develop a Legacy Status Cause / Effect Framework, so that if a weakness

exists in one of the causal criteria, the possible effects of this can be seen.

Alternatively, if the system is exhibiting legacy effects, this framework identifies

what the possible underlying causes are.

7. To analyse components of existing strategies for dealing with legacy systems and

the effects of these components on legacy status, in order to guide strategic

managers in the task of choosing an approach towards transition from a current

legacy system.

1.3 Research method

The methods employed in the course of this research include literature reviews,

interviews with management and staff in the co-operating organizations, critical

analysis and design.

1. To fulfil the first and second objectives, identification of the characteristic effects

that are evident in legacy systems and determination of the characteristic causes of

legacy systems, a literature review was carried out. Interviews also took place

with personnel from IS management in both of the co-operating companies. The

results of these reviews and interviews were critically analysed, by comparing

previous definitions of legacy systems with each other and to practical problems

that are arising.

2. To fulfil the third and fifth objectives – developing legacy effect determination

and causal criteria frameworks - design work, based on research findings and

original thought processes was carried out.

3. The fourth objective – a thorough definition of legacy causal criteria - required

that the author undertake further literature reviews and recognise from interviews

and practical experience that other aspects that have been separately described but

not related to legacy status before could come into play.

4. The sixth objective required the author to design a procedure through which

managers can assess their existing and replacement / new systems, comparing and

Introduction

 - 4 -

contrasting their legacy status and enabling them to make decisions on a sound

basis.

5. The seventh objective is analysing components of existing strategies for dealing

with legacy systems. This involved further literature reviews and analysis of the

findings, comparing and contrasting experiences in different case studies with

each other, to specify how a wide variety of strategies can be covered by a smaller

number of strategy components. The components were analysed with reference to

their positive or negative effects on legacy causal criteria and mapped against

those criteria.

Representatives from two organizations co-operated in this research by providing

information regarding legacy system problems that have been solved, are in the

process of being handled or remain as unresolved problems within their organization.

These organizations are C.I.E., the Irish bus and rail transport company and the

E.S.B., the Irish Electricity Supply Board. This author worked as a programmer and

as an analyst and system designer in C.I.E. for several years.

1.4 Expected Deliverables and Potential Benefits

The expected results of this dissertation are outlined below.

1. A new definition of legacy status. This offers a solution to the dilemma of

defining legacy systems, by giving a range of causal criteria and effects that can

be identified in a system.

2. A new Legacy Effect Determination Framework. This enables management to

determine whether or not a current system is a legacy system and in what areas

legacy status exists.

3. A discussion of causal criteria relating them to legacy effects. This explains the

reasons why the exhibited effects may occur or what may happen if a problem

with a causal criterion is not addressed.

4. A new legacy Causal Criteria Framework. This allows the user to assess an

existing or proposed system, finding which of the causal criteria are enabled or

inhibited by the system.

Introduction

 - 5 -

5. A new Legacy Status Cause / Effect Framework. This allows the user to note

possible effects that may result in systems where one or more causal criteria are

inhibited or, conversely, to discover possible causal criteria for effects that are

being exhibited in an existing system.

6. A new mapping of strategy components, describing them as enablers or inhibitors

for relevant causal criteria.

The overall benefit of this dissertation is to allow the user to evaluation or asses the

legacy status of a current system, noting its strengths and weaknesses. Depending on

the areas of weakness, strategic decisions can be made relating to the type of

components required in a solution strategy. Many of the offered solutions can

undergo a preliminary assessment by combining the mapping of strategy components

with the Causal Criteria Framework. If a solution nis seriously being considered, it

can be assessed more thoroughly, by applying the Causal Criteria Framework to it.

Potential effects of using an inhibiting strategy component are illustrated in the

Legacy Status Cause / Effect Framework.

1.5 Organization of This Dissertation

This dissertation has nine chapters.

Chapter 1, the current chapter, introduces the subject area, gives research methods, the

organization of the dissertation and the results and expected benefits.

Chapter 2 identifies and lists legacy effects, grouped into four effect groups. A new

Legacy Effect Determination Framework is developed. It then analyses existing

research and determines legacy causes, grouping them into three legacy causal

dimensions. A new table of legacy causal criteria is presented.

Chapter 3 considers the first causal criteria group, System Suitability. It defines

System Suitability in the context of this dissertation. Modern practices in the area are

discussed and analysed giving reasons why these practices are not always used and

the legacy effects that can result due to lack of System Suitability are determined.

Introduction

 - 6 -

Chapter 4 considers the second causal criteria group, Underlying Platform Suitability.

It defines what a platform is in the context of this dissertation. Modern practices in

the area are discussed and analysed giving reasons why these practices are not always

used. The legacy effects that can result due to lack of suitability of the underlying

platform are determined.

Chapter 5 considers the third causal criteria group, Software Quality. It defines

software, software engineering and Software Quality in the context of this

dissertation. Modern practices in the area are discussed and analysed giving reasons

why these practices are not always used and the legacy effects that can result due to

lack of Software Quality are determined.

Chapter 6 brings together the frameworks that have been developed so far. It

reiterates the Legacy Effect Determination Framework and places it in context. A

legacy Causal Criteria Framework is developed and presented. Both of these

frameworks are combined to give an overall framework, the Legacy Status Cause /

Effect Framework, working from the results obtained in Chapters 3, 4 and 5.

Procedures for assessing current systems and new systems are designed and presented

using these frameworks. The usefulness of these frameworks is argued.

Chapter 7 addresses the objectives involved in correcting a legacy problem. Some of

the legacy handling strategies that are being put forward at present are listed. The

components of these strategies that are under review in this dissertation are described.

The chapter identifies which of the legacy causal criteria they enable, if any and

which they inhibit, if any. A mapping of strategy components against causal criteria is

presented.

Chapter 8 is a case study in applying the frameworks to a solution strategy. It

describes a widely used legacy replacement strategy – an enterprise resource planner

called SAP R/3 – in terms that are used throughout Chapters 3, 4 and 5. A

preliminary assessment of SAP R/3 based on its strategy components is presented. A

more thorough assessment, using the Causal Criteria Framework is then presented.

The results of these assessments are discussed and compared with experiences of

other authors regarding this solution strategy.

Introduction

 - 7 -

Chapter 9 summarises the dissertation and offers conclusions and suggestions for

further research in this area.

8

Chapter 2 Effects and causes of legacy status

2.1 Introduction

The aim of this chapter is to identify the effects that can occur in systems that are

classified as legacy systems and what the causal criteria are. The effects are used to

develop a Legacy Effect Determination Framework, while the causes are used to

define the causes of legacy status table. These effects and causes are then used to

contribute to the definition of legacy status that is central to this dissertation.

Managers often ignore aspects of systems that are part of an organizational

infrastructure until they start going wrong. These systems may be cosseted and

cajoled into performing their intended function for quite a while before action is taken

to remedy the situation. It is therefore of strategic interest to be able to recognise

symptoms that indicate that a system may be a legacy system. These symptoms show

themselves as legacy effects.

The underlying causes of these effects need to be tackled in such a way as to ensure

that those causes are addressed, without detrimentally affecting other criteria relating

to the success of the system. It is therefore also of great strategic importance to

identify the criteria that have caused legacy status in the past and are likely to

contribute to it in the future.

There are certain characteristics that can cause a system to be classified as legacy or

old or outdated. Although it is not necessary for a system to be old to be legacy

(Brodie & Stonebraker 1995, Young-Gul 1997, Slee & Slovin 1997), many legacy

systems have been developed five or more years ago (Levey 1995). In five years

technology, techniques, business environments and requirements are liable to change

dramatically. Any aspect of a legacy system that depends on circumstances that were

relevant at development time but are no longer relevant may be discussed as being old

or outdated. A system that is to be replaced or upgraded may also be called the old

system to differentiate it from the replacement, or new system.

Legacy effects and causes

 - 9 -

A legacy system is one that has one or more elements of legacy status.

Section 2.2 identifies the effects that legacy systems show and categorizes them in a

legacy effect determination framework. Section 2.3 analyses the underlying causes of

legacy systems and develops a framework of legacy status causal criteria. A new

definition of legacy status is proposed in section 2.4 and the chapter finishes with a

summary and conclusion (section 2.5).

2.2 Effects of legacy status

While it is normal for users and management to notice the effect of legacy status on a

system, the underlying cause may not be quite so evident. Within this section, effects

will be addressed from three different angles; 1) Section 2.2.1 analyses effects that

have been attributed to legacy systems. 2) Section 2.2.1 derives and restructures the

list of legacy effects into groups, tabulating them in Table 1. 3) Sections 2.2.3 to

2.2.6 discusses exactly what these effects are. Section 2.2.7 incorporates these effects

into a Legacy Effect Determination Framework (

 Table 2), to allow management to make a preliminary assessment of the extent of the

problem in the system under consideration.

Legacy effect determination framework

 Effect Present Absent or
Undetermined

Asset value Mission criticality

Reliability

Ease of operation User satisfaction

Ease of testing and auditing

Ease of maintenance Cost of maintenance and resistance to it

Availability of maintenance resources

Program size and complexity

Dependence on individuals

Ease of migration / evolution Ease of use of new technology

Scalability

Legacy effects and causes

 - 10 -

2.2.1 Characteristic effects exhibited by legacy systems

The research method used to determine the effects exhibited by legacy systems is to

review literature that has been published over the years. Much of this literature is

devoted to introducing a new way to handle legacy systems and as such, does not

analyse the effects in detail. As the purpose of this chapter is to enable management

to identify one or more characteristics of their system as being a legacy effect, the

author‟s approach is to classify these effects.

Publications on legacy systems over the last ten years show a progression from those

which provide a one-sided definition (Arnold 1989), with the purpose of proposing a

solution, through to current research which examines how legacy status can be viewed

and how it comes about (Gold 1998, Gibson et al. 1998). Alderson & Shah (1998)

discuss how these definitions can be attributed to the differing viewpoints of their

definers.

The definitions discussed here (further definitions can be found in section 2.4) are

chosen because each one of them either covers the concept of a legacy system in a

very broad sense, or it states a specific attribute that can be an effect of legacy status.

Some of them are specific to one particular legacy system on which the researcher

was working at the time of definition. However, one or some of the effects of legacy

status on that system can be generalised. None of these definitions cover the full

range of effects exhibited by legacy systems in a way that can be used to identify

legacy status in a system. It the author‟s intention to derive a fuller, more specific

definition of legacy status, in the understanding that a legacy system is one that

suffers from legacy status. With this intent, the oldest of the chosen papers is

analysed first, with later papers adding to or reinforcing the definition.

Arnold (1989) suggests software restructuring as a possible cure for legacy systems.

The effects that he is trying to conquer are a degradation of the systems asset value to

the organization, shortened system lifetime, difficulty in auditing and testing, low job

satisfaction among programmers, high software complexity, poor understanding of the

code, reduced programmer productivity, dependence on individuals for maintenance

or enhancement. Also outdated software structures and software engineering

practices, high maintenance costs, low standards, difficulty in maintaining systems,

Legacy effects and causes

 - 11 -

inability to use tools to analyse software or to convert software and inability to add

new features to the software.

Ning et al. (1994) try to understand legacy code. They recognise the effects as being

that many legacy systems inhibit their business growth and capacity to change and

cannot take full advantage of the new computing environments. Business rules may be

embedded in the software, but cannot be reused without reusing the whole system.

Also, the systems may run slowly, on outdated platforms, making them more tedious

to use.

Sneed (1995) looks at the possibility of reengineering legacy systems, restating that

existing legacy systems are difficult to migrate or maintain. He introduces the idea

that the reliability of the system may be suspect.

Bennett (1995) gives a very general effect of legacy systems as “large software

systems that we don‟t know how to cope with but that are vital to our organization”.

While this does not add to any of the individual groups, it is probably an overall

statement with which many managers can identify.

Brodie & Stonebraker (1995) suggest migration of the legacy system. They see the

effects as a resistance to modification and evolution, but they also note that the system

may “lack the power or the agility to meet current organizational requirements”.

Adolph (1996) suggests reengineering and recognises that although a legacy system

may be operating competently at present, this does not imply that the software

represents a set of stable requirements. Legacy effects include inability to put in new

features, constant patching making the system unreliable.

Bancroft et al. (1997) promotes the idea of replacing existing systems with an

enterprise resource planner, SAP R/3. She notes that legacy systems use old

technology, are lacking in flexibility, are highly complex and possibly diverge with

corporate strategy.

Liu et al. (1998) state that “IT systems become inadequate in reflecting business

needs, either operationally or economically, and so become legacy systems …Many

Legacy effects and causes

 - 12 -

legacy systems remain supportive to core business functions and are „indispensable‟

to the business”.

Gibson et al. (1998) concentrate on the business and technology dimensions of legacy

systems. They recognise that part of the legacy aspect of the system is the structure,

culture, job designs, workflow and managerial approaches that affect how an

organization operates and that existing business processes which are facilitated by the

system may not be beneficial to the organization at all.

Ransom et al. (1998) see a legacy system as a system which was developed sometime

in the past and which is critical to the business in which the system operates, but

maintaining it incurs unjustifiable expense.

2.2.2 Derived effects of legacy status

Other authors, alongside those listed above have mentioned the effects exhibited by

legacy systems or those with legacy status (Markosian et al. 1994, Wu et al. 1997,

Waters & Chikowsky 1994, Levey 1995). Although these effects have been

mentioned, due to different objectives, the discussions provided by these authors lack

the depth or breadth of scope required in this dissertation.

This author now analyses the effects that have been listed, organizing them into four

groups, based on interviews and observations at the co-operating organizations. The

defined four groups are asset value, ease of operation, ease of maintenance and ease

of migration / evolution.

Asset value

Effects relating to the asset value of the system affect the organization‟s ability to

function in the area serviced by the system. If this diminishes, the organization is no

longer competent in this area. The listed effects that are in this group are:

 Degradation of the systems‟ asset value to the organization (Arnold 1989).

 Lacking power or agility to meet current organizational requirements (Brodie &

Stonebraker 1995).

Legacy effects and causes

 - 13 -

 Possibly divergence with corporate strategy (Bancroft et al. 1997).

 Inadequacy in reflecting business needs (Liu et al. 1998).

 Existing business processes may not be beneficial at all (Gibson et al. 1998).

These effects all relate to the system becoming less of an asset to the organization in

that they no longer serve the mission critical need they may have served in the past,

due to lack of power or focus. The other listed effect in this group is:

 Suffering from suspect reliability (Sneed 1995, Adolph 1996)

This is also an effect that diminishes the asset value of the system.

Legacy effects and causes

 - 14 -

Ease of operation

Effects relating to the ease of operation of a system affect the users, auditors and

support staff on a day-to-day basis. Even if the system provides all of the

functionality that is required by the business process, the effects in this group may still

be present. There are two sub-groups, the first affects core users and is classified as

user satisfaction and incorporates the following effects:

 Systems run slowly, on outdated platforms (Ning et al. 1994)

 May not suit organizational structure, culture, job designs (Gibson et al. 1998)

The second sub-group relates to non-core users:

 Difficulty in auditing and testing (Arnold 1989)

Ease of maintenance

This group comprises the effects that relate to the constant changes that need to be

made to most systems, to keep them in line with current business practice. This group

is sub-divided into four. The first sub-group is cost of maintenance and resistance to

it. This sub-group relates to the everyday cost of maintenance and unwillingness to

undertake it. It contains the listed effects:

 Maintaining it incurs unjustifiable expense (Ransom et al. 1998).

 Resistance to modification (Brodie & Stonebraker 1995).

 Difficulty in maintaining systems (Arnold 1989).

 Outdates software structures and software engineering practices (Arnold 1989).

 High maintenance costs (Arnold 1989).

The second sub-group relates to the availability of staff to work with technology

inherent in the system and the style of systems development. This sub-group

availability of maintenance resources comprises the following effects:

 Low job satisfaction among programmers (Arnold 1989).

 Low standards (Arnold 1989).

 Poor understanding of the code (Arnold 1989).

Legacy effects and causes

 - 15 -

 Reduced programmer productivity (Arnold 1989).

The third sub-group arises when the business process grows or changes and

corresponding code is added to the software, without removing redundant code. It is

the program size and complexity sub-group and contains the following listed effects:

 High software complexity (Arnold 1989).

 Highly complex (Bancroft et al. 1997).

The fourth sub-group relates to the effects that mean an individual or group becomes

indispensable to the organization, possibly due to the fact that they have personalised

the system to an extent where others may not understand it.

 Dependence on individuals for maintenance or enhancement (Arnold 1989).

Ease of migration / evolution.

The fourth group of effects relates to major or strategic changes that are required to

enhance the system to meet new business needs or to move it onto new platforms or to

scale it up. The effects of this group are sub-divided into two sub-groups. The first is

the ease of use of new technology sub-group and contains the following listed effects:

 Difficult to migrate (Sneed 1995).

 Resistance to evolution (Brodie & Stonebraker 1995).

 Business rules cannot be reused without reusing the whole system (Ning et al.

1994).

 Inability to put in new features (Adolph 1996).

 Inability to use tools to analyse software or to convert software (Arnold 1989).

 Inability to add new features to the software (Arnold 1989).

The second sub-group relates to the scalability of the system and contains the

following effects:

 Inhibt their business growth and capacity to change (Ning et al. 1994)

Legacy effects and causes

 - 16 -

 Cannot take full advantage of new computing environments (Ning et al. 1994).

The groups and sub-groups are tabulated for the convenience of the reader in Table 1

Effects of Legacy Status.

Table 1 Effects of Legacy Status

Having analysed the effects and tabulated them, part of the definition of legacy status

can be stated:

The legacy status of a system affects the system’s asset value, the ease with which it

can be operated and maintained and the ease with which it can be migrated or

evolved.

The following sections describe each of the four derived effects in detail.

2.2.3 Asset value

If a legacy system is causing concern, then it is considered by those concerned to be

of some value to the organization. In some cases, the value would be classed as

critical, whereas in others, the asset value has diminished over the years, or the

reliability of the system may be suspect.

Mission criticality

A system is critical to the mission of the organization if the organization cannot

function to optimal effect without it. Most legacy systems have a high asset value to

Inability to cope

Asset value Mission criticality

Reliability

Ease of operation User satisfaction

Ease of testing and auditing

Ease of maintenance Cost of maintenance and resistance to it

Availability of maintenance resources

Program size and complexity

Dependence on individuals

Ease of migration / evolution Ease of use of new technology

Scalability

Legacy effects and causes

 - 17 -

their organization (Arnold 1989, Bennett 1995, Gibson et al. 1998, Ramage 1998(1)).

They contain critical rules of how the business operates, which are valuable assets to

the company. As these system requirements may be uniquely defined within this

business process, the process cannot be discarded. The algorithm operated in the

process may contain rules, embedded in the code, that are not documented anywhere

else (Ning et al. 1994). Another factor which could make the system critical to the

organization‟s mission is that it contains and provides the only access to valuable data

but lacks the power and agility to meet current organizational needs (Brodie &

Stonebraker 1995).

The asset value that a system has may diminish. A system that used to be critical to

the business can remain constant while the business process changes. In this case,

users may find themselves feeding the system to get results. These results, while still

useful, may become disproportionate in their usefulness to the effort that is required to

gain them. It is possible that a large percentage of what the system offers has become

redundant (Fitzpatrick 1997). I.T. systems can become inadequate in reflecting

business needs, either operationally or economically and so become legacy systems

(Liu et al. 1998).

Reliability

The reliability of these systems may be suspect (Sneed 1995, Adolph 1996). When

discrepancies start to creep into a system, it may be very difficult to isolate exactly

what the problem is or how widespread it is (Arnold 1989, Markosian et al. 1994).

2.2.4 Ease of operation

Often the first point of discontent with the system is its ease of use. This may be a

minor irritation that the screen formatting is not as up-to-date as that of another

system, or it may be more serious, in that a new user would have extreme difficulty in

getting the system to produce the required results correctly.

User satisfaction

This situation can occur where the only concrete copy of the rules under which the

organization operates exist in the software (Ning et al. 1994). In this case, the user

may not be sure of why certain data is entered or what it means. If data entry or result

Legacy effects and causes

 - 18 -

distribution is done without the user‟s comprehension, it is likely that user

dissatisfaction will result. User satisfaction represents the current level of satisfaction

of a user who is using a current model of an existing system.

Ease of Testing and auditing

A system that is difficult to operate or maintain will also be difficult to test and audit

(Arnold 1989, Markosian et al. 1994). A system that cannot be tested or audited fully

will gradually lose reliability. Confidence in the system will fall.

2.2.5 Ease of maintenance

Cost of maintenance and resistance to modification

Legacy systems can become very difficult to maintain. (Arnold 1989, Sneed 1995,

Bennett 1995, Brodie & Stonebraker 1995, Adolph 1996, Gibson et al. 1998, Gold

1998, Ransom et al. 1998). They are often monolithic systems. Maintenance

programmers generally require a long time to become familiar and confident with the

code and what it does, partly because the systems are heavily modified over their life

spans. This results in the maintenance of these systems taking up larger and larger

portions of legacy funds. (Arnold 1989, Brodie & Stonebraker 1995, Bennett 1995,

Adolph 1996, Wu et al. 1997, Gold 1998, Gibson et al. 1998, Ransom et al. 1998).

Availability of resources to maintain them

There is a smaller pool of experts familiar with older technology than would be

available for more modern systems. Coupled with this, programmer productivity is

low due to the complex nature of the task and the inadequacy of the tools.

Programmer job satisfaction is similarly suffering due to frustration in working with

poorly structured software (Arnold 1989, Waters & Chikofsky 1994, Bancroft et al.

1997). Resources to maintain legacy systems are becoming scarce, while the need for

development programmers is artificially high.

Program size and complexity

The programs in many legacy systems are very large and complex. Structural

enhancement is a very difficult task and maintenance within a possibly poorly

Legacy effects and causes

 - 19 -

structured program can involve some guesswork (Arnold 1989, Sneed 1995, Levey

1995, Bancroft 1997).

Dependence on individuals

There is a heavy dependence on individuals who alone understand poorly structured

software (Arnold 1989, Adolph 1996), making it difficult to interchange people who

are maintaining the software.

2.2.6 Ease of migration / evolution

Ease of use of new technology

Many systems need to adapt to the use of new technology. This can vary from using

an upgrade of the same platform, to the use of a completely new piece of hardware, a

new database engine or operating system. The cost of new technology is dropping so

fast that each year opens up new horizons for what a system should be able to do. A

legacy system may be running on a slow, outdated platform and cannot take full

advantage of the new computing environments (Ning et al. 1994, Waters & Chikofsky

1994, Bancroft et al. 1997).

Scalability

Legacy systems can be monolithic in nature and confined to a single machine or to a

limited network. To extend their capacity to allow for an increase in demand may not

be possible. They are costly and difficult to scale adequately for growing business

demands. There is a lack of flexibility among these systems (Bancroft 1997).

2.2.7 Legacy effect determination framework

The identified effects shown in Table 1 can be used by management to document the

effects that are occurring in the system under consideration. This is done by an

assessment of the system. Some or all of the effects will be obviously present or

absent. Others may need further investigation. The observation of effects is done by

staff who are experienced in the use of the system and in the needs the system is

trying to serve. To this extent, it may be relatively subjective. However, it is only

within the context of the system, that its asset value, ease of operation, maintenance

and migration / evolution can be assessed. The Legacy Effect Determination

Legacy effects and causes

 - 20 -

Framework can be filled out partly or in full. The purpose of it is to start an

investigation, rather than to provide definitive answers. To fill out the framework, the

manager, in conjunction with experienced user staff and I.T. staff places a “P” in the

“Present, Absent or Undetermined” column if the effect is present, an “A” if it is

absent and a “U” if it is undetermined.

 Table 2 Legacy Effect Determination Framework

2.3 Causes of legacy status

The effects of legacy status have been summarised in Table 1 and a framework for

documenting these effects has been designed and presented in

Legacy effect determination framework

 Effect Present Absent or
Undetermined

Asset value Mission criticality

Reliability

Ease of operation User satisfaction

Ease of testing and auditing

Ease of maintenance Cost of maintenance and resistance to it

Availability of maintenance resources

Program size and complexity

Dependence on individuals

Ease of migration / evolution Ease of use of new technology

Scalability

Legacy effect determination framework

 Effect Present Absent or
Undetermined

Asset value Mission criticality

Reliability

Ease of operation User satisfaction

Ease of testing and auditing

Ease of maintenance Cost of maintenance and resistance to it

Availability of maintenance resources

Program size and complexity

Dependence on individuals

Legacy effects and causes

 - 21 -

 Table 2. To users, customers and managers, effects that are marked as “P” are the

signs that the system is suffering from legacy status. Having identified a set of effects

that legacy status can cause, attention now turns to the criteria that have caused these

effects. It is only by understanding the underlying cause that a suitable solution can

be found. The causes are wide-ranging in nature, but in the author‟s opinion, they can

be categorised in such a way as to enable an organization to check their systems for

these causal factors. This section approaches legacy causes from two angles: 2.3.1

quotes causes of legacy systems from publications and section 2.3.2 looks at methods

of assessment that have been put forward, to glean the criteria for which a system is

being checked. Section 2.3.3 distils the resultant causal factors into a table (Error!

Reference source not found.). Sections 2.3.4 to 2.3.6 introduce these causal factors.

Section 2.3.7 summarizes the discussion on deriving legacy causes.

2.3.1 An analysis of causes that have been related to legacy status

Various definitions of legacy systems indicate a certain number of causes. These

range from very specific causes (Arnold 1989, Bennett 1995), which emanate from

what Alderson & Shah (1998) have termed the developmental viewpoint, to one

general cause, the occurrence or anticipated occurrence of an event (Gold 1998).

Gold‟s (1998) analysis is important in a few ways: 1) it gives dignity to legacy

systems that has often been denied, by showing that before the occurrence of the

event, the system was not legacy. 2) It highlights the fact that legacy status is

inevitable in any system and that the fight against legacy status is a series of battles

rather than one major war. 3) It encourages readers to examine their systems in a

strategic way, by anticipating events and incorporating them into their strategic plan.

However, it is the author‟s opinion that further classification is needed of areas in

which events can occur that may cause legacy status. While very specific events that

have caused legacy status in the past may not be relevant to a particular system that is

being checked; an analysis of recorded events shows areas of concern.

In accordance with the approach to legacy effects, definitions discussed here are

chosen because each one of them states a specific cause or set of causes for legacy

Ease of migration / evolution Ease of use of new technology

Scalability

Legacy effects and causes

 - 22 -

status. To add to the author‟s derived definition of legacy status, the chosen papers

are analysed chronologically.

Arnold (1989) concentrated on quality of software as being a major problem.

However, his definition of software also included the software development

environment and those who operated within the environment.

Sneed (1995) judged systems according to their technical quality and their business

value. He states that existing legacy systems are difficult to migrate or maintain and

that, due to the low level of understanding of the code, the reliability of the system

may be suspect.

Bennett (1995) states that a system may be written in assembly or an early version of

a third generation language; was probably developed using state-of-the-art software

engineering techniques; many perform crucial work for the organization and is

generally large, hard to understand and hard to maintain.

Adolph (1996) recognises that although a legacy system may be operating

competently at present, this does not imply that the software represents a set of stable

requirements or that it is still one of the organization‟s core competencies. In other

words, the system has become unsuitable.

Bancroft et al. (1997) notes that legacy systems use old technology, are lacking in

flexibility, are highly complex and possibly diverge with corporate strategy.

Slee & Slovin (1997) see the legacy problem as destiny – “the ongoing challenge of

managing evolving I/S assets in the era of hybrid computing”.

Gold (1998) considers that legacy systems have a system component and a software

component, where legacy software is “critical software that cannot be modified

efficiently” and a legacy system is “a socio-technical system containing legacy

software”. Other system components are people, hardware, data, and business

processes, the maintenance process, development cultures and the system‟s

relationship to the environment.

Gibson et al. (1998) recognise that part of the legacy aspect of the system is the

structure, culture, job designs, workflow and managerial approaches that affect how

Legacy effects and causes

 - 23 -

an organization operates and that existing business processes which are facilitated by

the system may not be beneficial to the organization at all.

These causes can be grouped and restated as follows:

System suitability

 System has become unsuitable (Adolph 1996)

 System diverges with corporate strategy (Bancroft et al. 1997).

 Relevance of business processes to the system (Gold 1998).

 The people who use and maintain the system and the job designs within the

organization (Gibson et al. 1998)

 The system‟s relationship to the environment (Gold 1998)

 Organizational structure or culture (Gold 1998, Gibson et al. 1998)

Platform suitability

 Technical quality (Sneed 1995)

 Old technology (Bancroft et al. 1997)

 Development environment (Bennett 1995)

3. Software quality

 Low level of understanding of the code (Arnold 1989)

 Quality of software (Arnold 1989)

 Software engineering techniques (Bennett 1995)

 Ongoing challenge of managing the maintenance process (Slee & Slovin

1997)

This list covers three groups and mentions very diverse areas. If a comprehensive

view of legacy causes is expected, then the groups need further specification. Several

authors have suggested methods of assessment for legacy systems. To assist in the

specification of causal criteria, a review of methods of assessment follows.

2.3.2 Methods of assessment

Legacy effects and causes

 - 24 -

In previous decades, when legacy systems were exhibiting problems, these problems

were addressed in a piecemeal fashion. However, as the problem of legacy system

grew, it was generally

recognised that a more thorough

and holistic approach was

needed to get a satisfactory

outcome.

Sneed (1995) suggests that as

the size of the system increased,

the need to plan its evolution

became greater. This planning

has to take into account the

business value of the system as

well as its technical quality.

This grid is useful when

assessing an application for

immediate use, but it ignores management of change, which is needed to ensure that

the current legacy system is not replaced by a system that has legacy status at the time

of introduction.

Neumann (1996) puts forward a Legacy System Transformation process. While this

assumes that the system‟s legacy status has already been confirmed, it can add to a

definition of legacy causes, in that it addresses the impact of various aspects of the

system on its legacy status. The first three steps in this process are:

 Understand the business strategy

 Gather system information

 Conduct an impact analysis of the system on the business strategy, where areas of

impact include database, system interfaces, user interface and functionality.

Slee & Slovin (1997) recognise the pace of change as being very rapid, both in terms

of business strategy and technological advances. They also discuss the impact that

these changes have on the people and infrastructures in the organization. The

Figure 1 Sneed (1995) evaluates legacy systems

Legacy effects and causes

 - 25 -

technical issues that are cited are the hardware, maintainability and size, integration

between old and new hybrid systems.

Ransom et al. (1998) put forward the Renaissance method for legacy assessment:

 Establish an assessment technique

 Assess business value

 Assess external environment

 Assess application

 Interpret results

This assessment considers the business value, the external environment and the

application as three distinct areas for assessment. This is done by breaking down the

technical quality aspect of the system into two separate areas: external environment

and application. The external environment consists of the hardware, the software and

the organizational infrastructure. The application consists of the quality of the

application software, both at system and component level.

2.3.3 Derived causal factors

The issues that have been put forward in the last section show a growing number of

causal criteria for legacy status. Sneed‟s (1995) two-dimensional grid has been

heavily used in the literature. The two dimensions of business value and technical

quality do indeed address the quality of the system and its suitability to the business

strategy as defined, but the grid makes the assumption that the business strategy is

currently correct and makes no account for future change.

Ransom et al. (1998) state that there are in fact three issues that need to be assessed,

Business Value, External Environment and Application and they give details as to

what areas are covered in each assessment.

According to Ransom et al. (1998) business value is the value of the system to the

business process and its benefit to the organization. However, in the opinion of this

author, this issues lacks emphasis on the sociotechnical aspect of the system and also

fails to emphasise the fact that the business as is may change, thereby requiring the

processes to suit the organization‟s mission rather than its current business practices.

Legacy effects and causes

 - 26 -

Figure 2 Dimensions of legacy status

Ransom et al.‟s (1998) assessment of external environment includes an assessment

of organizational infrastructure, hardware and software. In the author‟s opinion this

encompasses both technical and human resources aspects whereas the human

resources aspects could be more suitably assessed along with the suitability of the

system to the business process and organizational mission. The technical assessment

should perhaps be dedicated to the assessment of technology, both hardware and non-

application software.

Finally, Ransom et al. (1998) propose that the assessment of the application consists

of the quality of the application software, both at system and component level. This

author contends that the quality of management of process change within the system

is also of paramount importance in this area.

The author therefore proposes a new model of causal criteria for legacy status. This is

a three-dimensional model (see Figure 2), where each dimension is represented by a

vector. As the legacy status of the system increases along that vector, the co-ordinate

for that vector moves away from the centre point. As the system improves, its co-

ordinate will move back towards the centre. Ideally, this dimensional chart should be

accompanied by metrics, which would allow the centre point to indicate a co-ordinate

of (0,0,0) showing zero legacy status. However, the investigation required to

metricate this would be too detailed in

the context of this dissertation and

may be the subject of further work.

The dimensions themselves,

however, will be used throughout

the dissertation.

 The first dimension is called

System Suitability. The System

Suitability of the system is a

dimension that is addressed by both the IT and business management and is under

constant review. This suitability includes the alignment between business and IT

strategy and the internal domain, which includes staff, culture and workflow. In this

respect, it incorporates Ransom et al‟s. (1998) „business value‟, but goes further, in

that it includes the suitability of the technology used by the system to the

Application

suitability

Software

Quality

Underlying

platform

Legacy effects and causes

 - 27 -

organizational environment. As this suitability improves, the system can be assessed

as travelling along a vector towards the origin, i.e. towards a point where it has no

legacy status relating to System Suitability. A perfectly suitable system will have

zero legacy status in this

dimension.

 The second dimension is called

Underlying Platform Suitability.

This is a purely technical

dimension. It involves the

technical hardware and non-

application software that is used in

the system. It excludes the

suitability of this technology to the

organizational environment – that

factor is part of the first

dimension., System Suitability.

The Underlying Platform

Suitability includes those technical aspects of the system, which are managed by the

IT department but are not developed by them. Although the platform consists of

several components that may or may not be legacy, the vector can be justified by

assessing the impact of legacy status of each of these components on the entire

platform.

 The software quality dimension includes the quality of the current software, both at

component and design level and the quality of the software change management

process. This dimension comprises the creative aspect of Information systems within

an organization. As an organization‟s software quality mechanisms improve, the

system can be assessed as travelling along a vector towards the origin. Alternately, as

they degenerate, the legacy vector in this direction grows, indicating a larger legacy

status in this dirction.

Causes of legacy status

Legacy effects and causes

 - 28 -

Table 3 Causes of legacy status

The author‟s conclusion is that the

three dimensions causing legacy

status in a system are:

 The suitability of the system

to the business area which it

needs to service the suitability

and viability of the underlying

platform.

 The suitability and viability of

the underlying platform

 The quality of the software

code, the software design and

the software change

management in the system.

