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Abstract

With the rise in ubiquitous computing, the desire to make everyday lives smarter

and easier with technology is on the increase. Human activity recognition (HAR) is

the outcome of a similar motive. HAR enables a wide range of pervasive computing

applications by recognizing the activity performed by a user. In order to contribute to

the multi facet applications that HAR is capable to offer, predicting the right activity is

of utmost importance. Simplest of the issues as the use of incorrect data manipulation

or utilizing a wrong algorithm to perform prediction can hinder the performance of a

HAR system.

This study is designed to perform HAR by using two dimensionality reduction tech-

niques followed by five different supervised machine learning algorithms as an aim to

receive better predictive accuracy over the existing benchmark research. Correlation

analysis (CA) and Principal component analysis (PCA) are used for feature reduc-

tion which resulted in 173 and 100 features respectively. Decision Tree, K Nearest

Neighbor, Naive Bayes, Multinomial Logistic Regression and Artificial Neural Net-

work algorithms were used to perform the classification task. The repeated random

sub-sampling cross validation technique was used to perform the evaluation followed

by a Wilcoxon signed rank test to evaluate the significance of the tests.

The study resulted in ANN performing the best classification by achieving 97% of

accuracy using the CA as feature reduction technique. The KNN and LR also provided

satisfactory results and have received predictive results greater than the benchmark

test. However, the decision tree and Naive bayes algorithms didn’t prove efficient.

Keywords: Human Activity Reduction, Supervised Machine Learning, Wearable

sensors
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Chapter 1

Introduction

1.1 Background

Activity recognition is the task of recognizing the current physical action performed

by one or more users from a set of observations recorded during the user activity in

the context of the definitive environment. Recent times have seen the theory of Hu-

man Activity Recognition (HAR) catering to multiple challenging applications built

on the increase in ubiquitous, wearable and persuasive computing. Human Activity

recognition has become an important technology that is changing the landscape of

people’s daily routine contributing to a wide range of applications as assistive tech-

nology, health and fitness tracking, elder care and automated surveillance to name a

few. Additionally, the research in activity recognition has been so rapid and advanced

that it is starting to cater applications that go beyond the activity recognition. How-

ever, as the field is rich in practical applications, the challenges emerging for activity

recognition are multifold.

The typical workflow of a human activity recognition task deals with data acqui-

sition from a wearable sensor or an external device as cameras. This data is then

1



CHAPTER 1. INTRODUCTION

processed to obtain a cleaner and transformed data suitable for further processing.

The data is explored to understand its nature and the type of processing that can be

applied in the next stages. The design of the later stages could vary vastly on the

application and its domain. But typically, the data is engineered to make it more

appropriate by extracting more useful features from it. Furthermore, the data is seg-

mented on basis of the evaluation that needs to be performed. Finally, a predictive

model is created to identify the activities performed by the user and is evaluated for

its performance. This detected activity can be repurposed for various applications as

detecting change in the user activity, assistance in regard to the detected activity etc.

1.2 Research Problem

In the seemingly simple approach of performing HAR, there are many issues and chal-

lenges that are encountered as selecting the right tools and techniques for gathering,

storing and manipulating the data. Picking the right algorithm to perform predictions

is of utmost importance as there is a necessity to capture the inter-class variability and

the intra class similarity. Typical resource constraints as processing power, availability

of time and sufficient storage are difficult to handle and form a huge hurdle. There is

also a necessity to have a trade-off between system latency, accuracy and processing

power.

The initial stages of HAR deal with a different set of issues altogether. Picking

the right sensor or combination of sensors, selecting the attributes and metrics to be

measured, placing the sensor at the right location are all crucial in their own way.

Furthermore, all these must be done by considering the user privacy and usability

in context. The process must not be obtrusive for the user and must adapt to the

user’s behavior and their environment as entire process can be highly sensitive to the

participation and the interaction with the user.

2



CHAPTER 1. INTRODUCTION

The research question that is planned to be addressed in the current study can be

concisely stated as follows –

To what extent can supervised machine learning algorithms significantly

enhance the recognition of physical human activity with inertial sensor data

when compared to SVM base models?

*Algorithms : K-Nearest Neighbors, Decision Tree, Naive Bayes, Multinomial Logistic

Regression and Artificial Neural Network.

1.3 Research Objectives

A possible solution in overcoming these challenges could be by reviewing and analyzing

the existing research and picking the sensor and a location with proven capabilities.

This eliminates the risk of data inaccuracy and justifies the effort put in engineer-

ing the captured data. In addition, considering the computing capabilities at hand,

performing dimensionality reduction is mandatory. Performing feature reduction is

a better option over minimizing the captured activity data, as more amount of user

activity can help in create and train a better model. Correlation analysis and prin-

cipal component analysis are two of the most popular and effective feature reduction

techniques discovered through the literature review. Correlation analysis identifies

features that highly correlate with each other, there is no use for such features which

describe the same aspect of the targeted activity value, in fact such features confuse

the algorithm and prevent it in performing to the extent of its abilities. Getting rid of

such redundant features could add great value. Similarly, principal component anal-

ysis also performs feature reduction but by generating new features that are a linear

combination of the existing features. But with smaller number of features the PCA

captures significantly more information about the target feature.

3



CHAPTER 1. INTRODUCTION

All these data manipulation tasks are a waste of effort if there is no scientific ap-

proach that can exploit these. However, picking the right algorithm to perform the task

is complicated. A possible approach could be picking multiple algorithms, each having

a different mechanism of action to tackle the task. Evaluating and comparing each of

these models can help selecting the right approach for performing activity detection.

Literature review identified four different mechanisms in which supervised machine

learning can be performed namely, Information based, Similarity based, Probability

based and Error based learning. Algorithms from each of these sets of techniques can

be utilized to have a robust and significant solution.

So primary objective of the research is to determine the algorithm that can per-

form Human Activity Recognition with classification accuracy higher than the current

state of the art technique. In order to achieve this goal a number of tasks must be

accomplished. A list of these tasks is stated below –

1. Extensive study of the existing literature on experiments and research performed

under Human Activity Recognition to identify research gaps.

2. Design a solution to perform Human Activity Recognition by detecting the inter-

class differences and the intra-class similarity within the activities.

3. Implement the solution reinforced in the design and induce models to perform

Human Activity Recognition to obtain the targeted accuracy.

4. Evaluate the performance of the induced models.

5. Place the findings in the field of study.

1.4 Research Methodology

As current study aims to compete with an existing HAR system, this work will pri-

marily perform a secondary research using the existing data from the state of the art

4



CHAPTER 1. INTRODUCTION

experiment and no other data will be generated for the scope of this project. Addi-

tionally, secondary research of reviewing existing literature on the topic of HAR and

its applications will be performed under the task 1.

The core experiment to be performed will be based on the quantitative objective of

picking the best classifier measured through a predictive classification accuracy value.

The research involves the solution to utilize mathematical modeling in creating the

modified datasets and in performing an evaluation using statistical techniques. So the

study can be stated as of empirical research form.

The current study involves observing and analyzing the existing literature to form

hypothesis that can be proved through the experiment. The results of the hypothesis

tests performed in the experiment can be transformed into theories that can be gen-

eralized to specific contexts. This establishes that the current study is inductive in

approach.

1.5 Scope & Limitations

Various studies in HAR have discovered an increased predictive accuracy results when

multiple datasets are correctly integrated and used for training the model (Mannini

et al. (2013); Sucerquia et al. (2017)). But this study will utilize only a single dataset

from an existing state of the art technique.

The benchmark experiment utilized for the study provides only the derived com-

ponents of the actual data acquired from the sensors. The study could have greatly

benefited if the raw signals from the sensors were provided but only the derived signals

were accessible.

There are plenty of methods to perform dimensionality reduction but two of the

most popular techniques from the literature review were selected due to the time and

5
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computing constraints of the experiment. Similarly, multiple machine learning models

and plenty of their parameters were discovered from the literature that can be utilized

to gain better insights from the data, however, the study had to limit the number of

algorithms and parameters to manipulate, so one algorithm from each of the family is

employed with limited parameter tuning.

Also, two kinds of validation techniques were planned to be performed in the

experiment but had to be limited to one as the results from one test were significant

enough to evaluate the hypothesis.

1.6 Organization of Dissertation

The rest of the document will be structured as follows –

• Chapter 2 provides an overview of the existing literature on HAR. It outlines

the different sensor technologies existing and the effect of its placement on the

appropriate location of the body has on the accuracy of the study. The chapter

also examines the different supervised machine learning techniques that are used

to perform HAR. The theory, applications and example studies using the algo-

rithms are discussed here. Various evaluation metrics are also studied to identify

the method that is most suitable for the experiment.

• Chapter 3 outlines the basic design of the study. The structure of the chapter is

based on the CRISP-DM methodology, so initially the business understanding

phase is designed followed by data understanding phase. Data preparation to be

performed is reviewed next, followed by the modeling stage. The chosen evalu-

ation metric and the evaluation strategy are designed in the end. The chapter

concludes by stating the strengths and limitations of the developed design.

• Chapter 4 details the practical implementation of the experiment. Each of the

6
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utilized technique and their corresponding results obtained are illustrated here.

This chapter is also structured according to the CRISP-DM methodology.

• Chapter 5 performs a critical evaluation of the experiment and the results ob-

tained. Comparison of each algorithm and feature engineering technique is per-

formed to understand the outcome. The hypothesis of the study are also eval-

uated here. This chapter concludes by stating the strengths and limitations of

the implementation.

• Chapter 6 concludes the study by reiterating the research question and the prob-

lem definition. It also states the workflow of the entire process and additionally

states the scope and limitations of the study. The chapter concludes by specify-

ing areas of potential future work.

7



Chapter 2

Literature Review & Related Work

This chapter gives a detailed review of the relevant literature about human activity

recognition and the state-of-the-art techniques involved in its detection. The appro-

priate sensor technologies used in similar studies are also examined along with their

practical application areas. Additionally, the ideal location of the sensor on the human

body is also discussed. So this chapter provides the groundwork for selecting the tech-

nology and the specific location of affixing the sensor on the body of the user before

performing the actions. Furthermore, this section also discusses the technologies used

for the detecting of the physical activity; firstly, the theory of detection using machine

learning is discussed along with its applications; it is then followed by discussing the

family of machine learning techniques that can be applied. A popular machine learning

technique from each of these set of family of techniques is studied with respect to their

application in similar human activity recognition papers. The chapter will conclude

by highlighting the state of the art technologies in terms of gathering the data and

provides justification to employ a set of techniques in order to perform better at the

detection task. A graphical layout of the chapter is provided by 2.1. The aim of this

section is to perform a critical analysis of the existing research and approaches so as

to highlight the gap in the current body of work. The gap envisioned in this section

will help establish the research question for the study.

8
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Figure 2.1: Chapter Layout

2.1 Human Activity Recognition (HAR)

Human activity recognition has gained much importance in the past decade due to

its numerous applications in human centric applications as in the field of medical,

security and also military (D. Lara & Labrador, 2013). In recent times, due to the

increase of wearable tech devices, the task of human activity recognition has gained

much more gravitas1. An important goal of the HAR in the current scenario is to

identify the actions of the user in order to assist them with their tasks with the

help of computing systems Abowd et al. (1998). Computer vision research has been

contributing a lot in this aspect of the study. Human activity recognition here mainly

refers to physical human activity and load, as opposite to cognitive, mental activities

and workload which are part of a different, wider research field (Rizzo et al., 2016;

Longo, 2011, 2012, 2015, 2016; Moustafa et al., 2017). The initial research on HAR

involved detecting gestures and activities from still images and videos in restricted

environments and under constrained settings Turaga et al. (2008); Mitra & Acharya
1https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-be

-worth-34-billion-by-2020/#271d9cf43cb5

9
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(2007). A significant number of domains have been discovered to benefit due to HAR

as in the case of Activities of Daily Living (ADL’s) by Katz et al. (1970), which was

one of the initial researchers performed as an application of activity recognition, which

further boosted the research as by Bao & Intille (2004); Ravi et al. (2005); Logan et

al. (2007); Tapia et al. (2004). The traditional medical procedures were challenged

by introducing the HAR to support patients’ daily activity monitoring especially for

patients with chronic impairments or other medical diagnosis or even for rehabilitation

(Starner et al., 1997; J. Chen et al., 2006; Oliver & Flores-Mangas, 2007; Bachlin et al.,

2009; Tessendorf et al., 2011). HAR also provided great results for other areas of lesser

severity as the entertainment and sports category (Kunze et al., 2006; Minnen et al.,

2006; Ladha et al., 2013), the industrial and operations sector (Maurtua et al., 2007;

Stiefmeier et al., 2008). HAR was further explored to cater naive human activities

as transportation routines (Krumm & Horvitz, 2006), brushing teeth (Lester et al.,

2006) and medication intake (Wan, 1999; De Oliveira et al., 2010). One of the most

recent and popular usages of human activity recognition was for gaming consoles as

Microsoft Kinect where body gestures and movements are recognized to provide an

upgraded gaming experience (Shotton et al., 2013). Human Activity Recognition

2.2 Sensor Technology for Gathering Data

Activity recognition can be performed for a single user or for multiple users. Multi-

ple user recognition can be performed to identify an individual user and track their

actions. This can be performed for surveillance and monitoring purposes using video

camera footage. However, for a single user activity recognition process, there could be

multiple ways to gather data. Owing to the advances in sensor technology, a popular

method of HAR is identified to be using Inertial Sensors. Most inertial sensors have be-

come portable and compact to be connected to the human body. Flexible form factors

and battery levels which are designed for longer recording and monitoring purposes

along with computing and dynamically consistent interaction, make them simpler and

10
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more suitable to use (Florentino-Liano et al., 2012; Bulling et al., 2014). The first

use of sensors for activity recognition was in the context of smart homes by ’Neural

Network House’ along with other apps that help create adaptable systems for better

user experience of their smart home (Mozer, 1998; Leonhardt & Magee, 1998; Golding

& Lesh, 1999; Ward et al., 1997). The inertial sensors with integrated gyroscopes and

accelerometers have been utilized for various purposes as medical diagnosis and treat-

ment (Powell et al., 2007), Tele-Rehabilitation (Winters et al., 2003), Fall detection

(Wu & Xue, 2008) and human movement monitoring (Sabatini et al., 2005).

A combination of different sensors at various locations have been utilized previously

to produce varying results. One of the most popular sensors used quite frequently for

similar studies involving repetitive actions is an accelerometer. An accelerometer is

an electromechanical device which is used to measure static and dynamic acceleration

forces. For instance, the angle of tilt or inclination of the device can be calculated by

measuring the gravity acceleration2. The accelerometer was used in multiple studies

as a motion sensor, yielding good results for their area of application (Bao & Intille,

2004; Mi-hee et al., 2009; Khan et al., 2008).

Sensors as image and audio based have also been utilized for applications as image

tagging and activity detection using noise levels for instance if the noise is less, the

user could have been asleep etc (Qin et al., 2014; Bieber et al., 2011). Global posi-

tioning system (GPS) sensors are quite widely used as well. The GPS sensor was used

to detect the user activity through location based signals across single and multiple

users and was also used to track any abnormal activities by the users (Patterson et

al., 2003; Ashbrook & Starner, 2003; Liao et al., 2007). Medical applications which

involve detecting the patients’ critical medical information as heart or respiration rate

or other important metrics utilize a series of biosensors. Sung et al. (2004) detect body

temperature using an arm and chest accelerometers and polar heart rate receiver sen-

sors to detect emergencies due to weather conditions as hypothermia for soldiers living

in severe weather conditions. Biosensors are also used to create smart clothing which
2"https://www.dimensionengineering.com/info/accelerometers"
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can be used to detect body postures (Harms et al., 2008). Wren & Tapia (2006) utilize

infrared sensors which can detect temperature, which was further utilized to differenti-

ate different levels of activities producing low and high levels of heat and thus enabling

to be differentiated.

There are also combinations of sensors utilized together for better detection of the

signals. The accelerometer was combined with the psychological sensor to detect sig-

nals as skin temperature and energy expenditure (S.-I. Yang & Cho, 2008). Apart from

these various types of sensors, the simplest and one of the efficient is the accelerometer

in a combination with a gyroscope, which is a device used to detect angular velocity

(Lazzarini, 2007). Due to development of mobile phone technology, the smart phones

have built in accelerometers and gyroscopes which make the study of activity detection

furthermore simplified (Brezmes et al., 2009; Oh et al., 2010). Anguita et al. (2013);

Kwapisz et al. (2011) utilize the sensors in the mobile phone to perform the task of

human activity recognition .

2.2.0.1 Placement of the Wearable Sensor

Cleland et al. (2013) investigate the importance of sensor and the optimal placement

of it on the body of the user. Their study demonstrates that the acceleration signal

values gradually increase in magnitude as the placement of the sensor moves from head

to feet. So it is evident that the location has direct impact on the results obtained

for the HAR process. As shown in figure 2.2, the sensor can be placed at multiple

locations of the body (Attal et al., 2015).

12
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Figure 2.2: Illustration of Wearable Sensor Placement

Multiple studies have utilized the sensor placed at various body parts of the user

and have received various ranges of accuracies. Parkka et al. (2006) have studied

HAR by placing the sensors at the wrist and chest and performed various activities

for the duration of 2 hours. The best results out of the three classifiers yielded were

of 83% accuracy. Investigating multiple other studies exhibited the best results from

the study by Yeoh et al. (2008) which performed the experiment using three sensors,

one mounted at the waist and two more attached to the centre of the thighs. Their

experiment resulted in an overall accuracy of 100% by detecting four important tasks

extremely well. However, observing the studies that utilized only a single sensor at

one location of the body, a sensor at waist or on the lower back have been yielding

good results. Mathie et al. (2004); Gupta & Dallas (2014) have performed HAR task

using a single sensor placed at the Waist and have received a classification accuracy

of 98% and Bonomi et al. (2009) have received an accuracy of 93% while detecting

for similar activities. Hence, placement of sensor on the waist can be seen as an ideal

position as it is proven and additionally it is also closer to the centre of mass of the

body (C.-C. Yang & Hsu, 2010).

13



CHAPTER 2. LITERATURE REVIEW & RELATED WORK

2.3 Modeling Approaches for HAR

2.3.1 Machine Learning

2.3.1.1 Theory

The past two decades have seen a rise in Machine learning becoming a crucial com-

ponent in Information Technology. With continual increase in data availability, it is

evident that more smarter data analysis will be an integral part of the technological

processes at every phase of life.

Machine learning as defined by Kelleher et al. (2015) is "an automated process

that extracts patterns from the data". It can also be defined as "a method of data

analysis that automates analytical model building, using algorithms that iteratively

learn from data, machine learning allows computers to find hidden insights without

being explicitly programmed where to look"3.

The goal of machine learning is to enable the machine to learn the system automat-

ically, without any human interventions on basis of the designed algorithms. These

algorithms maybe originated from many fields as mathematics, theoretical computer

science etc. It is important to note that the algorithms devised for this task must serve

the purpose whilst being efficient, which comprises of both time and space efficiency.

