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ABSTRACT 

Music Information Retrieval (MIR) focuses on extracting meaningful information 

from music content. MIR is a growing field of research with many applications such as 

music recommendation systems, fingerprinting, query-by-humming or music genre 

classification. This study aims to classify the styles of Western classical music, as this 

has not been explored to a great extent by MIR. In particular, this research will 

evaluate the impact of different music characteristics on identifying the musical period 

of Baroque, Classical, Romantic and Modern. In order to easily extract features related 

to music theory, symbolic representation or music scores were used, instead of audio 

format. 

A collection of 870 Western classical music piano scores was downloaded from 

different sources such as KernScore library (humdrum format) or the Musescore 

community (MusicXML format). Several global features were constructed by parsing 

the files and accessing the symbolic information, including notes and duration. These 

features include melodic intervals, chord types, pitch and rhythm histograms and were 

based on previous studies and music theory research. Using a radial kernel support 

vector machine algorithm, different classification models were created to analyse the 

contribution of the main musical properties: rhythm, pitch, harmony and melody.  

The study findings revealed that the harmony features were significant predictors of 

the music styles. The research also confirmed that the musical styles evolved gradually 

and that the changes in the tonal system through the years, appeared to be the most 

significant change to identify the styles. This is consistent with the findings of other 

researchers. The overall accuracy of the model using all the available features achieved 

an accuracy of 84.3%. It was found that of the four periods studied, it was most 

difficult to classify music from the Modern period. 

 

Key words: MIR, Supervised machine learning, music genre classification, symbolic 

representation, Western classical music, Support Vector Machine 
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1. INTRODUCTION 

1.1 Background 

How does the human brain recognise and classify music? On the one hand, it may be 

considered a simple process, given that it has been shown that children as young as 9 

months old can identify music as ‘happy’ or sad’ (Flom, Gentile, & Pick, 2008). 

Furthermore, adults with no formal musical training can classify a piece of music as 

belonging to a certain genre or style, simply by exposure and repeated listening to a 

wide range of musical pieces. However, this process is still not well understood. What 

specific features of music allow the brain to discriminate and classify a piece of music? 

Neuroscientists are analysing how different parts of the brain respond to different 

musical features (Jackendoff & Lerdahl, 2006). Musicologists are also concerned with 

how we perceive music. They aim to determine what particular musical qualities 

define a certain musical style. 

The analysis of music information is a growing area of interest for researchers. 

Nowadays, the researcher has access to an extensive amount of music and they can use 

the latest advances in machine learning algorithms to extract knowledge and insights 

from music content.  

A supervised machine learning model can learn, from a labelled set of music content, 

the relationships between the variables for each of the music styles. Then, the classifier 

can be tested on another unseen set by comparing the predictions made with the actual 

classes. 

Identifying attributes that are particular to a music style or composer has many 

applications. For example, this knowledge can be used, along with computer music 

generation algorithms, to create music pieces that sound similar to a style or composer, 

such as the system DeepBach, that creates chorales in the style of Bach, and is highly 

convincing when tested with music experts. (Hadjeres, Pachet, & Nielsen, 2016). 

1.2 Research problem 

This study intends to explore the impact that different musical properties have in 

defining the music styles of Western classical music. Many works have used audio 

format as the main source to create genre classification systems with good 
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performance (Sturm, 2012; Tzanetakis & Cook, 2002). This research has relied on the 

analysis of the auditory features of music, with signal processing and transcription 

system methods. However, they have not provided insights into how more complex 

musical features/concepts such as tonality, melody or harmony can allow for 

categorisation of music into different genres. An easier way to determine these musical 

properties, rather than using audio signal processing, is accessing the music scores 

directly. 

The research question of the dissertation is: 

What music properties are the most important in order to classify a classical music 

piece by its musical period? 

In order to answer the question, this research project aims to extract features from 

music content and, use these to train a classification algorithm model and assess its 

predictive power to classify the music by music period or style. 

The research will evaluate and compare the predictive capability of four main 

properties of music: rhythm, pitch, harmony and melody. It will also identify the most 

important specific attributes for each of these categories.  

1.3 Research objectives  

The main research objectives of this dissertation are : 

- Investigate the current research conducted to classify music by genre. 

- Review music theory and related literature that is necessary to understand the 

features that will be used. 

- Download a collection of Classical music pieces that is appropriate to carry out 

the experiment and label each of these instances with the musical period 

according to their composer. 

- Using a review of music theory and domain knowledge of the author, extract 

features from music content that can be used for music analysis. 

- Use variable ranking methods to identify the attributes that contribute the most 

to determine the time period of a music piece. 

- Train the classification models using different sets of related features, each of 

them related to a music property, and compare the results of the classification 

models to determine the most important features. 
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- Critically evaluate the overall findings and compare to what is known in the 

literature. 

- Identify the limitations of the research and make recommendations for future 

work in this experiment and in the area. 

1.4 Research methodology  

The first step of this dissertation was to review the different representation and formats 

that are used to store music content, and to survey the research reported previously on 

musical genre classification. Following this, it was necessary to review music theory, 

so as to define the data that will be extracted from the files. Data preparation of these 

features was applied, including fixing data issues, handling categorical variables, 

creating derived features and transforming the data using a normalisation method. 

Once the features are in a suitable form, the whole dataset will be divided into four, 

one for each music category that will be evaluated in the study (rhythm, pitch, 

harmony and melody). Then, two processes will be used to help answering the research 

question. Firstly, using the feature importance after applying a Random Forest 

algorithm in each of groups will be used to identify the specific attributes that most 

contribute in the classification. Finally, the classification models for each of the groups 

will be trained using the SVM algorithm, and evaluated with a k-fold cross validation 

method. The original dataset using all the features available, will be used to report the 

best results that the proposed features can get. 

1.5 Scope and limitations  

The scope of the study involves the extraction of a basic and limited number of 

features from the music scores. This will serve as a starting point to determine the most 

important differences in the music styles, therefore, most of them may already be 

obvious to music theorists. 

It is beyond the scope of the research to perform a deep analysis of the music pieces to 

obtain very specific details that could discriminate small changes in the style. This type 

of analysis would require a profound review of music analysis studies and a highly 

proficient knowledge of the scripting language used. 
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This study will be limited to the music scores that are currently available. Using a 

much larger number of scores, it may be possible to determine with more precision the 

factors to classify the scores, which may have been missed due to the limited sample of 

scores obtained. The choice of music content will be limited to music composed for 

piano/keyboard instrument, in an effort to make the data sample the most 

representative without bias on the instrument particularities. 

1.6 Document Outline  

Chapter 2: This chapter gives a review of the literature that was needed to conduct 

this dissertation. It will start with a review to identify the relevant studies in the field of 

Music Information Retrieval and in particular for the purpose of classification tasks. 

This will be followed by a short section about the music theory necessary to 

understand the data analysed in this experiment. The review will also include the 

different attempts made to extract features from music content in any of the different 

sources, focusing on symbolic format (a music score). There will be a subsection to 

identify the different machine learning algorithms commonly used in classification 

tasks for music genres. Finally, the relevant research performed in the specific music 

category of the dissertation, Western classical music, will be reviewed. 

Chapter 3: This chapter describes the design and methodology that will be followed 

in order to achieve the objectives of this research. Details on how the dataset will be 

collected and the features constructed will be included. The data cleaning and 

transformation that is planned to be applied before creating the models will be 

discussed. Finally the machine learning algorithm and settings, and the evaluation 

methods used to assess the models will be described.  

Chapter 4: This chapter describes in detail the implementation and actual work 

performed in this experiment. Starting with the data collection of music scores, it will 

then describe the development of the feature extractors to create a set of attributes to 

carry out the experiment. The chapter will also include the issues found with the data 

and the preparation . It will include and discuss the first findings after data analysis and 

finally, the model implementation and details about how to create the evaluation 

metrics will be described. 
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Chapter 5: this presents the results of the classification models and critically evaluates 

the performance of each of them. The chapter also summarise the main findings of the 

whole experiment. 

Chapter 6: The dissertation finishes with the conclusion chapter, giving an overall 

review of the experiment carried out and highlighting the main contributions to the 

field of music information retrieval. The limitations of the research will be pointed out 

and the chapter concludes with a discussion of recommendations for future work. 
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2. LITERATURE REVIEW 

2.1 Introduction 

In this chapter there will be a review of the different fields of research of significance 

for this dissertation. It starts with a brief presentation of what MIR is and its 

applications. This is followed by a discussion of the different representations of music 

content, audio format and symbolic format, the last being the focus of this study. Then 

the review will identify the different efforts made in music genre classification tasks. 

These studies will be divided between extracting features from music content and its 

relation to music theory and the different algorithms used for music classification 

systems. Finally, the review will be linked to the research question to identify the 

music classification studies in Western Classical Music and in particular to classify the 

work by its time period. 

2.2 What is MIR 

MIR stands for Music Information Retrieval and it covers the development of 

approaches to extract and analyse information from music. MIR involves many 

applications and it has been a growing field of research in the recent years with the 

rapid development of computer systems and algorithms to find patterns. (Typke, 

Wiering, & Veltkamp, 2005) 

One of the applications is computer music generation. The extraction and analysis of 

music data can be used to create algorithms for automatic composition, for example, 

using harmonic rules and patterns learnt from a particular style. (Roig, Tardón, 

Barbancho, & Barbancho, 2014). MIR is also used for music recommendation 

systems. Extracting metadata and finding similar songs based on the audio content 

attributes (Kaminskas & Ricci, 2012), can add extra improvement to the traditional 

collaborative method based on user’s ratings and playlists.  

Another interesting application is the query by humming, by which the system takes a 

few seconds of a sung or hummed piece and retrieves a track from the database that 

matches the attributes of the input data (Pardo, Shifrin, & Birmingham, 2004). The 

principal challenge of such a system is that it cannot find an exact match using 

fingerprinting techniques because the song hummed is nowhere to be found in any 
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database. For the moment only melodic and monophonic music is suitable for these 

type of systems (Kaminskas & Ricci, 2012). 

In a deeper level of analysis, it can be used to detect plagiarism of a song by searching 

for melodic similarity (Grachten, Arcos, & Mántaras, 2004; Müllensiefen & Frieler, 

2006) in a musical database. 

Other MIR applications include automatic transcription, instrument recognition or 

lyric/audio synchronisation. Finally, as part of the process of indexing and cataloguing 

of music, features can be extracted to find patterns in the music and use them to 

classify works by musical genre, period, type, origin area or even composer. 

2.3 Music data representations 

Music information retrieval systems can be categorised depending on the music 

content format used to extract features. The data representation used to store music 

content can be divided into two main categories: digital audio format and symbolic 

format (music score). The features extracted and the techniques used depend greatly on 

the music data source. 

2.3.1  Audio formats 

Music content is usually represented as recorded audio; therefore the majority of work 

and MIR research done in feature extraction has been performed on audio tracks.  

The raw audio files are normally in Waveform audio (WAV) or MPEG Audio Layer 3 

(MP3) file extensions and contains the acoustic representation of the music using 

parameters such as amplitude and frequency. The researcher needs to use audio 

engineering and signal processing techniques to extract information from audio 

content. Other processes would need to be applied before features can be extracted, 

such as background noise reduction or equalization. In the paper of Tzanetakis and 

Cook, similarity analysis and classification of songs and pieces has been performed on 

audio tracks (Tzanetakis & Cook, 2002). As another example using audio content, 

mood and expression is automatically detected in order to add this metadata 

information to the songs and help the listener to choose a playlist depending on the 

mood (Lu, Liu, & Zhang, 2006) 
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Figure 2.1: Audio sample – Beginning of the Rondo alla Turca by W.A. Mozart 

2.3.2  Symbolic notation formats 

The symbolic format is a close representation of the music score, which allows the 

composer to represent, store, and publish the music they create and to make it available 

for performers to play. A music score contains a different set of symbols indicating the 

duration of the notes, the presence of rests, how high or low a note sounds, tempo and 

also dynamics and expression information. A music score includes more high-level 

features that enables a music theorist to perform analysis using their knowledge of the 

domain.  

Despite the extensive research using audio content, this representation of music has 

some drawbacks. Audio files are relatively large and the process to extract audio 

descriptors involves a high computational effort. Audio samples don’t have explicit 

information about notes, voices, tempo or rhythm that researchers from music theory 

communities can understand and analyse to perform their studies. (Ponce de León, 

Iñesta, & Rizo, 2008). 

 

Figure 2.2: Sheet music score - Beginning of Rondo alla Turca by W.A. Mozart 
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One of the formats which is more commonly available and has been used in many 

studies, is the MIDI format. MIDI (Musical Instrument Digital Interface) files, can 

store instructions that can be sent to synthesisers or sound cards in order to play a 

music piece. This format is really popular and acts as a hybrid between an audio file 

and a purely symbolic notation format. However, in a MIDI file not all of the 

information from a music score can be represented (Good, 2001). 

Other formats more closely related to the digitally published music scores are the ones 

that music notation software can produce. Professional software such as Finale or 

Sibelius or open source ones such as MuseScore, can work with MusicXML files. A 

MusicXML file is a plain text XML-based file, with a hierarchical structure of tags, 

which includes information about key signature, tempo, notes, dynamics and 

expressions (Good, 2001). The book Beyond MIDI (Huron, 1997), describes other 

efforts to create other formats to encode music score information to be used for 

analysis, for example, the humdrum format that has a large catalogue of music. 

In order to extract information from these symbolic formats, parsers can be created to 

run through the text files and extract the relevant information, for example the python 

library music21 (Cuthbert & Ariza, 2010), that can be used to get the information from 

music scores. 

2.4 Music score notation system fundamentals 

The difficulty in memorizing or showing how a piece of music should be played gave 

rise to the development of music notation systems. Systems to secure and transmit 

music have been used since immemorial times. These systems evolved over time and 

were adapted to the needs of composers. The current notation system used in Western 

music has not changed remarkably since the 17th century (Fradera, 2003) 

Musical notation uses a series of symbols and marks to show the duration and pitch of 

the sounds. There are symbols to express dynamics, tempo and articulation as well. To 

some extent they can include text in the form of lyrics or to give the performer more 

indications on how the music should be played. 
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Figure 2.3: Most important symbols in a music score 

The notation system allows the addition of a large number of symbols and marks but 

the most important are shown in Figure 2.3. The staff is where the rest of the symbols 

are placed so every score includes at least one. If the composition is for more than one 

instrument there will be a staff per instrument. In the case of the piano, it is common to 

use two staves, usually the upper one for the right hand and the lower one for the left 

hand.  

The notes are placed in the staff and the position of a note will determine the pitch of 

the sound. If more than one note is placed in the same position vertically, they will be 

played at the same time. The pitch of the note is not absolute and it depends on the 

clef. A note placed in the same position could have a different pitch. The clef defines 

the range of notes used in that particular staff. In the example shown, the first staff has 

a G clef and it is the most common in modern notation. It indicates that a note placed 

on the second line from the bottom is a G and the rest of notes in the same staff will 

have that reference. The second staff has an F clef, in this case the second line from top 

indicate an F. These combination of G and F clefs (also called Treble and Bass clefs) 

are the most common used in piano.  

Accidentals can be placed just beside the note and they will alter the pitch of any of the 

seven natural notes (C, D, E, F, G, A, B). A sharp ♯ symbol will raise the pitch by a 

semitone and a flat ♭ symbol will lower it by a semitone. A natural symbol ♮  will 

cancel the previous accidental on that note. The key signature represents the tonal key 

of the music in the score. In the above example, the piece is written in A major, 

meaning that there are three accidentals specific for that key (F♯ , C♯ and G♯). This 
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simplifies the notation so there is no need to use accidental marks when these notes 

appear in the score. It is placed at the beginning of the score and it will be effective 

during all the piece or until a key signature change.  

The duration of each note is indicated by using different shapes of note heads and 

stems, and it will determine the rhythm of the score. These durations are not absolute, 

and only proportional to the rest of the notes. Unless there is a tempo indication in the 

score, the absolute duration is a choice of the performer.  

 

Figure 2.4: Note and rest values 

with American and British English spellings 

Figure 2.4 shows the most common note values and the corresponding rests. A dot can 

be added to the note and it will increase the note duration by one half. More dots can 

be added and will alter the length in another one half of the previous duration. The 

time signature will define the meter of the score. It is an abstract concept that will 

indicate the number of beats in the score and the total length in each uniform section or 

measure. The numerator defines the number of notes in each measure of the value 

defined in the denominator. For example, 3/4 means that each measure has 3 

crotchet/quarter note beats. The time signature will determine the rhythm of the piece. 

In a 3/4, usually the first beat is strongly accented, while the other two are weak. This 

triple time is common in waltz, minuet or mazurka styles (Taylor, 1991). 
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There are many other symbols and marks that can be used in the notation system and 

this is only a brief introduction in order to understand the data that will be managed for 

the experiment.  

2.5 Music genre classification 

One of the most important fields of the Music Information Retrieval (MIR) is music 

classification. It has many applications such as cataloguing large collections of music 

or giving music recommendations for online shops and streaming services. There are a 

number of issues related to classifying music into different genres, for example the 

difficulty in clearly defining the genres when the genres overlap or are not 

discriminatory (McKay & Fujinaga, 2006).  Despite these issues, end users are still 

keen to browse by genre from a musical database, based on the results of a survey on 

music information seeking behaviours (Lee & Downie, 2004) 

Any process of music classification consists of feature extraction from the data sources 

and the creation of a classifier using machine learning algorithms. (Corrêa & 

Rodrigues, 2016) 

2.5.1  Feature extraction  

Before starting any classification task, features need to be extracted from music 

content. Once the features have been created from the different music sources, they can 

be used for multiple types of analysis. Using pattern matching techniques and 

classification algorithms, these features can help indexing, recovering and classifying 

musical content. 

Features extracted from audio 

In a survey of music genre recognition, Bob Sturm points out that 79% of experimental 

work was done using audio music (Sturm, 2012), as this media is more interesting for 

the general public. 

Features extracted from audio are considered low-level features. For example, timbre 

is one the features that can be easily extracted from audio, with the use of fast Fourier 

transform (FFT) techniques (Fu, Lu, Ting, & Zhang, 2011). Timbre relates to the 

quality of sound, and it will vary for different types of sound sources, such as different 

instruments, even when playing the same note. Up to 2006, features related to timbre 



 

13 

are the ones that have been used for most classification tasks and the performance has 

been limited. (McKay & Fujinaga, 2006). There was a need to add high-level musical 

abstractions and cultural features in order to improve performance and success rates. 

The extraction of more high-level features such as rhythm or pitch, although possible, 

is a difficult task when using raw audio signals. The study of Tzanetakis et al., 

evaluated the accuracy of extracting the pitch histogram (global census of the pitch 

content) of musical pieces from audio form. The researchers compared the music genre 

classification results when using pitch features from both audio and symbolic forms of 

the same songs (Tzanetakis, Ermolinskyi, & Cook, 2003), and obtained better 

performance using the features extracted from symbolic data (MIDI).  

Conversion from audio to symbolic format 

Another area of research has been focused on using audio content as initial source but 

converting it to symbolic format. In order to be able to use these high-level features in 

the research, some studies have been performed to be able to automatically transcribe 

audio data into symbolic representation (Lidy, Rauber, Pertusa, & Iñesta, 2007). The 

results indicate that there is still room for improvement in the accuracy of the 

transcription systems, particularly to capture rhythm and harmonic features or 

information other than pitches and note durations. Another implication is that these 

systems still need, at a certain level, some manual input annotation and it becomes 

impractical for large datasets. As the transcription systems improve, researchers will 

focus more on high-level features using audio. 

Features extracted from symbolic format (music scores) 

Studies have been performed in the area of music classification, applying different 

music descriptors extracted from the symbolic representation of the songs. 

In some papers, the research focuses on rhythm attributes. Rhythm is related to the 

duration of the notes and its combination in time/beats. For example, different 

representations of rhythm patterns were extracted and compared to prove that rhythm 

alone can be used to perform music similarity queries. (Lev et al., 2011). Note duration 

histograms were used in (Karydis, 2006) to classify five different musical styles 

(ballad, choral, fugue, mazurka and sonata) using a k-NN algorithm.  

Other papers use pitch descriptors as the main attribute for the classification. Pitch is 

the quality of a sound in terms of how low or high is. The frequency of each different 



 

14 

note appearing in the music, also called pitch histograms, has been used widely in the 

literature, for example to classify music from classic, jazz and pop style (Tzanetakis et 

al., 2003). 

Other studies use harmonic features, which are the features that can be extracted from 

notes that are played at the same time. Chords and complex harmonic features based 

on tonal theory are used to inspect the style of three different composers, Mozart, 

Schubert and Brahms (Ferkova, Ždimal, & Šidlik, 2007). Studies using harmonic 

features are less explored in the literature (Corrêa & Rodrigues, 2016) 

Melodic features are also considered in the literature. Melody is a sequence of notes 

with their durations and pitches in horizontal movement, as opposed to the harmony, 

where it is considered vertical. Some papers use melodic intervals as part of the feature 

vector to perform classification or to obtain the similarity between songs (Müllensiefen 

& Frieler, 2006; Ponce de Léon & Carlos, 2004). 

The paper of McKay and Fujinaga, presented a system called jSymbolic, which could 

be used to extract a large variety of musical features from MIDI files (Mckay & 

Fujinaga, 2006). Most of the features are original and others are based on previous 

research and music theory studies. They divided the features in seven categories: 

instrumentation, texture, rhythm, dynamics, pitch statistics, melody and chords. The 

system was then tested to perform classification of 9 genres with success rates of 90%. 

Some of these features have been used in other research papers such as in (Hillewaere, 

Manderick, & Conklin, 2009) where 62 of these global features were used to classify 

folk songs by their region origin. 

To conclude, the creation of the features presented in the studies, especially in the ones 

using music scores, take advantage of music theory analysis and musical knowledge, 

in order to understand the data that the researcher is managing. For example, the music 

theorist Leonard B. Meyer, compared music styles by looking for repeated patterns in 

rhythm and melody using statistical algorithms (Meyer, 1989). Allen Forte developed 

the concept of set theory by using pitch-class sets to analyse the harmony of tonal and 

atonal music (Forte, 1988). The relative frequency of use of the combination of these 

note class sets can determine the music style and tonality of a piece. Another popular 

style of music analysis is the Schenkerian analysis, in which it seeks to find the 
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melodic or harmonic connections between consecutive notes or chords respectively. 