For the convenience of the reader,

the dimensions of causal criteria and their sub-groups are tabulated and presented in

Table 3.

2.3.4 System suitability

While users are quite happy to complain about a system that is currently in use in their

organization on a daily basis, wishing that it was gone and forgotten, the reality is that

this system may be a major asset to the organization. The likely asset value of legacy

systems is well recognised (Arnold 1989; Ning et al. 1994; Brodie & Stonebraker

1995; Bennett 1995; Gibson et al. 1998; Ramage 1998(1)). However, the reverse may

also be true. The suitability of a system to an organization can change over time. The

system that at one stage addressed the organization‟s needs may have failed to adapt

to change in the outside world and may have become less suitable and perhaps even

unnecessary.

This suitability has three aspects:

 suitability of the system to the business process (Neumann 1996),

S
y
s
te

m

s
u

it
a
b

il
it

y
 System suitability to business process

Business process to organizational mission

System technology to organizational
environment

U
n

d
e
rl

y
in

g
 p

la
tf

o
rm

s
u

it
a
b

il
it

y

Hardware suitability

Operating System Suitability

Network suitability

Development environment suitability

Data management suitability

S
o

ft
w

a
re

q
u

a
li
ty

Quality of change management

Design quality

Component quality

Legacy effects and causes

 - 29 -

 suitability of the business process to the organization‟s mission (Henderson &

Venkatraman 1993, Sneed 1995),

 suitability of the technology used by the system to the organizational environment

(Slee & Slovin 1997) .

A more detailed description of application suitability is addressed in Chapter 3.

2.3.5 Underlying platform suitability

The platform components on which systems run include:

 Hardware

 Operating System

 Networking

 System development environment

 Data management suitability.

Advances in microprocessor technology mean that processor speeds have increased

by ten orders of magnitude since the 1950s (Parkinson 1991). In the 1950s, the

programmer needed to thoroughly understand the way in which the machine carried

out the instructions it was given in order to make it perform a task. As the years went

by, various efforts were made to improve programmer productivity, by adding layers

of software that shielded the developer from the intricacies of the machine.

Programming languages went from machine language which the machine could

understand, to assembly language, which needed an assembler, to early third

generation languages such as Cobol (Hooper 1959) and Fortran. These languages

needed either an interpreter or a compiler and linker. The emergence of Fourth

Generation languages added further layers of software and this trend continues today,

where systems can be designed using a CASE tool, generated to work on a target

platform and reverse engineered into the CASE tool format when changes are

required. All of this has led to computer solutions moving from a machine-oriented

point of view to a problem-oriented point of view – i.e. one in which new business

requirements can be satisfied in a shorter length of time. These developments have

diverged widely over the years. The variety and quality of platforms now available

for developing and operating application software is vast.

Legacy effects and causes

 - 30 -

Ning et al. (1994) point out that legacy systems that are based on outdated platforms

are inhibiting their business‟ growth and capacity to change.

In the opinion of the author, these advances have advantages and disadvantages. It is

obviously advantageous when a programmer can adapt a system to a new business

requirement in a short time, especially in a business environment where change is

rapid and unrelenting. However, because of the wide variety and complexity of

means of developing and operating applications now available, more expertise is

required to choose the correct combination of platform components, to install that

combination and to support users and developers in their operation of these

components. Furthermore, because of the series of complex translations that is now

required between developer or user and machine, there are many more potential

sources of error, making the tracing of errors much more difficult. In the opinion of

the author, this complexity promotes a less scientific and more cavalier approach

towards the solving of problems whereby the search for the cause of the problem may

be abandoned once the problem can be avoided. In many cases, it is not possible to

trace causes, as full information is not available to the maintainer. This approach to

problem solving leads to a throwaway mentality, where every system is seen as being

good enough until the next version comes along.

The suitability of the underlying platform depends on the careful choice and expert

installation, operation and maintenance of suitable platform components. A more

detailed description of underlying platform suitability is addressed in Chapter 4.

2.3.6 Software quality

Even systems that are based on legacy platforms may be viable, depending on the

need for change of that system area, the need for integration of this system with others

and the state of the software in the system. In some cases, despite the age of the

software and the number of changes that has been made, conscientious adherence to

standards of system development and maintenance mean that the system is quite

workable. However, in many cases, constant changes cause the code to become

convoluted, without organization or structure, adhering to no standards (Arnold 1989,

Sneed 1995, Bancroft et al. 1997). The resulting code is often called spaghetti code

and is virtually impossible to unravel.

Legacy effects and causes

 - 31 -

Apart from the quality of code in the modules making up the system, understanding

and maintaining the system as a whole can only be done efficiently when interactions

between these modules are understood. This requires that rigorous design techniques

be used, understood and maintained (Parkinson 1991).

As technology advances, techniques for programming and paradigms for designing

applications go in and out of fashion (Royce 1970, Jackson 1975, Myers 1978,

Nierstrasz 1992, Downs et al. 1993, Fowler & Scott 1997). A change in technique or

paradigm that does not carry forward existing software can render existing software

legacy with immediate effect. To avoid this situation, process change requires careful

implementation.

Software quality can be measured at different levels:

 Quality of implementation of process change (Quality of change management),

 quality of inter-component design as built and maintained (Design quality),

 Quality of the component as built and maintained (Component quality).

Taking each of these levels individually, software quality can be assessed. A more

detailed description of software quality is addressed in Chapter 5.

2.3.7 Summary of legacy causes

Legacy systems can be categorised in terms of effects and causes. The effects, while

they are likely to be visible to users and management, do not always indicate a

solution. The causes are multifarious and need to be associated with criteria that can

be assessed both in the system that is causing concern and also in any proposed

solution. This dissertation proposes three dimensions of criteria as a) system

suitability, b) software quality and c) platform suitability (see Figure 1). These

dimensions are further broken down into criteria (see Error! Reference source not

found.).

Legacy effects and causes

 - 32 -

2.4 New Definition of Legacy Status

As seen in Sections 2.2 and 2.3, definitions of the meaning of legacy in the context of

legacy computer applications vary widely and are usually based on the aspect of

legacy status in which the author has an interest. It is the intention of this dissertation

to examine criteria that can either cause legacy status in a system or make it more

susceptible to events that can cause legacy status. For this reason, the definition must

be specific in terms of causal criteria and effects. It is not intended to promote any

particular solution to a legacy problem, but to allow the reader to use these criteria in

assessing the problem that may be present and the solution that may be being

considered. Therefore, the definition must show a variety of possible causal criteria,

without excluding systems that do not suffer a deficiency in all of the criteria.

The definition of legacy status, which is proposed by this dissertation and used in the

remaining chapters, is as follows:

“Legacy status is a deficiency in a system in terms of its suitability to the business, its

platform suitability or application software quality, with the effect that the system’s

asset value diminishes, as does its ease of operation, maintenance, migration or

evolution.”

The critical level of legacy status that is acceptable in any of the three dimensions is

dependent on the owner organization. It is incumbent upon management to determine

the level of legacy status and its acceptability to the organization. At a strategic level,

management determine their approach to the system. This may be an existing system

that is intrinsic in the organization or a new system, for which a new strategic

approach is required. The strategic approach adopted for a system can enable or

inhibit the causal criteria. If there is a weakness in one or more of the causal criteria

(see Table 3), this may cause one or more of the legacy effects that have been

tabulated (see Table 1). This relationship is shown in Figure 3.

Conversely, if a legacy effect is present in the system, the cause of this can be one of

several causal criteria, which may be inhibited by the strategy followed by them.

Legacy effects and causes

 - 33 -

The following chapters explain each of the causal factors in more detail, outlining the

effect poor practice in any dimension can cause.

Figure 3 Relationship between system strategy and legacy effects

2.5 Summary

The term “legacy system” covers a wide variety of problems, often with wide-ranging

and deeply rooted causes. While none of the definitions are wrong, few address the

full scale or range of causes and potential or real effects that are addressed here. This

chapter has analysed the effects exhibited in legacy systems and produced A Legacy

Effect Determination Framework. Following on from that, further analysis and

specification have resulted in a table of the causes of legacy status.

A new definition has been put forward. It speaks in terms of legacy status rather than

of a legacy system, introducing the concept of a system suffering from a degree of

legacy status. Legacy status has been shown to have three dimensions, with a legacy

system having legacy status in one or more of these dimensions. A perfectly suitable

system has zero legacy status. These dimensions will be further explored in the next

three chapters.

May

cause
Enables /

inhibits

System Strategy Causal Criteria Legacy Effects

34

Chapter 3 System Suitability

3.1 Introduction

As stated in the chapter 2, legacy status is defined relative to has three dimensions, the

first of which is System Suitability. In order to be able to assess or ensure System

Suitability, it is necessary to understand exactly what is meant by it. The purpose of

this chapter is to examine current practices in ensuring that the system is suited to the

task and organization for which it is intended. It starts with a definition of System

Suitability. Section 3.2 outlines ways in which suitability can be assured. Section 3.3

shows the problems that can arise to prevent suitability from being assured and

section 3.4 shows the effects that are caused by failing to ensure system suitability at

development time and throughout the lifetime of the system. These causes are cross-

referenced to the Legacy Effect Determination Framework (

 Table 2) in Section 2.2.7.

3.1.1 Definition

System suitability is influenced by many factors, but starts with the alignment of

business and information technology strategy. Slee & Slovin (1994) recognise that

Legacy effect determination framework

 Effect Present Absent or
Undetermined

Asset value Mission criticality

Reliability

Ease of operation User satisfaction

Ease of testing and auditing

Ease of maintenance Cost of maintenance and resistance to it

Availability of maintenance resources

Program size and complexity

Dependence on individuals

Ease of migration / evolution Ease of use of new technology

Scalability

System Suitability

 - 35 -

legacy issues must be understood in a wider business context. Despite the new

technologies that are available, legacy systems play a major part in future success. In

many cases, the IS organization itself is a legacy issue, tied to old technology. IS is a

microcosm of larger economic forces. Most prized attributes today are speed,

precision, nimbleness and effectiveness. Faster business change and faster technology

change challenge the IS organization to upgrade their user and support staff skills,

processes, applications and infrastructures to integrate with business-driven

development.

The suitability of the system shows how it fits into the organization. This system can

suit the organization by:

 doing what the organization wants it to do (suitability of system to business

process),

 doing what the organization needs it to do (suitability of business process to

organizational mission)

 being usable by the organization (suitability of the system to the organizational

environment).

3.2 Current Practice in the Area

Over the years, different approaches and enhancements have been made to the area of

achieving and maintaining system suitability. The approaches addressed here are

Information Engineering, Soft Systems Methodologies, Strategic Alignment Model,

portfolio assessment and various Human Computer Interaction (HCI) models which

take into account socio-technical considerations.

3.2.1 Information Engineering

Information engineering is an approach that tries to ensure that IT strategy is aligned

with business strategy before the process of system development begins.

Davids (1992) lists the steps involved in the Information Engineering approach:

First, a business plan is formulated by the strategic managers.

System Suitability

 - 36 -

Following that, an Information Strategy plan is formulated with the strategic

managers present. This plan starts by:

 Identifying the business issues, which are analysed and formally recorded in an

unambiguous manner. A high level understanding of the business can be recorded

in a Mission statement. From this, the company‟s strategy is expressed as aims

and objectives. These are the medium to long term results that the organization

wishes to achieve and its strategies for achieving them. Objectives lead to critical

success factors which describe the essential conditions the business requires to

achieve its objectives. The critical success factors should include infrastructure

requirements. Goals are the translation of aims into measurable targets that can be

achieved by a certain time. Goals are accompanied by their performance metrics.

 Determining the information areas and main activities of the organization.

 Grouping the main functions into business areas based on their usage of the

information areas.

 Envisaging a set of conceptual systems within each business area, so that business

area may operate effectively.

 Assessing the current systems that are in operation for their applicability to the

business and their effectiveness.

 Determining the technology strategy that will support the business.

 Evaluating potential systems that could be used to provide a competitive

advantage.

When the Information strategy plan is complete, business area analysis can begin in

each of the business areas.

The Information Engineering approach ensures that:

 The systems that are installed suit the business process

 The business process suits the organization‟s mission

 Critical success factors could include organizational environment factors.

The IT strategy is formulated reasonably late in the proceedings, so there is not a huge

emphasis on organizational environment factors.

System Suitability

 - 37 -

3.2.2 Soft Systems Methodologies

The effect of the environment on the suitability of a system is ignored in the hard

methodologies such as SSADM (Downs et al. 1992) or Select Perspective (Frost

1995) that have been derived for developing systems. Checkland (1981) devised a

more suitable way of solving the problems that systems have within their

organizational environments. Soft systems methodologies approach the appraisal of a

problem with a system in a holistic fashion. The system is not isolated from its

environment and can therefore only operate in it if the environment is compatible with

it. The emphasis here is not on finding a solution to a specified problem, but on

understanding the situation in which a perceived problem is thought to lie.

 Stages in SSM

Avison & Fitzgerald (1995) document the stages in SSM, one of the Soft Systems

Methodologies:

 Stage 1 - situation exists, which is a problem for someone.

 Stage 2 - Situation is expressed in an understandable way.

 Stage 3 - A root definition of the problem is derived.

 Stage 4 - A conceptual model of the problem is built.

 Stage 5 - The real problem is compared with the concept. (Stages 3 to 5 can be

iterative).

 Stage 6 - Changes are made to the conceptual model to solve the problem.

 Stage 7 - Analogous changes are made to the real situation.

Use of SSM is ideal where a system is of high technical quality and seems to suit the

business process perfectly, but is causing a problem in that it cannot or is not being

operated to maximum effect. The problem here may be due to a lack of suitability of

the system technology to its environment.

3.2.3 Strategic Alignment Model

System Suitability, in all its aspects, is addressed by the Strategic Alignment Model

(Henderson & Venkatraman 1993) in Figure 4. It is done at a very high level, so other

approaches will be required at a more detailed level. Henderson & Venkatraman

System Suitability

 - 38 -

(1993) state that the inability to realise value from IT investments is, in part, due to

the lack of alignment between business and IT strategies of organizations. Economic

performance is directly related to the ability of management to create a strategic fit

between the position of an organization in the marketplace (the external domain) and

the design of an appropriate infrastructure to support its execution (the internal

domain). Ideally, companies should undertake constant alignment between their

business and IT strategy. Also, both business and IT strategy should be well

supported by an organizational and IS infrastructure.

Henderson and Venkatraman (1993) developed a Strategic Alignment Model (see

Figure 4). This model shows four domains – two business domains (external and

internal) and two IT domains (external and internal). Two alignments must take place

continuously in order to maintain the strategic fit between the internal and external

domains and to maintain functional integration between IS and business. This

strategic alignment can be operated from four different perspectives. The approach

used in Information engineering is closest to the second perspective, that of

technology transformation.

System Suitability

 - 39 -

The four alignment perspectives are strategy execution, technology transformation,

competitive potential and service level.

Strategy execution

The strategy execution alignment perspective can be seen in Figure 5. The business

strategy is formulated and drives both organizational design choices and the design of

the IS infrastructure. This is the most common and traditional view of the role of

strategic management.

Technology transformation

Technology transformation

Business

Strategy

Organisational

Infrastructure

IS

Infrastructure

Business

Strategy

IT

Strategy

IS

Infrastructure

Figure 4 Strategic Alignment Model (Henderson & Venkatraman 1993)

Figure 5 Strategy execution (Henderson &

Venkatraman 1993)

Figure 6 Technology transformation (Henderson &

Venkatraman 1993)

Linkage Automation

IT Strategy Business Strategy

Organisational

Infrastructure
And

Processes

IS

Infrastructure
And

Processes

Processes

Architectures

Skills
Processes

Administrative

Infrastructure

Skills IN
T

E
R

N
A

L

BUSINESS INFORMATION

TECHNOLOGY

E
X

T
E

R
N

A
L

Distinctive

Competency

Business

Scope

Business

Governance

Systemic

competencies

Technology

scope
IT governance

FUNCTIONAL INTEGRATION

System Suitability

 - 40 -

Figure 7 Competitive potential alignment

 perspective (Henderson & Venkatraman 1993)

alignment perspective can be seen in Figure 6. It involves implementing the chosen

business strategy through appropriate IT strategy and basing the organizational

infrastructure on this.

Competitive potential

The competitive potential alignment

perspective can be seen in Figure 7. This

is where IT strategy is formulated on the

availability of new IT capabilities that

could be exploited to expand or improve

business scope. The business strategy

can be changed by the IT strategy.

Business

Strategy

Organisational

Infrastructure

IT Strategy

System Suitability

 - 41 -

Service level

The service level alignment perspective can be seen in Figure 8. This perspective

suits an IS service organization. In

this perspective, the role of business

strategy is indirect and is viewed as

providing the direction to stimulate

customer demand. This perspective

also links the robustness and

reliability of the external IT

environment with the system. For

example, if an external support

provider or upgrader is unreliable,

this effects the suitability of the

organizational environment to the system.

The ideal alignment should ensure that:

 The business process suits the external domain.

 The system suits the business process.

 The internal business domain and IS infrastructure suit the system.

3.2.4 Portfolio Assessment

Slee & Slovin (1994) build on the strategic alignment model. They discuss the

questions that must be answered to ensure strategic alignment of IT and business

goals. They consider the Strategic execution perspective put forward by Henderson &

Venkatraman (1993) (see previous section) as the old ideal. This ideal was that a

corporation would express its strategic direction in clear terms, with sufficiently long

lead times for IS to prepare. IS could assess its systems and infrastructure to better

support business goals (Slee & Slovin 1994). They consider the competitive

realignment perspective to be the new ideal , where IT becomes an engine of change,

redefining what is strategically possible, so the future of IT requires holistic

understanding.

Figure 8 Service level alignment perspective.

(Henderson & Venkatraman 1993)

Organisationa

l

Infrastructure

IT Strategy

IS

Infrastructure

System Suitability

 - 42 -

In order to transform the IS organization, Slee & Slovin (1994) suggest six sources of

change:

 Better alignment of business and IS goals and strategies

 Better partnering between the business and IS communities

 Better management and technical processes within IS

 Better skills, practices, tools and techniques at developer level

 Continuous enhancement of IS capabilities

 Metrics for organizational performance

Overall, the organization should be assessed as follows:

 How well does the IS organization compare to industry standards such as the

Software Engineering Institute maturity model?

 How does the IS organization satisfy its customers?

 How well is IS delivering value and responding to needs?

In order to assess the portfolio of applications, Slee and Slovin have two main

evaluation criteria:

 How effectively does a system support business objectives (suitability of business

process to organizational mission)?

 How efficiently does it perform those support tasks (suitability of system to

business process and to organizational environment)?

Those criteria are assessed using business and technical perspectives. Business

objectives are derived from evolving business processes and strategy. IT assets are

mapped against these objectives and evaluated using a comprehensive set of metrics.

The portfolio is examined in chunks, rather than individual systems, thereby ensuring

that the system integration level is also assessed.

To address the third category of system suitability - suitability of the system to the

organizational environment – Slee & Slovin (1994) suggest additional questions:

 How do end-user and formal IS supported solutions interact?

 How do current IT assets support fundamental business goals and processes?

System Suitability

 - 43 -

 How does the applications strategy fit with the technical infrastructure?

3.2.5 Sociotechnical considerations

The suitability of the system to the organizational environment has a large impact on

the success or failure of the system. Traditional systems methodologies do not

address these issues, so these interpretive methods can be utilised at a detailed level.

A system may be unsuitable to the organizational environment within which it

operates. Assessment of these aspects of a system involves interpretive methods

(Preece et al. 1994, Walsham 1993). Walsham (1993) states that interpretive methods

of research start from the position that our knowledge of reality, including the domain

of human action, is a social construction by human actors and that this applies equally

to researchers. Therefore, there is no objective reality – only different realities

depending on the way the perceiver interprets it. These evaluation methods emphasise

the usefulness of findings to the people concerned (Walsham 1993).

Contextual inquiry

Contextual inquiry is a form of elicitation that can be used to assess usability. The

contexts under examination are defined by Whiteside et al. (1988) as work, time,

motivational and social. Users and evaluators identify usability issues of concern

collaboratively, while users are working in their natural environments. Holtzblatt and

Jones (1993) describe a contextual interview that will show up a) structure and

language used in the work, b) individual and group actions and intentions, c) the

culture affecting the work and d) explicit and implicit aspects of the work. This

assessment can be done by a) getting as close to the work as possible, b) uncovering

work practice hidden in words, c) creating interpretations with customers and d)

letting customers expand the scope of the discussion. There are no metrics for

contextual inquiry.

Co-operative evaluation

Co-operative evaluation allows the evaluator to work with the user who will use the

software. More than one user is sampled, and they do the tasks that they normally

undertake. The user explains problems as they are encountered and the evaluator

takes notes. At the end of the session, the two review the notes that have been taken.

System Suitability

 - 44 -

RAMESES project

The RAMESES project aims to derive a strategic model for risk assessment of

business process changes in small to medium enterprises with legacy systems, with an

emphasis on sociotechnical systems (Edwards et al. 1998).

3.2.6 Summary of current practice

The three categories of system suitability that are under review are:

 Suitability of system to business process. This can be ensured by continuously

aligning IS and business both in terms of operational and strategic changes. The

IS organization keeps track of new technology changes in the external IT domain

and the business managers keep track of, and anticipating business changes within

the organization. Both IS and business managers should work together to

maintain a good strategic fit. Approaches that will assist in this objective are

Information engineering, strategic alignment and portfolio assessment.

 Suitability of business process to organizational mission. The business strategy

must be continuously aligned with customer needs and competitor advances. The

external IT domain will show any new technologies that can be used to drive

business process change. Strategic alignment and portfolio assessment ensure that

this will work.

 Suitability of the system to the organizational environment. This is partly covered

during the aspect of strategic alignment that aligns the IS organization with the IS

and business infrastructure. The link between external IT strategy and internal IS

Infrastructure relates the external provider environment to the system. However,

it is likely that problems that arise in this area may need to be re-examined using a

soft systems methodology or by using one of the interpretive methods.

3.3 Common Problems in the Area

There are many different political, financial and cultural reasons why these techniques

are not always carried out. Slee & Slovin (1994) list some of them:

System Suitability

 - 45 -

Political:

 Organizations have invested in IT for many years and are demanding

accountability in regard to the investments already made.

Financial:

 Budget increases have been limited to the rate of inflation for most of the recent

past.

 Companies continue to demand cost reductions and better returns on investment

from every segment of the business.

 A large proportion of most IS budgets is spent on corrections and minor

enhancements to legacy systems.

 The accelerated pace of change – both business and technological - means that

systems are superseded more rapidly than before.

Cultural:

 The same procurement and maintenance processes are being used as were used in

the past.

 The same change control and architectural approaches are being used, on a micro

rather than a macro level.

3.4 Effects of Problems in the Area

The three categories of system suitability that are under review are the suitability of

the system to the business process, to the organizational mission and to the

organizational environment.

3.4.1 Suitability of system to business process

When system suitability is not constantly matched to business process needs, the

system gradually falls out of alignment with the business process (Henderson &

Venkatraman 1993, Bancroft et al. 1997, Edwards et al. 1998, Gibson et al. 1998,

Liu et al. 1998, Ransom et al. 1998). These may be a series of minor events or a

major event such as the millennium (Ramage 1998(1)). The effects of this are:

 Diminishing asset value.

System Suitability

 - 46 -

 Diminishing user satisfaction.

 Increasing cost of maintenance.

3.4.2 Suitability of business process to organizational mission

Before the IT systems are examined, a preliminary analysis of the company‟s goals is

required (Edwards et al. 1998). The SEBPC (SEBPC 1998) (Systems Engineering

for Business Process Change) programme was established in 1996 to “release the full

potential of IT as an enabler of business process change and to overcome the disabling

effects that the build-up of legacy systems has on change”. Therefore, a system that

cannot change has the effects of:

 Diminishing asset value.

 Diminishing user satisfaction.

 Diminishing the ease of use of new technology.

 Increasing the size and complexity of programs, in an effort to get around the

inability to use new technology.

3.4.3 Suitability of the system to the organizational environment

A legacy application can become socially or culturally unacceptable to its users

because of demands it makes of them. The HCI is a prime example of this, where

users are now slower to tolerate an interface that requires a high learning curve. Other

factors that cause user intolerance involve putting the user to unnecessary or

inconvenient work – an example could be the positioning of the computer interface or

the fact that different applications require different sign-ons.

This can be measured using standard HCI evaluation methods (Preece et al. 1994),

such as benchmarking, observation and monitoring and interpretive studies.

Similarly, a new application can be socially and culturally unacceptable to a user

because it demands changes in working practices or operating procedure. In a service

environment, the user is not always an employee – it may be a member of the public.

A member of the public should not be expected to operate a system that requires more

than a superficial effort. The operation of this system is the organization‟s interface to

the public – the response of the machine is the response of the organization. If it is

System Suitability

 - 47 -

easy to use, does what they want and is helpful and friendly, the user leaves feeling

that he / she has been well treated. If, on the other hand, the user is unsure of what is

happening and how to conduct a transaction, they leave feeling badly served and do

not wish to repeat the experience.

Although users may be competent employees, they may not be suitable for the task of

using the application, even if the application is a suitable aid for the task that the users

are doing. The environment in which the task is being carried out could be unsuitable

for use with the application. In many cases, applications look perfect in head office,

but are not practical in hostile environments where the tasks are being done.

Another area of suitability of technology to organizational environment involves the

external technology supplier. Their attitude, robustness, competence, availability,

reliability and endurance should be assessed as part of the alignment between the

external and internal organizational domains.

The effects of this are:

 Diminishing mission criticality in that consistent use of the system diminishes.

 Diminishing reliability, in that the system is being misused or incorrect data is

being entered by users who misunderstand the data being entered.

 Diminishing user satisfaction.

3.5 Effects of lack of System Suitability

The System Suitability causal criteria have now been defined. This section of the

dissertation analyses these causal criteria to determine the effects that they may cause

and produces a table. Table 4 cross-references The Legacy Effect Determination

Framework (Table 2 in Section 2.2.7) with possible underlying causes in the System

Suitability dimension, those causal criteria being suitability of the system to a) the

business process, b) the organizational mission and c) the organizational environment.

Each of the causal criteria has a row in the table. Any effects that may be caused by

that causal criterion is marked with an “X”.

The criticality of the system will diminish if it remains stationary while the process

requirements change. Although the system may still be critical to the business, it is

System Suitability

 - 48 -

not as focused on the needs of the process as it should be. This also applies if the

organizational strategy veers away from the area to which the system is critical, as the

organization‟s mission is no longer being served to such a high extent by this system.

If the organizational environment changes in such a way that the system becomes

difficult to use or support, then the criticality of that system will be compromised,

because it cannot be fully utilised. In this context, change of environment generally

signifies that the organization has moved on in terms of technology or that technology

maintenance is no longer possible due to internal or external environment

considerations.

System reliability is a measure of how consistently the system performs in terms of

producing the results that it should produce according to its functional and technical

specifications, particularly in relation to specified availability as agreed in the Service

Level Agreement (SLA) (Fitzpatrick 1997). This should not be affected by the

suitability of the system to its process, organizational mission or environment.

User satisfaction is based on the users feeling that the task that they have undertaken

is effective towards fulfilling their goal. If the system is not properly focussed

towards the business process it is attempting to enable, users will find themselves

feeding a system to get results, only some of which are useful. Likewise, if the

system does not match the organizational environment, the users may find the need to

go to inordinate lengths to keep the system running properly. Once again, the users

may find the amount of time and effort going in to the system is disproportionate to

the results being produced. The link between user satisfaction and suitability of

system to organizational mission is not quite as strong, but is definitely a potential

problem. The problem here is that users may feel that they are being by-passed or

made redundant, because they are not working on systems that are geared towards the

future.

Ease of testing and auditing is affected by System Suitability in much the same way

that user satisfaction is. If the system is not properly geared towards a business

process, then the specification of the system does not match the business process.

Therefore, in testing and auditing the system, it is necessary to know how the system

is supposed to work, and also in what way that functionality is pertinent to the

business process in hand. If the system is not geared towards the organizational

System Suitability

 - 49 -

environment, support staff may not have the diagnostic or auditing tools that are

necessary to test the system.

Cost of maintenance and resistance to it and availability of maintenance resources are

effected by the suitability of the system to the organizational environment. As

technology has developed over the years, the skills required to develop and maintain

applications has varied widely from system to system. If the IS department depends

on the same individuals to develop and maintain systems using differing technology,

then there may be a shortfall of some of the skills required. Another source of

resistance to maintenance may be that staff are reluctant to work on technology that

has become outdated, as they are not enhancing their marketability. These problems

can be avoided by hiring staff that are appropriate to the technology in the system.

Program size and complexity is a repercussion of either allowing inappropriately

skilled staff to maintain a system or failing to implement Software Quality criteria

(see Chapter 5).

Dependence on individuals is an indication that the system has legacy status.

Although the match of the system to its process and mission may be causes for

leaving it to one or two individuals to maintain, they are not effects of this. However,

if the system is not suited to the organizational environment, it is likely that there will

be some staff who remain from when the organizational environment did suit the

system. These staff members will know the system and have the skills necessary to

keep it working and as such, will become a life-line for those systems.

System Suitability

 - 50 -

M
is

si
o

n
 C

ri
tic

a
lit

y

R
e
lia

b
ili

ty

U
se

r
sa

tis
fa

ct
io

n

E
a
se

 o
f

te
st

in
g
 a

n
d
 a

u
d
iti

n
g

C
o
st

 o
f

m
a

in
te

n
a
n
ce

 a
n
d

re
si

st
a
n
ce

 t
o
 it

A
va

ila
b
ili

ty
 o

f
m

a
in

te
n
a
n
ce

re
so

u
rc

e
s

P
ro

g
ra

m
 s

iz
e
 a

n
d
 c

o
m

p
le

xi
ty

D
e
p
e
n
d
e
n
ce

 o
n
 in

d
iv

id
u
a
ls

E
a
se

 o
f

u
se

 o
f

n
e
w

 t
e
ch

n
o
lo

g
y

S
ca

la
b
ili

ty

x x x

x x

x x x x x x x

System suitability to business

process

Business process to

organisational mission

System technology to

organisational environment

Legacy effects
S

y
s
te

m
 s

u
it

a
b

il
it

y

Ease of

operation
Asset value Ease of maintenance

Ease of

migration /

evolution

Table 4 Effects of failure of system suitability

Ease of use of new technology and scalability may cause a system to become

unsuitable to its process, organizational mission or environment, but they are not an

effect of this occurring.

Scalability may have repercussions for system suitability, but is not caused by it.

There may be a tenuous link between scalability and organizational environment, but

problems of scalability is much more likely to be related to platform criteria.

The area of System Suitability overlaps somewhat with that of Software Quality, in

that the management of process change is closely related to strategic alignment of

business and IT strategy. However, the management of process change is much more

detailed and requires rigour at every level.

3.6 Conclusion

This chapter has examined definitions of System Suitability and revisited current

practices in the area.

Each of the approaches cited has areas that it covers well, but none of them are all-

encompassing:

System Suitability

 - 51 -

 The Information Engineering approach ensures that installed systems are

compatible with business processes currently operating and planned for future

operation within the organization. However, it is not strong on the issue of

suitability of the system to its environment.

 Soft Systems Methodologies do address the environment of the system, but need

to be used in conjunction with any of the development methodologies.

 The strategic alignment model is theoretically very useful, and if competently

addressed, from all aspects, will ensure that systems stay focused on the processes

which they must carry out in the present and the future and also blend in well with

the environment in which they operate.

 Portfolio Assessment offers a broad-ranging view of the issues that can cause a

system to become unsuitable, without supplying a consistently reliable

methodology for changing this.

 Interpretive methods rely largely on the environment in which the system

operates.

There are enough approaches available to enable suitable systems to be developed and

maintained. However, at present, a combination of approaches is required to attain a

suitable system. There are enough real and potential problems in existence to

discourage the maintenance of the necessary alignments and thereby cause a legacy

situation to arise. The effects of a diminishment of System Suitability are presented

as Effect columns marked “X” in Table 4.

It is not easy to achieve and maintain System Suitability, but it is incumbent on

management to strive towards it.

52

Chapter 4 Underlying Platform Suitability

4.1 Introduction

Platform Suitability is the second dimension used to define legacy status in Chapter 2.

The purpose of this chapter is to examine the aspects of Platform Suitability that cause

legacy effects. In order to do this, a definition of platform follows in this section. As

Platform Suitability is a diverse area, the philosophy behind developing an open

system is also discussed in this section. In Section 4.2 current practice in choosing

platforms is discussed. Section 4.3 shows the problems that can prevent the use of

these practices and section 4.4 shows the effects that divergence from these practices

can cause. The chapter gives references for further reading and a conclusion based on

the findings within the chapter.

4.1.1 Definition of Underlying Platform

On breaking down the causal dimensions of legacy status (see Chapter 2), the

underlying platform suitability is one dimension. This dimension differs from

software quality and system suitability in that it is an area that is relatively

independent of the logic of the system. The platform enables the system to be

developed, used and expanded if necessary. While it can enable or inhibit the scope

of change, it is a separate issue from that of system suitability or Software Quality.

For the purposes of this dissertation, the platform on which a system runs includes:

 Hardware

 Networking

 Operating system

 System development environment

 Data storage mechanisms

Underlying Platform Suitability

 - 53 -

4.1.2 Open systems

A system is understood to have a boundary, chosen according to the human observer‟s

particular purpose and priorities, which separates it from its environment. Given this

understanding of boundary and environment, systems may be classified as closed

where nothing from outside, except pre-chosen parameters, can cross the boundary, or

as open where possibly unknown elements from the environment can have an effect

(von Bertalanffy 1968). In simpler terms, a truly open system is one that can be built

on one manufacturer‟s machine and moved to, or communicate with another with

little or no change. If there are several manufacturers‟ machines in use and networked

throughout the organization, then systems or components of systems, which are

resident on one machine, should be able to inter-work or communicate with those on

another. This allows them to transfer information and carry on working when new

manufacturers machines and environments are added to the network and new systems

are written. Graham (1995) sees open systems as having this double aspect of future-

proofing systems against the exigencies of commercial hardware manufacturing and

also enabling systems to work together and co-operate in a way that can be

understood and utilised by the business.

The users of today expect to be able to use the latest communications devices to get

the service they require. Organizations find that their staff mobility is increasing and

users now expect to be able to access systems from different sites, using Internet web

servers and browsers, by Electronic Data Interchange (EDI), or by use of a third-party

agent. These facilities must be integrated in to a situation where the processing that is

currently on-going in an organization - on-line and batch systems - are also

accommodated. It is therefore a necessity to be able to support systems that are split

over different platforms.

In order to accommodate requirements in the most flexible way, an I/S organization

needs to take advantage of the latest in information and communication technology.