For the context of learning, the amount of data required by the algorithm is of primary

importance and must be utilized to the maximum extent. The algorithms must also be

made flexible to enable generalization to various applications. However, the primary

motive of machine learning is to harness the predictive capabilities of the machine and

hence the predictive accuracies must be as high as possible with minimal error rate.
3"https://www.sas.com/en_us/insights/analytics/machine-learning.html"
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2.3.1.2 Applications

There are huge number of applications of machine learning and its usages are ever

increasing. Some of the most popular applications are (Alpaydin, 2014)–

• Creation of a good search engine requires the engine to process the search query,

identify pages having the information and sort them according to prescribed

algorithm. Machine learning has increasingly been utilized to automate the

process of web page ranking and determining the best results for a given query.

• Recommendation engines are another area which has seen rapid development as

they help entice the users with newer products or services. Ecommerce companies

as Amazon and eBay utilize this system to analyze past purchases and viewing

options to predict and enable future viewing and purchases. Netflix, which is

a video rental store, also utilizes this mechanism. This application can also be

termed as Collaborative filtering.

• Another application that is not quite defined is the text translation problem.

This problem is quite tricky as the machine needs to model the grammar and the

language of the document. There is also huge research in this area of application.

• Face recognition is an example of machine learning revolutionizing the current

existing applications. The machine breaks down the face of the user into smaller

parts as pixels to detect and classify the faces. This system is currently being

utilized in various security applications and also social networking websites.

• Other applications that are utilizing machine learning are, speech recognition,

handwriting recognition, named entity recognition, failure and fault detection in

several industrial equipment, gaming consoles etc.
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2.3.1.3 Family of Machine Learning Approaches

The study of Machine learning can be divided into multiple sectors on basis of the

types of work to be done, data dealt with or working procedure. Kelleher et al. (2015)

have devised one such method of segregating the algorithms on the basis of their ability

to learn from the data. It must be noted that only supervised algorithms under each

of the family will be dealt with.

• Information Based Learning –

The idea behind this approach of machine learning is to utilize the intuitiveness

of the data in deriving a model to perform machine learning. Information gain

and Gini Impurity are the measures on which the learning process is performed by

determining the features that best describe the entire data.

Decision trees are machine learning algorithms that follow information based learn-

ing approach. A decision tree algorithm approximates the target function by cre-

ating a solution that can be represented by a tree leading to the target feature.

Decision trees are widely utilized as they can be represented in the form of if-else

statements for better readability and understanding. The algorithm also requires

minimal data preparation or feature engineering which can help save time and effort.

Hence, decision trees have been highly utilized in performing activity recognition.

Fan et al. (2013) performed activity recognition using decision tree algorithms by

constructing behavior and position vectors of users performing 5 different activities.

The study reported high classification accuracy and less time consumption.

• Similarity Based Learning –

The concept of similarity based learning is to observe the previously existing data

in order to predict the future or unknown data. This technique utilizes the measure

of similarity which denotes how similar or related multiple data points are to each

other. This algorithm is described by the techniques used to process the pair wise

data, their relationships and the assumptions in their relationships. The most fre-
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quent and natural algorithm of similarity based learning is the K-nearest neighbor

(K-NN) algorithm. This algorithm assumes that if two data points, ai and aj are

similar to each other, the corresponding target or outcome classes, xi and xj are also

similar (Hu et al., 2015).

Kaghyan & Sarukhanyan (2013) have studied the accelerometer of an android mobile

phone and applied the K- Nearest neighbor algorithm to predict the activity of a

single user and have received satisfactory results. Paul & George (2015) created a

model called the Clustered KNN which is an improved KNN algorithm to detect

four activities performed by four users and achieved appreciable results by utilizing

limited memory and a restricted training data.

• Probability Based Learning –

The theory of probability based learning is to utilize the estimates of the likelihood

of a data point in determining the target value of the point. The Bayesian algorithm

assumes an underlying probabilistic model and captures the uncertainty of the model

by calculating the probabilities of the target. The Bayesian algorithms are highly

scalable and are hence widely used over plenty of applications.

Sarkar et al. (2010) have studied and compared the Naive Bayes algorithm to the

Hidden Markov Model and the Conditional Random field model. They have demon-

strated that previous studies have shown the Markov model outdoing the Naive

Bayes algorithm. However, it stated that parameter estimation plays a huge role

in a classifier and performed two types of smoothing techniques to adjust the max-

imum likelihood of the classifier. Their experiment offered significant improvement

in the classification accuracies by the Bayes algorithm. Ravi et al. (2005) have per-

formed a similar activity recognition system which aims to classify a set of eight

different activities, at four different environment settings. Their study determined

Naive bayes to outperform all the other single classifiers in two of their settings.

• Error Based Learning –

The concept of error based learning is to initialize a parameterized model with a
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set of random parameters in order to identify the parameters which correspond to

the minimized error value for the specified training instances. The model and its

parameters are adjusted based on the error value to achieve high accuracy values.

There are multiple error metrics that can be utilized under Error based learning,

one of the most popular metric is the Sum of squared errors.

Logistic regression, Artificial neural net and Support vector machine are few of the

most popular error based machine learning algorithms. The logistic regression is

the odds of the target feature taking a specific value modeled on the basis of a

combination of values taken by the feature vectors. A binary logistic regression

model estimates the likelihood that the target is present given a set of feature

variables. Y. Chen et al. (2016) performed activity recognition using a multinomial

logistic regression with Bayesian regularization and have received a high accuracy of

93% over other algorithms discussed in their study. Artificial neural nets are widely

used for HAR. Multiple studies have observed exceptional results in detecting user

activities using ANN. Oniga & Suto (2014) stated that with the right topology and

parameters, the ANN can detect the most complex activities. Multiclass SVM is

another popular technique as it can model data in different non linear distributions

owing to its kernel function and can also be prevented from being sensitive to outliers

and hence was used in multiple studies to achieve good accuracy rates (Anguita et

al., 2012; D. Lara & Labrador, 2013; Ravi et al., 2005).

In addition, the survey by bin Abdullah et al. (2012) demonstrated that the pop-

ularity and efficiency of various classification algorithms that are commonly used in

detecting ADL using embedded sensors from a smart phone device. The most com-

monly used algorithms that have been deemed efficient as identified by this study were

Hidden Markov Models, Multiclass Logistic Regression, Decision Tree, Naive Bayes,

Support Vector Machine, Artificial Neural Network, K - Nearest Neighbor, Gaussian

mixture models and multiple other ensemble and modified algorithms.
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2.4 Related Work on the dataset of interest

The most relevant work for the objectives of the thesis is the work by Anguita et al.

(2013). Their study dealt with creating an activity database by recording Activities of

Daily Life (ADL) of 30 users. They have utilized the inertial sensors on a smart phone

device to record the activities. They have employed a multiclass Support vector ma-

chine algorithm to detect these activities. They have received improved classification

accuracy in this study compared to their previous paper which was an SVM classi-

fier with additional usage of fixed point arithmetic algorithm which as stated in the

research would reduce additional computational cost (Anguita et al., 2012).
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S.No. Technique Feature Engineering Training

Method

Validation

Metric

1 Hidden Markov model

(HMM) - 1,2,3 staged &

Random Forest Impor-

tance Measures(RFIM)

A A

2 Three-stage continuous

hidden Markov model

(TSCHMM)

sparse locality pre-

serving projections

(SpLPP)

A A

3 Multi class SVM - A A

4 (MC-HF-SVM), SVM A A

5 Mel Frequency Cepstral

Coefficients (MFCC),

Linear Predictive Coding

(LPC), LPC-Derived or

Linear Predictive Cepstral

Coefficients (LPCC) and

Perceptual Linear Predic-

tive Cepstral Coefficients

(PLPCC)

Relative Spectra

(RASTA) Filters

A A

6 Group-based Context-

aware Method (GCM)

K-means clustering

algorithm

A A

7 Two stage CHMM PCA, Correlation,

LDA, RF impor-

tance measure

A A

8 SVM Postural Transitions

(PTs)

A A
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S.No. Technique Feature Engineering Training

Method

Validation

Metric

9 NB, RF, KNN Recursive Feature

Elimination based

on Linear Discrim-

ination Analysis

(RFELDA)

A A

10 RKELM (Reduced Ker-

nel Extreme Learning Ma-

chine)

Synthesized acceler-

ation value filter

A A

11 Naive Bayes, Decision Tree Correlation + IB3 A A

12 HMM (Activity Sequence

Model)

B B

13 Auto-encoder, denoising

auto-encoder and PCA

A A

14 convolutional neural net-

works

15 General, User-Dependent,

and Mixed models.

- B A

16 Gaussian Mixture Model-

Universal Background

Model (GMM-UBM)

MFCCs (Mel Fre-

quency Cepstral

Coefficients), PLP

(Perceptual Lin-

eal Prediction)

and RASTA-PLP

coefficients

B C

17 HMM - Maximum Likeli-

hood Estimation. Maxi-

mum Mutual Information

Estimation

Maximum A Pos-

teriori (MAP) ap-

proach

A A
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S.No. Technique Feature Engineering Training

Method

Validation

Metric

18 Convolutional neural net-

works (convnets)

A A

19 Importance score drive

random forests

Gini information

gain

A A

20 Generalized Learning Vec-

tor Quantization

Kernel classification

correlation matrix &

Limited rank map-

ping matrix

C A

Table 2.1: Literature Review of studies on the dataset of interest

The table 2.1 describes the various machine learning techniques applied, feature en-

gineering performed and validation metrics utilized for the same dataset used in the

current study. The notations for the training method are – A : Cross validation; B :

K fold validation; C : Sampling and the notations for the validation metric are – A :

Confusion Matrix; B : Activity Segmentation Error Rate (ASER); C : AUC and ROC

curves.

A Hidden Markov Model (HMM) is the most popular algorithm used in activity

recognition for the dataset considered in the thesis. Various studies performed one,

two and three staged HMMs on the specified dataset of interest (Zhu & Qiu, 2016;

Ronao & Cho, 2014; San-Segundo, Lorenzo-Trueba, et al., 2016; San-Segundo et al.,

2017). Also the Gaussian mixture models which are slightly more complicated have

been utilized to perform activity recognition using the dataset of interest. However,

the algorithm couldn’t manage to yield results as accurate as the others (San-Segundo,

Cordoba, et al., 2016).
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2.5 Model Evaluation Metrics

2.5.1 Performance Measures

Performance measures encompass the final steps in a machine learning project. They

emphasize and evaluate the correctness, efficiency and usefulness of the design and

the modeling process and additionally also provide reliability metrics on the entire

procedure. There are multiple ways to evaluate the important criteria based on the

project. The appropriate criteria and its measure must be chosen depending on the

research question and also the ability and feasibility of the researcher and the study.

2.5.1.1 Confusion Matrix

Confusion matrix also termed as contingency table, provides a comprehensive overview

by summarizing the classification results. It showcases the individual results for each

of the classes by tabulating the predicted and actual classes. The image 2.3 shows a

confusion matrix and its components.

Figure 2.3: Confusion Matrix

TP – Indicates the true positives which is the number of positive records correctly

predicted as positive by the model

TN – Indicates the true negatives which is the number of negative records correctly

predicted as negative by the model
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FP – Indicates the false positives which is the number of negative records incor-

rectly predicted as positive by the model

FN – Indicates the false negatives which is the number of positive records incor-

rectly predicted as negative by the model

Each of these measures have a significance of their own depending on the research

question. Multiple standardized metrics can be defined from the confusion matrix –

• Accuracy – It is the total number of correct predictions proposed by the model

which includes the positive and negative predictions.

Accuracy = number of correct predictions/ total number of prediction

=
TP + TN

TP + TN + FP + FN

• Recall or True Positive Rate – It is the proportion of positive classes identified

correctly by the model.

Recall = number of correct positive predictions / total number of positive cases

=
TP

TP + FN

• Precision – It is the fraction of positive cases correctly identified over all the

positive cases predicted

Precision = number of correct positive predictions / total number of positive

predictions

=
TP

TP + FP

There are multiple other values that can be calculated from the confusion matrix as

the F1 score and the error rate.
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2.5.1.2 ROC Graph & AUC Value

Another important value that can be used for evaluation is the Area under the Receiver

Operating Characteristic (ROC) graph (AUC) value. The ROC graph is the technique

to visualize, organize and select classifiers based on their performance on a 2D space

(Fawcett, 2003). The graph 2.4 represents the ROC graph with True positive rate

plotted on the Y-axis and False positive rate plotted on the X-axis. So the closer the

curve is to the Y-axis (True positive rate), the better the classifier is. The AUC value

is the area under the ROC curve. An area closer to 1 represents the curve closer to

Y-axis and represents a better classifier.

Figure 2.4: A sample Receiver Operating Characteristic (ROC) graph

2.5.2 Significance Tests

The above discussed metrics represent only the performance measures that can be

used for each classifier. However, it is not sufficient to compare algorithms alone, the

study must provide a statistical evidence of the result obtained from the evaluation.

Statistical tests come into play in this regard. There are three tests that were quite

popular in evaluating HAR and are analyzed further.
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The McNemar’s test primarily is used to compare the difference between propor-

tions in two matched samples. However, Everitt (1992) utilized this test to compare

a set of classifiers trained and test on the same datasets. This test doesn’t measure

the entire variation in the training data as a partial amount of data is used as a hold

out set. The next test is the k- fold cross validation test, it is performed by creat-

ing k equal and disjoint sets of the dataset, the experiment is then run k times with

each trial having a specific test set with all other sets merged to create the training

set. This method permits each test set to be independent of each other which can be

good technique to evaluate with, but also permits overlap of training dataset which

might not result in a good variation. The last and interesting statistical test is the

repeated random sub-sampling (RRSS) or the Monte Carlo cross validation. It per-

forms a Monte Carlo repetitions of a randomly sampled data and the final results are

obtained by aggregating the results for each repetition4. Colaprico et al. (2015) utilize

this validation technique to detect tumors related to breast cancer with the help of

biomarkers.

Dietterich (1998) studied each of these statistical tests for computational power

and cost for running the learning algorithms. The study concluded that the cross

validation tests were the most powerful followed by the McNemar’s test. The study

also stated for algorithms that may be executed only once, the McNemar’s test is the

only acceptable test, however, for tests that can be executed multiple times with com-

putational and economic feasibility, the cross validation techniques are more suitable.

Altun & Barshan (2010) studied HAR through data collected from miniature sensors.

The study involved determining the best classification algorithm out of the chosen six.

The experiment was evaluated using multiple techniques, out of which RRSS, K fold

cross validation proved to be most effective.
4"https://uk.mathworks.com/discovery/cross-validation.html"
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2.6 Summary

With growing industry of the wearable tech, activity recognition has become one of

the popular studies with increasing number of practical applications and questions it

can solve. The motivation behind the study is to utilize the best activity recogni-

tion techniques combined with suitable machine learning algorithms to obtain high

predictive accuracies.

The No Free Lunch theorem states that there can never be one particular model

that may be suitable for an application and that the assumptions generated for a

single research question might not hold true to another question. Hence the theorem

concludes that it is common for researchers to utilize multiple machine learning models

to detect the one that best fits the data and domain (Wolpert, 2002). So the next

direction in this research would be to evaluate the popular algorithms in activity

recognition against the dataset of interest with suitable evaluation techniques. In

conclusion, the research question to be answered by the current study is as follows:

To what extent can supervised machine learning algorithms significantly

enhance the recognition of physical human activity with inertial sensor data

when compared to SVM base model?

Algorithms : K-Nearest Neighbors, Decision Tree, Naive Bayes, Multinomial Logistic

Regression and Artificial Neural Network.
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Chapter 3

Design & Methodology

This chapter details the plan and the design methodology for the current study. Sev-

eral data mining methodologies were studied to identify a robust and well structured

approach for the data mining project. The Cross Industry Standard Process for Data

Mining (CRISP–DM), a well proven method is identified to conduct the current study,

which at its core is a data mining project (Piatetsky, 2014). This methodology is an

ideal sequence of events and the current chapter will deal with each of these phases as

a separate section. However, the steps can always be traced back to previous stages

to repeat or manipulate a step to better suit the following stage.

The first stage is the Business Understanding phase; this is where the business

perspective of the project is understood. The desired outputs of this phase are the

primary objectives of the study. The next phase is the Data understanding phase. This

is the stage where the actual data utilized in the project is acquired. Each element

of the data is inspected and described. The data is also further explored to produce

any initial findings and their impact on the subsequent project stages. The quality

of the data is also accessed at this stage. The third phase is the Data preparation

stage. The unnecessary or repetitive data can be eliminated. Further cleaning of the

data is also done along with development of new derived data elements of the existing
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data. All the manipulated data elements are finally integrated to create a definitive

dataset to be utilized in the later stages. The next step is the modeling stage. The

modeling techniques analyzed from the Literature review section are induced. This

stage also involves experimentation with various parameter settings aligning with the

assumptions of the modeling technique. The next phase is one of the crucial stages,

Evaluation phase. At this stage, each model is evaluated with the primary focus on

the evaluation criteria and in contrast to the business objective. The models are then

assessed of their merits and demerits.

Figure 3.1: Phases of CRISP-DM Process Model for Data Mining (Wirth & Hipp,

2000)

3.1 Business Understanding

Human activity recognition, as seen from the previous chapter, has tremendous busi-

ness value. The primary motive of this study is to enable patients, senior citizens

or infants with immediate medical attention during a case of physical accident or
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emergency. This can be ensured by detecting their current physical activity with the

assistance of a wearable device connected to them. As it is a case of providing medical

support, recognizing the right activity of the user is of utmost importance as it acts

as a trigger to the chosen emergency action as notifying the guardian or the hospital.

From an analytical perspective, in order to recognize the activities right, we must tar-

get onto high accuracy levels of prediction. To achieve the targeted accuracy levels,

multiple machine learning models from various families of machine learning algorithms,

as discussed in Chapter 2 will be employed.

The study assumes that with the increase in accuracy of the activity prediction,

medical assistance can be improved proportionately.

An important constraint to note at this level could be the computing capabilities.

As the current study is an academic project, the machine used is 64 - bit Intel i5

processor with 8GB of RAM. The coding will be done using R Language in R Studio

of version 1.0.136. With no high computing power at availability, the experiment could

suffer by the inability of using certain algorithms that might demand a more powerful

machine.

Business Objective –

As the current study deals with enabling quick assistance to provide emergency ser-

vices, they must be reported with high accuracy. This scenario requires ensuring high

importance granted to false positives and false negatives, since an undetected change

in activity could turn fatal to the user or an incorrect alarm could cause unnecessary

panicking resulting in loss of valuable time, money and other resources. So the objec-

tive of the experiment is to implement machine learning models with high classification

accuracy.

Business Success Criteria –

The solution must not only result in high classification accuracy, but also provide
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evidence in proving that the experiment and results are significant and would always

yield similar results when attempted to replicate the solution.