(Marsden, 2010) 

2.5.2  Machine learning algorithms  

The selection of features is a fundamental step in the creation of classification models. 

In particular, for music genre classification tasks, the choice of features is vital, while 

the classifier algorithm, despite being important, normally reflects the changes in the 

feature selection (Corrêa & Rodrigues, 2016; Karydis, 2006). 

The comparison of results from different papers is a difficult matter as studies with the 

same datasets for symbolic music are not very common in the literature. The same 

classifiers can perform very differently with other datasets. Music Information 

Retrieval Evaluation eXchange (MIREX) is a community that runs a yearly 

competition to evaluate the efforts in many different MIR tasks. Audio genre 

classification task was run from 2005 until present (2017), however for symbolic genre 

classification, the contest only took place in 2005. The task had two sets of categories, 

one with 9 genres using 225 MIDI files and the other one with 38 genres, subgenres 

from the main 9 categories, and using 950 MIDI files. All participants had to use the 

same training and test splits. The winner achieved an accuracy of 84.4% for the 9 

classes task, and 46.1% for the 38 genre classification task. A classifier ensemble of 

neural networks and k-NN was applied to the task using features to represent pitch, 

texture, rhythm, dynamics, melody and chords. (Mckay & Fujinaga, 2005; McKay & 

Fujinaga, 2006).  

Almost every research uses a different dataset, however some studies have been testing 

different classifiers with the same set of files. A comparison of Naïve Bayes, Support 

Vector Machine (SVM), k-NN and discriminant analysis methodologies has been 

performed to classify classical music scores by composer (Lebar, Chang, & Yu, 2010), 

concluding that although some classifiers were better than others to distinguish some 

composers, SVM was consistently the most accurate.  

 SVM is an algorithm that looks to find an optimal hyperplane to separate samples 

from different classes (Cortes & Vapnik, 1995). It works well when there is a large 

number of attributes compared to the numbers of samples (Corrêa & Rodrigues, 2016; 

Xu, Maddage, & Shao, 2003).  
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2.5.3  Variable ranking 

Some machine learning algorithms, including SVM, are considered a “black box” 

algorithm and the results are hard to interpret, especially if using a non-linear kernel 

method (Ben-Hur & Weston, 2010). The output doesn’t provide information about the 

importance of the features used to create the model. Other methods can be used to 

identify the variables that have better predictive power for the classification. As stated 

in the paper of (Guyon, Elisseeff, & De, 2003), these methods are divided into 

wrappers, filters and embedded. 

- Wrappers: Assess the efficiency of multiple combinations of subset of variables by 

comparing the prediction performance using a machine learning algorithm. It is 

computationally intensive because it is a ‘brute force’ method. 

- Filters: this method is independent from the machine learning algorithm, and 

instead of using accuracy/error rate in a subset, this method uses statistical tests, 

such as Pearson correlation, LDA, chi-square with the outcome variable. This 

method is generally used as a pre-processing step to discard features before feature 

selection. 

- Embedded: combines wrapper and filters methods. This uses machine learning 

algorithms that have built-in methods to perform feature selection, according to 

specific criteria. This method is more efficient in several respects: they are faster 

and all the available data can be used, instead of splitting in training and testing. 

(Guyon et al., 2003). One of the most popular algorithms using this method is 

Random Forests (Genuer, Poggi, & Tuleau-Malot, 2011).  

2.6 Classical Music time period classification 

Some studies have been identified which include classical music for classification 

systems. For example, a research with a number of melodic, harmonic and rhythm 

descriptors is presented to classify monophonic music in the two different genres, jazz 

and classical music (León & Iñesta, 2004). The best results achieved in the study after 

feature selection is 88.7% average success using k-NN. 

Regarding the field of classical music, one of the most extended classification levels is 

by composer. A system that can classify a composer, can be used to certify if a music 

score belonged to a certain artist. For example, a pattern recognition approach was 

used to analyse disputed organ works by Bach (Van Kranenburg, 2006).  
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Western classical music can be classified depending on their historical periods. These 

eras include Medieval, Renaissance, Baroque, Classical, Romantic, and Modern. 

Music historians don’t agree on the start and finish dates of the different periods,  

partly because the styles that correspond to these periods changed smoothly. During a 

number of years, two periods overlapped and were present side by side, depending on 

the composers or even geographical locations (Grout & Palisca, 1996). It is important 

to note that the musical periods are defined by the style in music composition rather 

than the exact time of the music. The following Table 2.1 shows the main periods of 

Western classical music with the approximate years. 

Period Name Year Range 

Medieval 500-1400 

Renaissance 1450-1600 

Baroque 1600-1750 

Classical 1750-1810 

Romanticism 1810-1910 

Modern 1900 - Present 

Table 2.1: Music time periods and year ranges 

Works that use exclusively classical music score sets to create classification systems 

are not numerous in the literature, especially for determining the musical period. 

According to Weiss and Schaab, tonality and harmony play an important role in 

determining the musical style in Western classical music (Schaab & Weiss, 2015). In 

their work, using datasets of audio recordings, chroma-based vectors are created based 

on the audio signal spectrogram, to be used for the classification of periods.  

2.7 Conclusion 

Music Information Retrieval (MIR) has been a field of research for many years. 

Different formats to store music content and the features that can be extracted from 

them were examined in this review. After a detailed review of the literature and prior 

work in the area, the following conclusions can be identified: 

Motivation of the research 

Although there has been research performed on automatic classification systems, it has 

generally been by classifying top-level and broad genres such as Rock, Jazz, Classical, 
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Rap, etc… To the best of my knowledge, researches involving classifying more 

complex music, such as Western classical music into their musical time periods have 

not been sufficiently explored using music scores, mainly due to the lack of data 

available for the task. This project will tackle the problem of classifying classical 

music scores by period. 

Choice of data source format 

Within the analysis of the different music representations, the symbolic format, and in 

particular MusicXML and humdrum, is the format that can capture a music score in as 

much detail as possible and would be the most suitable to analyse the music theory 

aspects that can help to determine the time period (era) of Western classical music. The 

use of audio content, although extensive in the literature, presents some drawbacks for 

this type of classification. 

Attributes to work with 

There is a large amount of attributes that can be created from music scores and used 

for classification projects. They can be categorised in different attributes such as pitch, 

rhythm, harmony, melody, timbre, dynamics and expression. These attributes are 

directly linked to music theory and analysis performed by musicologists. 

Machine learning algorithm 

Based on research into similar case studies, Support Vector Machine is the most 

common algorithm used to classify music works as it gives the best accuracies. 

Variable ranking and feature selection methods can be used to: identify the most 

important predictors for the classification, acquiring a better data understanding, and 

also used to create models with less features that could improve accuracy and reduce 

over-fitting. 
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3. DESIGN OF THE EXPERIMENT 

3.1 Introduction 

This chapter will describe the design and methodology used to carry out the 

experiment of this dissertation. It will start with a design overview diagram which 

illustrates the main steps that were followed. It will then discuss the need to build a 

dataset for the purpose of the thesis and the details of the data collection process 

required to create it. A description of the process to construct the features from the raw 

music scores will be provided. The features will be divided in different factors: pitch, 

rhythm, melody and harmony. Complete details of the features for each of the 

categories will be provided in this section. A section about overall data cleansing and 

transformation is included as well. The creation of the different models and the 

algorithm used will be described. Finally, the evaluation methods and the different 

metrics used to analyse the results will be discussed. 

3.2 Design overview 

The experiment performed in this dissertation has four main steps: data collection, data 

preparation, data modelling and evaluation. All the steps will be developed using 

Python scripts. The main scripts are shown in Appendix D. An overview of the stages 

and processes are shown in Figure 3.1 below. 

 

Figure 3.1: High-level design of the experiment 
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3.3 Data collection 

A dataset will be built for the purpose of this dissertation due to the lack of resources 

available for this specific task, as mentioned in the literature review. In order to create 

this dataset, music scores will be downloaded from different sources. The information 

that is shown in a score can be represented in digital files. A piece of music can be 

stored as a digital image or in PDF format and printed. In order to be able to extract 

information of notes and durations from an image, complex Optical Music Recognition 

(OMR) software has to be used. These systems have improved in recent years but are 

still face many challenges, preventing the exploitation of their full potential 

(Bainbridge & Bell, 2001; Ringwalt, Dannenberg, & Russell, 2015). However, scores 

can be created with music notation software and exported to different formats. There 

are a number of these scores available to download in the web. Two formats were used 

for the data collection. 

3.3.1  Music formats used  

Humdrum format: Humdrum format is a robust format for music notation with a 

large catalogue available. It is a plain text format and it has been used for 

computational musical analysis in diverse applications. (Sapp, 2005). It can also 

contains metadata information using a specific syntax such as ‘!!!COM’ at the start of 

the line to indicate the composer name as it is shown in the example in Figure 3.2.  

Staff or parts of the score are organised in different columns. Notes played at the same 

time are on the same line of the text file. In the example, the first two measures of a 

piece by Mozart are shown in Humdrum format beside the original music score.  

!!!COM: Mozart, Wolfgang Amadeus 

!!!OTP: Viennese Sonatina No. 1 in C-major 

**kern  **kern 

*clefF4 *clefG2 

*M4/4  *M4/4 

=1  =1 

2CC 2C  2c 2cc 

2EE 2E  2e 2ee 

=2  =2 

2GG 2G  2g 2gg 

4r  4r 

8G’  8gg’ 

8G’  8gg’  

Figure 3.2: Example of Humdrum format 
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MusicXML format: MusicXML started as a way to have a common format that could 

be used in many notation software programs, apart from their native file format. The 

MusicXML uses a hierarchy system of XML-based tags to represent the content of 

sheet music (Good, 2001). There are tags with metadata information such as composer, 

work and movement.  

<note> 

 <pitch> 

  <step>G</step> 

  <octave>4</octave> 

 </pitch> 

 <duration>2</duration> 

 <type>half</type> 

</note> 

Figure 3.3: Example of MusicXML format 

An example of how the information related to a note is stored in a MusicXML file can 

be seen in Figure 3.3 above. In this example the note G is played in the fourth octave 

with the duration of a half note. The note tag will be part of a measure tag along with 

other notes. Accidentals, dynamics, expressions, slurs and other symbols that can be 

contained in a music score, can be represented with tags. Key and time signatures, 

clefs and tempo tags are also included at the start of the file. 

3.3.2  Score collection process  

Music files sources 

The scores in the humdrum file format will be downloaded from the KernScores 

library (Sapp, 2005). Kern Scores is the main online database of scores in humdrum 

format and is accessible browsing by composer or title. The website includes zip files 

with entire collections by composer. This catalogue is extensive but it lacks music files 

from the modern period. That is why other sources will be used to obtain additional 

music files. 

MusicXML scores will be downloaded mainly from the website musescore.com, a 

community system to publish and share scores online, created with the free MuseScore 

software. More modern period scores were found in this source to complement the 

catalogue obtained from the KernScores library. A python script will be written to 

automate the navigation through the website and download the files, as this website did 

not offer bulk downloads. 
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Even though two different formats were used to create the dataset collection, the 

information needed to create the features was available in both of them. The only 

difference is the representation of that information. 

Considerations - Same instrument 

In order to make the data sample as uniform as possible, all the works collected were 

for the same instrument. This was done to prevent certain attributes of the music that 

are particular to a specific instrument affecting the results of the experiment. For 

example, in flute and in general in wind instruments, it is not possible to play two 

notes at the same time. Unless there are a balanced number of pieces per instrument 

and per period, this would lead to a sample that is not representative. 

Piano works have been used for the dataset because they allow the extraction of 

harmonic information in the form of chords as the piano is a polyphonic instrument. 

This way, the main characteristics of music such as pitch, rhythm, melody and 

harmony can be analysed, in the interest of determining the features most important for 

the classification. The piano is also a very popular instrument with a large catalogue of 

pieces composed for this instrument or related ones, such as harpsichord. Furthermore, 

there are works for piano in all the time periods of the study. 

3.3.3  Labell ing the dataset  

For the purpose of the classification using supervised machine learning, each of the 

records of the dataset needs to have a label that identifies the row with a particular 

class. This way, a model can be trained with the information of the features and what 

class it represents. In the case of this study, the class is the music era. Although the 

music periods of classical music are disputed with regard to the exact dates of the year 

ranges (Rodriguez Zivic, Shifres, & Cecchi, 2013), it is common practice to identify a 

composer with their period. This method to classify the pieces has some drawbacks, as 

not all the pieces of the same composer share the same style of a period. This is 

particularly notable for authors that composed their work in the latter years of an era as 

this work can be influenced by the style of the next period. Composers could have 

changed their style during their lifetime. Most of the limitations in any type of 

classification systems come from the fact that the classes are not clearly defined and 

are subjective. 
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Therefore, using the composer that is included in the music files, the corresponding 

musical period will be added to the dataset. 

3.3.4  Dataset  overview 

A total of 878 music files were finally collected to build the dataset. In the collection, 

the movements that are part of the same work were considered as different rows in the 

dataset. This is usual in the Sonata form, that contains three movements or parts. Each 

movement has its own identity, tempo and style and therefore, they were handled as 

individual records. 

Because files were collected from different sources, the same score could have been 

downloaded more than once. Lists of music work titles by composer were created in 

order to facilitate the removal of duplicates from the dataset. The final dataset had a 

good representation of music from each of the periods. It was more difficult to get 

music from the modern period. This might be due to some modern pieces still being 

under copyright, as opposed to works from Bach that are public domain nowadays. 

The final number of pieces collected per musical period are shown in Figure 3.4 and 

the breakdown by composer is shown in the Appendix A. 

 

Figure 3.4: Number of scores collected per period 

A summary of the most important piano scores collected are shown in Table 3.1 
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Period Works Collected 

Baroque 

- Well-Tempered Clavier I and II by Bach (48 preludes and 48 fugues) 

- Golberg Variations by Bach (Theme and 30 variations) 

- 15 Two-part Inventions by Bach 

- 59 Sonatas by Scarlatti 

- Various pieces by Buxtehude, Haendel, Purcell and Rameau 

Classical 

- 17 Sonatas by Mozart(51 movements) 

- Other pieces by Mozart including Variations, Fantasies, Minuets, Divertimentos 

and Rondos. 

- All the 32 Sonatas by Beethoven ( 102 movements) 

- Other pieces by Beethoven such as Diabelli Variations, Preludes, Sonatinas and 

Rondo. 

- Sonatas by Haydn (17 movements) 

- 6 Sonatas by Clementi (17 movements) 

Romantic 

52 Mazurkas by Chopin 

24 Preludes by Chopin 

Several Waltzes, Nocturnes and Etudes by Chopin  

25 Preludes by Alkan 

Trascendental Etudes By Liszt 

German Dances and Ecossaises by Schubert 

Six fugues by Saint-Saens 

24 Preludes by Hummel 

Individual pieces from Schumann, Glinka, Mendelsshon, MacDowell, Grieg, 

Tchaikovsky and Mussorgsky 

Modern 

Pieces by Debussy including Preludes, Arabesques and Children’s corner 

Gnossiennes and Gymnopedies by Satie 

14 Preludes and some Etudes by Rachmaninoff 

Individual pieces from composers such as Ravel, Prokofiev, Sibelius and Poulenc 

Table 3.1: Main works collected 

3.4 Data preparation 

Data preparation is an important step for any classification task or in general, any data 

mining system. In this experiment, it starts by constructing the features from the music 

scores raw files. After that, issues have to be identified because data with low quality 

will not give the appropriate results. This can be done by exploring the data to point 

out the different issues, such as missing data, outliers and inconsistencies. It will 

follow by choosing the approach to take in order to fix or at least minimise the impact 

of the problems. Data transformations to prepare to data to a suitable form will be 

discussed too. 

3.4.1  Feature extraction  

After the dataset has been built, the next step is to extract attributes from each of the 

music scores. The extraction of these features is a very important step and the 

foundation of any classification task. Without a good set of features that can explain 
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the different aspects of a song, there is little that can be done even with an excellent 

and optimised classifier algorithm (Corrêa & Rodrigues, 2016) 

There is no defined set of features that must be extracted from music scores. 

Depending on the research, the feature extraction can be focused on different aspects 

of music. For example, for an algorithm to divide a song into musical phrases, a 

complex set of features based on dynamics and beats was used (Thom, Spevak, & 

Höthker, 2002) 

In this study, the goal was to classify pieces by music period using different types of 

attributes from the music score. A wide range of features from many different 

characteristics of music were used as a way to cover all the styles and aspects of the 

musical period from a range of over 300 years. The majority of attributes are global to 

the pieces, such as minimum, maximum values, average and histograms, and there is 

no profound analysis of patterns and motifs. Depending on the results and for future 

work, more time could be dedicated to explore more local features and particular 

factors in the structure of the score. Most of the features used in this study, were based 

on the works that were mentioned in the literature review, the main one being the 

research of McKay and Fujinaga (Mckay & Fujinaga, 2004). 

Rhythm and pitch are the most basic categories and the two attributes that make up a 

piece of music.  

- Rhythm relates to the horizontal movement, describing the length of the notes 

- Pitch relates to the vertical, describing how high or low the sound is.  

All the features extracted in this dissertation could be included in these two types. 

Towards investigating more specific factors, two more concepts were included in this 

thesis, melody and harmony.  

- Melody is a combination of rhythm and pitch over time. In other words, a succession 

of notes with a particular duration and pitch.  

- Harmony refers to the notes that are played at the same time and the pitch difference 

that will make different chords. The formation of these chords are related to the 

tonality, which is a factor that can differentiate musical genres. 
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The music scores files, which are plain text format, were parsed into objects containing 

all the notes information and their order within the song. These objects were then 

analysed in order to extract the features of each song. 

Rhythm features 

The rhythm is related to the duration of the sounds or notes in music and it is the most 

basic property in music. In fact, some instruments can only produce rhythm with no 

change in the pitch or frequency of the sound. Beat and tempo can also define the 

rhythmic information in a piece. As mentioned earlier, only global statistics about the 

rhythm are included in this category. Different changes in rhythm along the score will 

be related to the melody. 

 In order to extract the rhythm features of a single score, the following attributes were 

compiled for each note found in the score:  

Duration: is the duration of the note in units of quarter/crotchet length. For example, a 

half note would have the value 2. A decimal value will be used to store the exact 

duration, if using dotted duration. A dotted quarter length note would be 1.5. 

Duration name: is the name of the note, related to the duration but as string. This is 

used to compile the duration histogram. 

Using the information from this list of notes, rhythm features can be created. In Table 

3.2 a detailed description of all these features is shown. Other global information is 

obtained from the score to complete the rhythm category of features.  

Information such as: 

Rests: are the total number or rests or silences found in the score. The feature value 

will store the fraction of rests compared to notes. 

Time signature: is the number of time signature changes and also the information 

about the initial time signature. 

Grace notes: are the notes that are ornaments added to a note. These notes have a note 

duration close to 0, therefore, they will not be considered in the above list of notes. 

However, the proportion of grace notes will be stored. 

Expressions: are notes that have an expression information linked to them, such as 

mordent, trill, tremolo, etc… 

This information will be used to construct the rest of the features in Table 3.2 
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Attribute Description 

r_minimumDuration Shortest note duration 

r_maximumDuration Longest note duration 

r_noteDurationAverage 
Average of the note duration. Sum of all note durations by number 

of notes 

r_noteDurationStdDev Standard deviation of all note durations 

r_numberOfDistinctDurations All the different note durations used in the score 

r_mostCommonNoteDuration 
Duration of the most common note in the score.  

The unit is the quarter note and has the value 1.0 

r_mostCommonNotePresence Percentage of use of the most common duration  

r_twoMostCommonNotePresence Percentage of use of the two most common duration 

r_distanceTwoMostFrequent 
Duration between the two most frequent note durations in times the 

duration is longer than the other 

r_dh_32nd  

r_dh_16th 

r_dh_Eighth 

r_dh_Quarter 

r_dh_Half 

r_dh_Whole 

r_dh_Breve 

r_dh_Dotted_32nd 

r_dh_Dotted_16th 

r_dh_Dotted_Eighth 

r_dh_Dotted_Quarter 

r_dh_Dotted_Half 

r_dh_Dotted_Whole 

Frequency of use of each of the notes in a histogram of note 

durations. 

r_nonBasicDurationsPresence Fraction of notes that are not in any of the previous bins. 

r_timeSignatureChanges 
Number of times there is a meter/time signature change in the 

score. 

r_timeSignatureLength Length in quarter notes of the main time signature. 

r_dupleMeter If the time signature is 2/2, 2/4, 4/4, 6/8 

r_tripleMeter 
If the initial time signature numerator is 3 or 9, three beats per 

measure 

r_noteDensity 
Number of notes per unit (quarter length). Total number of notes by 

total length of the score. 

r_restPresence Percentage of rests/silences used in the score  

r_graceNotePresence Fraction of notes that are grace notes (ornaments) 

r_expressionsPresence 
Fraction of notes that include expressions (mordente, tremolo, 

etc...) 

Table 3.2: Rhythm attributes 

Pitch features 

Pitch determines how high or low a note sounds. In order to extract the pitch features 

of a single score, all the notes used were computed and a list was created with the 

following pitch information of each note:  

Pitch number: is a unique number that identifies the pitch of the note. It represents the 

absolute pitch of the note. Instead of using frequency in hertz, it was simplified by 

using an integer number. Each note would have a unit difference with the next. This 

would represent the semitones. For example, C3 would be 48, C#3 = 49 and so on. 
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Pitch class: is the note without taking into account the octave the note is in. For 

example, the class of the notes C3 and C4 will be just C. The twelve possible classes 

and their values are shown in Table 3.3 

Note C C#/D♭ D D#/E♭ E F F#/G♭ G G#/A♭ A A#/B♭ B 

Value 0 1 2 3 4 5 6 7 8 9 10 11 

Table 3.3: Pitch classes and corresponding values 

Pitch Accidental: is a note that is not included in the key signature. For each note, a 

Boolean value will be stored representing if the note is an accidental or not. 

