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Chapter 1

Introduction

1.1 Abstract

This study aimed to look at a traditional method used for measuring the severity and

principle direction of force of a car crash and see if it could be improved on using

machine learning models. The data used was publicly available from the NHTSA

database and included descriptions of the vehicle, test and sensors as well as the ac-

celerometer data over the period of the crashes. The models built were SVM classifiers

and multinomial regression models. Although the SVM and Regression models were

build successfully and gave higher levels of accuracy than the momentum models in

terms of the severity, the traditional momentum model’s severity results were not sta-

tistically significant and it was therefore impossible to say the SVM classifier was an

improvement using the same data. The principle direction of force was improved on

using both a multi-level SVM classifier and a multinomial regression and the results

were statistically significant.

1.2 Background

The inspiration for this study came from a privately commissioned paper that was

created for a company called Xtract by the University of Limerick. The company had

pitched a Telematic business proposal where they would supply a computer system

1



CHAPTER 1. INTRODUCTION

that would enable insurance claims managers to assess crashes in real time using sen-

sor data contained in a black box in a car. Many insurance companies have rolled out

similar Telematics policies where they install a black box that can read the accelerom-

eter data in a car and then inform the claims manager in real time about a claim when

it occurs enabling them to make sound decisions.1.

The NHTSA has a massive database of over 164k sensors in over 5k tests ranging back

to 1978. The crashes were uploaded to the test site by third parties that were inter-

ested in sharing their data which dates back to the late 1970s. These tests included

vehicle structural tests, passenger impact assessments and vehicle to vehicle impact

assessments. The sensors available in these tests read various measures including ac-

celerometer data in various parts of the vehicle or crash test dummy.

There is a wealth of knowledge in Physics and Engineering about how to measure

vehicle dynamics and the impact of forces on rigid bodies. This knowledge can be

applied to various real world examples to create models that give insight to the sur-

rounding world. In engineering, the traditional method for modelling car crashes is

to use inductive models where there is no requirement to train the model. Therefore,

accurate results can be output even if there is only data on one crash.

Machine Learning is a growing field where data is used to create an algorithm that can

generalize to a larger population. Currently, a person interacts with machine learning

algorithms regularly throughout their daily lives. For example, there are algorithms

that suggest product advertising through Google searches, algorithms that recognise

what a person says and others that predict what the weather will be tomorrow. The

industry will only expand into ever more complex avenues of everyday life to the point

that people will not have to make as many daily decisions, whether that is buying

milk before it goes off or driving their cars. This study aimed to assess whether ma-

chine learning could be an improvement over the more traditional methods used in

engineering when applied to car crash test data. This was driven by a real business

need in the insurance industry and could hopefully act as a resource to this end.

1This current industry phenomenon is getting lots of coverage in today’s media

http://www.ft.com/content/894c3f5e-786c-11e7-a3e8-60495fe6ca71

2



CHAPTER 1. INTRODUCTION

1.3 Informal Description of the Problem

The database supplied c.5k examples where the vehicle centre of gravity sensor was

used. All of these sensors had an x, y and z coordinate that showed the amount

of g-force applied by millisecond. Currently, there are no similar studies using the

same data which may be down to the difficulty of downloading the files. There was a

need to identify the impact time of the crash using the max sum of the g-force in all

directions. Once calculated, this data was added to the database and was applicable

to all models. The momentum model aimed to show the impact angle (continuous

variable) and severity (categorical) of crash using the impact time and the accuracy

was assessed by checking the number of correct results against the database. Following

this, an SVM was used to classify the crash severity. Regression was then used to assess

the impact angle and it was compared to the physical models to see if there was any

improvement in accuracy from one model to the next.

1.4 Research Project/problem

This research aimed to classify the severity of a crash using a inductive momentum

model and compare the results to a deductive Support Vector Machine (SVM) classi-

fier. These models were judged on the accuracy, specificity and sensitivity of the re-

sults. Secondly, the research aimed to calculate the principle direction of force (PDOF)

felt on a vehicle during a crash using the same inductive model and then compare it

to a deductive SVM classifier and a deductive multinomial regression model.

1.4.1 Research Question

”Can ML models match the accuracy of a momentum model for car crashes using

force in x,y,z planes as the independent variables and the angle of impact or severity

of crash as the dependent variables?”

3



CHAPTER 1. INTRODUCTION

1.5 Research Objectives

The primary goal of this research was to determine if machine learning could be applied

in this area of engineering and see if it was possible for it to improve on the traditional

techniques applied.

• Perform a comprehensive evaluation and analysis of the existing research relating

to car crash mechanics and machine learning.

• Select the existing data set and investigate the scope and limitations of this data

set.

• Build momentum model used in the privately commissioned paper.

• Assess the accuracy of the momentum model on the dataset.

• Select and build the machine learning models.

• Assess the accuracy of the machine learning models on the dataset.

• Analyse the results.

• Evaluate the statistical significance of the results.

This research was quantitative and empirical in nature. It relied on an existing

dataset and as such, was a form of secondary research. Further, the goal of this research

is to inform primary research. The experiment was designed to enable acceptance or

rejection of the null hypothesis derived from the research question. Model performance

was judged on the accuracy of the classifier against the ground truth contained in the

database. The overall methodology could be considered deductive in nature as a

number of different models were used to compare results even though the models used

were both inductive and deductive. A literature review was done to ensure that any

methods used had been in a similar capacity and also to ensure that the model machine

learning model selection was suitable.

4



CHAPTER 1. INTRODUCTION

1.6 Scope and Limitations

The data selected for the experiment was the best available public datasource that

contained the inputs for the models. The ground truth was based on an engineering

classification called the National Damage Index (NDI) that was a subjective opinion

so the decision boundary for any classifier could not be accurately defined. The types

of tests that could be used in the momentum model significantly reduced the number

of cases that could be used from the database which meant the accuracy from the

severity was not statistically significant. The reduced bias in the PDOF however

ensured conclusions could be drawn on the second hypothesis.

The fact that the data for each crash only showed a short time window and no other

activity meant that a classifier could be considered a good choice. For exmpale, it

would not classify a car slowing down as a low severity crash. This was the main

advantage of the format of the data. The SVM classifier was a useful model that was

implemented but if there were no time constraints, a Hidden Markov Model (HMM)

would have been implemented to see if an unsupervised model could have classified

the crash area automatically. Implementing a more complex inductive model and its

improvement over the momentum model could have added more value. A spring model

or momentum model based on the crush area may have yielded better results but the

same data constraints would have applied so this type of study would need a better

datasource.

1.7 Document Outline

The remaining chapters in this document are structured as follows.

• Chapter 2 begins describing a crash pulse and then explains the difference be-

tween a deductive and inductive model. It then examines the database and

describes the concepts behind the momentum model, the SVM and Regression.

• Chapter 3 describes the design and methodology of the experiment. It follows

the CRISP-DM structure beginning with an evaluation of the research problem

5



CHAPTER 1. INTRODUCTION

and formulation of the hypothesis before describing the data understanding and

preparation phases. This chapter discusses how the models were built, evaluated

and compared with one another. It concludes with a discussion on the strengths

and limitations of the approach.

• Chapter 4 describes the implementation of all of the 50 experiments and aims to

show much of the results and give a step by step account of how the experiments

were conducted. It aims to identify some of the problems that occurred along

the way and outline the different models that were run to counter some of these

problems.

• Chapter 5 takes all of the results that were discovered in chapter 4 and brings

them altogether. It takes the best performing models that were created and

compares them to the momentum model in order for conclusions to be drawn

and the research questions answered.

• Chapter 6 this chapter provides an overall evaluation of the research and exper-

iment and contains suggestions for future work.
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Chapter 2

Literature Review and Related

Work

2.1 Introduction

This chapter gives some context to the study and aims to use the literature to reinforce

the techniques used while ensuring that any previous knowledge can be learned from

or added to. It opens with a background of the study itself which shows the inspiration

for the thesis. Next, a description of the main elements to consider in a crash pulse

are outlined followed by a comparison of the different types of models that are seen in

the study. A section on the data follows this, with reference to some similar studies

that also used it.

As the study had two different types of modelling techniques, the next section describes

the deductive model selected, why it was selected and any other studies that use similar

techniques. The section then finishes with a description of the model and publications

that implemented similar models. The next section shows the reasons for selecting the

deductive models, their description mathematically and some studies that used them.

The chapter then finishes with a summary of the findings and what were done.
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2.2 Background

According to (Kevin Brosnan, 2017) fraudulent insurance claims cost the Irish insur-

ance industry over two hundred million dollars a year. That private report was tasked

with assessing whether the angle of impact and the crash severity could be determined

using the time series data that was available from accelerometer sensors fitted in cars.

This information could then to be used as a prototype for a business pitch to insurance

companies that helped assess insurance claims in real-time. As outlined in the paper,

there was a need for more data that could be used to train machine learning models.

This acted as the inspiration for this study.

Lots of research mentions that a key determinant of the severity of a crash is the

PDOF. For example, in (Ryb, Dischinger, Kufera, & Burch, 2007) it was found that

the higher the change in velocity, the higher the chances are of mortality. This was

also coupled with a finding that the PDOF has a synergistic effect with the change

in velocity on the mortality rate. This reinforced the opinion in this study that the

momentum model selected should be accurate as the severity and PDOF are deter-

mined by the same model. In 2000, (M. Richter, Otte, Pohlemann, Krettek, & Blauth,

2000) mentioned that the severity of the impact was not an indicator of the length of

time a person will complain of an injury but they did find that the PDOF (i.e. head

on or rear end) collision did result in higher levels of whiplash. This again reinforced

that the PDOF, if available, may be a useful factor in calculating the severity. An-

gled collision or the impact of a vehicle into the side door of a vehicle has also been

shown to increase the chances of death or injury in a vehicle collision (Abdel-Aty &

Abdelwahab, 2004). The two points in this paragraph may indicate why the NHTSA

had such a high number of tests that are from the side or from the front or rear. This

point was the reason why the data that was fed into the momentum model was so

heavily biased.

In (Gabler, Hampton, & Roston, 2003) an argument was made that when using a

traditional method of calculating crash severity, it can be inconsistent and especially

with complex crash pulses. This added to the suggestion in (Kevin Brosnan, 2017)
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that, given the right amount of data a machine learning algorithm would be a good

option when trying to model these effects.

When trying to understand how severe a car crash was and what direction a vehicle

was hit from the first area of understanding was classical mechanics. Kinematics is the

branch of classical mechanics focused on the motion of bodies. There may be many

different forces acting on a body when it is in motion like friction but a simplified

model would need to be used in this study as any other type of model would require

significant research. (M. Huang, 2002) looked into a number of more complex models

that could be used for future research but they could have experience the same dif-

ficulties that were found for this study (biased data). (Locey et al., 2012) (Lenard,

Hurley, & Thomas, 1998) (Linder, Avery, Krafft, & Kullgren, 2003) all mentioned

the deceleration of the vehicle during the crash or Delta-V(∆V ) as the a method for

measuring crash severity. These papers showed that the momentum model or similar

(∆V ) models have use in the industry for simple studies.

2.3 The Crash Pulse

When modelling a car crash, a key element considered was the crash pulse. (M. Huang,

2002) section 1.1 described a crash pulse as the deceleration time history at a point in

the vehicle during impact while (Locey et al., 2012) described it as the “Characteristics

of vehicle motion during an impact”. (Varat & Husher, 2003) did an excellent job of

modelling a crash pulse mathematically and went, in length, into the detail of what

influences the shape of a crash pulse from vehicle weight, age and size to the speed of

the crash and the length of the time the impact occurred for. What these papers all

agreed on is there are a number of characteristics that make up a crash pulse

• Maximum deceleration

• Time of maximum deceleration (ms))

• Pulse duration as defined below(ms)
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• ∆V maximum change in velocity (i.e. integral of the deceleration-time curve

over the pulse duration) (km/h)

All of these characteristics were available from the NHTSA data. The maximum

deceleration was the largest force felt on the absolute sum of the x,y and z-direction of

the accelerometer data. The time of the occurrence was the timestamp contained in the

database. The pulse duration was determined by finding the maximum deceleration

and then determining the end point of the crash pulse. Lastly, the maximum change

in velocity was the vector of the change in velocity over the pulse duration.

2.4 Mathematical Modeling

The experiments conducted in this study were all based on mathematical modelling

which is essentially a way of describing a system through mathematical language.

When describing a system, it is impossible to take every variable into account therefore

a simplified version of the system must be used. In engineering, people create models

of bridges to try to measure their structural integrity, when these engineers create a

model they use a small version with the same materials and do not recreate the entire

bridge brick for brick. A mathematical model is similar in that it is impossible to

recreate everything in the system and it is not computationally viable. A scaled down

version is created which can generalise to the wider system or population. The aim

was to take a model that was based on engineering theory and try to improve on it by

using a machine learning model or multiple machine learning models.

2.4.1 Deductive Modelling versus Inductive Modelling

When a model is a logical structure based on theory or knowledge it is called a deduc-

tive model. For example, if it is known that there are 3 coins in a bag, the question

could be: how many are left in the bag after 1 is removed? A deductive model can be

created for this which would look like this: 3− 1. This can be applied to any scenario

where there are 3 coins to start with and one is removed. There can be issues with this

model even though it looks sound and it should work in every scenario. For example,
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there may be cases where there is a hole in the bag and one falls out. If this occurred,

it would lead to errors in the results received.

Inductive modelling is where empirical results are taken and this is generalised to the

system or population. Similar to the previous example there are 3 coins in a bag, every

time someone removes a coin the bag is checked and the results are recorded. If, in

every test case someone removed one coin from the bag this will create a presumption

for a simple model that the next time someone takes a coin they will remove only one.

As can be seen, this data is flawed as there are no rules governing that someone can

only take one coin. It is said that this data is biased towards one and represents a

similar issue in this study where the data was biased towards crashes with low severity

and specific angles of impact. In the example, it will be generalised that only one coin

will be removed from the bag and this presumption is passed onto every future case.

As can be expected this may not be the case all of the time and therefore this type

of model can cause errors in the future as the model is not representative of all cases

(the population).

This study aimed to take a deductive model that was based on physics (the momen-

tum model) and improve on the accuracy it got when compared to an inductive model

(machine learning models).

2.5 Data - NHTSA Crash Test Database

In (Kevin Brosnan, 2017) the report stated they intended on creating a machine learn-

ing model but the dataset was limited in that they only had six crash tests. This led to

the study focusing on data that was available publicly on-line. There were not many

sites that supply data, for example, the AGU1 was a good site but it was difficult to

download data as it was in German. It was also difficult to tell if the data was available

en-masse and if the sensor readouts were available. CTS.com 2 was another website

1http://www.agu.ch/1.0/en/crashtest-datenbank/
2https://www.crashtest-service.com/en/database/registration/
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that appeared to have really good data but there was a fee to join. It was therefore

decided to use the NHTSA database3 as this appeared to have the data required to

test the momentum model as well as having enough test cases to be able to train

and test a machine learning algorithm. The data has also been widely used in similar

studies whether they were to do with physical crashes (Shelby, 2011) or other high-

way statistics (Chong, Abraham, & Paprzycki, 2005) using the National Automotive

Sampling System (NASS). The NHTSA was also the creator of the CRASH3 system

which measured crash severity by determining what the ∆V was through measuring

the impact area. The database was therefore reputable and had what appeared to be

enough cases.

The data available from the NHTSA came in two formats, there was the descriptive

data for the tests, vehicles and sensors in one down-loadable file but the sensor output

was only available to download one test at a time. This represented significant work

in creating a web-scraping script and then combining all of the files into a SQL server

database. Before data cleaning commenced, the data was summarised and it was de-

cided that there was enough data to be able to create a machine learning algorithm

as well as test the selected momentum model.