In view of the above objectives, assumptions and constraints, below hypothesis is

utilized to address the research question –

Each supervised machine learning algorithm, modeled on the HAR dataset

yields a different classification accuracy that is significantly greater than

the benchmark SVM model, with a p value < 0.05

Formally, the null hypothesis can be stated as –

[(
Accuracy (Decision Tree)

)
6=
(
Accuracy(KNearestNeighbor)

)
6=
(
Accuracy(NaiveBayes)

)
6=
(
Accuracy(MultinomialLogisticRegression)

)
6=
(
Accuracy(ArtificialNeuralNetwork)

)]

>
(
Accuracy (Base Support Vector Machine)

)

3.2 Data Understanding

The dataset used in the current study is generated at the International Workshop

of Ambient Assisted Living (IWAAL) held in Spain in 2012. Anguita et al. (2012)

designed an experiment by recording a set of six physical activities performed by a

group of 30 volunteers. The tri-axial linear acceleration and the tri-axial angular

velocity from the built-in accelerometer and gyroscope of a smart phone device are

captured. These sensor signals were processed to remove noise and were sampled for

every 2.56 seconds with a 50% overlap of the fixed width sliding window. The resulting

signals had a combination of gravity and body motion components, and hence were

passed into a low pass filter to obtain separated components with the gravitational

force components cut off at the lower end of the filter. Time and frequency domain
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vector of features were obtained from each of the window created. No cognitive activity,

perception of load was gathered whatsoever (Longo, 2017).

Raw Signal Definition

tBodyAcc-XYZ Body acceleration in time

tGravityAcc-XYZ Gravity acceleration in time

tBodyAccJerk-XYZ Jerk in body acceleration in time

tBodyGyro-XYZ Body gyroscope measure in time

tBodyGyroJerk-XYZ Jerk in body gyroscope measure in time

tBodyAccMag Magnitude of body acceleration in time

tGravityAccMag Magnitude of gravity acceleration in time

tBodyAccJerkMag Magnitude of jerk in body acceleration in time

tBodyGyroMag Magnitude of body gyroscope measure in time

tBodyGyroJerkMag Magnitude of jerk in body gyroscope measure in

time

fBodyAcc-XYZ Body acceleration in frequency

fBodyAccJerk-XYZ Jerk in body acceleration in frequency

fBodyGyro-XYZ Body gyroscope measure in frequency

fBodyAccMag Magnitude of body acceleration in frequency

fBodyAccJerkMag Magnitude of jerk in body acceleration in fre-

quency

fBodyGyroMag Magnitude of body gyroscope measure in fre-

quency

fBodyGyroJerkMag Magnitude of jerk in body gyroscope measure in

frequency

Table 3.1: Description of raw signals from HAR experiment

Note: The ’XYZ’ denotes the three axis directions X, Y, Z for each of the tri-axial

signals; ’t’ indicates time domain variables and ’f’ denotes frequency domain variables.
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The features extracted from the experiment have been derived in an elaborate pro-

cess and are tabulated in 3.1. The initially obtained raw signals, tAcc-XYZ and tGyro-

XYZ were the tri-axial signals obtained from the accelerometer and the gyroscope, the

total acceleration was further split into tBodyAcc-XYZ and tGravityAcc-XYZ. The

Jerk signals, which are the rate of change in acceleration over time are derived from

the raw signals and are denoted as tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ.

Euclidean norm is performed to calculate the magnitude of each of the signals fur-

ther resulting in components as tBodyAccMag, tGravityAccMag, tBodyAccJerkMag,

tBodyGyroMag, tBodyGyroJerkMag. Additionally, a Fast Fourier Transform was

applied to produce the features as fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-

XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. The table 3.2 lists the

set of descriptive variables calculated for each of the above raw feature.
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Descriptive Definition

mean() Average value

std() Standard deviation

mad() Median absolute deviation

max() Maximum value

min() Minimum value

sma() Signal magnitude area

energy() Energy value

iqr() Interquartile range

entropy() Signal entropy value

arCoeff() Autoregression coefficient

correlation() Correlation coefficient

maxInds() Index of the largest magnitude frequency component

meanFreq() Weighted average of the frequency component

skewness() Skewness of the frequency domain signal

kurtosis() Kurtosis of the frequency domain signal

bandsEnergy() Energy of the frequency within the FFT of each window

angle() Angle between the vectors

Table 3.2: Description of derived variables from raw signals

Note: The angle is calculated only for gravityMean, tBodyAccMean, tBodyAccJerk-

Mean, tBodyGyroMean, tBodyGyroJerkMean vectors.

Additionally, an identifier variable, ’Subject’, describing the user who carried out

the particular activity is provided. It is a 30 factor categorical variable with labels

from 1 to 30 each representing a volunteer carrying out the experiment. Finally, the

feature describing the physical activity performed by the users during which the signals

are collected is recorded as ’Activity’. It is a 6 factor categorical feature.The activities

performed and recorded are tabulated in 3.3.
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Activty ID

Walking

Walking_Upstairs

Walking_Downstairs

Sitting

Standing

Laying

Table 3.3: Activity list: Classes of target feature

3.2.1 Data Exploration

The first step in exploring the data is to view the dimensions of the dataset and to

verify with the data source to ensure the data is intact and have the right number

of dimensions. After validating the data integrity, each of these features has to be

understood in order to proceed to the next stages of the experiment. A simplest way

to perform this, is to evaluate the structure of the entire dataset. It is important

to review with the structure of data as investigated from the business understanding

stage to validate the structure of every feature obtained after the data import process.

If any discrepancies have been found, the features can be translated to the required

format in the next stage.

Reviewing the summary statistics is the simplest way to analyze and obtain an

overview of the features. The summary statistics would have different elements of

information for different types of features. As for categorical features, the summary

statistics illustrate the cardinality of the feature and for numerical features, they detail

the mean value of the feature along with median and other fixed quantile values.

The categorical features, dependent and the independent variables, combined must

be further evaluated for categorical count or percentage within their categories. This

enables the study to identify imbalance in the cardinality between the feature under
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inspection and the target feature.

Ideally, the next step is to visualize the data and to understand its aspects which

cannot be observed otherwise as distribution and normality. Outliers for each feature

can also be visualized to gain better insights. The relationship between multiple

attributes could be visualized and understood better. Simple aggregations can also

help to understanding the data at a macro level. Analyzing the sub-populations and

their properties would help in getting an overview of any specific feature. Additionally,

data quality can also be examined at this stage by understating the outliers, missing

values, noisy data and also the inconsistent data. Each of these can have a different

test performed to understand the issues and to devise a plan to resolve them in the

next stages. Redundancy can also be identified at this stage.

In conclusion, the current problem is identified as a Classification task. From the

data understanding phase, the dataset has been identified with a total of 563 features,

with 561 numerical independent features, one categorical feature describing the target,

Activity label and another categorical feature describing the user. Summary statistics

with a combination of visualizations and other explorations would be a part of this

section forming the data exploration report. Similarly, the quality of the data can also

be judged and reported.

3.3 Data Preparation

Data preparation is one of the most crucial stages in a data mining project. This

process determines the quality of the data used to extract insights which could in

turn affect the quality of the insights. It is the process of manipulating the data and

prepares it to be suitable for the next stages of the project. Data emerging from this

stage must not contain any incomplete, noisy or inconsistent data. The major tasks

in data preparation are as follows –
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• Data Cleaning

The first task under data cleaning is to evaluate the missing data in the entire data

set. A data point can be said have missing data if there is either no data value

stored in it or values as N/A, not applicable or 999 are stored instead of a blank

field. Having missing values is a common occurrence and can have a significant

effect on the feature and insights drawn from it. Once missing data is identified, it

is crucial to know the mechanism behind it. Action can be taken by analyzing the

type of missing data :

– Missing Completely at Random (MCAR)

– Missing at Random (MAR)

– Missing Not at Random (MNAR)

Appropriate solution must be devised and highlighted at the beginning of the ex-

periment.

The next task under data cleaning is outlier detection and analysis. An outlier as

specified by Grubbs (1969) is a data point that is at a significant distance from

the other data points. Generally, an outlier may arise due to an error in coding or

data collection methods, but if the outlier is a genuine possibility, it can be quite

insightful. A data point is only an outlier if it is significantly away from the normal

curve, so box plots and histograms can help analyze this scenario. Once detected,

it can be subjected to masking, swamping or other formal outlier tests as Grubbs

test. All the details about the outlier and the test results must be noted before

proceeding to the experiment (Croarkin et al., 2006).

The next stage of data cleaning is handling noisy data. Zhu & Wu (2004) state

noise to be an unavoidable problem in any data mining problem. There can be two

types of noise, class noise and attribute noise. Class noise can occur when the target

variable is incorrectly labeled with a different class or even contradictory examples,

as similar observations yielding different class label values. Attribute noise refers to

error in the values of features. It can be as an inaccurate value or unknown symbol
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instead of an actual value or even incomplete values. One of the best solutions to

avoid noisy data is to apply a noise filter and to collect only eligible values or binning

data into several bins and thereby averaging the values to a common bin. Another

solution could be to utilize modeling approaches that are resistant to noisy data as

fuzzy decision trees (Blechner, 2005).

Data inconsistency is another problem that is quite common. Data points may suffer

with inconsistencies in naming conventions, date formats or other data codes. This

could result due to incorrect data representations, inconsistent use of codes and also

due to inconsistencies while creating the original data source. The solution for this

would be examining the data for unique rules, consecutive rules and null rules.

The final task of the data cleaning stage is to eliminate data redundancy. Having

large amount of redundant data may distract the model from concentrating the

important observations. Furthermore, redundant data may also slow down the en-

tire process. Redundancy may be detected by performing correlation between the

features which provides the relation between one feature over the other. The most

popular correlation metric is the correlation coefficient. A correlation coefficient

closer to positive or negative one can be treated as a strong relation, in which case,

one of the features can be dropped and be represented by the other feature.

• Data Integration

Data integration is the process of combining data from multiple sources. It is an im-

portant process and can aid in increasing the speed of the experiment and accuracy

of the final prediction results. While performing integration, it is crucial to identify

features that need to be matched and combined. The structure of such features has

to be understood well along with their functional rules, referential constraints and

dependencies which must match for both the integrated features and their datasets,

if they fail to have similarities, the data and its conditions must be transformed

to make required changes. Redundancy tests performed in the data cleaning stage

must be evaluated to perform better integration. By end of this stage, we must be

able to detect conflict between several values due to inequality in scaling, encoding
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or representation and thus provide an appropriate resolution.

• Data Transformation

The data are transformed into another form by applying a mathematical function

so the resulting value is more suitable for the next stages of the data mining project.

Data transformation utilizes a function that maps all the values of the feature to a

new set of transformed values. There are different ways of transforming the data.

An ideal method shall be devised based on the experiment and the data.

– Aggregation is a technique when summarization is applied to the data. This

transformation also enables in creating a data cube, which is a 3-D range of

values which are aggregated from different aggregation and abstraction patterns1.

Aggregation can help when each observation can be better represented as a single

aggregated value as opposed to multiple values partially explaining the same

feature.

– Normalization is the technique of ensuring that the data falls within a fixed range

of values. It is performed since the measurement of unit can have a significant

effect on the final result. So to avoid dependency on the measuring unit, each

value in a feature is scaled using the maximum - minimum or mean - standard

deviation of all the values in the feature. Normalization tries to provide each

feature the same amount of importance and avoids the algorithm to be influenced

by higher values of a feature with lesser importance.

– Feature construction is an important part of transformation of adding new fea-

tures which can help in understanding the data better by providing a better

meaning and improved accuracy. A new feature must be constructed such that

it helps in improving the accuracy, computational efficiency, and can be gener-

alized to different algorithms. However, there is always a risk of over fitting to

the problem at hand while constructing new features which must be monitored.

(Sondhi, 2009)
1"https://www.computerworld.com/article/2564238/business-intelligence/data-cubes

.html"
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• Data Reduction

Data reduction is the technique of reducing the overall representation of the data

while having minimal loss of domain knowledge and information content. Data

reduction helps in decreasing the computational complexity of the algorithms owing

to the complex data and its structures which in turn result in quicker analysis. These

include methods such as sampling, feature selection and dimensionality reduction.

– Sampling is the technique of selecting a subset of observations to represent and be

analyzed instead of the entire data. It can be used when the data held is massive

and computation can be expensive and/or time consuming. The notion behind

sampling is to obtain a representative sample of the entire data. Types of sam-

pling are random sampling, stratified sampling, cluster sampling and systematic

sampling which can be used to derive samples from an imbalanced datasets.

– Curse of dimensionality as stated by Bellman (2013) is the ’problem caused by

the exponential increase in volume associated with extra dimensions added in the

Euclidean space’. Dimensionality reduction and Feature selection are important

techniques that help avoid the curse of dimensionality. Attribute subset selec-

tion is one of the methods of dimensionality reduction which detects and stores

highly relevant features. Principal component analysis is a similar dimensionality

reduction technique, which searches for a set of n-dimensional vectors that can

best represent the data over the original feature set. The new set of vectors cre-

ated is ranked based on the amount of information and variance it represents, so

important information still intact.

• Data Split

The final step in data preparation is to create training and test datasets. Each

algorithm will be trained on the training dataset and will be evaluated against the

testing dataset. The typical data split performed is 70 to 30 split between the

training and test datasets. Also, it is important not to expose the test data set

during training process. Typically a stratified random sampling is an ideal choice
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to ensure that the composition of the data between the datasets matches to that of

the original data source. (Liberty et al., 2016)

Once data preparation is completed after utilizing either one or more of the above

techniques as per the original data conditions, quality and the experiment to be per-

formed, the data must be Valid, Accurate, Complete, Consistent, Uniform and ready

to be modeled.

3.4 Modeling

In this stage the final machine learning algorithms will be utilized to induce predictive

models and gain insights from the prepared data in order to solve the research ques-

tion. Each machine learning model has to be finely tuned for various variables and

parameters to have the perfect model synced with the data. The literature review has

identified multiple classification algorithms typically used in machine learning and in

HAR domain. Comparing the potential algorithms discussed in the review and the

algorithms already explored listed in table 2.1, the gaps of the research are pretty

evident. Considering the No free lunch theorem introduced in the literature review

(Wolpert, 2002), for the scope of this study, the below stated five models from four

families of machine learning algorithms will be created.

• Information based learning –

Under the information based family of machine learning, decision trees will be mod-

eled. When modeling the decision trees, each and every parameter can be modified

to create an apt classification model. The first parameter to be provided will be the

target and the selected independent variables. The another important parameter

is the splitting criteria which can either take the gini impurity or the information

gain value to split the data into partitions. As the current study deals with a clas-

sification problem, the method must be specified as appropriate. There are several
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controlling parameters which may be used to enhance or restrain the tree growth,

the best approach would be to perform a trial and error procedure to choose the

suitable parameters. The resultant decision tree can be inspected in several ways as

graph of the decision tree plot, summary, cross validation results etc.

• Similarity based learning –

For K-nearest neighbor algorithm, the independent variables and target feature

must be specified to help the algorithm differentiate. The important aspect of the

KNN algorithm is the ’K’ value, which is the number of neighbors to consider. The

experiment must be carried out with a ’tunelength’ set to various values of ’K’ to

find the one that fits in best. The default distance used in KNN is the Euclidean

distance. The final value of the target is decided by the majority vote of the K

nearest neighbors in terms of the Euclidean distance.

• Probability based learning –

The Naive bayes algorithm implementation takes in the independent and the depen-

dent features as the first parameters. The algorithm can work with the data with

default parameters alone; however, there are multiple other parameters that may

be provided to customize it better. Laplacian correction can be used to smooth the

categorical data which can be provided with a numerical value, the distribution type

can be altered by editing the boolean value of ’usekernel’ and the total bandwidth

can also be adjusted.

• Error based learning –

Multinomial logistic regression can be implemented by using a penalized logistic

regression technique. The important parameter is the MaxNwts which must be set

high enough for the algorithm to function. The summary of the logistic regression

gives out the coefficient and the standard error for each of the independent features.

Additionally, it also highlights significant values out of all the independent features.

Artificial neural networks are complex structures that can be easily map to number

of varied datasets. The size parameter plays a significant role of specifying number
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of units in a hidden layer and it will take a single or a series of numbers to run

the model with. The best way to choose the number of hidden units as suited

by the data is to run multiple experiments and identifying the right number. The

decay parameter is a regularization parameter which penalizes the model and helps

avoid over-fitting. Although neural nets can be highly customized, they can be

computationally expensive and also cannot be interpreted as well as other machine

learning algorithms.

3.5 Evaluation

For the validation process, the K fold cross validation and the repeated random sub

sampling techniques are both deemed most apt from the literature review. In a study

by Kohavi et al. (1995), multiple accuracy estimation methods were studied. The

experiment concluded that though K fold validation can be a good technique, with

moderate K values (10–20) there could be reduced variation but the process may

also suffer due to increased bias which could in turn tend to unstabilize the training

process. Comparatively, stratification process in the RRSS method could be better

for both variance and bias. Additionally, as the dataset under inspection has a high

number of independent features, the RRSS method would be a faster approach over

the K fold validation. So the repeated random sub sampling technique also called as

Monte Carlo cross validation is preferred for the evaluation process.

A 5 fold variant of this technique is used. To execute the process, initially, five

different samples of training and testing datasets must be created. Each of these

five training sets must be individually modeled using the above discussed machine

learning algorithms. Each model will be evaluated with the help of the corresponding

test dataset that will be predicted using the predict function. The predict function,

predicts the target value for each records of the test data set using rules and insights

from each of the models created. The resultant solution is a set of values predicted
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for each of the test data set as per its functionality of the model. This solution

is compared to the original solutions given from the base study. The correct and

incorrect answers are tabulated and displayed as the confusion matrix. The confusion

matrix is selected as it is good way to evaluate the models and presents the precision,

recall and the overall classification accuracy in a comprehensible format and hence

can be very useful. However, since the data does not have a binary target feature, the

confusion matrix has to be expanded to accommodate all the six classes of the target

feature.

Using each of the classification accuracies produced for each induced machine learn-

ing model, a distribution can be created using the five cross validation results. This

distribution gives the overall classification accuracy that can be expected of the algo-

rithm. Furthermore, depending on the normality of the each of the distributions, their

results can be tested for statistical significance using a corresponding significance test

as T- test or Wilcoxon Signed-Rank test.

3.6 Deployment

The current project does not aim to be deployed in the real time environment, so

this section will not cover any details in this aspect. However, the project aims to

contribute to the body of knowledge and the current document suffices that purpose.

3.7 Strengths & Limitations

This section evaluates the strengths and limitations of the proposed design. Firstly, to

increase the strength of the project, the experiment has chosen to utilize algorithms

from one family of machine learning models each, this ensures, the data is being

exploited through various aspects dealt under each of the machine learning family.
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The parameter tuning will be performed with multiple values to ensure the model is

well fitted with the data. Also, as the models are validated multiple times with various

samples of the existing data, the variation due to samples will be measured and the

data is well exploited to extract utmost information.

However, a potential drawback could be that the study is willing to take a risk of

being affected by large bias that might occur to application when using bootstraps due

to the chosen evaluation procedure (Kohavi et al., 1995). Also the RRSS validation

uses only 5 samples. Using a higher number could yield more significant analysis.

3.8 Summary of Design

This chapter has produced a detailed design of the entire experiment to be conducted.