4.1.3 The ideal

Organizations vary in their use of mainframe machines, private networks, intranets

and the Internet. Intranets enable organizations to link their home-based users to

Underlying Platform Suitability

 - 54 -

sensitive corporate data, allowing them to share information with distributors and

partners. These intranets offer a high level of openness, good performance and good

interaction. The similarities between LANs, WANs and intranets are being exploited.

“Several companies are going from the situation where they had in-house applications

on a private network, where for example, resellers of their goods could order products

on-line, to a situation where they are using a Web-server to host their applications off

an intranet. This allows greater traffic and gives access to a wider number of users.”

(McCarthy, 1997).

The opportunities offered by this level of information sharing are the subject of James

Martin‟s (1996) deliberations. He describes the possibility of vast international

corporations with a flat structure based on virtual operations on a web of electronic

links both internally and to other corporations. The Internet is almost world-wide at

present, giving users access to information from around the globe. The fact that

millions of users are accessing the same network gives rise to a global collective

consciousness, where chains of technology feed more technology. Aside from the

Internet, companies can use their own set of links to make knowledge available, in a

controlled fashion, world-wide. This in turn means that if a service is required, the

best, not the nearest can be used.

Bernstein (1996) explains the ideal vision: “Each knowledge worker has a desktop

appliance that connects to an information utility. The utility is an enterprise-wide

network of information services, including applications and databases, on the LANs

and WANs. Servers on the LAN typically support files and file-based applications

such as E-mail, bulletin boards, document preparation and printing. Local area

servers also support a directory service, to help a desktop user find other users and

find and connect to services of interest. WAN servers support access to databases and

electronic libraries, or transaction processing applications, such as purchasing, billing

and inventory control. Some servers are gateways to services offered outside the

enterprise, such as travel or information retrieval services, news feeds and electronic

document interchange with business partners. In response to such connectivity, some

businesses are redefining their business processes to use the utility to bridge formerly

isolated component activities. In the long term, the utility should provide the

information that people need when, where and how they need it.”

Underlying Platform Suitability

 - 55 -

Not all organizations need or want world-wide access. However, all organizations

should be aware of the possibilities that are offered by distributed systems, so that

they can make an informed choice. The intention in this chapter is to examine the

criteria that make a platform component suitable or unsuitable for the system under

consideration.

4.2 Current Practice in the Area

Choosing and managing a platform involves a combination of different choices. In

order to manage this combination, the ideal, as described in the previous section, must

be kept in mind. The requirements of the application or suite of applications that need

to be accommodated can be used to shape this ideal. Once this is done, aspects of the

platform can be chosen for their technical qualities within the parameters of the ideal

described.

4.2.1 Achieving the Ideal

To achieve this ideal, systems should be built in as flexible and open a manner as

possible. This can be done when designing a system by:

 Splitting the problem a system addresses into component parts, each component

containing data and logic.

 Layering the architecture on which the application sits, so that higher layers are

platform independent.

 Controlling the message traffic between components by using a message broker.

 Providing an appropriate development environment for the application.

Splitting the problem

There have been, broadly speaking, three information technology eras. In the first -

1950-1970, the emphasis was on the process. Data was input to the process, the

process executed and results were output. In the second era – 1970-1990, thought was

given to the fact that the data for an organization could be reused. The data was

organised into a structure – hierarchical, network or relational – and stored in this

order. Applications were tied into the database where necessary and were granted the

access they required. In the latest era, the logic and the data are tied together and are

Underlying Platform Suitability

 - 56 -

treated as one component or object. The data is treated as attributes of the component.

Rather than requesting the data, the component is asked to provide a service, which

will give a result. Neither data nor logic is disposable. This is the basis of object

technology and of component-based development (Schulte 1996).

The object-oriented paradigm is based on the idea that data and its functionality are

highly interdependent. Functions operate on data, to give or store information. The

data on its own is useless - functions are needed to interpret the data to give

meaningful information. The definition of an object includes the object‟s data and its

behaviour. In object-oriented systems, data and the operations on that data are stored

together. An object is accessed through the operations that act on it - its data is hidden

or encapsulated inside the workings of the object. Objects communicate by sending

messages to each other. Objects, like any other application data and software, can be

distributed over different platforms and networks. Distributed objects can be used by

clients on remote platforms, with the client needing only to know how to invoke an

operation on the server object, without needing to know on which server the object

resides (Orfali et al. 1996).

A component is an object that is language and platform independent. Components

can be grouped together to form applications, or bigger components. A component

offers a service to the client. Orfali et al. (1996) define a component as having the

following properties:

 It is a marketable product.

 It is not a complete application.

 It can be used in unpredictable combinations.

 It has a well-specified interface.

 It can be invoked across address spaces, networks, languages, operating systems

and tools.

Service-oriented architecture

“This is a particular style of multi-tier computing that helps enterprises share logic

and data among multiple applications. It assumes multiple software layers and

usually has thin clients and fat servers. It works on the principle that many aspects of

Underlying Platform Suitability

 - 57 -

processing logic are inherently tied to the data, rather than being associated with a

particular application” (Schulte 1996).

As technology changes from year to year, there is no one ideal

platform solution. In order to provide a truly open system, it is

necessary to separate the business problem from the platform.

This requires a change in architecture of the platform or

platforms on which the business system sits. System

architecture has changed over the years, from a single tier to

three or more tiers (Frost & Allen 1997) (see Figure 9).

Centralised applications are based on a single tier - all the

application logic is together - data access logic, business rules

(including communication with other processes) and

presentation logic. A huge number of legacy applications are

based on this type of architecture.

 The next generation consists of systems that are split over two layers or tiers - one on

the client machine and one on the server machine. The split differs from application

to application, generally with data on one side and presentation logic on the other.

A new three- or multi-tier architecture allows logic to be split into layers. The most

distinct layers would be the data access layer and the presentation layer. The data

access layer communicates with stored data. This layer contains all functionality and

business rules that are specific to the stored data object. At the other end, the

presentation layer contains all functionality relating to application interfaces,

including some business rules that are specific to a particular interface. In the middle,

there are layers or components, which look after any inter-process, inter-application or

cross-platform communication. The content of these layers will vary, with some

being standard across applications and others being highly application specific.

In order for integrated systems to benefit from component-based software, they

require three- or multi-tier architecture. A range of services that provide that extra

layer of separation is known as middleware services. These are distributed system

services that have standard programming interfaces and protocols. These services

reside in a layer above the Operating System and networking software and below

Figure 9 Three-tier

architecture

Data Access

Application logic

Presentation

Data

Underlying Platform Suitability

 - 58 -

industry-specific applications. Middleware services are distributed and include a

client part, which supports the service‟s application programming interface (API)

running in the application‟s address space and a server part, which supports the

service‟s main functions and may run in a different address space.

Middleware services allow an application on one machine, with one type of network

software to talk freely to another application on another machine with a different type

of network software.

One part of the software in the service needs to be specific to the machine - this part

needs to be tailored to the operating system and networking software, but independent

of the application - i.e. a system protocol. Support of standard protocols enables

programs to interoperate – i.e. one system can access programs and data on another

system. This is only possible if the two systems use the same protocol (i.e. the same

message formats and sequences) and the applications that are running on those

systems have similar semantics, so the messages map to operations that the

applications understand (Bernstein 1996).

The other part of the software needs to communicate with a standard application,

without needing to know the operating system or networking software on which it

resides - i.e. an Application Program Interface. Common APIs or Application

Program Interfaces can solve user interface problems, and make it easier to port

applications to a variety of server types, giving the customer some independence from

the vendors. The interface requirements include database, communication,

presentation and other services.

At its most basic, middleware can be defined as the methods which hide the

send/receive semantics that are handled by the application software in two-tier

systems. Types of middleware are :

 Remote procedure calls (RPCs). An RPC sends a call from one machine / process

to another for some service. (Tucker 1997) When the developer is writing the

server object, it is first defined using an interface definition language (IDL). The

IDL file goes through a pre-compiler, which produces the skeleton server class.

The developer then fills out the skeleton with the functionality for the method and

compiles it. This compilation is multi-purpose; it describes the object to an

Underlying Platform Suitability

 - 59 -

interface repository, it produces client and server stubs for the method and

produces code to implement the code on the server. A utility is provided to

compile the IDL information in a persistent data store that can be accessed by

programs at run-time. The run-time objects are instantiated on one or more

servers. At instantiation, the run-time objects are registered with the

implementation repository. The developer need not get involved in developing

communications code, or tracking the exact location of run-time object instances

(Orfali et al. 1994). RPCs are synchronous.

 Message-oriented middleware (MOM). Messages are sent by the application to the

MOM. The MOM saves the messages in a queue for receipt on another machine.

Messages are asynchronous, which means that the client does not wait for a

server. The MOM makes sure that the message reaches its target at some stage,

but the receiving program can control the timing of the reading of the message.

One of the big advantages to this is that clients and servers can communicate

across a network without being linked by a private, dedicated, logical connection

and can run at different times. (Orfali 1996). MOMs also provide the ability to

hide the communications protocol from the application.

Middleware methods free applications from send/receive semantics, which bind them

to platforms.

Traffic control

One of the big problems in scaling up system size is that of managing message traffic.

Message brokers provide a solution. The use of object technology can add a new

element to the solution, by packaging application services into components and

brokering those components.

Message brokers

Inter-application communication can either be managed directly by the application, or

through a message broker. A message broker is “an intelligent third party (hence

“broker”) working between information sources and information consumers. It makes

communication an independent, shareable function rather than something that is

limited to two parties” (Schulte 1996). Traditionally, if an event occurred at one task

and this task needed to inform three other tasks, this task would send out three

Underlying Platform Suitability

 - 60 -

messages and receive back three

messages, as shown in . Likewise,

any of the other tasks that needed to

communicate a message to the

group would need to communicate

to three tasks and receive three

replies.

Figure 10 Inter-application communication without

a message broker

However, with the use of a message

broker, the task needs only to send

out one message and receive back

one reply. The message broker

handles communications with the

other three tasks (Figure 11).

Message brokers allow

communication between compatible

tasks. The tasks still need to be

connected to the message broker,

which is just as difficult as making

traditional connections. However,

once connected, the task can reuse

this connection to communicate

with new tasks.

The broker itself has an API through which applications can communicate with it. A

message broker can be based on messaging, message-queuing or RPCs (Schulte

1996).

Object request brokers

An object request broker (ORB) is a message broker that works on objects or

components. Objects are registered with an ORB and the ORB manages all requests

Figure 11 Inter-application communication with a message

broker

Task 1
Message broker

Task 2

Task 3

Task 4

Task 1Task 2

Task 3
Task 4

Underlying Platform Suitability

 - 61 -

for that object (Tucker 1997). The ORB is the middleware that establishes the client-

server relationships between objects. A client can transparently invoke a method on a

server object, which can be on the same machine or across a network. The ORB

intercepts the call and is responsible for finding an object that can implement the

request, passing it the parameters, invoking its method and returning the results

(OMG 1997). Most ORBs follow either a standard called CORBA - common object

request broker architecture, or DCOM - Distributed Component Object Model

produced by Microsoft. Internet Inter-ORB Protocol (IIOP) is a CORBA based

protocol, promoted by the Object Management Group (OMG), for communications

between objects and applications, particularly on the Internet and within intranets

(Tucker 1997).

ORBs are set up to deal with objects only. This restricts their use with legacy

systems, making them suitable only for object-oriented legacy systems or those that

have object wrappers.

The concepts of brokers handling messages and application services being released as

components gives the system designer flexibility at a higher level of granularity.

Message brokers allow functional integration. This is where programs communicate

with each other by sending messages and waiting for replies. This communication

may be synchronous or asynchronous. In general, functions are shared within one

domain and functions are transferred between domains. Within an application

domain, data is processed by a shareable “service” (a set of business rules and data

access logic). Between application domains, production databases are encapsulated

on a coarser level. Only their respective, native application programs access them, so

edits, integrity checks and business rules can be reused. Both within and between

domains, only one development group need know the data models and semantics of

the data (Schulte 1996).

4.2.2 Development environments

Multi-tiered systems require a new type of development environment, both to allow

development of new components and to allow reuse of components that are already

available. Traditional systems development environments are unsuitable, from the

Underlying Platform Suitability

 - 62 -

point of view of business logic, database logic, programming interface logic or human

computer interface logic. The type of development environment usually put forward

is a framework.

Frameworks

A framework is an environment that is defined by an API, a user interface and a set of

tools. It may also have framework-private middleware services in addition to ones

that it imports. It generally maintains context across services and specialises the user

interface. It can also offer a simplified sub-set of a service, which is all that is

necessary in the context of the framework. The framework includes tools, which are

generic applications that make the framework easier to use. Frameworks have a

platform isolation layer, which is a set of services for memory, file, process and

environmental management. To enable portability of higher layers, these services

have the same semantics across various versions of many platforms, such as Microsoft

Windows, Apple Macintosh, IBM OS/2, Novell NetWare and several variants of

UNIX (Bernstein 1996).

The business application is developed using components from the framework and

with some additional process-specific components.

4.2.3 Attributes of hardware

Although integrated systems are the ideal, a system should be measured, not just on

its level or capacity for integration, but also on its need for integration. There is a

wide range of hardware available, and processors with differing capacities,

advantages and disadvantages can be chosen.

According to Laudon & Laudon (1998) management should be involved in the

procurement of hardware. They should understand the capabilities of various

computer processing, input, output and storage options as well as price-performance

relationships. They should be involved in hardware capacity planning and decisions

to distribute computing, downsize or use network computers. Attributes that need to

be considered are:

 Hardware type: mainframe / minicomputer/PC(networked/standalone)

Underlying Platform Suitability

 - 63 -

 Processor size compatibility

 Upgradeability

 Reliability of vendor

 Standardisation of ports and peripherals

 Scalability

 VLSI/RISC/CISC etc.

 Robustness

 Cost

Rightsizing is the process of choosing between platforms, that is the process of

selecting the correct or most appropriate hardware platform for the given business

application (Robson 1997). Management should weigh up the considerations

involved in downsizing as shown in Table 5.

Downsizing advantages Downsizing disadvantages
Greater user control and power Weakened central control

Increased flexibility Technical complexity

Decentralised costs Hidden costs

Lower costs Large initial capital outlay

Improved responsiveness Disruptive to business

Encourages purchased systems Discourages common systems

Reduces IS workload Increased user workload and skills demand

Encourages innovation Staff resistance/ Skill shortfall

Eases and speeds integration Database disintegration

Business responsiveness User management distraction

Moves to open systems Encourages parochialism

Faster system development Fragments strategic direction

Table 5 Downsizing considerations

4.2.4 Attributes of operating systems

If an organization wants an operating system for its mainstream business applications,

it needs an operating system that is compatible with the software required by these

applications. It should be easy to use and install. Its user interface features should be

easy to learn.

Mission critical applications need an operating system that will provide reliable

support for multitasking and memory management. These systems typically have

large volumes of transactions to process and require operating systems that can handle

Underlying Platform Suitability

 - 64 -

large complex software programs and massive amounts of data (Laudon & Laudon

1998). Attributes that need to be considered are:

 Vendor reliability

 Standardisation of hardware requirements

 Obsolescence

 Dependence on specific hardware

 Application availability

 Middleware / ODBC availability

 Scalability

 Security

 Performance

 Robustness

 Support for graphics, calculation power

 Cost

4.2.5 Attributes of networks

Fitzgerald & Dennis (1996) list the network evaluation criteria, from the management

focus as:

 Time - Are elapsed time, transaction time, overall processing time, response time

or other operational times quick enough?

 Cost - Are annual network cost, per unit cost, maintenance cost, or others, such as

operational, investment and implementation costs, in line with expectations?

 Quality - Is a good product or service being produced? Is there more rework

because of the network? Has the quality of data/information diminished?

 Capacity - Does the network have the capacity to handle workloads, peak loads

and average loads, as well as the long-term future capacity?

 Scope - Is the network‟s scope properly defined? Does the network interconnect

all the necessary business functions?

 Efficiency - Is the network efficient?

 Productivity - Is productivity of the user (information provider) and management

(information user) as expected? Is decision making fast and accurate?

Underlying Platform Suitability

 - 65 -

 Accuracy - Are there few errors? Can management rely on this network?

 Flexibility - Can the network perform diverse operations that may be required?

 Reliability - Are there fewer breakdowns of this network compared with network

goals?

 Acceptance - Have the information providers, the information users and the

management accepted the network?

 Controls - Are there adequate security and control mechanisms in place to prevent

threats to the network, such as errors or omissions, fraud and defalcation, lost data,

breaches of privacy, disastrous events, and the like?

 Documentation Does the network have adequate written / pictorial descriptions

documenting all its hardware, protocols, software, circuits and user manuals?

 Training Are training courses adequate and are they offered continually, especially

for users? Are training manuals adequate and updated regularly?

 Network life Is the future life of the network adequate? Does it have sufficient

capacity for long-term growth?

Goals of network design are :

 Minimum circuit distance between the various computers.

 Adequate circuit capacity to need today‟s data transfer needs, as well as those

required three to five years in the future.

 Efficient software / protocols that can be used on a variety of circuit

configurations including satellite circuits that permit the network to interconnect

with national or international networks as well as with e-mail systems, use multi-

vendor hardware, and connect to public packet switched networks.

 A very high level of reliability (network uptime) must be met. This may be the

most important factor. The network designer always should remember that when

business operations move into an online, real-time data communication network, it

is as if the company had closed its doors to business when the network is down.

 Reliable hardware that offers minimum cost, adequate speed and control features,

a high meant time between failures (MTBF), and good diagnostic / serviceability

features.

 Reasonable costs.

Underlying Platform Suitability

 - 66 -

 Acceptance of the network by both day-to-day users and managers who must use

its data or information.

 Sufficient security and control for the highest risk application using the network.

4.2.6 Attributes of development environment

The development environment consists of the tools available to develop the

application software for the business system. It consists of a set of translators that

translate code into a format that can be read by the system. The development

environment, depending on its sophistication, may allow inclusion of components that

are already available as part of the development framework or from a component

repository.

Management should be aware of the strengths and weaknesses of various software

tools, the tasks for which they are best suited, and whether these tools fit into the

firm‟s long-term strategy and information architecture. Tradeoffs between efficiency,

ease of use and flexibility should be carefully analysed. (Laudon & Laudon 1998).

Attributes that need to be considered are:

 Openness.

 Standardisation.

 Portability.

 Adaptability.

 Suitability to platform.

 Suitability to application.

 Suitability to database.

 Suitability to human computer interface.

 Adaptability to programming interfaces.

 Robustness.

 Efficiency.

 Adaptability to batch processing.

 Object or component-based or not.

 Documentation.

Underlying Platform Suitability

 - 67 -

4.2.7 Attributes of data management

Data storage mechanisms have changed over the years from flat files, through

hierarchical, network and relational data models and on to object-oriented, multi-

media and hybrid databases. Databases have been distributed over networks.

Additional integrated informational needs have been supplied by operational data

stores and data warehouses.

Conventional database management systems were designed for homogeneous data

that can be easily structured into predefined data fields and records. But many

applications today and in the future will require databases that can store and retrieve

drawings, images, photographs, voice and full-motion video.

Attributes that management needs to consider when assessing a database system are:

 Data administration with regard to

 Sharing.

 Disseminating.

 Acquiring.

 Standardising.

 Classifying.

 Inventorying.

 Data planning and modelling (see Software Quality).

 Database technology and management.

 Organise structure and content.

 Develop security procedures.

 Develop documentation.

 Maintain database management software.

 Users.

 Training.

 Privacy.

Managers need to evaluate the costs and benefits of implementing a database

environment and the capabilities of various DBMS or file management technologies.

Key technology decisions should consider the efficiency of accessing information,

Underlying Platform Suitability

 - 68 -

flexibility in organising information, the type of information to be stored and

arranged, compatibility with the IS infrastructure and data or object model (Laudon &

Laudon 1998).

4.2.8 Platform Configuration

The choice of an appropriate platform is not based solely on the quality of an

individual piece of hardware or support software. It is based on defining the needs

that the organization will have with regards to network scalability and versatility of

hardware, operating system, development and operating environment and data

management systems. Once the platform characteristics that are ideal for the

organization have been identified they can be matched as closely as possible with

configured components.

4.3 Common problems

Within many organizations, different groups, using a variety of tools, databases and

languages, on a variety of platforms and operating systems have developed systems

over the years. Packages were bought in to service a particular need, which did not

communicate with any other systems. This diversity has occurred even within a

business unit, resulting in several stand-alone systems being used by the same

operating personnel. Users may use different logons, user interfaces and different

physical peripheral devices to access different systems in the course of a day‟s work.

Quite often, the user enters the same piece of data into two or more systems

independently. Systems grew around the area where a problem needed to be solved

and were written to serve only those customers who were customers at the time of

writing and only for the specific service requested. Any data that is transferred

between systems is sent by means of extract and update programs or database

gateways, using two-tier client/server systems, where communication logic is written

in to the system software at client and server ends. There is no sharing of data

processing (Schulte 1996).

Underlying Platform Suitability

 - 69 -

4.3.1 Hardware

Adolph (1996) listed some of the problems that can be encountered when a system

ages. The hardware may suffer from “bizarre restrictions such as 64Kbyte segments

or 80-column record restrictions”. He also mentioned a) performance problems and

memory limitations, b) host computer becoming difficult to obtain and service, and c)

scalability being limited by the host computer‟s processing capacity. He also showed

how the size and complexity of the program lead to constant patching, which made

the reliability questionable.

Adolph‟s (1996) criticisms of older systems are based in a modern context. Although

these restrictions were necessary and valid for the hardware that was used at the time,

hardware has now moved on, with the consequence that many of these restrictions are

no longer meaningful, especially where software has been moved off the restrictive

hardware. Likewise, although modern programs are also large and complex, there is

not the same dependence on hardware restrictions as there was then.

Although there are cases where the hardware on which a system runs has been tailor-

made for the task, this is not generally the case in the area of legacy business systems.

That scenario is more likely to present in process control systems. Most legacy

business systems are running on a large mainframe or mini-computer or cluster of

mini-computers that are provided by a single manufacturer with a proprietary

operating system. In general, these older machines are quite conservative and

restrictive in the use they can make of new technology. While this was not a problem

in the hey-day of these systems, it has become a problem, because customer

expectations are raised to new heights. This is not just a problem with the machine,

but with the operating system and software development environments offered by the

older platforms. These systems are therefore rarely capable of incorporating new

business processes using the latest technological innovations quickly or easily

(Gibson et al. 1998). This is a modern problem, which has arisen due to raised

expectations regarding what services a system should provide and how quickly that

service can be incorporated or changed. Modern mainframes and minicomputers have

overcome these problems and have the added advantage over personal computers of a

much better security system.

Underlying Platform Suitability

 - 70 -

There are two areas where custom-built hardware can cause problems in business

systems.

a) Custom-built peripherals are used for input or output that has been done over the

years in a specific way. These peripherals offer an interface to the customer that has

been established as being reliable and trustworthy. However, these high-cost devices

are unable to adapt to changing technology such as electronic transfer or change in

format of the data being offered for input / output.

b) Incompatibility between process control system (e.g. power monitoring or

automated vehicle control) hardware and financial system hardware. The approach

taken towards developing process control systems has differed radically to that of

developing business systems. In most cases, within the same organization, different

teams will build these two types of systems on different types of hardware, using

different operating systems, completely different development approaches, different

programming languages and different data storage mechanisms. Semi-state

organizations are providers of infra-structural services to the community that are

likely to involve process control systems. This leads to problems when trying to share

data or processing among the systems in the organization. The status of process

control systems is outside the scope of this dissertation, but information systems that

need to interface to process control systems must have the flexibility to do so.

Moving from legacy hardware can cause problems, especially in the areas of

accountability for cost (Slee & Slovin 1996), worries about reliability, security and

ability to maintain (Slee & Slovin 1996) and need for new training and change of

attitudes (Adolph 1996). Staying with old hardware can incur risks of obsolescence,

dependence on a single supplier and restrictions on business change and growth. It is

necessary, therefore, not just to decide to leave legacy hardware behind, but also to

evaluate future options very carefully, so that the advantages offered by older

hardware are not lost.

4.3.2 Operating system

Operating systems can be tied to the hardware that they service. Unless an operating

system is in reasonably widespread use, it is unlikely that it will support the required

Underlying Platform Suitability

 - 71 -

range of middleware or supplied software. Operating systems can limit use of new

technology.

Problems related to changing from one operating system to another include lack of

openness of applications already running on the operating system, worries about

robustness, security, life-span, compliance to standards, performance and availability

of components to run on it. In regard to middleware products, it is difficult to choose

which protocols and APIs to use, as there is a risk that the chosen one will become

obsolete due to uncertain market forces (Bernstein 1996). Therefore, in choosing new

technology, it is necessary to thoroughly check out the reliability and stability of the

technology, so that it will endure for the lifetime of the system that is based on it.

This requires a balancing act – certain technology leaders will risk unproven

technologies to gain competitive advantage. While this is a valid option, there is no

doubt that it is a risk. Organizations who are not at the leading edge of technology

should be slow to opt for a technology that has not been proven. This does not

exclude these organizations from upgrading their systems. Platform technology does

not need to be the newest on the market to provide those attributes that are cited

above.

4.3.3 Networking

Along with problems of incompatible hardware, there can also be communications

problems. Communications may have inadequate bandwidth to suit expected needs

projected over the next five years, or be using non-standard communication protocols.

Network gateways may be bottlenecks, which will stifle the growth of the network.

The cost of maintaining the current network infrastructure may be disproportionate to

its value to the business or even to networks providing similar value elsewhere. It is

difficult to move these systems from one platform to another. It is costly and difficult

to scale adequately for growing business demands. As semi-state organizations often

own or have control of physical networks such as railways, power lines or

telecommunications lines, there is a possibility for them to own their own

communications network. While this gives them more control over its use, it also

lessens the incentive to upgrade bandwidth or communications technology, thereby

hampering their ability to take advantage of advances in this technology. It also gives

Underlying Platform Suitability

 - 72 -

rise to the possibility of hybrid networking techniques, which cause problems unique

to the site.

“Likewise, distributed databases have not replaced centralised databases and end-

users have not taken over. C/S has become dominant, but is changing. New delivery

channels; mobile, Internet and inter-enterprise messaging are supplementing C/S.”

(Schulte 1996).

Once again, it is necessary to achieve a balance when acquiring new technology.

There are definite restrictions in staying with outdated networks, but there is also a

risk in going to new technology. The stability and security of older systems should

not be thrown away lightly, but often a combination between old and new technology

can offer the optimal solution.

For networking, speed of access, security and privacy require relatively new

technology. This should not be allowed to exclude the use of other aspects of the

platform that have aged gracefully.

4.3.4 Development environment

“Early tools and design practices are giving way to more sophisticated technology and

management approaches.” (Schulte 1996)

The development environment consists of:

 the development mechanism for business rules software.

 the development mechanism for interfacing software, to data, human / computer

and other applications.

Arnold (1989) Levey (1995) and Bancroft (1997) are among those who recognise the

difficulties that arise from trying to maintain software on older environments. The

language and operating system used to develop a system are vitally important to its

ability to age gracefully. If the language is relatively standard and is upgraded

frequently, then this gives the system a longer lifetime. Adolph (1996) cited the

obscurity of the development environment (programming language, line editor,

Underlying Platform Suitability

 - 73 -

assembler and linker and cryptic command language) as difficulties in maintaining

code.

While systems that were written in Cobol in the 1970s are still in use today and can be

modified to take advantage of modern development practices, amendments are still

slower than they would be if the language were more flexible. Most business systems

are written in languages that, although they are more tedious than modern languages,

are still maintained by their suppliers. However, the lack of flexibility in these

development environments causes problems. The business software may not be

independent of the human-computer interface (HCI) or the data management. This

problem is even worse when a development environment that is no longer maintained

by the supplier has been used. The impact of having to learn an outdated and obscure

environment is very damaging to programmer morale, in that the experience gained is

unlikely to be useful in the future. In many cases, some code generation is done,

meaning that the executable code could reside in obscure libraries throughout the

system. This cuts down the traceability of the system considerably. It is more

difficult and therefore more expensive to employ personnel to maintain or enhance the

systems based on outdated platforms. Programmer productivity is down due to the

complex nature of the task and the inadequacy of the tools, causing the need for

development programmers to remain artificially high. In the opinion of this author,

this is a problem that is in its infancy. As platforms become more and more diverse,

they also become obsolete more quickly. This problem is particularly evident in the

PC end of the market, towards which a lot of organizations are heading.

This problem can be overcome by choosing the development environment with care.

No technology is proven when it is brand new. Languages such as Cobol will take a

very long time to disappear and may never completely disappear. However,

approaches at upgrading these languages to a more modern environment can often

lead to an environment that is clumsy and not as reliable as its predecessors. Choice

of development environment should be based on the suitability of the environment for

the job in hand and also its prevalence in the marketplace. An environment with a

higher profile, although it will eventually become obsolete, will have a bigger

following and will therefore be upgraded for longer and will offer a wider range of

experts.

Underlying Platform Suitability

 - 74 -

It is often the case that more than one development environment is in use in an

organization, and these environments are not compatible. Different groups, tools,

databases, platforms, operating systems, languages are in use and are not integrated,

even within a business unit.

This problem can occur where process control systems are in use in the organization,

which can effect interfaces to business systems or non-standard devices, is that the

programming of these is non-standard and may be device-specific. Some process

control systems are written in an assembly language that is specific to the hardware on

which they run. When evaluating an environment for business systems, its openness

to these process control environments is a factor.

Risks that are incurred in updating to new development environments are:

 development environment complexity.

 development environment standardisation.

 development environment life-span.

Despite the emergence of new tools to help in the construction of open and shareable

systems, the process of splitting the problem over layers - particularly the

client/server split - is still left to the service developer and is not always

straightforward. (Bernstein 1996).

4.3.5 Data management

“Relational database management systems (RDBMS) are now ubiquitous. Distributed

databases have not replaced centralised databases and end-users have not taken over.

Most enterprise IT portfolios consist of many application domains that are joined,

where necessary, in a clumsy and non-integrated way. In some cases, systems within

a domain will have consistent technology, data models and semantics, but not always.

Between heterogeneous domains, this consistency tends to disappear…. Operational

data stores are generally read-only databases, operating something like a data

warehouse, more for predictable transactional look-ups than ad-hoc decision support

queries. These are forever redundant with legacy and purchased application data

models, which sharply define their limits”. (Schulte 1996)

Underlying Platform Suitability

 - 75 -

Data management is an area that has changed a lot since the 1970s. It also differs

greatly between process control and business systems. Process control systems tend

naturally towards an object-based design, which may use flat files or be supported by

an object-oriented database. Business systems tend to be based on either a hierarchical

or relational database management system, or on a file management system

A legacy business system may contain valuable data but lack the power and agility to

meet current organizational needs (Brodie & Stonebraker 1995). This data may be in

the wrong format or out-of-date and difficult to integrate with other data. If the data

management system being used is particularly old or non-standard, it is likely that any

attempt at reading or updating it requires programming using a third generation

language. Older systems generally had a lower user involvement in their development

and ownership of the data or system is often not established (Bancroft et al. 1997).

As responsibility goes with ownership, there may be no notion of who is responsible

for the accuracy or security of the data. As users may be entering the same data into

two or more systems, there may be a breach of data integrity. The definition of the

same piece of data may differ between systems, or be too rigidly defined within a

system, leaving little room for change, as is happening with the Year 2000 crisis. Data

management systems vary from file management, which involves coding the data

structures into the system programs, through hierarchical, network and relational

database systems and on to object-oriented or hybrid database systems. During the

last few years, advancements in the area of sharing data from different data

management system providers have begun to emerge.

Problems that exist in the area of data management are:

 Diversity of data management systems in use.

 Incompatibility of data management systems in use.

 Inflexibility (in terms of business change and growth) of current data management

systems.

 Current systems have an infrastructure that is data-based, so it is difficult to veer

from this.

 Despite the centralisation of data, this data can be updated from different

processes, giving rise to possible integrity losses between processes.

Risks incurred in adapting new data management methods:

Underlying Platform Suitability

 - 76 -

 Chosen proprietorial database may become obsolete.

 May not be compatible with existing systems.

 Large investment in changing I/S infrastructure and support processes.

Object-oriented databases such as POET are in existence today, but have not yet

gained a wide market-base in the area of business applications. Object-based systems

are now more likely to use a relational or hybrid database to store the data part of the

object. Many database management systems, particularly relational databases, are

used as part of a fourth generation environment, which also provides a development

and operating framework. These environments allow rapid application development

and many of them have adapted over the years to become hybrids of their former

classification (Oracle (www.oracle.com)). Those with a wide market-base are also

likely to endure throughout changes in the world-wide environment. They have also

established themselves to such a degree that other software developers have used

them as a basis for their products. However, it would be foolish to underestimate the

disruption to the organizational environment that is incurred by introducing a new

database management system throughout the organization. It is likely that some

incompatibilities with existing systems will occur and also highly likely that existing

staff skills will not meet the challenges of the new technology without substantial

retraining and raising of staff numbers.

4.3.6 Platform configuration

Each aspect of a platform can cause problems, of and within itself. Technology

changes so rapidly that a platform can become outdated in a short space of time. It is

not possible to update platforms every time new technology emerges. However, by

careful planning and evaluation of future platform needs, the lifetime of a system that

resides on it can be greatly elongated.

4.4 Effects of problems

Lack of openness can lead to a downgrading of service, in that communications with

other systems or platforms cannot be direct. These communications may take the

form of semi-automatic (i.e. a tape or disk may be used to transfer data from one

system to another. Examples of this are certain instances of Electronic Funds

Underlying Platform Suitability

 - 77 -

Transfer at Point of Sale EFTPOS and Electronic Data Interchange EDI) or manual

(the data is printed out from one machine and typed in to another). The former

method suffers from the fact that there cannot be two-way communication. This

stifles the system‟s ability to adapt to change in the environment by integrating with

other systems and platforms. Table 6 cross-references the Legacy Effect

Determination Framework (

 Table 2) with possible causes relating to the underlying platform suitability

dimension. Each of the causal criteria has a separate row in the table. In the row, a

column marked with “X” indicates an effect that may result because of a weakness in

that causal criterion.