2.6 Momentum Model (deductive model)

2.6.1 Pulse Duration

The pulse duration can be thought of as a length of time that the crash pulse occurred

for. As cars have developed over the years they have been designed to crush during

the pulse in order for the car to absorb the impact. When a car crash occurs it is

never perfectly rigid which would mean there is no crush and the vehicle instantly

bounces off the target with no compression occurring to the structure. Instead, it

impacts with the object, experiences a short crush time where the car deforms and

3https://www-nrd.nhtsa.dot.gov/database/VSR/veh/QueryTest.aspx
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then it experiences a short time where there is a spring effect felt. It was important

to get this duration correct because if measurements were taken while the car was still

deforming, it could give a different result to an experiment that took the measurement

accurately. As can be seen in 2.2, the angles that the vehicles were facing are different

at the point of impact to the end of the crash pulse.

Figure 2.1: Start of Pulse T0 Figure 2.2: End of Pulse T1

A key issue that arose when trying to calculate the pulse duration was that it

could be difficult to work out when the pulse oscillation stopped because of other

oscillations felt in the crash. The sensors that were reading the forces in the car crash

were mounted on the car and they experienced oscillations themselves which could

make any reading convoluted (Linder et al., 2003). To counter this issue, the data was

filtered in order to find the underlying crash oscillation. (Linder et al., 2003) suggested

using the Channel Frequency Class 60 (CFC 60) when filtering before integrating and

trying to calculate the time Tp which is the end of the crash pulse. At the end of

the study, it was suggested using CFC 36 as a better filter so this was also examined.

They suggested that once ∆V has been calculated for the whole data set, the time Tp

can be calculated by finding 90% of the total ∆V and then checking the next time it

goes negative as this will occur when the pulse has ended.

(M. Huang, 2002) dedicated the first chapter of the book to this issue and laid

out in a table the different test measurements and CFC that needed to be selected.

This seemed to agree with (Linder et al., 2003) by saying that CFC 60 needed to be

selected when a collision simulation or total vehicle comparison was used but it also

mentioned a CFC 180 when integrating for velocity. If there were any inaccuracies in
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Figure 2.3: End of Pulse

the test results, CFC 180 could also be examined. (M. Huang, 2002) also went on to

give different suggestions on algorithms that could be used to help with the filtering

but that was beyond the scope of the study.

(Locey et al., 2012) tackled the filtering problem by building on the (Linder et al.,

2003) approach and first filtering to CFC 18 to smooth extreme oscillations and the

filtered acceleration was traced back to 25% of the maximum acceleration. It was

then traced forward to where the filtered acceleration was equal to 5% of the total

magnitude and this was considered the end of the pulse time. The approach decided

on in this study was to set a constant length of half a second for the crash pulse. This

was combined with no filtering and was the technique used by (Kevin Brosnan, 2017),

a simple method that may lead to lower accuracy. The SVM model used a low pass

filter in order for it to be down-sampled correctly. The oscillations were tested in a

number of different ways and the filtered datasets gave no different readings to the

non-filtered data.
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Figure 2.4: Pulse Filter Locey et, al(2012)

2.6.2 Delta V(∆V )

It is commonly agreed that ∆V is the way of measuring a crashes severity (Locey et

al., 2012) (Linder et al., 2003) (Gabauer & Gabler, 2006) (Gabauer & Gabler, 2008)

(Lenard et al., 1998) (M. Huang, 2002). (Kullgren, Krafft, Nygren, & Tingvall, 2000)

did some excellent studies that talked about the influence of ∆V and the potential for

serious injury as a result of it. They also went on to say that even specific changes

in velocity nearer the end of the crash pulse can actually influence the outcome even

more.

(Lenard et al., 1998)was a study where they examined the CRASH3 software which

uses the pulse deformation on the car body to estimate the ∆V . They described ∆V

as the difference between the initial velocity of a crash and the end velocity in a crash.

This measure was a vector and because of this, the resultant difference between the

two vectors was a vector itself and therefore had magnitude and direction

The technique that CRASH3 used to generate ∆V was to measure the crush area

of a barrier and a vehicle and then calculate the energy that dissipated between the

two points. The database gave the NHTSA dimensions of the crush area and this

could be an area of study where the machine learning technique was compared with

the crush area technique to see which was more accurate. From (Lenard et al., 1998)

it became obvious that this was a good way of measuring ∆V but it could be improved
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Figure 2.5: DELTA-V

upon. The method used in (Vangi, 2009) was also very similar in that the crush area

could be simplified and approximated into triangular, trapezoidal or rectangular form

and the force estimated from the derived shape of the crush area.

As mentioned in (Bundorf, 1996) (Robinette, Fay, & Paulsen, 1994) and (Zeidler,

Schreier, & Stadelmann, 1985) the most common way of measuring ∆V is through the

integrating of accelerometer data and although it states that where there is a high level

of yaw in the crash the results may be inaccurate, this was the method used in this

study as it was relatively simple compared to the other techniques found and was also

the technique used in (Kevin Brosnan, 2017). The first step in determining ∆V using

this method was to calculate the time of impact. This was done by measuring the

largest force experienced on the dataset (the maximum deceleration). The next thing

that needed to be done was to calculate the end of the crash pulse in order to have the

pulse duration (see 2.6.1). Once the length of the crash pulse was understood, it was

enough to calculate ∆V because it was the instantaneous velocity at the start of the

crash pulse added to the instantaneous velocity throughout the the crash pulse. This

velocity was calculated from the accelerometer data by getting the integral of each

the g-force axis using the trapezoid rule. As the study was aimed at improving at the

technique used in (Kevin Brosnan, 2017), these findings were reassuring in that there

were examples of similar publications using the model or very similar. The model used

in this study was essentially the same as calculating ∆V as a measure of the severity

of the crash. Instead, the mass of each individual car was added so the change in

momentum was taken instead of the change in the velocity. The research around the
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subject showed that people have used similar models in the past but there was a lot of

software available that can model car crashes like PC CRASH and CRASH3 so future

work may be done on comparing to these systems. In order to calculate the change

in momentum, the pulse duration must first be determined in order to work out the

crash over a period of time.

The method used, created a momentum vector which measured the instantaneous

momentum at each point in time during the crash pulse. The magnitude of this

vector was then taken to show how severe the crash was. Mathematically this can be

expressed like this -

∆p̂ =

∫ timp+ε

timp−ε
mâdt

The key issue with using this method was determining the window of time (ε) that

the crash needed to be. Once this was determined, the model needed to measure the

acceleration at each point in time and multiply it by the mass of the vehicle and the

change in time (which was constant in the study as there were no instruments that

output at different rates of time over a crash).

The angle of impact was determined directly from the same output as the the mo-

mentum model which was a vector that had magnitude and direction. This direction

could then be rotated by one hundred and eighty degrees to determine where the force

was coming from i.e. the PDOF.

2.6.3 Strengths and Weaknesses

When using this model for a car crash, a couple of assumptions had to be made.

Firstly, it was assumed the car that was in the crash was perfectly rigid meaning there

was no crush during the crash pulse. This was unrealistic in a real-world example,

as cars are purposely made to absorb a large part of the impact which ensures the

resulting forces acting on the passenger are reduced. The model used in this study

was similar to what could be used when measuring two snooker balls impacting rather

than a complex spring model which aims to measure the compression damping and
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rebound effects felt in the crash.

The next assumption that was made was that there were no frictional forces acting on

the vehicle during the crash. The model used did not aim to measure the forces that

the vehicle felt in the opposite direction to the forces being applied by the engine and

the crash. Friction can be felt everywhere on the vehicle from the brakes, tyres and

air.

Lastly, a large assumption made was that the crash pulse could be shortened to the

same length of time for every crash. This would not be the case in a real-world scenario

as the crush time was different for every vehicle depending on materials and speed etc.

This led to the expectation that there would be a level of error in the model that could

be reduced. This also ensured that the data would not be directly comparable to some

machine learning models due to the number of features input per test case would vary.

2.6.4 Principle Direction of Force (PDOF)

Principle direction of the force is the measure of the angle of the combined vector

that is the result of a collision. For example, in a head-on collision where a car hits

a wall, the principal direction of force will be directly ahead of the vehicle acting

towards the rear. When measuring the PDOF the vehicle is thought to exist on a

plane with 0 degrees accounting for a PDOF in a head-on collision. The degrees then

rotate clockwise around the vehicle with a lateral impact from the right equaling a

PDOF of 90 degrees, a rear impact equaling 180 degrees and so on. (Neades & Smith,

2011) looked to determine the PDOF using a complex model which first determined

the ∆V İt then used the coefficient of restitution to help create a model that could

determine the PDOF even with complex crashes where the car rotates significantly.

This complex model may have been more accurate than the current model chosen but

the added complexity was in a field outside of the scope of the study. The method

chosen in this study was based on (Kevin Brosnan, 2017) and was also the technique

used in (Tolkiehn, Atallah, Lo, & Yang, 2011) where momentum was already a vector

with magnitude and direction. It was then just a case of rotating this vector 180

degrees to determine where the principal direction of force came from. In (Tolkiehn et
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al., 2011) it was found to have a high accuracy of predicting falls of 81% when people

were wearing accelerometers. As the method was simple it was expected that lateral

crashes may be more inaccurate as the rotation on the vehicle was not accounted for

and the length of the crash pulse could also have a bearing on the PDOF.

2.7 Machine Learning (Inductive Modelling)

2.7.1 What is Machine Learning?

According to (Alpaydin, 2014, pg. 1-4) machine learning is broken into 4 sections

- Data Mining, Artificial Intelligence, Pattern Recognition, Predictive Analytics and

Descriptive Analytics. Artificial Intelligence can be thought of computers mimicking

human behaviour and the most important human behaviour is learning. The lines

can get blurred aas most behaviours are learned but a computer can be hard-coded to

move a finger on an artificial hand and this would still be artificial intelligence even

though the computer did not learn the behaviour. Data Mining is the application of

machine learning to databases which enables pattern recognition, predictive analytics

and descriptive analytics to be done on the data.

Machine learning can also then be broken into the two different classes; supervised and

unsupervised learning. Supervised learning is where the data has an output variable

of Y and an input variable of X. The algorithm that explains the relationship between

X and Y is a function of X (Alpaydin, 2014, pg. 4-5). There are two separate ways

of applying supervised learning and this depends on the output variable type. If Y is

a categorical variable then the application will need to be classification and if it is a

continuous variable it will need to be regression. When selecting which type of model

was going to be used, the database was summarised to see if there were any variables

that could act as labels. The database contained two fields that could act as these

labels -

• The ’PDOF’ field or principal direction of force

• The ’NDI’ field or National Damage Index
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As can be seen, the PDOF in the database could act as a training label for the

machine learning model and this could be compared directly back to the PDOF in the

momentum model. When initially looking at the data, the PDOF could be categorised

as a continuous variable as it was a number between 0 and 360. The PDOF part of

the study could, therefore, be thought of as a regression problem.

The NDI was not exactly the same as the damage classification in the momentum

model in that this damage was on a scale of 1 - 9 and was determined subjectively by

an engineer who viewed the wreck after the test. It was therefore assumed that there

would be some data that would give dubious results. In the Vehicle Damage Guide

for Traffic Investigators (TEXAS, 2008) it specifically mentioned that a damage scale

of 4 or above is moderate to high levels of damage. The study, therefore, used this

guideline to define levels 1 to 3 as low severity and 4 to 9 as high. The crash severity

problem could, therefore, be thought of as a classification problem.

2.7.2 Crash Severity Classification Model Selection

Although there were no direct comparisons with a publication that used the same

data and tried to get similar results, there were publications that have been done on

classifying movements using accelerometer data. (Ravi, Dandekar, Mysore, & Littman,

2005) was a publication where the aim was to classify human activity by using an

accelerometer that was attached to a person’s waist. A window of activity was taken

from the overall sensor outputs and it was these numbers that were classified. As can

be seen in 2.6 the data that was gathered throughout the day had multiple different

categories of activity with a wavelength that was very different. Whereas in this study

(see 3.2) each test case had one activity per test and the classification was not on the

differences contained in each test but rather the severity of each test was classified.

There was, however, a window taken of the number of sensor outputs to use per test

case but the window started at the point of impact in the crash and finished a half a

second later.

(Ravi et al., 2005) went on to try multiple classifiers and it acted as a good reference

point to choose a model. The results showed that a boosted SVM had the highest
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accuracy at classifying the activity where the training cases were different to the testing

cases. This was similar to the data that was used in this study as each car crash was

an individual and could not be repeated.

Another similar publication was (Cheng & Jhan, 2013) where a person’s activity

Figure 2.6: Activity Classification Accelerometer Data Reprinted from Ravi et al.2005

was classified using accelerometers positioned on different parts of the body. The

publication aimed to get more accuracy from the model by selecting an ADA boosted

SVM model which is a parallel classifier that consists of multiple weaker classifiers that

focus on one part of the problem. Due to the nature of this study, each individual

crash event happened in isolation as the data was only gathered in 5-second segments

that just contained the crash. The comparison with the other publications, where

there are multiple events occurring in each case is something that would need to be

explored if the data became available.

(Zhao, Pawlus, Karimi, & Robbersmyr, 2014)was a publication that tried to reproduce

the vehicle kinematics of a crash using an adaptive neuro-fuzzy inference system.

Although the data that was used in the publication was similar to this study, the

quantities and output were very different. They tried to reproduce all the interactions

that occurred in the time-series rather than the output of the crash as a category.

Another publication that used the same tri-axial accelerometer data that was used in

this study was (Khan, Lee, Lee, & Kim, 2010). The difference between this publication

and the previous two cited above was this one aimed to used time series analysis to

21



CHAPTER 2. LITERATURE REVIEW AND RELATED WORK

see if the upcoming sensor data could be predicted. This would be useful for the likes

of an airbag test where the potential magnitude of the crash could be predicted in real

time as an impact is occurring.

In (Torrão, Coelho, & Rouphail, 2013) the same result was sought using a classifier but

the data used for the study to train the classifier did not use accelerometer data but

did use vehicle characteristics that are available in the NHTSA (except age and sex

of driver as it is a test centre). They used a logistic regression model and a decision

tree classifier and it experienced some biased data that should be expected in this

study. It also added to the idea that potentially the vehicle characteristics could add

to the severity of the crash or similarly influence the PDOF. In (Selmanaj, Corno, &

Savaresi, 2014) there was a very similar requirement as in this study in that they were

looking to create an airbag on a motorcycle that was activated using a neural network

classifier.

On weighing up the research it was decided to use an SVM classifier as this technique

was in the most cited papers and the ones that could be transferred best to this

study. Although the activities that were classified by these studies in general related

to human activity this study did not need to differentiate between different activities

but instead just needed to differentiate between the severity of the crash. The added

bonus of having data that described the vehicle as well as the closing speed meant

that these features could also be used in the model to try and differentiate between

crashes.

2.7.3 Principle Direction of Force Regression/Classification

Model Selection

While searching for a model that determined an angle using accelerometer data, a pub-

lication was found (Mayagoitia, Nene, & Veltink, 2002) that calculated joint rotation

using accelerometer data from sensors placed at multiple points on the leg. This was

a deductive model similar to the momentum model in this study and the results were

compared back to visual software to determine if the angles the sensors moved relative
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to each other on the joints were correct. Although not directly comparable back to

the machine learning model in this study, it does show that deductive modelling is

widely used when it comes to sensor data problems. This point was also backed up in

(Tolkiehn et al., 2011) who used a similar deductive model to this study to determine

the direction a person was falling through use of accelerometer sensors attached to

various parts of their body.

(Swartz et al., 2000) was a study that used accelerometers attached to people to try

to determine the calories burned during certain activities. The activities ranged from

gardening to jogging and the results were mapped to a calorie counter also attached

to the subject. The results showed promise but the data was a bad fit of 0.56 which

accounts for the high variation in the activities. Although not directly comparable to

this study, the fact that a continuous variable was regressed using accelerometer data

was promising and the fact that the issues that arose were related to activity variation

should not be a problem in this case. (L. Huang & Chen, 2001) used a multi-linear

regression technique that measuring accelerometer data connected to a sensor on a

lathe to try to measure the surface roughness of a machine worked piece. Although

the problem set was different it showed the applicability of regression using accelerom-

eter data.