Initially, the objective of the study is understood well along with the restrictions

and assumptions. The data is then examined to provide an initial data quality, data

description and data exploration reports. Data is then prepared by performing many

of the data quality improvement operations. Data transformation techniques are then

applied to create a final dataset. This dataset is sampled to create five different sets

of training and testing datasets on which various models are built on. The resultant

classification accuracy distributions can be used to identify the best model and evaluate

against the benchmark. One potential problem of the design is the computational

complexity due to the huge size while feature engineering and modeling the algorithms,

hence generating each model could be a time consuming approach.
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Figure 3.2: Experiment Design Diagram

The next chapter details the practical implementation of the proposed approach along

with the results obtained.
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Implementation & Results

This chapter describes the execution procedure and the results of the experiment. The

aim of this chapter is to implement the experiment in the direction of being able to

answer the research questions. The structure of this chapter follows the CRISP - DM

methodology to have a comprehensive and a standardized approach and is similar to

the chapter 3. However, any deviations from the originally created design will be

acknowledged and commented.

4.1 Data Understanding

To understand the data and its elements, the data must be initially integrated and

put in an ideal format to inspect it; this process of data integration is performed

and specified under the data preparation stage. The first element of investigation

performed on the integrated data is calculating the dimensions using the function

’dim’. There were 10299 rows, which is the train and test set combined and 563

columns consisting of 561 features, the subject and the activity variable. The names

of each of the columns are evaluated to ensure correct order of the data.
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Figure 4.1: Example set of feature names

The structure of the dataset was attempted to be analyzed but as the data size

was high, it was not quite comprehensible. The six point summary of the data, which

includes the minimum, maximum, mean, median and the 1st and 3rd quartiles are

generated for each of the features. These didn’t add value either. The attributes of

the data: names of the columns, rows and the class of the dataset are viewed. To have

a quick view of the data, the first two rows of the data are observed using the head

function. To understand the composition of the subject and the Activity levels, their

frequencies were tabulated, the figures 4.2 & 4.3 are the histograms of the Activity

and the subject variables. It is observed that both the fields were free of any class

noise or data inconsistency issues.

Figure 4.2: Histogram of the target variable – ’Activity’

48



CHAPTER 4. IMPLEMENTATION & RESULTS

Figure 4.3: Histogram of identifier variable – ’Subject’

Unique rows were analyzed to see for any presence of attribute or class noise, but

there were no signs of such errors. The maximum and minimum values of the 561 time

and frequency domain variable were seen to be +1 and -1 respectively which stated

that the values were normalized between this range while creating the dataset. There

were no missing values found under the missing value analysis test.

The users and the activity levels were tabulated to inspect their distribution using

simple aggregation methods. It is observed that their composition was quite uniform,

with respect to each other and the entire data.
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Figure 4.4: Histogram of records per user grouped by target

4.2 Data Preparation

• Data Integration

The first step under preparing the data is the data integration which is performed be-

fore the data understanding stage as the original data is provided as a .zip folder con-

taining multiple text files each representing different components of the full dataset.

The first component is the ’activity labels’ text file which has the 6 activities listed.

The next file is the ’features’ text file consisting of all the 561 features, addition-

ally, a ’features info’ text file consists of descriptions of these features. There exist

two sub folders namely ’train’ and ’test’ representing the training and the testing

datasets. Each folder has an ’X’ and ’Y’ text file representing the independent and

the target feature values. A ’subject’ file is given to provide the information of the

user performing the activity. Each of these files is captured into multiple tables and

are copied onto individual lists using a blank separator. Each file is also viewed

and examined to validate the data consistency. The training data set is created by
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merging the features (X), the subject and the activity (Y) under the train folder

and the testing data set is created by merging the same files from the test folder.

The final train and the test files are obtained such that the user subjects - 2, 4, 9,

10, 12, 13, 18, 20, and 24 are in the testing dataset and the remaining user form

the training dataset. This process of completely ignoring users from being a part of

the dataset can be misleading. Hence, both the datasets are merged to create the

complete "Fulldata" dataset.

• Data Manipulation

The next step under the data preparation is converting the data into their right

primitive data types. The Activity and Subject variable are converting into categor-

ical variables using the function "as.factor". All the other independent features are

converted into numeric using "as.numeric". The feature names are further edited to

remove unnecessary spaces and special characters as brackets, quotes and dots, hy-

phens were replaced with underscores to have syntactically correct character names

using the ’gsub’ function. Outlier analysis and distribution tests were not performed

as per the design solution as they can be hard both for computation and analysis,

also as the features were previously normalized to a fixed range, there could be no

further issues.

• Dimensionality Reduction

High dimensionality as seen previously can cause severe difficulties as it could be in-

creasingly hard to visualize and understand the data, it can also be computationally

complicated and expensive. An ideal solution to this problem is to use dimensional-

ity reduction techniques to bring down the size of the data. The study utilized two

techniques to decrease the size of the feature set.

– Correlation Analysis

Highly correlated features can downgrade the performance of a model. Moreover,

it’s not ideal to have multiple features measuring the same variability of the target

feature. So in order to decrease multicollinearity in the data, highly correlated
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variables are identified and removed from the dataset. For this, initially, a corre-

lation matrix is generated for all the 561 independent features. This produces a

561x561 matrix with correlation values between all the features.

Figure 4.5: Example of feature with low correlation coefficient values

Figure 4.6: Example of feature with high positive correlation coefficient values
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Figure 4.7: Example of feature with high negative correlation coefficient values

This correlation matrix is given as input to the ’findCorrelation’ function in the

caret package along with a cut off value of 0.8 of pairwise absolute correlation,

which denoted strong correlation between the features (Taylor, 1990). This func-

tion resulted in the list of 389 feature names which are highly correlated with

the other features and in a pair possess a higher mean absolute correlation over

the other. Finally, an uncorrelated dataset is created using only the features not

in the highly correlated list generated above. This resulted in a dataset with

174 uncorrelated features. From this data the Subject feature which acts as an

identifier is removed. The final uncorrelated dataset is inspected for dimensions

and has 173 columns

Rows Columns

10299 173

Table 4.1: Dimensions of the dataset after Correlation Analysis manipulation

– Principal Component Analysis

This technique replaces all the set of features with a linear combination of them

called as principal components. To generate the principal components of the
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feature set, the ’prcomp’ function is utilized. The input to the function are the

full list of features without the subject and the activity fields and a boolean

variable of scaling given as true, to ensure that the features are scaled to have

unit variance. The resultant object has 5 elements as standard deviation, rotation,

centre, scale and a matrix with the new components which are ordered on basis of

decreasing importance and relevance levels with respect to the variability being

captured.

The individual component variance measured is calculated by squaring the stan-

dard deviation values. Using the first 100 features, about 94.6% of the total

variance is captured which is enough data captured for the proportion of data

reduced.

Figure 4.8: Variance captured by top 10 components of PCA

Figure 4.9: Proportion of Variance captured by top 100 components of PCA
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Figure 4.10: Variable space approximated by the top 2 principal components

The amount of variance captured by the top 100 components and the variable

space approximation captured in 4.10 are evident that the original data can be

approximated using principal components. A new data frame is hence created

with the Activity field and the first 100 principal components.

Rows Columns

10299 101

Table 4.2: Dimensions of the dataset after PCA manipulation

4.3 Modeling

The models must be implemented in accordance to the model validation techniques.

To perform an RRSS cross validation, the data has to be modeled on 5 different

training sets. The 5 training sets are created using 5 seeds, ’1’, ’2’, ’3’, ’4’, ’5’ are

incorporated to generate random partitions using ’createDataPartitions’ function from

the caret package. The function takes into account the target variables and performs

a stratified sampling of the data and outputs a percentage of numbers as per the

parameter setting with the percentage cardinality of the target feature similar to the
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original target feature. The Activity variable is given as an input to the function,

the percentage of values to be generated is set as 0.7, which is the percentage of the

training set against the test set. The figure 4.11 describes the first 10 numbers of

the count variable from different seed values. It can be observed that each sample is

random and is different from other samples.

Figure 4.11: Head of train count seed variables

Train datasets are created by extracting the records corresponding to the sampled

numbers. All the other rows which correspond to the remaining 30% of the total

records are placed into the test datasets. The final dataset obtained from the correla-

tion analysis will be used to derive the 5 train and test sets to follow the first method of

data preparation. The dataset created with the 100 principal components will be used

to prepare train and test datasets following the second method of data preparation.

Once the train and test datasets corresponding to each of the manipulated dataset

under every seed is created, modeling can be performed.

The train function of the caret package is used for creating each of the models.

To enable resampling in the later stage, these models are being trained using a train

control performed using cross validation in two folds.

The first model to be created is the decision tree with the splits being performed

using the Gini impurity value as it is faster and works better for continuous attributes

as in this scenario1. Gini impurity also works in accordance to minimize the misclas-

sification rate, which is quite suitable for the study. The figure 4.12 shows the list of

the most important features observed.
1"http://www.learnbymarketing.com/481/decision-tree-flavors-gini-info-gain/"
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Figure 4.12: Variable importance as observed by Decision tree

For K-Nearest neighbors’ algorithms, the tune length is set to ’7, which seems an

ideal solution to compensate between increasing value of accuracy and tuning and

execution time of the model. To iterate the training procedure over K, the model

used cross validation technique. Due to cross validation over multiple values of K, the

modeling took a lot of time. From the summary of the KNN model shown in 4.13, it

is seen that K value of 5 is best suited for the data.

Figure 4.13: Summary of the KNN Model
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For the Naive bayes, the default settings are used with no use of kernel function.

It was the quickest execution out of all the models.

The penalized multinomial logistic regression is also run on default settings, but

the maximum weights has to be set high enough to enable the model to be executed.

The model summary provided an AIC value of 2423.762

Figure 4.14: Variable importance of the Multinomial Logistic Regression model

The neural net is initially modeled with a combination of units of hidden layer and

decay value. It is identified that by using 30 units in the hidden layers with a decay

value of 0.1 the algorithm converges considerably faster and the model doesn’t over-fit

either.

4.4 Evaluation

The evaluation is performed by predicting the target values for the testing datasets us-

ing their corresponding models. The prediction is implemented using the ’predict.train’

function, from the caret package, by supplying the model and the test dataset to it.
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It is important to remove the original target feature from the test dataset. Once the

predictive model results are generated, a confusion matrix is plotted using the function

’confusionMatrix’ with data input as the predicted values and reference as the original

target feature labels. The overall component of the confusion matrix generated has

the overall statistics as accuracy levels, sensitivity, specificity, kappa value etc.

A set of five accuracy values are generated for every model under each of the

feature engineering technique. The resultant distribution of classification accuracies is

analyzed to pick the best algorithm for the data. The results for each of the algorithm

with both the methods are listed for each of the seed value.

Decision Tree
Dimensionality Reduction

Seed Correlation Analysis Principal Component Analysis

1 0.6242306 0.5231616

2 0.6135407 0.5176547

3 0.617104 0.5192744

4 0.5150632 0.6096534

5 0.6103013 0.6161322

Table 4.3: Accuracy list for Decision Tree algorithm

K Nearest Neighbor
Dimensionality Reduction

Seed Correlation Analysis Principal Component Analysis

1 0.9342404 0.9089731

2 0.9497894 0.9063816

3 0.9335925 0.9060577

4 0.9280855 0.9115646

5 0.9345643 0.9028183

Table 4.4: Accuracy list for K Nearest Neighbor algorithm
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Naive Bayes
Dimensionality Reduction

Seed Correlation Analysis Principal Component Analysis

1 0.8519598 0.8088759

2 0.8224814 0.8234532

3 0.8496923 0.8176223

4 0.8568189 0.8253968

5 0.8386783 0.8231293

Table 4.5: Accuracy list for Naive Bayes algorithm

Logistic Regression
Dimensionality Reduction

Seed Correlation Analysis Principal Component Analysis

1 0.9617752 0.9549725

2 0.9624231 0.9540006

3 0.9656625 0.9585358

4 0.9663103 0.9598316

5 0.9721412 0.9582119

Table 4.6: Accuracy list for Logistic Regression algorithm
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Artificial Neural Network
Dimensionality Reduction

Seed Correlation Analysis Principal Component Analysis

1 0.9773243 0.9689018

2 0.9708455 0.968254

3 0.9701976 0.9766764

4 0.9782961 0.9714934

5 0.9750567 0.9737609

Table 4.7: Accuracy list for Artificial Neural Network algorithm

The next chapter critiques the implementation and working of every model. Each

of these accuracy values are also plotted to and evaluation is performed on their

distributions.

A final statistical test is then performed on the distribution to get the statistical

significance of the tests in order to answer the research question.
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Chapter 5

Analysis, Evaluation & Discussion

This chapter performs an in depth analysis of the experiment and the results obtained

from the design implementation as stated in the Chapter 4. The results are obtained

from the predictive capabilities of each of the models induced based on algorithms

using the different data preparation methods as Correlation Analysis and Principal

Component Analysis applied to each of the different seeds of the data. Each of these

results will be discussed individually before commenting on the general implementation

and design strategy. The results of statistical significance of the models shall also

be commented upon. The chapter will then conclude by stating the strengths and

limitations of the experiment.

This chapter will also follow the structure and order of content as of the previous

chapters to enable better association and understanding.

5.1 Data Understanding

The Data Understanding phase proved to be quite insightful in establishing the context

of the data preparation to be performed or in order to estimate the complexity in
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terms of space and time for creation of the models as well as predicting the final

results. The initial analysis of the data depicted that the Activity feature which is

the target variable for the experiment is well balanced as seen in figure 4.2. The

balance of the target feature between its classes is an important aspect to investigate

as necessary action must be taken care for any deviation in the balance during sampling

stage or while creating train and test datasets. Furthermore, the subject, which is the

identifier variable is also well balanced within itself as seen in figure 4.3 as well as when

contrasted with the target feature, seen in 4.4. This eases the case of creating train

and test datasets without requiring any stratified sampling to ensure the composition

of each of the data splits which will be analogous to the original data composition.

It is also seen that all the independent features fall in a specific range of +1 to

–1. It can be understood that the data was range normalized to fit to this particular

range. It permits the algorithms to provide equal emphasis on every feature and allow

better standardized data into the next stages and not allowing various ranges of the

data to affect the significance of any feature.

5.2 Data Preparation

The independent features of the experiment are derived from the raw signals from two

sensors of a single device. When performing an action, it is evident that the data is

highly correlated and that multiple values could be representing the same component

of variance in the target feature as in any tri-axial dataset (Mannini & Sabatini, 2010).

Furthermore, each of these features measure tiniest aspects of the activity performed

as for instance, the magnitude of the jerk measured through the body acceleration

in the x- axis. This value would not be as different as the value measure in y or

z axis or that of its minimum or maximum value during the sampling period of 2.5

seconds. It can be understood that there is a potential for redundant data to mislead

the algorithm. In addition, excessive and irrelevant data might also lead to over fitting
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in the model.

As dimensionality reduction was a crucial step in preparing the data for the mod-

eling stage, the idea was to choose more than one technique for this task. Under

correlation analysis, a not very stringent value of the correlation coefficient was cho-

sen but it proved quite significant by identifying about 70% of the total features as

highly correlated with each other. The example of uncorrelated feature was the jerk

signal in the X–axis obtained from the body linear acceleration derived in time. It

was partially correlated with the Y and Z axis values of the same metric but the cor-

relation wasn’t high enough to eliminate one of them. However, the derived features

as describing the maximum, minimum values have observed to have a high correlation

among the other derived features. It is quite intuitive that the interquartile range and

standard deviation features possess high positive correlation whereas energy band and

the minimum values of a metric demonstrate high negative correlation. Many such

highly correlated features, both positive and negative were eliminated.

Principal component analysis was thought to be a better dimensionality technique

during the design phase, due to the fact that the features could be replaced with their

linear combination, with each component capturing certain amount of measurable

variance in the target feature. The results of the technique were quite impressive too.

With just 18% of the total number of features, about 95% of the total variance was

being captured. Plotting all the principal components against the target feature in

figure 4.10 also demonstrated a good understanding of the activity as all the station-

ary activities as standing, sitting and lying down were differentiated from the motile

activities as walking in a line and on the stairs.

64



CHAPTER 5. ANALYSIS, EVALUATION & DISCUSSION

5.3 Modeling

To utilize the repeated random sub samping cross validation technique for the evalua-

tion phase, each of the models must be trained and tested on five different combinations

of the complete data to ensure that the created models and the prediction results were

significant and can be replicated when necessary. In order to create the different sam-

ples of train and test datasets, stratified sampling technique was used. However, the

random sampling could have worked equally good as the data is well balanced in terms

of the target feature but stratified sampling provides greater certainty in avoiding any

bias in the models due to the dataset composition. The image 5.1 shows the compo-

sition of the target features in the entire dataset and also in each of the created train

and test data samples.

Figure 5.1: Target Feature Distribution

Models are created using the appropriate modeling technique and settings to yield

various predictive results. The first model implemented was the decision tree, which

is one the most powerful algorithms and yet can be highly influenced by its structure

and thus yield drastically different results. The table 5.1 exhibits the predictive results

for the decision tree with best accuracy value of all the seeds and methods. It can be

observed that the decision tree has suffered in differentiating the activities from each

other. Especially, the sitting activity is repeatedly misclassified as standing. One of

the major flaws of the decision tree that could have impacted the performance of the

algorithm over the given data could be the fact that the decision tree works better with
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categorical variables. The reason is quite intuitive that with categorical independent

variables, it is easier for the algorithm to create rules to perform partitions in the

data in order to develop a tree with leaf nodes stating the appropriate target feature.

However, in the current case, as the independent features are all numeric, it can be

quite challenging for the algorithm to find the right value that can be used to bifurcate

the tree to create partitions. Additionally, the decision trees are sought out due to its

ability to provide highly interpretable results but in this case, with such huge amounts

of data features, interpreting the rules and the tree partitions could add very little

value.

Reference

Prediction Walking Walking_

Upstairs

Walking_

Downstairs

Sitting Standing Laying

Walking 441 68 111 0 1 0

Walking_

Upstairs

75 395 310 0 0 4

Walking_

Down-

stairs

0 0 0 0 0 0

Sitting 0 0 0 0 0 0

Standing 0 0 0 475 556 44

Laying 0 0 0 58 14 535

Table 5.1: Confusion Matrix For Decision Tree

The next model generated is the K nearest neighbors algorithm. It was one of the

models that has performed remarkably in producing results with accuracies better than

the benchmark result. The table 5.2 depicts the confusion matrix for the best K nearest

neighbor algorithm. It is seen that the algorithm has very less misclassifications on the

whole. Considering the nature of the activity, the two clusters of activities, stationary

and mobile, the KNN algorithm ensured high inter cluster classification accuracy.
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But the intra cluster classification accuracy was not very satisfying especially for the

stationary activities. The sitting and standing activities were highly misclassified. As

the current experiment involves detecting the user activity over the span of 2.5 seconds,

it is evident that the activity is influenced by the actions preceding and following it.

So the KNN algorithm which takes into account the specified number of neighbours

for performing classification justifies its satisfactory performance. But it must be

noted that the modeling and evaluation of the algorithm was computationally very

demanding and has taken the highest amount of time.