Using the information of this list of notes, pitch features can be created, for example 

pitch histograms, that have been widely used in the literature (Tzanetakis et al., 2003). 

In Table 3.4, detailed description of all these features are shown. The number of key 

signature changes was also computed globally. 

Attribute Description 

p_minimumPitch The minimum absolute pitch note used 

p_maximumPitch The maximum absolute pitch note used 

p_pitchAverage The average of pitches 

p_pitchStd Standard Deviation of the pitches 

p_numberOfPitchClasses Number of different pitch classes used in the score (1-12) 

p_numberOfPitches Number of different absolute pitches used in the score 

p_distanceStrongestPitches The distance in semitones between the two most used pitches 

p_distanceStrongestPitchClasses 
Shortest distance in semitones between the two most used pitch 

classes. 

p_ph01 Fraction of the 1st most used pitch class 

p_ph02 Fraction of the 2nd most used pitch class 

p_ph03 Fraction of the 3rd most used pitch class 

p_ph04 Fraction of the 4th most used pitch class 

p_ph05 Fraction of the 5th most used pitch class 

p_ph06 Fraction of the 6th most used pitch class 

p_ph07 Fraction of the 7th most used pitch class 

p_ph08 Fraction of the 8th most used pitch class 

p_ph09 Fraction of the 9th most used pitch class 

p_ph10 Fraction of the 10th most used pitch class 

p_ph11 Fraction of the 11th most used pitch class 

p_ph12 Fraction of the 12th most used pitch class 

p_keySignatureChanges Number of times the key signature changes 

p_accidentals Percentage of notes that are accidentals outside the key signature 

p_mostCommonPitchPresence 
Fraction of notes that correspond to the most common absolute 

pitch 

p_strengthOfTopPitches 
Second most common pitch by most common pitch. The higher the 

number the less difference in magnitude between the first two 

Table 3.4: Pitch attributes 



 

29 

Melody features 

Melody is a sequence of notes that usually change in rhythm and/or pitch. In the 

rhythm and pitch feature sections, global statistics were extracted. In the melody 

features, the progression of the different rhythms and especially pitches during the 

score will be considered. The most important component to analyse will be the 

interval. The melodic interval is the distance in steps or semitones between a note and 

the adjacent. For example between the note C and E there are 4 steps, and the interval 

is called Major 3rd. The list of all the simple intervals and the number of steps are 

shown in Figure 3.5 

 

Figure 3.5: Melodic simple intervals. Common name and number of steps below 

When the interval is larger than 12 steps (an octave), it is called a compound interval 

and for analysis purposes, it is usually reduced to a simple interval. It is done just by 

moving both notes to the same octave. For example C3 and E4 have 16 steps and it is a 

Major 10th but if they are in the same octave (C3, E3), then there are 4 steps, Major 

3rd. 

The dataset of scores used in this thesis is for piano which is a polyphonic instrument. 

In polyphonic music, more than one note can sound at the same time, as opposed to 

monophonic, where there is a single melody. These melodies have a pattern and 

meaning in the score and they are all important. In order to create a list of all the 

intervals found, the melodies were first extracted. Melody extraction in polyphonic 

music is a field in MIR research that has many challenges, as many melodies are 

involved at the same time (Corrêa & Rodrigues, 2016; Isikhan & Ozcan, 2008). To 

simplify the process to convert polyphonic music to multiple monophonic sequence 

notes the following was considered: 

- The notes in each part/staff were evaluated as different melodies. 

- If a part had more than one voice, each voice was handled as a melody too. 
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- If there are still melodies with more than one note played at the same time, only the 

one with the highest pitch would be considered.  

Once all the melody lines are extracted from the score, a list of all the intervals 

between a note and the next is built and features can be created from it, such as interval 

histograms, melody direction (if the pitch goes up or down), average and standard 

deviation, unique number of different intervals, or if the melody has a trend to go to 

higher or lower pitch, or the amount of changes in duration along the song. 

Table 3.5 details all the melody attributes extracted from each score. 

Attribute Description 

Histogram of melodic intervals (between consecutive notes)reduced to simple intervals (same octave) 

m_intervals_01_minorSecond Fraction of intervals that are minor second 

m_intervals_02_majorSecond Fraction of intervals that are major second 

m_intervals_03_minorThird Fraction of intervals that are minor third 

m_intervals_04_majorThird Fraction of intervals that are major third 

m_intervals_05_perfectFourth Fraction of intervals that are perfect fourth  

m_intervals_06_Tritone Fraction of intervals that are tritone / augmented fourth 

m_intervals_07_perfectFifth Fraction of intervals that are perfect fifth 

m_intervals_08_minorSixth Fraction of intervals that are minor sixth  

m_intervals_09_majorSixth Fraction of intervals that are major sixth 

m_intervals_10_minorSeventh Fraction of intervals that are minor seventh 

m_intervals_11_majorSeventh Fraction of intervals that are major seventh 

m_intervals_12_Octave Fraction of intervals that are octave 

Direction of the melody 

m_directionUp Fraction of melodic intervals that goes to a higher pitch 

m_directionDown Fraction of melodic intervals that goes to a lower pitch 

m_directionSame Fraction of melodic intervals that keeps the same pitch 

Melodic interval statistics 

m_mostCommonMelodicInterval In semitones, the most common melodic interval found 

m_mostCommonIntervalPresence Fraction of use of the most common melodic interval found 

m_melodicIntervalAverage Average in semitones of the melodic intervals (within an octave) 

m_melodicIntervalStd 
Standard deviation in semitones of the melodic intervals (within 

an octave) 

m_melodicDistanceAverage Average in semitones of the melodic intervals (absolute distance) 

m_melodicDistanceStd 
Standard deviation in semitones of the melodic intervals (absolute 

distance) 

m_numberOfMelodicDistances 
Number of unique melodic distances (with a 5% minimum 

presence).  

m_largeIntervals 
Fraction of intervals that are greater than an octave (12 

semitones) 

m_melodicDurationChange 

Fraction of notes that changes duration in the melody. For 

example, if one note is half duration and next is other duration 

different than half, then there is a rhythm change 

m_melodicContourChange 

Fraction of intervals that don’t follow the same direction than the 

previous one. For example, if the previous interval was going up 

and the next is also going up, there is no contour change. 

Table 3.5: Melodic attributes 
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Harmony features 

Harmony is related to the simultaneous combination of notes. These notes played 

together, form chords that can be analysed using the distance in pitches between the 

ones in that chord. All the vertical intervals between all pairs of notes in a chord will 

be gathered from all the chords found in the score. The difference with the melodic 

features, is that in this case only the vertical relationship between notes is considered, 

as opposed to the horizontal relationship, from left to right of the score. 

Harmonic intervals histogram can be created using the distance between notes. There 

will be twelve bins that will contain the percentage of use of each interval, the same 

way it was handled in the melody features section, as seen in Figure 3.5.  

By analysing all the notes in a chord as a single unity, the chord type can be 

determined. Chords with three pitches are called triads and the most typical ones are 

minor, major, diminished or augmented. Other types of chords with more than three 

pitches are also considered. In Western music, chords are built with intervals of a third 

stacked over the root note. Figure 3.6 shows the main chord types based on the C note. 

In order to find out the type when the note is other than C, the same relationships 

between the pitches of notes is used. For example, in the Major triad (notes C, E and 

G), the intervals are a Major third (4 steps) plus a Minor third (3 steps), exactly the 

same relation when using the notes G, B and D. There are many chord formation types 

but only the most common are considered as individual features, the rest will be 

grouped in features such as h_chordType_09_Other4Chords, that include the 

percentage of use of chords with four notes that are not major seventh or minor seventh 

or dominant seventh. 

 

Figure 3.6: Most common chord types, based on the note C 

 

Description of all the harmony features can be found in Table 3.6. 
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Attribute Description 

Percentage of harmonic intervals between pair of notes in all the chords 

h_harmonic_interval_01_m2 Fraction of harmonic/vertical intervals that are minor second 

h_harmonic_interval_02_M2 Fraction of harmonic/vertical intervals that are major second 

h_harmonic_interval_03_m3 Fraction of harmonic/vertical intervals that are minor third 

h_harmonic_interval_04_M3 Fraction of harmonic/vertical intervals that are major third 

h_harmonic_interval_05_P4 Fraction of harmonic/vertical intervals that are perfect fourth 

h_harmonic_interval_06_TT Fraction of harmonic/vertical intervals that are a tritone 

h_harmonic_interval_07_P5 Fraction of harmonic/vertical intervals that are perfect fifth 

h_harmonic_interval_08_m6 Fraction of harmonic/vertical intervals that are minor sixth 

h_harmonic_interval_09_M6 Fraction of harmonic/vertical intervals that are major sixth 

h_harmonic_interval_10_m7 Fraction of harmonic/vertical intervals that are minor seventh 

h_harmonic_interval_11_M7 Fraction of harmonic/vertical intervals that are major seventh 

h_harmonic_interval_12_P8 Fraction of harmonic/vertical intervals that are perfect octave 

  

h_topVerticalInterval Vertical interval most used as string. (m2…. P8) 

h_topVerticalIntervalPresence Fraction of the vertical interval most used. 

h_partialChords Fraction of chords that have only two notes by the duration of 

the score in units. 

Chord features 

h_chordNotesAverage Average number of notes per chord in the score 

h_chordNotesStd Standard Deviation of number of notes per chord in the score 

h_chordPitchClassesAverage Average number of different pitch classes per chord 

h_chordPitchClassesStd Standard deviation of the different pitch classes per chord 

h_chordsWithOctave Fraction of chords that include the same pitch class more than 

once 

h_uniqueChords Ratio of combinations of chords found. Unique chords by total 

number of chords used. 

h_uniqueChordDurations Number of distinct chord durations 

h_chordDurationAverage Average duration of the chords 

h_chordDensity Average of chords per score duration unit (quarter length) 

h_mostCommonChordSet Percentage of use the most common chord (pitch class set) 

h_chordType_01_minorTriads  Fraction of chords that are minor triads 

h_chordType_02_majorTriads Fraction of chords that are major triads 

h_chordType_03_diminishedTriads  Fraction of chords that are diminished triads 

h_chordType_04_augmentedTriads  Fraction of chords that are augmented triads 

h_chordType_05_OtherTriads  Fraction of chords that are triads but not in any of the above 

groups 

h_chordType_06_MinorSeventh Fraction of chords that are minor sevenths 

h_chordType_07_DominantSeventh Fraction of chords that are dominant sevenths 

h_chordType_08_MajorSeventh Fraction of chords that are major sevenths 

h_chordType_09_Other4Chords Fraction of chords that contains four notes but not in any of the 

groups 

h_chordType_10_ComplexChords Fraction of chords that have more than four different pitches 

Table 3.6: Harmony attributes 

3.4.2  Data cleaning 

Data quality assessment is an important step for any classification task or in general, 

any data mining system. Issues have to be identified because data with low quality will 

not give the appropriate results. This assessment starts by exploring the data to point 
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out the different issues, such as missing data, outliers and inconsistencies. It will 

follow by choosing the approach to take in order to fix or at least minimise the impact 

of the problems.  

Once all the features have been extracted, a review analysis of the feature values must 

be performed. Descriptive statistics will be generated about each of the features. 

Depending if the data type from the feature is continuous or categorical, different 

measure values have to be analysed. For the features that are numeric the count, 

minimum, maximum, mean, standard deviation, 1st quartile, 3rd quartile and median 

should be reviewed. Minimum and maximum values give an idea of the ranges. Mean 

and standard deviation help to understand the variation and central tendency of the 

features. Histograms of all the continuous features can also be included for the data 

quality assessment to visually check the distribution of values. For categorical values, 

the cardinality, mode and mode% will tell us about how many levels are included, the 

most common value and its frequency.  

Analysis of this information can help to identify data quality issues the most common 

being missing values and outliers (Kelleher, Namee, & D’Arcy, 2015) 

Missing values 

The number of records with missing values for each of the features can be easily 

identified using the previous summary information. The cause for having missing 

values has to be identified before proceeding with a solution. It may be due to an error 

when creating the table with the features or that there was not enough information for 

that particular attribute in that record. 

 For this experiment, as the feature values were calculated from the music scores, the 

only possible reason for the presence of missing values would be an error in the feature 

extraction process. The feature extraction process would then be fixed accordingly. In 

the case that, for a particular experiment, the researcher does not have access to the 

raw data source and control over the construction of the features, other methods have 

to be used to deal with the missing values (Han & Kamber, 2011).  The common 

approaches are: 

- Delete the observation/row: This is an extreme method to use because by 

ignoring this instance from the model, other important attributes would be 
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ignored too. Unless there are many features in that record with missing values, 

this method leads to an unnecessary loss of data information. 

- Impute the value: replace the missing value with the most reasonable value. 

The most common values to use are the mean, median or even calculated from 

a tendency using a predictive model such as linear regression. 

Outliers 

An outlier is a value that deviates substantially from the mean. As in the case of 

missing values, it has to be identified if the outliers are invalid or valid. Invalid outliers 

could be present due to an error in the feature extraction process and, in this particular 

experiment, it could also be an error in the source file data (music score file). Valid 

outliers are values that correctly represent the information contained in the dataset but 

just happen to be really different from other values. 

In order to check the presence of outliers, minimum and maximum values for each 

feature can be analysed using the domain knowledge and the description of the 

features. For example, all the features representing a fraction or percentage should 

have their values between 0 and 1, or a feature that indicates the number of pitch 

classes used in the score cannot have a value higher than 12, as there are no more than 

12 pitch classes. The use of boxplots or checking the gap between 3rd quartile and the 

maximum value, are other ways that can be used to find outliers.  

If the outliers are valid values, there are methods to minimise the impact of these in the 

models without deleting the observations. These methods includes data transformation 

techniques, such as binning or clamp transformation. 

Clamp transformation is an easy way to deal with outliers. With this transformation, 

values higher and lower than a specified threshold, will be replaced by the threshold 

values. The thresholds can be set based on domain knowledge of the feature or a 

calculation using the quartile values from the summary statistics. 

3.4.3  Data transformation 

Data transformation techniques are used to consolidate the data to a more suitable form 

to be used to train the models or for other statistical analysis. A transformation can also 

be used to deal with inconsistency and outlier problems. There are different approaches 
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to transform the data such as binning, clamp transformation, derived features and 

normalisation. 

Binning 

Binning is a data reduction technique used for numeric attributes. It consists of 

converting a continuous feature into a categorical feature. An example would be 

transforming a field representing the age into age groups. Each group is a bin that 

contains all the values from a defined range. The bins could have the same number of 

records in each (equal-frequency binning), or the same range of values (equal-width 

binning). There are advantages of using binning, including handling outliers, as the 

outliers will be included in the first or last bin, along with other values (Kelleher et al., 

2015).  

Handling categorical features 

Most classification machine learning algorithm implementations present better results 

if using only numeric features, and in some libraries, like the one used in this 

experiment, the scikit-learn python package, all the variables have to be numeric.  

The easiest way is to convert a single categorical feature into different binary features. 

The number of the new dimensions will be the cardinality or number of unique values 

of the categorical feature. If for example, we had a categorical variable with three 

different values, A, B or C, three new binary variables will be created. Each of the 

variables will account for the presence or absence of that value in the feature space. 

After that, the original categorical feature can be removed from the feature space. 

If the categorical feature represents an interval that can be ordered, then it could be 

converted into a numeric feature. For example, a categorical feature that represents a 

client income could have the values ‘low’, ‘medium’ and ‘high’ and they can be 

transformed to 1, 2 and 3 and be used as a number. 

Additionally, a numeric feature could actually hold a categorical feature if the values 

do not represent a quantity, an interval or ratio. In other words, all the different values 

are independent to each other. In this case, the feature should be treated as categorical. 
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Derived features 

New features can be constructed based on the features that are already present on the 

dataset. Two or three features that represent the same main concept might be 

aggregated in a new attribute that could simplify the dataset and at the same time, 

improve the predictive model (Han & Kamber, 2011). On the other hand, flag features 

that contain a Boolean data type can be created to represent the absence or presence of 

a property, using one or a combination of feature values to calculate the flag value. 

Normalisation 

The numeric features used in any classification task, normally have different 

measurement units or ranges. Depending on the machine learning algorithm, the model 

predictions could be affected by using these values directly. For example, a nearest 

neighbour algorithm would find the observation that is a closest match based on the 

distance that is calculated using the values. Therefore, the feature that has a greater 

range would have more impact in the calculations than another feature with a shorter 

range.  

Normalisation can be used to change that numeric feature to fall in a range but still 

keeping the relative distance between their values. This approach has to be applied to 

all the numeric features that will be used to create the model in order to standardize the 

scale. It can be applied by using a min-max normalisation using a specific range 

usually from 0 to 1, or using the Z-score standardization, that is widely used in 

statistical analysis and uses the mean and standard deviation to calculate the new 

values. 

Min – Max normalisation Z-score standardization 

𝑁𝑖 =
𝑋𝑖 − 𝑚𝑖𝑛(𝑋) 

𝑚𝑎𝑥(𝑋) − min (𝑋)
 𝑍𝑖 =

𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋) 

𝑠𝑑(𝑋)
 

3.5 Modelling 

3.5.1  Group features in categories  

In order to compare the effectiveness of each of the categories of features, a classifier 

model will be created with each group selection. A final classifier using the whole set 

of features will be also built and it is expected that the combination of all the 
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categories would give the best results. Table 3.7 shows the predictive models that will 

be created with the final number of features included in each. 

Classifier Category Number of features 

1 Rhythm 32 

2 Pitch 25 

3 Melody 25 

4 Harmony 35 

5 All features 117 

Table 3.7: List of classifier models built with the number of features 

A unique classifier with exactly the same parameters will be used to compare the 

different models created. This is an important step as the change in any parameter 

before the creation of the next model would make the comparison unreliable. These 

models can be further compared and evaluated with no bias of the machine learning 

algorithm. 

3.5.2  Variable ranking 

Another research objective of the study was to find out what specific music attributes 

were the most important contributors to identify the musical period of a music score. 

The machine learning algorithm that will be used to create the models is the SVM. 

This MLA often gives good results but it is considered a “black box” algorithm and the 

results are hard to interpret, especially if using a non-linear kernel method (Ben-Hur & 

Weston, 2010). The output doesn’t provide information about the importance of the 

features used to create the model. 

By identifying the most important features, new predictive models could be created 

discarding the irrelevant attributes. These new models could improve the accuracy, 

reduce training time and reduce the risk of over-fitting (Guyon et al., 2003). The 

models created would be easier to understand and improve generalisation. In many 

cases, machine learning algorithms such as SVM or neural network in the sklearn 

Python package, perform a feature selection process internally before creating the 

models.  

For this experiment, the Random Forests algorithm will be used as the researcher has 

access to the information of feature importance and it is a robust and popular algorithm 
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(Genuer et al., 2011). The random forest is an algorithm that creates multiple decision 

trees, each with a different random subset of the available data (Breiman, 2001). The 

classification results are given by the average prediction of each tree. The importance 

of each feature is calculated by aggregating the importance of that feature in the 

individual trees. 

Knowing what individual features are the most important predictors will give insights 

related to music theory and the music style of the different periods. 

3.5.3  Support vector machine  classifier  

As mentioned in the literature review, it was decided to use the support vector machine 

algorithm to create the models to compare the set of features. The literature shows that 

this classifier has been applied in symbolic genre classification with success (Corrêa & 

Rodrigues, 2016; Xu et al., 2003). Support vector machine (SVM) is a supervised 

learning model that can be used for regression and classification tasks. The SVM 

models are well suited to avoid over-fitting and they have a good performance with 

high-dimensional datasets (Kelleher et al., 2015).  

The support vector machine algorithm is based in the principle that it is possible to 

separate the instances of different classes with an optimal linear boundary. In cases 

with more than two dependant features, that line would be a hyperplane. That linear 

decision boundary separates the classes with a margin, that is the distance to the 

closest observation or training instance. A linear decision function is used to find the 

largest optimal margin between the vectors of the different classes. A larger margin to 

divide the classes would be more accurate (Cortes & Vapnik, 1995). If the data cannot 

be separated by a linear hyperplane, kernel methods can be used by mapping the data 

on to a high-dimensional feature set that can be divided linearly. A decision has to be 

made on what kernel method to use (linear, radial or polynomial), and the SVM 

parameter settings. The most important parameters are the soft-margin (C) and the 

gamma value. The C value defines the margin width to separate the classes and is a 

trade-off between penalty for misclassification and complexity of the model (Cortes & 

Vapnik, 1995). A small value of C leads to a large margin and a large C value leads to 

a small margin. The gamma value is the kernel coefficient if using a radial kernel. Low 

values of gamma will lead to a decision boundary that is almost linear (similar to using 

a linear kernel). High values of gamma will lead to a greater curvature of the decision 
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boundary to adapt to the training set (Cortes & Vapnik, 1995). A value too large could 

lead to over-fitting, as values in the training set could represent unusual information 

and the model is not flexible enough to generalise in the test set (Ben-Hur & Weston, 

2010) 

3.6 Evaluation 

The performance of each category of features (rhythm, pitch, melody and harmony) 

will be evaluated individually. K-fold cross validation will be used to test the 

performance of the models. With the results obtained, the accuracy will be calculated 

to determine the best model to classify music scores. Confusion matrices will be 

created for each category to analyse the accuracy and misclassifications in each class. 

Different metrics will be calculated using the confusion matrix in order to further 

evaluate the models and examine how the predictors behave in each musical period. A 

whole list of all the music pieces with their predictions will also be gathered to be 

analysed at a composer level. 

In order to determine what individual attributes inside each category are the most 

important to identify the musical period, box plots and random forest tree algorithm 

will be used. 

3.6.1  K-fold cross validation  

K-fold cross validation will be used to test the performance of the models. With a K-

fold validation, the dataset is divided into equally sized K folds. One of the folds is 

used for testing and the rest are used for training the model. This is performed K times, 

each time with a different fold as testing. Using this method, all the instances will be 

used exactly once for testing and k-1 times for training. All the results are added up 

and averaged if needed. A stratified method of sampling was used to maintain the same 

proportion of instances per class in each fold. An extreme case of K-fold is when k is 

equal to the number of samples, this is called leave-one-out, and only one sample is 

left for testing in each fold. This method is computationally expensive and it is 

normally used with small datasets when there is not enough data to dedicate for 

training the model (Kohavi, 1995) 
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Ten folds will be used as this is the most common cross-validation method used and it 

is the number recommended for estimating accuracy due to the better bias and variance 

trade-off compared to other methods (Cawley & Talbot, 2010). 

