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ABSTRACT 

 

Building evacuation simulation provides the planners and designers an opportunity to 

analyse the designs and plan a precise, scenario specific instruction for disaster times. 

Nevertheless, when disaster strikes, the unexpected may happen and many egress paths 

may get blocked or the conditions of evacuees may not let the execution of emergency 

plans go smoothly. 

During disaster times, effective route-finding methods can help efficient evacuation 

process, in which the directors are able to react to the sudden changes in the 

environment. This research tries to integrate the highly accepted human dynamics 

methods proposed by Fruin into the Ant-Colony optimisation route-finding method. 

The proposed method is designed as a multi-objective ant colony system, which tries 

to minimize the congestions in the bottlenecks during evacuations, in addition to the 

egress time, and total traversed time by evacuees. This method embodies the standard 

crowd dynamics method in the literature, which are Fruin LOS and pedestrian speed. 

The proposed method will be tested against a baseline method, that is shortest path, in 

terms of the objective functions, which are evacuation time and congestion degree. 

The results of the experiment show that a multi-objective ant colony system 

performance is able to reduce both egress time and congestion degree in an effective 

manner, however, the method efficiency drops when the evacuee population is small. 

The integration of Fruin LOS also produces more meaningful results, as the load 

responds to the Level of Service, rather than the density of the crowd, and the Level of 

Service is specifically designed for the sake of measuring the ease of crowd 

movement. 

 

Key words: Evacuation, Path-finding, Ant-Colony, Multi-objective, Fruin, Level of 

Service 
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1 INTRODUCTION 

This chapter gives an overview of the scope of the research, the basic defining aspects 

of the research such as research question, and the objectives of the research. A short 

outline is also present at the end of the chapter. 

1.1 Background  

The path-finding during evacuation time is a process that tries to find proper paths for 

evacuees during disaster times. The proper path is defined by the objectives of the 

evacuation, which depends on the situation (Yi-fan, Jun-min, Jie, Ying, & Jin-hua, 

2011). 

From the major categories of the analytical models for human dynamics, optimisation 

is the mostly regarded method in the literature (Georgiadou, Papazoglou, Kiranoudis, 

& Markatos, 2007; Liu, Zhang, Ma, Pota, & Shen, 2016; Yi-fan et al., 2011). The 

reason behind this is that path-finding, due to complexity of the environment, the 

potentially high number of evacuees, and multiple objectives of an evacuation method, 

may have a humongous number of solutions, and finding the optimal path for evacuees 

is not feasible in this case. This is because of the high computational power needed to 

accomplish this and the limited time to react during hazardous times (Fang, Zong, Li, 

Li, & Xiong, 2011). 

There are a variety of optimisation models used in the domain of emergency 

evacuation and some of them are able to address multiple objectives like egress time 

and congestion degree (Gwynne et al., 1999). 

The Ant-Colony Optimisation (ACO) method is one of the common methods used in 

path-finding, and it has the ability to address multiple objectives. The emergency path-

finding has its own needs, which ACO can address. These needs are listed below (Yi 

& Kumar, 2007): 

• Ability to address any variety in population distribution. 

• A need to produce different paths from different rooms to the exits. 

• Possibility to generate statistics about evacuation, including egress time and 

congestion degree, which is an important risk factor that can help planning. 
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• Fast response. Method needs to produce results fast. This also ensures that any 

unforeseen changes in population density and distribution can be addressed 

quickly. 

• Ability to optimise not only the path-length, but the capacity of the walkways, 

the risks associated to the environment, and the capacity of the exits. This is the 

multi-objective requirement for the model, and objectives depend on the 

evacuation situation. 

1.2 Research Problem and Methodology 

The research question is as follows. 

Does integrating Fruin crowd-dynamics analysis methods into a Multi-Objective Ant 

Colony system result in a versatile Multi-ACO system? 

This research tries to utilize widely accepted methods of congestion-degree and agent 

speed formula, that is Fruin methods, into Multi-ACO system and find out whether the 

results are able to address the path-finding in disaster time. 

The versatility of the proposed system will be measured against a baseline method, that 

is shortest path method, described in the chapter two. 

This research is defined as a primary quantitative research. It will implement the 

solution as a software suit and will gather the needed data from a battery of 

simulations. 