Reference

Prediction Walking Walking_

Upstairs

Walking_

Downstairs

Sitting Standing Laying

Walking 513 3 12 0 0 0

Walking_

Upstairs

1 456 6 3 0 0

Walking_

Down-

stairs

2 4 403 0 0 0

Sitting 0 0 0 473 52 10

Standing 0 0 0 54 519 5

Laying 0 0 0 3 0 568

Table 5.2: Confusion Matrix For K Nearest Neighbours

The Naive bayes model is simple generative model that performed an indirect

computation of the required probability through the Bayes function. The table 5.3

shows the confusion matrix of the Naive bayes algorithm with the best accuracy. The

classification accuracy is not noteworthy compared to the results from other models

and is also inadequate compared to the benchmark results. The poor performance of

the Naive bayes can be implied to the innate assumption of parameter independence.
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In the current experiment, each of the features is a derived attribute from the originally

collected metrics and hence neglecting the interactions between the features can result

in loss of plenty of information and proved damaging. But it must also be noted that

the algorithm was the fastest to converge compared to all the other algorithms.

Reference

Prediction Walking Walking_

Upstairs

Walking_

Downstairs

Sitting Standing Laying

Walking 443 7 16 0 0 0

Walking_

Upstairs

47 432 67 10 11 11

Walking_

Down-

stairs

26 24 338 0 0 1

Sitting 0 0 0 399 87 4

Standing 0 0 0 112 466 0

Laying 0 0 0 12 7 567

Table 5.3: Confusion Matrix For Naive Bayes

The multinomial logistic regression model was aimed to act as a baseline and

was expected to provide mediocre results. However, the table 5.4 can showcase the

efficiency of the algorithm for the given data. The logistic regression was one of

the best performing models and provided exceptional classification accuracy and was

greater than the benchmark accuracy value. The ability of the algorithm to handle

any non linear effects and reduce the influence of noise could have been the factors

corresponding to the increased predictive accuracies. It can be observed that there

is low inter cluster misclassification by the model but some amount of intra cluster

misclassification for the stationary activities. The model also took plenty of time

to converge but was more efficient compared to the time complexity of the KNN
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algorithm. Additionally, the virtue of the algorithm of not expecting the data to

adhere to normality and linearity assumptions has proved favorable to the experiment.

Reference

Prediction Walking Walking_

Upstairs

Walking_

Downstairs

Sitting Standing Laying

Walking 515 0 8 0 0 0

Walking_

Upstairs

1 460 4 0 0 0

Walking_

Down-

stairs

0 3 409 0 0 0

Sitting 0 0 0 478 47 0

Standing 0 0 0 54 524 0

Laying 0 0 0 1 0 583

Table 5.4: Confusion Matrix For Multinomial Logistic Regression

The final individual algorithm was the artificial neural net. As seen in section 2,

the ANN algorithm was highly credited in the HAR task. The ability of the ANN to

implicitly detect complex nonlinear relationships and also to acknowledge and utilize

the interactions amongst the independent variables are two of the biggest advantages

of the algorithm that have permitted in capturing the essence of the data resulting

in the high accuracy values. The table 5.5 presents the confusion matrix of the best

ANN model. It can be seen that the mobile activities have been classified exceptionally

well and so was the lying down activity with 100% classification accuracy. However,

standing and sitting activities were slightly misclassified and the reason is unknown

as the algorithm is a black box and cannot be used to interpret. Additionally, the

ability of the algorithm to generalize well due to its associative memory ensures that

the classification results for all the different samples of data are quite similar to each

other.
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Reference

Prediction Walking Walking_

Upstairs

Walking_

Downstairs

Sitting Standing Laying

Walking 515 0 8 0 0 0

Walking_

Upstairs

1 460 4 0 0 0

Walking_

Down-

stairs

0 3 409 0 0 0

Sitting 0 0 0 478 47 0

Standing 0 0 0 54 524 0

Laying 0 0 0 1 0 583

Table 5.5: Confusion Matrix For Artificial Neural Network

5.4 Comparison of Dimensionality Reduction Tech-

niques

The dimensionality reduction techniques utilized to defend the experiment from the

curse of dimensionality have helped in enabling to execute the algorithms on the given

machine with limited space and time constraints. The techniques of feature subset

selection and feature extraction were used. The correlation analysis was aimed to

create a subset of features which has each feature highly correlating with the target

and very less correlated with the each other. Principal component analysis performs

linear feature extraction. It uses the covariance matrix, eigenvalues and eigenvectors

to derive the uncorrected eigenvectors, each representing a part of the variance in the

target feature.
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The figure 5.2 demonstrates the accuracy values for each of the model grouped by

the feature reduction techniques. It is evident that the Correlation Analysis technique

has increased accuracy values for every algorithm. The PCA despite being a strong

technique failed in providing sufficient results. It could be as a result of no direct

relationship between the variance and the predictive power, which resulted in elimi-

nating useful information that could have been effective for classification. However,

by selecting the highly correlated features, there was little scope to lose information.

Figure 5.2: Boxplots of accuracies grouped by dimensionality reduction technique
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5.4.1 Distribution of Accuracies

Figure 5.3: Distribution of accuracies grouped by modeling technique

The figure 5.3 illustrates the distribution of the accuracies for each of the classification

algorithm. The accuracy distributions for ANN and LR seem to be quite normal with

low standard deviation but the distributions of KNN and NB with the data from

correlation analysis technique seems positively skewed. It is also evident that the

distributions of the accuracies of the decision tree are not normal. To perform the

significance tests of the model with better predictive accuracies for the data with is

not normal; a non parametric test is the best solution. The Wilcoxon signed ranked

test is the apt test to compare the results of two models for significance (Whitley &

Ball, 2002).
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Figure 5.4: Density plot for ANN and LR models

The results report that the artificial neural net has slightly better classification

accuracy over the logistic regression. The figure 5.4 illustrates the results of the ANN

and the LR models. It can be observed that the results of these two test overlap.

Hence, these two models were tested for statistical significance in order to prove that

the results of the ANN algorithm are significant over the LR algorithm.

Figure 5.5: Wilcoxon test

The hypothesis of the Wilcoxon test is that the two accuracy lists are from an

identical population and don’t differ. The test resulted in a p value of 0.005889 which
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is quite less than 0.05, so the hypothesis can be rejected. So at a significance level of

0.5, it can be concluded that the ANN accuracy is from a different population and can

be treated as of greater classification accuracy.

5.5 Hypothesis Evaluation

The hypothesis of the current experiment is restated below –

H1 Each supervised machine learning algorithm modeled on the HAR

dataset yields a different classification accuracy that is significantly

greater than the benchmark SVM model, with a p value < 0.05.

Earlier in this chapter, the results for each of the machine learning models created

were discussed. In addition, the statistical significance for two of the tests was also

calculated to evaluate the fidelity of the results while comparing each other.

To analyze the results of the first hypothesis, the results of benchmark test and

the current best performing algorithm, artificial neural net are tabulated in table 5.7.

Benchmark SVM Accuracy Primary ANN Accuracy

89.3 0.9714934

89.0 0.9737609

0.9727891

0.9773243

0.9773243

Table 5.7: Accuracy of Benchmark SVM and current ANN models

It must be noted that only the ANN results using the correlation analysis as the

feature engineering technique is used for evaluation. From the table 5.7 it is evident
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Model Average Accuracy

Decision Tree 0.5960479

K Nearest Neighbors 0.9366375

Naive Bayes 0.8439261

Logistic Regression 0.9656625

Artificial Neural Network 0.9745384

Table 5.8: Average Accuracy List

that the current experiment results produced by ANN are significantly higher than

the benchmark multiclass hardware friendly SVM model.

From the results tabulated in table 5.8 and the figure 5.3, it is evident that artificial

neural network performed significantly better than all the other machine learning

algorithms created in this experiment followed by the LR and KNN which managed

to perform better than the benchmark test. However, the research hypothesis requires

every model to perform significantly better than the base SVM model but only 3 of

the models were able to do so. The DT and NB models failed in this case.

Hence, combining all the experiment and statistical test results, it can be stated

that there isnt enough evidence to reject the null hypothesis.

5.6 Strengths & Limitations

One of the main strengths of the study is the low standard deviation in the accuracy

values for ANN, LR and KNN models. These 3 models not only had accuracies higher

than the benchmark but the variation in the results is quite small. This evidence

suggests that the models have been developed with high robustness. It also signifies

that these results can be replicated when necessary.
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Additionally, all the models have shown greater understanding of inter cluster

differences by effectively differentiating the stationary and mobile activities. This

suggests that the models were able to capture the underlying concepts of the data in

order to model it.

However, one of the important limitations of the study was that the significance

value established for the study has a scope of 5% of error gradient. The study could

have highly benefitted with the use of a smaller p value as 0.01.

Another limitation determined in the analysis is that most of the models werent

able to capture the intra cluster differences as all the models failed in differentiating

sitting and standing activities which fall under stationary activities.

5.7 Summary of the Analysis

This chapter has analyzed the working of the major experimental stages and the results

achieved from each of them. Additionally, distributions of the results were studied

along with their statistical significance values which in turn decided the answer for the

research question. The contributions of the study were stated along with the strengths

and limitations of the results.

Even though the Artificial neural net outperformed the benchmark SVM model

and along with KNN and LR models, the alternate hypothesis failed to be accepted

due to lack of sufficient evidence as the DT and NB algorithms had a significantly

weaker performance. Detailed analysis was performed on the implementation of each

of the models and the results of the models were also carefully studied to understand

the success or failure of the model when compared to the expectations of the model

as stated in the previous chapters.

It was observed that the correlation analysis worked well in performing dimension-
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ality reduction by not losing any important information that could help train better.

But the principal component analysis performed poorly and resulted in decreased ac-

curacy for all the algorithms. Performing two feature engineering techniques helped

in gaining good insights on the overall data and its composition. Evaluation tech-

nique also proved quite beneficial for the study in establishing sufficient significance

in stating the results.

The next chapter concludes the study and also suggests improvements and scope

for future research in this regard.
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Chapter 6

Conclusion

This chapter performs a review of the current study. It reiterates the research question

and all the different stages involved in answering it. The objectives of the research and

all the important phases are quickly walked through. Additionally, the contributions

of the research are also stated. The chapter concludes by highlighting the areas of

further research.

6.1 Research Overview

Primarily, the research aimed to recognize the physical human activity of a user using

the data generated from a wearable sensor device. The initial study was concentrated

on understanding the current state of the art techniques in performing human activity

recognition.

After acquiring relevant data for the research, the next main area of focus in the

research was to perform suitable feature engineering to alter the data to be compliant

to apply machine learning algorithms in the restricted time and memory conditions.

Correlation analysis was the first technique which calculates correlation coefficients
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between each of the independent features. It is a feature reduction technique which

ensures to eliminate the features that highly correlate with each other. Principal

component analysis was the other method which was used to create latent features by

capturing the underlying variance of the target feature. Both these techniques can be

proved effective for the experiment as they minimize the total number of feature to

about 30% of the original features.

The goal of the research was to model the condensed data using machine learning

algorithms in order to obtain high predictive accuracies.

6.2 Problem Definition

Based on the literature review, a gap in the current body of knowledge was exposed.

Multiple studies on HAR have utilized the basic algorithms from the various families

of machine learning and resulted in high accuracy values, however the set of 5 algo-

rithms were never used against feature reduction techniques to perform classification

of activities on the dataset under inspection. The research work sought to empirically

determine the better classification algorithm out of the 5 popular ones using either of

the feature reduction techniques. The research question investigated in the study is -

To what extent can supervised machine learning algorithms significantly

enhance the recognition of physical human activity with inertial sensor data

when compared to SVM base models?

*Algorithms : K-Nearest Neighbors, Decision Tree, Naive Bayes, Multinomial Lo-

gistic Regression and Artificial Neural Network.
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6.3 Workflow

The following depict the stages followed as an aim to answer the research question –

1. Performed extensive study on the existing literature of Human Activity Recog-

nition.

Gaps have been identified in the research domain.

2. A solution was designed to address the gaps in the Human Activity Recognition

research.

Primary motive of the design was to maximize the accuracy of the detection

process.

3. The solution was implemented primarily based on the design.

Additionally, occasional tweaking was performed where the solution commanded.

4. Induced models are evaluated using RRSS cross validation technique. With

primary focus on classification accuracy.

5. Future areas of research are identified to extend the field of study.

Multiple recommendations on the study have also been made

By efficiently exploiting the various aspects of the knowledge acquired from 1, the

solution built consists of feature reduction techniques identified from 1 to be utilized.

On the reduced dataset, an algorithm from each of the family of machine learning

algorithms as decision tree, K nearest neighbor, Naive bayes, logistic regression and

artificial neural network are induced to generate the models for stage 4. The evaluation

metric chosen from stage 1 is the Classification accuracy as it provides a comprehensive

insight of the performance. The ANN performed the best in overall accuracy levels of

97% averaged for both the feature engineering techniques. The second best algorithm

is the logistic regression with an average of 96% followed by KNN algorithm with
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92%. These three algorithms have managed to perform better than the benchmark

multiclass hardware friendly SVM. The Naive bayes resulted in comparable accuracy

of 83% which is similar to that of the benchmark. But the worst performance was

by the decision tree with an unsatisfactory 57%. In the end, the logistic regression

and ANN were tested for statistical significance which resulted in a p-value of 0.0058

demonstrating that the results were statistically significant. Additionally, the results

from the PCA feature engineering technique were considerably poor compared to that

of the correlation analysis.

6.4 Contributions & Impact

The primary contributions to the body of knowledge from the current research are as

follows -

• Comprehensive literature review was performed which can help readers in un-

derstanding the domain and the current state of the art techniques in Human

Activity Recognition.

• Systematic empirical investigation of the quantitative properties of the Human

Activity Recognition dataset was performed. This can be used as a baseline for

future solutions uding this dataset.

• Demonstrated that ANN performs best in specific cases of Human Activity

Recognition

• Demonstrated that Artificial Neural Network, Multinomial Logistic Regression

and K-Nearest Neighbor algorithms can be used to model Human Activity Recog-

nition

• Demonstrated that Correlation analysis can yield better results compared to

PCA in the context of Human Activity Recognition
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6.5 Future Work & Recommendations

There are multiple ways in which the study could have been manipulated which sub-

sequently could have yield in completely different insights been discovered.

The decision tree was modeled using the recursive partitioning method. There are

plenty of other methods in decision trees that may be utilized to get better results.

The splitting criteria provided in the current study is Gini impurity, additionally,

information gain may also be used. For the KNN algorithm, the tune length was used

a 7 as it was seen that the increase in the K value only decreased the performance.

However, it is not evident if the final k value of K was the local minima or the global

minima of convergence. So a higher value of tune length could have helped resolve

the ambiguity. For NB classifier, the laplacian correction and bandwidth adjustment

values can be manipulated to observe the changes. For logistic regression, the study

utilized a penalized multinomial regression and there are multiple other models as

bagged, boosted, regularized or ordered logistic regression. All the models have a

different protocol and tuning parameters which may be exploited.

In addition to PCA and correlation analysis, exploratory factor analysis can also

be tested as a dimensionality reduction technique. For evaluation, it was advised that

K fold cross validation can also be used for better confirmation of results. However,

due to time constraints, it wasn’t performed.

Another interesting aspect of investigation would be to divide the data into train

and test with respect to users. The models can be trained and evaluated exactly as

the current experiment to observe if the models can generalize to unknown users.
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Appendix A

Experiment Implementation

1
2 #R Code

3 #Clear Global Environment

4 rm(list=ls(all=TRUE))

5
6 ######-------------------Data Integration -------------------------##

7 #1. Data Integration

8 dataFile = "dataset.RData"

9
10 setwd("C:/Users/Haritha Vellam/Desktop/DA Sem 2/Research

11 Design/activity_recognition/UCI HAR Dataset")

12
13 if (!file.exists(dataFile)) {

14 temp = read.table("activity_labels.txt", sep = "")

15 activityLabels = as.character(temp$V2)

16 temp = read.table("features.txt", sep = "")

17 attributeNames = temp$V2

18
19 Xtrain = read.table("train/X_train.txt", sep = "")

20 names(Xtrain) = attributeNames

21 Ytrain = read.table("train/y_train.txt", sep = "")

22 names(Ytrain) = "Activity"

23 Ytrain$Activity = as.factor(Ytrain$Activity)

24 levels(Ytrain$Activity) = activityLabels

25 trainSubjects = read.table("train/subject_train.txt",

26 sep = "")

27 names(trainSubjects) = "subject"

28 trainSubjects$subject = as.factor(trainSubjects$subject)
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29 traindata = cbind(Xtrain , trainSubjects , Ytrain)

30
31 Xtest = read.table("test/X_test.txt", sep = "")

32 names(Xtest) = attributeNames

33 Ytest = read.table("test/y_test.txt", sep = "")

34 names(Ytest) = "Activity"

35 Ytest$Activity = as.factor(Ytest$Activity)

36 levels(Ytest$Activity) = activityLabels

37 testSubjects = read.table("test/subject_test.txt",

38 sep = "")

39 names(testSubjects) = "subject"

40 testSubjects$subject = as.factor(testSubjects$subject)

41 testdata = cbind(Xtest , testSubjects , Ytest)

42
43 save(traindata , testdata , file = dataFile)

44 rm(train , test , temp , Ytrain , Ytest , Xtrain , Xtest , trainSubjects , testSubjects ,

activityLabels , attributeNames)

45 }

46
47 ##-------------------Data Input -------------------------##

48 #2. Data Input & merger

49 load(dataFile)

50 fulldata <- rbind(train , test)

51 rm(train , test , dataFile)

52
53 ##-------------------Data

54 Exploration -------------------------##

55 #3. Data Exploration

56 #Dimensions

57 dim(fulldata)

58
59 #Feature names

60 names(fulldata)

61
62 #Structure

63 str(fulldata , list.len=ncol(fulldata))

64
65 #Attributes

66 attributes(fulldata)

67
68 #First 2 rows

69 head(fulldata , 2)

70
71 #Distribution of features

72 summary(fulldata[, 560:563])

96



APPENDIX A. EXPERIMENT IMPLEMENTATION

73
74 #Frequency

75 #Target

76 table(fulldata$Activity)

77 pie(table(fulldata$Activity))

78 barplot(table(fulldata$Activity), cex.names = 0.6,

79 space = 03)

80 #Subject

81 table(fulldata$subject)

82 barplot(table(fulldata$subject))

83
84 #Range

85 max(fulldata[, 1:561] , na.rm = FALSE)

86 min(fulldata[, 1:561] , na.rm = FALSE)

87
88 #Missing values

89 sum(is.na(fulldata))

90
91 ##-------------------Data

92 Preparation -------------------------##

93
94 #Factorization

95 fulldata$subject <- as.factor(fulldata$subject)

96 fulldata$Activity <- as.factor(fulldata$Activity)

97 fulldata[, 1:561] <- as.data.frame(lapply(fulldata[,

98 1:561] , as.numeric))

99
100 #Syntactically correct character names

101 names(fulldata) <- gsub("()", "", names(fulldata),

102 fixed = T)

103 names(fulldata) <- gsub("-", "_", names(fulldata),

104 fixed = T)

105 names(fulldata) <- gsub(",", "_", names(fulldata),

106 fixed = T)

107
108 ######### Dimensionality Reduction ##############

109 #Method 1

110 #Correlated features

111 library(caret)