Legacy effect determination framework

 Effect Present Absent or
Undetermined

Asset value Mission criticality

Reliability

Ease of operation User satisfaction

Ease of testing and auditing

Ease of maintenance Cost of maintenance and resistance to it

Availability of maintenance resources

Program size and complexity

Dependence on individuals

Ease of migration / evolution Ease of use of new technology

Scalability

Underlying Platform Suitability

 - 78 -

Legacy Effects

U
n

d
e

rl
y

in
g

 p
la

tf
o

rm

s
u

it
a

b
il

it
y

M
is

s
io

n
 c

ri
ti
c
a
lit

y

R
e
lia

b
ili

ty

U
s
e
r

s
a
ti
s
fa

c
ti
o

n

E
a
s
e
 o

f
te

s
ti
n

g
 a

n
d
 a

u
d
it
in

g

C
o
s
t

o
f

m
a

in
te

n
a
n
c
e
 a

n
d

re
s
is

ta
n
c
e
 t

o
 i
t

A
v
a
ila

b
ili

ty
 o

f
m

a
in

te
n
a
n
c
e

re
s
o
u
rc

e
s

P
ro

g
ra

m
 s

iz
e
 a

n
d
 c

o
m

p
le

x
it
y

D
e
p
e
n
d
e
n
c
e
 o

n
 i
n

d
iv

id
u
a
ls

E
a
s
e
 o

f
u
s
e
 o

f
n
e
w

 t
e
c
h
n
o
lo

g
y

S
c
a
la

b
ili

ty

Hardware x x x x x x

Operating system x x x x x x x

Network x x x x x x x x x x
Development

environment x x x x x x x x x

Data management x x x x x x

Asset value Ease of maintenance

Ease of

migration /

evolution

Ease of

operation

Table 6 Effects of platform unsuitability on legacy status

4.4.1 Hardware

In conclusion, hardware problems can cause the effects of:

 Reliability may diminish, because the hardware may not have the capacity to

enable complex journalling or increased numbers of conflicting users.

 Cost of maintenance and resistance to may rise if the hardware is limiting the

capacity of change to the system.

 Availability of maintenance resources will suffer if the manufacturer no longer

supports the hardware.

 Program size and complexity can be affected by certain hardware limitations.

 Use of new technology is more difficult if the hardware is not compatible with

current standards.

 Scalability depends on the hardware being amenable to networking and to

extension.

Although other effects may be noted from legacy hardware, these effects tend not to

be the primary problems that present themselves:

Underlying Platform Suitability

 - 79 -

 Mission criticality may diminish as a result of other legacy effects relating to

hardware being ignored.

 User satisfaction is more likely to be based on the service provided – it may suffer

through slowness and lack of reliability.

 Lack of capacity or complex or large programs may affect ease of testing and

auditing.

 Dependence on individuals is less likely to be a problem with legacy hardware in

the business applications area as most business applications use relatively standard

hardware.

4.4.2 Operating System

 Note: many older operating systems, especially those on larger machines have stood

the test of time and are not obsolete, in that the applications they support are also

supported by their successors. However, some relatively new operating systems,

specifically those on smaller machines, have a shorter life span and their applications

may not be supported by operating systems that supersede them.

Legacy operating systems affect:

 Ease of testing and auditing, if development staff need to learn an obsolete or

obscure operating system that imposes limitations on the development

environment

 Cost of maintenance and resistance to it will be similarly affected.

 Availability of resources to maintain systems will diminish when the operating

system becomes obsolete, especially if it had a short life span.

 Program size and complexity will depend on how much functionality needs to be

incorporated into the programs to work the operating system adequately, and also

on operating system size limitations. These size limitations may depend directly

on the hardware, or on a limitation in the operating system.

 Ease of use of new technology depends heavily on the adaptability of the

operating system to it.

Underlying Platform Suitability

 - 80 -

 Scalability requires an open operating system that supports the required

networking and can adapt to use with other machines, possibly using different

operating systems.

Legacy effects that may not be caused by the operating system:

 Diminished mission criticality should not be one of the early symptoms caused by

operating system problems. It may eventually become a problem, but other

symptoms will be present first.

 Reliability should not be changed by the operating system alone.

 User satisfaction should not depend heavily on the operating system. Older

operating systems user interfaces may cause irritation in some users but most

operating systems that are now in use allow for the implementation of a good user

interface design and adequate system functionality.

4.4.3 Network

Legacy networking problems can affect:

 Mission criticality, in that if the system is not universally available, its use will be

inconsistent and users will find ways around depending on it where possible.

 Reliability and speed are highly dependent on the networking quality.

 User satisfaction depends on reliability, consistency and availability, which are

heavily affected by networking.

 Ease of testing and auditing can be greatly hampered by lack of adequate tools

that can be configured over an inappropriate network.

 Cost of maintenance and resistance to it will rise where the network either causes

regular problems or causes problems that are difficult to trace.

 Availability of maintenance resources depend on the adherence of the network to

standards that are established either by widespread practice or are well

documented.

 Dependence on individuals can be prevalent where a hybrid network is in place.

 Program size and complexity can rise in situations where inter-application

communication over a network needs to be handled by the application programs.

 Ease of use of new technology is hampered by non-standard network operation.

Underlying Platform Suitability

 - 81 -

 Scalability in a distributed system is dependent on the network.

4.4.4 Development Environment

Legacy development environments cause the effects:

 Diminished reliability, where environment lacks the security provisions necessary

to ensure a robust system.

 Diminished user satisfaction where the environment does not enhance usability or

functionality.

 Difficulty in testing and auditing can be a problem where the environment suffers

from lack of traceability.

 High cost of maintenance and resistance to it results where the environment is

obscure or obsolete or does not provide a reliable mechanism for tracing and

eradicating errors or implementing standard testing procedures.

 Availability of maintenance resources will be low where the environment is

obscure or no longer supported by the supplier, as is often the case where

maintenance contracts have lapsed.

 Program size and complexity may grow, especially where developers do not fully

understand how the current system works and do not have the facilities to find out.

 Difficult to adapt to new technology – many of the more complex development

environments are quite rigid in their interfacing abilities. Often the use of new

technology requires that the developer work around the development environment

rather than work through it.

 Scalability can be a problem due to lack of openness.

Lesser effects of the development environment:

 Mission criticality may diminish as a knock-on effect of those mentioned above,

but should not be one of the primary problems.

4.4.5 Data Management System

Problems with data management systems will cause the effects:

 Reliability may be suspect due to redundant information or lack of security.

Underlying Platform Suitability

 - 82 -

 Difficulty and high overheads in testing and auditing if there is a lack of rigorous

data management or the system does not provide adequate tools.

 Cost of maintenance and resistance to it will rise if the data organization becomes

corrupt or redundancies creep in.

 Availability of maintenance resources will depend on the system being relatively

standard or well documented.

 Availability of resources to maintain it will depend on the supplier maintaining the

system and maintenance contracts being upheld.

 Difficult to use new technology if the data management system is not amenable.

 Scalability depends on ease of replication / partition and openness.

Lesser effects:

 Mission criticality will be a knock-on effect of diminished reliability, but should

not be the first symptom.

 User satisfaction may diminish as a secondary effect.

 Program size and complexity may be related to the data management system

where the development environment is part of the data management system or

data requests require complex programming.

 Dependence on individuals may be caused by badly documented designs or

obsolete or obscure data management systems being in place.

4.4.6 Platform configuration

Each platform component has a variety of problems that are inherent to it. However,

the combination of platform elements is also a likely cause of legacy status. Platform

elements can be combined in such a way that they enable or inhibit key areas of

growth in a system. The management of platform development and integration is of

paramount importance and failure to plan and implement this can cause legacy

problems in a relatively new system.

4.5 Conclusion

A platform consists of the technical infrastructure that supports a system or systems

throughout their lifetime. If this platform is well planned and maintained, and is

Underlying Platform Suitability

 - 83 -

suited to the system and organizational needs, then choices regarding platform

components are made easier. Platform components can be upgraded or added in a

compatible manner, which will not cause difficulties. The philosophy of integrating

systems from different platforms is relatively new in legacy terms and many of the

problems result from a failure to evolve compatible platform components.

84

Chapter 5 Software Quality

5.1 Introduction

The aim of this chapter is to establish the meaning of software and the term “Software

Quality” and how the software engineering process affects the quality of software.

The rest of this section consists of definitions of software, Software Quality criteria,

the software engineering process and how it is broken down for evaluation in this

dissertation. Software Quality is broken into software code or component quality,

software design quality and finally the quality of Change Management. The

mechanisms for implementing quality software are described in Section 5.2. Section

5.3 shows problems that cause these mechanisms to be ignored or to fail. Section 5.4

lists the effects that are caused when these mechanisms fail. These effects are

illustrated in Table 7. Section 5.5 concludes the chapter.

5.1.1 Software definition

There are many definitions of the term “software”. For The purposes of this

dissertation, the definition given by Pressman (1997) is adopted. He suggests the

following formal definition of software: “Software is (1) instructions (computer

programs) that when executed, provide desired function and performance, (2) data

structures that enable the programs to adequately manipulate information, and (3)

documents that describe the operation and use of the programs.” He states the

characteristics that are exhibited by software:

 Software is developed or engineered, it is not manufactured in the classical sense.

 Software does not wear out.

 Most software is custom-built, rather than being assembled from existing

components. Software components are built using a programming language that

has a limited vocabulary, an explicitly defined grammar and well-formed rules of

syntax and semantics.

Strategy components

 - 85 -

5.1.2 Software quality aspects

The Institute of Electrical and Electronic Engineers (IEEE 1983) define software

quality as “the degree to which software possesses a desired combination of

attributes”. These attributes are typically referred to as quality factors. McCall et al.

(1977) and Boehm (1978) suggested quality characteristics and models for these,

which include software correctness, reliability, efficiency, integrity, usability,

maintainability, testability, flexibility, portability, reusability and interoperability.

Later, one of the international standards for software quality that was developed was

ISO 9000-3 (1991). This included a part on “Guidelines for the application of ISO

9001 to the development, supply and maintenance of software”. Factors mentioned

here are testability, maintainability, reliability and interoperability. A new draft

international standard (ISO/DIS 9000-3, 1996) lists functionality, reliability, usability,

efficiency, maintainability and portability.

The factors or aspects of quality mentioned correspond to a large degree to the effects

that are listed in Chapter 2 regarding legacy status. Many of these software quality

aspects relate to the suitability of the system or the platform. However, the process of

engineering the software plays a large role.

Kitchenham & Pfleeger (1996) discuss five views of software quality. The first is the

transcendental view, where perfect quality is an ideal towards which we strive. The

second is the user view, which sees quality as fitness for purpose. The third is the

manufacturing view, which sees quality as conformance to specification. The fourth

is the product view, which sees quality as tied to inherent characteristics of the

product and finally the value-based view sees quality as dependent on the amount a

customer is willing to pay for it.

5.1.3 Software Engineering

Software engineering is a discipline that has been in existence since the 1960s. The

original definition of software engineering was given at a NATO conference (Naur &

Randall 1969) by Fritz Bauer and is as follows:

Strategy components

 - 86 -

“Software engineering is the establishment and use of sound engineering principles in

order to obtain economically software that is reliable and works efficiently on real

machines”. The IEEE (1993) expand this definition: “Software engineering is (1)

the application of a systematic, disciplined, quantifiable approach to the development,

operation and maintenance of software; that is, the application of engineering to

software, or (2) the study of approaches in (1)”.

Software Engineering is a layered methodology (Figure 12): Any engineering

approach must rest on an organizational commitment to quality. The bottom layer is a

quality focus. The next layer is the process layer. Process defines a framework for a

set of key process areas that must be established for effective delivery of software

engineering technology. Methods provide the technical „how to's‟ for building

software (e.g. requirements analysis, design, program construction, testing and

maintenance. Tools provide the automated or semi-automated support for the process

and the methods. There are also umbrella activities, which must be carried out, to

maintain a quality system. These include:

 Software project tracking and control

 Formal technical reviews

 Software quality assurance

 Software configuration management

 Document preparation and production

 Reusability management

 Measurement

 Risk management

A quality focus

Process

methods

tools

Figure 12 Layered Technology of Software Engineering (Pressman 1997)

Strategy components

 - 87 -

Parkinson (1991) offers a slightly different and more detailed view of the components

of a development approach (Figure 12). From these diagrams it can be seen that the

process model, methods and tools chosen have a high impact on the quality of the

final system. Parkinson (1991) gives a methodology as having a set of five steps, but

does not put a sequence on them. Process models and methodologies are explained in

section 5.2.2.

Although the construction of software components is treated no differently here to any

other step in the process lifecycle, when a system is being examined from a

reengineering point of view, the constructed component may be the only remnant of

the original development. For this reason, component quality is treated separately in

this dissertation (see Section 5.2.1).

Pressman‟s (1997) „quality focus‟ and Parkinson‟s (1991) „Application Evolution‟

show that the quality of the software depends not only on the process model, methods

and tools that have been chosen, but also on the implementation, maintenance and

upgradeability of the system. The management of process change is therefore vital

to the continuing assurance of quality (see Section 5.2.3).

Figure 13 Components of a development approach (Parkinson 1991)

Skills Acquisition

Overview

Quick Reference

Methodology

Techniques

Skills Exercise

Project Management

Tool Guidelines Route Maps

Sample

Deliverables

Planning

Analysis

Construction & Implementation

Application Evolution

Design

Project

Management

Strategy components

 - 88 -

The management of process implementation and change is unique to each

organization and in some cases, to each system. Although there is no specific set of

rules which governs exactly how an organization should manage process change,

there are standards against which an organization can check to see if they are

succeeding.

5.1.4 Software Quality in context

Although the term “Software Quality” can cover all quality aspects of a system,

within the context of this dissertation, “Software Quality” is confined to the quality of

the application software as written, designed and evolved.

5.2 Mechanisms for Improving Software Quality

Attempts at improving software quality have abounded since the first computer

program was written. Early attempts focused on the program and how it could be

simplified and structured. These were partly related to the development environment

and platform on which the programmer worked, but later extended into a set of

standards that can be adapted from organization to organization. Early design work

focused on criteria for developing structured programming (Dahl et al. 1971) using a

top-down structure (Wirth 1971) and modular programs (Dennis 1973). However, it

became apparent that the quality of code within a program was not the only problem.

As applications became larger and more modular, software programs stopped working

in isolation. An application could be made of hundreds or thousands of components,

each containing at least one program and probably more. The quality issue, therefore,

does not stop at code quality.

Parkinson (1991) charts the result

of several studies, carried out in a

variety of environments in the

USA during the 1970s and 1980s

(Figure 14). This shows that

within system development, more

than 60% of the defects and errors

reported in information systems Figure 14 Sources of error in systems development

(Parkinson 1991)

26%

7%

11%

56%

Design Code Requirements Other

Strategy components

 - 89 -

after they had been installed can be traced

back to incorrect requirements analysis

and specification (Parkinson 1991).

A further chart (Figure 15) shows that the

resources required to fix errors in

software were much higher for

requirement errors (82%) than for any

other errors.

While still trying to improve the design of

the system, Stephens et al. (1974) and

Yourdon & Constantine (1978) developed graphical notations for representing data

and the processes that transformed it. DeMarco (1979) introduced and named the key

graphical symbols that enabled an analyst to create information flow models,

suggested heuristic for the use of these symbols and the use of data dictionary and

processing narrative. Gane & Sarson (1982) came up with one of the many variations

and Ward & Mellor (1987) and Hatley & Pirbhai (1987) extended the ideas for real-

time systems.

The earliest process model was the Waterfall Model (Royce 1970). However as

applications grew and became more diverse and less stable in their requirements, this

model was seen to have its drawbacks. Later models offer variations that may be

better suited to some applications or environments.

Therefore, although software quality at component level and at design level has been

considered important for the last thirty years, it is obvious that over that time, the

particular practices that were carried out varied greatly. As technology changes and

business requirements change more and more rapidly, the focus now moves on to

include the problem of transition from one software engineering paradigm to another.

In conclusion, the issues to be addressed when assessing Software Quality in the

context of this dissertation are:-

 Quality of the code within a module or component henceforth known as

component quality.

Figure 15 Resources required to correct

errors in software (Parkinson 1991)

29%

8% 62%

1%

Design Code Requirements Other

Strategy components

 - 90 -

 Quality of the current system process documentation that is in use for an existing

system, henceforth known as design quality.

 Quality of implementation of process change, with particular regard to quality

assurance processes.

5.2.1 Component quality

In order to be able to ensure software quality, the quality of the code within each

software module or program needs to be structured. The program structure should

follow a standard procedural design technique.

Dijkstra (1965) and Bohm & Jacopini (1966) worked on principles of procedural

design. The flowchart was once the most widely used graphical representation for

procedural design, but it allows violation of the principles of structured programming,

including sequence, selection and iteration as the only logical constructs that should

be used (Dijkstra 1976). Nassi-Shneiderman diagrams (Nassi & Shneiderman 1973)

offer a more structured diagrammatic technique. Stepwise refinement (Wirth 1971)

takes the design to a higher level, where the problem solution is listed as a set of

instructions and complex instructions can be broken down further at a later level,

thereby providing a top-down design. This leads to an increase in the opportunities

for modularity. A well-designed module (Myers 1974) should show a low level of

coupling and a high level of cohesion. These are the principles of procedural design

of the program. Along with the procedural design of the program, the design of its

interfaces must be formalised. The data structures used within programs vary in

complexity, with some of the more complex structures having algorithms that are

designed and published (Aho et al. 1983). Wasserman (1980) proposed principles of

data design such as data abstraction and information hiding. Increasingly, the way in

which programs and persistent data interact is changing, with the change in data

management systems. The structure of data that is used by a module but is defined

outside the model can relate back to Chen‟s (1977) Entity Relationship Diagrams,

where entities can be converted to files or database tables. Another area of design

concerns the calling structures used on and by a module. As platforms become more

distributed, these structures can be very complex and need to be very well specified.

Interface design addresses the design of three types of interfaces. The first is between

Strategy components

 - 91 -

software modules and can be addressed by Data Flow Diagrams (DeMarco 1979) or

object sequence or interaction diagrams (Rumbaugh et al. 1991). The second is the

design of interfaces between the software and the human user (HCI) (Shneiderman

1987, Preece et al. 1994, Dix et al. 1993) or a peripheral device and the third is the

design of interfaces between the software and external data.

Although these practices attempt to provide a mechanism for high quality design,

quality cannot be assured by their presence. This is the task of the quality assurance

group. To assure quality in design and implementation, as well as having high design

quality criteria, quality of conformance must also be high. “Quality of design refers to

requirements, specifications and the design of the system. Quality of conformance is

an implementation issue. If the implementation follows the design and the resulting

system meets its requirements and performance goals, conformance quality is high.”

(Pressman 1997).

Paulk (1993) defines software quality assurance activities for design and

implementation that can be addressed by two groups, 1) the Software Quality

Assurance group and 2) the Software Engineering group.

The Software Quality Assurance group is responsible for:

 Preparing a Software Quality Assurance plan for a project.

 Participating in the development of the project‟s software process description.

 Reviewing software engineering activities to verify compliance with the defined

software process.

 Auditing designated software work products to verify compliance with those

defined as part of the software process.

 Ensuring that deviations in software work and work products are documented and

handled according to a documented procedure.

 Recording any non-compliance and reporting to senior management.

The Software Engineering group is responsible for:

Strategy components

 - 92 -

 Applying solid technical methods and measures

 Conducting formal technical reviews

 Performing well-planned software testing

A full description of the review and testing process and other topics relating to

software quality assurance is available in Pressman (1997) Chapter 8. Testing

techniques are covered in Pressman (1997) Chapters 17 and 22 (object-oriented

testing).

Conclusion

The quality of a module of code can endure throughout multiple changes, provided

the style, organization and structure of that module follows the prescribed standards

for the system. If the standards change, then all of the code should either remain in

the old standard or be converted to the new standard. This is a policy decision to be

taken by the quality assurance group. High quality components are one of the criteria

necessary to fulfil Kitchenham and Pfleeger‟s (1996) manufacturing view of software

quality.

5.2.2 Design quality

Along with the modular design that is needed for each software module, an overall

architectural design is needed for the system. There are several process models that

have been proposed over the years and most well designed systems will follow one of

them. A process model is also known as a software-engineering paradigm. It is

chosen based on the nature of the project and application, the methods and tools to be

used, and the controls and deliverables that are required. Each model should address

the generic phases that are required: the definition phase, the development phase and

the maintenance phase. Commonly used models are the Linear Sequential model,

prototyping, the incremental model, the spiral model and the component assembly

model.

Strategy components

 - 93 -

Linear Sequential model

Also known as the classic life cycle or waterfall model (Royce 1970), it suggests a

systematic, sequential approach to software development (Figure 16).

Problems with this approach are:

 Real projects rarely follow the sequential flow and changes can cause confusion.

 This model has difficulty accommodating requirements change.

 The customer will not see a working version until the project is nearly complete.

 Developers are often blocked unnecessarily, due to previous tasks not being done.

 Prototyping

Brooks (1975) describes the

prototyping paradigm. The

developer and customer define the

overall objectives for the

software. A quick design focuses

on what the customer will see.

From this, a prototype is

constructed. The user evaluates it

and improvements are made.

This continues in an iterative

fashion until a satisfactory

product is achieved (Figure 17)

Figure 16 Linear Sequential model (Royce 1970). Diagram from Pressman (1997)

System / Information

Engineering

Analysis Test Code Design

Listen to

customer

Build /

revise

mock-up

Customer

test-

drives

mock-up

Figure 17 Prototyping paradigm (Brooks 1975)

Strategy components

 - 94 -

Problems with this approach: -

 The customer sees a working version and expects the finished product to be

available in a short time. This puts pressure on the developer to take short cuts, at

the expense of quality and maintainability.

 The developer may make compromises for speed. Inappropriate tools may be

used or inefficient algorithms may be used, which then become integral parts of

the system.

The RAD model

Rapid Application Development (Martin 1991) is a linear sequential software

development process model that emphasises an extremely short development cycle.

A component-based construction approach is used. To use this approach, the project

scope must be constrained and the requirements should be well understood. A task

that should take no more than ninety days to complete is modelled, generated and

Figure 18 The RAD model (Martin 1991)

90 days

Team 1 Team 2 Team 3

Testing &

Turnover

Application

generation

Business

modelling

Data

modelling

Process

modelling

Testing &

Turnover

Application

generation

Business

modelling

Data

modelling

Process

modelling

Testing &

Turnover

Application

generation

Business

modelling

Data

modelling

Process

modelling

Strategy components

 - 95 -

implemented. There can be several teams working on different components during

this ninety day time-box (Figure 18).

Problems with RAD: -

 For large, scalable projects, RAD requires sufficient human resources to create the

right number of RAD teams.

 RAD requires developers and customers who are committed to the rapid-fire

activities necessary to complete a system in this time frame, or failure will result.

 RAD is not suitable for many project types.

The incremental model

This model is described by McDermid & Rook (1993) as a combination of the linear

sequential model and the iterative model. The problem is broken into increments, and

each increment is tackled as a linear sequence. Further increments can either be done

after the previous ones, or can overlap with the previous ones. Incremental delivery

focuses on the delivery of an operational product with each increment. Early

increments are stripped-down versions of the final product (Figure 18). This approach

Figure 19 Incremental Model (McDermid & Rook 1993)

System / Information

Engineering

Analysis Test Code Design

Analysis Test Code Design

Analysis Test Code Design

Analysis Test Code Design

Increment 1

Increment 2

Increment 3

Increment 4

Strategy components

 - 96 -

has the advantages that : -

 Less staffing is required than in a RAD project.

 Early delivery is guaranteed.

 Progress of the whole project is not delayed if one of the resources is not available

for part of it.

The Spiral model

Boehm‟s (1988) spiral model couples the iterative nature of prototyping with the

controlled and systematic aspects of the linear sequential model. Software is

developed in a series of incremental releases. During the early releases, there may be

just a paper model, but the system becomes increasingly more complete. There are a

number of framework activities, as shown in Figure 20(Customer communication,

Planning, Risk analysis, Engineering, Construction and release, Customer evaluation).

Unlike any of the other models, this model keeps revisiting the system throughout its

lifetime.

Figure 20 Boehm's (1988) Spiral model

Customer

communicatio

n

Construction and release

Engineering

Risk analysis

Planning

Customer

evaluation

Strategy components

 - 97 -

Figure 21 Component Assembly model –

engineering construction and release

activity (Nierstratz 1992)

The Component assembly
model

This incorporates many of the

characteristics of the spiral model. It

is evolutionary in nature, demanding

an iterative approach to the creation

of software (Nierstrasz 1992).

However, it composes applications

from pre-packaged software

components. The “construction &

release” activity in Boehm‟s model is

replaced by an “Engineering

construction and release” activity

(Figure 21).

Methodologies

The process model dictates which methodologies are suitable. Methodologies are

based on a process model and contain a set of techniques and a framework that will

force the developer to follow the methodology. Parkinson (1991) categorises

methodologies into three. The first category includes those that are visionary,

providing new ideas of ways to tackle the development, but lacking practical guidance

on how to do it - e.g. Information Engineering (Davids 1992). The second category

consists of those that provide a host of techniques that can be used, but are weak on

providing the framework for using them in the correct order and tracing requirements

from one stage to the next - e.g. UML (Fowler & Scott 1997). The third category

consists of those methodologies that provide a rigorous and rigid framework, which

guides the developer through the stages and techniques, ensuring that all necessary

tasks are carried out before advancing to the next stage – e.g. SSADM (Downs et al.

1992).

Identify

candidate

component

s

Construct

nth

iteration of

system

Put new

component

s in library

Look up

component

s in library

Extract

component

s if

available

Build

components

if

unavailable

Strategy components

 - 98 -

In the opinion of the author, each of these categories has its advantages and

disadvantages. The first provides great ideas, but requires the developer to develop or

adapt techniques to suit these ideas. Few commercial application developers are in a

position to do this. The second allows for slippage of quality assurance mechanisms.

Those mechanisms are not provided, so in order for an organization to use this

methodology and maintain a high level of quality, the framework needs to be

developed in-house. This option also requires great dedication. The final option

looks perfect – the techniques are provided, as is a framework for carrying them out.

While this is good, the methodology must be adaptable, so that the organization can

ensure that all steps and stages add value to each and every development process.

To assess a methodology for a system, Parkinson (1991) suggests that the assessor

needs to know:

1. How IS is currently organised and the strengths and weaknesses of the

organization.

2. The skills of developers, project managers and departmental managers.

3. The opportunities and threats that face the IS function.

4. The portfolio of current development and maintenance activity.

5. The problems and issues that are likely to impede a successful migration to an

automated development environment.

CASE tools

Computer Aided Software Engineering tools are available throughout the spectrum of

software requirements. Within the scope of this dissertation, only tools that

implement a methodology are addressed. Many of these tools are sold along with a

commercial methodology, such as Arthur Andersen‟s Foundation/ (Flaatten 1989), or

IEF (Gane 1990). These tools are generally large pieces of software that rigorously

follow the methodology for which they are bought. Many of them will see a project

from the planning stage right through to implementation.

The second category of methodologies is served by many CASE tools, mostly

workbench in nature. These include Select Enterprise, which implements a

Strategy components

 - 99 -

commercial methodology called the Select Perspective (Frost 1995), which is close to

the more widely known object-oriented methodology OMT (Rumbaugh et al 1991) or

UML (Fowler & Scott 1997). Another toolset in this range is System Architect

(Popkin Software 1996) which provides a set of techniques and claims to be

compatible with several methodologies. While these tools do some checking, they do

not provide full quality assurance automatically.

A thorough review of CASE tools is undertaken by Ovum (1998).

In the opinion of the author, CASE tools can greatly enhance and speed up the

development process, but only where the tools used are adding value to the process.

For a CASE tool to add value to the process it must automate some aspect of it that

needs to be done to enhance the quality of the end product. The CASE tool, as a

system in its own right, should follow system suitability criteria as laid out in Chapter

3.

Conclusion

There are a variety of process models, each of which can be used successfully. Once

a process model has been used to develop a system, documentation style, organization

and structure should either remain in the format of that process model, or all be

converted to a different process model. This is particularly important where

automated tools are used. High design quality is necessary to fulfil Kitchenham and

Pfleeger‟s (1996) manufacturing view and user view of software quality.

5.2.3 Quality of Change Management

In order to achieve a quality product, an organization must be dedicated to the

production and maintenance of quality products. The software process involves more

than following coding standards or system development methodologies. In order to

maintain software quality, there needs to be continuity, not just through the

development lifecycle, but also throughout the lifetime of the system and between

systems. Organizations approach the process in different ways, but their capability at

producing and maintaining quality software can be optimised. There are models for

software process assessment (SPA) and software process improvement (SPI). These

models are designed to allow an organization to assess its maturity, and give

Strategy components

 - 100 -

guidelines for improvement. Among them are the Software Engineering Institute‟s

Capability Maturity Model (CMM) (Humphrey 1989), SPICE (SPICE consortium

1994), BOOTSTRAP (Haasse et al. 1994) and AMI (Applications of Metrics in

Industry) as described by (Debou et al. 1995). Although these models have their

critics, they do offer a framework for process improvement, enabling the organization

to improve quality of software and to incorporate change without compromising

previously high quality systems.

Capability Maturity Model (CMM)

This is a framework of software development and managerial processes originally put

forward by Humphrey (1989), with a revised version being published by Paulk (1993)

for the Software Engineering Institute (SEI). Companies who implement the CMM

want to improve their ability to meet cost, schedule and product functionality goals.

There are five levels of maturity, the fifth being the best. Key process areas (KPA)

are associated with each of the maturity levels. Each key process area has the

following characteristics:

 Goals

 Commitments

 Abilities

 Activities

 Methods for monitoring implementation

 Methods for verifying implementation

Level 1 – The initial level

Few, if any, organised processes exist. Each developer utilises his / her own chosen

methods or techniques. Software quality depends on the capabilities of specific

individuals in an organization.

Level 2 – The repeatable level

A software development organization must implement basic project management

practices, including metrics for estimating size of software to be produced (e.g.

Function Point Analysis) and the resources required to execute the project, and

tracking procedures against the metrics. Also, software configuration management

Strategy components

 - 101 -

and quality assurance practices should be in place, the capability to effectively

manage the requirements definition process and the capability to manage

subcontractors (if applicable). There is still a heavy dependence on individuals.

During times of stress, this level reverts to level 1. For an organization to have

reached level 2, the key process areas that should be in place are: -

 Software configuration management

 Software quality assurance

 Software subcontract management

 Software project tracking and oversight

 Software project planning

 Requirements management

Level 3 – The defined level

The organization has defined and established the software development and

maintenance practices specific to the types of applications they produce. Standards

and procedures to codify these practices are implemented consistently. Training is

provided and peer reviews are carried out to evaluate product quality. Integrated

project management exists. The emphasis is on product quality. For an organization

to have reached level 3, the required key process areas are: -

 Peer reviews

 Inter-group co-ordination

 Software product engineering

 Integrated software management

 Training program

 Organization process definition

 Organization process focus

Level 4 – The Managed Level

The emphasis is on process quality. The organization focuses on establishing a set of

process measures and uses them to initiate corrective actions. Once these have been

established, the organization is ready to use them to implement continuous process

improvement. The key process areas for level 4 are: -

Strategy components

 - 102 -

 Software quality management

 Quantitative process management

Level 5 – The Optimized level

Process quality measures are used to improve existing processes and to evaluate

candidate new processes. They are also used as the basis of efficacy of introducing

new technologies into the organization. The key process areas for level 5:

 Process change management

 Technology change management

 Defect prevention

An organization can see what areas need to be improved by checking their procedures

and procedure development techniques against this standard. The CMM is

extensively used in industry for:

 Identifying strengths and weaknesses of a software development organization, i.e.

benchmarking to industry‟s current practices.

 Supporting process improvement initiatives.

 Helping software procurers to evaluate the capability of contractors (Debou et al.

1995).

SPICE

This is a set of standards that has been put forward by the International Standards

Office. This set of ISO standards have been derived by the SPICE project (SPICE

consortium 1994), based on the SEI process maturity framework or CMM. The

objective of SPICE (Software Process Improvement and Capability determination) is

to provide a common approach and framework for assessment and improvement.

The SPICE components:

 Introduction and concepts within SPICE

 Activities such as system design and requirements specification which are core to

software engineering

Strategy components

 - 103 -

 Overall framework used when conducting a SPICE assessment. It sets out the

processes whereby a company is assessed and a rating developed which reflects

the capability of the company

 How to conduct process assessments in any organization.

 Elements required to develop an assessment instrument to assist the assessor

 Qualifications, backgrounds and training required for assessors

 Format of output of assessment so that it can be used for a process improvement

program.

 How the output can be used to determine the organizations process capability

 Vocabulary of terms.

SPICE provides a continuous scale of capability measurement:

Initial or not performed – 0. Software anarchy. No standards or procedures for

activities such as system design or requirements specification are in place.

Performed or performed informally – 1. System design, integration and testing are

performed, but not planned and monitored. Dependent on individuals.

Managed or Planned-and-tracked – 2. Projects are monitored and verified against

expected delivery time and correctness. Reviews are scheduled and corrective action

taken when problems arise. Configuration control is in use.

Defined or Well-defined – 3. Well-defined processes are in place and a series of

process templates are developed, defining how each process is carried out in terms of

staff qualifications, actions to be taken, documentation to be processed,

documentation to be produced and verification products to be generated. At this level

a company is capable of monitoring data which can be used for process improvement,

e.g. data on the number of defects which slip through the system and acceptance

testing.

Measured or Quantitatively Controlled – 4. Developer can specify measurable goals

such as „only 5% of reworking during system testing will be due to errors which

should have been trapped by previous activities‟. Developer can predict process

performance. He/she should be able to predict the level of errors generated when a

particular design notation is used or a particular tool is not used.

Strategy components

 - 104 -

Optimising or Continuously Improving - 5. Developer can quantify the effectiveness

of processes and can carry out process improvement programmes based on the

modification of existing processes.

The SPICE organization (http://www-sqi.gu.edu.au/spice/suite_intro.html) claim that

their framework for process assessment:

a) Facilitates self-assessment.

b) Takes account of the context of the process being assessed.

c) Produces a process rating profile rather than a pass/fail result.

d) Addresses the adequacy of practices relative to the process purpose and

e) is appropriate across all application domains.

BOOTSTRAP

The BOOTSTRAP project was performed within the frame of the ESPRIT

programme (Haasse et al. 1994) to develop a method for software process assessment,

quantitative measurement and improvement. It uses the SEI‟s process assessment

method as a basis and adapts it to the needs of the European software industry to

include ISO 9000-3 attributes and the European Space Agency‟s (ESA) PSS-05

software engineering standards.

The BOOTSTRAP methodology includes:

1. A diagnosis of the software development environment – organization,

methodology and support tools.

2. The development of an action plan, which lays out the steps necessary for

improving quality, productivity and timeliness through an evolution to a higher

maturity level.

The diagnosis is done through interviews of senior management, quality assurance

personnel and software developers and maintainers. The investigation covers three

main areas:

http://www-sqi.gu.edu.au/spice/suite_intro.html

Strategy components

 - 105 -

1. Organization internal structure and application domains, corporate quality

assurance structure and resource management.