It is expected that the proposed method gives sub-optimal results, as it is optimisation, 

which show drastic improvements from the baseline method. It is also expected that 

the current method produces more readable results for the congestion degree analysis. 

1.3 Research Objectives  

The objectives of the research are defined as follows: 

• To develop a Multi-ACO solution capable of optimising congestions alongside 

egress time. 

• Implement Fruin evacuee-speed formula into the Multi-ACO path-finding 

process. 

• Implement Fruin Level of Service (LOS) congestion degree evaluation method 

into the Multi-ACO solution domination evaluation process. 
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• Measure the improvement of the results against the baseline method. 

• Measure the feasibility of the method for a variety of different evacuation 

scenarios, including random population, random crowd distribution, and 

random enclosure types.  

1.4 Scope and Limitations  

The emergency evacuation planning process is complex and time consuming. This is 

due to variable condition such as population of evacuees and their distribution. The 

computer analysis models are great tools to aid emergency planners, and optimisation 

models that are able to optimise multiple criteria such as egress time and the 

congestion degree have been a major research area due to their good performance and 

acceptable results. The base method in this research is Multi-Objective Ant-colony 

optimisation (Multi-ACO). 

It is mandatory to mention that the proposed method is not a precise simulation 

method, in terms of mimicking the human behaviour, and can only tackle the problem 

of path-finding during evacuation. 

It is also important to note that each evacuation scenario needs different objectives, 

such as dynamic path blocking during a fire breakout, or the need for considering the 

risk of paths near the hazardous area. The evacuation scenario in this research does not 

address such objectives, hence the scenario can be defined as emergency evacuation 

with intact environment, for example evacuation due to an alarm of possible missile 

attack is one scenario that has the environment intact. 

1.5 Document Outline  

Chapter two, literature and work done, contains the description of evacuation science, 

the previous work done in the area, and the technologies used for the experiment. 

Chapter three describes the design of the experiment, containing the mathematics of 

the Multi-ACO method, the software design part, and the main aspects of the Multi-

ACO method, including enclosure design, and the population groups. 

Chapter four contains the results of the experiment, the discussion about the results and 

the conclusion. 
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2 LITERATURE REVIEW 

This chapter describes the algorithms, terms, tools, and technologies used in the 

research. The related work is also explored at the end of the chapter. 

2.1 Evacuation Science 

The rapid worldwide growth of population in the 20th century caused development of 

various new scientific branches in AEC industry (Abrahams, 1994). Safety was one of 

the popular branches that saw many updates during the last 60 years. 

The first step of dealing with building safety is enforcing the architectural standards, 

including acceptable dimensions for building components and emergency components 

(Neufert, Neufert, & Kister, 2012). 

The fact that disaster may strikes any time implies the need for preparation. Regardless 

of the type of disaster, the population in the affected area should be able to escape to a 

safe area efficiently. 

Emergency evacuation is the act of urgent escape of people from an area where a threat 

to life or property exists. The hazardous condition are defined by the warning level, 

and based on the warning level, evacuation is divided in two categories, precautionary 

and life-saving operations (Saeed Osman & Ram, 2017). 

Evacuations may be carried out before, during or after disasters such as natural 

disasters, traffic accidents, industrial accidents, fire, military attacks, structural failure, 

viral outbreak (Abrahams, 1994). 

Evacuation is the last step of a chain of safety measures in AEC industry, which is 

accompanied by logistic support, which is out of the domain of this research. The 

following section tries to give some insight on the process of planning for disaster 

time. 

2.1.1  The Emergency Response Plan (ERP)  

During the disaster time, action taken in the first minutes are quite critical. Issuing a 

quick evacuation warning to employees could save many lives. Also, actions taken by 

employees with a proper knowledge of the building and the production process may 
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control a leakage, and hence the damage to the facility and environment (Department 

of Homeland Security, n.d.). 

Emergency response plan (ERP) contains information on different types of emergency 

measures, provided for specific premises, and includes building plans and evacuation 

procedures. It is accompanied by a set of instructions for specific types of disasters to 

cover different disaster scenarios (Singapore Civil Defense Force, 2013). 

Current ERP development approach is called proactive planning, which involves 

developing and examining different plans in advance for different scenarios and 

finding among the available plans the most suitable one to be used whenever an 

incident occurs (Department of Homeland Security, n.d.). 