112 FullCorrelationMatrix <- cor(sapply(fulldata[,-c(562 ,563)],

113 as.numeric))

114 #write.csv(FullCorrelationMatrix , file = "CorrMat.csv")

115 plot(FullCorrelationMatrix)

116 dim(FullCorrelationMatrix)

117 table(round(FullCorrelationMatrix , digits = 1))
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118
119 HighCorrelatedList <-

120 findCorrelation(na.omit(FullCorrelationMatrix), cutoff =

121 0.8, names = T, exact = T)

122 length(HighCorrelatedList)

123 Uncorrelated <- fulldata[, !colnames(fulldata) %in%

124 HighCorrelatedList]

125 Uncorrelated <- subset(Uncorrelated , select = -c(subject))

126 dim(Uncorrelated)

127 rm(FullCorrelationMatrix , HighCorrelatedList ,

128 HighCorrelatedList1 ,

129 HighCorrelatedList2 , HighCorrelatedList3)

130
131
132 ### Method 2

133 #PCA

134 PCA_comps <- prcomp(fulldata[,-c(562 ,563)],scale. = TRUE)

135 summary(PCA_comps)

136 dim(PCA_comps$x)

137 PCA_comps$rotation [1:5 ,1:5]

138 PCA_var <- PCA_comps$sdev^2

139 head(PCA_var , 20)

140 PCA_Prop_Var <- PCA_var/ncol(fulldata[,-c(562 ,563)])

141 head(PCA_Prop_Var , 10)*100

142 sum(head(PCA_Prop_Var , 100)*100)

143
144 plot(PCA_Prop_Var [1:100] , xlab = "PC",ylab = "Proportion")

145 plot(cumsum(PCA_Prop_Var), xlab = "Principal

146 Components",ylab = "Proportion of Variance captured")

147 abline(h=0.95)

148 abline(v=100)

149
150 PCA_Fulldata <- data.frame(fulldata$Activity ,

151 PCA_comps$x[, 1:100])

152 colnames(PCA_Fulldata)[1] <- ’Activity ’

153
154
155 ###### Modeling & Evaluation ################

156 #Create Seeds

157 set.seed (1)

158 trainCount_s1 <- createDataPartition(y = fulldata$Activity ,

159 p = 0.70, list = FALSE)

160
161 set.seed (2)

162 trainCount_s2 <- createDataPartition(y = fulldata$Activity ,
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163 p = 0.70, list = FALSE)

164
165 set.seed (3)

166 trainCount_s3 <- createDataPartition(y = fulldata$Activity ,

167 p = 0.70, list = FALSE)

168
169 set.seed (4)

170 trainCount_s4 <- createDataPartition(y = fulldata$Activity ,

171 p = 0.70, list = FALSE)

172
173 set.seed (5)

174 trainCount_s5 <- createDataPartition(y = fulldata$Activity ,

175 p = 0.70, list = FALSE)

176
177 #Prepare Train and test data

178 #Method 1 - Uncorrelated Data

179 #seed1 Data

180 trainUncorr_s1 <- Uncorrelated[trainCount_s1 ,]

181 testUncorr_s1 <- Uncorrelated[-trainCount_s1 ,]

182
183 #seed2 Data

184 trainUncorr_s2 <- Uncorrelated[trainCount_s2 ,]

185 testUncorr_s2 <- Uncorrelated[-trainCount_s2 ,]

186
187 #seed3 Data

188 trainUncorr_s3 <- Uncorrelated[trainCount_s3 ,]

189 testUncorr_s3 <- Uncorrelated[-trainCount_s3 ,]

190
191 #seed4 Data

192 trainUncorr_s4 <- Uncorrelated[trainCount_s4 ,]

193 testUncorr_s4 <- Uncorrelated[-trainCount_s4 ,]

194
195 #seed5 Data

196 trainUncorr_s5 <- Uncorrelated[trainCount_s5 ,]

197 testUncorr_s5 <- Uncorrelated[-trainCount_s5 ,]

198
199 #Method 2 - PCA Data

200 #seed1 Data

201 trainPCA_s1 <- PCA_Fulldata[trainCount_s1 ,]

202 testPCA_s1 <- PCA_Fulldata[-trainCount_s1 ,]

203
204 #seed2 Data

205 trainPCA_s2 <- PCA_Fulldata[trainCount_s2 ,]

206 testPCA_s2 <- PCA_Fulldata[-trainCount_s2 ,]

207

99



APPENDIX A. EXPERIMENT IMPLEMENTATION

208 #seed3 Data

209 trainPCA_s3 <- PCA_Fulldata[trainCount_s3 ,]

210 testPCA_s3 <- PCA_Fulldata[-trainCount_s3 ,]

211
212 #seed4 Data

213 trainPCA_s4 <- PCA_Fulldata[trainCount_s4 ,]

214 testPCA_s4 <- PCA_Fulldata[-trainCount_s4 ,]

215
216 #seed5 Data

217 trainPCA_s5 <- PCA_Fulldata[trainCount_s5 ,]

218 testPCA_s5 <- PCA_Fulldata[-trainCount_s5 ,]

219
220 rm(trainCount_s1, trainCount_s2, trainCount_s3,

221 trainCount_s4 ,trainCount_s5)

222
223
224 #Final Modeling

225 #Decision Tree

226 library(rpart)

227 library(plyr)

228 library(caret)

229 #Gini is to minimize misclassification and for continuous

230 attributes

231 #and is faster

232
233 #Method 1

234 dt_Uncorr_s1 <-

235 train(x=trainUncorr_s1[,-173],y=trainUncorr_s1[,173],

236 method = ’rpart ’,trControl =

237 trainControl(method="cv", number =

238 2),

239 parms=list(split=’gini’))

240 summary(dt_Uncorr_s1)

241
242 dt_Uncorr_s2 <-

243 train(x=trainUncorr_s2[,-173],y=trainUncorr_s2[,173],

244 method = ’rpart ’,trControl =

245 trainControl(method="cv", number =

246 2),

247 parms=list(split=’gini’))

248
249 dt_Uncorr_s3 <-

250 train(x=trainUncorr_s3[,-173],y=trainUncorr_s3[,173],

251 method = ’rpart ’,trControl =

252 trainControl(method="cv", number =
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253 2),

254
255 parms=list(split=’gini’))

256
257 dt_Uncorr_s4 <-

258 train(x=trainUncorr_s4[,-173],y=trainUncorr_s4[,173],

259 method = ’rpart ’,trControl =

260 trainControl(method="cv", number =

261 2),

262
263 parms=list(split=’gini’))

264
265 dt_Uncorr_s5 <-

266 train(x=trainUncorr_s5[,-173],y=trainUncorr_s5[,173],

267 method = ’rpart ’,trControl =

268 trainControl(method="cv", number =

269 2),

270
271 parms=list(split=’gini’))

272
273 #Method 2

274 dt_PCA_s1 <- train(x = trainPCA_s1[,-1], y =

275 trainPCA_s1[,1],

276 method = ’rpart ’,trControl =

277 trainControl(method="cv", number = 2),

278 parms=list(split=’gini’))

279
280 dt_PCA_s2 <- train(x = trainPCA_s2[,-1], y =

281 trainPCA_s2[,1],

282 method = ’rpart ’,trControl =

283 trainControl(method="cv", number = 2),

284 parms=list(split=’gini’))

285
286 dt_PCA_s3 <- train(x = trainPCA_s3[,-1], y =

287 trainPCA_s3[,1],

288 method = ’rpart ’,trControl =

289 trainControl(method="cv", number = 2),

290 parms=list(split=’gini’))

291
292 dt_PCA_s4 <- train(x = trainPCA_s4[,-1], y =

293 trainPCA_s4[,1],

294 method = ’rpart ’,trControl =

295 trainControl(method="cv", number = 2),

296 parms=list(split=’gini’))

297
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298 dt_PCA_s5 <- train(x = trainPCA_s5[,-1], y =

299 trainPCA_s5[,1],

300 method = ’rpart ’, trControl =

301 trainControl(method="cv", number = 2),

302 parms=list(split=’gini’))

303
304 ##KNN

305 #Method 1

306 knn_Uncorr_s1 <- train(Activity ~ ., data = trainUncorr_s1 ,

307
308 method = "knn",

309 trControl =

310 trainControl(method="cv", number =

311 2),

312 #preProcess = c(" center","scale "),

313 tuneLength = 7)

314 summary(knn_Uncorr_s1)

315
316 knn_Uncorr_s2 <- train(Activity ~ ., data = trainUncorr_s2 ,

317 method = "knn",

318 trControl =

319 trainControl(method="cv", number =2,

320 #preProcess = c(" center","scale "),

321 tuneLength = 7)

322
323 knn_Uncorr_s3 <- train(Activity ~ ., data =

324 trainUncorr_s3,method = "knn",

325 trControl = trainControl(method="cv", number = 2),

326 preProcess = c("center","scale"),

327 tuneLength = 7)

328
329 knn_Uncorr_s4 <- train(Activity ~ ., data = trainUncorr_s4 ,

330
331 method = "knn",

332
333 trControl =

334 trainControl(method="cv", number =

335 2),

336 preProcess = c("center","scale"),

337 tuneLength = 7)

338
339 knn_Uncorr_s5 <- train(Activity ~ ., data = trainUncorr_s5 ,

340 method = "knn",

341 trControl = trainControl(method="cv", number = 2),

342 preProcess = c("center","scale"),

102



APPENDIX A. EXPERIMENT IMPLEMENTATION

343 tuneLength = 7)

344
345 #Method 2

346 knn_PCA_s1 <- train(Activity ~ ., data = trainPCA_s1,

347 method = "knn",

348 trControl = trainControl(method="cv", number = 2),

349 preProcess = c("center","scale"),

350 tuneLength = 7)

351
352 knn_PCA_s2 <- train(Activity ~ ., data = trainPCA_s2,

353 method = "knn",

354 trControl = trainControl(method="cv", number = 2),

355 preProcess = c("center","scale"),

356 tuneLength = 7)

357
358 knn_PCA_s3 <- train(Activity ~ ., data = trainPCA_s3,

359 method = "knn",

360 trControl = trainControl(method="cv", number = 2),

361 preProcess = c("center","scale"),

362 tuneLength = 7)

363
364 knn_PCA_s4 <- train(Activity ~ ., data = trainPCA_s4,

365 method = "knn",

366 trControl = trainControl(method="cv", number = 2),

367 preProcess = c("center","scale"),

368 tuneLength = 7)

369
370 knn_PCA_s5 <- train(Activity ~ ., data = trainPCA_s5,

371 method = "knn",

372 trControl = trainControl(method="cv", number = 2),

373 preProcess = c("center","scale"),

374 tuneLength = 7)

375 #Naive Bayes

376 #Method 1

377 library(klaR)

378 nb_Uncorr_s1 <- train(Activity ~ ., data=trainUncorr_s1,

379 method = "nb",

380 trControl = trainControl(method="cv", number =2),

381 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

382
383
384 nb_Uncorr_s2 <- train(Activity ~ ., data=trainUncorr_s2,

385 method = "nb",

386 trControl = trainControl(method="cv", number =2),

387 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))
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388
389
390 nb_Uncorr_s3 <- train(Activity ~ ., data=trainUncorr_s3,

391 method = "nb",

392 trControl = trainControl(method="cv", number =2),

393 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

394
395
396 nb_Uncorr_s4 <- train(Activity ~ ., data=trainUncorr_s4,

397 method = "nb",

398 trControl = trainControl(method="cv", number =2),

399 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

400
401
402 nb_Uncorr_s5 <- train(Activity ~ ., data=trainUncorr_s5,

403 method = "nb",

404 trControl = trainControl(method="cv", number =2),

405 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

406
407 #Method 2

408 nb_PCA_s1 <- train(Activity ~ ., data=trainPCA_s1,

409 method = "nb",

410 trControl = trainControl(method="cv", number =2),

411 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

412
413
414 nb_PCA_s2 <- train(Activity ~ ., data=trainPCA_s2,

415 method = "nb",

416 trControl = trainControl(method="cv", number =2),

417 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

418
419
420 nb_PCA_s3 <- train(Activity ~ ., data=trainPCA_s3,

421 method = "nb",

422 trControl = trainControl(method="cv", number =2),

423 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

424
425
426 nb_PCA_s4 <- train(Activity ~ ., data=trainPCA_s4,

427 method = "nb",

428 trControl = trainControl(method="cv", number =2),

429 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

430
431
432 nb_PCA_s5 <- train(Activity ~ ., data=trainPCA_s5,
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433 method = "nb",

434 trControl = trainControl(method="cv", number =2),

435 tuneGrid = data.frame(fL=0, usekernel=FALSE , adjust = 0))

436
437 #Logistic Regression

438 #Method 1

439 library(nnet)

440 lr_Uncorr_s1 <- train(Activity ~ ., data=trainUncorr_s1,

441 method = "multinom",

442 trControl = trainControl(method="cv", number =2),

443 MaxNWts = 1045)

444
445 lr_Uncorr_s2 <- train(Activity ~ ., data=trainUncorr_s2,

446 method = "multinom",

447 trControl = trainControl(method="cv", number =2),

448 MaxNWts = 1045)

449
450 lr_Uncorr_s3 <- train(Activity ~ ., data=trainUncorr_s3,

451 method = "multinom",

452 trControl = trainControl(method="cv", number =2),

453 MaxNWts = 1045)

454
455 lr_Uncorr_s4 <- train(Activity ~ ., data=trainUncorr_s4,

456 method = "multinom",

457 trControl = trainControl(method="cv", number =2),

458 MaxNWts = 1045)

459
460 lr_Uncorr_s5 <- train(Activity ~ ., data=trainUncorr_s5,

461 method = "multinom",

462 trControl = trainControl(method="cv", number =2),

463 MaxNWts = 1045)

464
465 #Method 2

466
467 lr_PCA_s1 <- train(Activity ~ ., data=trainPCA_s1,

468 method = "multinom",

469 trControl = trainControl(method="cv", number =2),

470 MaxNWts = 1045)

471
472 lr_PCA_s2 <- train(Activity ~ ., data=trainPCA_s2,

473 method = "multinom",

474 trControl = trainControl(method="cv", number =2),

475 MaxNWts = 1045)

476
477 lr_PCA_s3 <- train(Activity ~ ., data=trainPCA_s3,
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478 method = "multinom",

479 trControl = trainControl(method="cv", number =2),

480 MaxNWts = 1045)

481
482 lr_PCA_s4 <- train(Activity ~ ., data=trainPCA_s4,

483 method = "multinom",

484 trControl = trainControl(method="cv", number =2),

485 MaxNWts = 1045)

486
487 lr_PCA_s5 <- train(Activity ~ ., data=trainPCA_s5,

488 method = "multinom",

489 trControl = trainControl(method="cv", number =2),

490 MaxNWts = 1045)

491
492 #Neural Net

493
494 ann_Uncorr_s1 <- train(Activity ~ .,data=trainUncorr_s1,

495 method = ’nnet’,

496 trControl = trainControl(method="cv", number =2),

497 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts =

8000)

498
499 ann_Uncorr_s2 <- train(Activity ~ .,data=trainUncorr_s2,

500 method = ’nnet’,

501 trControl = trainControl(method="cv", number =2),

502 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts =

8000)

503
504 ann_Uncorr_s3 <- train(Activity ~ .,data=trainUncorr_s3,

505 method = ’nnet’,

506 trControl = trainControl(method="cv", number =2),

507 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts =

8000)

508
509 ann_Uncorr_s4 <- train(Activity ~ .,data=trainUncorr_s4,

510 method = ’nnet’,

511 trControl = trainControl(method="cv", number =2),

512 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts =

8000)

513
514 ann_Uncorr_s5 <- train(Activity ~ .,data=trainUncorr_s5,

515 method = ’nnet’,

516 trControl = trainControl(method="cv", number =2),

517 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts =

8000)
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518
519 #Method2

520 ann_PCA_s1 <- train(Activity ~ .,data=trainPCA_s1,

521 method = ’nnet’,

522 trControl = trainControl(method="cv", number =2),

523 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts = 8000)

524
525 ann_PCA_s2 <- train(Activity ~ .,data=trainPCA_s2,

526 method = ’nnet’,

527 trControl = trainControl(method="cv", number =2),

528 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts = 8000)

529
530 ann_PCA_s3 <- train(Activity ~ .,data=trainPCA_s3,

531 method = ’nnet’,

532 trControl = trainControl(method="cv", number =2),

533 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts = 8000)

534
535 ann_PCA_s4 <- train(Activity ~ .,data=trainPCA_s4,

536 method = ’nnet’,

537 trControl = trainControl(method="cv", number =2),

538 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts = 8000)

539
540 ann_PCA_s5 <- train(Activity ~ .,data=trainPCA_s5,

541 method = ’nnet’,

542 trControl = trainControl(method="cv", number =2),

543 tuneGrid=expand.grid(size=c(30), decay=c(0.1)), MaxNWts = 8000)

544
545
546 #Ensemble

547 #Bagging

548 #Random Forest

549 #Method 1

550 library(randomForest)

551 rf_Uncorr_s1 <- train(Activity ~ ., data=trainUncorr_s1,

552 method = "rf", metric="Accuracy",

553 trControl = trainControl(method="cv", number =2),

554 tuneGrid=expand.grid(mtry = sqrt(ncol(trainUncorr_s1))))

555
556 rf_Uncorr_s2 <- train(Activity ~ ., data=trainUncorr_s2,

557 method = "rf", metric="Accuracy",

558 trControl = trainControl(method="cv", number =2),

559 tuneGrid=expand.grid(mtry = sqrt(ncol(trainUncorr_s2))))

560
561 rf_Uncorr_s3 <- train(Activity ~ ., data=trainUncorr_s3,

562 method = "rf", metric="Accuracy",
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563 trControl = trainControl(method="cv", number =2),

564 tuneGrid=expand.grid(mtry = sqrt(ncol(trainUncorr_s3))))

565
566 rf_Uncorr_s4 <- train(Activity ~ ., data=trainUncorr_s4,

567 method = "rf", metric="Accuracy",

568 trControl = trainControl(method="cv", number =2),

569 tuneGrid=expand.grid(mtry = sqrt(ncol(trainUncorr_s4))))

570
571 rf_Uncorr_s5 <- train(Activity ~ ., data=trainUncorr_s5,

572 method = "rf", metric="Accuracy",

573 trControl = trainControl(method="cv", number =2),

574 tuneGrid=expand.grid(mtry = sqrt(ncol(trainUncorr_s5))))

575
576 #Method2

577
578 rf_PCA_s1 <- train(Activity ~ ., data=trainPCA_s1,

579 method = "rf", metric="Accuracy",

580 trControl = trainControl(method="cv", number =2),

581 tuneGrid=expand.grid(mtry = sqrt(ncol(trainPCA_s1))))

582
583 rf_PCA_s2 <- train(Activity ~ ., data=trainPCA_s2,

584 method = "rf", metric="Accuracy",

585 trControl = trainControl(method="cv", number =2),

586 tuneGrid=expand.grid(mtry = sqrt(ncol(trainPCA_s2))))