2. Methodology and engineering know-how.

3. Technology and technology transfer.

The AMI approach

AMI (Application of Metrics in Industry) is described (Debou et al. 1995) as having

twelve steps, grouped by three in activities:

Assess

1. Assess weaknesses and critical parts of the software development process.

2. Define primary goals for metrication.

3. Validate goals against the assessment conclusions.

Analyze

4. Build a goal-tree (translation of primary goals into sub-goals and metrics).

5. Verify the consistency of the tree.

6. Derive metrics for leaf goals.

Metricate

7. Write the measurement plan, which is the reference document for

collection and analysis of data and for ease of tracing of these tasks.

8. Collect the data.

9. Verify the data.

Improve

10. Present the measurement data using graphics

11. Relate data to goals

12. Determine whether goals are fulfilled.

Strategy components

 - 106 -

Criticisms of Software Process Assessment and Improvement models.

Pfleeger et al. (1997) discuss „highly theoretical results are never tested empirically,

new metrics are defined but never used and new theories are promulgated but never

exercised and modified to fit reality”. Their arguments against measurement efforts

are that they are not useful to practitioners, who want short-term, useful results,

Customers who are forced to specify their needs in an unfamiliar fashion and are

unsure what the results will be. They suggest that there is a place for measurement,

but only where that measurement is shown to have value. Metrics must be used while

keeping the development goals in mind. In the CMM case, the goal is to improve

productivity by introducing reuse. Rather than prevent movement, the model should

suggest which steps to take first. Any application of software measurement should be

an integral part of a general assessment or improvement program, where the measures

support the goals and help to evaluate the results of the actions. To use measurement

properly, we must understand the nature and goals of measurement itself.

More specifically, CMM has many critics. Bach (1994) criticises the CMM very

forcefully, saying that it is applicable only to those organizations who are either very

poor at managing software or very good at it. Some of the problems he sees are:-

 Lack of formal theoretical basis.

 Only vague empirical support, which is not specific to CMM.

 Reverence of process over people.

 Reverence of institutionalising processes.

 Displacement of goals from improving process to achieving a higher maturity

level.

Bach (1994) maintains that personal mastery is at the centre of heroism, but that it has

no place in the CMM.

Hartley (1996) points out some of the difficulties faced by organizations who are

trying to improve their maturity levels:-

 The move to the next level of maturity (CMM) is very complex – the areas of

quality, productivity, technical capability and maturity for the future are inter-

Strategy components

 - 107 -

related. No one area can be omitted when trying to understand the underlying root

issues within the organization.

 Metrics programs must be used to measure where an organization is, where it is

going and how to get there.

 Comparative analysis requires a common unit of measurement to be established

 Continuous process improvement is required on the development processes

themselves.

5.2.4 Discussion on software quality

Despite criticisms of the controls placed on individuals through the use of process

assessment and improvement models, the author believes that this is a conflict

between software development as an art and software development as an engineering

discipline. As the major effort required in developing a system moves from being

machine-oriented to being problem-oriented, the solutions become less granular in

nature, but also become more difficult to handle. Traceability is now seen as an

extremely important factor (Graham 1995) in managing a system throughout its

lifecycle and as tools become more sophisticated and technology life-cycles shrink,

this traceability could enable easier migration or evolution of systems. However,

traceability depends on consistent formatting of documentation, which is closer

industrial engineering practice than art or craft. Kitchenham and Pfleeger‟s (1996)

transcendental view of software quality reflects the same ideals as those towards

which process assessment and improvement models strive.

When developing components it is important to make up a set of rules and assure that

those rules are followed. When designing a system, a choice of process model should

be made, and the rules and quality assurance protocols that are required for this model

should be followed. The area of process change management is much more difficult,

in that this is where the rules are devised and aligned to the organizational business

and I.T. needs. Software Process assessment and improvement is an area that is still

in development. Although there are many very good ideas and philosophies around,

very few organizations are following these models successfully in practice. However,

in the author‟s opinion, a rigorous, yet flexible model will be needed to guide

Strategy components

 - 108 -

organizations through the complex minefields of integrating more and more complex

systems with increasingly diverse components.

5.3 Common Problems in the Area

Because of the high rate of change in requirements, code and environment problems

are cited over and over again as being at the root of many legacy systems. The

problems that can arise and the effects they have are outlined here.

5.3.1 Component quality problems

Software modification often leaves behind software that is difficult to understand for

those other than its author. The result is software that is harder to change, less reliable

when it is changed and progressively less likely to be changed (Arnold 1996).

The effects of incoherent coding on a system are outlined by Levey (1995):

 It takes too long to make superficial changes.

 It takes too long to implement programs that have been changed

 There is a need for constant changes.

 It is necessary to edit the data that is input to a program.

 The program that controls or drives the process is too large

 The program is producing a lot of temporary files.

 Detour systems are in place which pre- and post-process the data, to add

functionality that is not available in the core.

 Limited understanding of the entire system.

Slee & Slovin (1997) add that the conceptual integrity of the design, documentation

and implemented system rapidly degrades.

Software quality standards have changed considerably since the 1970s. Evolution of

programming standards meant that each generation of programmers had a different

style of programming and way of organising a program. Unless new standards were

retrospectively enforced, a program could end up with different standards being used

in different parts of the program. The advent of object-oriented programming

Strategy components

 - 109 -

reinforced the ideas of giving modules a well-defined structure and interface, by

making them operations that could be done by an object. However, Casais (1998)

addresses the fact that the number of object-oriented systems that are becoming

legacy is growing. This is partly because of the weaknesses in analysis and design

methods that were available until recently. These methods were geared towards

single applications instead of families. The situation has been further complicated by

the use of automatic code generators, which often produce very poor quality code,

which is difficult to find, let alone understand.

Sneed (1995) points out that in a lot of cases, the programs in legacy systems are too

large and complex for structural enhancement. This can result from code alterations

being made to allow for a single exceptional occurrence, which is obsolete, but has

never been removed. Many of the conditions that are tested in the code never apply

and some conditions that are imposed during an amendment can prevent code that was

there previously from being accessible.

Slee & Slovin (1997) mention some of the problems with current coding practices:

 Methods are personal and not standardised

 Code is written in idiosyncratic ways by employees who must be retained to

update their personal handiwork

 A closed-shop approach makes formal peer review ineffective.

 Fix-on-fix errors occur, where an amended piece of code is again amended.

 No record is kept of changes that are made.

Levey (1992) describes how a legacy system becomes inflexible. Most systems are

originally written in a clear, legible and flexible way. However, even using the most

up-to-date and open systems that are available, a system can become unwieldy and

incomprehensible in a reasonably short period of time. Such problems occur when

systems are changed without taking into account the initial style, organization and

functionality of the system. For example, if a system is written using unconditional

branch instructions such as GO TO‟s and a later maintainer decides to use controlled

looping structures, without eliminating all GO TO‟s from the code, this will lead to

inconsistencies in style and will probably cause structural problems. If a program‟s

Strategy components

 - 110 -

organization contains input, processing and output sections and a maintainer, when

making a quick change, puts processing code into the output section, the

organizational structure of the code is lost. If a maintainer wishes to change the

functionality of a system and adds code which makes current functionality obsolete,

without removing the code for the current functionality, then the system becomes less

structured and more incomprehensible (Levey 1995).

While many of these difficulties could have been avoided by rigid adherence to

quality assurance methods, these methods require a rigour that is often absent. While,

in some cases, mechanisms are present to ensure quality of design, quality of

conformance may be low.

5.3.2 Design quality problems

Systems developed in the past that now communicate with several other tasks suffer

from a problem similar to spaghetti code - by spaghetti integration (Slee & Slovin

1997). These problems prevent reuse and decrease asset value, scalability and

maintainability. The system becomes resistant to change. A system that is resistant to

change cannot adapt to new requirements. If a change is made, it cannot be easily

tested. This brings the reliability of the system into disrepute.

As systems became more complex, the need for a higher level of organization of code

became apparent. Instead of producing programs of tens of thousands of lines of

code, programs were broken down into modules. Systems were designed from the top

down, using a variety of systems development methodologies. Design problems came

about in much the same way as code problems. Most of these systems were originally

carefully designed according to the process model of the day. A significant problem

is the extent of the paradigm shift that has taken place over the last ten or fifteen

years. A lot of the older methodologies were either entirely manual, or were

implemented using tedious and low-value tools, which exacted too high a price in

terms of the time spent keeping documentation up-to-date and consistent. Because of

this, a shift of paradigm meant either a loss of, or a discontinuity in the maintenance

of documentation relating to design.

Strategy components

 - 111 -

5.3.3 Change Management problems

As shown in the Capability Maturity model, if robust procedures are not in place and

followed, change can cause chaos. There is no consistency between previous

procedures and current procedures. There may not even be written or taught

procedures, or any communication that procedures have changed. In this case,

regardless of the quality of previous design or code quality, a system can degrade very

rapidly. This situation could arise if a system was developed by one organization or

team and maintained or migrated by another.

It is not easy to attain high levels of quality assurance. It requires attention to detail

and careful planning. In order to implement a good quality assurance program at all

levels, a high amount of training and reviewing is required. At present, the practice of

formalised software process assessment and improvement is done on a relatively

small scale.

5.4 Effects of Problems in the Area

Software lies at the heart of every system. The quality of the software, regardless of

its age, can make the task of moving from one platform to another much easier. Even

if the system is to be abandoned, the exact task done by the software is easy to recover

where the software quality software is good.

Table 7 cross-references the Legacy Effect Determination Framework with possible

causes relating to the software quality dimension. Each causal criterion has a row in

the table. Within each row, any column representing an effect of a lack of quality in

this causal criterion is marked with an “X”.

The asset value of the system is broken down into mission criticality and reliability.

The criticality of a system to the organization‟s mission is dependent on its current

functionality. As such, it may be indirectly affected by, for example, process change

management, but this is not inevitable. The reliability of the system, however, is

highly susceptible to improper coding or maintenance practices and is affected by

software quality at every level.

Strategy components

 - 112 -

Legacy Effects

S
o
ft
w

a
re

 Q
u
a
lit

y

M
is

s
io

n
 c

ri
ti
c
a
lit

y

R
e
lia

b
ili

ty

U
s
e
r

s
a
ti
s
fa

c
ti
o

n

E
a
s
e
 o

f
te

s
ti
n

g
 a

n
d

a
u
d
it
in

g

C
o
s
t

o
f

m
a

in
te

n
a
n
c
e

a
n
d
 r

e
s
is

ta
n
c
e
 t

o
 i
t

A
v
a
ila

b
ili

ty
 o

f

m
a

in
te

n
a
n
c
e

re
s
o
u
rc

e
s

P
ro

g
ra

m
 s

iz
e
 a

n
d

c
o
m

p
le

x
it
y

D
e
p
e
n
d
e
n
c
e
 o

n

in
d
iv

id
u
a
ls

E
a
s
e
 o

f
u
s
e
 o

f
n
e
w

te
c
h
n
o
lo

g
y

S
c
a
la

b
ili

ty

x x x x x x x

x x x x x x

x x x x x x

Asset value Ease of maintenance

Ease of

migration /

evolution

Ease of

operation

Quality of Change Management

Design quality

Component quality

Table 7 Effects of poor quality software

User satisfaction, like mission criticality, can change over time if process change is

not properly managed, but is not directly linked to the quality of change management,

or to the quality of the code or design. Ease of testing and auditing is directly related

to the quality, logic and clarity of the code and to the ease of use of the design.

Process change also effects both auditing and testing, in that most system upgrades

require a comparison of before and after results. This is only possible when the origin

of those results can be traced from the old system to the upgraded system.

Maintenance costs are very closely related to the quality of the software. Software

maintenance involves monitoring and altering the code in components, altering the

design to allow components interact in a different way, or upgrading part or all of a

component or set of components while maintaining system integrity and traceability.

This is only possible where code, design and process can be clearly understood and

competently changed. If this is not the case, maintenance will take longer and be a

less enjoyable task, thereby increasing the cost of maintenance and resistance to it.

Availability of maintenance resources can be affected by the quality of change

management. If process change is mismanaged, leaving systems between paradigms

and without clear and consistent documentation, then the system will require a hybrid

of skills and tools to maintain or fix. While this could also apply to the design quality

and the component quality, these factors are more likely to effect maintenance costs.

The size and complexity of individual programs will be affected by the quality of the

existing code. As code becomes less understandable, more changes are forced into

Strategy components

 - 113 -

the program, with rigorous selection criteria being imposed on statements, to ensure

that they are carried out only when appropriate. In a very large and unstructured

program, it is not always possible to see what conditions have already been eliminated

when processing reaches a certain point. The software design can also cause

problems in this area, where a component has unclear functionality or is too large to

be contained within a single program.

If the quality of software is poor or done in a hybrid fashion, then it is likely that there

are one or two individuals who understand what is going on. These individuals

become critical to the well-being of the system and it is very difficult for anyone else

to take over from them. The dependence on individuals is directly related to software

quality.

The adaptability of a system to new technology depends on how ingrained the current

technology is in the software. This is usually at code level. However, the change

management process will also affect the ease of adaptation to new technology, in that

a good software process management system will anticipate and embrace new

technology. Although the design of the system could affect the use of new

technology, it is not likely to be as critical.

System scalability is more dependent on the platform and organizational environment

than on the software, but it could be affected by the ease of use of new technology.

5.5 Conclusion

The Software Quality dimension of legacy status is an important one. The quality of

software may not initially impact on the use of a system. There are examples of

systems containing very poor quality software that have endured and are being used to

great benefit for many years. However, once change is required, the quality of

software is of paramount importance. When legacy effects that can be attributed to

poor quality software begin to appear, this dimension needs to be addressed.

However, the heart of the application lies in the application software. Poor quality

software is a major limiting factor when migrating legacy systems. This poor quality

can result from changes in coding standards, design models or process management.

Strategy components

 - 114 -

Chapter 6 Frameworks used in assessing systems

The purpose of this dissertation is to allow management to assess their current or

proposed systems for existing or potential legacy status. With a view to providing

such a facility, three frameworks are proposed.

The aim of this chapter is to bring together the results of analysis in previous chapters

to define two new frameworks (the Causal Criteria Framework and the Legacy Status

Cause / Effect Framework) and to propose a set of assessment techniques based on

these and the Legacy Effect Determination Framework already defined in Section

2.2.7.

In Section 6.1 the Legacy Effect Determination Framework is repeated, for the

convenience of the reader. In Section 6.2 the newly formulated Causal Criteria

Framework is presented. In Section 6.3 the Legacy Status Cause / Effect Framework

is presented as a combination of the previous two. Section 6.4 describes how the

frameworks can be applied in different scenarios using the LACE (Legacy

Assessment through Cause and Effect) techniques and Section 6.5 discusses the

usefulness of the frameworks.

6.1 Legacy Effect Determination Framework

The first of these has already been presented in Chapter 2. It is the Legacy Effect

Determination Framework.

Management can use table 18 to document the effects that are occurring in an existing

system that is causing concern. With the help of staff who use or maintain this

system, the effect can be assessed as being present “P”, absent “A” or undetermined

“U” and marked in to the table. The observation of effects may be relatively

subjective, but it is done by staff who are experienced in the use of the system and

what needs the system is trying to serve. These are the people who are in the best

position to assess its asset value, ease of operation, maintenance and migration /

Strategy components

 - 115 -

evolution. The legacy effect determination framework can be filled out partly or in

full. The purpose of it is to start an investigation, rather than to provide definitive

answers. To fill out the framework, the manager, in conjunction with experienced

user staff and I.T. staff places a “P” in the “Present, Absent or Undetermined” column

if the effect is present, an “A” if it is absent and a “U” if it is undetermined.

Table 8 Legacy effect determination framework

Legacy Effect Determination Framework

 Effect Present Absent or
Undetermined

Asset value Mission criticality

Reliability

Ease of operation User satisfaction

Ease of testing and auditing

Ease of maintenance Cost of maintenance and resistance to it

Availability of maintenance resources

Program size and complexity

Dependence on individuals

Ease of migration / evolution Ease of use of new technology

Scalability

Strategy components

 - 116 -

6.2 Causal Criteria Framework

The second framework being proposed is the legacy Causal Criteria Framework. This

framework takes the legacy causal criteria identified in section 2.3 and provides a

column where management can mark in whether their system is enabled “E” or

inhibited “I” in the causal area. In order to do this, a thorough investigation of the

system must be undertaken. To investigate a system for system suitability, a

combination of the practices discussed in chapter 3 can be used. Chapter 4 advises on

the assessment of suitability of the underlying platform and chapter 5 advises on the

assessment of software quality criteria. While a criterion is under assessment, “C”

can be marked into the column, to show that it is under consideration. The purpose of

this framework is to show where weaknesses lie in the system.

Table 9 Legacy Causal Criteria Framework

Legacy Causal Criteria Framework

Evaluation criteria Enabler, Inhibitor,

Consideration

System Suitability System suitability to
business process

Business process to
organizational mission

System technology to
organizational environment

Underlying Platform
suitability

Hardware suitability

Operating System
suitability

Network suitability

Development environment
suitability

Data management
suitability

Software Quality Quality of change
management

Quality of static design of
current system

Quality of software written
into components

Strategy components

 - 117 -

6.3 The Legacy Status Cause / Effect Framework

The third framework is the Legacy Status Cause / Effect Framework. It cross-

references causal criteria with legacy effects exhibited as a result of them being

inhibited. This is a combination of the tables produced at the ends of chapters 3, 4

and 5. There is a row for each of the causal criteria and a column for each of the

legacy effects. In the row for a causal criterion, every effect that it causes has its

column marked with an “X”. This allows management to see what effects could be

caused by a weakness in a causal criterion. Therefore, if there is an “I” in against this

 Legacy

 Effects

Asset
value

Ease of
operation

Ease of maintenance Ease of
migration /
evolution

C
a
u

sa
l

C
ri

te
ri

a

M
is

s
io

n
 c

ri
ti
c
a
lit

y

R
e
lia

b
ili

ty

U
s
e
r

s
a
ti
s
fa

c
ti
o

n

E
a
s
e
 o

f
te

s
ti
n

g
 a

n
d

a
u
d
it
in

g

C
o
s
t

o
f
m

a
in

te
n
a
n
c
e

a
n
d
 r

e
s
is

ta
n
c
e
 t

o
 i
t

A
v
a
ila

b
ili

ty
 o

f

m
a

in
te

n
a
n
c
e

re
s
o
u
rc

e
s

P
ro

g
ra

m
 s

iz
e
 a

n
d

c
o
m

p
le

x
it
y

D
e
p
e
n
d
e
n
c
e
 o

n

in
d
iv

id
u
a
ls

E
a
s
e
 o

f
u
s
e
 o

f
n
e
w

te
c
h
n
o
lo

g
y

S
c
a
la

b
ili

ty

S
y

s
te

m

s
u

it
a

b
il
it

y

System suitability to
business process x x x

Business process to
organizational mission x x
System technology to

organizational
environment

x x x x x x x

U
n

d
e

rl
y

in
g

 P
la

tf
o

rm

S
u

it
a

b
il

it
y

Hardware

x x x x x x
Operating System

x x x x x x x
Network

x x x x x x x x x x
Development
environment

x x x x x x x x
Data management

x x x x x x

S
o

ft
w

a
re

 Q
u

a
li

ty
 Quality of Change

Management

x x x x x x x
Design Quality

x x x x x
Component Quality

x x x x x x x

Table 10 Legacy status cause / effect framework

Strategy components

 - 118 -

causal criterion in the Causal Criteria Framework, then the corresponding row in the

Legacy Status Cause / Effect Framework will show the effects that may result.

Similarly, if the Legacy Effect Determination Framework has been filled out for an

existing system and some of the effects have been marked as “P” for present, then the

corresponding columns in the Legacy Status Cause /Effect Framework will indicate

possible root causes that are marked “X”.

6.4 How to Use the Frameworks – the LACE Techniques

Figure 3 (Section 2.4) shows how the strategy that is being implemented in a current

system or may be adopted in a new system can result in legacy effects. Figure 22 is

an adaptation, which shows how effects can be used to determine causal criteria and

indicate which part of a system strategy may need addressing.

The combined frameworks can be used for Legacy Assessment through Cause and

Effect (LACE):

a) Assess an existing system through the effects it exhibits.

b) Assess an existing system for legacy causal criteria.

c) Do a preliminary assessment of a solution strategy in a preliminary fashion, based

on its components.

d) Assess a solution system for potential legacy status.

Legacy

Effects

System

Strategy

Causal

Criteria

May be caused by

inhibited

inhibited as a

result of

Figure 22 Relationship between Legacy Effects and System Strategy

Strategy components

 - 119 -

6.4.1 Assessing an existing system through effects

If the framework is being used to check the legacy status of an existing system, then

the suspicious effects must be mapped onto the legacy effect determination

framework (

Table 8). A combined IT and business user team who are expert in the use and

maintenance of the system assess the system for the listed effects. If the effect is

present, it can be marked with a “P”. If it is absent, it is marked with an “A”. If the

team do not know whether or not the effect is exhibiting, it is marked with a “U” for

undetermined. The “U” indicates that further investigation must be undertaken, to

attain a result of “A” (Absent) or “P” (Present). This can be done, but it is not always

necessary, as this assessment is preliminary and merely indicates a possible need for

further investigation.

When all of the effects been assessed, then those that are present “P” can be cross-

referenced to the overall Legacy Status Cause / Effect Framework. The column for

the effect that is present will have an “X” in any row that corresponds to possible

underlying causes of the effect.

For example, if a system has an effect that there is poor availability of maintenance

resources, then it the Legacy Effect Determination Framework will have a “P” against

this effect. The corresponding column in the Legacy Status Cause / Effect Framework

Legacy Effect Determination Framework

 Effect Present Absent or
Undetermined

Asset value Mission criticality

Reliability

Ease of operation User satisfaction

Ease of testing and auditing

Ease of maintenance Cost of maintenance and resistance to it

Availability of maintenance resources

Program size and complexity

Dependence on individuals

Ease of migration / evolution Ease of use of new technology

Scalability

Strategy components

 - 120 -

has “X” in rows corresponding to suitability of the system technology to the

organizational environment, suitability of the underlying platform (hardware,

operating system, network, development environment and data management system).

This indicates that the system is weak in one or all of those areas.

The purpose of this exercise is to enable management to assess legacy status in

systems, thereby providing the information needed to address that legacy status. In

order to move on from here, it is necessary to do an assessment of the system for

legacy causal criteria.

6.4.2 Assessing an existing system for legacy causes

This is the most definitive assessment proposed for the system. It involves the use of

the Legacy Causal Criteria Framework, by using the definitions of those causal

criteria and the practices available to ensure high quality in chapters 3 through 5. The

criterion for the system is assessed in line with the advice given and then the

corresponding row in the framework is marked with an “E” if the criterion is enabled

and an “I” if it is inhibited. The values relating to some of the criteria will be known

earlier than others. While a criterion has not had its value decided, the framework

row is marked with a “C” for under consideration. Investigation should continue until

the evaluation column contains only “I” or “E”.

When the framework has been fully filled out, any criterion that is marked with an “I”

should be looked up in the legacy status cause / effect framework. The row

corresponding to the causal criterion will have an “X” in any column where it can be a

cause for this effect. This indicates to management what the risks are if the causal

criterion‟s inhibiting state is left unattended.

6.4.3 Assessing a prospective system in a preliminary fashion

When management are looking at the vast array of solutions that are proposed for

legacy systems, they need a method for cutting back the options. Chapter 7 below

shows the components that may be present in a solution strategy. Table 20 maps

strategy components against causal criteria. If a solution is in the preliminary stages

of evaluation, then its strategic components can be identified by consultation with the

Strategy components

 - 121 -

provider. If a strategic component is present in the solution, then the corresponding

values in this column in table 17 can be copied into the column in the Legacy Causal

Criteria Framework. This is done for each of the component present in the solution

strategy, giving a partially filled Causal Criteria Framework. Any criterion that is

marked with an “I” should be looked up in the Legacy Status Cause / Effect

Framework. The row corresponding to the causal criterion will have an “X” in any

column where it can be a cause for this effect. This indicates to management what

effects are risked if this solution‟s strategy is a genuine inhibitor for that causal

criterion. It must be stressed that this is a very general assessment and therefore lacks

accuracy.

6.4.4 Assessing a solution system for potential legacy status

Prospective systems should be planned based on the underlying legacy status in the

current system. In some cases, the changes undertaken may mean that criteria that

show an “E” in the Causal Criteria Framework for the existing system may be

adversely affected in the proposed solution. If a system is new, not a replacement

system, then this assessment is also necessary, so that possible future problems can be

anticipated and their risk weighed. When a system is proposed, management should

fill out the legacy Causal Criteria Framework as shown in section 6.4.1. If a criterion

has been evaluated as an inhibitor, then the potential effects of this, when the system

is installed, can be seen from the Legacy Status Cause / Effect Framework. If the

criterion is an enabler, this means that it does not contribute to a legacy status in the

system, however the effects associated with it may be incurred by another cause.

6.5 Usefulness of the frameworks

These frameworks allows management to compare and contrast systems that are

considered legacy with their proposed replacements, thereby giving them a more

robust foundation for their decision on which solutions to take. Positive results in an

existing system should not be abandoned. If the current system shows high quality in

a causal criterion, then it may be possible to retain this component. When a new

system is being evaluated, it is necessary to ensure that it does not introduce an

unacceptable number of inhibiting criteria.

Strategy components

 - 122 -

Strategy components

 - 123 -

Chapter 7 Components of migration strategies

7.1 Introduction

The aim of this chapter is to examine components of strategies that can be used to

resolve legacy problems and evaluate their impact on legacy causal criteria.

Chapters 3, 4 and 5 have thoroughly described the criteria that cause legacy status,

cross-referencing each causal factor with its effects in the Legacy Effect

Determination Framework. Chapter 6 has described how all three frameworks can be

applied. In this chapter, the strategies that can be used to resolve legacy problems are

examined. Their use is assessed in terms of their solution to each of the causal

criteria. In order to do this causal criteria are listed as evaluation criteria.

The number of approaches and products that promise a solution to legacy problems is

vast. Because of this, the solutions are categorised using the 4R portfolio matrix

devised by Slee and Slovin (1997), based on Sneed‟s (1995) evaluation of legacy

systems (see Figure 1). Solutions may come exclusively from one of these quadrants,

or may be a combination of one or more of them.

Section 7.1 describes the objectives towards which organizations strive when they

approach migration of or from legacy systems. It then describes the quadrants of Slee

and Slovin‟s (1997) 4R portfolio matrix in detail and breaks them down further.

Section 7.2 outlines the components that make up a strategy for legacy migration.

Section 7.3 to 7.10 describes each component and the options that can be chosen for

them, mapping each strategy component against the causal criteria (Table 12 to Table

19). Section 7.11 shows the overall mapping of component strategies as enablers or

inhibitors of the causal criteria (Table 20)

Strategy components

 - 124 -

7.1.1 Objectives of transition

Mack (1997) gives a comprehensive overview of the issues of transition, and

concludes that transitions is both a political and a technical process, the aim of it

being to “balance the ability of distributed computing to improve speed and service

with the stability and durability of known processes and technologies”. He also points

out that “the single most important factor contributing to success will be the ability to

plan and conduct an IT transition that is technically sound and politically astute”. The

factors affecting choice will be new technology, distribution of budget, skills and IT

decision-making to business units and users. The risks will be technological,

organizational and political indecisiveness, costing time and resources. Mack‟s

(1997) objectives are to choose a strategy that will: -

 Achieve the aim.

 Maximise the use potential of the factors.

 Minimise the risks.

7.1.2 Available transition options

New strategies, tools and approaches are emerging to help I.S. reengineer,

recondition, coexist with or extract value

from existing applications. Slee & Slovin

(1997)‟s 4R Portfolio Assessment Matrix

(Table 14) has four quadrants. The four R‟s

are Retire, Reassess, Redevelop and Renew.

These are described in the following

sections. -

7.1.3 Retire

Slee & Slovin (1997) suggest that retirement

may be gradual, and that a wrapper may be used during the phasing out of this system.

However, if its business value is very low, in the author‟s opinion it seems hardly

Low business

value

Low business

value

Low technology

condition

High technology

condition

RETIRE REASSESS

High business

value

High business

value

Low technology

condition

High technology

condition

REDEVELOP RENEW

Table 11 The 4R Portfolio Assessment

Matrix(Slee & Slovin 1997)

Strategy components

 - 125 -

worth the effort. Reassessment of business needs in relation to organizational and I.T.

strategy is a more worthwhile course of action.

7.1.4 Reassess

Business value is low, even though technological condition is high. This system is no

longer required for the business. Slee & Slovin (1997) suggest that the technology

could be moved to more critical applications, but the system itself should be retired.

In this case, once again, the author believes that the business needs of the organization

need to be examined to develop a strategy in relation to IT, rather than blindly moving

technology about to give the impression of saving costs.

7.1.5 Redevelop

This is for applications that are still mission critical, but technological advances have

outstripped them. Slee & Slovin (1997) suggest either extracting business rules

(reengineering), replacing them subject to a suitable replacement being found

(replace) or developing a gradual transition strategy (transition).

7.1.6 Renew

These systems are in high technological condition and have high business value to the

organization. However, it has been judged that the system is a legacy system. Slee &

Slovin (1997) suggest that moves should be made to address the cause of these

problems. This author presents a framework that allows management to accurately

assess the areas in which the system is gaining legacy status (see Chapter 6), so that

appropriate adjustments can be made.

7.2 Component strategies and their effects on legacy criteria

Slee and Slovin (1997) look at the directions in which legacy systems can be taken.

However, there is such a myriad of options available, it is difficult to know exactly

where one ends and another begins. In order to encompass the essential components

of any strategy, a summary of components that should be considered as part of a

strategy follows:

Strategy components

 - 126 -

1. Time-base - if change is being undertaken, it can be done in one go or it can be

done iteratively or gradually (iterative approach).

2. In-house or outsource.

3. Assessment - the assessment of a legacy system depends on the size of the system,

the level of understanding of the problem, the number of possible options for a

solution and the extent to which the assessor is involved in offering the solution.

4. Architecture - within each application, there are possible components. These

components may or may not be object-oriented, may or may not have a layered

architecture and may be an assortment of packages or may be bespoke

components.

5. Data Reuse - data can be reused in its native state, by wrapping it and accessing it

through ODBC, it can be stored in a data warehouse or it can be migrated to a new

system.

6. Code reuse - code can be wrapped by surrounding it in its native state, by

vertically partitioning it and reusing some of its services or by horizontally

partitioning it and replacing one or more of the layers.

7. Redeveloping the system requires recovering the requirements that the system

fulfils, adapting them to suit current needs and regenerating, replacing or renewing

the system.

8. Renewing the system can be done by iterative enhancement, by software

restructuring and by re-hosting.

Each of the above is described below and discussed as to how it enables or inhibits the

evaluation criteria for a new system. Note that as these are merely components of a

solution, many of the criteria cannot be judged against the components. For this

reason, where a component does not enable or inhibit the criterion, this grid-square is

left blank.

Strategy components

 - 127 -

7.3 Time-based Strategy

Many authors advocate an incremental approach to legacy transition (Slee & Slovin

1997, Brodie & Stonebraker 1995, Mack 1997, Beyond Software 1997, System

Techniques Inc. 1995 (2), Simpson 1995) whereas others advocate a complete

changeover (Wu et al. 1997, Bancroft et al. 1997). Either option will work when the

entire solution is properly planned. However, there is the danger when using an

iterative approach that Slee and Slovin‟s (1997) fear of „spaghetti integration‟ may

Mapping of time-based component against legacy causal criteria

Evaluation criteria Iterative approach

Enabler, Inhibitor

Direct

implementation

Enabler, Inhibitor

S
y
s
te

m

s
u

it
a
b

il
it

y

System suitability to business
process

E I

Business process to
organizational mission

E I

System technology to
organizational environment

U
n

d
e
rl

y
in

g

p
la

tf
o

rm

s
u

it
a
b

il
it

y

Hardware suitability

Network suitability
I E

Development environment
suitability(including OS)

I E

Data management suitability

S
o

ft
w

a
re

q
u

a
li
ty

Quality of change management
I E

Quality of static design of current
system

I E

Quality of software written into
components

Table 12 Causal criteria enabled and inhibited by time-based component

Strategy components

 - 128 -

result, where each increment of the solution is tied on to the previously installed base,

without any overall plan for the architectural result. This can cause problems

regarding the network, operating system and development environment suitability.

While the component parts of the system may work well, incompatibilities between

components may enforce tight coupling, thereby inhibiting the quality of static design

of the system. If the system is suffering in this way, then problems are inevitable

when change is required. Therefore, the quality of change management is also

inhibited. The option of an incremental approach is therefore only valid, in the

opinion of this author, if it is used as part of a planned incremental approach. A non-

iterative approach is more likely to favourably affect the operating system, network

and development environment suitability. As the system is being designed at one

time, then the quality of static design of the current system is enabled. These enablers

and inhibitors are mapped against the causal criteria in Table 15. In turn, it will be

easier to manage change in a system where the static design is good, so this enables

quality of change management. However, it also has a downside, in that if the

number of applications to be implemented is very large, the project may suffer from

the same problems that can occur in the linear sequential process model (Royce

1970). These problems arise from the fact that change may have occurred during the

planning phase, thereby giving the system a System Suitability legacy status in terms

of suitability to business process and suitability of business to organizational mission

before it has been used.

Strategy components

 - 129 -

7.4 In-House or Outsource

The task of transition may be undertaken completely by the organization itself or part

or all of the work

may be outsourced.

If outsourcing takes

place, it is important

to ensure that System

Suitability is properly

addressed. This can

especially be a

problem where the

implementation is

outsourced, but

operation is in-house.

Outsourcing in this

instance can be an

inhibitor to System

Suitability to business

process and

suitability of system

technology to

organizational

mission. Partial outsourcing can also cause problems with the quality of Change

Management, where third-party consultants to introduce a system and transition to

later upgrades are undertaken in-house. The use of experts in a particular

implementation can mean that the quality of the design implemented can be initially

very high. If a third party is involved in the implementation, it is also likely that

configuration management will be addressed afresh, rather than being left to what was

there before. This has a favourable effect on all of the Underlying Platform

Suitability criteria, but may conflict with the System Suitability to organizational

environment criterion, especially where the solution is a variation of a packaged

solution, as in this case, the solution is technically rather than socially based. If the

system is developed in-house, then it is likely that it will suit the organizational

Mapping of in-house / outsourcing component

against legacy causal criteria

Evaluation criteria Insourcing

Enabler,

Inhibitor

Outsourcing

Enabler,

Inhibitor
S

y
s
te

m

s
u

it
a
b

il
it

y
 System suitability to

business process

E
I

Business process to
organizational mission

System technology to
organizational environment

E I

U
n

d
e
rl

y
in

g

p
la

tf
o

rm
 s

u
it

a
b

il
it

y
 Hardware suitability

I E

Network suitability
I E

Development environment
suitability(including OS)

I E

Data management
suitability I E

S
o

ft
w

a
re

q
u

a
li
ty

Quality of change
management

 I

Quality of static design of
current system

Quality of software written
into components

Table 13 Causal criteria enabled / inhibited by choice of

in/outsourcing

Strategy components

 - 130 -

environment and the business process. The suitability of the development

environment is also likely to be enabled, because of the fact that the developers who

will be using it, or their managers, will be involved in choosing it.