According to Singapore evacuation planning guidelines (2013), the complexity of an 

Emergency Response Plan is dependent upon the following factors: 

• The size of the premises and complexity of routes. 

• The premises height. 

• The number of occupants. 

• Premises type. 

• P&FM and Hazardous materials storage. 

• Special risk associated with the premises. 

2.1.2  Building Egress Analysis  

The process of evaluating the evacuation paths in a building is called egress analysis. 

This analysis gives a quantitative complexity rank of an enclosure. For designing the 

means of egress in a building, there are international instructions in the architectural 

bible. there are also instructions from the fire-safety community, with detailed process 

for Egress analysis (Shen, 2006). 

The elements of a means of egress system are listed here (BuildingCodeNYC, 2013): 

• Exit Access 

o Dead end corridors 

o Travel distance 

o Number of exits 

o Distance between exit doors 

o Exit signage 

• Exit 

o Exit stair width 

o Landing depth 

o Exit passageway width 

• Exit discharge 

o Exit door width, and exit capacity 
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These elements cover the parameters used in evacuation path-finding methods, 

described later on in this chapter. 

2.1.3  Bottlenecks During Evacuation  

The evacuation process, in its basic form involves people moving toward a target. The 

fact that the process is done under pressure implies that the stress may have a negative 

impact on the flow of the event, including increased rate of accidents that may harm 

evacuees, however, the main risk is caused by the congestions formed in bottlenecks 

(Yi-fan et al., 2011). 

A crowd of people behind a bottleneck is usually more dense than normal situations. 

The quality of how dense a crowd is and its relation to the crowd flow has been 

another research are that led to different quantitative and qualitative methods to 

measure the fundamental aspects of crowd flow (Yi-fan et al., 2011). This issue is 

thoroughly dis-cussed in chapter two. 

The egress analysis mentioned before is aimed at finding the bottlenecks, however, the 

traditional egress analysis does not address small details of the building component  

(Shen, 2006). The computer analysis of the evacuation boasts simulation methods that 

are able to address this issue, and this matter is discussed in the next sections. 

2.2 Computer Analysis of Evacuation  

Before computing power became available to the public, analysis of evacuation was 

limited to qualitative analysis of egress components of the building, and limited 

quantitative methods to evaluate complexity of evacuation routes, regarded as egress 

analysis (Shen, 2006). 

This limitation comes from the fact that simulating egress process needs to be repeated 

many times to get a reliable answer (Gwynne et al., 1999), which is not feasible for real-life 

experiment. To prove this, please tend to the hypothetical distribution of total 

evacuation time for a combination of a single building-population-environment shown 

in Figure 1. 
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Figure 1.1. Distribution of total evacuation time for an evacuation drill (Gwynne et al., 1999) 

With the growth of computational power, more complex analytical methods emerged 

to address complex problems of human dynamics and complicated path-finding in big 

facilities. The advantage of these models are the ability to run multiple times with low 

cost (Shen, 2006). 

There are three major analytical categories which tackle evacuation problem in 

different manners: simulation, optimisation, and risk assessment (Gwynne et al., 

1999). 

Risk assessment is done mainly in ERP planning stage to understand the critical paths 

and areas, which helps revising the plan and allocation of assets during evacuation, 

such as helping hands, and first aids (Gwynne et al., 1999). Traditional risk assessment 

methods consider pre-disaster conditions such as the vulnerability and accessibility of 

the road network. Modern methods also take into account post-disaster factors 

including the impact or aftermath of the disaster and evacuee’s routing behaviour 

(Chien, Wu, & Huang, 2014). 

Simulation models represent the behaviour and movement during evacuation, not only 

to get acceptable quantitative results, but to represent paths and decisions during an 

evacuation (Gwynne et al., 1999). 

Optimisation methods assume that occupants evacuate in an efficient way, ignoring 

peripherals and non-evacuation activities (Gwynne et al., 1999). These models treat 

occupants like a homogeneous ensemble, hence they are used for large number of 

people. 

The method used in this research is multi-objective ant colony algorithm (Multi-ACO), 

which is an optimisation model. 