587
588 rf_PCA_s3 <- train(Activity ~ ., data=trainPCA_s3,

589 method = "rf", metric="Accuracy",

590 trControl = trainControl(method="cv", number =2),

591 tuneGrid=expand.grid(mtry = sqrt(ncol(trainPCA_s3))))

592
593 rf_PCA_s4 <- train(Activity ~ ., data=trainPCA_s4,

594 method = "rf", metric="Accuracy",

595 trControl = trainControl(method="cv", number =2),

596 tuneGrid=expand.grid(mtry = sqrt(ncol(trainPCA_s4))))

597
598 rf_PCA_s5 <- train(Activity ~ ., data=trainPCA_s5,

599 method = "rf", metric="Accuracy",

600 trControl = trainControl(method="cv", number =2),

601 tuneGrid=expand.grid(mtry = sqrt(ncol(trainPCA_s5))))

602
603 library(kernlab)

604 svm_PCA_s5 <- train(Activity ~ ., data=trainPCA_s5,

605 method = "svmRadial", metric="Accuracy",

606 trControl = trainControl(method="cv", number =2)

607 #,tuneGrid=expand.grid(mtry = sqrt(ncol(trainPCA_s5)))
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608 )

609 svm_PCA_s5_pred <- predict.train(svm_PCA_s5, newdata = testPCA_s5[,-1])

610 svm_PCA_s5_CF <- confusionMatrix(data = svm_PCA_s5_pred , reference = testPCA_s5[,1])

611 svm_PCA_s5_CF$overall

612
613 ##Evaluation

614 #Decision Tree

615 #Method1

616 dt_Uncorr_s1_pred <- predict.train(dt_Uncorr_s1 ,

617 newdata = testUncorr_s1[,-173])

618 dt_Uncorr_s1_CF <- confusionMatrix(data = dt_Uncorr_s1_pred ,

619 reference = testUncorr_s1[ ,173])

620 dt_Uncorr_s1_CF$overall

621 t1<- dt_Uncorr_s1_CF$table

622 dt_Uncorr_s2_pred <- predict.train(dt_Uncorr_s2 ,

623 newdata = testUncorr_s2[,-173])

624 dt_Uncorr_s2_CF <- confusionMatrix(data = dt_Uncorr_s2_pred ,

625 reference = testUncorr_s2[ ,173])

626 dt_Uncorr_s2_CF$overall

627
628 dt_Uncorr_s3_pred <- predict.train(dt_Uncorr_s3 , newdata = testUncorr_s3[,-173])

629 dt_Uncorr_s3_CF <- confusionMatrix(data = dt_Uncorr_s3_pred , reference = testUncorr_

s3[ ,173])

630 dt_Uncorr_s3_CF$overall

631
632 dt_Uncorr_s4_pred <- predict.train(dt_Uncorr_s4 , newdata = testUncorr_s4[,-173])

633 dt_Uncorr_s4_CF <- confusionMatrix(data = dt_Uncorr_s4_pred , reference = testUncorr_

s4[ ,173])

634 dt_Uncorr_s4_CF$overall

635
636 dt_Uncorr_s5_pred <- predict.train(dt_Uncorr_s5 , newdata = testUncorr_s5[,-173])

637 dt_Uncorr_s5_CF <- confusionMatrix(data = dt_Uncorr_s5_pred , reference = testUncorr_

s5[ ,173])

638 dt_Uncorr_s5_CF$overall

639
640 #Method 2

641 dt_PCA_s1_pred <- predict.train(dt_PCA_s1, newdata = testPCA_s1[,-1])

642 dt_PCA_s1_CF <- confusionMatrix(data = dt_PCA_s1_pred , reference = testPCA_s1[,1])

643 dt_PCA_s1_CF$overall

644
645 dt_PCA_s2_pred <- predict.train(dt_PCA_s2, newdata = testPCA_s2[,-1])

646 dt_PCA_s2_CF <- confusionMatrix(data = dt_PCA_s2_pred , reference = testPCA_s2[,1])

647 dt_PCA_s2_CF$overall

648
649 dt_PCA_s3_pred <- predict.train(dt_PCA_s3, newdata = testPCA_s3[,-1])
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650 dt_PCA_s3_CF <- confusionMatrix(data = dt_PCA_s3_pred , reference = testPCA_s3[,1])

651 dt_PCA_s3_CF$overall

652
653 dt_PCA_s4_pred <- predict.train(dt_PCA_s4, newdata = testPCA_s4[,-1])

654 dt_PCA_s4_CF <- confusionMatrix(data = dt_PCA_s4_pred , reference = testPCA_s4[,1])

655 dt_PCA_s4_CF$overall

656
657 dt_PCA_s5_pred <- predict.train(dt_PCA_s5, newdata = testPCA_s5[,-1])

658 dt_PCA_s5_CF <- confusionMatrix(data = dt_PCA_s5_pred , reference = testPCA_s5[,1])

659 dt_PCA_s5_CF$overall

660
661
662 #KNN

663 #Method 1

664
665 knn_Uncorr_s1_pred <- predict.train(knn_Uncorr_s1 ,newdata = testUncorr_s1[,-173] )

666 knn_Uncorr_s1_CF <- confusionMatrix(knn_Uncorr_s1_pred , testUncorr_s1[ ,173] )

667 knn_Uncorr_s1_CF$overall

668
669 knn_Uncorr_s2_pred <- predict.train(knn_Uncorr_s2 ,newdata = testUncorr_s2[,-173] )

670 knn_Uncorr_s2_CF <- confusionMatrix(knn_Uncorr_s2_pred , testUncorr_s2[ ,173] )

671 knn_Uncorr_s2_CF$overall

672
673 knn_Uncorr_s3_pred <- predict.train(knn_Uncorr_s3 ,newdata = testUncorr_s3[,-173] )

674 knn_Uncorr_s3_CF <- confusionMatrix(knn_Uncorr_s3_pred , testUncorr_s3[ ,173] )

675 knn_Uncorr_s3_CF$overall

676
677 knn_Uncorr_s4_pred <- predict.train(knn_Uncorr_s4 ,newdata = testUncorr_s4[,-173] )

678 knn_Uncorr_s4_CF <- confusionMatrix(knn_Uncorr_s4_pred , testUncorr_s4[ ,173] )

679 knn_Uncorr_s4_CF$overall

680
681 knn_Uncorr_s5_pred <- predict.train(knn_Uncorr_s5 ,newdata = testUncorr_s5[,-173] )

682 knn_Uncorr_s5_CF <- confusionMatrix(knn_Uncorr_s5_pred , testUncorr_s5[ ,173] )

683 knn_Uncorr_s5_CF$overall

684
685 #Method 2

686
687 knn_PCA_s1_pred <- predict.train(knn_PCA_s1,newdata = testPCA_s1[,-1] )

688 knn_PCA_s1_CF <- confusionMatrix(knn_PCA_s1_pred , testPCA_s1[,1] )

689 knn_PCA_s1_CF$overall

690
691 knn_PCA_s2_pred <- predict.train(knn_PCA_s2,newdata = testPCA_s2[,-1] )

692 knn_PCA_s2_CF <- confusionMatrix(knn_PCA_s2_pred , testPCA_s2[,1] )

693 knn_PCA_s2_CF$overall

694
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695 knn_PCA_s3_pred <- predict.train(knn_PCA_s3,newdata = testPCA_s3[,-1] )

696 knn_PCA_s3_CF <- confusionMatrix(knn_PCA_s3_pred , testPCA_s3[,1] )

697 knn_PCA_s3_CF$overall

698
699 knn_PCA_s4_pred <- predict.train(knn_PCA_s4,newdata = testPCA_s4[,-1] )

700 knn_PCA_s4_CF <- confusionMatrix(knn_PCA_s4_pred , testPCA_s4[,1] )

701 knn_PCA_s4_CF$overall

702
703 knn_PCA_s5_pred <- predict.train(knn_PCA_s5,newdata = testPCA_s5[,-1] )

704 knn_PCA_s5_CF <- confusionMatrix(knn_PCA_s5_pred , testPCA_s5[,1] )

705 knn_PCA_s5_CF$overall

706
707 #Naive Bayes

708 #Method 1

709 nb_Uncorr_s1_pred <- predict.train(nb_Uncorr_s1, newdata = testUncorr_s1[,-173])

710 nb_Uncorr_s1_CF <- confusionMatrix(nb_Uncorr_s1_pred , testUncorr_s1[ ,173])

711 nb_Uncorr_s1_CF$overall

712
713 nb_Uncorr_s2_pred <- predict.train(nb_Uncorr_s2, newdata = testUncorr_s2[,-173])

714 nb_Uncorr_s2_CF <- confusionMatrix(nb_Uncorr_s2_pred , testUncorr_s2[ ,173])

715 nb_Uncorr_s2_CF$overall

716
717 nb_Uncorr_s3_pred <- predict.train(nb_Uncorr_s3, newdata = testUncorr_s3[,-173])

718 nb_Uncorr_s3_CF <- confusionMatrix(nb_Uncorr_s3_pred , testUncorr_s3[ ,173])

719 nb_Uncorr_s3_CF$overall

720
721 nb_Uncorr_s4_pred <- predict.train(nb_Uncorr_s4, newdata = testUncorr_s4[,-173])

722 nb_Uncorr_s4_CF <- confusionMatrix(nb_Uncorr_s4_pred , testUncorr_s4[ ,173])

723 nb_Uncorr_s4_CF$overall

724
725 nb_Uncorr_s5_pred <- predict.train(nb_Uncorr_s5, newdata = testUncorr_s5[,-173])

726 nb_Uncorr_s5_CF <- confusionMatrix(nb_Uncorr_s5_pred , testUncorr_s5[ ,173])

727 nb_Uncorr_s5_CF$overall

728
729 #Method 2

730 nb_PCA_s1_pred <- predict.train(nb_PCA_s1 , newdata = testPCA_s1[,-1])

731 nb_PCA_s1_CF <- confusionMatrix(nb_PCA_s1_pred , testPCA_s1[,1])

732 nb_PCA_s1_CF$overall

733
734 nb_PCA_s2_pred <- predict.train(nb_PCA_s2 , newdata = testPCA_s2[,-1])

735 nb_PCA_s2_CF <- confusionMatrix(nb_PCA_s2_pred , testPCA_s2[,1])

736 nb_PCA_s2_CF$overall

737
738 nb_PCA_s3_pred <- predict.train(nb_PCA_s3 , newdata = testPCA_s3[,-1])

739 nb_PCA_s3_CF <- confusionMatrix(nb_PCA_s3_pred , testPCA_s3[,1])
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740 nb_PCA_s3_CF$overall

741
742 nb_PCA_s4_pred <- predict.train(nb_PCA_s4 , newdata = testPCA_s4[,-1])

743 nb_PCA_s4_CF <- confusionMatrix(nb_PCA_s4_pred , testPCA_s4[,1])

744 nb_PCA_s4_CF$overall

745
746 nb_PCA_s5_pred <- predict.train(nb_PCA_s5 , newdata = testPCA_s5[,-1])

747 nb_PCA_s5_CF <- confusionMatrix(nb_PCA_s5_pred , testPCA_s5[,1])

748 nb_PCA_s5_CF$overall

749
750 #Logistic Regression

751 #Method 1

752 lr_Uncorr_s1_pred <- predict.train(lr_Uncorr_s1, newdata = testUncorr_s1[,-173])

753 lr_Uncorr_s1_CF <- confusionMatrix(lr_Uncorr_s1_pred , testUncorr_s1[ ,173])

754 lr_Uncorr_s1_CF$overall

755
756 lr_Uncorr_s2_pred <- predict.train(lr_Uncorr_s2, newdata = testUncorr_s2[,-173])

757 lr_Uncorr_s2_CF <- confusionMatrix(lr_Uncorr_s2_pred , testUncorr_s2[ ,173])

758 lr_Uncorr_s2_CF$overall

759
760 lr_Uncorr_s3_pred <- predict.train(lr_Uncorr_s3, newdata = testUncorr_s3[,-173])

761 lr_Uncorr_s3_CF <- confusionMatrix(lr_Uncorr_s3_pred , testUncorr_s3[ ,173])

762 lr_Uncorr_s3_CF$overall

763
764 lr_Uncorr_s4_pred <- predict.train(lr_Uncorr_s4, newdata = testUncorr_s4[,-173])

765 lr_Uncorr_s4_CF <- confusionMatrix(lr_Uncorr_s4_pred , testUncorr_s4[ ,173])

766 lr_Uncorr_s4_CF$overall

767
768 lr_Uncorr_s5_pred <- predict.train(lr_Uncorr_s5, newdata = testUncorr_s5[,-173])

769 lr_Uncorr_s5_CF <- confusionMatrix(lr_Uncorr_s5_pred , testUncorr_s5[ ,173])

770 lr_Uncorr_s5_CF$overall

771
772 #Method 2

773 lr_PCA_s1_pred <- predict.train(lr_PCA_s1 , newdata = testPCA_s1[,-1])

774 lr_PCA_s1_CF <- confusionMatrix(lr_PCA_s1_pred , testPCA_s1[,1])

775 lr_PCA_s1_CF$overall

776
777 lr_PCA_s2_pred <- predict.train(lr_PCA_s2 , newdata = testPCA_s2[,-1])

778 lr_PCA_s2_CF <- confusionMatrix(lr_PCA_s2_pred , testPCA_s2[,1])

779 lr_PCA_s2_CF$overall

780
781 lr_PCA_s3_pred <- predict.train(lr_PCA_s3 , newdata = testPCA_s3[,-1])

782 lr_PCA_s3_CF <- confusionMatrix(lr_PCA_s3_pred , testPCA_s3[,1])

783 lr_PCA_s3_CF$overall

784
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785 lr_PCA_s4_pred <- predict.train(lr_PCA_s4 , newdata = testPCA_s4[,-1])

786 lr_PCA_s4_CF <- confusionMatrix(lr_PCA_s4_pred , testPCA_s4[,1])

787 lr_PCA_s4_CF$overall

788
789 lr_PCA_s5_pred <- predict.train(lr_PCA_s5 , newdata = testPCA_s5[,-1])

790 lr_PCA_s5_CF <- confusionMatrix(lr_PCA_s5_pred , testPCA_s5[,1])

791 lr_PCA_s5_CF$overall

792
793 #Artificial Neural Net

794 #Method1

795 ann_Uncorr_s1_pred <- predict.train(ann_Uncorr_s1 , newdata = testUncorr_s1[,-173])

796 ann_Uncorr_s1_CF <- confusionMatrix(ann_Uncorr_s1_pred , testUncorr_s1[ ,173])

797 ann_Uncorr_s1_CF$overall

798
799 ann_Uncorr_s2_pred <- predict.train(ann_Uncorr_s2 , newdata = testUncorr_s2[,-173])

800 ann_Uncorr_s2_CF <- confusionMatrix(ann_Uncorr_s2_pred , testUncorr_s2[ ,173])

801 ann_Uncorr_s2_CF$overall

802
803 ann_Uncorr_s3_pred <- predict.train(ann_Uncorr_s3 , newdata = testUncorr_s3[,-173])

804 ann_Uncorr_s3_CF <- confusionMatrix(ann_Uncorr_s3_pred , testUncorr_s3[ ,173])

805 ann_Uncorr_s3_CF$overall

806
807 ann_Uncorr_s4_pred <- predict.train(ann_Uncorr_s4 , newdata = testUncorr_s4[,-173])

808 ann_Uncorr_s4_CF <- confusionMatrix(ann_Uncorr_s4_pred , testUncorr_s4[ ,173])

809 ann_Uncorr_s4_CF$overall

810
811 ann_Uncorr_s5_pred <- predict.train(ann_Uncorr_s5 , newdata = testUncorr_s5[,-173])

812 ann_Uncorr_s5_CF <- confusionMatrix(ann_Uncorr_s5_pred , testUncorr_s5[ ,173])

813 ann_Uncorr_s5_CF$overall

814
815 #Method 2

816 ann_PCA_s1_pred <- predict.train(ann_PCA_s1, newdata = testPCA_s1[,-1])

817 ann_PCA_s1_CF <- confusionMatrix(ann_PCA_s1_pred , testPCA_s1[,1])

818 ann_PCA_s1_CF$overall

819
820 ann_PCA_s2_pred <- predict.train(ann_PCA_s2, newdata = testPCA_s2[,-1])

821 ann_PCA_s2_CF <- confusionMatrix(ann_PCA_s2_pred , testPCA_s2[,1])

822 ann_PCA_s2_CF$overall

823
824 ann_PCA_s3_pred <- predict.train(ann_PCA_s3, newdata = testPCA_s3[,-1])

825 ann_PCA_s3_CF <- confusionMatrix(ann_PCA_s3_pred , testPCA_s3[,1])

826 ann_PCA_s3_CF$overall

827
828 ann_PCA_s4_pred <- predict.train(ann_PCA_s4, newdata = testPCA_s4[,-1])

829 ann_PCA_s4_CF <- confusionMatrix(ann_PCA_s4_pred , testPCA_s4[,1])
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830 ann_PCA_s4_CF$overall

831
832 ann_PCA_s5_pred <- predict.train(ann_PCA_s5, newdata = testPCA_s5[,-1])

833 ann_PCA_s5_CF <- confusionMatrix(ann_PCA_s5_pred , testPCA_s5[,1])

834 ann_PCA_s5_CF$overall

835
836 #Random Forest

837 #Method 1

838 rf_Uncorr_s1_pred <- predict.train(rf_Uncorr_s1, newdata = testUncorr_s1[,-173])

839 rf_Uncorr_s1_CF <- confusionMatrix(rf_Uncorr_s1_pred , testUncorr_s1[ ,173])

840 rf_Uncorr_s1_CF$overall

841
842 rf_Uncorr_s2_pred <- predict.train(rf_Uncorr_s2, newdata = testUncorr_s2[,-173])

843 rf_Uncorr_s2_CF <- confusionMatrix(rf_Uncorr_s2_pred , testUncorr_s2[ ,173])

844 rf_Uncorr_s2_CF$overall

845
846 rf_Uncorr_s3_pred <- predict.train(rf_Uncorr_s3, newdata = testUncorr_s3[,-173])

847 rf_Uncorr_s3_CF <- confusionMatrix(rf_Uncorr_s3_pred , testUncorr_s3[ ,173])

848 rf_Uncorr_s3_CF$overall

849
850 rf_Uncorr_s4_pred <- predict.train(rf_Uncorr_s4, newdata = testUncorr_s4[,-173])

851 rf_Uncorr_s4_CF <- confusionMatrix(rf_Uncorr_s4_pred , testUncorr_s4[ ,173])

852 rf_Uncorr_s4_CF$overall

853
854 rf_Uncorr_s5_pred <- predict.train(rf_Uncorr_s5, newdata = testUncorr_s5[,-173])

855 rf_Uncorr_s5_CF <- confusionMatrix(rf_Uncorr_s5_pred , testUncorr_s5[ ,173])

856 rf_Uncorr_s5_CF$overall

857
858 #Method 2

859 rf_PCA_s1_pred <- predict.train(rf_PCA_s1 , newdata = testPCA_s1[,-1])

860 rf_PCA_s1_CF <- confusionMatrix(rf_PCA_s1_pred , testPCA_s1[,1])