 

Figure 3.7: K-fold cross validation method 

 (Borovicka, Jr., Kordik, & Jirina, 2012) 

3.6.2  Confusion matrix  

A confusion matrix gives more details of the evaluation and it is used to calculate other 

performance metrics. In this matrix the predictions made by a model in each of the 

classes is shown. For a binary classification there will be four outcomes with two 

different levels (usually referred as positive or negative). The structure of a confusion 

matrix is shown in Table 3.8 

  Predicted 

 
 

Yes No 

Actual 
Yes TP FN 

No FP TN 

Table 3.8: Confusion matrix for a binary classification 

Each cell shows the number of times a different outcome was predicted in the test set. 

Based on the table presented before, there are four values: 

True positive (TP): number of times the Yes class was predicted as Yes 

True negative (TN): number of times the No class was predicted as No 

False positive (FP): number of times the No class was predicted as Yes 

False negative (FN): number of times the Yes class was predicted as No 
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A confusion matrix can be extended to represent the outcome of a multiclass 

classification problem. For the purpose of this dissertation, a cross tabulation with the 

music periods and the model predictions was created for each of the feature sets. 

   Predicted 

  Baroque Classical Romantic Modern 

Actual  

Baroque     

Classical     

Romantic     

Modern     

Table 3.9: Structure of a confusion matrix for the musical period classification 

With this table we can evaluate the accuracy and misclassifications in each period.  

3.6.3  Evaluation metrics  

Accuracy is an overall measure that gives an estimate of the performance of a model. 

It is the proportion of correct classifications by the total number of instances.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
number of correct predictions

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

When using a confusion matrix, the correct classifications are in the diagonal values. 

The sum of all these values divided by the number of instances would give the 

accuracy. Although accuracy is the most extended measure to evaluate performance, it 

can sometimes hide other problems in the model. For example, in a binary 

classification when the target class is not balanced, a high accuracy doesn’t mean good 

quality predictions. If, for instance, a dataset has 90% of records from a class, a 

dummy model could just give all the predictions to that class and the accuracy would 

be of 90%. In this case none of the records from the other class would have been 

correctly classified. 

Other metrics such as recall and precision are needed to further evaluate the model.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃 + 𝐹𝑁
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

TP

𝑇𝑃 + 𝐹𝑃
 

Recall measures how effective a classifier is to identify all the instances from a class. 

Precision tell us how confident the model is that when it predicts an instance to have a 

particular class, it is correct. 
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In the following Table 3.10, there is an example of a confusion matrix with the musical 

period as target classes and with recall and precision calculated. 

 

  Predicted  

 
 

Baroque Classical Romantic Modern Recall 

Actual  

Baroque 6 1 1 0 0.75 

Classical 0 9 0 1 0.90 

Romantic 0 5 8 3 0.50 

Modern 0 2 2 1 0.20 

 Precision 1.00 0.53 0.73 0.2  

Table 3.10: Example of recall and precision metrics 

In the above example, Baroque has a recall value of  ( 
6

6+1+1+0
 ) = 0.75 and a precision 

value of ( 
6

6+0+0+0
 ) = 1. This indicates that for the Baroque period, the model had a 

75% recall. The dataset had 8 baroque pieces and 6 of them were correctly classified. 

On the other hand, this model has a 100% precision for Baroque class, meaning that 

every time that the model predicted a song as baroque, it was correct. A simple way to 

calculate the global precision of the model is by averaging the class precisions. There 

are other methods that give different weights to each precision depending on the class. 

Accuracy was used as the overall measure to determine what group of musical features 

(rhythm, pitch, harmony and melody) performs the best for music period classification. 

Other metrics such as recall and precision will be calculated for each feature category 

and class, and they will be discussed. 

Finally, although the scope of the study was the classification by musical periods, the 

predictions made at a composer level will be evaluated too. 

3.7 Conclusion 

This chapter included the details of the design that will be followed to perform the 

experiments in this research. Keeping in mind that the goal of the research is to analyse 

which feature categories have more of an impact on determination of the musical 

period of classical music score, a design and methodology was created to achieve this 

goal. Music scores will be collected and prepared, and target labels will be assigned. 

Then the features will be extracted from those files and data exploration analysis will 

uncover issues in the feature extractor just created or in the source data files. This 
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exploration of data will allow preparation of the data and performance of the data 

transformations that can help optimize the dataset to be used for the models. Once the 

models are created, they will be evaluated using different metrics. Feature selection 

techniques will provide insights about the most important attributes in this 

classification. 

One of the strengths of the design is that the researcher has access to a primary source 

of information, giving scope for feature extraction and engineering based on the 

researcher´s domain knowledge of music theory. Although the features proposed in 

this study are reasonably extensive, more features could be added by updating the 

feature extraction process. 

Limitations of this design includes the size of the dataset, around 850 music files, 

which might not cover all the different characteristics from all the periods. An effort 

was made to obtain the most significant works from each composer and period for 

piano but it was limited to the available data.  

In the next chapter, details of the implementation to perform the experiment according 

to this design and methodology will be described. 
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4. IMPLEMENTATION AND RESULTS 

4.1 Introduction 

This chapter will outline the details of the implementation. It will start with a 

description of the implementation details to collect the music scores to build the 

dataset. The assignment of labels to each of the records will be discussed in detail. 

Then the construction of the features from the raw files will be described. Data 

preparation details are discussed and the first findings shown. Finally, implementation 

of the models and evaluation of the results will be detailed. 

4.2 Data Collection 

4.2.1  Music files  

Music files from the KernScores library were selected browsing the web. Only files 

from the piano instrument were considered and only files from the four musical 

periods: Baroque, Classical, Romantic and Modern were selected, as mentioned in the 

design section 3.3.2. Zip packages were downloaded and extracted directly to a local 

folder. Each file was a humdrum format text file containing all the information for a 

single score.  

MusicXML files were also downloaded, to complement the score files already 

collected, especially scores from the Modern period. These files were downloaded 

mainly from musecore.com. Python scripts were implemented and run in order to 

automate the collection of the files, following this process: 

1. A python script was run to crawl the website and extract information from each 

score web page found. The information was exported in an excel file, 

including: composer, title, instruments and download link, for each score. The 

BeautifulSoup python library was used to help create the crawling script. 

2. Using filters, a selection of the scores was made based on the instrument 

(piano) and avoiding duplicates. This selection was flagged in a new column. 

3. A second script was run to download the scores using the URL extracted in the 

step 1, with the selection of scores made in step 2. 
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4.2.2  Labels  

As mentioned in section 3.3.3, all the records of the dataset needed a class representing 

the musical period in order to perform the classification tasks. This target class was not 

present in the music files and had to be added based on the composer. 

In order to assign the class to each of the instances in the most efficient way, the use of 

a reference table was needed. A table including composer name and period was 

acquired from the internet (https://www.mfiles.co.uk/composer-timelines-classical-

periods.htm) and the following process was followed: 

 The composer name was extracted from the metadata of each of the music files. 

 A python script was developed and used to loop through all the records of the 

dataset, perform a lookup operation on the composers reference table and get the 

closest match using the Jaro-Winkler distance for string similarity.  

 The script would then obtain the musical period of the closest match found in 

the reference table and add it to the dataset. The composer would be also added to 

the list. 

 Lastly, a manual check was performed on the final dataset to fix minor issues 

including: 

o Missing composer (no class assigned): the records that did not have the 

composer included in the metadata of the music file had to be manually added, 

the information was taken from the source where it was obtained. The number of 

records with this issue was very small. 

o Incorrect composer (wrong class assigned): The composer was compared with 

the closest match to check if that was the correct name. This issue again was very 

minor as using Jaro-Winkler distance, the correct name was found in most of the 

cases. For example, ‘Debussy’, ‘C. Debussy’, ‘Claude-Achille Debussy’ or even 

‘Claude Debussy (1862 - 1918)’ names, all matched with the composer ‘Claude 

Debussy’, and the period ‘Modern’ was assigned correctly. 

4.3 Data preparation 

Following the design of the experiment, the next step was the data preparation. This 

started with the construction of the features from the raw files. After that, the feature 
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values were reviewed with descriptive statistics to identify quality issues that were 

then fixed. Finally, some data transformations were applied to the dataset to prepare it 

before modelling.  

 summary statistics of the independent variables were created, as well as histograms 

and boxplots. This information helped to understand the data being used and evaluate 

the value distribution of the features. 

4.3.1  Feature extraction  

At this stage the information available in the dataset, after the scores were downloaded 

and labelled, was: composer, title, period and filename path. An example of the 

information stored so far, can be seen in Table 4.1. Composer and title were left in the 

dataset in case further investigation about the predictions needed to be carried out. 

id composer title period filename_path 

1 Claude Debussy 1st Arabesque Modern /musescore/1st_Arabesque.mxl 

2 Frederic Chopin Mazurka 52 in C Major Romantic /kern/chopin/mazurka/mazurka-52.krn 

3 Domenico Scarlatti Sonata in G Major,L.333 Baroque /kern/scarlatti/L333K425.krn 

4 W.A. Mozart Divertimento B-flat Major Classical /kern/mozart/piano/sonatina/k439b.krn 

5 Erik Satie Gymnopedie 1 Modern /musescore/Satie_Gymnopedie1.mxl 

6 J. S. Bach Well-Tempered Clavier 2, Fugue n1 Baroque /kern/bach/wtc/wtc1f01.krn 

- - - - - 

- - - - - 

Table 4.1: Example of initial dataset before feature extraction 

Using the path location of the file, all the music scores were opened and the features 

created from the information contained in the files. In order to parse the files to access 

the notes pitch and value information, the music21 python library (Cuthbert & Ariza, 

2010) was used. The Music21 is an open source python package for computer-aided 

musicology with a set of tools to perform operations with symbolic music. For 

example, the researcher can gather information about a score for music analysis, or 

create a new one using complex computer music generation algorithms. 

For this experiment, music21 was used to process the music score downloaded in order 

to obtain the information needed to create the features. The advantage of using this 

particular package is that it was not restricted to a unique format file and both 

humdrum and MusicXml files could be opened. Once the file had been parsed, a 

python object was accessible with all the information of the score. An example of how 
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the information was extracted and prepared to be analysed can be seen in the next 

script:  

s = ms.converter.parseFile(filename) 

for note in s.flat.notes: 

 # access information about each note 

 duration = note.duration 

 pitchClass = note.pitch.pitchClass 

 pitchNumber = note.pitch.ps 

 score_notes_info.append((duration, pitchClass, pitchNumber)) 

  

dfScoreNotes = pd.DataFrame(score_notes_info, columns=['duration','pitchClass', 'pitchNumber'] 

The previous script loops through all the notes of the score to extract basic information 

such as note duration, absolute pitch (pitch number) and pitch class and is stored in a 

pandas dataFrame. Using this representation of the data from a score as a data subset, 

global features can be calculated, such as duration range, minimum or maximum pitch 

or duration, number of different pitches used or most common note duration, as shown 

in the next example: 

s = ms.converter.parseFile(filename) 

df = createNotesDataFrame(s) 

 

info['r_minimumDuration']: df['duration'].min() 

info['r_maximumDuration']: df['duration'].max() 

info['r_noteDurationAverage']: df['duration'].mean() 

info['r_noteDensity']: len(df) / float(s.duration) 

 

dfDurationTotals = df['duration'].value_counts(normalize=True) 

info['r_mostCommonNoteDuration']: dfCounts.index[0] 

info['r_mostCommonNotePresence']: dfCounts.iloc[0] 

info['r_numberOfDistinctDurations']: len(dfCounts) 

Apart from a list or dataframe with information about each note in the score, other 

datasets from a single score were created to calculate other features: 

- A list containing all the intervals or distances between one note and the next 

was used to create most of the melodic features. 

- A list with all the occurrences of three or more notes played at the same time 

was used to gather the chord type information for the harmonic features. 

- A list of all the distances between the notes that are played together was used to 

create the harmonic intervals 
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Other more specific features were created by accessing other types of information in 

the score. For example, the time signature and key signature values for each measure, 

allow us to know how many times they change along the score.  

To build all the features, this operation was performed on each of the music files, and 

the data extracted added to the original dataset, along with the music period (target 

class). 

The content of real music scores could range from a few hundred to thousands of notes 

with different durations, pitches and in different parts. The complexity of this data 

source made it difficult to check and assess the quality of the information extracted. In 

order to create the features that were described in the design section of this 

dissertation, a set of short music score test files was created. These test files can be 

seen in Appendix C. The feature extraction script was implemented and then applied to 

these test files. These test files could be opened with a music notation software to 

manually check that the feature values were correct. 

Once the method used to extract the features was optimised, it was executed on the 

music score dataset that was downloaded, to obtain a dataset that could be used to 

perform analysis and classification operations. Summary statistics were generated to 

help preparing the data before creating the models. 

4.3.2  Data cleaning 

Summary statistics of the independent variables were created (as seen in Appendix B), 

as well as histograms and boxplots. This information helped to understand the data 

being used and evaluate the value distribution of the features. 

After analysing the descriptive statistics, missing values were found in the chord type 

features from the harmony category. These represented only 5% of the scores and once 

the process was reviewed, it was found that for those scores those missing values were 

correct. They showed that 0% of that chord type was found in that score. Therefore, 

this was fixed in the feature extraction step by using a zero value instead. 

The outliers were identified following the data exploration described in chapter 3. 

There was a small number of outliers that turned to be invalid values due to an error in 

the implementation of the feature extraction process or in the music score file. This 

latter error was found in no more than a handful of scores which were then manually 
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fixed by editing the file with a notation software. Errors in the implementation were 

corrected and the feature extraction scripts run again. 

In the majority of cases, the outliers were valid values extracted from the scores. Some 

examples of features that have outliers can be seen in Figure 4.1. The attribute that 

represents the number of different notes used in a song (p_numberOfPitches) has an 

average of 46.85. A look at the 1st and 3rd quartile values shows that half of the 

instances are in the range of 39 and 55, indicated by the dark area in the boxplot 

diagram. Values above the upper whisker or below the lower whisker are considered 

outliers. In this case, music scores that use more than 78 different notes or less than 17, 

are outliers.  

  

Figure 4.1: Example of features with outliers 

Records with these outliers were not excluded from the model for a number of reasons. 

The dataset was not big enough to ignore all the rows with outliers, resulting in a 

smaller dataset that would not be suitable for the experiment. On the other hand, 

outliers might contain important information about the data in combination with other 

features, or in some cases the outliers could have a pattern and come from the same 

target class. In the example above, there were 5 outliers in the feature 

p_numerOfPitches, from which 3 were from the ‘Romantic’ class and the other 2, from 

‘Modern’.  

Therefore, the outliers were kept and to minimise the impact of the outliers on the 

model, a clamp transformation was applied, as mentioned in section 3.4.3. The 

threshold values were chosen following the common rule of thumb of using 1.5 times 
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the interquartile range plus the third quartile, and 1.5 times the interquartile range 

minus the first quartile, for the upper and lower threshold respectively (Han & 

Kamber, 2011).  

4.3.3  Data transformation  

As part of preparing the data to train the model, derived features were created. 

Derived features are attributes created with the combination of already existing 

features. Sometimes the derived feature can replace an existing feature. These new 

attributes, based on background knowledge, can provide facts that are not represented 

in the current feature set. The following changes in the feature set were applied. 

r_durationRange  =  r_maximumDuration – r_minimumDuration 

This represents the range of durations used in a score in unit of the crotchet note and using 

decimals. 

p_pitchRange  =  p_maximumPitch  – p_minimumPitch 

This represents the range of note pitches used in a score (the highest minus the lowest pitch 

found) 

Other features of the dataset were created after analysing the summary statistics and 

histograms. The distribution of the features that represent the number of changes in the 

key or time signature along the score is highly skewed, with most of the values being 

0. In general, changes in the key or time signature are not very common in Western 

music, therefore even just one change is considered an important characteristic. The 

presence of music scores with many changes, will make the ones with just one change 

less important than they are. In order to simplify these features, they were transformed 

into binary types, representing the presence or absence of key or time signature 

changes. In this case, the original features are not needed and they can be replaced with 

the new values. 

r_timeSignatureChanges  =  (r_timeSignatureChanges == 0) 

p_keySignatureChanges  =  (p_keySignatureChanges == 0) 

Another step in the data preparation is to handle categorical features to be used in the 

models. As described in design section 3.4.3, most machine learning algorithms or 

statistical analysis do not handle categorical features and therefore, need to be 

converted to numeric or binary features. In the dataset of the experiment, the only 
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categorical features are h_topVerticalInterval and m_mostCommonMelodicInterval, 

indicating the name of the intervals most used, harmonic and melodic, respectively. 

Using the following script, one new binary dimension was created for each different 

value in the categorical feature. After that, the original feature was removed from the 

dataset as it was not needed anymore. 

for i in dfDataSet['h_topVerticalInterval'].unique(): 

 dfDataSet['h_topVerticalInterval_' + i] = (dfDataSet['h_topVerticalInterval'] == i) 

dfDataSet.drop('h_topVerticalInterval', axis=1, inplace=True) 

There are other features that are likely to be categorical even if they contain numeric 

values and they should be handled as categorical variables. If these variables are not 

detected, they could have a negative impact on the results of the model. For example, 

if a variable had numeric zipcodes, these should be converted to district/area or at least 

to a string value so the model will not wrongly treat the feature as a continuous value. 

A method to identify these features is to review the summary statistics. Numeric 

features with low cardinality are likely to be categorical. In Table 4.2 below, features 

with low unique values are shown. The table also includes minimum and maximum 

values, the mode (most frequent value) and their percentage.  

# attribute count cardinality mode mode% min max 

1 r_mostCommonNoteDuration 878 14 0.5 34.17 0.083 3 

2 r_numberOfDistinctDurations 878 34 8 11.16 2 43 

3 m_numberOfMelodicDistances 878 10 6 22.55 2 11 

4 p_numberOfPitchClasses 878 6 12 77.9 7 12 

5 h_uniqueChordDurations 841 28 3 17.77 1 53 

6 p_distanceStrongestPitchClasses 878 6 5 74.15 1 6 

Table 4.2: List of numeric features with low cardinality 

Based on the domain knowledge, features that are correctly represented as continuous 

values can be recognised. The feature r_mostCommonNoteDuration has low 

cardinality but it is a range of durations, from shortest to longest note duration. The 

features 2 to 5 in the list, contain the number of appearances of different characteristics 

in the score, such as how many different durations, how many pitches or how many 

melodic distances are used. The case of the feature p_distanceStrongestPitchClasses is 

different. This feature stores the distance, in semitones, between the two most 
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important or used pitch classes in the score. These values have no meaning when 

ordered, as they represent different things. For example, a distance of 5 semitones is a 

perfect interval, distances of 1 and 3 are minor types, distances of 2 and 4 are major, 

etc… It is better to have this feature as categorical, rather than numeric. 

Normalisation 

As previously outlined in the design section 3.4.3, a normalisation transformation is an 

important step in the data preparation. This transformation will locate all the data in the 

dataset in the same scale to avoid the algorithm giving a different weight to features 

with higher ranges. A normalisation using a range between 0 and 1 was applied to all 

the continuous features. 

The preprocessing module from the sklearn python library was used to apply this 

normalisation in the pandas DataFrame of features, using the following script: 

transformation = preprocessing.MinMaxScaler(feature_range=(0, 1)) 

dfDataSet = transformation.fit_transform(dfDataSet) 

 

Figure 4.2: Scatter plot of two features before and after normalisation 

An example of the effect of applying normalisation can be seen in Figure 4.2. The 

feature r_dh_Eighth, represents the fraction of notes that are Eighth/Quaver notes and 

ranges from 0 to 1, whereas m_melodicIntervalAverage is the mean of the intervallic 

distances with values from 1 to around 6. After the normalisation, all the values uses 

the same scale 0 to 1, ensuring there is no bias over the larger range of the second 
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feature. In Figure 4.3, it can be observed in the plot that the transformed features in the 

new scale (0,1), keep the same relationships they had before the normalisation.  

 

Figure 4.3: Scatter plot of the normalised features in the new scale (0,1) 

4.4 Modelling 

The python library scikit-learn was used to implement the predictive models and the 

K-fold cross-validation for this experiment. 

The scope of the study was to compare the contribution of different categories of 

features that are related to musical concepts to predict the musical period of a music 

piece. For the purposes of the comparison, a model was created for each set of features 

(rhythm, pitch, harmony and melody). Taking advantage of the naming format of the 

features names, different datasets with a subset of columns were created. For example, 

all rhythm features started with ‘r_’, all the pitch features started with ‘p_’ and so on. 

The original dataset was kept in order to create another model with all the available 

features. This complete dataset is expected to give the best results. The target set was 

created by extracting the musical period column from the main dataset. 

The division of the datasets in groups of feature sets will allow the experiment to: 

identify the most important features in each group, and finally create the classification 

models.  

4.4.1  Variable ranking 

The main research objective of this dissertation was to determine how the global 

aspects of a musical composition (rhythm, pitch, harmony and melody), would 

perform to identify the classical musical period. However, it was also part of the study 
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to try to find out what specific music attributes such as chord types, melodic intervals, 

pitches, note durations, were more different along the time periods. 

In order to investigate the individual contribution of the features in the classification of 

music scores by time period, a model-based ranking using Random Forest Tree 

algorithm was used. As mentioned in section 3.5.2, this algorithm, as well as other 

bagged methods such as Decision Trees, is widely used for variable selection and 

interpretation of the models by providing a feature importance ranking.  

In this experiment, 1000 thousand trees were created with a maximum depth in each 

tree of 40 levels. The model was fitted for each of the feature categories and a list of 

the features with its importance was returned.  

model = RandomForestClassifier(max_depth=40, criterion='gini', n_estimators=1000, 
                               oob_score=True, random_state=0) 
model.fit(X, y) 
featureImportances = model.feature_importances_ 
dfFeat = pd.DataFrame({'Variable': X.columns, 'Importance': featureImportances}) 

The first five features in the ranking of importance for each of the groups are shown 

Figure 4.4 below. 