Assessment of an evacuation model is possible by addressing the following criteria 

(Gwynne et al., 1999): 
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• Configuration: General and traditional building codes, including building 

layout, the type of building, number of exits, width of exists, travel distance. 

• Environment: Impact of live load, that is obstacles such as shelves and disaster 

time factors such as effect of heat, smoke and toxic gasses on way finding 

capabilities. 

• Procedures: Number of trained staff, level of training of evacuees, occupant’s 

prior knowledge of enclosure, emergency signage, etc. 

• Behaviour: The mental impact of forced evacuation on individuals vary and 

impacts the efficiency of evacuation drastically. Factors like age, mental 

fortitude, personal knowledge of the environment also affect the behaviour 

deeply. 

These factors relate in evacuation process as shown in Figure 1.2. 

 

 

 

 

 

 

Figure 1.2. Interacting aspects of an optimal design enclosure (Gwynne et al., 1999) 

Evacuation models can be divided based on how they represent enclosure (space), 

population (evacuees), and evacuee behaviour (Gwynne et al., 1999; Shen, 2006). 

2.2.1  Enclosure Perspective  

Two models are widely used to represent space. 

Fine Grained Network: Space is presented as tiles, for example. Exodus, a simulation 

software, uses .5m * .5m tiles, where Simulex, another simulation software, uses .25m 

* .25m. These models usually use particle simulation, either agent based, individual 

evacuee simulation or gas simulation (Chen et al., 2012). 

Coarse Grain Networks: Define geometry as partitions derived from actual structure, 

results in a graph in which nodes are rooms and arcs are connections (Gwynne et al., 

1999). 

Configurations 

Behaviour 

Environment Procedures 
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Figure 1.3. Coarse grain network (left) vs fine grain network (right) (Chen et al., 2012) 

2.2.2  Population Perspective  

Two models are used to represent a population of evacuees: individual (agent based), 

and global perspective (Gwynne et al., 1999). 

Most agent based models allow user to assign personal properties manually or 

randomly (Gwynne et al., 1999). Then the behaviours is determined by a rule based or 

AI engine (Santos & Aguirre, 2004). 

Global models treat evacuee population as a homogeneous ensemble without personal 

identities, thereby this approach is called global perspective. 

The advantage of agent based models is that unlike global models, they are able to 

determine the effect of events on individuals during evacuation, however, the accuracy 

depends on how Comprehensive the model is (Gwynne et al., 1999). Agent based 

models are usually very CPU greedy, so they cannot be used to determine routes 

during disaster times (Chen et al., 2012). 

2.2.3  Behaviour Perspective  

Evacuation models need a decision-making system, to move the population inside the 

enclosure. This aspect is known as population behavior system. Various behavior 

systems are listed below (Gwynne et al., 1999): 

• No behavioral rules: Model relies on physical crowd movement. 

• Functional analogy behavior: Applies a single, or a set of equations to the 

whole population. These equations are derived from other fields of study, such 

as magnetic crowd movement model derived from physics, rather than actual 

human behavior. 

• Implicit behavior: Do not declare behavioral rules, but assume them to be 

implicitly represented through complicated physical models, derived from 

secondary data. Their accuracy is dependent on the relevance and accuracy of 

secondary data. 
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• Rule based behavioral systems: Most models which allow individual behavior, 

define this behavior with a set of rules, which are applied in certain 

circumstances, e.g. in a smoked filled room, I will leave through the nearest 

exit. 

• Artificial intelligence based behavioral systems: Try to mimic human behavior. 

Accuracy depends on how well-trained the AI engine is. 

During evacuation, behaviour has a complex relationship with the surroundings. A 

person may have human to human, human-structure or human environment interaction 

(Santos & Aguirre, 2004).  

These interactions affect occupant’s movement and therefore trigger decision making 

process. These interactions happen in three levels: Psychological, like fear; 

Sociological, like alarming another occupant, or teaming up; and Physiological, like 

intoxication because of irritant gasses during fire breakout (Santos & Aguirre, 2004). 

2.2.4  Model Accuracy 

Model accuracy, unlike previous factors, is not a role-playing factor in efficiency of 

the model. It is rather a measure of efficiency of the model, derived from the 

relationship of previous factors. 