However, the knowledge of available technology may not be as deep, thereby

inhibiting the Underlying Platform Suitability criteria.

7.5 Assessment

The assessment of a system involves checking its assets and liabilities. Several

authors have put forward assessment techniques, which include the following steps:

Assess business value (Sneed 1995, Ransom et al. 1998, Brodie & Stonebraker 1995,

Wu et al. 1997). Neumann (1996) and Slee & Slovin (1997) take business strategy

into account. Slee and Slovin (1997) address the ability of the organization to adjust

to hybrid technologies, while Neumann (1996) looks at the impact of business change

and how a new system can leverage power for the organization. Ransom et al. (1998)

also assess the external environment. Mentzas (1997) advises modelling current

process threads.

Assess technological condition (Ransom et al. 1998). Neumann (1996) gathers legacy

information. Brodie & Stonebraker (1995) and Wu et al. (1997) gain an

understanding of the legacy system. Mentzas (1997) conceptually models the current

processes and benchmarks them. Sneed (1995) prioritises systems based on their

technical quality and software value.

From here, authors tend to diverge, with some deciding upon a transition strategy

(Neumann 1996, Slee & Slovin 1997, SEBPC 1998), (known in Table 14 as open

assessment). Others advocate a particular solution (Mentzas 1997, Mack 1997),

known in Table 14 as directed assessment. Table 14 maps the assessment

components against the causal criteria they enable or inhibit.

The SABA project (Ramage 1998b, 1999) proposes a general approach: to understand

legacy systems and develop approaches which help companies to make decisions

about such systems. Alderson & Shah (1998) develop a method of understanding

legacy systems through viewpoints and events, while Liu et al. (1998) discusses a

Strategy components

 - 131 -

model of retrieving requirements from legacy system behaviour, where no source

code or documentation is available. Ramage (1999) discusses a model that contains

two tools, one to model an organizational scenario and the other to model a

technology scenario. Ganti and Brayman (1995) propose guidelines for examining

the business and the business processes, reengineering the business process and

linking legacy information systems with these processes to determine which systems

have data and business logic of value in the new target environment. Any differing

processes are developed separately.

The strength of the

assessment component in

a migration strategy is

directly proportional to

the suitability of the

solution system to the

organizational mission

and business process.

The approach to

assessment will affect the

suitability of the system

technology to the

organizational

environment. If

assessment is undertaken

with the intention of

moulding the problem

towards a particular

solution, then this assessment is not comprehensive and may inhibit suitability of

system technology to organizational mission. If assessment is done openly, without a

particular solution in mind, this will enable the suitability of system technology to

organizational mission. If a solution is in any way forced, this will inhibit the

Mapping of assessment component against

legacy causal criteria

Evaluation criteria Open

assessment

Enabler,

Inhibitor

Directed

assessment

Enabler,

Inhibitor

S
y
s
te

m

s
u

it
a
b

il
it

y
 System suitability to

business process
E

E

Business process to
organizational mission

E
E

System technology to
organizational
environment

E
I

U
n

d
e
rl

y
in

g

p
la

tf
o

rm

s
u

it
a
b

il
it

y

Hardware suitability

Operating System
suitability

Network suitability

Development
environment suitability

Data management
suitability

S
o

ft
w

a
r

e

q
u

a
li
ty

 Quality of change
management

I

Quality of static design
of current system

Quality of software
written into components

Table 14 Causal criteria enabled / inhibited by assessment

component

Strategy components

 - 132 -

management of change. The effect on other criteria depends on the particular

implementation of the assessment component.

7.6 Architecture

7.6.1 Components

Within each application, there are possible components. Although it is desirable to

integrate systems as much as possible, Slee and Slovin (1997) recognise that attempts

at integrating applications can quite often lead to what they term as “spaghetti

integration”, where applications suffer from tight coupling and loose cohesion. Tight

coupling results from the use of shared databases, redundant databases and interface

files. Loose cohesion results from spreading functional logic throughout numerous

programs and applications. Component architectures promote tight cohesion and

controlled coupling, by using items such as desktop integration, software message bus

and remote data access and data warehouses as building blocks to help applications to

co-operate through standardised interfaces. Because of the quality of coupling and

cohesion within these integrated applications, reuse and maintainability are supported,

thereby increasing the value of I.T. assets, which Slee & Slovin see as being data,

processing logic and business rules. However, componentisation does not

automatically imply that a given component will be suitable to the business process or

the organizational mission.

This author contends, therefore, that because of the potential for quality of coupling

and cohesion within components, componentisation promotes Software Component

Quality, thereby enabling high Design Quality (see Table 15)

7.6.2 Object orientation

These components may or may not be object-orientated. Some authors advocate an

object-orientated approach (Mentzas 1997, McGibbon 1996, Casals 1998), while

others do not consider it. Pancake (1995) commends orientation for its

responsiveness, flexibility, agility and ability to reflect real-world structures in a

model, resulting in a self-consistent, understandable universe that matches natural

thought processes. The author contends that these factors should enable System

Strategy components

 - 133 -

Suitability to both business process and organizational mission. However, Pancake

(1995) also points out the flaws in the practicality of the object-orientated approach:

i) The tools and languages are not simple and effective enough yet.

ii) Although reuse is supposedly one of the selling points of object-

orientation, current object orientated systems do not encapsulate any

information on object reliability, performance or resource utilisation.

iii) The paradigm is so different that substantial retraining is necessary to

introduce it.

iv) Models do not cater for subtle problems of inappropriate or incompletely

defined interactions. If the model is flawed, the flaw may only be exposed

at a late stage in testing (Pancake 1995).

This author contends that these flaws are due to the maturity of the object-orientated

approach. As it becomes more popular and therefore profitable, further developments

will enable these flaws to be overcome. Already, the development of modelling

languages such as UML (Fowler & Scott 1997) and Open-1 (Henderson-Sellers 1996)

are set to improve the quality and rigour of software design using an object orientated

approach. Similarly, new software development languages are beginning to close the

gap between visual languages that do not fully implement the object-orientated

paradigm such as Microsoft‟s Visual Basic and those that are more faithful to the

paradigm but have implementation drawbacks, such as Smalltalk. The subject of data

storage is also currently a topic of much debate, with many high profile database

producers such as Oracle, turning their attention towards object orientation. However,

as some these new technologies are not yet proven, this author contends that their

large-scale use to replace systems that are currently in existence, needs careful

investigation. While object-orientation is now accepted as a paradigm and most

software developers do have a knowledge of it, once again, the practical

implementation of the techniques involved are dependent on the technology available.

For these reasons, the author accepts that these flaws may still represent an obstacle to

many large organizations. Object orientation may therefore inhibit system suitability

to organizational environment, development environment suitability and data

Strategy components

 - 134 -

management suitability. Also, it may inhibit quality of static design of current system

and of change management.

7.6.3 Layering

The components may or may not have a layered architecture. If an application is

wrapped for reuse, its intrinsic architecture may not change. If it is not already

component based, it may be wrapped and treated as a component from outside the

wrapper, but it will not act as a component internally (Makowski 1995, Beyond

Software 1997, System Techniques Inc. 1995(1)). However, if redevelopment or

replacement is taking place, the issue of layering needs to be considered.

If this layered architecture is poorly designed developed and implemented (i-Cube

1998), it can cause slow and costly change, with the following results:

i) There may be gaps in an application‟s ability to meet new organizational,

geographic, or marketing directions and in its ability to exploit emerging

technologies.

ii) Development may lack discipline, leading to weak, unstable and difficult

to maintain applications.

iii) Connectivity tools are not equipped to meet the demands of a high-volume

production environment.

iv) Applications developed for one solution are not feasible for others, causing

a systems-management dilemma with multiple tools in the enterprise

technology infrastructure.

These problems result from poor configuration management and change management.

As such, the author contends that they are not intrinsic to a layered architecture.

However, due to the complexity of configuration management in a layered

architecture, the author contends that the organizational environment needs to be very

focussed. Therefore, layered architecture is an inhibitor for the criteria suitability of

the system technology to organizational environment and quality of change

management.

Strategy components

 - 135 -

Advantages of a layered architecture:

Correct implementation of open systems, however, according to I-Cube (1998) will

have the following benefits:

i) Flexibility to adapt quickly to ever-changing business and technology

conditions, enabling system suitability to business process and

organizational strategy.

ii) Cost savings in hardware and software acquisition, maintenance and

operating costs, integration of systems on disparate platforms, providing

the means to transform mountains of data into useful, timely and

manageable information. Significant improvement in systems scalability,

management and administration by being able to introduce new

technologies and tools, enabling the Platform Suitability criteria of

hardware and network suitability.

iii) Enhanced ease of use with features such as GUIs and online seamless

integration with other applications and data sources enabling software

design quality.

7.6.4 Bespoke components

The components that are used may be an assortment of packages from a variety of

software producers, a single component-based package provided by a third party

(Bancroft et al. 1997) or may be bespoke components. As the arguments for and

against bespoke components are similar to those of in / outsourcing relating to System

Suitability, this argument will not be repeated here (see section 7.4), but the effects on

these criteria are the same. Bespoke components are written for a specific system and

so do not necessarily cause difficulties relating to Platform Suitability criteria (see

Table 18).

The four options in architecture have been discussed and their enabling / inhibiting

effect on the causal criteria is mapped in Table 18.

Strategy components

 - 136 -

Mapping of architecture component against legacy causal criteria

Evaluation criteria Component
Enabler,
Inhibitor

Object
orientated
Enabler,
Inhibitor

Layered
Enabler,
Inhibitor

Bespoke
Enabler,
Inhibitor

S
y
s
te

m

s
u

it
a
b

il
it

y

System suitability to
business process

 E E
E

Business process to
organizational
mission

 E E

System technology to
organizational
environment

 I I
E

U
n

d
e
rl

y
in

g
 p

la
tf

o
rm

s
u

it
a
b

il
it

y

Hardware suitability
 E

I

Network suitability
 E

I

Development
environment
suitability(including
OS)

 I E

I

Data management
suitability

 I E
I

S
o

ft
w

a
re

 q
u

a
li

ty
 Quality of change

management

 I I

Quality of static
design of current
system

E I E

Quality of software
written into
components

E

Table 15 Causal criteria enabled / inhibited by component choices

7.7 Data Reuse

7.7.1 Data wrapping using ODBC

Data can be reused in its native state, by accessing it through ODBC (Makowski

1995, Beyond Software 1997). This middleware provides open database connectivity

- there is a generally accepted ODBC (open database connectivity) standard. Most

major RDBMS vendors offer software to link their databases to the Web. Primary

examples are Oracle‟s Network Computing Architecture and Informix‟s Universal

Web Architecture (Tucker 1997).

ODBC allows data in a current relational database to be used from elsewhere. While

this allows for more users to use the data, it is more of an integration strategy than a

strategy for solving legacy status. However, the data retains any redundancies and

Strategy components

 - 137 -

inconsistencies that may have been in it and the security of the current database may

be compromised unless safeguards that are not inherent to the database are

implemented in additional systems that access it. Another difficulty in extending the

use of an existing database is that the demand for the data may rise, thereby

compromising the efficiency of the database management system. Data that is being

used in an environment for which it was not designed may need restructuring. ODBC

therefore, as a solution strategy for legacy systems inhibits the suitability of the system

to the business process, by making it slower and possibly less reliable. It may affect

the quality of the static design of the current system, if the current system is designed

for another purpose, and the data is being reused out of context. ODBC can be used

to good effect in a restructured system.

7.7.2 Data warehousing

Data can be replicated in a data warehouse so that transaction-based systems can be

transformed into knowledge-based systems. Data mining provides end-users with

widespread access to information that is locked in the core business applications.

Desktop tools currently in use, such as spreadsheets, databases and personal

information managers can do this. A data warehouse contains data from several

source applications, which is copied and undergoes a transition before it is put into the

data warehouse. This is done by data transformation tools (Sachdeva 1995, Hill 1997)

The rules of data entry to the warehouse are held in the metamodel. The data

infrastructure in the warehouse is described by the metadata (Sachdeva 1995,

Breitendeder et al. 1996). From the data warehouse, the business user should be able

to access a table of contents of the warehouse. This should have details of the original

system from which the data came, the transformation sequence that have been applied

to it, the access permissions available to different categories of user, the age of the

data and a rough estimate of how long it would take to access certain data. The data

warehouse administrator ensures that the data is up-to-date and accurate, using a

version control facility, an estimate of the time taken to load the data into the

warehouse and of the growth of the data. Decision Support Systems (DSS) analysts

can also access the table of contents, the transformation and business rules, the data

models and what operational data is available. The warehouse infrastructure should

Strategy components

 - 138 -

be made up from legacy systems metadata, operational client/server systems,

enterprise data architecture, and metadata from legacy data mining.

The author sees the advantages and disadvantages of data warehouses as follows.

They can be used as a repository of information and an indirect information conduit

between old and new applications. Data from several systems can be merged to

provide answers to queries that may not be satisfied from a single system. Data

warehousing has enormous potential advantages in any organization, for use in

executive support and decision support systems, giving rapid, easy access to

operational data and diverse historical data from differing locations for planning and

decision making. As a strategy for migration it has the advantage that it can be used

to preserve and share information. It can help in scaling information that was hitherto

available only in a confined environment. However, data warehouses are most useful

for online analytical processing, using data mining techniques, not for online

transaction processing. For this reason, their application in a solution is limited. Due

to the large amount of data and the expected user base, online transaction processing

would be prohibitively slow. As such, data warehousing allows data from a defunct

system to be retained in the warehouse, but it does not provide a solution for new

processing. Data warehousing can be used as part of a solution, in that it removes

some of the need for integration across platforms that may not necessarily be

compatible. In particular, if an organization has vastly different applications, such as

process control or monitoring systems on one platform and information systems on

another, a data warehouse can enable information to be merged from both on an

independent platform, without compromising the suitability of platform for either set

of applications. This enables the underlying platform suitability criteria.

However, as data warehousing does not contribute to the functional core of the new

system, it does not enable or inhibit any of the other causal criteria. However it is

important that managers should consider including a data warehouse for analytical

processing.

Data warehousing is mapped against the causal criteria in Table 16.

Strategy components

 - 139 -

7.7.3 Data migration

Data migration is where the data is taken from its current environment and transferred

to a new system. Brodie & Stonebraker (1995) propose the Chicken Little

methodology, where the current system is incrementally analysed and decomposed.

The new target interfaces, applications and database are incrementally designed and

installed and a gateway system is used between current and new systems until all

increments are complete.

Wu et al. (1997) propose the Butterfly methodology whereby, after a new target

system has been prepared, the data and all manipulations of the data from the current

system are redirected to the target data schema, thereby bypassing the need for

gateways.

The migration of existing data greatly enables the system suitability to business

process and system suitability of business process to organizational mission, in that it

maintains information from the previous system. Both of the methodologies

mentioned above retain not just the information, but its behaviour. This is a partial

strategy and is only relevant where the system is being migrated.

Data migration is mapped against the causal criteria in Table 16.

Strategy components

 - 140 -

Mapping of choice of Data reuse against legacy causal criteria

Evaluation criteria ODBC Enabler,

Inhibitor

Data migration

Enabler, Inhibitor

Data Warehousing

Enabler, Inhibitor
S

y
s
te

m

s
u

it
a
b

il
it

y

System suitability to business
process

I E

Business process to
organizational mission

 E

System technology to
organizational environment

U
n

d
e
rl

y
in

g

p
la

tf
o

rm

s
u

it
a
b

il
it

y

Hardware suitability

E

Network suitability
I

E

Development environment
suitability(including OS)

E

Data management suitability

E

S
o

ft
w

a
re

q
u

a
li
ty

Quality of change
management

Quality of static design of
current system

Quality of software written
into components

Table 16 Causal criteria enabled / inhibited by data reuse

7.8 Code reuse

Code can be written and maintained in such a state that it has a value throughout time.

If the problem being addressed by the code does not change and the code has been

well written, in a standard and current language, these are good reasons for reusing

the code.

There is more than one way to reuse code. The author categorises the various

methods of reuse as follows:

6. It can be fully reused – i.e. wrapped in its native state.

7. It can be partially reused, by splitting the layers and replacing one layer of it –

usually the front-end.

8. It can be partially reused, by splitting the application vertically, by functionality.

This allows the existing code to offer services to other applications.

 Code reuse covers the entire area of wrapping. This can vary from wrapping a piece

of functionality from a process within an application, to wrapping a full process or a

Strategy components

 - 141 -

full application. In some cases, functionality from more than one application is

wrapped together and used by another application in a single service request.

The more general term software reuse encompasses the idea of reusing designs or

parts of models.

7.8.1 Application wrapping

The application can be left as it is and accessed by another path. This is similar to the

use of subroutines in a third-generation language. The subroutine exists

autonomously and is available to be used by any process that can call it, provide it

with the correct parameters and understand the results it gives back. In the same way,

a program or application can be reused. If code is being reused in its entirety, then the

interfaces must either be presented directly to the other application or masked out, by

a wrapper which converts input and output between calling and called applications.

The calling application may be requesting a service, with a set of parameters, but the

called application may expect, for example, a lengthy login, menu-picking, form-

filling procedure to be completed before it invokes the service and returns the result.

The result may be intended as a display on a screen or an update to stored data. The

wrapper intervenes and supplies the missing information to be input to the called

application and intercepts the result and redirects it to the calling application, in the

required format.

The use of applications in their native state allows for the applications to remain

available to existing users in an existing environment and also to new users in a

different environment, through the wrapper. However, the wrapper does represent an

overhead in terms of processing, with much of the I/O being duplicated and masked

out. The calling procedure may involve quite complex emulation to gain access to the

required functionality and is really only justifiable in the case where the functionality

is highly complex and not easy to replace. The means of doing this is described by

Rossak (1991) and has been implemented by Van Mulligan et al. (1995) in the

HERMES project. Aronica and Rimmel (1996) used emulation as part of their

strategy in encapsulating a legacy system.

Strategy components

 - 142 -

Sometimes, the original code needs to be changed. Code can be integrated with new

systems in its native state or with minimal change or automated change. K. Martin

(1996) used automation to reuse a library of C++ routines in General Electric.

Application wrapping enables suitability of system technology to organizational

environment, by allowing access to systems that are not entirely compatible with the

calling environment, but inhibits all of the software quality criteria. Any software

problems that were there before the system was wrapped remain and are propagated to

new users, inhibiting the quality of software written into components. The system

design effectively contains a black box in terms of the wrapped application, thereby

inhibiting the quality of static design of the system. Also, as the system is a black

box, quality of change management is inhibited.

Application wrapping is mapped against the causal criteria in Table 17.

7.8.2 Horizontal wrapping

System Techniques (1995a) describe wrapping as developing an overlay to transform

character-based screens into GUI, client-based screens or to tying together multiple

systems that do not normally interface to one another.

A form of horizontal reuse is where the user interface layer is replaced by a new front

end, while leaving the lower layers intact. The success of this depends on the

looseness of the coupling between the layers and the quality of the underlying layers.

This can be done for more than one reason. It can be done to improve the look and

feel of the system, making the system more acceptable to and therefore more useable

for a new breed of user. Conversely, it can be done to upgrade existing users to

integrate them with other applications that may be useful to them, while still retaining

the functionality they need for their core skills (System Techniques 1995 (1)). It can

also be done to make the system accessible to a wider audience, by supporting

client/server access and by web-enabling the wrapped system.

Horizontal wrapping enables the System Suitability to business process in that it can

present the user with a modern interface and more importantly, only request that

information from the user that the user can knowledgeably provide. As the

divergence between system needs and application provision often causes fields on

Strategy components

 - 143 -

forms to become defunct or to change in nature, a new interface can accommodate

this. A more modern interface also enables suitability of system technology to

organizational environment. As with application wrapping, horizontal wrapping does

not substantially affect the underlying software and so inhibits the Software Quality

criteria.

Horizontal wrapping is mapped against the causal criteria in Table 17.

7.8.3 Vertical wrapping

This is where certain functionality is taken from the application in isolation. The code

is split into components and wrapped. The resultant wrapper may be object-oriented.

However, the code in the background, while logically split, may still suffer from tight

cohesion with non-related functions and loose coupling. If this is the case, the

wrapper may need to filter out all of the redundant code. This can either be done by

re-engineering the underlying code (De Lucia et al. 1997, Allen & Frost 1997) or by

making the wrapper mask the processing that is not needed from the calling

application. This can slow down the system considerably. In the HERMES project,

Van Mulligan et al. (1995) vertically wrapped functions from several legacy systems

and combined the result to offer it as a single service component to the calling

program. As many instances of this type of wrapper are component-based and object-

orientated, they are easily web-enabled.

Vertical wrapping enables the suitability of the system to the business process and the

suitability of the system technology to the organizational environment as with

horizontal wrapping. Likewise, it inhibits all of the software quality criteria.

Vertical wrapping is mapped against the causal criteria in Table 17.

Strategy components

 - 144 -

Mapping of choice of code reuse against legacy causal criteria

Evaluation criteria Vertical Wrapping

Enabler, Inhibitor

Horizontal wrapping

 Enabler, Inhibitor

Application wrapping

Enabler, Inhibitor
S

y
s
te

m

s
u

it
a
b

il
it

y

System suitability to
business process

E E

Business process to
organizational mission

System technology to
organizational
environment

E E
E

U
n

d
e
rl

y
in

g
 p

la
tf

o
rm

s
u

it
a
b

il
it

y

Hardware suitability

Operating System

Network suitability

Development environment
suitability(including OS)

Data management
suitability

S
o

ft
w

a
re

q
u

a
li
ty

Quality of change
management

I I
I

Quality of static design of
current system

I I
I

Quality of software written
into components

I I
I

Table 17 Causal criteria enabled / inhibited by code reuse

7.9 Redevelop

This is for applications that are still mission critical, but technological advances have

outstripped them. Slee & Slovin (1997) suggest either extracting business rules

(reengineering), replacing them subject to a suitable replacement being found

(replace) or developing a gradual transition strategy (transition).

Brodie and Stonebraker (1995) propose the “Chicken Little” migration approach,

which is incremental in nature. It analyses the legacy system and decomposes it. It

then designs new target interfaces, applications, database and environment. Once the

new environment has been installed and gateways created, incremental migration of

the database, applications and interfaces can take place.

Slee and Slovin‟s (1997) recommendations are to reverse engineer the current system

to a design document, change the design document to meet business requirements and

use forward regeneration of the code.

Strategy components

 - 145 -

In the Broom method, Mentzas (1997) also models the „as-is‟ system and then defines

metrics and process measurement criteria to benchmark solutions. A variety of „to-

be‟ processes are designed, simulated and evaluated, resulting in one being chosen.

The object-oriented models are then developed for the chosen solution.

Casals (1998) proposes an object-oriented approach, whereby the current system is

analysed and represented by a model. Problems with this model are identified and

decisions made about the software structures that could be used to address the

problems to solve this design defect. The optimal transformation strategy is then

selected and the transition is carried out.

There is agreement among many authors about the general structure of a

redevelopment project, with this structure having the elements of understanding the

current system, noting shortfalls and new requirements and finding a new solution.

These steps are common to any of the software engineering process models seen

earlier (Chapter 5). However, understanding the current system can prove difficult,

especially in a system that has been deemed mission critical, but with low

technological quality.

Recovering value from legacy assets

The assets that Slee and Slovin (1997) list as being important to recover are:-

Valuable data

Almost every new application involves a major database conversion. Most require

reconditioning of the data for removal of redundancies and inconsistencies and to add

new information.

Valuable processing logic

Processing logic that works can be an enormous asset. However, when this logic is

difficult to adapt or understand, its usefulness is limited. This logic can either be

discarded or reengineered.

Strategy components

 - 146 -

Valuable business rules

The value of processing logic is all the more important when it is the only repository

of business rules. When a system is manual, there are always people who know the

rules of how it should work, but when it becomes automated, these rules are encoded

in the processing logic. As time passes, staff who know the business rules either leave

or forget how exactly the system is supposed to work. If the current business rules

need to be retained, then reengineering of the process logic is essential. It may be the

case that the business rules are standard, or could be standardised without any

detrimental effect.

The AMBOLS project (Liu

et al. 1998) proposes

recovering requirements by

analysing the behaviour of

the system, thereby by-

passing the need to examine

code and documentation that

may be absent or difficult to

understand. Arnold (1989)

proposes code restructuring

as a means of understanding

the current system.

Newcomb (1995) proposes

that a legacy system

cataloguing facility be set up

to help cope with the

volume of legacy programs

and provide a knowledge

base for re-engineering.

This facility can be used in

conjunction with automated reverse engineering tools such as Refine (Markosian et

al. 1994). Ning et al. (1994) propose another toolset for reverse engineering Cobol

programs, called Cobol/SRE.

Mapping of redevelopment strategy against legacy

causal criteria

Evaluation criteria Enabler, Inhibitor,

Consideration

S
y
s
te

m

s
u

it
a
b

il
it

y

System suitability to
business process

Business process to
organizational mission

System technology to
organizational environment

E

U
n

d
e
rl

y
in

g
 p

la
tf

o
rm

s
u

it
a
b

il
it

y

Hardware suitability E

Operating System suitability E

Network suitability E

Development environment
suitability

E

Data management
suitability

E

S
o

ft
w

a
re

q
u

a
li
ty

Quality of change
management

E

Quality of static design of
current system

E

Quality of software written
into components

E

Table 18 Causal criteria enabled / inhibited by

redevelopment

Strategy components

 - 147 -

Redevelopment, when done correctly, can have a positive effect on all of the criteria.

As redevelopment focuses on the current application, however, it does not necessarily

enable the suitability of the business process to the organizational mission or the

suitability of the system to the business process. Nor does it inhibit it. The effect on

these criteria depends on correct assessment and direction before a decision is taken to

redevelop. Software restructuring, if it takes place, will enable the Software Quality

criteria. If Arnold‟s (1989) definition of software restructuring is taken into account,

then this will enable the underlying platform suitability criteria also.

Redevelopment is mapped against the causal criteria in Table 19.

7.10 Renew

This option can be chosen when the system is in good technological condition and is

valuable to the business. The system may be ageing slightly in terms of the platform

on which it sits or its exact alignment with business suitability. The way in which the

system is renewed will affect the software quality of the system in terms of change

management. It may also have an effect on the software in other ways. In many

cases, system renewal causes legacy problems.

7.10.1 Iterative enhancement

Slee and Slovin (1997) advocate iterative enhancement, whereby any change is

examined in terms of:

 Its compatibility with the original design and with the strategic plan.

 Its degree of necessity and capacity to enhance the system.

 Cost / benefit ratio and cost / budget ratio.

 Criticality of the required change compared to others in the backlog.

 Lead time before the business will benefit.

Iterative enhancement enables all of the system suitability criteria, because it works

from a basis of a system that is of high business and technical quality already and

iterative enhancement, done correctly, will maintain that quality. It also enables the

maintenance of all of the software quality criteria.

Strategy components

 - 148 -

7.10.2 Code restructuring

Arnold (1989) describes software restructuring as the restructuring of code,

documentation, programming environment, software engineers, management policies

and external environment. He gives the advantages of restructuring as:

a) Regaining understanding of the software, by making it traceable.

b) Making the software more maintainable by putting it into a context familiar to the

current generation of programmers.

c) Preserving the software‟s asset value to the organization.

Arnold (1989) also realises that code restructuring cannot be feasible as an end in

itself. It should be related to locally defined goals and those goals should be related to

perceived software value.

Software restructuring, according to Arnold (1989) restructures the software and the

environment. This has an enhancing effect on the software quality criteria and the

underlying platform suitability criteria.

7.10.3 Re-hosting

This involves moving the system onto a new platform. This may be a physical move,

by moving the system onto a new machine or network, or a partly logical move, by

splitting the system into tiers and moving one or more tier to another platform. If the

system is currently based on a large centralised machine, then it may be a mainframe.

Several authors discuss the advantages and disadvantages of keeping the mainframe.

Simpson (1995) suggests keeping the mainframe only for older applications, which

are less easy to migrate and then replacing them bit by bit, in the belief that client

/server is more flexible in its ability to rapidly improve code, making the enterprise

more responsive to changing end-user and market requirements. Transaction

processing systems in particular are based on proprietary environments and can use

very large databases. Beyond Software (1997) discuss the use of Mainframe Web

servers, giving advantages and disadvantages. The advantages lie in the strengths of

the mainframe. These include existing access control system, security, performance

Strategy components

 - 149 -

on database queries and transactions, bandwidth and I/O capabilities, elimination of

login overhead, reliability, scalability and availability and native data store interfaces

for most large data management systems. The disadvantages are that coding is

required on the mainframe to re-route I/O from applications and that mainframe

programmers need training in Web principles. I-Cube (1998) gives the advantages of

the mainframe as reducing cost risk and implementation time, leveraging existing

investment and IS functional knowledge and minimising retraining and disruptions to

operations. It gives the advantages of re-hosting onto client/server open systems as

positioning applications on a platform where they can adapt to emerging technologies

such as the web. Therefore, re-hosting has an enabling effect on the underlying

platform suitability criteria.

Re-hosting is mapped against the causal criteria in Table 19.

Mapping of choice of system renewal against legacy causal criteria

Evaluation criteria Iterative

Enhancement

Enabler, Inhibitor

Software

restructuring

Enabler, Inhibitor

Re-hosting

Enabler,

Inhibitor

System
suitability

System suitability to business
process

E

Business process to
organizational mission

E

System technology to
organizational environment

E
I

Underlying
platform
suitability

Hardware suitability
 E

E

Network suitability
 E

E

Development environment
suitability(including OS)

 E
E

Data management suitability
 E

E

Software
quality

Quality of change
management

E E

Quality of static design of
current system

E E

Quality of software written
into components

E E

Table 19 Causal criteria enabled / inhibited by renewal

McGibbon (1996) and Hartley (1996) recognise that in re-engineering to a distributed

object computing architecture, the development team needs new architectures, new

frameworks, new patterns, new tools and new skills. The technology used will

change how the user works, with whom the user works, what the business is and how

Strategy components

 - 150 -

it survives. Re-hosting can therefore inhibit the suitability of the system technology

to the organizational environment.

7.11 Mapping of Strategy Components against Causal Criteria.

The strategy components that have been covered here cover the approach to handling

a system, to outsource the problem or handle it in-house; assessing the system,

whether it is done with an open mind or towards a certain solution; implementation of

a solution – iterative or in one go. Other strategy components involve what goes into

the system – architectural decisions, reused data or code, system redevelopment or

renewal. All of these are options that can be included in a solution. The decisions

made will impact on the possible success or failure of the solution strategy. Table 20

shows how these decisions can have a negative (inhibiting) or positive (enabling)

effect on the solution.

Strategy components

151

Mapping of strategy components against causal criteria

Causal criteria
Strategy components

Time

base

In / out

source

Assess

ment

Architecture

component

Data reuse Code reuse

R
ed

ev
el

o
p

Renewal

It
er

at
iv

e

D
ir

ec
t

In
-h

o
u

se

O
u

t-
so

u
rc

e

O
p

en
 a

ss
es

sm
en

t

D
ir

ec
t

as
se

ss
m

en
t

C
o

m
p

o
n

en
t

O
b

je
ct

-o
ri

en
t.

L
ay

er
ed

B
es

p
o

k
e

O
D

B
C

D
at

a
m

ig
ra

ti
o

n

D
at

a
w

ar
eh

o
u

si
n

g

V
er

ti
ca

l
w

ra
p

p
in

g

H
o

ri
zo

n
ta

l
w

ra
p
p

in
g

A
p

p
li

ca
ti

o
n

 w
ra

p
p

in
g

It
er

at
iv

e
en

h
an

ce
m

en
t

S
o

ft
w

ar
e

re
st

ru
ct

u
re

R
e-

h
o

st

System

suitability

System suitability to business process E I E I E E E E E I E E E E

Business process to organizational mission E I E E E E E E

System technology to organizational env. E I E I I I E E E E E E I

Underlying

platform

suitability

Hardware suitability I E E I E E E E

Network suitability I E I E E I I E E E E

Development environment suitability (incl. O.S.) I E I E I E I E E E E

Data management suitability I E I E I E E E E

Software

quality

Quality of change management I E I I I I I I I E E E

Quality of static design of current system I E E I E I I I E E E

Quality of software written into components E I I I E E E

Table 20 Mapping of strategy components against causal criteria

152

7.12 Summary

This chapter has described the components that make up a transition strategy for

resolving legacy status in a system and mapped them as enablers or inhibitors against

the legacy causal criteria. This mapping facilitates management in their quest to

evaluate alternate strategies that are offered to them, as described in Section 6.4.3 and

as illustrated in Section 8.3 below.

There are two important things to note here.

The first is that not all decisions affect the causal criteria. If this is the case, the cell in

the table is left blank. Other factors will affect this criterion in the solution.

The second is that, because a strategy component may inhibit one of the causal

criteria, it does not mean that this strategy component should not be used. It merely

means that careful attention should be paid to avoiding the pitfalls of this criterion.

These can be avoided by looking at the definition of that criterion in chapters 3 to 5

and taking preventative measures. Likewise, if a strategic component is an enabling

factor, it merely means that it will be easier to avoid problems in this causal criterion

than it could have been.

153

Chapter 8 SAP – evaluating a solution strategy

against the causal criteria framework

8.1 Introduction

This chapter illustrates the use of the Causal Criteria Framework in a case study by

using it to evaluate SAP R/3 against a hypothetical public sector organization whose

business needs, when broadly defined, seem to be serviced by SAP R/3.

Section 8.2 describes Enterprise Resource Planners in general, and describes SAP R/3

in terms of functionality, architecture, process model and activity / task framework.

This description is structured to enable the assessment of SAP R/3 using the Causal

Criteria Framework. Section 8.3 does a preliminary assessment on SAP R/3 by

looking at its strategy components and how they enable or inhibit the causal criteria

(see Table 20 Mapping of strategy components against causal criteria).

An example of a migration strategy that is being adopted by many companies is the

replacement of some or all of their core applications with an enterprise resource

planner, SAP R/3. As there are no details of the company, only some of the criteria

can be evaluated. This is because many of the criteria depend on the environment in

which the system is installed.

8.2 Enterprise Resource Planners and SAP

Software can be replaced on a small scale by replacing or rewriting a module of a

single program, to a large scale by replacing application suites at an organizational

level. The replacement software being considered here is on an organizational level.