(Stansfield, Hillman, Hazlewood, & Robb, 2006) was a publication were camera data

was used to analyse children’s gaits and then the kinematic data was used as inde-

pendent variables when predicting a person’s walking speed. The publication did not

include accelerometer data but it did use some descriptive features of the child on top

of the kinematic features. In this study, the kinematic features were not as relevant

to a car unless the study was to conduct a full finite element model where all of the

structural elements are measured.

(C. Richter, King, Falvey, & Franklyn-Miller, 2018) was a publication where machine

learning techniques were used to try to classify change in direction movements. The

data used was based on accelerometer data that was gathered from a force platform

under the test subjects and this was combined with a series of infrared cameras that

picked up the motion. The input variables to the machine learning algorithms picked
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up the full range of kinematic variables and the activities were labelled.

Figure 2.7: Direction Change Classifier Results Reprinted from C. Richter et al. 2018

As can be seen in 2.7(C. Richter et al., 2018) the various classifier results were

compared to each other. The study mentioned that Correlation2Mean had the best

performance but the SVM model was also a very high performer. Although this study

did not use a continuous variable as the input, it did use a multinomial regression

model which also showed high results.

Although there were not any direct comparison studies available that aimed to use

machine learning to either regress or classify the principal direction of force, there

were a number of studies that used similar input variables. The majority of studies

that used these variables and are using a machine learning solution are in the classi-

fication application of machine learning. It was therefore decided to start off using a

regression model with the posit that the angle of impact was a continuous variable.

For completeness, the experiment further examined whether assigning the PDOF as a

categorical variable and using a multinomial regression model could improve on those

results and also if a multi-level SVM classifier could outperform them.

2.8 Support Vector Machines (SVM)

Conceptually, a basic linear classifier works by plotting all of the possible instances

contained in the data or otherwise into the input space. A decision boundary is then
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determined between the points and this is then used as a plane that will determine

future classifications. When this is mapped out 2 dimensionally it can be easy to

understand but not always linearly separable. In SVMs the data can be projected into

the feature space which has the same number of dimensions as features and although

this can be difficult to conceptualise (Flach, 2012, p. 23) it can be much easier to

define a linear boundary in this higher dimensional space. This linear boundary can

then be projected back to a non-linear boundary in the input space. For example, see

2.8 wherein the original input space does not have a clear decision boundary which is

linearly separable as it is a triangle of green points within a circle of red points. It is,

however, linearly separable in 2.9 where the three-dimensional rotation of the feature

space on the left shows the red circles are actually above the green ones and a simple

linear plane can be drawn between them (represented by the black plane).

Figure 2.8: Data Points From Above Figure 2.9: Data Points Rotated in 3D

A support vector machine selects the best possible decision boundary by selecting

the line that maximises the margin between the two closest points aka the support

vectors. For better generalisation, the distance between the closest points must be

maximised as this will stop points being mis-classified that are very close to the margin.

This can be described formally (Hsu, Chang, Lin, et al., 2003) as follows: Given a

training set of instance-label pairs (xi, yi, i = 1, ..., l where xiεR
n) and yε1,−1l, the

support vector machines requires the solution of the following optimisation problem -

MIN

w, b, ξ

1

2
||w||2 + C

l∑
i=1

ξi subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0t

This optimisation problem can also be looked at graphically as in 2.10 which was

reprinted from (Raschka, 2015).
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Figure 2.10: SVM Margin Reprinted From Python Machine Learning by Sebastian

Raschka

As can be seen in the left diagram in 2.10 the data is divided into two data types

using a line between their closest points. An infinite number of lines can be drawn

so the issue becomes how to select which one of infinite lines for the best decision

boundary. The answer is to maximise the area between the closest two points in each

of the separate groups and by having two separate hyperplanes, one at positive 1

and one at negative 1, the best decision boundary can be set at 0. This can all be

done in infinitely higher dimensional space for complex problems using kernels. The

experiment followed the following steps (Hsu et al., 2003) -

• Transform the data to the format of the SVM package

• Conduct simple scaling on the data

• Consider the RBF kernel

• Use Cross Validation to find the best value of C and gamma

• Use the best values of C and gamma and train the whole training set

• Test
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Transforming the data for the SVM in R was not a problem as the e1071 package

automatically did this. This was where it took the categorical variables that were in

the training set and it converted them to continuous variables. Next scaling the data

did not represent a problem either as the sensor data input to the model and the speed

were converted to the same scale automatically using the e1071 package.

2.8.1 Model Selection

This represented a key element of the experiment as the number of models that could

be created were infinite and it was important to get it right. The first step of model

selection was to select the kernel method to be used. In (Hsu et al., 2003) the sugges-

tion was to use the Radial kernel as it could be more accurate and efficient to use but

it also suggested that the linear kernel may be better when there are a larger number

of features. It was therefore decided to use both in this experiment and compare the

results. The k-fold cross validation method discussed in the paper was also available

in the e1071 package out of the box, the shortcomings mentioned where a large dataset

can be slow to return results was not an issue.

2.8.2 Strengths and Limitations

The SVM is a good model that performs really well in complicated domains that have

a clear separation but do not perform well when there is a very large dataset with

lots of noise in the data. The SVM was presumed to perform well in this study as

each case only contained one crash event recorded and no other events occurred. This

coupled with the fact that the initial point of impact was always selected correctly at

the highest combined force and then the next half second of data was added to this

to get the crash pulse. Therefore, there was a relatively small amount of noise in the

data. The fact that the NDI was subjective did blur the lines of separation and this

was assumed to be the biggest barrier to high performance.

The SVM may also be used to determine the angle of impact as the sensor data is a
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dependent variable in time series. A number of studies including (Steinwart, Hush,

& Scovel, 2009) mentioned that SVMs can take dependent variables in the learning

environment as they will not weight these variables more heavily.

2.9 Multivariate, Logistic and Multinomial Regres-

sion

2.9.1 Multivariate Regression

Regression is another type of geometric inductive model where the data is plotted

to an imaginary space. This input space can be thought of as an actual model of

space like when latitude is plotted against longitude or a non-intrinsically geometric

space like when weight is plotted against height. As in SVM, these model types use

geometric concepts like lines or planes to impose structure on the data.

A linear regression model aims to take the data and plot it in the input space. It

then chooses a line that best fits the data and the slope of this line (the coefficient

notated by β) is the relationship between the two variables. When the relationship is

just between two variables i.e. the response Y and the dependent variable X this is

called a simple linear regression, see 2.11

Figure 2.11: Simple Linear Regression

As can be seen from 2.11 the points do not all sit on the line as the difference

between these points and the line is called the residual and can be explained formally

as εi = f(xi) − f̂(xi). In order to determine what is the line that best fits from the
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infinite number of lines, the least squares method is used. This is where the sum of

all of the residuals is squared and then the line with the lowest value is the best fit.

Multilinear regression is similar to simple linear regression in that terms are just added

to the linear formula to make the problem space multidimensional. Instead of a line,

the data can be described with a plane and the same process follows to fit a plane as

a line with the least squares method. A multilinear regression model will be in the

format -

yi = β0 + β1xi1 + β2xi2 + εi

Where yi is the response variable or dependent variable. β0 is the intercept of the

line and the way of anchoring it. β1 and β2 are the relationships between y and x1 and

x2 and εi is the error in the model. When adding in a factor to a regression model,

it changes the format of the model slightly as dummy variables need to be applied to

the factors (similar to the SVM model). When interpreting a model with categorical

variables in the dependent variable category, the intercept is replaced with the first

level of the factor and this reference variable is then compared to the other levels in

the factor across the model -

yi = β0 + β1δi1 + β2δi2 + β3δi3 + εi

The above model is a regression model for one continuous response variable with

zero dependent categorical variable. In R, the tool selected the β0 represents the first

level of the factor and is compared to the next three levels of the factor with the next

three β’s representing the relationship and the δ being the dummy variable that can

either be one or zero.

2.9.2 Logistic Regression

When using a response variable that is a two-level categorical variable, a linear model

does not work as the data cannot be described as a line. First, the response variable

must be assigned a number. For example in 2.12 you can see the y variable has been
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assigned a value of zero or one. The x value, in this case, is between zero and 100%

so as the percentages increase you can see the Y value is either zero or one and not

any number in between. This example is in relation to motorcross racing, the x-axis

Figure 2.12: Logistic Regression Shape

is the percentage of jumps ’cleared’ in a race. If the rider lands badly or goes around

a jump it reduces this percentage. The y-axis is whether a rider finishes the race or

not (one or zero). This relationship could be interpreted as: most riders that cleared

more than 50% of the jumps, finished the race. As can be seen, there are three riders

who got over 50% but still did not finish the race (zero in y response but over 50%

in x). This model is fitted differently to the multivariate regression as it represents a

different type of model - a Generalised Linear Model. A logistic regression model is

fit using a maximum likelihood method -

L(β0, β1) =
n∏
i=1

(
eβ0+β1(xi)

1 + eβ0+β1(xi)

)yi ( 1

1 + eβ0+β1(xi)

)1−yi

The likelihood is the joint probability of the data and assuming conditional inde-

pendence the values of β0 and β1 are the ones that maximise the above expression.

The logistic regression model can, therefore, be written as -
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log

(
pi

1− pi

)
= ni = β0 + β1xi

Where the linear predictor is the logit of pi.

2.9.3 Multinomial Regression

Multinomial regression models follow directly from logistic models but they can be

applied to variables that have more than two categorical levels in the response variable.

According to (Bridle, 1990) the following formula applies if all classes can be treated

uniformly -

yi = P̂ (Ci|X) =
exp

[
log
(
p(X|Ci)
p(X|Ck)

)]
∑K

j = 1 exp
[
log
(
p(X|Ci)
p(X|Ck)

)]
2.9.4 Strengths and Weaknesses

Firstly, when using regression it was important to know what the relationship looked

like because using a linear model on data that was not linear can give incorrect results.

Fortunately, there are generalised models that can ensure this was accounted for. Us-

ing the multivariate regression for the PDOF was the initial thought when creating the

experiment but this variable may actually turn out to be more of a categorical variable

in which case the other methods need to be checked (including the multi-level SVM).

The problem was; if a category was the response variable, when using the logistic or

multinomial methods, it was assumed that there was a linear discrimination between

the different categories. This was assumed to be the case in this study but the fact that

the NDI was a subjective opinion means this probably was not the case and the SVM

may perform better. Depending on the angle of impact, the multinomial regression

may work if the multivariate does not, as there should be a clear linear discrimination

between the different angles for each of the tests.

A common problem with the logistic and multinomial regression model, however, is

that each observation needs to be independent of the next. This was a problem in the

PDOF model as there were a number of observations for each crash that were related
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in time series. This point was considered when creating the model.

2.10 Summary of Literature Review

There was a business need for insurance companies to be able to assess claims in real

time as this allows for better budgeting and can help avoid fraud. The private re-

port acted as a good starting point which enabled clear direction in what way the

research should go and what type of experiments might work. There were reports

that measured crash severity and angle of impact using similar methods implemented

in this study but there were no papers found where a comparison was made between

this technique and any machine learning techniques. The data has been used in a

similar fashion but it was only ever on small numbers of cases (3-5 for example) and

there were no large-scale tests. This may be down to the fact that the data was not

as suitable for large-scale tests. What did become obvious from the literature review

was that in simple test cases the model choice was ok but from an engineering point

of view where inductive models were used there are more complex options that may

increase accuracy which included a Spring Model or a finite element method.

There were a few similar studies to this one in terms of machine learning but none

used the same data with a comparison back to a deductive model. There were many

successful classification studies that used similar data. The research into SVMs showed

that was a suitable model for both sides of the problem while the use of regression

threw up a number of concerns that were heeded in the study.

The research had the potential to both improve on a simple model that was suggested

to a business and also help guide future research in what models could be used when

classifying using the NHTSA dataset. This led to the research question that guided

the study -

Research Question

Can ML models match the accuracy of a momentum model for car crashes using
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force in x,y,z planes as the independent variables and the angle of impact or severity

of crash as the dependent variables?
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Chapter 3

Design and Methodology

3.1 Introduction

This chapter outlines the Cross Industry Standard Process for Data Mining (CRISP-

DM) methodology used for creating the experiment and the steps outlined in (Wirth

& Hipp, 2000). The experiment was divided into two distinct parts: 1. Momen-

tum method and 2. Machine Learning method. There are significant differences

between how both of these methods were created but an initial test was done on

each using the same final dataset and then different slices of the data were used for

exploratory findings. Due to the complexity of the study, a methodology was used

to provide a conceptual framework within which the experiment was conducted. This

framework was then used as a guide for the experiment and also structured the chapter

ahead. As can be seen in 3.1 the process was an iterative one that generally followed

these steps consecutively. The framework needed to have a certain level of versatility

because the nature of the problem meant new information was constantly being dis-

covered. This new knowledge then needed to be fed through the framework so issues

that were discovered in later stages could result in a re-assessment of knowledge dis-

covered at earlier stages.
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Figure 3.1: CRISP-DM (Wirth Hipp 2000)

3.2 Business Understanding

3.2.1 Determine Business Objectives

Insurance Claims Managers (CM) have a need to assess the severity of a car crash

and understand the angle of impact as this has can influence the cost of a claim. The

quicker and more accurate these assessments are, the better-prepared insurance com-

panies are for pay-outs. There are currently numerous ways of calculating the severity

of a crash using numerical methods and other engineering techniques but these can

be computationally intensive with a high requirement of data at the point of impact

and there is a certain degree of mathematical expertise needed to create these models.

Creating a model that could be used in real-time as the car crash happens may not

be best served with models that have high computational requirements and may be

better served with an algorithm that is trained on the data and can run quicker in

real time.

The objective from the business point of view was to develop a method that mod-

els a car crashs severity and PDOF in order to give a CM real-time information about
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a car crash. This new model was compared to a simple momentum model that has been

used in studies to determine these variables and conclusions were drawn on whether

the machine learning model was an improvement.

This leads us to the research question:

Can Machine Learning beat Physics at Modelling Car Crashes?

3.2.2 Assess situation

The main resource used for this study was the NHTSA database, this database stores

crash tests that have been conducted back to 1978 and is available publicly for down-

load. A full outline of the data available in this site will be outlined in 3.3.

3.2.3 Initial Data Collection and Data Description Report

The data that was used for the experiment was divided into two types -

• Test, Vehicle and Sensor Level descriptive data

• Sensor Output Data

The descriptive data that was measured in the tables is available as one download

from the NHTSA database1. This data describes the characteristics of each of the

entities involved in the test at varying hierarchical levels.

Test Level (tst table)- This table consisted of 8,291 cases and showed a single line for

every test that was identified through the test identification number (TSTNO field).

It described important information about the test including the test type (TSTCFN

field), the speed of the vehicle before impact (CLSSPD field) and the impact angle

of the vehicle (IMPANG field). The number of tests used for the study was needed

to be reduced to the number that had a test where there was a vehicle used. There

were a number of tests that used impactors, barriers and trolleys which could not be

1https://www-nrd.nhtsa.dot.gov/database/veh/veh.htm
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Table 3.1: Test Data Extract

MAKE YEAR BODY ENGINE VEHTWT VEHCG VEHSPD PDOF

20 1979 4S 4CIF 1530 1298 56.3 0

16 1979 2S 4CIF 1202 1214 56.3 0

15 1980 3H 4CIF 1090 1024 55.8 0

26 1980 4S 4CIF 1177 1087 56.3 0

6 1980 4S V6IF 1730 1349 57 0

28 1980 4S 4CIF 1685 1379 56.3 0

used. The impactors did not have any mass associated with them in the database so

the test was not relevant or testable using the momentum model. The tests that used

the trolleys could have the vehicle moving in a direction but the car was pointed in

a different direction. This gave misleading results so they were also excluded. There

were also some tests that had vehicle into vehicle tests where the complexity of the

model was not sufficient to be able to determine how bad the crash was due to severe

forces felt on the vehicles. It was decided to ensure the model gave accurate results to

only use vehicles that were accelerating at the start of the test as the model required

the variables available in these tests.