  

  

Figure 4.4:Variable ranking with the top five attributes for each feature group 

Analysing the contribution of each attribute in the prediction of each class becomes a 

difficult task, more difficult than in a binary problem. Statistical tests, such as 

ANOVA, can measure how significant is the difference of the feature value averages 
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for each class. However, in a data mining process, some attributes might be important 

only if used in combination with other attributes.  

For the purposes of an overall assessment of the impact of these features in each period 

their value distribution with the use of boxplots was reviewed. In order to be able to 

the understand better the values, the original units and scales were kept, instead of 

using the normalised values. 

Rhythm 

The distributions of values per period for the top five features are found in Figure 4.5. 

The use of quarter/crotchet and 16th/semiquaver notes appears to have changed in the 

different periods. In the Baroque period there was less use of quarter notes, 16th notes 

were more commonly used. The opposite is found in the Romantic period. The note 

duration average attribute shows a similar thing, where shorter note symbols were used 

in the earlier periods. 

   

  

Figure 4.5: Distribution of most significant rhythm feature values 

There does not appear to be a very significant difference in the note density among the 

musical periods, however the proportion of rest or silences in the music songs seems to 
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be increasing in the periods, probably due to the rhythm being less strict in Romantic 

and Modern eras, allowing many changes in the tempo with the use of note rests. 

Pitch 

Figure 4.6 below, shows the distributions of the values for the maximum pitch, 

minimum pitch and range of pitches. It is observed that through the time periods there 

was an increasing tendency to use higher and also lower pitches of the keyboard. In the 

case of the Romantic period, there was more variety found in the range of maximum 

and minimum pitches, overlapping the distribution of the other periods.  

   

Figure 4.6: Distribution of most significant pitch feature values 

A possible explanation is that the construction of the piano evolved in history and 

among the changes, one of them was the inclusion of more keys at both sides, around 

the mid-Baroque era (Giordano, 2015). Even though Bach, one of the most famous 

Baroque composers, had the opportunity to compose for the new instrument, it is said 

that he was never keen on it at his late age. Something similar could have happened 

with some other composers, even from the early Classical period, who never got used 

to the changes in the more modern pianos. It is also true that one of the main 

characteristics of the Romantic period is the expression and greater variety and 

originality in each piece, which could be achieved using a more dynamic range 

(Crocker, 1986). 

Another pitch attribute that was found to be important, using the Random Forests, was 

the proportion of notes that are accidentals, or in other words, notes whose pitch class 

does not belong to the scale or mode indicated by the key signature. Checking the 

averages per class in the summary statistics, it looks like more accidentals have been 



 

57 

used along the periods, with around 10% in Baroque and Classical, 15% in Romantic 

period, and 19% in Modern music. More accidentals means that the style was not so 

attached to the rules of tonality and attached to the key signature (Meyer, 1989). 

Harmony 

  

Figure 4.7: Distribution of harmony feature values in number of chord notes 

Figure 4.7 above, depicts the distribution of the values for the information about the 

number of notes used in a chord in a music piece. The minimum number would be 

three and for the Baroque period, most of the pieces had a range from 3 to 3.5 of 

average in all the chords of a score. The evolution in the style in the following periods 

meant that more notes were added to the chords, suggesting that harmonies became 

more complicated than using major or minor triads, and moving to dissonant sounds 

and more complicated chords. The difference does not appear to be very relevant 

between the Romantic and Modern periods. In the feature that contained the average 

use of partial chords (two notes) per quarter/crotchet note, there is a contrast between 

the Baroque period and the rest.  

   

Figure 4.8: Distribution of harmony feature values in chord type formation 
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The other three harmony features in the ranking are shown in Figure 4.8. These 

features are related to the type of chords found in the score. Major and minor triads 

(not shown here), are the main chords used in the scores in all periods as it can be seen 

in the scales, with some scores having more than 40% of major triads. In this case 

there is not a linear trend in the changes, probably supported by the fact that harmonies 

in the Classical period were simpler, with composers trying to break from the previous 

style. After that the use of major triads decreased, with the Modern period showing the 

lowest values, maybe because more minor key modes were used. It is also interesting 

to see that the use of dominant seventh chords decreased in the Modern era. 

Melody 

Finally, the most significant melodic attributes with their distributions are presented in 

Figure 4.9. These attributes represent the fraction of major and minor second intervals, 

and the fraction of large intervals (higher than an octave).  

   

Figure 4.9: Distribution of most significant melody feature values 

In this case there is a decreasing pattern in the use of second intervals, whether major 

or minor. A possible explanation is the shift away from tonality in Western classical 

music history, which became more pronounced in Romantic and especially Modern 

periods. The most common tonal scales are formed by a sequence of notes with one or 

two semitones of separation, so its use is more pronounced in works that respect the 

rules of tonality and the key signature. It is suggested that the use of these intervals 

could have decreased when using other types of intervals to form other scales.  

Another feature found in the variable ranking of the melody category is the proportion 

of changes in the duration of a note along a melody, that will indicate the variability of 

tempo during a score.  
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4.4.2  SVM predictive model  

The kernel method finally used for the SVM model was the Gaussian Radial Basis 

Function (RBF) which is often used in the literature when classifying music genres 

with symbolic music (Corrêa & Rodrigues, 2016; Hillewaere et al., 2009; Lidy et al., 

2007). 

A GridSearchCV method with python sklearn was used to determine the best settings 

for the SVM algorithm. With this method, using cross-validation, a model is created 

for all the combination of parameters, and the settings of the model with the best 

accuracy are returned. Due to the high computational demand of this process and the 

computing resources available, this method could not be performed completely and 

with all the set of parameters. At the end, the parameter values used for the predictive 

models were C = 100 and gamma set as auto. 

4.5 Evaluation 

A stratified 10-fold cross validation was used to evaluate the performance of each of 

the models trained. Using the stratified method, each of the folds will have the same 

proportion of each of the target classes as the original dataset. This is particularly 

important if some of the classes are imbalanced, as is the case with the ‘Modern’ class 

music.  

Once the model is run, the predictions made by the model can be evaluated. By 

creating a cross-tabulation with the classes and the predictions, a confusion matrix can 

be plotted. This can be achieved with the Pandas method crosstab: 

confusionMatrix = pd.crosstab(y, predictions) 

The accuracy is calculated counting the number of correct precisions, divided by the 

number of records, or in other words the average of instances where the target class is 

equal to the predicted class. 

scores = (y == predictions) 

accuracy = scores.mean() 

Different evaluation metrics, recall and precision, can be calculated using the 

confusion matrix, or simply using the metrics module of the python sklearn package. 

Precision = metrics.precision_score(y, predictions) 

Recall = metrics.recall_score(y, predictions) 
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The recall and precision are values for each of the classes. This way the models can be 

evaluated on a musical period basis, as opposed to other general metrics such as 

accuracy.  

4.6 Conclusion 

In this chapter, the creation of a dataset of music scores and the construction of 

features from them was detailed. The data preparation that was required with those 

extracted features was described and the first findings were shown. Feature importance 

for each category of features were obtained using Random Forest Tree algorithm. An 

investigation of the contribution of these attributes for each class was discussed. 

The machine algorithm settings and the process to create the different predictive 

models was described, as well as how the different evaluation metrics were calculated.  

The next chapter will present and evaluate the results of the models created with each 

set of feature categories, using confusion matrix and other evaluation metrics, such as 

recall and precision.  
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5. EVALUATION 

5.1 Introduction 

This chapter will evaluate the results of the models created in the experiment. Overall 

accuracy results will be presented and discussed. Further evaluation of the 

performance of the models in the classification of individual classes (musical periods) 

using confusion matrix and other metrics will then be outlined. The chapter will finish 

with a summary of the findings of this experiment. 

5.2 Classification results 

The predictions of all the test data in the cross-validation for each of the models was 

compared with the dataset of target classes and accuracies were calculated. 

The overall results are presented in Table 5.1. The model using harmony features had 

the highest accuracy of the individual models with 74.4%, pitch features model 

reached 70%, and rhythm and melody had similar accuracy with 65.3% and 64.2% 

respectively. These results might not look impressive individually but it is worth 

noting that each of the categories represents a specific aspect of a musical composition. 

A music piece cannot be understood without any of these factors. For that reason, it 

was expected that the model using all the features would improve upon any of the 

individual models. Indeed, this proved to be true, with this model achieving 84.3% 

classification accuracy. 

Model Accuracy 

Rhythm 0.65262 

Pitch 0.70046 

Harmony 0.74373 

Melody 0.64237 

  

All 0.84283 

Table 5.1: Model Accuracy list 

The accuracies of the models ranging from around 64 to 75 per cent, confirm that there 

were changes in each of these musical aspects through the classical music periods, to 
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some extent. The initial analysis of the results would suggest that the changes in the 

harmony of a music piece were more distinctive in the music periods. 

With the use of confusion matrices, an analysis of the results at a class level can be 

performed. The accuracy of the models only give an overall result, whereas confusion 

matrices and other metrics calculated from them, give information about how well 

each of the models performed to distinguish the different classes.  

The confusion matrices for each of the models are shown in Tables 5.2, 5.3, 5.4 and 

5.5. In the diagonal values, the True Positive (TP) outcomes can be observed, where 

the classifier was correct. The misclassifications are found in the rest of the values. For 

example, in Table 5.2, from all the Baroque pieces in the test set, the model predicted 

correctly as Baroque, 174 of them, and incorrectly classified 39 songs as Classical, 21 

songs as Romantic and 3 songs as Modern.  

Rhythm features model 

  Predicted 

 
 

Baroque Classical Romantic Modern 

Actual  

Baroque 174 39 21 3 

Classical 40 172 27 10 

Romantic 30 31 173 26 

Modern 11 20 47 54 

Table 5.2: Confusion matrix of the rhythm features model 

Pitch features model 

  Predicted 

 
 

Baroque Classical Romantic Modern 

Actual  

Baroque 200 24 13 0 

Classical 25 186 32 6 

Romantic 29 42 167 22 

Modern 5 22 43 62 

Table 5.3: Confusion matrix of the pitch features model 
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Harmony features model 

  Predicted 

 
 

Baroque Classical Romantic Modern 

Actual  

Baroque 193 28 14 2 

Classical 35 191 20 3 

Romantic 25 27 187 21 

Modern 11 5 34 82 

Table 5.4: Confusion matrix of the harmony features model 

 

Melody features model 

  Predicted 

 
 

Baroque Classical Romantic Modern 

Actual  

Baroque 179 38 17 3 

Classical 38 181 27 3 

Romantic 27 48 158 27 

Modern 15 14 57 46 

Table 5.5: Confusion matrix of the melody features model 

When interpreting the confusion matrices, the number of records per class must be 

considered. If the four classes were completely balanced with 25% of records each, the 

outcomes could be comparable but in this study, the classes were slightly unbalanced, 

especially for the Modern period as explained in chapter 3. The four column values of 

the ‘actual’ row in the confusion matrix for each period will add up to the number of 

records of that period.  

With that in mind, some insights can be obtained by inspecting each of the tables. 

Looking at Table 5.2, it can be observed that the classifier using rhythm attributes had 

problems in classifying the Modern period music pieces as a similar number of songs 

were classified as Romantic (54 to 47), this suggests that there were not enough 

rhythm changes in the style of those two periods. Table 5.3 shows the outcomes of the 

predictive model using pitch features. It can be seen that the pitch features were a 

strong predictor category for the Baroque period, with an average good classification 
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in Classical period. Table 5.4 shows the confusion matrix of the harmony features 

model. This model had the overall best accuracy and performed similarly well in the 

first three musical periods but with worse results in Modern class. The melody features 

model had the worst global accuracy largely because of the high number of 

misclassifications in the Romantic and Modern periods.  

Looking globally at all the confusion matrices and especially at the misclassifications, 

a common pattern can be found in all the models. The error rate is gradually reduced 

the further apart the musical periods are in time. This is most obvious between the 

more extreme periods of Baroque and Modern classes. For example, in the pitch 

model, the results for the Baroque period were 200, 24, 13 and 0, for the four classes. 

The same decrease in misclassifications is found in all the models. This pattern 

confirms that the music style, although different, has a similarity in periods closer 

together in history (Crocker, 1986).  

Confusion matrices give an overall view of the performance of the models but other 

measures can also be calculated from them. Using the total of records per class and the 

confusion matrix, recall and precision metrics were generated. For better comparison, 

the measures for each model have been compiled together. 

Table 5.6 shows the recall measure for each model in each class. The term accuracy 

class is also used as synonymous of recall, as this represents the proportion of records 

in a class that are correctly classified.  

Recall table  

  Musical Period 

 
 

Baroque Classical Romantic Modern 

Feature set  

Rhythm 0.7342 0.6908 0.6654 0.4091 

Pitch 0.8439 0.7470 0.6423 0.4697 

Harmony 0.8143 0.7671 0.7192 0.6212 

Melody 0.7553 0.7269 0.6077 0.3485 

Table 5.6: Recall table for each model and class (musical period) 

Cells with green background represent the best accuracies for each of the classes, 

whereas red background cell represents the worse accuracy. Harmony features are the 
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best predictors to identify Classical, Romantic and Modern music, and the classifier 

using pitch features had the best results in Baroque class and with an accuracy of 

84.39% was also the overall best accuracy. 

The table shows that the recall values for the Modern period are not very promising. 

This can indicate that the music style had small changes in each of the categories from 

previous periods, especially in melody, and a combination of all could improve the 

results.  

All the models had their best results when classifying Baroque music, ranging from 

73.4% to 84.3%. This is probably due to this musical period being the historical first in 

the dataset, therefore it would have only one period where styles could overlap. 

Another possible explanation is that Classicism in art, literature and as well in music, 

started as a dramatic rebellion against the style of the Baroque period with artists 

aiming for simplicity. 

Another measure calculated from the confusion matrix, that is important in order to 

evaluate the models, is the precision. This will show the accuracy of a classifier when 

it makes a prediction for a certain class. It is possible that a classifier is very accurate 

with a class but just because it tends to give predictions of that class more times. 

Similar to the recall table, Table 5.7 shows the precision of each of the models in the 

different classes with the best and worst values highlighted. 

Precision table  

  Musical Period 

 
 

Baroque Classical Romantic Modern 

Feature set  

Rhythm 0.6824 0.6565 0.6455 0.5806 

Pitch 0.7722 0.6788 0.6549 0.6889 

Harmony 0.7311 0.7610 0.7333 0.7593 

Melody 0.6911 0.6441 0.6100 0.5823 

Table 5.7: Precision table per class (musical period) 

The precision values in relation to the recall (or accuracy class) values are very similar, 

with the best scores coming from the same classifiers. When comparing the two tables 

there are a few considerations worth noting. In the Romantic and Modern periods, the 

precision was higher than their corresponding recall in all the models, as opposed to 
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Baroque and Classical where the values were lower, although still better than the other 

periods. It can be speculated that this is due to the slightly unbalanced classes and that 

the classifier will tend to predict the class with more records, therefore risking 

precision to improve accuracy. However, this is not the case in these models, as 

Romantic is the class with more records (29%), but achieves better precision than 

recall. It is interesting to see that Modern period does not get significant accuracy 

results but has considerably better precision. In the case of using pitch and harmony 

features, it has better precision than classifying Classical or Romantic music. 

The following two tables show the predictive results of the model created using all the 

features. As mentioned earlier, this model had an accuracy of 84.28%, improving all 

the classifiers using sets of features.  

Table 5.8 shows the confusion matrix and presents significantly better results than 

other classifiers.  

Model with all features (rhythm, pitch , harmony and melody) 

  Predicted 

 
 

Baroque Classical Romantic Modern 

Actual  

Baroque 210 15 12 0 

Classical 10 218 20 1 

Romantic 13 19 213 15 

Modern 4 2 27 99 

Table 5.8: Confusion matrix of the model using all the features 

Table 5.9 outlines the accuracy and precision values for each period. The ability of the 

algorithm to classify the songs, follows the pattern of the individual models previously 

evaluated in terms of accuracy per class.  

 
Accuracy Precision 

Baroque 0.8861 0.8861 

Classical 0.8755 0.8583 

Romantic 0.8192 0.7831 

Modern 0.75 0.8609 

Table 5.9: Accuracy and precision per class with all the features 
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This global model also performs better at classifying the Baroque and Classical 

periods, with 88.6% and 87.5%, respectively, suggesting that these periods had more 

factors of distinction than the other two. In the Baroque period, the global model 

improved the pitch features model by only 4.2%, confirming that the pitch is a strong 

predictor for this musical period. The classification of the Modern period with a 75% 

accuracy, improves significantly upon the results of the individuals models and it is the 

class that most benefits from the combination of categories. This indicates that the 

changes, although minor, came from very different aspects in music. 

The accuracy of the models can also be seen at a composer level. It is worth noting that 

the classifier used the period as a target class to train the models and not the composer, 

and these results only show how correct the classifier was at predicting the period of 

these composers, not the composer himself. Therefore, these results must be treated 

with caution, and also because of the imbalance in the number of music pieces per 

composer, as can be seen in the Appendix section. 

Period Composer Rhythm Pitch Harmony Melody All 

Baroque 
Domenico Scarlatti 60.0% 63.3% 65.0% 68.3% 80.0% 

Johann Sebastian Bach 80.9% 94.9% 91.1% 79.0% 93.6% 

Classical 

Franz Joseph Haydn 83.3% 75.0% 79.2% 66.7% 83.3% 

Ludwig van Beethoven 58.4% 74.3% 76.1% 69.0% 84.1% 

Muzio Clementi 64.7% 64.7% 64.7% 82.4% 76.5% 

Wolfgang Amadeus Mozart 83.1% 80.9% 83.1% 76.4% 95.5% 

Romantic 

Camille Saint-Saëns 30.0% 20.0% 20.0% 10.0% 40.0% 

Charles-Valentin Alkan 72.0% 72.0% 64.0% 44.0% 72.0% 

Edvard Grieg 47.8% 60.9% 69.6% 56.5% 73.9% 

Franz Liszt 33.3% 77.8% 66.7% 61.1% 83.3% 

Franz Schubert 77.8% 55.6% 94.4% 66.7% 100.0% 

Frederic Chopin 78.2% 63.2% 83.9% 79.3% 92.0% 

Johann Nepomuk Hummel 79.2% 79.2% 66.7% 37.5% 79.2% 

Johannes Brahms 90.0% 60.0% 70.0% 50.0% 70.0% 

Modest Mussorgsky 50.0% 81.3% 81.3% 56.3% 93.8% 

Modern 

Alexander Scriabin 30.8% 46.2% 61.5% 30.8% 53.8% 

Bela Bartok 9.1% 45.5% 54.5% 18.2% 72.7% 

Claude Debussy 57.1% 57.1% 61.9% 52.4% 85.7% 

Erik Satie 62.1% 37.9% 65.5% 51.7% 79.3% 

Maurice Ravel 30.0% 20.0% 70.0% 60.0% 90.0% 

Sergei Rachmaninoff 42.9% 38.1% 61.9% 14.3% 76.2% 

Table 5.10: Accuracy of the models to predict the composer period. 
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Table 5.10 shows the accuracy of the different models in predicting the period by 

composer. The list only includes the composers from whom there was more than ten 

music pieces in the test set. The most characteristic composers from their periods, 

Bach, Mozart and Chopin, achieved significant results using all the features with 

93.6%, 95.5% and 92% respectively. Despite Beethoven being one of the composers 

with greater representation in the data, the accuracy was worse, with 84.1%. This could 

be due to the fact that Beethoven was the predominant composer to connect the 

Classical and Romantic periods and his musical style would have changed in his later 

works. Looking at the accuracies of the individual models, it is possible to tentatively 

identify which musical properties of a composer’s style are aligned with a particular 

musical period. For example, Liszt had a 83.3% accuracy with all sets, however, 

significantly less in the rhythm set (33.3%). This suggests that the rhythmic properties 

of his music were not typical of music in the Romantic style, and were more 

influenced by other styles. One could make these assumptions with more certainty if 

the data provided was much larger and with a similar representation of the composer’s 

works. 

5.3 Summary of findings 

- According to the results of the experiment, the most important feature category 

to determine the musical style of Western classical music is harmony, 

achieving 74.4% accuracy. Although it is difficult to compare results with the 

literature, as other datasets were used, harmony alone using chord progressions 

was used in other papers with accuracies of 85.3% for 3 genres (Pérez-Sancho, 

Rizo, Kersten, & Ramirez, 2010).  

- As expected, the combination of all the music properties improved the overall 

results achieving 84.3% accuracy. This is more noticeable in the Romantic and 

especially Modern styles, where this combination had a larger improvement 

compared to the other periods. 

- In terms of specific attributes, when reviewing the importance of the features 

(provided by the RF variable ranking), the most important attributes have in 

common that they are related to tonality, for example, the use of pitch 

accidentals, chord types or melodic intervals. This confirms the evolution of 

the tonal system that has been studied by musicologists (Forte, 1988; Grout & 
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Palisca, 1996) and its importance in classifying musical styles. In addition, the 

range of note pitches used in a score, was a significant predictor of Baroque 

style. However, the evolution of the piano through history (Giordano, 2015), 

the instrument chosen for this dataset, could have influenced the importance of 

this attribute for the classification.  

- A common pattern in all the models, including the one using all the music 

properties, is that the accuracy of the classifiers gradually decreased from the 

first to the last music period in history. The difficulty in classifying the music 

in the latter periods, suggests that there was more variety and changes inside 

those periods (Bennett, 1992). 

- Analysis of the misclassifications in the models indicates that the error rate is 

higher in music styles that are closer historically. This confirms the gradual 

evolution in the music styles in history (Crocker, 1986).  

- The ability of the classifier to predict the musical style at a composer level 

could be observed. The results showed that those composers whose musical 

period was identified with better accuracy were also very characteristic 

composers of their periods.  
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6. CONCLUSION 

This chapter gives an overview of the research carried out for this dissertation. It will 

then describe the main contributions to the body of knowledge. Finally, the conclusion 

will outline the limitations of the study and give recommendations for future work. 