The single most lacking feature of all models is lack of a convincing battery of 

validation comparisons mostly because of a general lack of data suitable for validation 

(Gwynne et al., 1999). As there are very limited number of available public datasets, 

the matter seems more complicated considering the fact that an evacuation process is 

fundamentally affected by the following factors (Santos & Aguirre, 2004): 

• Physical Nature of the Enclosure: number of floors, exits, their width, etc. 

• Function of the Enclosure: offices, hospitals, schools, etc. have different 

characteristics, both for the occupants and physical nature of the building. 

• Nature of the population: age, gender, level of training, etc. 

• Nature of the Environment: time of day, debris, signage, etc. 

Until a common systematic framework is adopted by the international fire-safety 

community this will remain the most important issue for both development and wide-

scale acceptance of evacuation models (Gwynne et al., 1999), however, as the reports 

say (Gwynne et al., 1999; Pelechano & Malkawi, 2008) the generic evacuation 
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simulation software suits have gained a fair accuracy by constant tweaking during the 

last 40 years, and many studies validate their data against the simulations by these 

methods, which are mostly agent based models. 

2.3 Ant Colony Algorithms 

Ant colony optimisation algorithm (ACO), introduced in early 90’s, is an optimisation 

technique that is inspired by the real-life resource finding of ant colonies (Blum, 2005). 

The real-life ant colony path-finding works in such a way that each individual ant from 

the colony population leaves a chemical acid during traversing its path to food and 

back to home. The ants follow the strongest pheromone trail, and naturally, the shortest 

path to food gets more pheromone, because during a fixed time frame, more ants pass 

from the shortest path (Dorigo, Maniezzo, & Colorni, 1996). 

This process is shown in Figure 2.1. 

 

Figure 2.1. An experimental setup to show the process of foraging by an ant colony (Blum & 

Merkle, 2008, p.47) 

The digital ants in ACO are different from real ants in a variety of different ways, three 

major differences are listed here: 
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• Real ants move in an asynchronous way with their environment, where all 

artificial ants leave home, find destination and go back home in each iteration 

(Blum & Merkle, 2008). 

• Artificial ants leave pheromone just on their way back, or better said only those 

that find the destination leave pheromone, for a one side trip. It is important to 

note that home to destination trip is the same as destination to home (Blum & 

Merkle, 2008). 

• Where foraging behaviour of real ants are based on an implicit evaluation of 

the paths, that is the fact that shorter paths receive pheromone reinforcement 

quicker, the artificial ants have the possibility of explicit evaluation of paths 

based on more deciding factors that just pheromones (Blum & Merkle, 2008). 

The ACO system was originally designed to solve traveling salesman problem (TSP) 

(Blum, 2005), which has a single objective of minimizing the trip distance. The last 

property of digital ants mentioned above is the critical aspect of digital ants which lets 

researchers define complex rules and formulas for ants, to overcome multi-objective 

problems. 

With the background given on ACO, it is possible to declare ACO as follows: 

ACO is a probabilistic technique, which does approximate optimisation based on 

swarm intelligence (Blum & Merkle, 2008). ACO belongs to metaheuristic optimisa-

tion techniques, which solves the problem by populating the abstract model of the 

world, represented by a graph (Dorigo et al., 1996). 

2.3.1  Swarm Intell igence  

Swarm intelligence is the collective behaviour of self-organised, decentralised system. 

The system, either artificial or natural, comprises a number of agents, dwelling an 

environment known as the world (Blum & Merkle, 2008). The idea was introduced by 

Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems (Beni 

& Wang, 1993). 

In the domain of swarm intelligence, in addition to the number of agents and their 

placement, it is the individual behaviour of the agents, and their interactions that forms 

the collective swarm intelligence (Blum & Merkle, 2008). 

The examples of swarm intelligence in nature are bird flocking, ant colony, fish 

schooling, animal herding and microbial intelligence (Blum & Merkle, 2008). 
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2.3.2  Metaheuristics  

Metaheuristics refers to a high-level algorithmic framework, which is problem-

independent and offers a set of guidelines and rules to develop a heuristics 

optimisation algorithm (Glover & Sörensen, 2015).  

Metaheuristics often implement a sort of stochastic optimisation, which means the 

solution(s) found depend on a set of random variables (Bianchi, Dorigo, Gambardella, 

& Gutjahr, 2009). 