Vehicle Level (veh table)- This table (see 3.1 for snapshot) consisted of 10,790 cases

and showed a single line for every vehicle in a test that was identified through the test

identification number (TSTNO field) and the vehicle number (VEHNO field). This

table had lots of descriptive data about the vehicle ranging from the weight, model,

year of car to the speed it was travelling and the crush dimensions of the crash. Key

fields for this study were the vehicle damage index (VDI field), which described the

collision deformation in an engineering classification code (see 3.5) and the make of

the vehicle (MAKE field) which identified any barriers used in the test by the NHTSA

description. The number of vehicles used for the study was needed to be reduced to

the moving vehicle (aka bullet vehicle) in the test and also to any cases that contained

a VDI.
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Sensor Level (instr table)- This table consisted of 422,380 cases and showed a

single line for every sensor in every vehicle in a test and the axis it measured, this was

identified through the test identification number (TSTNO field), the vehicle number

(VEHNO field) and the sensor identification number (CURNO field). The sensors

in this table could refer to sensors that are in relation to the structure of the car,

barriers, crash test dummies and impactors and could vary in their outputs. Key

fields for this study were the sensor type (SENATT field), which described the sensor

(e.g. VECG is vehicle centre of gravity) and the axis the sensor was measuring (AXIS

field). Depending on the sensor type, they could give out any combination of x,y or

z-axis but for this study, the majority of the vehicle centre of gravity sensors gave all

3. There was also a field that showed whether the sensor was primary or redundant as

there were some sensors with multiple data channels. If multiple data channels were

mixed in with each other it would return incorrect outputs. The number of vehicles

used for the study needed to be reduced to any VECG sensors in the tests that are

selected from the other tables.

The output data that was measured in the tables could only be viewed on-line, one

test at a time and represented a significant obstacle to extract the tests required for

the study.

Sensor Output Level (Sensor Output table)- This table was not originally avail-

able as one downloadable file and its creation is described in section 3.3.1. The fin-

ished table consisted of 30,674,133 cases and showed a single line for every output

from a sensor during a test and was identified through the test identification num-

ber (TSTNO field), the vehicle number (VEHNO field) and the sensor identification

number (CURNO field) and the time (Time field) that the output was at. Generally,

each test occurred for 3 to 5 seconds and had units of 0.0008 seconds. Each record

was identified by combining the identification numbers in the three descriptive tables

above (TSTNO, CURNO and VEHNO). 3.2 shows test 3845 and plots the forces that

were experienced in the vehicle centre of gravity sensors, in the X-axis (forwards and

backwards), throughout the time of the test in the top left chart as they were in the

database. As can be seen, a large spike was experienced around the 0.05-second mark
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Figure 3.2: Test 3845 Sensor Output Total Force v Time

and this was the start of the crash. The crash pulse then finished around the 0.10-

second mark.

The bottom row of graphs represented the total magnitude of the forces experienced

on the sensor over the period of the crash with the left one showing the data as was

gathered from the database and the right one filtering to 180 hertz (M. Huang, 2002).In

the literature, there was mention of filtering the data to ensure that any vibrations

felt on the sensor mountings were accounted for. As can be seen in 3.2, the low pass

filtering did change the shape of the wave slightly (from left to right) but there was

minimal impact on the length of the crash. In all four of these charts, it was seen that

the crash begins in around the 0.05-second mark and the crash then ends around the

0.10 mark.
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3.2.4 Key Steps

The key steps for the experiment will be

• Selecting the relevant data for the momentum model

• Combining the data from multiple datasets

• Prepare data for Momentum model

• Create the momentum model

• Determine the accuracy of the momentum model using the ground truth in the

database

• Create the severity model using same features as momentum model

• Create the PDOF model using same features as momentum model

• Determine the accuracy of the model using the ground truth in the database.

• Create the severity model using other features in the database

• Create the PDOF model using other features in the database

• Compare the models

3.3 Data Understanding

The first major assumption made when starting the study was in relation to the ground

truth. The first ground truth used was the crash severity and was determined by the

vehicle damage index (VDI) which was an engineering classification in the vehicle

table. The NDI was broken into three parts - the first two numbers were the direction

the impact occurred from, the next three to four letters were the location of the crush

on the vehicle and the last one to two numbers were the crash severity. The crash

severity part of the classification is the only part that was used in this study. This

classification of the crash severity was purely based on the size of the indentation and
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was subjective in that it was assessed by an engineer by eye. As can be seen in 3.5

the two numbers in the engineering classification were used to code the indent. This

scale was measured from one to ten with one representing a slight indentation and

ten representing an indentation that may result in the car being half its length. The

momentum model used the rate of change in momentum to determine how bad the

crash was so there were expected differences between an accurate readout from the

momentum model to the database based on the subjective opinion of the engineer who

classified the crash.

As both models aimed to classify the crash severity into high or low, it was important

to determine if there was any way of classifying the data into two levels from the ten

levels in the NDI. By taking the mean speed of all bullet vehicles which had a rating

and plotting this mean against each level a graphical representation of the data was

created with 95% confidence intervals (see 3.3). There appears to be a slight linear

relationship between the speed and the severity which would be expected. As can be

Figure 3.3: Average Speed by Rating
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seen in the chart, there was an overlap of the ratings from four to six and again in

two to three so it was determined to split the data from one to three as low and four

to seven plus as high. This point was reinforced by the Crash Investigators paper

(TEXAS, 2008) were the rating one to three corresponds to a car with light damage.

If the levels needed to be split into four levels, level one would represent its own level

as it is clearly different to the others and seven plus would represent its own category.

Another issue related to this field was that the test engineer may input the data

incorrectly, in the wrong format or may have left this field blank. As this was key to

the study, all data in this field that was in the wrong format needed to be removed

and it would then have to be assumed that any field that was filled out correctly was

accurate as there was no way of proving otherwise.

Figure 3.4: Principle Direction of Force (PDOF)

The other ground truth that was being used was the principal direction of force

(PDOF) which was contained as a number in the Test database. The PDOF was the

angle at which the test vehicle felt the impact coming from relative to its direction

of travel. As all tests selected in the study were moving forward, if the car test was

a head-on collision this was a zero degree impact angle. The angle then increased

clockwise depending on where the impact came from. Problems were expected to

42



CHAPTER 3. DESIGN AND METHODOLOGY

arise in that this could be inaccurate in the database or there may be missing data

which would result in a smaller sample space to work with.

Figure 3.5: Engineering Rating

3.3.1 Momentum Model Input Data

A key consideration when looking at the car crash was that the model being built

needed to be used to determine the crash severity and the PDOF for the bullet car

in the impact. The bullet car in testing was the car that was travelling at speed into

a fixed object. There were a number of types of crash tests that the NHTSA track

and the data needed to be reduced to only have tests that a bullet car was involved

in and this was to be selected as the test case. Another point that followed from this

was that all barrier, impact sledge and stationary cars needed to be removed from the

sample space.

The momentum model that was used was based on rigid body mechanics and a sim-

plified momentum model that did not take into account friction or spring forces. It

was therefore very important that the sensor that was used in the experiment was

always the vehicle centre of gravity (VECG) or a sensor that was very close to the

VECG. This ensured that any measurements that were taken referred to the mass of
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the vehicle as a whole and not to any specific part of the car. For example, if the

sensor was on the bumper of the car it would experience rotational forces that may

not be felt at the centre of the car. The Sensor table contained the description of the

type of sensor and it was therefore needed to be reduced to only the cases that had a

VECG sensor.

The other data that mattered to the momentum model were the vehicle weight, the

initial speed of the vehicle, and then the forces felt in the x,y and z directions. The

vehicle weight was contained in the vehicle table and was measured in kilograms while

the initial speed was in the test table and was measured in kilometres per hour. The

initial speed was the measurement taken of the vehicle at the point of impact so there

were slight differences between this speed and the actual vehicle speed but the as-

sumption had to be made that it was correct as there was no other way of measuring

it.

The forces in the x, y and z directions represented a difficult problem because they

were not available as one mass download from the website and each sensor was divided

into the 3 different files which represented each of the x, y and z directions. This meant

that each of these files had to be matched to the relevant test and then each record in

each of the three files had to be matched to the corresponding time. Table 3.2 shows a

sample of one of the tests data in the x-direction. In order for there to be a complete

readout of this sample there needed to be 2 more files that were named test 6 and also

they must have had the same times in the Time column in order for the data to be

joined together.

The length of time that the crash occurs for must be selected in order to calculate the

∆V of the crash. This represented a problem when the comparison was done against

the machine learning model. In order for a direct comparison to be done including all

sensor outputs, a standard length of time was needed to be selected for the length of

the crash. This ensured that the same number of features were fed into the SVM. If,

however, a variant number of sensor outputs were input into the momentum model it

would not be possible to compare the two models with the same input features.

In order for the model to work correctly any rows that did not have a time or x,y,z
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Table 3.2: Example Accelerometer Data Long Format in X Direction

TIME FORCE

0 0.00241

0.000075 0.03241

0.00015 -0.03515

0.000225 0.00215

0.0003 -0.41709

0.000375 -0.02421

value in each of their columns needed to be removed.

3.3.2 Machine Learning Model Input Data

The machine learning model aimed to improve on the speed and accuracy of the

momentum model by using different input variables and training the model before

use. In order for the model to be usable in an insurance company environment, feature

selection needed to be based on the data that would be available to the company before

and after the crash. Data such as the crush distance is difficult to measure at the time

of the incident and there were no sensors in the database that measured this. The

problem was divided into two separate models with one classifying the crash severity

and the other either classifying or regressing the PDOF.

A number of separate tests had to be done on the PDOF to determine which type of

model needed to be used. The total number of cases in the vehicle table was 10,790

and when a “count distinct” of all of the levels was done on the angle it only gave

71 different outcomes. This would seem to indicate that the angle was more of a

classification problem than a direct regression problem. A key determinant of which

model to use was to find out how many distinct cases the angle had reduced to after

all cases had been cleaned.

In order to determine which was more accurate, the momentum or the machine learning

models, the first point of comparison was to compare them on the same input features.
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Depending on how many cases the dataset was reduced to, this was predicted to give

results that would be difficult to draw conclusions from. The next step was to add in

more features from the dataset to see if the accuracy could be improved on but the

key here was to ensure that any features that were added to the model could only be

features that were available to the insurance company at the time of the crash.

The most easily available data for the feature selection were descriptive features about

the vehicle and these should be available prior to any car crash. The sensor output

data was therefore excluded from the severity section of the model and the following

features used instead -

MAKE - This was a categorical variable that described the make of the car and

ranged from various car makes such as Toyota to Ford. This feature was thought to

have an impact on the severity of the crash as it could influence the size and weight

etc. It was given a number to categorise the car instead of using the name. This

field was used instead of MAKED which was the text name of the car which could be

miss-spelled or written differently as well as not input to an SVM model.

MODEL - This was a categorical variable and was similar to the MAKE but gave

the actual model of the car which was categorised by number. Again, this was more

accurate over MODELD, which was a text field, due to the potential of miss-spelled

or use of different names.

YEAR - This was a interval variable and was the year the car was manufactured

and was stored in the vehicle database. This could have an impact on the severity

of the crash due for any number of reasons ranging from stronger, heavier materials,

restrictions, engine size and safety features.

BODY - This was a categorical variable that described the body type of the vehicle

which could be anything from van to 2 door saloon. The data may not have had any

benefit to the model as this information was contained in the make and model data.

ENGINE - This was a categorical variable that described the type of engine in the

vehicle. This may not have been contained in the other variables above as there could

be cars with the same make and model but different engine types. This code was again

determined to be more accurate than the text field that described it and can be an
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input to an SVM model with dummy variables.

ENGDSP - This was a categorical variable that described the displacement of the

car. This was the total volume of the pistons and was measured in cubic centimetres.

This was thought to contain information that was not contained in any of the other

variables.

VEHTWT - This was a ratio variable that gave the measured test weight of the

vehicle including all payload (crash test dummies etc). This gave a relatively accurate

measure of how an average vehicle would weigh in a real-world scenario and therefore

was assumed to generalise well.

VEHWID - This was a ratio variable which gave the vehicle width in centimetres.

VEHLEN - This was a ratio variable which gave the vehicle length in centimetres.

VEHSPD - This was ratio variable and was the actual closing speed of the vehicle

as it approached impact. If there were two vehicles in the crash then this was the

velocity of the two centres of gravity before impact.

PDOF - This was an interval variable and represented principle direction of force

felt on the vehicle during the crash. It rotates around the vehicle centre of gravity

clockwise with 0 representing a head-on collision and 180 representing a rear end

collision. This was used as the response variable for second part of the model. VDI -

This was a categorical variable and had seven categories of information contained in it.

The only part that was needed for the study was the damage index which was the last

two numbers at the end of the string. These were numbered 1 to 10 and represented

increasingly larger indentations on the specified area of the car.

All of the data that was described above can be found in the NHTSA website Test

reference guide2.

2https://one.nhtsa.gov/Research/Databases-and-Software/NHTSA-Test-Reference-Guides
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3.4 Data Exploration/Quality Report

3.4.1 Selection of Usable Data for Modelling

Due to the large level of data that was involved in the study an SQL server database

was needed to be created to store the data in. This was then queried using R for

analysis and modelling. The descriptive tables that were available as one downloadable

file could then be uploaded to this database using the relevant fields as keys. This data

could then be queried to get the Sensor Id number (CURNO field) of each file that

had a VECG sensor in the test. The Sensor output files that were downloadable from

the site were all named in the following format vXXXXX.CC with the X representing

the test number and the C representing the sensor number. Using the sensor table

in the database a script could be written to loop through all of the relevant sensors,

combining them into one file per test and then adding columns with the test number,

vehicle number and the axis to give a final Sensor Output table in the format set out

in 3.3

Table 3.3: Sensor Output in wide format

Signal Time Force TSTNO CURNO SENATT AXIS VEHNO

0 -0.125 -0.21913 1105 11 VECG X 1

0 -0.125 -0.46495 1105 12 VECG Y 1

0 -0.125 -3.0174 1105 16 VECG Z 1

Unless each Signal number had a representation in the X,Y or Z directions they were

removed from the dataset. Initial analysis showed to have times that were negative

(See 3.3) but this was discovered to be consistent with the data description document.

A minus time could occur when the first data point or time zero does not occur at the

start of the reading. It was more important for the sensor to be reading out data at

the same time increment to each other. if this did not happen data would not match

up and had to be excluded.

The analysis was conducted on the sensor output table after all other cleaning steps
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were done a number of tests showed up with strange results. As can be seen in 3.6,

Test 709 had what looks like a sensor malfunction at the beginning of the test and

gave both the maximum sensor output in either direction for a sustained period. This

resulted in an error in the test as this was determined as the point of impact where

the actual point of impact appeared to be midway in the test. In order to ensure that

the test was accurately measured the sensor data was only taken from time 0 of the

test as it was discovered that these maximum force readouts never occurred during

the crash. No crashes occurred prior to this time so it was taken to be the start point.

Figure 3.6: Test Example 709 Figure 3.7: Test Example 5470

Test 5470 (see(3.7) shows what appears to be a sensor malfunction where the sen-

sor read out a very large output at one point near the end of the test. Again this

would cause an error when applying the model because it would determine the point

of impact to be at the end of the dataset where it appears to have occurred a quarter

of the way into the test. This readout was discovered as the length of the crash period

was longer than the crash. Any tests that gave this error were examined further and

removed from the final dataset.