861 rf_PCA_s1_CF$overall

862
863 rf_PCA_s2_pred <- predict.train(rf_PCA_s2 , newdata = testPCA_s2[,-1])

864 rf_PCA_s2_CF <- confusionMatrix(rf_PCA_s2_pred , testPCA_s2[,1])

865 rf_PCA_s2_CF$overall

866
867 rf_PCA_s3_pred <- predict.train(rf_PCA_s3 , newdata = testPCA_s3[,-1])

868 rf_PCA_s3_CF <- confusionMatrix(rf_PCA_s3_pred , testPCA_s3[,1])

869 rf_PCA_s3_CF$overall

870
871 rf_PCA_s4_pred <- predict.train(rf_PCA_s4 , newdata = testPCA_s4[,-1])

872 rf_PCA_s4_CF <- confusionMatrix(rf_PCA_s4_pred , testPCA_s4[,1])

873 rf_PCA_s4_CF$overall

874
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875 rf_PCA_s5_pred <- predict.train(rf_PCA_s5 , newdata = testPCA_s5[,-1])

876 rf_PCA_s5_CF <- confusionMatrix(rf_PCA_s5_pred , testPCA_s5[,1])

877 rf_PCA_s5_CF$overall

878
879 rm(trainUncorr_s1 ,trainUncorr_s2,trainUncorr_s3,trainUncorr_s4 ,trainUncorr_s5,

880 trainPCA_s1,trainPCA_s2,trainPCA_s3,trainPCA_s4,trainPCA_s5,

881 testUncorr_s1 ,testUncorr_s2,testUncorr_s3 ,testUncorr_s4,testUncorr_s5 ,

882 testPCA_s1 ,testPCA_s2,testPCA_s3,testPCA_s4 ,testPCA_s5)

883
884 #Combine Results

885
886 dt_M1_Acc <- data.frame(dt_Uncorr_s1_CF$overall [1], dt_Uncorr_s2_CF$overall [1],dt_

Uncorr_s3_CF$overall [1],

887 dt_Uncorr_s4_CF$overall [1],dt_Uncorr_s5_CF$overall [1])

888
889 dt_M2_Acc <- data.frame(dt_PCA_s1_CF$overall [1], dt_PCA_s2_CF$overall [1],dt_PCA_s3_CF

$overall [1],

890 dt_PCA_s4_CF$overall [1],dt_PCA_s5_CF$overall [1])

891
892 dt_Acc <- cbind(dt_M1_Acc , dt_M2_Acc)

893
894
895 knn_M1_Acc <- data.frame(knn_Uncorr_s1_CF$overall [1], knn_Uncorr_s2_CF$overall [1],knn

_Uncorr_s3_CF$overall [1],

896 knn_Uncorr_s4_CF$overall [1],knn_Uncorr_s5_CF$overall [1])

897
898 knn_M2_Acc <- data.frame(knn_PCA_s1_CF$overall [1], knn_PCA_s2_CF$overall [1],knn_PCA_

s3_CF$overall [1],

899 knn_PCA_s4_CF$overall [1],knn_PCA_s5_CF$overall [1])

900
901 knn_Acc <- cbind(knn_M1_Acc , knn_M2_Acc)

902
903
904 nb_M1_Acc <- data.frame(nb_Uncorr_s1_CF$overall [1], nb_Uncorr_s2_CF$overall [1],nb_

Uncorr_s3_CF$overall [1],

905 nb_Uncorr_s4_CF$overall [1],nb_Uncorr_s5_CF$overall [1])

906
907 nb_M2_Acc <- data.frame(nb_PCA_s1_CF$overall [1], nb_PCA_s2_CF$overall [1],nb_PCA_s3_CF

$overall [1],

908 nb_PCA_s4_CF$overall [1],nb_PCA_s5_CF$overall [1])

909
910 nb_Acc <- cbind(nb_M1_Acc , nb_M2_Acc)

911
912
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913 lr_M1_Acc <- data.frame(lr_Uncorr_s1_CF$overall [1], lr_Uncorr_s2_CF$overall [1],lr_

Uncorr_s3_CF$overall [1],

914 lr_Uncorr_s4_CF$overall [1],lr_Uncorr_s5_CF$overall [1])

915
916 lr_M2_Acc <- data.frame(lr_PCA_s1_CF$overall [1], lr_PCA_s2_CF$overall [1],lr_PCA_s3_CF

$overall [1],

917 lr_PCA_s4_CF$overall [1],lr_PCA_s5_CF$overall [1])

918
919 lr_Acc <- cbind(lr_M1_Acc , lr_M2_Acc)

920
921
922 ann_M1_Acc <- data.frame(ann_Uncorr_s1_CF$overall [1], ann_Uncorr_s2_CF$overall [1],ann

_Uncorr_s3_CF$overall [1],

923 ann_Uncorr_s4_CF$overall [1],ann_Uncorr_s5_CF$overall [1])

924
925 ann_M2_Acc <- data.frame(ann_PCA_s1_CF$overall [1], ann_PCA_s2_CF$overall [1],ann_PCA_

s3_CF$overall [1],

926 ann_PCA_s4_CF$overall [1],ann_PCA_s5_CF$overall [1])

927
928 ann_Acc <- cbind(ann_M1_Acc , ann_M2_Acc)

929
930
931 rf_M1_Acc <- data.frame(rf_Uncorr_s1_CF$overall [1], rf_Uncorr_s2_CF$overall [1],rf_

Uncorr_s3_CF$overall [1],

932 rf_Uncorr_s4_CF$overall [1],rf_Uncorr_s5_CF$overall [1])

933
934 rf_M2_Acc <- data.frame(rf_PCA_s1_CF$overall [1], rf_PCA_s2_CF$overall [1],rf_PCA_s3_CF

$overall [1],

935 rf_PCA_s4_CF$overall [1],rf_PCA_s5_CF$overall [1])

936
937 rf_Acc <- cbind(rf_M1_Acc , rf_M2_Acc)

938 l1<- (t(rf_M1_Acc))

939 boxplot(rf_M2_Acc)

940 boxplot(l1)

941
942 dt_Acc <- sort(t(dt_Acc))

943 dt_Acc

944 plot(dt_Acc)

945
946 knn_Acc <- sort(t(knn_Acc))

947 knn_Acc

948 plot(knn_Acc)

949
950 nb_Acc <- sort(t(nb_Acc))

951 nb_Acc
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952 plot(nb_Acc)

953
954 lr_Acc <- sort(t(lr_Acc))

955 lr_Acc

956 plot(lr_Acc)

957
958 ann_Acc <- sort(t(ann_Acc))

959 ann_Acc

960 plot(ann_Acc)

961 boxplot(ann_Acc)

962 histogram(ann_Acc)

963
964 rf_Acc <- sort(t(rf_Acc))

965 rf_Acc

966 plot(rf_Acc)

967 boxplot(rf_Acc)

968 histogram(rf_Acc)

969
970 finalAcc <- data.frame(dt_Acc , knn_Acc ,nb_Acc ,lr_Acc ,ann_Acc)

971 sigs <- list()

972 for(i in 1:ncol(finalAcc)){

973 sigs[[i]] <- wilcox.test(finalAcc[,i], finalAcc[,i+1], paired = TRUE)

974 }

975
976 wilcox.test(dt_Acc , knn_Acc , paired = TRUE)

977 wilcox.test(dt_Acc , nb_Acc , paired = TRUE)

978 wilcox.test(dt_Acc , lr_Acc , paired = TRUE)

979 wilcox.test(dt_Acc , ann_Acc , paired = TRUE)

980
981 wilcox.test(knn_Acc , dt_Acc , paired = TRUE)

982 wilcox.test(knn_Acc , nb_Acc , paired = TRUE)

983 wilcox.test(knn_Acc , lr_Acc , paired = TRUE)

984 wilcox.test(knn_Acc , ann_Acc , paired = TRUE)

985
986 wilcox.test(nb_Acc , dt_Acc , paired = TRUE)

987 wilcox.test(nb_Acc , knn_Acc , paired = TRUE)

988 wilcox.test(nb_Acc , lr_Acc , paired = TRUE)

989 wilcox.test(nb_Acc , ann_Acc , paired = TRUE)

990
991 wilcox.test(lr_Acc , dt_Acc , paired = TRUE)

992 wilcox.test(lr_Acc , knn_Acc , paired = TRUE)

993 wilcox.test(lr_Acc , nb_Acc , paired = TRUE)

994 wilcox.test(lr_Acc , ann_Acc , paired = TRUE)

995
996 wilcox.test(ann_Acc , dt_Acc , paired = TRUE)
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997 wilcox.test(ann_Acc , knn_Acc , paired = TRUE)

998 wilcox.test(ann_Acc , nb_Acc , paired = TRUE)

999 wilcox.test(ann_Acc , lr_Acc , paired = TRUE)

1000
1001 t.test(ann_Acc , dt_Acc , paired = TRUE)

1002 t.test(ann_Acc , knn_Acc , paired = TRUE)

1003 t.test(ann_Acc , nb_Acc , paired = TRUE)

1004 t.test(ann_Acc , lr_Acc , paired = TRUE)

1005
1006 t.test(lr_Acc , ann_Acc , paired = TRUE)

1007
1008
1009 plot(knn_Acc , rf_Acc)

1010 d1 <-density(lr_Acc)

1011 d2 <-density(ann_Acc)

1012 plot(d1, d2)

1013 plot(d1, col = "#E41A1C", main = "Density plots for LR & ANN", xlab= "Accuracy Values

",

1014 ylim=range (1:100))

1015 lines(d2 ,col = "#377 EB8")

1016 cols <-brewer.pal(n=1,name="Set1")

1017 legend("topright",legend=rep(c("LR","ANN")),col=rep(cols ,times =2),

1018 pch=rep(c(16 ,18)),bty="n",ncol=2,cex=1,pt.cex=1,xpd=TRUE)

1019
1020 ################### Resample ########

1021
1022 models_DT <- list(dt_Uncorr_s1=dt_Uncorr_s1, dt_Uncorr_s2=dt_Uncorr_s2 ,

1023 dt_Uncorr_s3=dt_Uncorr_s3 , dt_Uncorr_s4=dt_Uncorr_s4,

1024 dt_Uncorr_s5=dt_Uncorr_s5 , dt_PCA_s1=dt_PCA_s1,

1025 dt_PCA_s2=dt_PCA_s2,dt_PCA_s3=dt_PCA_s3,dt_PCA_s4=dt_PCA_s4,

1026 dt_PCA_s5=dt_PCA_s5)

1027
1028 dt_M1 <- list(dt_Uncorr_s1=dt_Uncorr_s1, dt_Uncorr_s2=dt_Uncorr_s2,

1029 dt_Uncorr_s3=dt_Uncorr_s3, dt_Uncorr_s4=dt_Uncorr_s4,

1030 dt_Uncorr_s5=dt_Uncorr_s5)

1031 dt_M2 <- list(dt_PCA_s1=dt_PCA_s1 , dt_PCA_s2=dt_PCA_s2,

1032 dt_PCA_s3=dt_PCA_s3,dt_PCA_s4=dt_PCA_s4,

1033 dt_PCA_s5=dt_PCA_s5)

1034
1035 results_DT <- resamples(models_DT)

1036 summary(results_DT)

1037 dotplot(results_DT)

1038 bwplot(results_DT)

1039 sort(results_DT , decreasing = TRUE , metric = results_DT$metrics [1])

1040
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1041 results_DT_M1 <- resamples(dt_M1)

1042 bwplot(results_DT_M1)

1043
1044 results_DT_M2 <- resamples(dt_M2)

1045 bwplot(results_DT_M1)

1046
1047
1048 models_KNN <- list(knn_Uncorr_s1=knn_Uncorr_s1 , knn_Uncorr_s2=knn_Uncorr_s2,

1049 knn_Uncorr_s3=knn_Uncorr_s3, knn_Uncorr_s4=knn_Uncorr_s4,

1050 knn_Uncorr_s5=knn_Uncorr_s5, knn_PCA_s1=knn_PCA_s1,

1051 knn_PCA_s2=knn_PCA_s2 ,knn_PCA_s3=knn_PCA_s3,knn_PCA_s4=knn_PCA_s4 ,

1052 knn_PCA_s5=knn_PCA_s5)

1053
1054 results_KNN <- resamples(models_KNN)

1055 summary(results_KNN)

1056 dotplot(results_KNN)

1057 bwplot(results_KNN)

1058 list1 <- (sort(results_KNN , decreasing = TRUE , metric = results_KNN$metrics [1]))

1059 plot(list1)

1060
1061 knn_M1 <- list(knn_Uncorr_s1=knn_Uncorr_s1, knn_Uncorr_s2=knn_Uncorr_s2,

1062 knn_Uncorr_s3=knn_Uncorr_s3, knn_Uncorr_s4=knn_Uncorr_s4,

1063 knn_Uncorr_s5=knn_Uncorr_s5)

1064
1065 knn_M2 <- list(knn_PCA_s1=knn_PCA_s1 ,knn_PCA_s2=knn_PCA_s2,

1066 knn_PCA_s3=knn_PCA_s3 ,knn_PCA_s4=knn_PCA_s4,

1067 knn_PCA_s5=knn_PCA_s5)

1068
1069 results_KNN_M1 <- resamples(knn_M1)

1070 bwplot(results_KNN_M1)

1071
1072 results_KNN_M2 <- resamples(knn_M2)

1073 bwplot(results_KNN_M2)

1074
1075
1076 models_NB <- list(nb_Uncorr_s1=nb_Uncorr_s1, nb_Uncorr_s2=nb_Uncorr_s2 ,

1077 nb_Uncorr_s3=nb_Uncorr_s3, nb_Uncorr_s4=nb_Uncorr_s4,

1078 nb_Uncorr_s5=nb_Uncorr_s5, nb_PCA_s1=nb_PCA_s1 ,

1079 nb_PCA_s2=nb_PCA_s2,nb_PCA_s3=nb_PCA_s3,nb_PCA_s4=nb_PCA_s4,

1080 nb_PCA_s5=nb_PCA_s5)

1081
1082 results_NB <- resamples(models_NB)

1083 summary(results_NB)

1084 dotplot(results_NB)

1085 bwplot(results_NB)
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1086 sort(results_NB , decreasing = TRUE , metric = results_NB$metrics [1])

1087
1088
1089 nb_M1 <- list(nb_Uncorr_s1=nb_Uncorr_s1, nb_Uncorr_s2=nb_Uncorr_s2,

1090 nb_Uncorr_s3=nb_Uncorr_s3, nb_Uncorr_s4=nb_Uncorr_s4,

1091 nb_Uncorr_s5=nb_Uncorr_s5)

1092
1093 nb_M2 <- list(nb_PCA_s1=nb_PCA_s1 ,nb_PCA_s2=nb_PCA_s2 ,

1094 nb_PCA_s3=nb_PCA_s3,nb_PCA_s4=nb_PCA_s4,

1095 nb_PCA_s5=nb_PCA_s5)

1096
1097 results_NB_M1 <- resamples(nb_M1)

1098 bwplot(results_NB_M1)

1099
1100 results_NB_M2 <- resamples(nb_M2)

1101 bwplot(results_NB_M2)

1102
1103
1104 models_LR <- list(lr_Uncorr_s1=lr_Uncorr_s1, lr_Uncorr_s2=lr_Uncorr_s2 ,

1105 lr_Uncorr_s3=lr_Uncorr_s3, lr_Uncorr_s4=lr_Uncorr_s4,

1106 lr_Uncorr_s5=lr_Uncorr_s5, lr_PCA_s1=lr_PCA_s1 ,

1107 lr_PCA_s2=lr_PCA_s2,lr_PCA_s3=lr_PCA_s3,lr_PCA_s4=lr_PCA_s4,

1108 lr_PCA_s5=lr_PCA_s5)

1109
1110 results_LR <- resamples(models_LR)

1111 summary(results_LR)

1112 dotplot(results_LR)

1113 bwplot(results_LR)

1114 sort(results_LR , decreasing = TRUE , metric = results_LR$metrics [1])

1115
1116
1117 lr_M1 <- list(lr_Uncorr_s1=lr_Uncorr_s1, lr_Uncorr_s2=lr_Uncorr_s2,

1118 lr_Uncorr_s3=lr_Uncorr_s3, lr_Uncorr_s4=lr_Uncorr_s4,

1119 lr_Uncorr_s5=lr_Uncorr_s5)

1120
1121 lr_M2 <- list(lr_PCA_s1=lr_PCA_s1 ,lr_PCA_s2=lr_PCA_s2 ,

1122 lr_PCA_s3=lr_PCA_s3,lr_PCA_s4=lr_PCA_s4,

1123 lr_PCA_s5=lr_PCA_s5)

1124
1125 results_LR_M1 <- resamples(lr_M1)

1126 bwplot(results_LR_M1)

1127
1128 results_LR_M2 <- resamples(lr_M2)

1129 bwplot(results_LR_M2)

1130
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1131
1132 models_ANN <- list(ann_Uncorr_s1=ann_Uncorr_s1 , ann_Uncorr_s2=ann_Uncorr_s2,

1133 ann_Uncorr_s3=ann_Uncorr_s3, ann_Uncorr_s4=ann_Uncorr_s4,

1134 ann_Uncorr_s5=ann_Uncorr_s5, ann_PCA_s1=ann_PCA_s1,

1135 ann_PCA_s2=ann_PCA_s2 ,ann_PCA_s3=ann_PCA_s3,ann_PCA_s4=ann_PCA_s4 ,

1136 ann_PCA_s5=ann_PCA_s5)

1137
1138 results_ANN <- resamples(models_ANN)

1139 summary(results_ANN)

1140 dotplot(results_ANN)

1141 bwplot(results_ANN)

1142
1143 sort(results_ANN , decreasing = TRUE , metric = results_ANN$metrics [1])

1144
1145 ann_M1 <- list(ann_Uncorr_s1=ann_Uncorr_s1, ann_Uncorr_s2=ann_Uncorr_s2,

1146 ann_Uncorr_s3=ann_Uncorr_s3, ann_Uncorr_s4=ann_Uncorr_s4,

1147 ann_Uncorr_s5=ann_Uncorr_s5)

1148
1149 ann_M2 <- list(ann_PCA_s1=ann_PCA_s1 ,ann_PCA_s2=ann_PCA_s2,

1150 ann_PCA_s3=ann_PCA_s3 ,ann_PCA_s4=ann_PCA_s4,

1151 ann_PCA_s5=ann_PCA_s5)

1152
1153 results_ANN_M1 <- resamples(ann_M1)

1154 bwplot(results_ANN_M1)

1155
1156 results_ANN_M2 <- resamples(ann_M2)

1157 bwplot(results_ANN_M2)

1158
1159
1160 models_merge <- resamples(list(ANN = ann_Uncorr_s1,LR = lr_Uncorr_s2 ,

1161 NB = nb_Uncorr_s4 ,KNN = knn_Uncorr_s1,

1162 DT = dt_Uncorr_s1))

1163
1164 models_m1 <- resamples(list(ANN = ann_M1, LR = lr_M1))

1165 NB = results_NB_M1, KNN = results_KNN_M1 ,

1166 DT = results_DT_M1))

1167 bwplot(models_merge)

1168 bwplot(models_m1)
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