2.3.3  ACO from Enclosure Perspective  

ACO uses an abstract world, presented as graphs. The edges can be either one side or 

two sided, and the graph may be open or closed (Blum & Merkle, 2008). 

Each vertex represents a room, and each edge represents connections between these 

rooms (Blum, 2005). An edge should have a length, where it can also have other 

properties such as area, capacity or any other static or dynamic property (Yi & Kumar, 

2007). 

2.3.4  ACO from Population Perspective  

ACO uses populated graphs as environment. At the beginning of the process, the graph 

is populated by a number of agents (ants). The positioning of agents may be random or 

fixed. Each agent is assigned to a home node, and will seek the destination nodes 

during the procedure (Yuan & Wang, 2007). 

2.3.5  ACO from Behaviour Perspective  

ACO is an iterative algorithm. During each iteration, agents construct a path to the 

destination nodes (Yuan & Wang, 2007). 

The behaviour of agents, in the case of ACO, is limited to selecting the next node, 

based on the possibility, calculated by a formula (Blum, 2005). 

The basic deciding factor in the path-selection is the pheromone of the outgoing edges. 

Depending on the objectives of the ACO, there may be other deciding factors, such as 

edge capacity, edge load, and edge risk (Blum, 2005; Liu et al., 2016). 

In ACO, during an iteration, the load of an edge may affect the probability of the edge 

getting chosen for other agents, so decision making of an agent may affect the future 
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decision making of other agents, however, ACO does not suggest a collective beh-

aviour for agents (Blum, 2005). 

After each iteration, where all ants have constructed paths to exits, the total evacuation 

time and other objective functions will decide the efficiency of the current solution. If 

the solution is a dominant solution, the pheromones for edges which ants have 

traversed will be updated (Liu et al., 2016).  

The new pheromone value changes the probability for each edge and in each iteration, 

and this way the efficient paths get marked after each iteration, and the solution will 

become more efficient. 

2.3.6  Multi-Objective ACO 

ACO system, originally, as it was proposed by Dorigo (1996), had one objective, and it 

was to find the shortest path to the exit. However, shortly after, multi-objective ACO 

(Multi-ACO) emerged, which had solution for problems with multiple deciding factor 

(Blum, 2005). 

The implementation part of multi-ACO differs from ACO as follows: 

• The probability for edges depend on factors from other objective factors as 

well. For example, if minimizing the congestion degree is an objective, the 

more an edge is loaded, less probable it becomes to be chosen. 

• The efficiency of the current solution, in each iteration is calculated by a 

combination of all objective functions, not just the total traversed length, or 

total evacuation time. 

• The pheromone updating function depends on the value of all objective 

functions, linearized and weighted. 

• With multiple deciding factors for efficiency, known as objective function 

values, there is not just one best solution. There is a set of solutions which is 

called non-dominated solution set. 

Multi-ACO in evacuation domain has been proposed for a variety of problems, 

featuring a wide range of objective functions. Examples of objectives are minimizing 

total evacuation time, minimizing total traversed path, minimizing total congestion 

degree, and minimizing total risk factor (Koo, Hong, & Kim, 2015; Yuan & Wang, 

2007) 



 

 24 

2.3.7  Multi-Criteria Optimisation 

Multi-criteria Decision Analysis (MCDA) covers evaluation of a multi-criteria 

problem (Greco, Figueira, & Ehrgott, 2005), such as multi-criteria optimisation, for 

multi-ACO. 

There are a variety of MCDA solutions. Based on ACO, there is a need for a solution 

capable of storing alternative solutions, as well as ranking them. 

In MCDA, problem is captured by a matrix. The alternative solutions are the rows of 

the matrix, and the columns are the score of each objective function, calculated for 

each solution (Greco et al., 2005). 

For each iteration in ACO simulation, a solution is generated. This solution is added to 

the matrix as a row. Two approaches are widely used in the literature. First approach 

involves a quick ranking method to purge the dominated solutions in the matrix, and 

the second approach uses a quantitative ranking method to sort the results based on the 

weight of the objective functions. 

Pareto optimal solution compares each single score of objective function with 

alternative solutions. According to Deb (1999) (as cited in Fang, Zong, Li, Li, & 

Xiong, 2011), the MCDA can be stated as follows: 

Min f(x) = (f1(x), ..., fn(x)) 

n is the number of objective functions, and x = (x1, ..., xm) is the vector of decision 

variables. X is the decision variable space. f(x) is the vector of objectives. 