A major issue with the selection of data for the Momentum model was there were mul-
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tiple variables that needed to go into the model and because the model only worked in

specific scenarios the data set used was reduced dramatically. Starting at the lowest

level, the sensor output, only sensors with x, y and z data could be included which

then reduced the dataset. Next, at the sensor level, only sensors with VECG as the

type could be used as well as only sensors that were primary. The vehicle level data

also had to be reduced as only vehicles that had a VDI record in the correct format

could be used as well as excluding all vehicles that were made by NHTSA (this referred

to all barriers and impact objects) and lastly the tests had to be reduced to all crashes

were the tests involves a moving vehicle. The combination of all of these reductions

resulted in a small data sample. Luckily this was a deductive model and was still able

to give results but the problem was the number of crashes that were split between

high and low was now biased.

As machine learning needs a large number of inputs to create a usable model the

feature selection for the crash severity and impact angle were not as restrictive. The

problem could be broken into two and the training done separately but in order for

it to be an accurate comparison, it must first have been done with the same input

variables. If the data was reduced to a size were the training of an accurate model

could not be done, then splitting the data out and using the wider database to train

the machine learning model was an option. This would give much more data to get

good accuracy readings. Due to the specific selection of suitable data that was input

into the momentum model a certain level of bias was that dataset and it was difficult

to get accurate results on. It was therefore better to randomly select the training data

set from a combination of the momentum dataset and everything else.

Another issue with data quality was in the sensor output downloadable files from the

NHTSA. As the Python Selenium script looped through all of the test files and it

downloaded each file and saved to the desktop. There was a total of 164,074 sensors in

the database and 130,421 files were downloaded cleanly. There were 603 test files that

equated to the 33,364 sensor files that returned a ’file not found’ or partial download

of the data. These files were excluded from the database from here on. All of these

sensors were downloaded for completeness of the database and most were not needed
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for the models as the momentum model only used VECG.

Once all tables were in the database a major issue in data quality was the NDI. There

were initially 10,790 observations in the vehicle table but the engineering classification

was found to be entered incorrectly in a number of ways. There were initially 344

different ways the NDI was entered but on closer inspection, these included inputs

in the incorrect format, null values and values that did not make any sense. It was

decided to use regular expressions to reduce the data set down to only data points

with the format of 1 to 2 numbers followed by 3 to 4 letters followed by 1 to 2 numbers.

3.5 Data Preparation

In order to ensure that accurate data was input correctly into each of the models, each

of the tables were reduced to the cases that could be input to the model. This could

be rolled back on in the final tests if the data was reduced to levels that were not

suitable to train a model.

The tests selected from the test table were all crashes that involved a bullet vehicle.

This was determined by selecting only the tests that had a TSTCFN (test classifica-

tion) of - VTB (vehicle to barrier), VTI (vehicle to impactor), VTP (vehicle to pole).

There were a number of cases that were VTV (vehicle to vehicle) but in order to cal-

culate the ∆V of these crashes a more complex momentum model would have to be

used. With the reduction of these cases, there were 3,559 tests left.

As mentioned the NDI needed to be in the correct format in the vehicle table. Using

regular expressions to get the correct format reduced the table to 4,790 observations.

Unfortunately, there was no way to determine that what was entered in the right

format by the engineer is an accurate reflection of the crash. It was also important

to ensure that no barriers or impactors were the subjects of the test and that they

were applied to vehicles only. All cases that had a make of ’NHTSA’ were therefore

removed which reduced the table to 4,735.

The instrument table then needed to be reduced to ensure that the type of data that
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was being read into the models was in the right format. This meant that all sen-

sors that did not have a SENATT (sensor attachment) of ’VECG’ (vehicle centre of

gravity) must be removed as the momentum model could work very differently on a

sensor in the wrong location. Next the right type of sensor needed to be selected so

only sensors with a SENTYPD (sensor type description) of ’Accelerometer’ could be

included. Lastly there could be a couple of different channels in the one sensor so it

was important to only select cases that have a CHSTATD (Channel status description)

of primary. This reduced the sensor table to 8,205 usable sensors.

3.6 Data Cleaning

On inspecting the sensor output dataset there were a number of cases that had a low

number of observations or they had sensor output data that looked like a malfunction

- 2663,6928,5408,6979, 5405,5408,6286,1804,5470, 6867,6220,6508,2301,3899,6867. It

was therefore decided to remove them completely from the final datasets as they

would give error messages if they are input into the models.

3.7 Data Construction

When creating the datasets that needed to be input into the models it was important

to create new data that would act as the start point of the crash. The method used

was to find the largest forces felt on the vehicle in the x,y and z-direction. This was

done by adding the square of each of the forces in the 3 directions and then getting

the square root of these. This ensured that no matter what direction the force was

felt in, the magnitude of all of the sensor data was summed for all directions.
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3.8 Modelling

3.8.1 Momentum Model

As the momentum model was a deductive model there was less work done in terms of

model creation. The model used was the same as the one in a number of publications

and the commissioned report. All that needed to be done was to feed the data into the

model. The model used a table with a list of all the tests that were to be fed into it and

all of the re-shaped sensor data was needed to loop through. For each test, the initial

speed, mass and x,y,z data was feed into the model. At the point where the highest

combination of forces was felt on the sensors, this was referenced as the start point of

the crash. The length of the crash was then determined using a constant measure of

close to half a second. The integral of the forces was then taken by multiplying the

mass by the vector of the crash. Depending on the magnitude of this vector a severity

was determined and lastly, the rotation of 180 degrees of the direction of the vector

was taken and this was the PDOF.

3.8.2 Machine Learning Models

The machine learning section of the study was divided into two separate models. One

model aimed to measure the crash severity using a classification technique called Sup-

port Vector Machine (SVM). The other section aimed to measure the angle of impact

using a regression model.

SVM crash severity - an excellent technique for classification are SVMs. They

are a supervised learning technique that is a non-probabilistic linear classifier. SVMs

classify data points into separate groups by dividing them out using a hyperplane.

The best choice hyperplane is chosen by finding the best fit line that maximises the

distance between the two closest points. As the study was aimed at improving on

the momentum model the starting point was to use the same input features that were

selected for the momentum model. SVMs are useful in that they can be created using
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a relatively small number of data points yet still generalise well.

The key assumptions there were made about the SVM was that the engineering clas-

sification was an accurate measure of crash severity and that therefore when it was

trained it was able to generalise to other crashes.

A major foreseeable issue that arose from this model was that the narrowed down data

set applied to the momentum model was biased in that it was very specific crashes

that could be used i.e. crashes that had a bullet car and an impact point. It may

not, therefore, generalise to other more complex crashes and may not be very good at

generalising outside the specific dataset that was chosen for the momentum model.

Regression Model - the second section of the machine learning section was to input

the data points into a regression model to see if there was a relationship between the

angle of impact and the same input variables that went into the momentum model.

The assumptions for this model were similar to the assumptions in the SVM model in

terms of the data but there was also the added assumption that the angle of impact

was a continuous variable. The angle of impact was the dependent variable and there-

fore had a major bearing on what type of regression model to choose. If the angle was

more of a continuous variable then a simple linear regression model may have been

chosen but if the angle turned out to be more of a factor than a non-linear model like

logistic regression or ordinal logistic regression could be chosen.

3.9 Evaluation

All of the models that were used gave an output that was checked versus the ground

truth contained in the database. The results could, therefore, be checked using a

confusion matrix with the positive value being high severity in the crash and the

negative value being the low severity of a crash. This gave an output of the data in

the following format -

• Accuracy - Overall how often was the classifier right. This is measured as a

percentage and is mathematically expressed as Accuracy = (TP + TN)/(TP +
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FP + TN + FN)

• No Information Rate - Ensures that if the majority class made up too much of

the dataset the accuracy of the model could be discounted. For example, if a

dataset had the majority class making up 90% of the data then if the model

predicts the majority class 100% of the time it would have a 90% accuracy. In

order for a model to have any credibility, it must have a no information rate

lower than its accuracy

• P-Value - A measure to see if the accuracy of the model was better than the no

information rate (or just selecting the output by chance).

• Sensitivity - Also known as the Recall rate, was the rate at which the positive

class (high severity in the crash) was predicted correctly. It can be expressed

mathematically as Sensitivity = TP/(TP + FN)

• Specificity - Was the proportion of the negative class (low severity in the crash)

that was predicted correctly and is expressed mathematically as - Specificity =

TN/(TN + FP )

3.10 Strengths and Limitations of Approach

3.10.1 Strengths

The ability to compare all of the models outputs using the confusion matrix was a key

strength meaning the overall accuracy could be compared directly against each other

using a few key statistics. The ability of the machine learning models to be split out

and be trained on different datasets meant there was less restrictive data that could

be used to train the models if the models could not be trained on the reduced dataset

for the momentum model.

The full data dictionary supplied with the dataset enabled the dataset to be understood

completely in relatively short period of time and also allowed the removal of a number
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of irrelevant variables from the models. This coupled with the wide selection of data

in the tables allowed for versatility when choosing the approach.

3.10.2 Limitations

A number of weaknesses became apparent as the study was conducted. Majority of

these weaknesses came from the data itself and it is therefore inherent to this particular

study.

Ground Truth - The ground truth in the database was divided into two with the

crash severity being determined by the NDI and the principal direction of force being

determined by PDOF in the dataset. The issue with the crash severity it is a subjective

opinion from an engineer on site that is determined by visual inspection. This means

that what one engineer may classify as a relatively small impact another may classify

as larger or smaller.

The principal direction of force was a better measure in the database in that it was

determined by where the vehicle was impacted and was a clearer definition with less

ambiguity. The problem with this field was that the data set may have been heavily

biased in that certain tests were more important for the NHTSA. Therefore there were

many more tests of a certain angle of crash and this coupled with the reduction to a

specific crash type where a bullet vehicle was involved led to more bias in the final

clean dataset that was used for the models.

Data Bias - Through the literature review and also the data understanding section of

the study it became apparent that the database was heavily biased towards a number

of types of crashes. The NDI for the cleansed crashes was heavily biased to crashes

that had a low severity and also with head-on crashes and crashes from the left. This

makes sense in that the data that was selected had to have a car moving so it is unlikely

that there would be a high number of rear-end crashes on these. This is backed up in

the literature that says head-on collisions and lateral collisions cause severe injuries.

Rear end collisions cause higher levels of injuries but these tests would not have a

moving vehicle as the test case and therefore could not be used in the test.

Data Quality - On initial inspection of the dataset the number of test crashes that
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were available for the study where over 3000+. This was one of the reasons for selecting

this study as there was enough data to have a versatile study that may give genuine

insight into car crash modelling. As the dataset was cleaned however this significantly

reduced the available cases that could be fed into either model which restricted the

results.

Model Complexity/Selection - On the momentum model side a simple model was

selected due to the literature and the complexity added into a model such as a Spring

model would have required significantly more research outside of the scope of the

study. The momentum model can increase in complexity adding in more features such

as friction or elasticity, again subjects that are outside of the scope of the study. It

was therefore decided to select a simple model that can give results that are easily

compared with the outputs from the machine learning models.

When selecting the SVM, a current successful classification model was chosen that has

shown in the research to be accurate in similar problem types. The issue with using

the model as when the study was conducted as it was shown that a large time series

was used as an input to the momentum model. Therefore when the exact same input

features were selected model for model the SVM may not be the most accurate model

of choice and may be better served with a time series model such as a hidden Markov

model.

Similarly when selecting the model choice for the angle of impact the independent

variable at the start was the angle of impact which was assumed to be a continuous

variable. This in fact turned out to be more of a biased factor and may be better

served with a classifier or ordinal regression model.
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Chapter 4

Implementation and Results

4.1 Background

This chapter details how the experiment was performed and outlays the results of

the experiment. As this experiment is a comparison of two methods the experiment

followed two distinct paths, the momentum model and the machine learning models.

4.2 Business Understanding

As discussed in the previous chapter the goals that were set using the CRISP-DM

methodology are as follows -

• Selecting the relevant data for the momentum model

• Combining the data from multiple datasets

• Prepare data for Momentum model

• Load data into momentum model

• Determine the accuracy of the momentum model using the ground truth in the

database
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• Create the severity model using same features as momentum model

• Create the PDOF model using same features as momentum model

• Determine the accuracy of the model using the ground truth in the database.

• Create the severity model using other features in the database

• Create the PDOF model using other features in the database

• Compare the models

These goals will be referenced throughout this chapter to ensure that the targets

are being met throughout the experiment. Although the goals were followed it was

difficult to follow them sequentially as the process was developed with the information

gained from each section.

4.3 Data Understanding

This represented a major part of the study as the amount of data available in the

database meant it was difficult to know which variables would be needed. The avenue

chosen was to first focus on the data that was required for the momentum model and

then to come back to the original data and partition it into datasets for different tests.

4.3.1 Selecting the Data

Starting with the Test table the important thing was to understand what type of

information was contained in the table. The table started with 8,291 observations

but this needed to be reduced substantially to be applicable to the models in the

experiment. Firstly the NHTSA uses a number of different types of crashes that

can involve vehicles, barriers, impactors and poles. The type of test in the table is

contained in the ’ TSTCFN’ field in the table.
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Table 4.1: Types of tests in NHTSA database

TEST CONFIGURATION NO. TESTS

IMPACTOR INTO BARRIER 20

IMPACTOR INTO IMPACTOR 10

IMPACTOR INTO VEHICLE 2167

LANE DEPARTURE WARNING PERFORMANCE TEST 33

LOW RISK DEPLOYMENT 671

NO VALUE 15

OTHER 90

ROLLOVER 56

SLED WITH VEHICLE BODY 314

SLED WITHOUT VEHICLE BODY 521

STATIC AIR BAG TEST SIDE 474

VEHICLE INTO BARRIER 3198

VEHICLE INTO IMPACTOR 14

VEHICLE INTO POLE 347

VEHICLE INTO VEHICLE 311

As can be seen in 4.1 there are a number of types of crashes that will not be

relevant to the study. As this was based on an insurance company problem and needs

to be applied to vehicles on the road the data set was reduced to only cases that have

a vehicle involved in a crash. Therefore all of the crashes that had a TSTCFN that

began with a vehicle where included in the study. After running through the entire

experiment it was decided to come back to the various types of tests and add them in

to see if the dataset could be improved and the bias reduced. All impactor tests were

added along with ”ROLLOVER”, ”OTHER” and ”VEHICLE INTO VEHICLE” tests.

The problems that arose from this were the impactors were not added correctly to the

model as they had no mass in the database. When the results were plotted against

the National Damage Index (NDI) it gave a flatter relationship than was experienced
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in the 4.4 so it was decided to proceed using the original dataset.

The total number of tests that could be used from the test table was 3,559 as all

”VEHICLE INTO VEHICLE” crashes were excluded due to the added complexity

needed in the model when two vehicles are involved. In total, this represented a 57%

reduction in the number of usable tests in the dataset from the original number.

Next, the vehicle table was assessed for which variables were important and which

ones to reduce the dataset by. The variables in the vehicle table were all descriptive

of the vehicle both before the crash and after it. Only cases that had a valid NDI

were kept in the dataset and this reduced the table from 10,790 cases to 4,790 cases -

a reduction of 56% in usable cases. This combined with a further reduction in the 55

cases that had were listed as an NHTSA make in the database represented a significant

reduction in potential cases.

The last major reduction in the number of cases that were to be used was in the

sensor table. This table needed to only have VECG sensors that were primary and

were measuring accelerometer data. This represented a reduction from 422,380 cases

to 8,205, a 98% reduction in the data from the original dataset. This was the most

significant reduction in the sensors that could be used but also represented a different

avenue to test because if this reduction could be excluded and the machine learning

algorithm trained on some of this missing data it could represent a better way of

modelling the crash.