Across the world, organizations are opting to replace software on a massive scale.

For this exercise to be useful, the most prolific and large-scale replacement software

options are considered. Several software suppliers are now providing enterprise

solutions, which purport to provide all software needs for an enterprise. Although

several companies offer these solutions – notably Baan (see website

Evaluating SAP

 - 154 -

http://www2.baan.com) , Oracle Corporation‟s Oracle applications (see website

http://www.oracle.com/applications), SSA‟s BCPS (http://www.ssax.com/BCPS/),

PeopleSoft‟s (http://www.peoplesoft.com/en/products_solutions) Product and

Industry solutions and JDE (see http://www.jde.com). A full evaluation of the

different Enterprise Resource Planners or ERPs is available in OVUM (1999). The

most commonly used of these is SAP R/3 (Dailey 1996, Dailey 1997). This product

has achieved world-wide success and as such, is a relevant migration strategy.

The functionality of an ERP is that it provides a set of integrated applications that can

be used to fulfil the entire software needs for an organization. It provides a wide

range of applications with a good depth of standard requirements coverage in several

industries.

Ovum (1999) suggest that the evaluation criteria for ERPs should include both the

vendor and the product. The vendor needs to be assessed for financial performance,

company character and direction and operation coverage. The product needs to be

assessed according to its range of business applications, its functionality, its

architecture, its information retrieval mechanism, its flexibility and its ease of

implementation. Dailey (1997) concludes that SAP has a lot to offer, but that when

prospective customers are evaluating SAP, they should understand their industry, the

pace of functional enhancements that are possible within the ERP, the time frame for

technology change and the organization‟s internal needs. To evaluate SAP R/3 in

isolation, the framework that is useful from this dissertation is the Causal Criteria

Framework.

The ERP under review is SAP R/3. Its functionality, architecture and process model

is described in Section 8.2 in a format that is compatible with the assessment method

proposed. Section 8.3 does a preliminary assessment on SAP R/3 based on the

strategy components that are present in the solution. Section 8.4 does a thorough

assessment based on the causal criteria enabled or inhibited by SAP R/3. Section 8.5

discusses the results of the assessment, comparing them to the experiences of other

authors.

http://www.peoplesoft.com/en/products_solutions
http://www.jde.com/

Evaluating SAP

 - 155 -

8.2.1 Description of SAP R/3

SAP R/3 is an enterprise resource planner, which can be used to provide all of the

software for an entire organization, across physical frontiers and logically different

business entities. The functionality and architecture of SAP R/3 are described here.

The process model used to manage the ERP is then discussed.

This description is structured in a way that eases use of the Causal Criteria

Framework.

Functionality

SAP consists of 70 complex software modules for business applications, each

containing a set of sub-applications. Within the suite, there are over 1,000 business

processes, using over 8,000 tables of data and business rules. The modules available

are: -

 Financial accounting. The major sub-applications here are financial (FI),

controlling (CO) and asset management (AM). FI includes accounts payable,

accounts receivable, capital investment and general ledger. This module can also

generate reports for the end user, document processes and archive data.

 Human resources. This module includes functionality to pay, schedule, hire and

terminate employees. The sub-applications include payroll, benefits

administration, applicant data administration, work-force planning, schedule and

shift planning, travel expense reporting and personnel development planning.

 Manufacturing and logistics. The sub-applications are materials management,

quality management, plant maintenance, production planning and control and

project management.

 Sales and Distribution. The sub-applications here allow finding and managing

customers, processing sales orders, product distribution, export controls, shipping

and transportation management, billing, invoicing and rebate processing

(Linthicum 1996).

Evaluating SAP

 - 156 -

SAP purports to be Year 2000 and Euro compliant (O‟Reilly 1998). Dailey (1996),

(Dailey 1997) considers that SAP has many advantages. In certain industries, the

functionality available is very good, with enough complexity to adapt to most of the

idiosyncrasies an organization can have. However, as SAP tries to expand its

horizontal focus – i.e. the number of industries that it services – the vertical focus, or

specialisation required, eludes it (Dailey 1997). Because of this, SAP may not be cost

effective for all organizations.

Although not directed at SAP in particular, but at the idea of replacement (packaged)

software in general, Mack (1997) states that this type of application is not suited to

enterprises who wish to use that application as a strategic weapon to become a market

differentiator, but more for providing basic applications necessary to run the business,

or to enhance their current functions to improve productivity.

Architecture

SAP has a three-tier, thin-client architecture that uses proprietary components. The

three tiers or layers are a user interface layer, an application server and a database.

The client provides the user interface to the next layer, which is the application server.

User interface layer

The client or user interface layer of SAP can run on several operating system

platforms including Unix, Microsoft Windows, OS/2 and Apple Macintosh.

Transactions are initiated from here. Although all of the configuration can be done

through SAP, it is possible to configure the front-end separately, using third-party

tools.

Application server

The central layer is an application server. A transaction initiated by the client sends

data to the application server, which invokes the correct application service, to apply

the business functions to the transaction. The application server is proprietary to SAP

R/3. It runs on various operating system platforms, including Unix, Microsoft

Windows, AS/400, MVS and the PowerPC. Application servers can integrate with

each other across networks and can be distributed world-wide. Data and functional

Evaluating SAP

 - 157 -

integration is enabled by the SAP middleware product ALE (Applications Link

Enabling. Web enabling technology may also be used (Dailey 1997).

Data layer

The database is the third tier. The application server interfaces to the data layer. The

database server is closely coupled to the application server, with one data server for

every application server. Both may reside on the same machine or on independent

processors, but a one-to-one coupling is always necessary. The database may be a

proprietary SAP database or third party database server software such as Microsoft‟s

SQL server or Oracle (Linthicum 1996). If a third-party database is used it may be

interrogated in a non-intrusive way by third party applications, but updating the

database through means other than the application server is discouraged. Updating of

SAP manipulated data by a non-SAP application is not recommended and represents a

security risk (Van Haelst & Jansen 1997), by offering the system administrator more

than one logical access path to the system.

Inter-layer communication

Communication between the layers is carried out by remote function calls (RFCs),

which are equivalent to Remote Procedure Calls (RPCs). The RFCs are platform

independent and use popular transmission protocols such as TCP/IP, SNA and

IPX/SPX (Linthicum 1996). However, the application programming interface (API)

is specific to SAP (BAPI). Web servers can extend the range of SAP, but are

available on Microsoft Windows NT machines only (Dailey 1997). Although SAP is

expected to become increasingly componentised and message-based, the focus is on

improving the componentisation of SAP components, rather than allowing integration

to non-SAP components (Dailey 1997). The three-tier architecture can be used to

provide fail-over capability – i.e. several application servers can be used, and if one

fails, its processing load can be redirected to another. This configuration also allows

load balancing, where the workload is divided equally between servers, or System

managers can directly connect clients to under-utilised application servers. Data

caching allows repeated requests to be served without having to repeat access to the

database (Linthicum 1996).

Evaluating SAP

 - 158 -

System hardware configuration

As discussed, the platforms used by SAP can vary. Dailey (1997) raises concerns

about the complexity of the infrastructure required for SAP. As a client/server

distributed system, which is intended to handle much of an organization‟s financial

business, the ability to install and support the infrastructure is paramount. While SAP

have kept reasonably up-to-date with the latest technology, they are becoming heavily

involved with Microsoft‟s Windows NT. This requires customer organizations to do

the same, if they wish to avail of the full functionality of the system. This will have

an impact on the customer organization‟s support infrastructure and budget (Dailey

1997).

The scalability of a single application server is limited by its coupling to a single

database server. While the management of data is less complex this way, it limits

SAP R/3 to scale beyond databases that are 500Gbytes and have 2,000 users (as of

July 1997). Scalability is also limited by the requirement for high-speed networking

connections to handle transaction traffic. The Gartner Group expect this position to

improve over the next few years (Dailey 1997).

Process model

Project methodology

The methodology consists of an activity/task framework, which uses a reference

model to map the organization‟s process needs against the modules provided as

standard.

The repository structure

SAP is presented in the form of an active

repository that contains configurable

modules. A pre-configured system is

offered, but as this is standard, it is not

suitable for most customers (Bancroft et al.

1997). The repository is stored as a

relational database, with tables for system

configuration, control, master data and

Figure 23 Table structure overview in SAP R/3

(Hinquat & Kelly 1998)

Transaction

data tables

Master data

tables

System

configuration

tables

Control

tables

R/3 Applications

Evaluating SAP

 - 159 -

transactions (Figure 23). The system configuration tables are used to configure the

applications to the organization and platform, while the control tables are used to

guide user activities. The company hierarchy is mapped here. Application data tables

are split into transaction tables, which govern operations, and master data tables,

which contain stored business data (Hinquat & Kelly 1998). The modules reside in a

repository.

Tools

SAP R/3 uses several tools to help in configuring and managing the application suite.

Some of them are:

 The development workbench ABAP/4. The repository is accessed by a

development workbench, which allows these modules to be configured to increase

their compatibility with the organization‟s processes. SAP offers a workbench for

manipulating the system configuration and control tables, called ABAP/4.

ABAP/4 allows modification of the business logic, screen layouts, reports and

fields (Linthicum 1996). It also contains tools for testing, tuning, debugging and

optimising performance. End users can use an ad-hoc query feature without

having to learn ABAP/4. Application modules can be customised through the

workbench and functionality can be added (Hinquat & Kelly 1998).

 The Correction and Transport System (CTS). To install the designed system,

configured and customised applications are moved to the Correction and

Transport System (CTS), which quality checks the application and moves it into a

live environment (Linthicum 1996). It also tracks changes, giving each change a

correction number. CTS propagates changes through different instances of the

application server in the live environment (Hinquat & Kelly 1998).

 The Business Navigator. This manipulates the reference model. Through it, the

reference model can be viewed either as a set of business applications or from a

process flow viewpoint. The reference model contains maps of all processes

contained within the R/3 system. It is the document the project team uses to

identify exactly what R/3 will do in any particular module. It can be used to

understand the differences between how the company works or will work, and

how R/3 operates; i.e. it provides a gap analysis. It provides graphical

descriptions of the business processes threads.

Evaluating SAP

 - 160 -

 The Implementation Management Guide. This is an online documentation tool

that steps the project team through the implementation process. It is created in

hypertext, with links to the individual functions. It guides the project team in

determining the business requirements, the documents and individual fields

(Bancroft et al. 1997).

Activity / task framework – The Procedure Model

The process of configuring, customising and implementing SAP is guided by a project

methodology called the Procedure model. It contains four steps: 1) Organization and

conceptual design, 2) Detailed design and system set-up, 3) Preparations for going

live and 4) Implementation Management. This model imposes an activity / task

framework on the developer.

Organization and conceptual modelling

The user analyses requirements, organises the project, sets up the test environment

and trains the project team. The reference model, which is the atlas to R/3, enables

this process. A transition between the first and the second of the major steps is a

quality check of the target concept (Bancroft et al. 1997).

Detailed Design and System Set-up

The team establishes global settings, the company structure and the master data. It

also establishes and finalises the functions and processes. The interfaces and

enhancements that were previously defined are implemented in this step. Reporting,

archive management and authorisation management are established and the final test

of the system is performed. This step concludes with a quality check of the

application system (Bancroft et al. 1997).

Preparations for going live

The team prepares the production start, creates the user documentation and sets up the

productive environment. It trains the users, establishes system administration and

transfers data into the production system. This third step ends with a quality check

(Bancroft et al. 1997).

Productive operation

This final step is generally done by the IS department that will support the production

operation and optimise the system‟s use. This involves that the technical

Evaluating SAP

 - 161 -

configuration is adequate to the load created on the system by the users. The

implementation framework gives the team information on whether or not they have

performed each step adequately. The configuration of the system requires that both

the platform configuration and the module configuration are complete. Training is

stressed in the methodology, as is adequate infrastructural support. Productive

operation requires a high level of commitment from the IS staff, to ensure that

security and load balancing are properly administered. Dailey (1997) points out that

SAP is difficult to configure and install, especially if switching from legacy

mainframe systems. The configuration tools offered by SAP are slow and rigid.

Third parties are beginning to produce alternatives.

Change management

Bancroft et al. (1997) consider that the procedural model is heavy on technical issues

and light on the change management issues. Dailey (1997) thinks that one of the

biggest difficulties in using R/3 is change management. When different products

come out, or requirements change, it is very difficult to reconfigure the system to the

new release and can incur development costs as high as those for the installation of a

new system.

Operation

The role of the IS department in the operation of SAP turns to that of watchdog.

Security is handled by the systems administrator, as is load balancing. The system

administrator maintains records of approved users with different security access levels

(Hinquat & Kelly 1998). As stated previously, if a third party database is used,

reporting facilities that are specific to that database can be used, but circumventing the

R/3 services could lead to data integrity problems. System security administration

must ensure that independent, unauthorised access to the database layer is not possible

(Van Haelst&Jansen 1997). Because of the complexity of the platform on which SAP

can reside, the management of the system can be extremely difficult. Many of the

management tools offered by SAP only work well when SAP is the only application

on the server (Dailey 1997).

Evaluating SAP

 - 162 -

8.3 Assessment using the Strategy Component / Causal Criteria

Table.

When management are looking around for a solution to their legacy system, they are

often faced with a bewildering array of possibilities. Time and cost constraints will

prevent a thorough assessment of all these possibilities. To do a preliminary

assessment of a solution, management can split the proposed solution strategy into

strategy components and look at how these components are likely to enable or inhibit

causea criteria, using the mapping of strategy components against causal criteria table

(Table 20).

The components in the strategy adopted for SAP R/3 are as follows:

1. The time-base in SAP may be iterative or direct.

2. The project is an adaptation of third party software, so some and usually most of it

is outsourced. Table 20 suggests that this component inhibits System Suitability to

business process, system technology to organizational environment and quality of

change management and enables all of the underlying Platform Suitability criteria.

3. Assessment has been done when this strategy is taken, so this is an unknown

component.

4. Architecture - SAP is component-based and layered, not object-oriented, or

bespoke. Table 20 suggests that the component-based aspect enables quality of

static design of current system and quality of software written into components.

5. Data Reuse - ODBC is not for data reuse. Data migration may or may not take

place. Data warehousing is an available option and may or may not be used.

6. Code reuse – is not an option for the core product.

7. Redevelopment is not an option.

8. Renewal is not an option.

163

Assessment of SAP R/3 components against the causal criteria from Table 20

Strategy
Components

Time

base

In / out

source

Assess-

ment

Architecture

Component Data Reuse Code Reuse

Rede-

velop Renewal

C
au

sa
l C

ri
te

ri
a

It
er

a
ti

ve

D
ir

ec
t

In
-h

o
u

se

O
u

t-
so

u
rc

e

O
p

en
 a

ss
es

sm
en

t

D
ir

ec
t

a
ss

es
s

C
o

m
p

o
n

e
n

t

O
b

je
ct

-o
ri

en
te

d

La
ye

re
d

B
es

p
o

ke

O
D

B
C

D
a

ta
 W

a
re

h
o

u
se

D
a

ta
 m

ig
ra

ti
o

n

V
er

ti
ca

l w
ra

p

H
o

ri
zo

n
ta

l w
ra

p

A
p

p
lic

a
ti

o
n

 w
ra

p

 It
er

a
ti

ve

en
h

a
n

ce
m

en
t

So
ft

w
a

re
 R

es
tr

u
ct

u
re

R
e-

h
o

st

Sy
st

em
 S

u
it

ab
ili

ty

System
Suitability to
business
process

E I E I E E E E E I E E E E

Business
process to
organizational
mission

E I E E E E E E

System
Technology to
Organizational
environment

 E I E I I I E E E E E E I

U
n

d
er

ly
in

g
P

la
tf

o
rm

 S
u

it
ab

ili
ty

Hardware
Suitability

 I E E E E E

Operating
System
Suitability

I E I E E E E E

Network
Suitability

I E I E E E E E E

Development
Environment
Suitability

I E E I E E E E

Data
Management
Suitability

 I E E E E E E

So
ft

w
ar

e
Q

u
al

it
y

Quality of
Change
Management

I E I I I I I E E E

Design Quality I E E I E I I I I E E E
Component
Quality

 E I I I E E E

Table 21 Preliminary Assessment of SAP R/3 using strategy components

The strategy components that have been identified as part of the SAP R/3 solution are

outsourcing, component-based and layered architecture. The corresponding columns

from table 20 are highlighted in Table 21. Other columns from Table 20 are shown

on a grey background, so that the reader can see the context more clearly. There are

three causal criteria which show up as inhibited by the components in SAP R/3. They

are suitability of system technology to organizational environment, suitability of the

development environment and quality of change management. The System Suitability

Summary and conclusion

 - 164 -

to business process is inhibited by the outsourcing component and enabled by the

layering component. Two of the components of the SAP R/3 solution strategy enable

hardware suitability, network suitability, data management suitability and Design

quality. The remaining three criteria are enabled by one of the strategic components of

SAP R/3.

8.4 Assessment using the Causal Criteria Framework

The Causal Criteria Framework is used here to evaluate a solution strategy in

isolation. It cannot be fully assessed, as the environment into which the strategy is

fitting is not available for the assessment. However, the questions that may be asked

pertinent to the environment can be taken from Chapter 3 System Suitability, Chapter

4 Underlying Platform Suitability and Chapter 5 Software Quality, that describe that

causal criterion. The framework is shown with “I” where the causal criterion is

inhibited, “E” where the causal criterion is enabled and “C” where there are further

considerations. These considerations are listed, with reference to the section in the

dissertation from which they are derived.

By analysing the strategic components in SAP R/3, there are indications that some of

our criteria are enabled or inhibited. However, as stated in section 7.11, all that this

shows is that a system which contains these strategic components has the capacity to

behave as shown in Table 20. In order to assess this specific solution, it is necessary

to examine the solution against the causal criteria.

8.4.1 System Suitability

System suitability to business process

As seen in section 3.1.1, the system suits the organization by doing what the

organization wants it to do. Information Engineering (Davids 1992) formulates a

strategic plan, building the business process needs and assessing current or potential

systems for their applicability. Likewise, the Strategic Alignment Model‟s

(Henderson & Venkatraman 1993) strategy execution alignment perspective (see

Figure 5) formulates business strategy and designs the IS infrastructure around it.

Summary and conclusion

 - 165 -

If the business application is standard, then the use of standard software is a logical

and cost-saving step, especially when the software comes from a reliable source and

has been proven in the field. However, if the business process is non-standard there

may be more than one reason for this. Either the business process has veered from

standard business practice throughout the industry, for no valid reason and can easily

be replaced with a standard implementation, or there are very valid business reasons

for the application being non-standard. If this is the case, then standard software will

not provide the solution, especially if customisation is unsupported or wide-ranging.

Considerations:

 Can the business process be standardised? Management should consider this very

carefully – often, despite their best wishes, conditions outside their control cannot

be changed; e.g. union agreements, national budget agreements, customer end-

user‟s ability or enthusiasm to adapt to new practices, change in service level to

the organization‟s customer due to staff having to operate the system.

 What is the scale of diversion of the organization’s practice from standard

practice?

 Does the offered solution integrate with bespoke software that may make up the

difference?

 Is the customised software component coupled loosely enough with the ERP to

allow for independent upgrades of the ERP?

These questions are summarised in Slee and Slovin‟s (1994) portfolio assessment

when the ask “How does the IS organization satisfy its customers?” and “How well is

IS delivering value and responding to needs?”

Note that the previous definitive marking of SAP as an inhibitor and an enabler to

system suitability to business process has now been amended, to „requires further

consideration‟ – i.e. “C”.

Business process to organizational mission

This is defined in section 3.1.1 as the system doing what the organization needs it to

do. Davids (1992) formulates a strategy before developing a set of business

Summary and conclusion

 - 166 -

processes, thereby avoiding this problem. Henderson and Venkatraman (1993) offer

four perspectives (see Figure 4) that combine to ensure that business strategy is in line

with the best available IT strategy that can work in the organization‟s internal

environment. Slee and Slovin (1994) endorse the idea of alignment.

The software offered in SAP is standard across installations, with most of the

customisation being in the configuration of the installation rather than in the ability to

change modules. This can be either an advantage or a disadvantage. If the

organization‟s requirement is to have a set of applications that are standard and

reliable, then this is an advantage. If the requirement is to use software as a

competitive advantage, then the standardness is a disadvantage. In evaluating this, the

need for and scale of diversion from standard practice must be considered. The

flexibility of the ERP in integrating with bespoke applications is also a factor.

Considerations:

 What is the organization’s position in the marketplace? This question addresses

Slee and Slovin‟s (1994) questions “How well does the IS organization compare

to industry standards such as the SEI CMM?” and “How does the IS organization

satisfy its customers?” and also Henderson and Venkatraman‟s (1993) competitive

potential alignment perspective (Figure 6).

 How does SAP R/3 fit in with the business strategy?(Henderson & Venkatraman

1993)

 How does the external I.T strategy (e.g. providers) fit in with the business strategy

and internal IS infrastructure?(Henderson & Venkatraman 1993)

The indication is that SAP „requires further consideration‟ – i.e. “C”.

System technology to organizational environment

This is defined in section 3.1.1 as the system being usable by the organization. ERPs

work off a variety of platforms, but in general, new technology will need to be

installed in order to maximise the usefulness of the application. This may involve a

change in technological and business process direction. These factors must be taken

into account when an application is being chosen. If the organizational support

infrastructure is unable to cope, the installation will be a failure. Likewise, if the user

Summary and conclusion

 - 167 -

base is unfamiliar or unable to cope with the technological and procedural changes,

the installation cannot succeed. The use of third-party supplies software requires a

change in staff attitude within an organization. This change in attitude needs to

encompass not only the top management level, but also the organizational and IS

support infrastructure as a whole, including support staff and users. If the change in

working practices is too great, then users and support staff may not make that change.

This is particularly the case where physical or logical user interface difficulties make

it unacceptable to use. Application software must be matched not only to the business

process and strategy, but to the end user for whom it is intended. This is especially

the case where the organization is not in a position to train the end user – for example,

when the end user is a member of the general public. The application must also be

prevented from making such a change in working practices of employees as to make

them unavailable to provide the service to the public that they are expected to make.

Security may also be an issue here. If the correct administration is not undertaken, the

system may be open to breaches.

Checkland‟s (1981) Soft Systems Methodology looks at systems that are in situ but

are not working as they should, possibly due to misalignment with the internal IS

infrastructure. Holzblatt and Jones‟ (1993) contextual interview and co-operative

evaluation can be used to assess the working environment before a system is

introduced.

Considerations:

 Is the organizational infrastructure adaptable to the change?

 Is the IS expertise available reliably and cost-effectively,

 To install and support the operation of the new system?

 To incorporate requirements change?

 To upgrade to the next version of the ERP?

 Is the end-user base:-

 Amenable to the new system?

Summary and conclusion

 - 168 -

 Physically, intellectually and psychologically able to operate the new system?

 Unhindered in their other tasks by the introduction of the new system?

The previous definitive marking of SAP as inhibiting suitability of system technology

to organizational environment stands. This does not mean that SAP R/3 cannot be

used, but that it is difficult for an organization to introduce into an environment and

that the organization will need careful planning and assessment before choosing it. If

it is chosen, then it is likely that retraining or hiring of new staff will need to be

undertake on a substantial scale.

8.4.2 Underlying Platform Suitability

As stated, the ideal platform infrastructure is an open infrastructure, with service-

oriented architecture, adequate traffic control and suitable and robust hardware and

networking, operating system, database and development environment software.

Error! Reference source not found. indicates that SAP R/3 enables all of the

underlying Platform Suitability criteria due to its component-based nature. The extent

of modularity and componentisation can vary from one ERP to another. As part of a

strategic IS plan, the choice of platform will impact on the IS support requirements

and the budget of the department. Each organization must outline its priorities in

regard to scale of systems and levels of integration required. It is only against these

criteria that a platform can be evaluated. The ideal outlined in 4.1.3 shows what can

be achieved. However, it may not be necessary or desirable for a company to strive

towards these goals.

ERP software is split into modules and the modules can be run independently or

integrated. Within SAP R/3 there is a tight coupling between the application server

and the data server, in that there must be a single data server for each application

server.

Hardware suitability

According to Laudon & Laudon (1998), hardware choice involves understanding the

capabilities of various computer processing, input, output and storage options as well

as price-performance relationships. Hardware should be evaluated by type, processor

Summary and conclusion

 - 169 -

size compatibility, upgradeability, reliability of vendor, standardisation of ports and

peripherals, scalability, robustness and cost.

SAP R/3 has a wide variety of hardware platforms on which it can run, so hardware

suitability should not be a problem. In this author‟s opinion, the “E” for enabling is

justified in this case.

Operating System Suitability

As with hardware, SAP R/3 has a wide variety of operating systems on which it can

run, thereby enabling this criterion. However, there is a policy being adopted by SAP

to provide more functionality on Microsoft‟s Windows NT ™ operating system

platforms. This policy needs to be considered in light of the need of the organization

to use the extra functionality and if so, the operating system itself needs to be

evaluated as laid out in Section 4.2.4. This criterion therefore requires further

consideration and is assigned a “C”.

Network suitability

Fitzgerald and Dennis (1996) list the network evaluation criteria, from the

management focus as time, cost, quality, capacity, scope, efficiency, productivity and

flexibility (see section 4.2.5).

Regardless of organizational aspirations, three-tier client/server architecture is

desirable. In theory, this enables upgrading of one layer independently of the others.

However, each layer should be robust, adhere to industry standards and have good

vendor reliability. Security between layers and performance must be considered. If a

large-scale system is being considered, then message traffic control is a consideration.

However, SAP R/3 does place some limitations on communications between layers, in

that Microsoft platforms provide better network capabilities in the form of web

servers. There is also a tight one-to-one coupling between the application server and

the data layer.

The issue of configuration management becomes more complex as networks grow.

As this is as important as any of the individual pieces of hardware that are procured,

this must also be considered (see section 4.2.8).

Summary and conclusion

 - 170 -

Many of the difficulties that may be caused by networks may be due to their

unsuitability within the organizational environment and may therefore be covered by

this criterion. However, as the network and its operability is crucial to the success of

the solution, this author would advise further consideration regarding networks. This

cell changes its value from “E” to “C”.

Development environment suitability

Laudon and Laudon (1998) give the attributes that need to be considered in a

development environment as openness, standardisation, portability, adaptability,

suitability to platform, application, database and HCI, adaptability to programming

interfaces, robustness, efficiency, adaptability to batch processing, object or

component-based or not and finally documentation.

In the case of SAP R/3, the development environment is a configuration rather than a

development environment. This means that it has limited adaptability and suitability

to application and it cannot easily be programmed. The quality and flexibility of the

tools available here will have a big impact on the quality of the end system. Ideally,

there should be an option for adding in bespoke or third-party modules at this level.

For this to work, there must be a development environment as well as a configuration

environment.

Because of the poor programmability in SAP R/3, the development environment

retains its “I” as an inhibitor.

Data management suitability

Laudon and Laudon (1998) give attributes of data administration as the abilities to

share, disseminate, acquire, standardise, classify, inventory, plan and model, manage,

organise, secure, maintain, provide usability and privacy.

SAP R/3 allows use of a proprietary SAP database or third party database server

software (Linthicum 1996). This allows for a robust database to be chosen. There are

a couple of problems with this however. The first is the security issue, where third-

party applications can manipulated SAP data (Van Haelst & Jansen 1997). The

second is the one-to-one coupling between the application server and data server.

This may cause data sharing or dissemination problems. SAP therefore ceases to be

Summary and conclusion

 - 171 -

an outright enabler (“E”) and requires further consideration (“C”). This consideration

once again centres on the ability of the organization to operate the database efficiently

and securely.

8.4.3 Software

Quality

Software quality is not

always easily to assess in

an ERP. While the

functionality and

performance of the

software will become

evident after it is installed,

the system software quality

factors are not.

Nevertheless, there are

certain questions that need

to be asked about software

when choosing the ERP.

Component quality

Component quality (see section 5.2.1) can be judged by its cohesiveness and coupling

required. There are also indicators of component quality that can be derived from

adherence to obvious standards, such as Year 2000 and Euro compliance. The quality

of individual modules can be found out by benchmarking the module‟s performance

in similar installations. That applies only where the module is in widespread use.

Component quality should be assured by the vendors and written contractual

agreements made by purchasers. Vendor reputation and reliability are factors in

assessing this.

Considerations:

 Is the component performing to recognised quality standards in other installations

where the requirement is similar to this organization?

Thorough assessment of SAP R/3 against the causal

criteria framework

S
y
s
te

m

s
u

it
a
b

il
it

y

System suitability to business process C

Business process to organizational
mission

C

System technology to organizational
environment

I
U

n
d

e
rl

y
in

g
 p

la
tf

o
rm

s
u

it
a
b

il
it

y

Hardware suitability E

Operating System Suitability C

Network suitability C

Development environment suitability I

Data management suitability C

S
o

ft
w

a
re

q
u

a
li
ty

Component quality E

Design Quality E

Quality of change management I

Table 22 Thorough assessment of SAP R/3 against causal

criteria framework

Summary and conclusion

 - 172 -

 Are there written contractual agreements available from the suppliers?

 Does the vendor have a reputation for high quality?

In the case of SAP R/3, these considerations are favourable (Dailey 1997). SAP R/3

retains its “E” as an enabler for Component Quality.

Design quality

Good quality design needs a robust process model that is supported by a relevant

methodology and tool set (see section 5.2.2). Along with good quality components,

the framework for customising and mapping them must be adequate. This requires a

robust activity / task framework and a set of visual tools, which enable the designer to

make any necessary changes and see how those changes will affect the system being

generated. Integrity checks and change tracking should be implemented, as should a

secure design environment. Documentation production should add value to the

process, rather than volume.

As seen in SAP, the workbench provides a reference model and procedure model

which enables high quality configuration. However, the compliance of developers

and administrators with this is voluntary. The quality of static design within SAP R/3

is an enabling “E” factor.

Summary and conclusion

 - 173 -

Quality of change management

For a full discussion on how change management can be carried out, see Section

Error! Reference source not found.. Error! Reference source not found. has

given SAP R/3 an “I” for inhibitor, due to the fact that much of it is outsourced. The

use of third party software ties an organization into whatever change management is

provided by that third party. A complete change of paradigm would probably mean

moving away from this third party, but even a seemingly less drastic event, such as an

upgrade release, may incur huge cost. Upward compatibility is only one of the factors

that can cause problems. Another major difficulty is that customisation done in a

previous version may not be carried through to the next version. Maintenance

contracts should address these issues and the purchaser should be clear on the

situation before purchase. SAP R/3 retains an “I” as an inhibitor to change

management.

8.5 Conclusion of the assessment of SAP R/3

Although SAP R/3 has been evaluated against the causal criteria framework, no

definite decision can be made as to whether or not to choose it as a solution strategy.

There are two reasons for this.

1. The environment into which the system is to be introduced is unknown.

2. Even the definitive indicators given by the framework are only enablers and

inhibitors – i.e. an indication of possible problems.

On comparing the results given in Error! Reference source not found. and Table 22

it can be seen that some of the criteria changed from being assumed an enabler or an

inhibitor to requiring further consideration. This is because a) the component strategy

in the solution has been identified as corresponding to a component strategy as

described in Chapter7 and b) a status of enabler or inhibitor is only an indication of

possible behaviour, not an assurance.

Summary and conclusion

 - 174 -

Effects that are indicated by this assessment

The causal criteria that have been defined as inhibited by the use of SAP R/3 are the

suitability of the system technology to the organizational environment, the suitability

of the development environment and the quality of change management.

By looking up the corresponding column in the Legacy Status Cause / Effect

Framework (Table 10) the possible effects that may result from choosing SAP R/3 can

be seen.

Poor quality of change management can cause a diminishment in reliability, lack of

ease of testing and auditing, availability of maintenance resources, program size and

complexity, ease of use of new technology.

Third party criticisms of SAP R/3

Other researchers, as shown below, have expressed reservations about the suitability

of use of SAP R/3 to many organizations.

Linthicum (1996) considers that larger organizations are more comfortable with

packaged client/server applications for enterprise-level, business-critical requirements

than with building applications from the ground up. However, R/3 will not fit the

needs of most businesses without customisation. Dailey (1997) states that the

discipline of using SAP templates may not be suitable for all organizations. These

 Legacy

 Effects

Asset
value

Ease of
operation

Ease of maintenance Ease of
migration /
evolution

C
a
u

sa
l

C
ri

te
ri

a

M
is

s
io

n
 c

ri
ti
c
a
lit

y

R
e
lia

b
ili

ty

U
s
e
r

s
a
ti
s
fa

c
ti
o

n

E
a
s
e
 o

f
te

s
ti
n

g
 a

n
d

a
u
d
it
in

g

C
o
s
t

o
f
m

a
in

te
n
a
n
c
e

a
n
d
 r

e
s
is

ta
n
c
e
 t

o
 i
t

A
v
a
ila

b
ili

ty
 o

f

m
a

in
te

n
a
n
c
e

re
s
o
u
rc

e
s

P
ro

g
ra

m
 s

iz
e
 a

n
d

c
o
m

p
le

x
it
y

D
e
p
e
n
d
e
n
c
e
 o

n

in
d
iv

id
u
a
ls

E
a
s
e
 o

f
u
s
e
 o

f
n
e
w

te
c
h
n
o
lo

g
y

S
c
a
la

b
ili

ty

System technology to
organizational environment x x x x x x x

Development environment

x x x x x x x x

Quality of Change
Management

x x x x x x x

Table 23 Effects indicated by SAP R/3 assessment

Summary and conclusion

 - 175 -

comments reinforce the assessment here that SAP R/3 may inhibit the development

environment suitability. Linthicum (1996) acknowledges that there is a lot of work

for client/server developers customising R/3. R/3 is becoming another platform on

which to build client/server applications. The industry should respond with new tools

and technologies to make this development easier. These comments reinforce the lack

of suitability of the system to the organizational environment uncovered by the

assessment.

Bancroft et al. (1997) consider that the procedural model does not address change

management issues. Daily (1997) thinks that one of the biggest difficulties in using

R/3 is change management. These criticisms fit in with the evaluation of SAP R/3

that has been produced by the Causal Criteria Framework.

Summary and conclusion

 - 176 -

Chapter 9 .Summary and conclusion

9.1 Introduction

This chapter gives a summary of the dissertation, followed by the conclusions in the

dissertation. Other related research is described and further work is suggested.

9.2 Summary of the Dissertation

This dissertation consists of nine chapters.

Chapter 1 introduces the topic area and background, and gives the aim and objectives

of the research. It describes the research method used.