6.1 Research overview 

The purpose of this research was to determine the group of attributes, related to 

characteristics of music theory (rhythm, pitch, harmony and melody) that can better 

identify a music style in Western classical music pieces.  

In order to carry out this experiment, a collection of music scores were downloaded 

from different sources, the main ones being Kern scores library and MuseScore online 

community. This was followed by the creation of a set of features extracted from these 

scores. The proposed features were based on the works examined in the literature 

review and the domain knowledge of the author. 

Data preparation was carried out, including identifying and dealing with data quality 

issues, and applying data transformations to the data. For example, derived variables 

were created from the dataset, categorical variables were processed and normalisation 

was applied. 

Finally, the features were divided in categories, and the SVM machine learning 

algorithm to classify the music pieces was implemented for each of them individually. 

The results were evaluated using a ten k-fold cross validation method. Additionally, a 

variable ranking was provided after obtaining the feature importance using a Random 

Forest algorithm. 

6.2 Contributions 

This research illustrates how computational analysis of music content could be used to 

find similarities among groups of music pieces that define a style, and consequently 

classify music material by its style. 

The question that this research tried to answer was what musical property was more 

determinant in identifying the different musical styles. In particular, the research was 

focused on Western classical music and it was found that harmony was the most 
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important category achieving an accuracy of 74.4% in classifying the four musical 

styles, Baroque, Classical, Romantic and Modern. Although, not the primary goal of 

the dissertation, it was also found that using all the feature categories, the accuracy 

improved to 84.3%. 

The research confirms that the musical styles evolved gradually in the different 

periods, as stated in other studies (Crocker, 1986; Dalla Bella & Peretz, 2005; Grout & 

Palisca, 1996). Additionally, the changes in tonality through the years, reflected 

mainly in the harmony and melody properties, appears to be the most significant 

change that happened, as opposed to other changes such as variation of rhythm. 

Another contribution of this research is the collection of a dataset of piano music 

scores and the implementation to extract features from them, based on the review of 

music theory and proposed attributes in other research papers, such as the work of 

McKay and Fujinaga (Mckay & Fujinaga, 2006). This dataset could be extended by 

adding more music scores and more features to perform other type of analysis, such as 

classification by composer, forms, or evolution of a particular style. 

6.3 Limitations of the research 

An important limitation of this research is the dataset used for the experiment. It was 

not possible to collect the most representative dataset of all the music styles. In the 

four classes used for the classification, the Modern class presented 15% of the scores, 

as opposed to a perfectly balanced 25%. This imbalance, could have influenced the 

results as less information was available to determine the characteristics of this period, 

compared to the other styles. Also, the number of composers in each music period was 

not homogeneous. There were less different composers and with more music pieces in 

the Baroque and Classical period, and a greater variety of composers but with less 

records, in the Romantic and especially Modern music. Although all the composers in 

a period would share similarities in the style, their own particular style, despite being 

difficult to assess, would influence the capability of the classifier.  

The classes or musical periods were assigned according to the composer. Relying in 

the composer as a basis to assign the label of the musical style or period is a common 

practice and has been used frequently in the literature (Rodriguez Zivic et al., 2013; 

Schaab & Weiss, 2015). However, this method can carry some issues as the styles are 

not clearly defined. The styles or periods frequently overlap, individual music pieces 



 

72 

could belong to other styles, even if written by the same composer, and depending on 

locations, the styles might have taken more time to be established. (McKay & 

Fujinaga, 2006) 

The other limitation in the research is the machine learning algorithm tuning. A 

significant period of time of this research was dedicated to construction of the feature 

set from the raw music score files that would be used to determine the music styles. 

Therefore, less time was available to find the optimal parameters to tune the machine 

learning SVM algorithm. This was aggravated by the fact that testing multiple 

combinations of parameters was computationally intensive. Additionally, more time 

could have been spent in testing other machine learning algorithms, such as neural 

networks or even deep learning. However, the main objective of the research was to 

compare different feature sets (musical properties) and not machine learning 

algorithms.   

6.4 Future work and recommendations 

A larger set of music scores files could be constructed, including music from other 

instruments and orchestral music. If not possible, an alternative could be to resample 

the current catalogue of music scores, by splitting each score by a number of seconds 

or measures. With more data files, the model could generalise better by finding more 

similarities in the musical styles.  

Regarding the music styles defined by the music periods, other taxonomies could be 

used instead. According to Roy Bennett, the Modern period (20th century) had more 

changes in style than any other period in history, and subgenres such as impressionism, 

expressionism or serialism existed at the same time (Bennett, 1992). By dividing the 

periods in more precise groups, more insights could be gathered and results could 

improve too. 

More future work should be dedicated to the improvement of the general classifier, 

using all the feature categories, by performing the following actions: 

- Use the information about feature importance as a feature selection step that 

can make the model more accurate by removing irrelevant features.  

- Review the feature extraction of music scores process, focusing on the 

categories that had poor results, melody and rhythm. For example, adding a 
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melodic similarity approach (Müllensiefen & Frieler, 2006) or including 

rhythm pattern extractions similar to the ones proposed in (Lev et al., 2011).  

- In that aspect, more research of the music theory and analysis has to be done, in 

order to construct more specific features that account for chord progressions, 

arpeggiated harmonies, or rhythmic syncopations. 

- If the computing resources are available, optimize the algorithm parameters of 

the SVM algorithm by testing multiple combinations of settings, and also 

experiment with other machine learning algorithms, such as neural networks, or 

even deep learning techniques  

- Try using an ensemble method algorithm, using the results of each of the 

individual models with sets of features (rhythm, pitch, harmony and melody). 

The final prediction will be calculated by using a majority-based result of the 

individual models.  

It would also be interesting to see how the same set of features and classifier algorithm 

would perform in other type of classifications such as composer, or using other types 

of music rather than Classical music. 
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Appendix A: Number of scores by composer 

Period Composer Scores 

Baroque 

Dieterich Buxtehude 2 

Domenico Scarlatti 60 

Francois Couperin 2 

Georg Phillipp Teleman 1 

George Frideric Handel 9 

Henry Purcell 4 

Jean-Philippe Rameau 2 

Johann Sebastian Bach 157 

Classical 

Carl Maria von Weber 1 

Carl Philipp Emanuel Bach 4 

Franz Joseph Haydn 24 

Ignaz Pleyel 1 

Ludwig van Beethoven 113 

Muzio Clementi 17 

Wolfgang Amadeus Mozart 89 

Romantic 

Camille Saint-Saëns 10 

Charles-Valentin Alkan 25 

Edvard Grieg 23 

Edward MacDowell 9 

Felix Mendelssohn 5 

Franz Liszt 18 

Franz Schubert 18 

Frederic Chopin 87 

Georges Bizet 2 

Jacques Offenbach 1 

Johann Nepomuk Hummel 24 

Johann Strauss II 2 

Johannes Brahms 10 

John Field 1 

Mikhail Glinka 1 

Modest Mussorgsky 16 

Pyotr Ilyich Tchaikovsky 3 

Robert Schumann 5 

Modern 

Alexander Scriabin 13 

Anton Webern 2 

Aram Khachaturian 1 

Bela Bartok 11 

Claude Debussy 21 

Dmitri Shostakovich 4 

Erik Satie 29 

Francis Poulenc 1 

Igor Stravinsky 1 

Jacques Ibert 1 

Jean Sibelius 2 

Josef Suk 8 

Maurice Ravel 10 

Sergei Prokofiev 7 

Sergei Rachmaninoff 21 
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Appendix B: Summary statistics 

Rhythm attributes 

 

Pitch attributes 

 

Field type count unique min max mean std Q1 Median Q3

r_dh_16th float64 878 710 0 0.969432 0.254469 0.26157 0.011272 0.172016 0.460202

r_dh_32nd float64 878 331 0 0.741085 0.033804 0.09558 0 0 0.011205

r_dh_Breve float64 878 84 0 0.020408 0.000301 0.001537 0 0 0

r_dh_Dotted_16th float64 878 109 0 0.216535 0.001862 0.010456 0 0 0

r_dh_Dotted_32nd float64 878 11 0 0.013514 4.22E-05 0.000554 0 0 0

r_dh_Dotted_Eighth float64 878 509 0 0.330163 0.014804 0.035089 0 0.002279 0.014167

r_dh_Dotted_Half float64 878 528 0 0.638554 0.01467 0.037386 0 0.00266 0.014572

r_dh_Dotted_Quarter float64 878 682 0 0.462279 0.021605 0.037176 0.001442 0.008699 0.024255

r_dh_Dotted_Whole float64 878 182 0 0.114458 0.001276 0.00631 0 0 0

r_dh_Eighth float64 878 844 0 0.963156 0.3163 0.214862 0.154112 0.282166 0.4465

r_dh_Half float64 878 731 0 0.613757 0.039731 0.063239 0.004191 0.017892 0.048052

r_dh_Quarter float64 878 860 0 0.939673 0.204446 0.201312 0.05315 0.125272 0.306047

r_dh_Whole float64 878 403 0 0.166189 0.006145 0.016206 0 0 0.004226

r_distanceTwoMostFrequent float64 878 18 1.166667 24 2.397988 1.358143 2 2 2

r_dupleMeter bool 878 2

r_durationRange float64 878 102 0.002083 0.5 0.063368 0.060436 0.025 0.041667 0.083333

r_expressionsPresence float64 878 393 0 0.13253 0.003479 0.009174 0 0 0.002936

r_graceNotePresence float64 878 400 0 0.214286 0.007735 0.018269 0 0 0.008206

r_maximumDuration float64 878 68 0.5 42 5.499687 4.626761 3 4 6.5

r_minimumDuration float64 878 28 0.016667 1 0.227281 0.145995 0.125 0.25 0.25

r_mostCommonNoteDuration float64 878 14 0.083333 3 0.50764 0.334065 0.25 0.5 0.5

r_mostCommonNotePresence float64 878 874 0.152406 0.995392 0.553728 0.15312 0.438329 0.540705 0.663331

r_nonBasicDurationsPresence float64 878 771 0 0.997409 0.090543 0.17761 0.002914 0.019022 0.067941

r_noteDensity float64 878 862 0.484375 16.96629 5.053375 2.093414 3.55869 4.703227 6.203327

r_noteDurationAverage float64 878 877 0.204098 3.385542 0.684362 0.324875 0.441686 0.617853 0.881087

r_noteDurationStdDev float64 878 878 0.043083 1.761009 0.552827 0.294498 0.34464 0.479046 0.695824

r_numberOfDistinctDurations int64 878 34 2 43 10.38952 5.215622 7 9 13

r_restPresence float64 878 858 0 0.612676 0.110172 0.075264 0.060114 0.096631 0.142722

r_timeSignatureChanges int64 878 18 0 48 0.731207 2.886797 0 0 0

r_tripleMeter bool 878 2

r_twoMostCommonNotePresence float64 878 866 0.291444 1 0.793841 0.123428 0.718348 0.808562 0.89059

Field type count unique min max mean std Q1 Median Q3

p_accidentals float64 878 870 0 0.798742 0.134178 0.088405 0.076168 0.12059 0.167468

p_distanceStrongestPitchClasses int64 878 6 1 6 4.473804 1.013533 4 5 5

p_distanceStrongestPitches int64 878 26 1 36 7.653759 5.772654 4 5 12

p_keySignatureChanges int64 878 11 0 24 0.6082 1.619163 0 0 0

p_maximumPitch int64 878 40 66 108 87.98975 6.218275 84 88 91

p_minimumPitch int64 878 33 21 55 33.12984 5.683118 29 33 37

p_mostCommonPitchPresence float64 878 852 0.035593 0.319835 0.085438 0.028934 0.067597 0.079091 0.095399

p_numberOfPitchClasses int64 878 6 7 12 11.5615 0.983431 12 12 12

p_numberOfPitches int64 878 66 15 85 46.84966 12.2468 39 45 55

p_ph01 float64 878 863 0.090032 0.472185 0.193864 0.043311 0.164401 0.18707 0.214286

p_ph02 float64 878 853 0.089639 0.267624 0.161096 0.025837 0.145187 0.156762 0.175482

p_ph03 float64 878 840 0.085561 0.209302 0.135392 0.018542 0.123733 0.135756 0.146342

p_ph04 float64 878 850 0.062663 0.16955 0.116861 0.016468 0.104698 0.117629 0.129417

p_ph05 float64 878 842 0.049505 0.14359 0.102502 0.016704 0.090931 0.102154 0.114838

p_ph06 float64 878 837 0.030788 0.134788 0.088346 0.016012 0.078178 0.086979 0.098277

p_ph07 float64 878 855 0.014493 0.121429 0.072474 0.015742 0.063313 0.072345 0.082083

p_ph08 float64 878 847 0 0.087452 0.044656 0.016267 0.032855 0.045037 0.056171

p_ph09 float64 878 826 0 0.080386 0.031681 0.01707 0.018681 0.030897 0.042532

p_ph10 float64 878 795 0 0.080386 0.024004 0.015928 0.011982 0.022463 0.033844

p_ph11 float64 878 758 0 0.080386 0.017452 0.014074 0.006337 0.015516 0.024915

p_ph12 float64 878 664 0 0.074792 0.01167 0.012243 0.001786 0.008633 0.017094

p_pitchAverage float64 878 878 48.66512 76.90987 63.53541 3.279711 61.88495 63.59869 65.50171

p_pitchRange int64 878 56 26 87 54.85991 10.17194 47 54 60

p_pitchStd float64 878 878 5.539779 23.43379 11.09123 2.019119 9.736474 10.75334 12.04754

p_strengthOfTopPitches float64 878 680 0.186047 1 0.859224 0.118708 0.791784 0.888889 0.95166
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Harmony attributes 

 

 

Melody attributes 

 

field type count unique top freq min max mean std Q1 Median Q3

h_chordDensity float64 841 808 0.006579 5.590503 1.095873 0.728282 0.581976 0.940789 1.434

h_chordDurationAverage float64 841 788 0.10451 6 0.513703 0.356624 0.304965 0.451426 0.632867

h_chordNotesAverage float64 841 766 3 8.545455 3.90471 0.773605 3.330661 3.773006 4.257642

h_chordNotesStd float64 837 788 0 3.295601 0.704208 0.408127 0.476549 0.672886 0.919167

h_chordPitchClassesAverage float64 841 702 3 4.174583 3.265075 0.223244 3.090226 3.234694 3.386691

h_chordPitchClassesStd float64 837 756 0 1.079185 0.412306 0.213524 0.298091 0.445498 0.55095

h_chordType_01_Minor_Triad float64 841 712 0 1 0.148224 0.099143 0.083264 0.135838 0.196998

h_chordType_02_Major_Triad float64 841 747 0 1 0.263434 0.151246 0.165605 0.242588 0.33871

h_chordType_03_Diminished_Triad float64 841 637 0 0.389706 0.069357 0.063331 0.020548 0.057692 0.101449

h_chordType_04_Augmented_Triad float64 841 412 0 0.5 0.010794 0.023732 0 0.003861 0.014286

h_chordType_05_OtherTriads float64 841 747 0 1 0.273614 0.159041 0.158824 0.253968 0.368132

h_chordType_06_MinorSeventh float64 841 469 0 0.317073 0.020827 0.032513 0 0.008772 0.02765

h_chordType_07_DominantSeventh float64 841 593 0 0.555556 0.058796 0.067709 0.006211 0.041257 0.085366

h_chordType_08_MajorSeventh float64 841 403 0 0.324561 0.012165 0.021374 0 0.003378 0.017101

h_chordType_09_Other4Chords float64 841 667 0 0.617021 0.114832 0.099014 0.030769 0.102041 0.170418

h_chordType_10_ComplexChords float64 841 415 0 0.350449 0.027956 0.051624 0 0.00406 0.034014

h_chordsWithOctave float64 841 721 0 1 0.412605 0.284794 0.176471 0.401361 0.615385

h_harmonic_Interval_01_m2 float64 878 804 0 0.104938 0.012866 0.011353 0.00533 0.01092 0.017269

h_harmonic_Interval_02_M2 float64 878 859 0 0.181931 0.048111 0.022598 0.03294 0.045588 0.059856

h_harmonic_Interval_03_m3 float64 878 870 0 0.311721 0.137425 0.03803 0.1123 0.136937 0.160719

h_harmonic_Interval_04_M3 float64 878 863 0 0.290698 0.125301 0.030364 0.107826 0.123081 0.139951

h_harmonic_Interval_05_P4 float64 878 861 0 0.217822 0.098534 0.024871 0.08379 0.09775 0.111111

h_harmonic_Interval_06_TT float64 878 860 0 0.172783 0.055101 0.024398 0.038828 0.054235 0.067861

h_harmonic_Interval_07_P5 float64 878 861 0 0.261473 0.114828 0.029846 0.096153 0.112816 0.132087

h_harmonic_Interval_08_m6 float64 878 861 0 0.165354 0.077984 0.021445 0.064372 0.078063 0.089883

h_harmonic_Interval_09_M6 float64 878 864 0 0.38374 0.101826 0.028582 0.085663 0.099962 0.117285

h_harmonic_Interval_10_m7 float64 878 862 0 0.12911 0.049601 0.018972 0.037057 0.048496 0.060821

h_harmonic_Interval_11_M7 float64 878 823 0 0.310219 0.018591 0.019108 0.00982 0.016058 0.023164

h_harmonic_Interval_12_P8 float64 878 867 0 1 0.159831 0.070192 0.114642 0.148561 0.19041

h_mostCommonChordSet float64 841 710 0.023083 1 0.162565 0.11606 0.09369 0.134503 0.193798

h_partialChords float64 878 832 0 5.443299 1.110791 0.87768 0.4364 0.936846 1.546606

h_topVerticalInterval object 878 10 P8 379

h_topVerticalIntervalPresence float64 878 867 0.112957 1 0.189412 0.056419 0.15649 0.176538 0.205378

h_uniqueChordDurations float64 841 28 1 53 5.302021 4.438641 3 4 7

h_uniqueChords float64 841 751 0.09375 1 0.603707 0.194037 0.458333 0.589744 0.74359

field type count unique top freq min max mean std Q1 Median Q3

m_directionDown float64 878 856 0.171875 0.693642 0.451846 0.073813 0.41827 0.4598 0.498382

m_directionSame float64 878 844 0 0.604082 0.118571 0.105819 0.044373 0.09086 0.161706

m_directionUp float64 878 853 0.146939 0.720131 0.429583 0.070557 0.393047 0.434508 0.470271

m_intervals_01_minorSecond float64 878 863 0 0.469269 0.201354 0.079944 0.146253 0.201895 0.257749

m_intervals_02_majorSecond float64 878 868 0 0.833333 0.249323 0.106755 0.178783 0.239607 0.314055

m_intervals_03_minorThird float64 878 860 0 0.344464 0.106702 0.054108 0.066667 0.100424 0.137308

m_intervals_04_majorThird float64 878 846 0 0.357664 0.071932 0.038634 0.044254 0.065403 0.092611

m_intervals_05_perfectFourth float64 878 842 0 0.319444 0.078533 0.038558 0.053041 0.074257 0.097841

m_intervals_06_Tritone float64 878 759 0 0.142857 0.018502 0.01957 0.005607 0.013701 0.024104

m_intervals_07_perfectFifth float64 878 834 0 0.324855 0.050344 0.036384 0.025228 0.041301 0.064728

m_intervals_08_minorSixth float64 878 769 0 0.264045 0.021748 0.023783 0.007588 0.014985 0.028249

m_intervals_09_majorSixth float64 878 775 0 0.302198 0.02301 0.025739 0.007583 0.015848 0.030397

m_intervals_10_minorSeventh float64 878 735 0 0.280757 0.015365 0.01869 0.004373 0.010586 0.020294

m_intervals_11_majorSeventh float64 878 608 0 0.253968 0.00609 0.014388 0 0.003127 0.007709

m_intervals_12_Octave float64 878 822 0 0.611285 0.038526 0.046168 0.012247 0.024769 0.046566

m_largeIntervals float64 878 674 0 0.266667 0.015961 0.027791 0.001399 0.00517 0.015879

m_melodicContourChange float64 878 865 0.199262 0.997685 0.577991 0.101378 0.511519 0.577406 0.640252

m_melodicDistanceAverage float64 878 877 1.062176 11.91445 3.644398 1.299764 2.762402 3.391637 4.188613

m_melodicDistanceStd float64 878 878 1.198006 9.728562 3.592861 1.301583 2.699617 3.31519 4.204944

m_melodicDurationChange float64 878 870 0 0.942486 0.27086 0.160719 0.156644 0.229502 0.3589

m_melodicIntervalAverage float64 878 876 1.062176 8.749216 3.227946 0.929219 2.603918 3.110783 3.704589

m_melodicIntervalStd float64 878 878 1.198006 4.91417 2.80345 0.600795 2.381227 2.767982 3.148829

m_mostCommonIntervalPresence float64 878 858 0.121448 0.833333 0.297348 0.088926 0.231043 0.283102 0.352689

m_mostCommonMelodicInterval object 878 12 M2 501

m_numberOfMelodicDistances int64 878 10 2 11 6.427107 1.546997 5 6 8
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Appendix C: Set of short music scores used for feature construction 

testing 

1 General

 

2 Tie

 

3 Ornaments

 

4 Articulations

 

5 Dynamics

 

6 Rests

 

7 Tuplets

 

8 Time signature changes

 

9 Key signature changes 

 

10 Accidentals 
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11 Chords                                            

 

12 Voices

 

13 Repetitions     

 

14 Parts                                                               

 