4.3.2 Combining the Data

Once the data was reduced down to cases that could be applied to the momentum

model they needed to be joined together to get a final dataset. The final datasets that

were used in the momentum model were divided into two type. The first (4.2) had all

of the data that occurred once in the test including the max force. This table acted as

the test list and was looped through to select the sensor output from the main sensor

output table (4.3).

The final momentum table had 190 tests to apply to the model and this was used

to select 190 sets of sensor data from the sensor readout table. Each test had a vehicle
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Table 4.2: Momentum Model Data Sample

Time TSTNO VEHNO Force.X Force.Y Force.Z absum mag

0.0051 7 1 -44.206 23.719 -88.945 156.87 102.1175

-0.0518 518 1 44.516 153.11 144.77 342.396 215.3664

-0.0315 709 1 -125.18 129.15 -127.98 382.31 220.7456

0.0575 14 1 -5.9945 -24.484 57.872 88.3505 63.12344

-0.03138 709 1 -125.18 129.15 -127.98 382.31 220.7456

-0.029 662 1 0.83733 128.72 -128.43 257.9873 181.8345

-0.0458 476 1 44.729 150.73 142.26 337.719 212.0333

-0.02763 803 1 -138.7 139.17 -143.4 421.27 243.2479

Table 4.3: Accelerometer Sensor Output in Wide Format

Time TSTNO VEHNO Force.X Force.Y Force.Z

0 7 1 -0.12103 0.070007 0.078013

0.000075 7 1 -0.12103 0.070007 0.078013

0.00015 7 1 -0.12103 0.070007 0.078013

0.000225 7 1 0.32882 0.5627 0.078013

0.0003 7 1 -0.12103 0.070007 0.078013

0.000375 7 1 0.32882 0.5627 0.078013

travelling at speed and one VECG sensor that output the correct data. This repre-

sented a smaller data set than was expected due to the initial size of the database but

the advantage of using the physical model over the machine learning models was it did

not need to be trained. It did, however, need to have enough results to show statistical

significance in the results and the initial presumption was this would be difficult to

prove with this dataset.

The sensor table was initially in long format as the table listed each of the sensor

readouts in three separate lines so for every millisecond there were three readings with
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three forces all categorised by the AXIS column. This was re-shaped to a wide format

in order for each time step to have one occurrence with x,y,z force readout (see 4.3).

These were combined with the data that occurred once per test i.e. the test number,

vehicle number, the speed of the vehicle at impact and the vehicle weight.

The combined dataset was then used as the reference dataset as it contained all of the

details that occurred once per car test and each test number could be looped through

while all of the sensor data was contained in the sensor output table.

4.4 Data Preparation

Once the combined dataset was created it was loaded into the momentum model.

There were a couple of things that needed to be done with the data before this loading

could occur. First thing was to create a variable that could be used to determine

the start point of the crash (see column ”mag” in 4.2). This was determined by the

largest force felt on the vehicle in the combined x,y,z planes and was determined by

the following formula -

magnitude =
√
x2 + y2 + z2

This new variable was added to the combined dataset so every record had a mag-

nitude assigned to it. It was therefore easy to determine which record per crash was

the impact point as it was just a case of finding the max magnitude per test number.

This point acted as point 0 of the crash and the last point in the crash was determined

by taking the point half a second later in the crash. All of the points in between these

points were decided on as the crash data points. The half-second time length was

the length of time used in the private study. This led to inaccurate results for the

momentum model as each crash length can be different. Each of the sensors in the

tests read the accelerometer data that was felt on the sensor so inherently the sensor

also picked up the vibrations felt by each sensor on the mount in the vehicle. In order

to filter out this noise low pass filtering was used in the machine learning models but

it was not included in the original momentum model as created in the private study.
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Lastly, the data was summarised to see which variables had different numbers of oc-

currences to each other and any ”N/As”. As the data was fed into the model it was

important no ”N/As” in the data were imported as it made the model crash. The ini-

tial combined data frame was actually 198 observations but by running it through the

momentum model a number of anomalies were noticed as the model crashed. The fol-

lowing test cases were therefore removed as they did not have enough data points in the

crash data or the sensor gave out strange readings such as maximum output for a sus-

tained period before the crash (3.6) - 2663,6928,5408,6979,5405,5408,6286,1804,5470,

6867,6220,6508,2301,3899,6867.

4.5 Momentum Model

4.5.1 Crash Severity

The momentum model selected was one that was used widely in engineering to deter-

mine the ∆V of a moving body. The mass was multiplied by this to get the change in

momentum. It worked by first determining the impact point of the vehicle, then tak-

ing the length of time the crash lasted for and then calculating the change in velocity

over this time. Once the change in velocity was calculated it was then classified into

two separate levels - high and low. The angle of impact was calculated by using the

vectors calculated for the change in velocity and then rotating the vector 180 degrees

to determine where the crash occurred from.

The initial impact point was determined in the data preparation section 4.4 and was

-ε in the following model -

∆p̂ =

∫ timp+ε

timp−ε
mâdt

The endpoint of the crash (+ε) was taken from the private study which took around

half a second of the crash as the length of time. This was determined by getting the

rate of change of time and if it was larger it increased the number of steps taken in

the crash. In this study, the time step was generally 0.0008 seconds so the following
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was done to determine the number of steps to choose as the car crash length -

T =
0.04

∆t

By having the fixed number 0.04 as the numerator any changes in ∆t resulted in a

change in the number of points that were taken from the test to ensure the total time

taken for the car crash was constant at around 0.5 seconds. This ensured the number

of input variables remained constant and enabled there to be a direct comparison with

the SVM model.

Once the length of the crash was determined the next thing to do was to multiply the

x,y,z forces by gravity for each data point to convert the acceleration from g-force to

metres per second. After this, the velocity of the vehicle was determined by getting

the integral of this acceleration data using the trapezoid rule which determined the

total change in velocity over the period by calculating the total area under the curve.

This area was determined by breaking each point into a trapezoid and getting the area

of this and adding them together. The area of a trapezoid was calculated like this -

1

2
(ai+ ai+1)∆t

In this study ai was the metres per second at any point, ai+1 was acceleration at

the point that follows and ∆t was the rate of change of time between the two points.

Once the data total magnitude of the crash was calculated using the trapezoid rule

the magnitude was multiplied by mass and then needed to be classified into high or

low. In the literature (Shelby, 2011) there have been studies that determined that a

change in velocity of 2.5 or over was considered severe or serious and below this is

considered non-serious. This level was chosen to categorise the crash into high or low

and is also reflected in the private study (Kevin Brosnan, 2017). The data was fed

into the model and the results were taken for every crash and were added as a column

into table 4.2.

This brought the experiment to the fourth goal as determined by the CRISP-DM

methodology - determining the accuracy of the momentum model. The ground truth

contained in the database needed to be added to the table 4.2 first. This was contained
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in the NDI so the last two numbers were removed as these classified the depth of

the crash distance by an engineer. Looking at this data it was important to try

Figure 4.1: Mean Magnitude versus Engineering Classification

and establish a visual relationship in the data to ensure that the results would be

accurate. A slight linear relationship was detected between the max magnitude and

the engineering classification. The data was graphed with 95% confidence intervals

in 4.4. As can be seen, the data seemed to be following a linear trajectory from

classification levels 1 to 3 but the levels above this show very wide confidence intervals

and some reductions in the magnitude of the crashes at the higher levels. This was due

to the fact the data had to be reduced to the very small number of cases that could

satisfy the momentum model. As can be seen in 4.4 there are a relatively high number

of cases at the lower end of the classification scale but once it gets up to level 4 there is

no longer a meaningful relationship as the sample space is reduced significantly. This

was down to the low number of tests that were in the final dataset that had a high

severity of the crash. This was unfortunate in that it also affected the no information

rate in the output of the results by giving biased results to the low severity cases as

there were not enough high results to compare to.

66



CHAPTER 4. IMPLEMENTATION AND RESULTS

Table 4.4: Engineering Classifications Cases

ENG CLASS # CASES

1 9

2 60

3 93

4 7

5 10

7+ 8

It was decided to use the levels 1 to 3 as low severity and levels 4 and above as high

severity in the study. This was to reflect the guidelines in the Vehicle Damage Scale for

Traffic investigators (TEXAS, 2008). The scale clearly states that the damage in the

set of photographs from scale 1 to 3 are considered minor, the damage in everything

above this is considered moderate to high.

With this scale in mind the data was put through the model and then the results were

compared to the ground truth using a confusion matrix 4.5. As can be seen, the data

returned some disappointing results.

Reference

Prediction High Low

High 6 4

Low 19 158

Table 4.5: Confusion Matrix - Momen-

tum Model no up-sampling

Measures Statistics

Accuracy 88%

95% CI 77% - 88%

Sensitivity 24%

Specificity 98%

No information

Rate
87%

Table 4.6: Confusion Statistics- Mo-

mentum Model no up-sampling

Although the initial look at the table suggested there was a high level of accuracy

from the experiment it soon becomes obvious that this was because of the bias in the

67



CHAPTER 4. IMPLEMENTATION AND RESULTS

dataset towards low severity crashes. The no information rate of 87% in the dataset

coupled with an accuracy of 88% suggests that this model was only accurate because

the majority of the cases have a low severity. In order for the model to show any

meaningful results, the data-set needed to have the no information rate reduced. This

could either be done by taking a new set of results which was impossible at the time

or up-sampling the data to reflect what the sample would look like when each level

had the same number of tests.

With up-sampling there is no additional information added to the sample so the levels

5 and 7+ so the results of this experiment were therefore only really representative of

the original sample information.

Although this data was less biased the data was also less accurate as would be expected

because of the relatively linear set of data that was occurring between 1 and 4 when

graphed in 4.1. The new up-sampled data had 93 tests per level.

Reference

Prediction High Low

High 67 15

Low 212 263

Table 4.7: Confusion Matrix - Momen-

tum Model - Up-Sampled

Measures Statistics

Accuracy 59%

95% CI 55% - 63%

Sensitivity 24%

Specificity 94%

No information

Rate
50%

Table 4.8: Confusion Statistics -

Momentum Model - Up-Sampled

This showed a statistically significant result of a p-value < 0.01 so the null could

be rejected that the results were due to chance. The problem was the up-sampled data

cannot be representative of the population because there were not enough samples of

higher severity crashes.

As the data had been shown to be unreliable in determining results from the momen-

tum model it was decided to change some of the parameters in the model to try and get

more even results. The first thing done was to change the engineering classification in
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order to split the data more equally between high and low. This resulted in 118 cases

that were high and 69 cases that were low. The problem now shifted from the being

highly biased with a no information rate of 87 and an accuracy of 85 to a less biased

data set of 63 and an accuracy of 42. There was less need to up-sample this dataset

but it was tested anyway but it had little effect on the accuracy with an increase of 5

to 47.

Lastly, the classification rate in the momentum model was amended to try to get bet-

ter results. The number used to classify a crash as high was originally set to 2.5 and

this was reduced to 0.89 by trying to split the dataset with half of them high and half

of them low. This gave an accuracy 55 but with a no information rate of 63 this was

shown to be no improvement over the up-sampled method in 4.8.

4.5.2 PDOF

As the PDOF was determined from the same dataset and was a simple rotation of the

momentum vector the data did not have to be cleaned or re-shaped for this section.

The data that was being used to determine the PDOF was the PDOF field in the

vehicle table. With the final sample that was fed into the momentum model a summary

of the number of cases for the angle of impact was taken 4.9

Table 4.9: PDOF Distribution

Angle 0 1 20 90 270 285 297 310 330 354 356

Count 98 1 1 3 18 59 1 1 2 2 1

It was clear from this point that the data was a classification problem as there are

not enough tests that occurred from continuous angles. As the tests for angles like 1

degree or 20 could represent data quality issues it was decided to bin the angles into

similar categories. If the crash had an impact angle between 330 degrees and 30 this

was classed as a front centre impact (FC). If it occurred between 30 and 150 this was

classed as a side right impact (SR), if it was between 150 and 210 this was classed

as a rear impact (BC) and if the impact occurred from 210 to 330 it was considered
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a left impact (SL). These classifications were run through the model and the results

were compared to the PDOF field in the database.

FC SL SR BC

FC 76 23 0 0

SL 13 43 0 0

SR 10 7 3 0

BC 4 8 0 0

Table 4.10: Confusion Matrix - PDOF

Momentum Model

Measures Statistics

Accuracy 65%

95% CI 58% - 72%

Sensitivity 74% 53% 100% NA

Specificity 73% 88% 91% 93%

No information

Rate
55%

Table 4.11: Confusion Statistics-

PDOF Momentum Model

As can be seen, the accuracy was similar to the up-sampled engineering classifica-

tion at 65% and the sensitivity and specificity are high for both in that they are over

70%. The high level of frontal impacts was due to the data having to be reduced to

cars that were moving and these were coupled with the high level of side left crashes.

This was reflected in the literature where head-on crashes and lateral crashes are men-

tioned as causing lots of damage to cars. The NHTSA database was biased towards

these tests as these were the most important for car manufacturers.

Although the data could be classified into a rear shunt (BC) the data did not provide

any samples which was due to the restrictive nature of the momentum model’s need to

have a vehicle travelling at speed i.e. there were no tests that a vehicle was travelling

at speed that was crashed into.

4.6 Machine Learning - Severity Classification

Following the CRISP-DM methodology the next step was to take the data that was

used in the momentum model and try to see if the results could be improved on using

the machine learning models. The fact that there was a relatively small amount of

data for training and validation means a Support Vector Machine was a good choice
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for classification. The SVM is a linear model and these are preferable if there is limited

data and a need to avoid over-fitting to the data. The model was built in R using the

’e1071’ package.

4.6.1 Momentum Data Model

As the study aimed to prove that the momentum model could be improved on by

using machine learning the first step was to use only the data that was used in the

momentum model. As there were around 50 points with an x,y, z-direction this led

to a large number of features that fed into the model. Once these features were all

fed in the same way it did not impact the model as they were all fed in for each crash

consecutively. A problem that arose, however, was the curse of dimensionality which

is the more features that are added to the model the more likely they will fit the

data-source and not generalise well due to over-fitting.

Data Preparation

The first step was to take all of the points in each crash and get the x,y,z data that

outputs for each point. This dataset was created and re-shaped so every line for each

crash has all of the x points running from 1 to 51 followed by all of the y and z points.

The data points were then low-pass filtered before downsizing to ensure there was a

reasonable number of features input to the model. These points were then joined to

the initial speed, mass and test number for each point giving each crash a total of 156

features and the damage level.

To start with only the data that was available to the momentum model was used, so

the training and validation data sets needed to be chosen from the 190 observations.

This was done randomly with fifty percent used for training and fifty percent used for

validation while there was no test data set used as there were not enough observations.

From the literature the following steps needed to be taken when the SVM was created

-
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• Transform the data to the format of the SVM package

• Conduct simple scaling on the data

• Consider the RBF kernel

• Use Cross Validation to find the best value of C and gamma

• Use the best values of C and gamma and train the whole training set

• Test

The e1071 package ensured that the data that was in categorical format was automat-

ically converted into dummy variables and applied to the model. Similarly, the option

of ’scale’ was selected to ensure that the continuous data were all brought to the same

scale. For every experiment done it was decided to first do it with a linear kernel and

then test it with a radial kernel to ensure all results could be compared. It was also

important that any model that could have the PDOF as a dependent variable was

tested with the PDOF in it and without it. This ensured that if the model were to be

deployed with an insurance company they could use either depending on what data

was available.