Chapter 2 identifies and lists legacy effects, grouped into four effect groups. The

Legacy Effect Determination Framework is designed through these groups and

presented in Table 2 in Section 2.2.7. It then analyses existing research and

determines legacy causes, grouping them into three legacy causal dimensions. The

table of legacy causes is presented in Table 3, Section 2.3.7. A definition of legacy

status is presented in Section 2.4. This chapter presents deliverables on the first three

objectives listed in Section 1.2.

Chapters 3, 4 and 5 consider the three causal criteria groups of legacy status, with

Chapter 3 addressing System Suitability, Chapter 4 addressing Underlying Platform

Suitability and Chapter 5 addressing Software Quality. Each of the three chapters has

a similar structure. The area being examined is defined in the context of the

dissertation, in the first Section (3.1, 4.1 and 5.1 respectively). Modern practices in

the area are discussed in the second Section (3.2, 4.2 and 5.2 respectively). Reasons

why these practices are not always in use are addressed in the third Section (3.3, 4.3

and 5.3 respectively) and the legacy effects that poor practice in these groups can

cause are determined in the fourth Section (3.4, 4.4 and 5.4 respectively). The fourth

section also cross-references each of the causal criteria within the relevant group with

legacy effects in a table Table 4, Table 6 and Table 7 respectively)

Summary and conclusion

 - 177 -

Chapter 6 presents three frameworks. It reiterates the Legacy Effect Determination

Framework (Table 8) and places it in context (Section 6.1). It introduces the legacy

Causal Criteria Framework (Table 9) in Section 6.2 and it cross-references the legacy

Causal Criteria Framework and the Legacy Effect Determination Framework, giving

an overall framework, the Legacy Status Cause / Effect Framework (Table 10) in

Section 6.3, working from the results obtained in Chapters 2 through 5. Procedures

for assessing current systems and new systems are designed and presented using the

Legacy Effect Determination Framework and the Legacy Status Cause / Effect

Framework (Section 6.4). The usefulness of these frameworks is argued in Section

6.5.

Chapter 7 addresses the objectives involved in correcting a legacy problem and some

of the legacy handling strategies that are being put forward at present are listed in

Section 7.1. Section 7.2 lists the components of these strategies that are under review

in this dissertation. Section 7.3 to 7.10 describe these components, and identify which

of the legacy causal criteria they enable, if any and which they inhibit, if any (Table

12 to Table 19). Section 7.11 presents a mapping of strategy components against

Causal Criteria Framework (Table 20), showing enablers “E” and inhibitors “I”.

Chapter 8 presents a case study in which the frameworks are applied to a solution

strategy. Section 8.2 describes the strategy in a structure that enables assessment.

Section 8.3 identifies the inherent strategy components and uses the mapping of

strategic components against causal criteria to identify the causal criteria that are

likely to be enabled and inhibited (Table 21). Section 8.4 assesses the entire solution

against the Causal Criteria Framework (Table 22). Section 8.5 concludes the

assessment and evaluates the potential effects (Table 23) of choosing this strategy.

 Chapter 9, this chapter, summarises the dissertation and offers conclusions and

suggestions for further research in this area.

9.3 Conclusions

The aim and objectives stated in Section 1.2 have been met. For the convenience of

the reader, the aim and objectives are repeated here.

Summary and conclusion

 - 178 -

9.3.1 Restatement of aim and objectives

The aim of this dissertation is to research into the concept of legacy status and related

issues regarding transition from that status and develop a set of frameworks that can

be used by management to identify legacy status in a current or planned business

information system. The results can be used to provide guidelines to management to

enable them to choose a suitable solution to any legacy aspects that are present and

avoid immediate potential legacy status in the new system.

In order to achieve this aim, the following objectives need to be met:

1. To identify the characteristic effects that are evident in legacy systems so that they

can be related to a legacy problem.

2. To develop a Legacy Effect Determination Framework so that a system‟s legacy

effects can be documented.

3. To identify the characteristic causes of legacy systems and define legacy status.

4. To develop a thorough definition of causal criteria, to enable assessment to take

place.

5. To develop a legacy Causal Criteria Framework, so that the causal criteria of

legacy status can be identified within a system.

6. To develop a Legacy Status Cause / Effect Framework, so that if a weakness

exists in one of the causal criteria, the possible effects of this can be seen.

Alternatively, if the system is exhibiting legacy effects, this framework identifies

what the possible underlying causes are.

7. To analyse components of existing strategies for dealing with legacy systems and

the effects of these components on legacy status, in order to guide strategic

managers in the task of choosing an approach towards transition from a current

legacy system.

Summary and conclusion

 - 179 -

9.3.2 Delivered Results

This dissertation has introduced a new way of thinking about legacy systems. Rather

than classifying a system as either legacy or non-legacy, it presents and defines the

concept of legacy status. It then develops and presents three frameworks and asset of

assessment techniques that can be used to assess current and prospective systems.

Each of the objectives is delivered as outlined below.

Objectives 1 to 3

Chapter 2 above presents deliverables on the first three objectives. It identifies legacy

effects and tabulates them (Table 1). It develops a Legacy Effect Determination

Framework (Table 2 - repeated in Table 8) and identifies and tabulates legacy causal

criteria (Table 3) and defines legacy status.

The benefit of these deliverables is that they enable management to determine

whether or not a current system is a legacy system and in what areas legacy status

exists.

Objective 4

Chapters 3, 4 and 5 are devoted to the fourth deliverable. They define the three

dimensions of legacy causal criteria, giving current practice in the area and problems

that can arise due to a weakness in one of the causal criteria. These are cross-

referenced to the legacy Effect Determination Framework in Table 4, Table 6 and

Summary and conclusion

 - 180 -

Legacy Effects

S
of

tw
ar

e
Q

ua
lit

y

M
is

s
io

n
 c

ri
tic

a
lit

y

R
e
lia

b
ili
ty

U
s
e
r

s
a
tis

fa
c
tio

n

E
a
s
e
 o

f
te

s
tin

g
 a

n
d

a
u
d
iti

n
g

C
o
s
t
o
f
m

a
in

te
n
a
n
c
e

a
n
d
 r

e
s
is

ta
n
c
e
 t
o
 it

A
v
a
ila

b
ili
ty

 o
f

m
a
in

te
n
a
n
c
e

re
s
o
u
rc

e
s

P
ro

g
ra

m
 s

iz
e
 a

n
d

c
o
m

p
le

x
ity

D
e
p
e
n
d
e
n
c
e
 o

n

in
d
iv

id
u
a
ls

E
a
s
e
 o

f
u
s
e
 o

f
n
e
w

te
c
h
n
o
lo

g
y

S
c
a
la

b
ili
ty

x x x x x x x

x x x x x x

x x x x x x

Asset value Ease of maintenance

Ease of

migration /

evolution

Ease of

operation

Quality of Change

Management

Design quality

Component quality

Table 7.

The benefit of this is that it enables management to accurately assess current and

future systems regarding causal criteria along any of the three causal dimensions,

within the context of their organization.

Objective 5

The Causal Criteria Framework is presented in Chapter 6 (Table 9).

The benefit of this is that it enables management to document causal criteria that are

enabled or inhibited either by a current system or a proposed system.

Objective 6

Chapter 6 cross-references the Legacy Effect Determination Framework with the

legacy Causal Criteria Framework, giving the Legacy Status Cause / Effect

Framework (Table 10).

The benefits of this framework are two-fold. 1) Once the legacy effects exhibited by

a system have been identified, this framework will indicate possible causal criteria

and 2) if a system is an inhibitor to one of the causal criteria, the possible legacy

effects that may result can be identified.

Summary and conclusion

 - 181 -

Objective 7

Chapter 7 above is devoted to the seventh deliverable. Legacy system handling

strategies are broken down into components and the components mapped against the

causal criteria to show which they enable and which they inhibit (Table 20).

The benefit of this is that it enables management to perform a preliminary assessment

on proposed solutions to existing or planned systems, with a view to minimizing the

risk of legacy problems being introduced with a new solution.

Addressing the aim

Having addressed each of the objectives, the fulfillment of the aim is now discussed.

“The aim of this dissertation is to research into the concept of legacy status and

related issues regarding transition from that status and develop a set of frameworks

that can be used by management to identify legacy status in a current or planned

business information system.”

This part of the aim is fulfilled as outlined in the objectives above.

“The results can be used to provide guidelines to management to enable them to

choose a suitable solution to any legacy aspects that are present and avoid immediate

potential legacy status in the new system.”

Chapter 6 outlines a method of assessment of current and proposed systems using the

LACE techniques on the three frameworks provided, by answering the following list

of questions that could be put by management.

i) Does the system suffer from legacy status and if so, what could be causing it?

This question can be addressed by applying the assessment technique described in

Section 6.4.1.

ii) Does our current system inhibit any of the legacy causal criteria? This question

can be addressed by applying the assessment technique described in Section 6.4.2.

Summary and conclusion

 - 182 -

iii) When solutions are proposed, how can we do a quick assessment of them to see if

they contain innate criteria that will cause likely legacy status? This question can

be addressed by applying the assessment technique described in Section 6.4.3.

iv) When we are seriously considering a solution, how do we assess it? This question

can be addressed by applying the assessment technique described in Section 6.4.4.

The aim of the project has therefore been achieved.

9.3.3 What are the possible effects that could result from these innate

criteria?

Possible effects can be indicated as soon as the legacy causal criteria framework is

filled in. This can be done blindly by using the “mapping of strategy components to

legacy causal criteria” table to fill in the legacy causal criteria framework and cross-

referencing the results to the legacy status cause / effect framework. However, it is

important to note that the actual solution needs to be evaluated against the causal

criteria framework and then cross-referenced to the legacy status cause / effect

framework to achieve any accuracy in this quest. To cross-reference the legacy

causal criteria framework with the legacy status cause / effect framework, the row for

any causal criterion that shows up as “I” in the causal criteria framework can be

looked up in the legacy status cause / effect framework. Any column with an “X”

indicates that the related effect may result if the solution is used.

9.4 Comparisons with other research

Investigation into legacy systems is a vast research area. Many research projects have

been and are being undertaken around the world. Some of these are funded by

reseach councils in Great Britain (SEBC 1998) and Europe, while others ,such as Slee

and Slovin‟s are done as part of the industry‟s drive to conquer the problems faced in

dealing with legacy systems.

While many of these research projects touch on the subject areas of this dissertation

and have been referenced where appropriate, few have similar objectives. Those

chosen for discussion here have some similar objectives.

Summary and conclusion

 - 183 -

Slee and Slovin‟s (1997) paper presents the findings of an inquiry into legacy

systems. They describe how legacy systems come about and why they are classified

as legacy. They advocate portfolio management, from both business and technical

perspectives, with the portfolio being examined in “meaningful chunks”, where each

chunk supports a business area. They develop a 4R portfolio assessment matrix,

where one of four strategies is adopted depending on the results of the portfolio

evaluation. This research is very useful. This dissertation uses Slee and Slovin‟s

(1997) research as a basis on which to build, for example, components of a solution

strategy. As such, the findings in this dissertation go further than those of Slee and

Slovin.

SEBPC workshops on legacy systems started with the first workshop (Ramage

1998(1)). Three other workshops followed (see http://www.dur.ac.uk/CSM/SABA/).

The first workshop culminated in a definition of legacy systems (Gold 1998, Ramage

1998(1)). The second workshop offered a set of viewpoints on solutions, which split

them into business versus technical, future-proofing versus coping, users versus

developers and evolution versus revolution (Ramage 1998 (3)). The third addressed

the conflict between social and technical dynamics in an organization. While these

workshops raised many of the problems that are related to legacy systems, no

definitive resolution to finding a solution has yet been put forward.

Edwards et al.‟s (1998) research is into legacy systems in small manufacturing

enterprises. The group has proposed the risk assessment model: Evaluation strategy

for existing systems (RAMESES). This project “aims to identify the factors that

affect the fit between business processes and IT systems and subsequently to address

the issues of risk assessment for small organizations desiring change”. Research

undertaken by this group confirms the findings that many managers believe that large-

scale, integrated IT systems are the answer to their problems, whereas in reality, the

difficulties that are faced by these organizations could be overcome more efficiently

and effectively by other means. The group has discovered problems in these systems

that relate to software quality and system suitability. Their aim is to derive risk

characteristics and quantify them, in a bid to evaluate proposed solution strategies.

This research differs from the aim here, in that it tackles risk, rather than cause and

effect. This research is ongoing.

http://www.dur.ac.uk/CSM/SAPA/

Summary and conclusion

 - 184 -

The SABA (software as a Business Asset (K. Bennett, C. Brooke – University of

Durham)) project has produced a model that takes in the status quo of the organization

into an organizational scenario Tool (OST), prioritises possible solutions and feeds

the results into the Technology Scenario tool (TST). The asset base is also fed into

the two tools (Ramage 1998. This iterates around until a single solution remains,

which becomes the final scenario. The Technical scenarios tool has four stages:

solution routes, information capture, analysis and details of solutions. Typical

solution routes are leave, discard, replace, rebuild, re-require, recreate, redesign, re-

engineer, wrap and outsource. The details of solutions add issues of tools /

techniques, standards / quality, time / cost, benefit, risk and transition routes to the

best fitting solutions from the analysis stage (Ramage 1998b, c).similar in aim to the

research presented in this dissertation. However, the approach differs in that a toolset

is being developed. This research is ongoing.

9.5 Further work

This dissertation provides guidelines to management who wish to assess the legacy

status in their systems and choose a solution that enhances their business system. It

would be a great advantage to be able to quantify the level of legacy status associated

with these criteria. Possible further research following this direction is:

1. To establish a measurement technique whereby some or all of the causal criteria

could be given a quality grade.

2. To combine the resultant quality grades into a formula which would indicate a

legacy status co-ordinate on the dimensions of legacy status graph (Figure 2).

3. To do a more rigorous definition of strategic components, so that a manager could

ascertain exactly whether the solution being offered contained this component or

not. This may also make the mapping of strategy components against Causal

Criteria Framework table more meaningful in the indications it gives.

4. To take case studies from the semi-state organizations that have given advice and

assess systems that have undergone, are undergoing and are under consideration

for undergoing change.

Summary and conclusion

 - 185 -

5. To put the frameworks as assessment techniques into practice in an organization

that is undergoing system transition.

9.6 Concluding remarks

The area of legacy system assessment and evolution / migration is very broad and

detailed. As such, no simple solution can be offered towards it. The author believes

that the knowledge in this area will grow and be consolidated with each new research

project that is undertaken. As with the evolution of software quality and complexity,

the ability to manage change will become an engineering discipline, thereby turning

the current art of handling legacy systems into a science.

No solution strategy is perfect. When evaluating a solution strategy, the best that

management can do is try to ensure that the solution has less legacy causal criteria in

it then the existing system has. It is important to remember Slee and Slovin‟s (1997)

remark that “legacy is destiny – the ongoing challenge of managing evolving IS assets

in the era of hybrid computing”.

I

References

ADOLPH, S. 1996 “Cash Cow in the Tar Pit” IEEE Software, May Vol. 13, No. 3, pp.

41-47, CA., USA

AHO, A.V., J. HOPCROFT, J. ULLMANN, 1983 Data Structures and Algorithms,

Addison-Wesley.

ALDERSON, A., H. SHAH, 1998 “Understanding Legacy Systems Through Viewpoints

and Events”, Proceedings of BIT ‟98 (accepted for publication).

ALLEN P, S. FROST, 1997 “Fitting Legacy Assets into the World of Components”,

Object Magazine, USA.

ARONICA, R., D. RIMMEL, 1996 “Wrapper your legacy system” Datamation 15
th

 June,

Newton, MA, USA.

ARNOLD, R. 1989 “Software Restructuring” Proceedings of the IEEE, April Vol. 77,

No. 4, pp 607-617

AVISON, D.E., G. FITZGERALD, 1995 Information Systems Development:

Methodologies, Techniques and Tools McGraw-Hill London.

BACH, J. 1994, “The Immaturity of the CMM”, September American

Programmer.Also available at: http://www.stlabs.com/testnet/docs/CMM_AP1.htm

(January 1999)

BANCROFT, N., H. SEIP, A. SPRENGEL, 1997 Implementing SAP/R3. Manning

publications. Also available: http://www.browsebooks.com/Bancroft/Contents.html

BENNETT, K. 1994 “Legacy Systems: Coping with Success”, IEEE Software, January

Vol 12, No.1, pp 19-23.

http://www.stlabs.com/testnet/docs/CMM_AP1.htm

References

 - II -

BERNSTEIN, P. A. 1996 “Middleware - A Model for Distributed System Services”

February Communications of the ACM, Vol. 39 No. 2 pp 86 - 98

BEYOND SOFTWARE 1997 “Cost/Benefits of Transforming Legacy Applications”,

White Paper, Beyond Software Incorporated, available at: http://www.beyond-

software.com/Customers/CostBenefits.html.

BIEMAN, J.M., L. M. OTT, 1994, “Measuring Functional Cohesion” IEEE Transactions

on Software Engineering, August vol. 20, no. 8, pp 308-320

BOEHM, B. 1978 Characteristics of software quality, Vol. 1 of TRW series on software

technology, North-Holland, Amsterdam, Netherlands.

BOEHM, B., 1988 “A Spiral model for Software Development and enhancement”,

Computer, vol. 21, no. 5, pp61-72.

BOHM, C., G. JACOPINI, 1966 “Flow diagrams, Turing machines and Languages with

only two formation rules” CACM, May vol. 9, no. 5 pp 366-371.

BREITENEDER, C.J., M. HITZ, T.A. MUECK 1996 “Metadata mining in legacy data

sets”, IEEE. Available at http://computer.org/conferen/meta96/breitender/Meta.html

BRODIE, M., M. STONEBRAKER 1995 Migrating Legacy Systems: Gateways, Interfaces

and the Incremental Approach. Morgan Kaufmann Series in Data Management USA

BROOKS, F. 1975 The Mythical Man-Month. Addison-Wesley.

CASALS, E., 1998, “Re-Engineering Object-Oriented Legacy Systems” JOOP January

Vol 10, no. 8, pp 47-52.

CHECKLAND, P. 1981 Systems Thinking, Systems Practice. Wiley, Chichester.

CHEN, P., 1977 The Entity-Relationship Approach to Logical Database Design, QED

Information Systems.

http://www.beyond-software.com/Customers/CostBenefits.html
http://www.beyond-software.com/Customers/CostBenefits.html

References

 - III -

DAHL, O., E. DIJKSTRA, C. HOARE, 1972 Structured Programming, Academic Press.

DAILEY, A. 1996 “SAP: Future or Past?” GartnerGroup November Conference

Presentation, Cannes.

DAILEY, A. 1997 “SAP: Getting ready for 4.0 and beyond” GartnerGroup November

Conference Presentation, Cannes.

DAVIDS, A., 1992 Practical Information Engineering, the management approach.

Pitman London.

DEBOU, C., N. FUCHS, M. HAUX 1995 “AMI: A Tailorable Framework for Software

Process Improvement”, ISCN Newsletter, International Software Consulting Network.

DELUCIA, A., G. DI LUCCA, A. FASOLINO, P. GUERRA, S. PETRUZZELLI 1997

“Migrating Legacy Systems towards Object Orientated Platforms”, IEEE Computer

Society, USA.

DENNIS, J., 1973, “Modularity” in Advanced Course on Software Engineering.(ed.

F.L.Bauer) pp 128-182, Springer-Verlag, NY.

DEMARCO, T. 1979, Structured Analysis and System Specification, Prentice Hall.

DIJKSTRA, E., 1965 “Programming considered as a Human Activity”, Proceedings

IFIP Congress, North Holland Publishing Co.

DIJKSTRA, E., 1976 A Discipline of Programming, Prentice Hall Englewood Cliffs,

NJ.

DIX, A., J. FINLAY, G.ABOWD, R. BEALE 1993 Human Computer Interaction Prentice

Hall, Englewood Cliffs, NJ.

DOWNS, E., P. CLARE, I. COE, 1992 Structured Systems Analysis and Design Method

Application and Context, Prentice Hall Hertfordshire.

References

 - IV -

EDWARDS, H.M., S.C. WILLOUGHBY, G.M. MALLIEU 1998 “Legacy Systems

Interaction with Business processes in SMEs” First SEPBC workshop on legacy

systems, Durham University.

FITZGERALD, J., A. DENNIS, 1996. Business Data Communications and Networking.

John Wiley & Sons, Inc., New York.

FITZPATRICK, R., 1997 An investigation and analysis of current methods for measuring

software usability. MSc submission, Stafforshire University.

FLAATTEN, P.O., 1989 Instructor‟s Manual, Foundations of Business Systems, Dryden

Press, Florida.

FOWLER, M., K. SCOTT, 1997 UML Distilled – Applying the standard Object

Modeling Language. Addison-Wesley Reading, Massachusetts.

FROST, S. 1995 The SELECT Perspective. SELECT Software Tools, Inc. Santa Ana,

CA.

GANE, C. 1990 Computer-aided Software Engineering, the methodologies, the

products and the future. Prentice-Hall International Editions, New Jersey.

GANE, T., C.SARSON 1982 Structured Systems Analysis, McDonnell Douglas.

GANTI, N, W. BRAYMAN, 1995 Transition of legacy systems to a distributed

architecture, John Wiley.

GIBSON, N., C. HOLLAND, B. LIGHT, 1998 “The business and Technology dimensions

of legacy systems and outline of possible solutions” February SEPBC workshop,

Durham University.

GOLD, N., 1998 The Meaning of Legacy Systems, SABA Project Report: PR-SABA-

01 Version 1.1. The Centre for Software Maintenance, Lincoln School of

Management, Lincolnshire.

References

 - V -

GRAHAM, I.1995 Migrating to Object Technology, Addison-Wesley, Berkshire, UK.

HAASSE, V., R. MESSNARZ, G. KOCH, H. KUGLER, P. DECRINIS, 1994, “BOOTSTRAP:

Fine-Tuning Process Assessment”, July IEEE Software, pp 25-35.

HARTLEY, M. 1996 Application Series Scenario, Gartner Group November

Conference Presentation, Cannes.

HATLEY, D.J, I.A. PIRBHAI, 1987 Strategies for Real-Time System Specification,

Dorset House.

HENDERSON, C., N. VENKATRAMAN, 1993 “Strategic Alignment: Leveraging

information technology for transforming organizations” IBM Systems Journal Vol.

32, No. 1, pp4 – 15.

HENDERSON-SELLERS, B., D. FIRESMITH, I.GRAHAM, I. OPEN metamodel Ver 0.4.

HILL, J. 1997 “From Data Access to Information Sharing”, Gartner Group

Symposium, November, Cannes, France.

HINQUAT, B., A.F. KELLEY, 1998 SAP R/3 Implementation Guide: A Manager‟s

Guide to Understanding SAP. Macmillan Technical Publishing, Macmillan Publishing

Company.

HOLZBLATT, A., S. JONES, 1993 “Contextual Inquiry: A Participatory technique for

System Design” Participatory Design; Principles and Practice. Aki Namioka, Doug

Schuler (Eds.), Hillsdale, N.J.

HUMPHREY, W. 1989 Managing the Software Process. Addison-Wesley, Reading,

Massachusetts.

I-CUBE INTERNATIONAL 1998 “Migrating Legacy Applications to Open Systems: An

Overview of i-Cube‟s Migration Services”, IT Consulting White Paper, available at:

http://www.i-cube.com/inews/migrate.htm

References

 - VI -

IEEE 1983, IEEE Standard glossary of software engineering terminology, IEEE

Standard 729-1983, Institute of Electrical and Electronics Engineers.

IEEE 1993 IEEE Standards Collection: Software Engineering, IEEE Standard 610.12-

1990, Institute of Electrical and Electronic Engineers.

ISO 9000-3 1991 International Standard. Quality management and quality assurance

standards – Part3: Guidelines for the application of ISO 9001 to the development,

supply and maintenance of software. International Organization for Standardisation,

Geneva, Switzerland.

ISO/DIS 9000-3 1996 Committee Draft International Standard. Quality management

and quality assurance standards – part 3: Guidelines for the application of ISO 9001 to

the design, development, supply, installation and maintenance of computer software,

International Organization for Standardisation, Geneva, Switzerland.

JACKSON, M.A., 1975 Principles of Program Design. Academic Press. USA.

KITCHENHAM, B., S. L. PFLEEGER 1996 “Software Quality – the Elusive Target”,

IEEE Software, January Vol 13, No.1.

LAUDON, K., LAUDON, J. 1998 Management Information Systems – New approaches

to organization and technology. Prentice Hall, USA.

LEVEY 1995, Reengineering COBOL with Objects - Step by Step to sustainable

legacy systems. McGraw Hill, USA

LINTHICUM, D. October 1996 “The ABCs of SAP R/3” DBMS, pp28,30,76, USA

LIU, K., A. ALDERSON, H. SHAH, A. DIX, 1998. “Using Semiotic techniques to derive

requirements from Legacy systems” February SEBPC workshop, Durham University,

MACK, B., 1997, “An approach to IT transition planning”, November Gartner Group

Symposium, Cannes, France.

References

 - VII -

MAKOWSKI, D., 1995 “Enhancing Legacy Systems using Client/Server techniques”,

University Management System, CU.

MARKOSIAN, L., P. NEWCOMB, R. BRAND, S. BURSON, T. KITZMILLER 1994 “Using an

Enabling Technology to Reengineer Legacy Systems”. Communications of the ACM,

Vol. 37, No. 5. pp 58-70. USA

MARTIN, J. 1991 Rapid Application Development, Prentice-Hall.

MARTIN, J. 1996 “Cybercorp - the new business revolution”, AMACOM Books, NY

as summarised by him “Only the Cyber-Fit will survive” Datamation, November

Newton MA, pp 60-66.

MARTIN K., 1996 “Automated wrapping of a C++ Library into Tcl”, Fourth Annual

Tcl/Tk Workshop, University of California at Berkeley, USA.

MCCALL, J. A., P. K. RICHARDS, G.F. WALTERS 1977 Factors in software quality, vol.

I-III, Rome Aid Defence Centre, Italy.

MCCARTHY, V 1997 “How to switch on your Intranet” Datamation, . February pp86-

90.

MCDERMID, J., P. ROOK, 1993 “Software Development Process Models” in Software

Engineer‟s Reference Book, CRC Press, pp15/26-15/28.

MCGIBBON, B., 1996 “Embracing the tiger: Re-engineering Legacy Systems”, Object

Expo Europe, Java expo Conference proceedings p153-9, Langley, Berkshire.

MENTZAS, G. N. 1997 “Re-engineering Banking with Object-Oriented Models:

Towards Customer Information Systems”, International Journal of Information

Management, Vol. 17, No. 3, pp. 179-197, Great Britain.

MYERS, G. 1978 Composite Structure Design Van Nostrand Reinhold.

References

 - VIII -

NASSI, I., B. SHNEIDERMAN, 1973 “Flowchart techniques for structured programming”

ACM SIGPLAN notices, 8 No.6.

NAUR, P., B. RANDALL, 1969 “Software Engineering: A Report on a Conference

Sponsored by the NATO Science Committee”, NATO.

NEUMANN, D., 1996 “Evolution process for legacy system transformation” IEEE

Technical Applications conference Northcon pp57-62.

NEWCOMB, P. 1995 “Legacy system cataloging facility”. Proceedings of the Fourth

Reengineering Forum, Victoria, BC.

NIERSTRASZ, 1992 “Component-oriented Software Development” Communication of

the ACM, September Vol. 35, No. 9, pp160-165.

NING, J., A. EGBERTS, W. KOZACZYNSKI, 1994 “Automated support for Legacy Code

Understanding” Communications of the ACM, May Vol. 37, No. 5, pp 50 – 57,

Chicago

OMG (1997, March 21) “What is Corba” Available at:

http://www.omg.org/omg00/wicorba.htm.

O‟REILLY, A.,”What is Euro Compliant?” Sunday Business Post 20/9/1998, p31,

Dublin.

ORFALI R., D.HARKEY, J.EDWARDS 1996 The essential client/server survival guide,

Wiley & Sons, Inc., NY, pp389-340.

OVUM 1998 Ovum evaluates: CASE Products, Ovum Ltd. Summary available at:

http://www.dpu.se/ovucasee.html

OVUM 1999 Ovum evaluates: ERP, Ovum Ltd. Summary available at:

http://www.ovum.com/reports/ERP_for_manufacturers.htm

References

 - IX -

PANCAKE, C. 1995 “The projise and the cost of Object Technology: A five-year

forecast” Communications of the ACM, Vol. 38, No. 10, pp.33-49.

PARKINSON, J., 1991 “Making CASE work”, NCC Blackwell, England

PAULK, M. 1993, Capability Maturity Model for Software, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, PA.

PFLEEGER, S.L, R. JEFFERY, B. CURTIS, B. KITCHENHAM, 1997, “Status Report on

Software Measurement”, March / April IEEE Software.

POPKIN SOFTWARE 1996 System Architect User Guide, Popkin Software & Systems,

inc., U.S.A.

PREECE, J., Y.ROGERS, H. SHARP, D. BENYON, S. HOLLAND, T. CAREY 1994 Human

Computer Interaction Addison wesley, Wokingham, England.

PRESSMAN, R., 1997 Software Engineering A practitioner‟s approach. McGraw Hill,

USA.

RAMAGE, M., 1998a “Report on the first SEBPC workshop on legacy systems” SABA

project, Durham University.

RAMAGE M., 1998B “SABA Quarterly report 3: April – June 1998” SABA project,

Durham University.

RAMAGE, M., 1998b “SABA Quarterly Report 5: October – December 1998” SABA

project, Durham University.

RAMAGE, M. 1998d “Building a solution space for legacy systems – Report on the

second SEBPC workshop on legacy systems”, SABA project, Durham University.

Also at http://www.dur.ac.uk/CSM/SABA/legacy-sig/report2.html.

RAMAGE, M., 1999 “Finding solutions to legacy problems – Report on the third

SEBPC workshop on legacy systems” SABA project, Durham University.

http://www.dur.ac.uk/CSM/SAPA/

References

 - X -

RANSOM, J., I. SOMMERVILLE, I. WARREN, 1998 “A method for assessing Legacy

Systems for Evolution” February SEBPC workshop, Durham University

ROBSON, W. 1997 Strategic Management and Information Systems. Pitman, Great

Britain.

ROSSAK, W. 1991 “Some thoughts on System Integration: A Conceptual Framework”,

Journal of System Integration, USA.

ROYCE, W.W., 1970, “Managing the development of Large Software Systems:

Concepts and techniques” August Proceedings WESCON

RUMBAUGH, J., M. BLAHA, W. PREMERLANI, F. EDDY, W. LORNESEN 1991 Object-

oriented modeling and design, Englewood Cliffs, NJ: Prentice Hall.

SACHDEVA, S. 1995 “Metadata: Guiding users through disparate data layers”

Application Development Trends, also available at

http://www.inquiry.com/publication/adt/html/dec95/fe1205/ADT19951201FE1205.ht

ml

SCHULTE, R. 1996 “System Software Architecture Scenario” Gartner Group

Symposium 96 November Presentation [CD-ROM]

SEBPC, 1998 SEBPC links www.dur.ac.uk/CSM/SABA/sebpc.html

SHNEIDERMAN, 1987 B., Designing the User Interface, Addison-Wesley.

SIMPSON, D., 1995 “Downsizing: Pull the Plug Slowly” Datamation July Newton MA,

USA.

SLEE, C., C. SLOVIN, 1997 “Legacy Asset Management”, Winter Information Systems

Management, pp. 12-2.

SNEED, H., 1995 “Planning the reengineering of legacy systems” January IEEE

Software.

References

 - XI -

SPICE CONSORTIUM 1994, The process improvement guide, issue .05. Spice

consortium.

STEPHENS, W., G. MYERS, L. CONSTANTINE, 1974, “Structured Design”, IBM Systems

Journal, vol 13, no. 2. pp. 115-139.

SYSTEM TECHNIQUES INC. 1995 (1), “Wrapping Legacy Systems for Reuse:

Repackaging vs Rebuilding” http://www.systecinc.com/white/wplist.html

SYSTEM TECHNIQUES INC. 1995 (2), “Existing Systems Management, Repository Role

in Legacy Migration”, Points of View White Paper, available at:

http://www.systecinc.com/whit/whiteadt.htm, 12/05/1997.

TUCKER, M.J. 1997 “Bridge your legacy systems to the Web” Datamation, March

pp114-121.

VAN HAELST, W., K. JANSEN, 1997 “Control and Audit of SAP R/3 Logical Access

Security” IS Audit and Control Journal, Volume III, pp37-44.

VAN MULLIGAN, E., R. CORNET, T. TIMMERS 1995 “Integrating Legacy Systems in a

Client-Server Environment”, Proceedings of AMICE, USA.

VON BERTALANFFY, L, , 1968 General System Theory, Braziller, New York.

WALSHAM G., 1993 Interpreting Information Systems in Organizations. Wiley,

Chichester.p5, p166.

WARD, P. T., S.J. MELLOR, 1985 “Structured Development for Real-Time Systems”

three volumes, Yourdon Press

WASSERMAN, A. 1980 “Principles of Systematic Data Design and Inplementation” in

Software Design Techniques (Ed P. Freeman, A. Wasserman). IEEE Computer

Society Press, pp. 287-293.

http://www.systecinc.com/white/wplist.html
http://www.systecinc.com/whit/whiteadt.htm

References

 - XII -

 WATERS, R., E. CHIKOFSKY, 1994 “Reverse Engineering” Communications of the

ACM, May Vol 37, No. 5, p23, Chicago

WHITESIDE, J., J. BENNETT, K. HOLTZBLATT, 1988 “Usability Engineering: Our

Experience and evolution” Handbook of Human Computer Interaction, M. Helander

(Ed.) NY.

WIRTH, N., 1971 “Program Development by stepwise Refinement”, CACM, vol. 14,

no. 4 pp 221-227, Chicago.

WU, B., D. LAWLESS, J. BISBAL, J. GROMSON, V. WADE 1997 “The Butterfly

Methodology – A Gateway free approach for Migrating Legacy Information Systems”

Third IEEE International Conference on Engineering of Complex Computer Systems.

Proceedings pp 200-205.

YOUNG-GUL, K. 1997 “Improving Legacy Systems Maintainability”, Winter

Information Systems Management, pp 7-11.

YOURDON, E.N., L.L. CONSTANTINE, 1978 Structured design, Yourdon Press.

References

 - XIII -

Bibliography

MOWBRAY, T.J., R. ZAHAWI, 1995 The essential CORBA – Systems Integration using

distributed objects. John Wiley & Sons, USA.

SESSIONS, R. 1997 Microsoft‟s Vision for Distributed Objects. John Wiley & Sons,

N.Y.

PRESSMAN, R., 1997 Software Engineering A practitioner‟s approach. McGraw Hill,

USA

	An Investigation into the Causes and Effects of Legacy Status in a System with a View to Assessing both Systems Currently in use and Those Being Considered for Introduction
	Recommended Citation