15 All durations
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Appendix D: Python implementation 

Feature construction script 

# -*- coding: utf-8 -*- 
import pandas as pd 
import music21 as ms 
 
def createNotesDataframe(c): 
  notesList = [] 
 
  curKey = '' 
  scale = None 
  noChecks = False 
 
  for n in c.flat.notes: 
    if n.duration.isGrace is False and n.quarterLength != 0: 
 
      scale, curKey, noChecks = getScales(c, n, curKey, scale, noChecks) 
 
      for p in n.pitches: 
        info = { 
          'durationQL': float(n.quarterLength), 
          'durationFullName': n.duration.fullName, 
          'pitchClass': p.pitchClass, 
          'pitchNumber': p.ps, 
          'pitchName': p.name, 
          'measure': n.measureNumber, 
          'pitchAccidental': True 
        } 
 
        if p.pitchClass in scale: 
          info['pitchAccidental'] = False 
 
        notesList.append(info) 
 
  df = pd.DataFrame(notesList) 
 
  return df 
 
 
def createMelodyDataframe(c): 
  melodyList = [] 
  s = c.voicesToParts() 
 
  for p in s.parts: 
    listNotes = p.flat.notesAndRests 
    for i in range(1, len(listNotes)): 
      curNote = listNotes[i - 1] 
      nextNote = listNotes[i] 
 
      if curNote.isRest or nextNote.isRest or curNote.quarterLength == 0: 
        continue 
 
      info = { 
        'Distance': nextNote.pitches[-1].ps - curNote.pitches[-1].ps, 
        'RhythmChange': curNote.duration.quarterLength != nextNote.duration.quarterLength 
      } 
      info['Move'] = 'Ascending' if info['Distance'] > 0 else 'Descending' if info['Distance'] 
< 0 
                                                                            else  'Unison' 
      info['Interval'] = abs(info['Distance']) % 12 
 
      if (info['Interval'] == 0) & (info['Distance'] != 0): 
        info['Interval'] = 12 
 
      melodyList.append(info) 
 
  df = pd.DataFrame(melodyList) 
  return df 
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def getScales(c, n, curKey, scale, noChecks): 
  ks = n.getContextByClass('KeySignature') 
 
  if (noChecks == False): 
    if (ks is None) & (scale is None): 
      ks = c.analyze('key') 
      scale = [sc.pitchClass for sc in ks.getScale().pitches] 
      noChecks = True 
    else: 
      if (curKey != ks) | (scale is None): 
        scale = [sc.pitchClass for sc in ks.getScale().pitches] 
        curKey = ks 
 
  return scale, curKey, noChecks 
 
def range1(end): return range(1, end + 1) 
 
def getHarmonyDataframe(sChords): 
  chordList = [] 
  intervalos = [] 
  partialChords = 0 
 
  allChords = sChords.flat.getElementsByClass('Chord') 
 
  # create pandas dataframe of chords information 
  for i in allChords: 
 
    if i.pitchClassCardinality == 2: partialChords += 1 
 
    # only account for chords of 3 or more notes 
    if i.pitchClassCardinality > 2: 
      acorde = { 
        'name': i.commonName, 
        'quarterLength': i.quarterLength, 
        'numberOfNotesInAChord': i.multisetCardinality, 
        'chordWithSamePitchClass': i.multisetCardinality != i.pitchClassCardinality, 
        'numberOfClassesInAChord': i.pitchClassCardinality, 
        'notesInChord': ",".join([c.nameWithOctave for c in i.pitches]), 
        'pitchClassesString': i.orderedPitchClassesString, 
        'chordType': getChordType(i), 
        'measure': i.measureNumber 
      } 
 
      chordList.append(acorde) 
 
    # gather all the intervals between all pairs of notes in the chord 
    for p1 in range(0, len(i.pitches) - 1): 
      for p2 in range(p1 + 1, len(i.pitches)): 
        distance = abs(i.pitches[p2].ps - i.pitches[p1].ps) % 12 
        distance = int(distance) if distance > 0 else 12 
        intervalos.append(distance) 
 
  df = pd.DataFrame(chordList) 
  chordInfo = {'dfChords': df, 'intervalList': intervalos, 'partialChords': partialChords} 
 
  return chordInfo 
 
 
def getKeySignatureChanges(s): 
  curKey = '' 
  keyChanges = 0 
  # get key signature changes 
  for key in s.parts[0].recurse(classFilter='KeySignature'): 
    if curKey != key.sharps: 
      keyChanges += 1 
    curKey = key.sharps 
 
  return keyChanges - 1 if keyChanges > 0 else 0 
 
 
def getTimeSignatureInfo(s): 
  ts = s.parts[0].flat.getElementsByClass('TimeSignature') 
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  timeInfo = { 
    'timeChanges': 0, 'numerator': 0, 
    'denominator': 0, 'ratio': '' } 
 
  if len(ts) >= 1: 
    timeInfo['numerator'] = ts[0].numerator 
    timeInfo['denominator'] = ts[0].denominator 
    timeInfo['ratio'] = ts[0].ratioString 
    if len(ts) > 1: 
      cur_time = '' 
      for tim in ts: 
        if cur_time != tim.ratioString: 
          timeInfo['timeChanges'] += 1 
        cur_time = tim.ratioString 
 
  return timeInfo 
 
 
def getChordType(notes): 
  # representation of pitch class in a chord 
  chordTypes = { 
    '0,3,7': 'Minor Triad', 
    '0,4,7': 'Major Triad', 
    '0,3,6': 'Diminished Triad', 
    '0,4,8': 'Augmented Triad', 
    '0,1,5,8': 'Major-Seventh', 
    '0,3,5,8': 'Minor-Seventh', 
    '0,3,6,8': 'Dominant-Seventh' 
  } 
 
  normalOrder = notes.normalOrder 
  root = normalOrder[0] 
  normalForm = ",".join([str((pc - root) % 12) for pc in normalOrder]) 
 
  if normalForm in chordTypes: 
    return chordTypes[normalForm] 
  elif len(normalOrder) == 3: 
    return 'Other Triad' 
  elif len(normalOrder) == 4: 
    return 'Other4Chord' 
  elif len(normalOrder) > 4: 
    return 'Complex Chord' 
 
 
def getRhythmFeatures(s, df): 
  dfCounts = df['durationQL'].value_counts(normalize=True) 
  dfCountDurationNames = df['durationFullName'].value_counts(normalize=True) 
 
  info = { 
    'r_minimumDuration': df['durationQL'].min(), 
    'r_maximumDuration': df['durationQL'].max(), 
    'r_noteDurationAverage': df['durationQL'].mean(),  # average of all the durations 
    'r_noteDurationStdDev': df['durationQL'].std(),  # standard deviation of all durations 
    'r_noteDensity': len(df) / float(s.duration.quarterLength), 
    'r_mostCommonNotePresence': dfCounts.iloc[0],  # fraction of number of notes with the most 
frequent duration 
    'r_numberOfDistinctDurations': len(dfCounts), 
    'r_twoMostCommonNotePresence': dfCounts.iloc[0],  
    'r_distanceTwoMostFrequent': 0, # default value is 0 
    'b_numberOfNotes': len(df), 
    'b_scoreLengthInQuarterNotes': float(s.duration.quarterLength) 
  } 
 
  info['r_mostCommonNoteDuration'] = dfCounts.index[0] 
 
  # time signature info 
  timeInfo = getTimeSignatureInfo(s) 
  info['r_timeSignatureChanges'] = timeInfo['timeChanges'] 
  info['r_tripleMeter'] = timeInfo['numerator'] in (3, 9) 
  info['r_dupleMeter'] = timeInfo['ratio'] in ('2/2', '2/4', '4/4', '6/8') 
 
  if info['r_numberOfDistinctDurations'] > 1: 
    info['r_twoMostCommonNotePresence'] = dfCounts.iloc[0] + dfCounts.iloc[1] 
    durations = sorted([dfCounts.index[0], dfCounts.index[1]], reverse=True) 
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    info['r_distanceTwoMostFrequent'] = durations[0] / durations[1] 
 
  info['r_durationRange'] = info['r_minimumDuration'] / info['r_maximumDuration'] 
 
  # duration histogram 
  histogramKeys = ['Breve', 'Whole', 'Half', 'Quarter', 'Eighth', '16th', '32nd', 'Dotted 
Whole', 'Dotted Half', 'Dotted Quarter', 'Dotted Eighth', 'Dotted 16th', 'Dotted 32nd'] 
 
  totalNonBasic = 1 
  for key in histogramKeys: 
    keyUsed = 'r_dh_' + key.replace(' ', '_') 
    info[keyUsed] = 0 
    if key in dfCountDurationNames.index.values: 
      info[keyUsed] = dfCountDurationNames.loc[key] 
      totalNonBasic -= info[keyUsed] 
 
  info['r_nonBasicDurationsPresence'] = totalNonBasic if totalNonBasic > 0 else 0 
 
  # add grace note presence 
  graceNotes = 0 
  expressions = 0 
  for i in s.flat.notes: 
    if i.quarterLength == 0: 
      graceNotes += 1 
    expressions += len(i.expressions) 
  info['r_graceNotePresence'] = graceNotes / len(df) 
  info['r_expressionsPresence'] = expressions / len(df) 
 
  # add rest information 
  notesAndRests = s.flat.notesAndRests 
  total = len(notesAndRests) 
  rests = [i.duration.quarterLength for i in notesAndRests if i.isRest] 
  info['r_restPresence'] = len(rests) / total 
 
  return info 
 
 
def getPitchFeatures(s, df): 
  dfClasses = df['pitchClass'].value_counts(normalize=True) 
  dfPitches = df['pitchNumber'].value_counts(normalize=True) 
 
  distance = abs(dfClasses.index[0] - dfClasses.index[1]) 
 
  infoPitch = { 
    'p_minimumPitch': df['pitchNumber'].min(), 
    'p_maximumPitch': df['pitchNumber'].max(), 
    'p_pitchAverage': df['pitchNumber'].mean(), 
    'p_pitchStd': df['pitchNumber'].std(), 
    'p_numberOfPitchClasses': df['pitchClass'].nunique(), 
    'p_numberOfPitches': df['pitchNumber'].nunique(), 
    'p_distanceStrongestPitches': abs(dfPitches.index[0] - dfPitches.index[1]), 
    'p_distanceStrongestPitchClasses': distance if distance < 7 else 12 - distance, 
    'p_keySignatureChanges': getKeySignatureChanges(s), 
    'p_accidentals': df['pitchAccidental'].mean(), 
    'p_mostCommonPitchPresence': dfPitches.iloc[0], 
    'p_strengthOfTopPitches': dfPitches.iloc[1] / dfPitches.iloc[0] if (len(dfPitches) > 1) 
else 0 
  } 
 
  infoPitch['p_pitchRange'] = infoPitch['p_maximumPitch'] - infoPitch['p_minimumPitch'] 
 
  for i in range(0, 12): infoPitch['p_ph' + f'{i+1:02}'] = 0 
  for i in range(0, len(dfClasses)): infoPitch['p_ph' + f'{i+1:02}'] = dfClasses.iloc[i] 
 
  return infoPitch 
 
 
def getHarmonyFeatures(sChords, params): 
  info = {} 
 
  df = params['dfChords'] 
  intervalos = params['intervalList'] 
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  # chord features 
  if len(df) > 0: 
    dfChords = df['pitchClassesString'].value_counts(normalize=True) 
    infoChords = { 
      'h_chordNotesAverage': df['numberOfNotesInAChord'].mean(), 
      'h_chordNotesStd': df['numberOfNotesInAChord'].std(), 
      'h_chordPitchClassesAverage': df['numberOfClassesInAChord'].mean(), 
      'h_chordPitchClassesStd': df['numberOfClassesInAChord'].std(), 
      'h_chordsWithOctave': df['chordWithSamePitchClass'].mean(), 
      'h_uniqueChords': df['notesInChord'].nunique() / len(df), 
      'h_uniqueChordDurations': df['quarterLength'].nunique(), 
      'h_chordDurationAverage': df['quarterLength'].mean(), 
      'h_chordDensity': len(df) / float(sChords.duration.quarterLength), 
      'h_mostCommonChordSet': dfChords.iloc[0], 
      'b_numberOfChords': len(df) 
    } 
 
    info.update(infoChords) 
 
    dfChordTypes = df['chordType'].value_counts(normalize=True) 
    chordTypes = { 
      'h_chordType_01_Minor_Triad': dfChordTypes.get('Minor Triad', 0), 
      'h_chordType_02_Major_Triad': dfChordTypes.get('Major Triad', 0), 
      'h_chordType_03_Diminished_Triad': dfChordTypes.get('Diminished Triad', 0), 
      'h_chordType_04_Augmented_Triad': dfChordTypes.get('Augmented Triad', 0), 
      'h_chordType_05_OtherTriads': dfChordTypes.get('Other Triad', 0), 
      'h_chordType_06_MinorSeventh': dfChordTypes.get('Minor-Seventh', 0), 
      'h_chordType_07_DominantSeventh': dfChordTypes.get('Dominant-Seventh', 0), 
      'h_chordType_08_MajorSeventh': dfChordTypes.get('Major-Seventh', 0), 
      'h_chordType_09_Other4Chords': dfChordTypes.get('Other4Chord', 0), 
      'h_chordType_10_ComplexChords': dfChordTypes.get('Complex Chord', 0) 
    } 
 
    info.update(chordTypes) 
 
  # harmonic intervals features 
  if len(intervalos) > 0: 
 
    vIntervals = {1: 'm2', 2: 'M2', 3: 'm3', 4: 'M3', 5: 'P4', 6: 'TT', 
                  7: 'P5', 8: 'm6', 9: 'M6', 10: 'm7', 11: 'M7', 12: 'P8'} 
 
    # create a pandas series with the vertical intervals, reindex to have a 1 to 12 series 
(fill with 0 the missing values) 
    intervalCount = pd.Series(intervalos).value_counts(normalize=True).reindex(range1(12), 
fill_value=0) 
 
    # add intervals count 
    for key, value in intervalCount.iteritems(): 
      info['h_harmonic_Interval_' + f'{key:02}_' + vIntervals[key]] = intervalCount[key] 
 
    info['h_topVerticalInterval'] = vIntervals[intervalCount.argmax()] 
    info['h_topVerticalIntervalPresence'] = intervalCount.max() 
 
  info['h_partialChords'] = params['partialChords'] / float(sChords.duration.quarterLength) 
  return info 
 
 
def getMelodicFeatures(s, df): 
  info = {} 
  dfIntervals = df['Interval'].value_counts(normalize=True) 
 
  melodyIntervals = { 
    'm_intervals_00_unison': dfIntervals.get(0, 0), 
    'm_intervals_01_minorSecond': dfIntervals.get(1, 0), 
    'm_intervals_02_majorSecond': dfIntervals.get(2, 0), 
    'm_intervals_03_minorThird': dfIntervals.get(3, 0), 
    'm_intervals_04_majorThird': dfIntervals.get(4, 0), 
    'm_intervals_05_perfectFourth': dfIntervals.get(5, 0), 
    'm_intervals_06_Tritone': dfIntervals.get(6, 0), 
    'm_intervals_07_perfectFifth': dfIntervals.get(7, 0), 
    'm_intervals_08_minorSixth': dfIntervals.get(8, 0), 
    'm_intervals_09_majorSixth': dfIntervals.get(9, 0), 
    'm_intervals_10_minorSeventh': dfIntervals.get(10, 0), 
    'm_intervals_11_majorSeventh': dfIntervals.get(11, 0), 
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    'm_intervals_12_Octave': dfIntervals.get(12, 0) 
  } 
  info.update(melodyIntervals) 
 
  mIntervals = {0: 'Unison', 1: 'm2', 2: 'M2', 3: 'm3', 4: 'M3', 5: 'P4', 6: 'TT', 
                7: 'P5', 8: 'm6', 9: 'M6', 10: 'm7', 11: 'M7', 12: 'P8'} 
 
  info['m_mostCommonMelodicInterval'] = mIntervals[dfIntervals.index[0]] 
  info['m_mostCommonIntervalPresence'] = dfIntervals.iloc[0] 
  info['m_largeIntervals'] = len(df[df['Distance'] > 12]) / len(df) 
 
  info['m_melodicIntervalAverage'] = df['Interval'].mean() 
  info['m_melodicIntervalStd'] = df['Interval'].std() 
  info['m_melodicDistanceAverage'] = abs(df['Distance']).mean() 
  info['m_melodicDistanceStd'] = abs(df['Distance']).std() 
 
  dfDistance = df['Distance'].value_counts(normalize=True) 
  info['m_numberOfMelodicDistances'] = len(dfDistance[dfDistance >= 0.05]) 
 
  dfMoves = df['Move'].value_counts(normalize=True) 
  melodyMove = { 
    'm_directionUp': dfMoves.get('Ascending', 0), 
    'm_directionDown': dfMoves.get('Descending', 0), 
    'm_directionSame': dfMoves.get('Unison', 0) 
  } 
  info.update(melodyMove) 
 
  info['m_melodicDurationChange'] = df['RhythmChange'].mean() 
 
  contourChanges = 0 
  contours = df['Move'].tolist() 
  for i in range(1, len(contours)): 
    if contours[i - 1] != contours[i]: 
      contourChanges += 1 
  info['m_melodicContourChange'] = contourChanges / len(contours) 
 
  return info 
 
 
def getFeatures(row): 
  c = ms.converter.parseFile(row['filename']) 
 
  df = createNotesDataframe(c) 
  # rhythm features 
  fs = getRhythmFeatures(c, df) 
  for key in fs:  row[key] = fs[key]  ## copy features to row 
  # pitch features 
  fs = getPitchFeatures(c, df) 
  for key in fs:  row[key] = fs[key]  ## copy features to row 
  # melody features 
  dfMelodic = createMelodyDataframe(c) 
  fs = getMelodicFeatures(c, dfMelodic) 
  for key in fs:  row[key] = fs[key]  ## copy features to row 
  # harmony features 
  chordInfo = getHarmonyDataframe(c.chordify()) 
  fs = getHarmonyFeatures(c, chordInfo) 
  for key in fs:   row[key] = fs[key]  ## copy features to row 
 
  return row 
 
 
# open dataset of music scores and paths 
dfDataSet = pd.read_csv('xls/output/FinalDataset.csv', sep=';', usecols=['composer', 'title', 
'period', 'filename'], 
                        encoding='utf-8-sig') 
# construct features 
df = dfDataSet.apply(getFeatures, axis=1) 
# export original dataset with the features added 
df.to_csv('xls/output/scoresDataSet.csv', index=False, sep=';', columns=df.columns, 
encoding='utf-8-sig') 
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Classifier model script 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn import svm 
from sklearn.metrics import precision_recall_fscore_support 
from sklearn.ensemble import RandomForestClassifier 
from sklearn import preprocessing 
from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold, 
cross_val_predict, GridSearchCV 
import pprint as pp 
 
 
def exportResults(df, t_target, pred, metrics, dfAccuracy): 
  cols = ['ID', 'composer', 'title', 'Class', 'period'] 
  dfResults = df 
  dfResults['Class'] = t_target 
  for k in pred: 
    dfResults['Predicted_' + k] = pred[k] 
    dfResults['Correct_' + k] = np.where(dfResults.Class == dfResults['Predicted_' + k], 1, 0) 
    cols.append('Predicted_' + k) 
    cols.append('Correct_' + k) 
 
  # predictions of each record by feature set 
  dfResults.to_excel('xls/Output/models/' + '_ByPieceByFeatureType.xlsx', columns=cols, 
index=False) 
 
  dfRecall = pd.DataFrame({'period': periodColumns}) 
  for i in metrics:  dfRecall[i] = metrics[i]['recall'] 
  dfRecall.T.to_excel('xls/Output/models/recall_' + '.xlsx', index=True) 
 
  dfPrecision = pd.DataFrame({'period': periodColumns}) 
  for i in metrics:  dfPrecision[i] = metrics[i]['precision'] 
  dfPrecision.T.to_excel('xls/Output/models/precision_' + '.xlsx', index=True) 
 
  dfFScore = pd.DataFrame({'period': periodColumns}) 
  for i in metrics:  dfFScore[i] = metrics[i]['fscore'] 
  dfFScore.T.to_excel('xls/Output/models/fscore' + '.xlsx', index=True) 
 
  dfSupport = pd.DataFrame({'period': periodColumns}) 
  for i in metrics:  dfSupport[i] = metrics[i]['support'] 
  dfSupport.T.to_excel('xls/Output/models/support' + '.xlsx', index=True) 
 
  dfAccuracy.to_excel('xls/Output/models/accuracy' + '.xlsx', index=True) 
 
 
def dataPreprocessing(dfDataSet): 
  # fill missing values with 0 (chordtypes info) 
  dfDataSet.fillna(0, inplace=True) 
 
  # derived features 
  dfDataSet['r_timeSignatureChanges'] = dfDataSet['r_timeSignatureChanges'] == 0 
  dfDataSet['r_durationRange'] = dfDataSet['r_maximumDuration'] - 
dfDataSet['r_minimumDuration'] 
 
  dfDataSet['p_pitchRange'] = dfDataSet['p_maximumPitch'] - dfDataSet['p_minimumPitch'] 
  dfDataSet['p_keySignatureChanges'] = dfDataSet['p_keySignatureChanges'] > 0 
  # convert the numeric to categorical 
  dfDataSet['p_distanceStrongestPitchClasses'] = 
dfDataSet['p_distanceStrongestPitchClasses'].astype(str) 
 
  # create list of categorical and numeric variables 
  arrContinuous = [] 
  arrCategorical = [] 
  for i in dfDataSet.columns: 
    if i[1] == '_': 
      colType = dfDataSet[i].dtypes.name 
      if colType in ['float64', 'int64']: 
        arrContinuous.append(i) 
      elif colType in ['object']: 
        arrCategorical.append(i) 
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  ######## CLAMP TRANSFORMATION 
  iqr = dfDataSet[arrContinuous].quantile(0.75) - dfDataSet[arrContinuous].quantile(0.25) 
  high = dfDataSet[arrContinuous].quantile(0.75) + (1.5 * iqr) 
  low = dfDataSet[arrContinuous].quantile(0.25) - (1.5 * iqr) 
  outliers_high = (dfDataSet[arrContinuous] > high) 
  outliers_low = (dfDataSet[arrContinuous] < low) 
  dfDataSet[arrContinuous] = dfDataSet[arrContinuous].mask(outliers_high, high, axis=1) 
  dfDataSet[arrContinuous] = dfDataSet[arrContinuous].mask(outliers_low, low, axis=1) 
 
  ### NORMALISATION 
  transformation = preprocessing.MinMaxScaler(feature_range=(0, 1)) 
  dfDataSet[arrContinuous] = transformation.fit_transform(dfDataSet[arrContinuous]) 
 