Cross Validation for C and gamma

From the literature (Kohavi et al., 1995) it was decided that in order to choose the

correct type of model 10 fold cross validation would be used to calculate the best esti-

mate of accuracy for the model. C is the cost error for a soft margin when applied to a

multidimensional model. The soft margin is slightly different to the margin discussed

in the literature review in that the soft margin allows some points to fall on the wrong

side of the margin which can lead to the model better generalising. The model used

a cross-validation technique where the data was partitioned to allow training on 90%

of the data and then validation on 10%. This was then done randomly on 10 different

folds of the data and the average value of c, the cost error for the soft margin was

taken. A large value for C is expected to give a low bias and high variance.
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Gamma is the parameter of a non-linear kernel. As the data may not be linearly

separable in a particular dimension it may need to be projected to a higher dimension

where it is linearly separable. Gamma controls the shape of the peaks of the data

in a higher dimension which can lead to points that are far from each other in lower

dimensions being classified as similar or vice versa. A low gamma is expected to give a

low bias and high variance. This was again tested for using the k-fold cross validation

similar to the C value.

The data was run through the model with the maximum set of features that matched

the momentum model. The k-fold cross validation gave a model that had a C of 2 and

a sigma of 0.04548272. The output of results did not show an improvement on the

momentum model as it gave an accuracy rate of 88% with the same no information

rate of 88%. Interestingly the correlation matrix showed high levels of correlation (over

50%) for each data point and its following 5 occurrences. It was therefore decided to

reduce the data-points to measure every 5 occurrences by doing a low pass filter on the

data and downsizing it. This reduction in the number of data points that were used

in the model did not give a higher rate of accuracy as the no information rate was still

too high due to bias. The number of data points per crash was then varied and each

output of the models but the outputs were all the same. Next, the radial model was

applied to the same data using the same parameters but this gave an improvement

of 1% in accuracy with the same ”no information rate”. This ”no information rate”

came back to the same problem where the data had been reduced to fit the momentum

model which in turn made the data biased.

It was therefore impossible to say which model was more accurate as there was not

enough data. To counter this issue the data set was up-sampled similar to the mo-

mentum model. Although no new information had been added to the dataset this

up-sampling did help to see what the results would have been if there had been more

tests per engineering classification.

The low level of accuracy may have been down to the high level of features in the data

set so the x,y,z data were fed through a correlation matrix. It was therefore decided to

reduce the data-points to measure every 5 occurrences through low pass filtering and
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then downsizing the data using the decimate function in R. There were two types of

filters to be chosen from so 8 experiments were done with multiple downsize factors,

the results of these experiments are in table 4.12. In order to counter to any shift in

time that was expected to be introduced due to the decimate function a sample of 60

was taken both before and after the crash.

Table 4.12: SVM Output Using Momentum Features

Downsize Factor 0 5 10 50

Accuracy IIR filter 62% 61% 61% 61%

Accuracy FIR Filter 68% 68% 68% 68%

As can be seen the lower the number of x,y,z rate of accuracy is higher using the

FIR filter and there are no differences across the various downsizing experiments. This

coupled with the high correlation of every sensor readout with its next five readouts

led to the decision to use the downsizing factor of 5 or 10 for future experiments.

This filtering was applied to the model and it was tested both in Linear format and

radial on the up-sampled data. The linear model gave promising results with a 70%

accuracy, a sensitivity of 88% and specificity of 45%. The radial model gave the best

results with an accuracy of 98% which was statistically significant with a p-value <

0.01, shown in 4.13.

Reference

Prediction High Low

High 186 5

Low 0 134

Table 4.13: Confusion Matrix Up-

sampled Radial SVM

Measures Statistics

Accuracy 98%

95% CI 96% - 99%

Sensitivity 100%

Specificity 96%

No information

Rate
57%

Table 4.14: Confusion Statistics Up-

sampled Radial SVM
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4.6.2 Descriptive Features Models

Model Type 1 - All features - Momentum Model Data

The next experiment aimed to maximise the potential of the NHTSA database by

looking at other features in the database and building models based on these features.

These were features that were descriptive of the vehicle and also gave some information

about the crash. These features ranged from year, weight and length of the vehicle to

the speed it was travelling at impact. In order to maximise the number of cases that

could be used all of the sensor data was excluded in the first model see 4.15. Again,

all of the models were tested with a linear and radial kernel and with the PDOF and

without it.

Reference

Prediction High Low

High 179 27

Low 7 112

Table 4.15: Confusion Matrix Upsam-

pled Linear SVM All Features

Measures Statistics

Accuracy 89%

95% CI 85% - 93%

Sensitivity 96%

Specificity 80%

No information

Rate
57%

Table 4.16: Confusion Statistics Up-

sampled Linear SVM All Features

As can be seen in 4.16, the linear model had a high level of accuracy and low

level of no information rate. The problem was the up-sampling of the data may

not be indicative of other car crashes. This model was then amended to a radial

model and ran on the same data which gave improved results to 99% accuracy with

100% sensitivity and 97% specificity. This data gave the highest levels of accuracy

throughout the study so far but the problem was the data had been up-sampled and

the other issue was the PDOF was one of the features input to the model. As this may

not be available to the insurance company at the crash time it was decided to test
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the same two models, on the up-sampled data but without the PDOF. The accuracy

of the radial model deceased but the accuracy of the linear model increased by 2%.

All of the models in this section were then ran through the same processes with the

engineering classification rate set to 1 to 2 as low and 3 to 10 as high but none of the

models showed any improvements over the previous method.

Model Type 2 - No Sensor Data

In order to have a good understanding of the potential for the data to be used in

a business solution, a model was created just based on the descriptive features and

the speed at the time of impact. The data available for this test was larger than the

previous model as there were no crashes that had to be removed because they did

not have a VECG sensor. The data was partitioned based on the new set of features

and without having to use the vehicle centre of gravity sensors. This gave a dataset

of 2,023 cases that could be used for the model split 1,012 for training and 1,011 for

testing. This was run through the model and the results are shown in 4.17. The same

technique was used to select the best C and Gamma as was done in the first model.

In order to see which type of model was the best to be selected a number of tests

were done with the output of the tests in ??. The first model had all of the features

selected from the vehicle table in the database. The second model used a recursive

feature selection process which used a random forest method to slice the data into

different size partitions and then pruned back the features that were contained in the

model by their order of importance to the model. This was done multiple times (as

opposed to a decision tree which is just once) and the accumulated results were given.

As can be seen from 4.2 the cross-validated accuracy increased to 85% with 2 variables

then decreased with 3 variables and then increased to its highest rate of accuracy with

5 variables. Again, each model was tested with a linear and radial kernel and in the

first iteration, the PDOF was included as a predictive feature as it was contained in

the database but a second pass was done on all of these tests that excluded the PDOF

as this may not be necessarily available in a real-world example. Each model was also

tested using a grid to test for c and gamma.
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As can be seen, the first linear model gave a reasonable output with a 75% accuracy

with a low no information rate of 58%. The fact the sensitivity and specificity are

similar shows the data was not biased either.

Reference

Prediction High Low

High 321 134

Low 99 457

Table 4.17: Confusion Matrix SVM No

Sensor - Linear

Measures Statistics

Accuracy 77%

95% CI 74% - 80%

Sensitivity 76%

Specificity 77%

No information

Rate
58%

Table 4.18: Confusion Statistics SVM

No Sensor - Linear

Next a radial model was selected using the same data and parameters. This gave a

slightly lower accuracy result of but an improved sensitivity of 84% and a reduction in

specificity to 60% meaning the model classified low crashes as high on more occasions

but it got the high classifications correct on more occasions.

These variables were the ones that were selected for the second test and were -

YEAR, VEHSPD, PDOF, ENGINE and BODY. These were really good results as it

was expected partially from reading the literature which mentions vehicle safety and

ability compress on impact has increased throughout the years due to test results. The

material used in today’s cars are much more compressible compared to the rigid bodies

of cars in the past. The speed at impact was a key feature without the sensor data to

run through and contributed to the model as it was a main description of the event

rather than the car. PDOF was another event description which was available in the

database. Although it may not have been calculated in this test it could be something

that an insurance company would have access to. The principal direction of force could

be calculated at the point of impact and this could then feed the model. Lastly, the

”ENGINE” and ”BODY” were two descriptive features that also contributed to the
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Figure 4.2: Recursive Feature Selection SVM

crash as the size of the engine and where it was located in the car could significantly

increase the damage in a crash and the ”BODY” differentiated between small and

large cars which did also influence the model. The reduced number of features where

then run through a cross-validated model to determine C and Gamma. These first

three models where all input to a linear model. After this, a radial model was tested

and with the total features and with the recursive features selected. The output of

these tests is in 4.19.

The results showed that the Radial model that used the reduced features was the

most accurate by 3% and it also had the best sensitivity/specificity split in there was

only a 2% difference between the two. This coupled with how high both rates were,

made this the best model for selection from this group. This was reinforced by the

highest AUC (area under the ROC curve) which according to (J. Huang, Lu, & Ling,
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Table 4.19: SVM Model Accuracy Comparison with PDOF

Model Accuracy No info rate Sensitivity Specificity AUC

All features linear 73% 58% 79% 64% 0.71

Reduced features

linear
70% 58% 78% 60% 0.69

Tuned all features

linear
73% 58% 80% 63% 0.71

All features

Radial
72% 58% 87% 52% 0.70

Tuned All features

Radial
72% 58% 86% 52% 0.69

Tuned reduced

features Radial
79% 58% 82% 76% 0.79

2003) is the best way of comparing models.

Once these comparisons where done the PDOF was then removed from the data and

the table 4.20 were created on the same models. The removal of the PDOF meant the

new reduced feature model did not use as many features as the original. Instead of

using four predictive features it was now only using two - the speed at impact and the

year of the car.

This is reflective of the findings in (Khattak, 2001) which found vehicle age can be

a contributing factor to crash severity as the materials were stiffer in older models and

do not compress as easily, therefore, absorbing some of the force. As can be seen from

the two tables the tuned radial model with reduced features was the most accurate

with the model containing the PDOF slightly better as the accuracy is the same but

the AUC is higher at 0.79 compared to the model without the PDOF AUC of 0.77.
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Table 4.20: SVM Model Accuracy Comparison no PDOF

Model Accuracy No information rate Sensitivity Specificity AUC

All features linear 76% 58% 77% 76% 0.75

Reduced features

linear
76% 58% 77% 75% 0.72

Tuned all features

linear
76% 58% 78% 76% 0.75

All features non

linear
74% 58% 60% 83% 0.72

Tuned All features

non linear
74% 58% 62% 82% 0.72

Tuned reduced

features non linear
79% 58% 80% 78% 0.77

4.7 Machine Learning - Principle Direction of Force

4.7.1 Regression

Following the CRISP-DM methodology the last section of the testing for the overall

study was the PDOF. In the momentum model, the data that was used was narrowed

down due to the need for the engineering classification coupled with the sensors that

were a VECG sensor. As the aim was to improve on the momentum model the initial

test was with the same data set. Next, the crashes that did not have an NDI were

added back into the data set to improve the training and testing of the machine

learning models. The initial thought when looking at the data was that the PDOF

represented a continuous variable and could be solved using a continuous variable

model like regression. On further inspection of the data, it appeared to be a category

so it was thought a classifier would be a better model.

With the momentum data the angles were distributed unevenly and it looked like there

may have been data quality issues. As can be seen in 4.9 there are a number of angle
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categories that showed one test per angle. This may have been in error as the vast

majority of tests appear to be from specific angles. This could probably be expected

considering it is test data and the literature mentions that specific types of crashes

cause injuries.

The PDOF was therefore categorised into 4 groups similar to the momentum model

so there could be an easy comparison - FC, SL, SR and BC. The first step was to

build a multiple linear regression with the PDOF as a continuous dependent variable

and all the descriptive features in the vehicle table used for the severity model were

included as independent variables. The only sensor data used in the initial model was

the force in the x,y and z directions for the point of impact as this could be input

to the model easy enough. The model then used the AIC stepwise selection process

which penalises a model for having too many features but tries to reduce the model to

the least number of predictive features. The best model selected with the lowest AIC

used the force in the x-direction and force in the y-direction as well as initial speed,

vehicle weight and vehicle width. This was intuitive as a model but the problem was

it had an adjusted R squared of 0.06107 which meant that there was a very low fit of

the model to the data. The data had been partitioned into training and testing data

and when the model was run over the testing data it gave a low accuracy result of 5%

which was expected as the model type was not correct. It also gave some misleading

results such as greater than 360 degrees or less than 0 degrees.

The next step was to try the same model with the sensor data added to the model.

Then check if the model had high levels of multicollinearity as the sensor output

would be related over a certain time-step. A correlation test had been done on the

data previously and this led to the belief that the data over 5 steps is not as correlated.

The sensor data was therefore downsampled using the same filtering technique in the

severity model. The final model was still a bad fit to the data with an adjusted

R-squared of 0.3426.
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4.7.2 Multinomial Regression

The model used for the multinomial regression needed to include the sensor data for

the crash pulse of every test that was input to the momentum model first and then

a wider model was created using only all crashes that had vehicle centre of gravity

data. A multinomial regression model is not supposed to use features that are related

as inputs to a model. So in this case the time series of the x,y,z data cannot be used

completely and instead just the output at the point of impact was used. The first

model that was created used step-wise backward and forward selection and used the

model with the lowest AIC.

Reference

Prediction SL FC SR

SL 41 5 1

FC 2 41 0

SR 0 0 1

Table 4.21: Multinomial Regression

Momentum Data

Measures Statistics

Accuracy 91%

95% CI 83% - 96%

Sensitivity 95% 89% 50%

Specificity 88% 96% 100%

No information

Rate
50%

Table 4.22: Confusion Statistics

The results in 4.21 were quite promising on first inspection but these results were

taken in test cases that were very similar crashes and the thought would be that this

model would not generalise well. This coupled with the fact that there were no rear-

end crashes meant that the model would not be applicable in a real-world scenario. It

was therefore decided to take the wider data in the database that was not used in the

momentum model but could be used in a multinomial regression because it did not

need to have an accurate NDI.

When the data was reduced down to just data that had a vehicle centre of gravity the

number of cases that were available for the new model was 374 tests which enabled

the splitting of the data into a training and testing dataset. The continuous model

was skipped as it was felt there was no reason to create a model as it was not suitable.

82



CHAPTER 4. IMPLEMENTATION AND RESULTS

Table 4.23: Multi-Level SVM Momentum Data - Accuracy Table

Model Accuracy Sensitivity Specificity

Multi level SVM Linear 85% 91% 91% 78% 87% 96% 100%

Multi SVM Radial

linear
79% 74% 92% 100% 92% 74% 100%

Multi SVM Linear Tuned

linear
69% 96% 100% 58% 59% 100% 96%

Multi SVM Radial Tuned

linear
80% 98% 100% 58% 59% 100% 98%

A multinomial regression model was created using the backward and forward stepwise

selection but the final model used the vehicle weight and initial speed as predictors

even though the sensor data was included in the model. Even though this model has

accurate results with 78% accuracy when tested on other cases this model would not

generalise well to a wider population as it is highly unlikely that initial speed and the

vehicle weight are a determinant of the principal direction of force. It was therefore

decided to move onto a multilevel SVM to see if this could classify better and use

inputs that would be indicative of an angle of force.

4.7.3 Multi-level SVM

A multi-level SVM can be created with the same code as a binary SVM in R but

the model works differently in the background. The e1071 package uses the ”one

against one” method of multilevel classification which is computationally intensive

but performs better than the one against many. ”One against one” essentially creates

a machine for each pair of classes and then uses voting to see what class the point

belongs to. The first step was to apply a multilevel SVM on the momentum model

data to see how it would perform. This was done with both a linear and radial model

as in the other sections and then both were tuned to see which could be the most

accurate models.
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Table 4.24: Multi-Level SVM VECG Data - Accuracy Table

Model Accuracy Sensitivity Specificity

Multi level SVM Linear 74% 69% 76% NA% 80% 74% 96%

Multi SVM Radial

linear
75% 73% 80% 66% 86% 76% 98%

Multi SVM Linear Tuned

linear
74% 85% 0% 63% 86% 76% 98%

Multi SVM Radial Tuned

linear
70% 91% 43% 40% 41% 100% 91%

As can be seen in the best performer was the linear model but due to the low

number of cases that were in these models and particularly the SL impact any of these

models could outperform each other with a larger dataset. It was therefore decided to

use the larger dataset for the multinomial regression to try to find a model that would

generalise better.

As can be seen in 4.24 the accuracy is not as good as some of the models that were

used with the momentum data but it was felt these models should generalise better

as there are more cases and they also take the sensor output data into account which

should be a clear determinant in which direction a car was hit from.

In summary this chapter aimed to outline all the experiments carried out in this study.

In all there were 50 separate experiments done - 9 in relation to the momentum model,

28 in relation to the severity classification and 13 related to the PDOF classification/re-

gression. The table of all results are mapped out in the appendix. The next chapter

aims to determine which models are the most useful and discuss any issues related to

them.
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Analysis Evaluation and Discussion

5.1 Outline

This chapters outlines the results in their totality and aims to relate them back to the

literature. It compares all models with each other and aims to draw a conclusion from

the data.

5.2 Momentum Model

The aim of the experiment was to see if there was a more accurate model that could be

used to measure a car crash’s severity and PDOF which could be used in the insurance

industry. (Kevin Brosnan, 2017) gave a good start point as it was a commissioned

report and the model used in this was the one had already been used as part of a

pilot project. The advantage of using this model was that it incorporated both of the

variables that were required as an output. As the momentum model output results

for both the PDOF and the severity, the data needed to be reduced and this led to

heavy bias in the remaining data. Due to the heavy bias in the NDI, the model used in

(Kevin Brosnan, 2017) did not give conclusive results that were statistically significant

and the null hypothesis could not be rejected.

For experimental purposes, the data was viewed in a number of different ways to see

if it was possible to draw some conclusions from the data that was available. These
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included up-sampling the data, changing the momentum model to classify more cases

as high severity and including and excluding the PDOF in the severity model. The

most accurate of these momentum models was the up-sampled version of the model

suggested in (Kevin Brosnan, 2017) this was also similar to the models suggested in

(Ryb et al., 2007),(Locey et al., 2012),(Lenard et al., 1998) and (Linder et al., 2003).

This gave an accuracy of 65% with a confidence interval of 95% between 58% and

72% with a p-value that was statistically significant. For experimental purposes this

measure was used to see if a machine learning model could improve on it but there was

a caveat on the findings that the up-sampled data did not have any added information

to the original dataset and as the original dataset’s accuracy could not be stated due

to the bias in it, this dataset could not be representative of the population. Another

issue was the original model had a low sensitivity of 24% which meant that very little

high severity crashes were categorised correctly while the specificity was high at 98%

meaning the low categories were categorised as correct in most situations. This was

reflective of the dataset being biased to the low categories but if the model had cate-

gorised everything as low it would have gotten an 87% accuracy (the no in information

rate). The specificity and sensitivity of the up-sampled model only changed slightly

which is indicative of the up-sampled data not containing any added information.

5.3 SVM Severity

In order to create a model that could be directly compared back to the momentum

model a number of variations had to be created. The models were created based on

these factors -

• Dataset - Momentum data versus wider database

• Kernel - Linear versus Radial

• Features - Sensor data included or not

• PDOF - include or not
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• Model - tuned or not

These iterations led to 28 models with the top 5 models graphed versus the mo-

mentum model. Mod 1 was the up-sampled momentum model and as can be seen in

the graph 5.1, this was outperformed by all of the best performing SVMs that were

created. Mod 2 was an SVM that was created using all of the same features as the

momentum model and up-sampled at the same rate. Mod 3 and 4 were the up-sampled

momentum data but without using the sensor data and just using the initial speed

at impact and the descriptive features of the car. These were fed into a Radial SVM

and were the best performing in terms of accuracy. The only difference between these

was Mod 3 included the PDOF while Mod 4 excluded it. The PDOF was available in

the database but it may not be available for an insurance company at the time of the

crash. The difference between accuracy performance of both models was minimal.

The main problem with 2,3 and 4 was the data was restricted down to cases that would

fit the momentum model and because of this the training and testing data source were

very similar to each other and therefore heavily biased to these type of tests. These

models would certainly not generalise well to a complex situation that an everyday car

crash could be and therefore not recommended for use with an insurance company.

Mod 5 and 6 used a wider range of test cases for training and testing because

they did not use the sensor data for the models. This ensured a much larger dataset

could be used and as can be seen the accuracy decreased significantly. This accuracy

was still better than the momentum model which did not depend on a training and

testing data source. Both SVMs used radial kernels and both used a random forest

recursive feature selection. Mod 5 kept the PDOF in the feature selection and the

model gave back 5 features which included YEAR, VEHSPD, PDOF, ENGINE and

BODY. When PDOF was removed and the same feature selection was done, only

VEHSPD and YEAR were kept in the model. Both models make sense as the vehicle

speed and year have been found to be determinants in crash severity in (Khattak,

2001). These two models would be the ones that would generalise best to a real-world

scenario as they have used the widest set of cases but they are still restricted in that

the cases are all still crash tests and not actual accidents on the road. If these models
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Figure 5.1: SVM Accuracy

were to be tested on real-world examples that an insurance company may have, the

expectation would be for models 5 and 6 to be the best performers.

5.3.1 Hypothesis 1

Can a ML model be more accurate than a momentum model when determining the

severity of an accident using g-force in the x,y,z directions as a dependent variable at

time of impact?

H0: Null Hypothesis

No statistically significant difference between the accuracy of the momentum model

and all of the ML models

H1: Alternative Hypothesis

The accuracy of the momentum model is statistically significantly lower than any of
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the ML models.

From the experiments conducted it is impossible to reject the null hypothesis with

the data that was used. The NDI was too subjective as a measure of the crash severity

and the data was too biased to be able to draw an accurate result. If the up-sampled

data could be relied on the SVM far outperformed the momentum model but to reject

the null based on this would be a mistake as the data may not be representative of

the population.

5.4 PDOF

The PDOF experiments represented a problem in that the initial thought was that the

PDOF could be considered a continuous variable. On running the variables through

a Regression model it became clear that the variable was in fact a categorical one and

would be better serviced with a multinomial regression model. The biggest issue with

the angle of impact was the data was biased towards a PDOF of 0 degrees and 270

degrees. This is reflected in the literature where a head-on collision or lateral collision

can cause severe injuries. The NHTSA therefore probably geared most of the testing

towards these types of tests to measure impacts on crash test dummies. There were a

number of tests from other angles but there was not a significant number so in order

to counter some of the bias in the database the angles were grouped together into 4

categories.

The most accurate models that were created were graphed in 5.2 to give a visual

comparison. Mod 1 was the momentum model run over the data that satisfied the

momentum model. As the data that was input to this model was slightly biased but

not as much as the NDI, a conclusion could be drawn from these results. The accu-

racy was 65% (CI 0.58 - 0.72 ) with a no information rate of 55% so the results were

statistically significant with p-value of 0.003. This did not occur due to chance and

could be compared with other models.

Mod 2 was a multinomial regression model created using the same data as the mo-
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Figure 5.2: PDOF Model Accuracy

mentum model. As a multinomial regression model is built on the assumption that all

data in the model is case specific and each variable is one occurrence, only one sensor

output was added to the model per x, y or z-direction. The best model was selected

using a forwards and back-wards stepwise algorithm but the independent variables

selected for the model were initial speed and the magnitude of the crash impact. This

makes sense when thought of in terms of the data that was input as each car is travel-

ling at speed so a high magnitude impact probably indicates a head-on collision. The

fact that there were only 2 examples of a side right impact and it correctly classified

one may be due to chance. It got a high rate of accuracy on the side left as it got 41

of the 43 correct but this is more down to the bias in the training and testing sets and

would not generalise well to the population.

Mod 3 was a multi-class Linear SVM which again outperformed the momentum model

using the momentum data but this is subject to the same problems experienced by

the multinomial regression. The SVM did however also include the sensor data as the
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SVM can process related sensor outputs.

Mod 4 was a multinomial regression model in the same format as mod 2 but the data

source used to create the model was expanded to include all cases that had a vehicle

centre of gravity sensor. Even with this expansion the model was still heavily biased

and the would not generalise well to a real-world scenario. Mod 5 was a radial SVM

on the same data source as Mod 4 so also experienced the same data bias problems.

5.4.1 Hypothesis 2

Can a SVR or regression model be more accurate than a momentum model when de-

termining the angle of impact of a car crash using g-forces in the x,y and z directions

at time of impact?

H0: Null Hypothesis

No statistically significant difference between the accuracy of the momentum model

and all of the ML models

H1: Alternative Hypothesis

The accuracy of the momentum model is statistically significantly lower than any of

regression or SVR models.

It is safe to say that the models created from the same data-source and the wider

data source in available outperformed the momentum model in terms of accuracy.

These were also statistically significant so the null hypothesis which was: there is no

difference between the accuracy of the momentum model and the ML models, can be

rejected. These models did outperform the momentum model in these experiments

but in order for one of these models to be implemented for an insurance company,

more data would be needed.
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5.5 Discussion

The NDI was a clear weakness in the study as it was a subjective opinion of an expert

on site. The model created, could act as a replacement for this classification but would

have to be amended slightly and be trained on the crush dimension rather than the

subjective NDI. This could save time and money in the industry as engineers are no

longer required to make an assessment of the damage to the vehicle.

The large bias in the database made the study difficult to prove. The need for very

specific types of data for the momentum model was a clear limitation in that it can

be difficult to get data that will satisfy these needs from the database. If the data

feed was available however the model may have performed well. This was also a clear

strength of the SVM model in that it could be trained on more test cases. This was

also an advantage of separating the problem into two separate issues and approaching

them individually. An amendment needs to be made to the momentum model to be

able to handle rear shunt crashes as there are 4,391 cases in the database where the

vehicle has a speed of zero so this would significantly increase the sample space and

therefore should help with the bias in the momentum dataset.

One of the strengths of the momentum model was it being an inductive model and

because of this it does not require a dataset to train and therefore can be tested on

a low number of cases. This also doubles as a weakness, however, as it will never

improve as more data is fed in while a machine learning model can improve as more

data becomes available. The fact that cars travelling at zero mph during the test

could not be tested, meant that a number of cases had to be excluded that could have

been compared to an SVM. If the momentum model could be amended to satisfy these

cases, a less biased dataset could be obtained.

The momentum model that was used also used a half second as the length of time

a crash occurred for and this restriction would definitely lead to lower accuracy as a

crash pulse can vary greatly.

Using the descriptive features SVM models with reduced features shows the importance

of the following features in predicting a crash: YEAR, VEHSPD, PDOF, ENGINE
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and BODY. As these features have not been used in any way in the momentum model

it shows there is significant weakness in the model. The suggestion from this study

is to try to build a model that incorporates some or all of these features, as this may

significantly increase accuracy.
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Conclusion

6.1 Research Overview

The research took the inductive momentum model and ran it using the data that

was available in the NHTSA database. It researched the subject and the concepts

around the model and when the severity did not give significant results the data was

manipulated to create a hypothetical scenario. This meant the data was not as biased

and there was an equal number of tests per NDI. 50 separate experiments were run to

try to assess every way a model could be created from the data and to try to ensure

that the most accurate model was also the one that could generalise to the population

best.

Unfortunately, the data that was used was very specific to the types of crashes that

may be useful for testing seat belt integrity or injury prevention. As the machine

learning models are deductive, this narrowed the scope that they could be applied

to. Data quality issues ranging from incorrect inputs and inaccurate sensor data to

missing files where identified and every challenge addressed.

6.2 Problem Definition

The research done into crash tests showed that most studies use inductive models

to measure crash outcomes. There were very little studies that use these models to
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identify the crash severity and even less that used machine learning to measure them.

This may have been down to the lack of available data that uses accelerometers.

No studies had been conducted yet to try to compare an inductive model against a

deductive model in terms of car crashes but there are many examples of SVMs using

the same data to classify other activities related to people. A clear advantage of the

data was that the sensor output only ever recorded the crash event and therefore other

activities could not be confused with a crash such as hard braking. This afforded the

selection of the SVM as there was no danger of misclassification to another type of

event. With the PDOF there were fewer studies where this was compared against. The

initial thought of using a continuous regression model proved incorrect as the angle was

a classification problem. Again, the major gap was there were no studies found where

an accuracy of an angle from an inductive model was compared to the accuracy of an

angle for a deduction model. However, similar studies were found where classification

was used. The use of the momentum model compared with the two separate classifiers

led to the research question: ”Can ML models match the accuracy of a momentum

model for car crashes using force in x,y,z planes as the independent variables and the

angle of impact or severity of crash as the dependent variables?”

6.3 Design/Experimentation, Evaluation and Re-

sults

The experiment was dictated by the data and due to this over 50 models had to

be created to ensure whatever results were received could be projected back to the

insurance company scenario. The first problem was the reduction of the data to the

satisfy the momentum model and with this the difficulty in drawing any conclusions

from the outputs. This was countered by up-sampling the data and amending the

inputs to the model. The SVMs were then trained and tested as if this data was the

only data available but no conclusion could be draw from it. The use of the wider

data source showed the advantages of the machine learning model on the type of data

it could use to train and the accuracy of this was only slightly improved if the PDOF
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was included in as a severity feature.

6.4 Contribution and Impacts

Although the first null hypothesis related to the crash severity could not be rejected

due to the biased data, the SVM created in the hypothetical scenario was shown to

outperform the momentum model.

The second part of the research gave more conclusive results as the PDOF was less

biased and the results from the momentum model were statistically significant. Over-

all, a radial based SVM that was tuned seemed to be the most accurate model and

would generalise best for the crash severity but this would not be applicable to an

insurance company. It does, however, give ample evidence for a pitch to be made to

the insurance company to share their data.

The PDOF was best serviced by the radial based multilevel SVM in this study and

a conclusion could be drawn with the results because the results were statistically

significant with p value < 0.01. The SVM did outperform the momentum model in

terms of accuracy and the results were statistically significant with p value < 0.01 so

the 2nd null hypothesis could be rejected.

6.5 Future Work and Recommendations

The model that was created to measure crash severity could be amended slightly to be

used by to NHTSA to classify the crash automatically. This could save time and money

as an engineer is not needed to supply his opinion. The model could be amended to

use the crush distance to ensure it is not biased and is objective.

Suggestions for the Xtract company would be for them to amend their model to satisfy

rear shunt crashes, where vehicles are not travelling at speed, this would increase the

dataset that can be used to test on by potentially 4,391 cases (the number of vehicles

travelling at 0 speed in the database).

The overall experiment has shown that a deductive machine learning model can be
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implemented using the same data or with less features than an inductive model. Given

the right data source and less biased tests, there is potential for a deductive model

to far outperform an inductive model. Further work with insurance company black

box data would be needed to ensure this could be investigated further. Due to the

nature of the data in the NHTSA database, an SVM was a suitable model of selection

for this study. If multiple activities are recorded, as would be the case with insurance

company data, a more suitable model could be a Hidden Markov Model or other time

series model where the variations in the accelerometer data could be far greater and

far more activities recorded.

The dataset is not the most suitable for training a machine learning model as the data

is biased in a couple of directions but it could be used by a company to validate the

accuracy of a momentum model or spring model. If this was to be done it is important

the model is built to satisfy rear shunts.

The title of the study ”Can Machine Learning beat Physics at modelling car crashes?”

has been show to be partially possible within this thesis but in order to get more

conclusive results a more complex physics model needs to be chosen in future and this

needs to be complemented with a machine learning model with sufficiently unbiased

data.
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APPENDIX B: GITHUB

All code for these experiments is available at this github address -

https://github.com/gabtab/Thesis-Crash-Machine-Learning
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