  # Convert categorical to binary 
  for col in arrCategorical: 
    print(col) 
    for i in dfDataSet[col].unique(): 
      # create a new column with field name + '_' + level name with 0 or 1 values 
      dfDataSet[col + '_' + i] = (dfDataSet[col] == i) 
    dfDataSet.drop(col, axis=1, inplace=True) 
 
  return dfDataSet 
 
 
def getBestFeaturesUsingRandomTree(X, y): 
  model = RandomForestClassifier(max_depth=40, n_estimators=1000, criterion='gini', 
bootstrap=False, random_state=42) 
  model.fit(X, y) 
  featureImportances = model.feature_importances_ 
  importantFeatures = sorted(zip(X.columns, featureImportances), key=lambda x: x[1], 
reverse=True) 
  dfFeat = pd.DataFrame({'Variable': X.columns, 'Importance': featureImportances}) 
  dfFeat = dfFeat.sort_values(by='Importance', ascending=False) 
  return dfFeat['Variable'].tolist(), dfFeat 
 
 
df = pd.read_csv('xls/output/scoresDataSet.csv', sep=';', encoding='utf-8-sig') 
df = df.reset_index(drop=True) 
# drop metadata information 
dfDataSet = df.drop(['ID', 'composer', 'title', 'filename'], axis=1) 
# data preparation 
dfDataSet = dataPreprocessing(dfDataSet) 
 
periodColumns = ['Baroque', 'Classical', 'Romantic', 'Modern'] 
 
# feature types list 
features = [ 
  ('Rhythm', [col for col in dfDataSet.columns if col.startswith('r_')]), 
  ('Pitch', [col for col in dfDataSet.columns if col.startswith('p_')]), 
  ('Harmony', [col for col in dfDataSet.columns if col.startswith('h_')]), 
  ('Melody', [col for col in dfDataSet.columns if col.startswith('m_')]), 
  ('All', [col for col in dfDataSet.columns if col != 'period']) 
] 
 
featureCategories = [ft for ft, col in features] 
 
# features dataset 
t_features = dfDataSet 
# labels dataset 
t_target = dfDataSet.pop('period') 
 
# radial kernel SVM 
clf = svm.SVC(kernel='rbf', C=100, random_state=0, gamma='auto'),  # SVC with radial kernel 
 
pred = {} 
metrics = {} 
accuracy = [] 
results = {} 
 
# create a model per group of features 
for featureType, cols in features: 
 
  # select the features for a group 
  X = t_features[cols] 
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  y = t_target 
  # 10-fold cross validation 
  skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=52) 
 
  # PARAMETER TUNING 
  # param_grid = [ 
  #     {   'C': [0.1, 1, 10, 100], 
  #         'gamma': [0.01, 0.05, 0.1, 0.3, 0.7, 1,'auto'], 
  #     } 
  # ] 
  # grid = GridSearchCV(clf, cv=skf, param_grid=param_grid) 
  # grid.fit(X, y)  # 
  # pp.pprint(grid.best_estimator_) 
  # pp.pprint(grid.best_params_) 
  # pp.pprint(grid.cv_results_['mean_test_score']) 
  # # pp.pprint(grid.param_grid) 
  # 
 
  # random forest variable ranking 
  feat, dfFeat, tree1 = getBestFeaturesUsingRandomTree(X, y) 
  plt.figure(figsize=(20, 10)) 
  sns.factorplot(x="Importance", y="Variable", data=dfFeat[:5], kind="bar", 
                 size=3, aspect=1.9, color='royalblue') 
  plt.ylabel('') 
  plt.tight_layout() 
  plt.title("Variable Ranking / " + featureType + " features", fontsize=13, 
horizontalalignment='center') 
  plt.savefig('xls/Output/models/VarRanking_' + featureType + '.png') 
  dfFeat.to_excel('xls/Output/models/VarRanking_' + featureType + '.xlsx', index=True) 
 
  # train and get predictions of the model 
  predictions = cross_val_predict(clf, X, y, cv=skf) 
  scores = y == predictions 
  print('{0:10}({1:3})\tAccuracy:{2:0.5f}'.format(featureType, len(cols), scores.mean())) 
 
  # get evaluation metrics 
  precision, recall, fscore, support = precision_recall_fscore_support(y, predictions, 
average=None, 
                                                                       labels=periodColumns, 
warn_for=('F-score')) 
  dfClass = precision_recall_fscore_support(y, predictions, labels=periodColumns, warn_for=('F-
score')) 
 
  data = {'period': periodColumns, 
          'precision': precision, 
          'recall': recall, 
          'fscore': fscore, 
          'support': support} 
 
  accuracy.append(scores.mean()) 
 
  metrics[featureType] = pd.DataFrame(data, columns=['period', 'precision', 'recall', 'fscore', 
'support']) 
  pred[featureType] = predictions 
 
  confMatrix = pd.crosstab(y, predictions).reindex_axis(periodColumns, 
               axis=1).reindex_axis(periodColumns, axis=0) 
  confMatrix.fillna('0', inplace=True) 
 
  confMatrix.to_excel('xls/Output/models/ConfMatrix_' + featureType + '.xlsx') 
 
  # confusion matrix with % 
  confMatrix2 = confMatrix.astype(np.float) / confMatrix.sum(axis=1) 
  colsum = confMatrix.sum(axis=1) 
  confMatrix2 = confMatrix 
  for index, row in confMatrix2.iterrows(): 
    for per in periodColumns: 
      confMatrix2.loc[index, per] = row[per] / colsum[index] 
 
  confMatrix2.to_excel('xls/Output/models/ConfMatrixPercent_' + featureType + '.xlsx') 
 
dfAccuracy = pd.DataFrame(data={'Accuracy': accuracy}, index=featureCategories) 
exportResults(clf, df, t_target, pred, metrics, dfAccuracy) 
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Summary statistics 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from tqdm import tqdm, tqdm_pandas 
import seaborn as sns 
 
def exportStats(features, df): 
  # loop each feature category 
  for type, cols in features: 
    stats = [] 
    # loop each field/attribute 
    for col in cols: 
      info = {} 
      ser = df[col] 
      colType = ser.dtypes.name 
      # get statistics of the column 
      info['field'] = col 
      info['count'] = ser.count() 
      info['type'] = ser.dtype.name 
      info['unique'] = len(ser.unique()) 
      # 
      if colType in ['float64', 'int64']: 
        info['min'] = ser.min() 
        info['max'] = ser.max() 
        info['mean'] = ser.mean() 
        info['std'] = ser.std() 
        info['25'] = ser.quantile(.25) 
        info['50'] = ser.quantile(.50) 
        info['75'] = ser.quantile(.75) 
      elif colType in ['object']: 
        info['top'] = ser.value_counts().index[0] 
        info['freq'] = ser.value_counts().iloc[0] 
 
      stats.append(info) 
 
    dfStats = pd.DataFrame(stats,columns=['field', 'type', 'count', 'unique', 'top', 
                          'freq', 'min', 'max', 'mean', 'std','25', '50', '75']) 
    dfStats.to_excel('xls/DataStats/' + type + '_Features.xlsx', index=False) 
 
 
def createBars(dfGroup): 
  for i in tqdm(dfGroup.columns): 
    dfGroup[i].plot.bar(title=i, edgecolor='k') 
    plt.xlabel('') 
    plt.ylabel('Avg values') 
    plt.tight_layout() 
    plt.axes().yaxis.grid(color='grey', linestyle='dashed') 
    plt.axes().set_axisbelow(True) 
    plt.savefig('xls/DataStats/bars/' + i + '.png') 
    plt.clf() 
 
 
def createBoxPlotsPerPeriod(dfDataSet): 
  for i in tqdm(dfGroup.columns): 
    sns.factorplot(kind='box', x="period", y=i, data=dfDataSet, 
                   order=periodColumns, width=0.6, fliersize=0.5, aspect=1.1, size=4) 
    plt.tick_params(labelsize=14) 
    plt.title(i, fontsize=18) 
    plt.xlabel('') 
    plt.ylabel('') 
    plt.tight_layout() 
    plt.savefig('xls/DataStats/boxPlots/PerPeriod/' + i + '.png') 
    plt.clf() 
 
 
def createBoxPlots(dfDataSet): 
  for i in tqdm(dfGroup.columns): 
    sns.boxplot(y=dfDataSet[i]) 
    plt.savefig('xls/DataStats/boxPlots/' + i + '.png') 
    plt.clf() 
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def createHistograms(dfDataSet): 
  for i in tqdm(dfDataSet.columns): 
    if dfDataSet[i].dtype != 'object': 
      dfDataSet[i].plot.hist(title=i, color='#5A8CA8', bins=50) 
      plt.locator_params(nbins=10) 
      plt.savefig('xls/DataStats/hist/' + i + '.png') 
      plt.clf() 
 
 
def normalisationExample(): 
  cols = ["r_dh_Eighth", "m_melodicIntervalAverage"] 
  sns.regplot(y=dfDataSet["r_dh_Eighth"], x=dfDataSet["m_melodicIntervalAverage"], 
              fit_reg=False, marker="+", scatter_kws={"s": 20}, 
              label='Before normalisation', color=None) 
  plt.show() 
  transformation = preprocessing.MinMaxScaler(feature_range=(0, 1)) 
  dfDataSet[cols] = transformation.fit_transform(dfDataSet[cols]) 
  sns.regplot(y=dfDataSet["r_dh_Eighth"], x=dfDataSet["m_melodicIntervalAverage"], 
              fit_reg=False, scatter_kws={"color": "darkred", "alpha": 1, "s": 15}, 
              label='After normalisation') 
  leg = plt.legend(loc='upper right', frameon=True, fontsize=13, markerscale=1.8) 
  leg.get_frame().set_facecolor('lightgrey') 
  plt.show() 
 
 
def correlations(features, dfDataSet): 
  from scipy.stats import pearsonr 
 
  for ftype, cols in features: 
    dfD = dfDataSet[cols].dropna() 
    cor = dfD.corr(method='pearson') 
    # Generate a mask for the upper triangle 
    mask = np.zeros_like(cor, dtype=np.bool) 
    mask[np.triu_indices_from(mask)] = True 
    # Set up the matplotlib figure 
    sns.set(font_scale=0.5) 
    # f, ax = plt.subplots(figsize=(11, 9)) 
    # Generate a custom diverging colormap 
    cmap = sns.diverging_palette(220, 10, as_cmap=True) 
    # Draw the heatmap with the mask and correct aspect ratio 
    sns.heatmap(cor, mask=mask, cmap=cmap, vmax=.3, center=0, 
                annot=True, annot_kws={"size": 5}, fmt=".2f", 
                square=True, linewidths=.5, cbar_kws={"shrink": .5}) 
    plt.xticks(rotation=90) 
    plt.yticks(rotation=0) 
    # show correlation heatmap 
    plt.show() 
 
    # export correlation matrix to exxcel 
    cor.to_excel('xls/DataStats/Correlations/' + ftype + '_Features_Matrix.xlsx', index=True) 
    corr = cor.unstack().reset_index() 
    corr.columns = ['var1', 'var2', 'coef'] 
    corr = corr[corr['coef'].abs() >= 0.8] 
    corr = corr[corr['coef'].abs() < 1] 
    corr['pvalue'] = 0 
    for per in periodColumns:  corr[per] = 0 
    todelete = [] 
    for i, row in corr.iterrows(): 
      if i not in todelete: 
        corrtest = pearsonr(dfD[row['var1']], dfD[row['var2']]) 
        corr.loc[i, 'pvalue'] = corrtest[1] 
        # calculate correlation per column 
        for per in periodColumns: 
          dfClass = dfDataSet[dfDataSet['period'] == per] 
          dfClass = dfClass[cols].dropna() 
          corrtest = pearsonr(dfClass[row['var1']], dfClass[row['var2']]) 
          corr.loc[i, per] = corrtest[0] 
 
        for j, row2 in corr.iterrows(): 
          if (row['var1'] == row2['var2']) & (row['var2'] == row2['var1']): 
            todelete.append(j) 
 
    corr.drop(todelete, inplace=True) 
    corr['pvalue'] = corr['pvalue'].apply(lambda x: '%.4f' % x) 
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    corr.to_excel('xls/DataStats/Correlations/' + ftype + '_Features_Pairs.xlsx', index=True) 
 
# MAIN SCRIPT 
dfDataSet = pd.read_csv('xls/output/scoresDataset.csv', sep=';') 
 
periodColumns = ['Baroque', 'Classical', 'Romantic', 'Modern'] 
 
dfGroup = dfDataSet.groupby('period').mean().reindex(periodColumns) 
dfGroup.T.to_excel('xls/DataStats/FeaturesMeanByPeriod.xlsx', columns=periodColumns) 
 
features = [ 
  ('Rhythm', [col for col in dfDataSet.columns if col.startswith('r_')]), 
  ('Pitch', [col for col in dfDataSet.columns if col.startswith('p_')]), 
  ('Harmony', [col for col in dfDataSet.columns if col.startswith('h_')]), 
  ('Melody', [col for col in dfDataSet.columns if col.startswith('m_')]), 
  ('All', [col for col in dfDataSet.columns if col != 'period']) 
] 
 
exportStats(features, dfDataSet) 
createBoxPlots(dfDataSet) 
createBars(dfGroup) 
createHistograms(dfDataSet) 
correlations(features, dfDataSet) 
normalisationExample() 
createBoxPlotsPerPeriod(dfDataSet) 
 

Assignment of labels 

import os 
import pandas as pd 
import music21 as ms 
import sys 
 
 
def getPeriod(comp, df): 
  jaro = 0 
  auxComposer = '' 
  auxPeriod = '' 
  auxYears = '' 
  if comp != '': 
    for composer, period, years in zip(df['composer'], df['period'], df['years']): 
      newJaro = fuzz.token_set_ratio(comp, composer) 
      if newJaro > jaro: 
        auxComposer = composer 
        auxPeriod = period 
        auxYears = years 
        jaro = newJaro 
  return auxComposer, auxPeriod, auxYears 
 
def getInfo(row): 
  try: 
    c = ms.converter.parse(row['filename']) 
  except: 
    row['error'] = str(sys.exc_info()[1]) 
    return row 
 
  if c.metadata.composer is not None: 
    row['composerOld'] = c.metadata.composer 
  else: 
    row['composerOld'] = row['paths'] 
 
  title = '' 
  if c.metadata.parentTitle != 'None': 
    title = c.metadata.parentTitle 
 
  if c.metadata.title != 'None': 
    if c.metadata.title != '': title = c.metadata.title if title == '' 
           else title + ' ' + c.metadata.title 
 
  if c.metadata.movementNumber is not None: 
    if c.metadata.movementNumber != '': title = title + ' : ' + c.metadata.movementNumber 
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  if c.metadata.movementName is not None: 
    if not c.metadata.movementName.endswith('.mxl'): 
      if c.metadata.movementName != '': title = title + ' : ' + c.metadata.movementName 
 
  if c.metadata.number is not None: 
    title = title + ' : ' + c.metadata.number if c.metadata.number != '' else title 
 
  title = title.replace('.mxl', '').replace('_', ' ') 
 
  row['title'] = title 
  row['composer'], row['period'], row['years'] = getPeriod(row['composerOld'], dfComposers) 
 
  return row 
 
 
# MAIN SCRIPT 
 
# open composer lookup table 
dfComposers = pd.read_excel('xls/input/composers.xlsx', Sheet='Sheet1', index=False, 
encoding='utf-8-sig') 
 
id = 1 
# empty lists, ids and score paths 
ids = [] 
scores_path = [] 
scores_files = [] 
scores_sources = [] 
 
datasetOthersPath = ['scores/kern', 'scores/mxl'] 
# loop through all files in the folders 
for path in datasetOthersPath: 
  source = path.replace('scores/', '') 
  for root, directories, filenames in os.walk(path): 
    for filename in filenames: 
      scores_files.append(os.path.join(root, filename)) 
      ids.append(id) 
      scores_path.append(root.replace(path, '').replace('\\', '')) 
      scores_sources.append(source) 
      id += 1 
 
df = pd.DataFrame() 
# add id and score files 
df['ID'] = ids 
df['filename'] = scores_files 
df['paths'] = scores_path 
df['source'] = scores_sources 
 
# add columns of composer, period, years 
df = df.apply(getInfo, axis=1) 
 
columns = ['composer', 'composerOld', 'title', 'period', 'years', 
           'source', 'filename', 'error'] 
 
df.to_csv('xls/output/FinalDataset.csv', index=False, sep=';',  
          encoding='utf-8-sig',columns=columns) 

Crawl MuseScore website to gather music scores info 

from bs4 import BeautifulSoup 
import pandas as pd 
import os 
import time 
import requests 
 
headers = { 
  "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36  
  (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36"} 
 
payload = { 
  "name": "************", 
  "pass": "************", 
  "form_build_id": "form-hKBAJtBDOaaeZmpsmOa1bc9fSHkTqe4BZbABscHo4kY", 
  "form_id": "user_login_form", 
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  "op": "Log+in" 
} 
 
base_url = 'https://musescore.com/' 
login_page = 'https://musescore.com/user/login' 
 
s = requests.Session() 
s.post(login_page, data=payload) 
# list of users with classical music scores 
dfUsers = pd.read_excel('xls/input/Muse_Score_Users.xlsx', sheetname='Hoja1') 
 
lists = [] 
 
for user_page in dfUsers['URL']: 
  # scores with only one part 
  my_url = user_page + '?parts=1' 
  pag = 1 
  print(user_page) 
  url_list = [] 
 
  while True: 
    time.sleep(1) 
    print('Page:' + str(pag)) 
    u = s.get(my_url, headers=headers).content 
    soup = BeautifulSoup(u, 'html.parser') 
 
    for score in soup.find_all('a', attrs={'rel': 'bookmark'}): 
      url_list.append(base_url + score['href']) 
 
    item = soup.find('a', attrs={'rel': 'next'}) 
    # if there is no Next button, exit loop 
    if (item == None): break; 
 
    my_url = user_page + item['href'] 
    pag += 1 
 
  totUrls = len(url_list) 
  cont = 1 
 
  for score_page in url_list: 
    print("%s / %s" % (cont, totUrls)) 
    info = {} 
    info['scorePage'] = score_page 
    info['userpage'] = user_page 
    info['download'] = 'M' 
 
    u = s.get(score_page, headers=headers).content 
    soup = BeautifulSoup(u, 'html.parser') 
 
    if soup.title.string == "This score is unavailable | MuseScore": 
      print("This score is unavailable | MuseScore") 
      continue 
 
    item = soup.find('meta', attrs={'property': 'musescore:composer', 'content': True}) 
 
    info['composer'] = item['content'].replace('\n', ' ') if item is not None else '' 
    item = soup.find('meta', attrs={'property': 'og:title', 'content': True}) 
    info['title'] = item['content'].replace('\n', ' ').replace('"', '')  
                    if item is not None else '' 
    # get other metadata info (instrument, pages, measures...) 
    xtra = soup.find('div', attrs={'class': 'more-info'}) 
    trs = xtra.find_all('tr') 
    for tr in trs: 
      tds = tr.find_all('td') 
      if tds[0].text == 'Part names': 
        partsTotal = str(tds[1]).replace('<td>', '').replace('<span class="sep">', ''). 
            replace('</span>', '').replace('</td>', '') 
        info[tds[0].text] = "|".join(partsTotal.split('<br/>')) 
      else: 
        info[tds[0].text] = str(tds[1].text) 
    #clean file name 
    info['filename'] = info['title'].replace(' ', '_').replace('♯', 'sharp').\ 

      replace('♭', 'flat').replace('“','-').replace('”', '-').replace('/', '-') 
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    lists.append(info) 
    cont += 1 
 
df = pd.DataFrame(lists) 
 
columns = ['composer','title','filename','download','Pages','Measures','Duration','Key 
signature','Part names','Parts','scorePage','userpage'] 
 
df.to_excel('xls/output/Muse_Score_Downloads.xlsx', index=False, columns=columns) 

Download musicXml files from MuseScore 

from bs4 import BeautifulSoup 
import pandas as pd 
import os 
import requests 
import time 
 
headers = { 
  "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36  
                  (KHTML, like  Gecko) "Chrome/59.0.3071.115 Safari/537.36"} 
payload = { 
  "name": "*************", 
  "pass": "**********", 
  "form_build_id": "form-KpVeiZaYjsTnRR5vuwRRhOQ6eyOU3CDB4SgXxtLfuL0", 
  "form_id": "user_login_form", 
  "op": "Log+in" 
} 
 
base_url = 'https://musescore.com/' 
login_page = 'https://musescore.com/user/login' 
datasetTo = 'scores\\musicxml\\' 
 
s = requests.Session() 
s.post(login_page, data=payload) 
#open excel file with list of scores to download 
dfScores = pd.read_excel('xls/output/Muse_Score_Downloads.xlsx', 'Sheet1') 
scores = [] 
totScores = len(dfScores) 
 
id = 1 
for index, row in dfScores.iterrows(): 
  if row['download'] == 'Y': 
    time.sleep(1) 
    print("(%s) %s / %s - %s - %s" % (id, index + 1, totScores, row['composer'], row['title'])) 
 
    u = s.get(row['scorePage'], headers=headers).content 
    # parse HTML to a beautifulsoup object 
    soup = BeautifulSoup(u, 'html.parser') 
    # find link to MusicXML file 
    url = soup.find('a', text='MusicXML') 
    # url of musicxml download page 
    download_page = base_url + url['href'] 
    # get url of file to download 
    d = s.get(download_page, headers=headers, allow_redirects=False) 
    download = d.headers['Location'] 
    #folder to save the file 
    folderTo = datasetTo + row['userpage'].replace('https://musescore.com/', '') 
                                          .replace('sheetmusic', '') 
    # create folder in case it does not exist 
    os.makedirs(folderTo, exist_ok=True) 
    #name of the file 
    file_nameTo = folderTo + '\\' + row['filename'] + '.mxl' 
 
    with s.get(download, stream=True).raw as response, open(file_nameTo, 'wb') as out_file: 
      data = response.read() 
      out_file.write(data) 
    dfScores.loc[index, 'download'] = 'Done' 
    id += 1 
 
dfScores.to_excel('xls/output/Muse_Score_Downloads.xlsx', 'Sheet1', index=False) 
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