It is possible to say u ∈ X dominates another decision variable v ∈ X, if and only if 

(Fang et al., 2011): 

∀i ∈ {1, 2, …, n}, fi(u) ≤ fi(v) and ∃i ∈ {1, 2, …, n}, fi(u) < fi(v) 

This means that a solution x ∈ X is pareto optimal if there is no other decision 

vector that dominates x. The pareto-optimal solutions belong to a set, named non-

dominated set. When a new solution is found, it will be checked against all of the 

solutions in non-dominated set (ND-Set) which is the matrix mentioned before, 

and if the new solution dominates any solution in the set, that solution is purged 

from the set and new solution is added to the set (Fang et al., 2011). 

After a simulation, the ND-Set contains multiple solutions, for each solution at 

least one objective function is pareto optimal. The second quantitative method 

used in this paper is Weighted product model (WPM) which is capable of com-
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paring two solutions, based on the weight of the objective functions. WPM 

method is defined as follows (Triantaphyllou, 2000): 

 

This formula compares two alternative solutions Ak and AL. The aKi and aKj are the 

column values, that is the objective function values for Ak and AL. ωi is the weight of 

the respective objective functions. To understand the formula the following table may 

be helpful: 

 

 C1 C1 C1 WPMscore 

Weights (ω) 0.55 0.35 0.1  

A1 22 75 233 11.73 

A1 18 120 155 11.90 

Table 2.1. An example of WPM. 

Rows A1 and A2 are the solutions in Table 2.1, and C columns are criteria. The WPM 

formula can be rearranged as bellow: 

 

So, for each solution, a WPM score can be generated and then compared with the rest 

of the solutions. This method is more efficient for a solution matrix with lots of rows. 

WPM for each row (  can be calculated as follows: 

 

The objective functions and their weights are discussed in chapter 3. 

2.3.8  Crowd Dynamics  

Level of Service (LOS) is a concept within the domain of pedestrian flow dynamics. 

Pedestrian flow dynamics is a well-researched area that tries to understand the 

dynamics of crowd flow, and model some critical aspects of the crowd flow (Vanumu, 

Ramachandra Rao, & Tiwari, 2017). 

While the pedestrian flow is a wide domain, and lot of variables and formulas have 

been suggested to model different aspects of the pedestrian flow (Still, 2000; Vanumu 
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et al., 2017). The needed parts for this research is limited to the flow speed, relative to 

density, and a standard for density measurements. This is because ACO is an agent 

based model, however, since the world is represented as graph, the quality of space is 

not a deciding factor for ACO. 

As for a measurement for density, Level of Service (LOS) is used. Level of service is a 

quantitative measure for quality of traffic (Still, 2000). LOS is used to rank the quality 

of sidewalks, walkways, crosswalks, stairways, highways, and traffic flow mediums 

like these (Still, 2000). As for the measurement for quality of space per pedestrian, the 

research done by Fruin (1971) proposes Fruin LOS, which ranks space per pedestrian 

with alphabets, from A to F. Figure 2.2 shows an overview of what LOS looks like, 

and Table 2.2 presents the description of Fruin LOS. 

 

LOS Ped.Volume (f) 
min 

pr/ft   pr/m 

Average Area 
(a) 

ft2/pr   m2/pr 

Description 

A 7 or      23 or 
less      less 

35 or    3.3 or 
more    more 

Threshold of free flow. convenient 
passing, conflicts avoidable. 

B 7-10   23-33  25-35   2.3-3.3  Minor conflicts, passing and speed 
restrictions 

C 10-15   33-49  15-25   1.4-2.3  Crowded but fluid movement, passing 
restricted, cross and reverse flows 
difficult. 

D 15-20   49-66  10-15   0.9-1.4  Significant conflicts, passing and speed 
restrictions, intermittent 
shuffling. 

E 20-25   66-82  5-10   0.5-0.9  Shuffling wall: reverse, passing and cross 
flows very difficult; 
intermittent stopping. 

F Flow variable 
up to 
maximum  

5 or   0.5 or 
less    less  

Critical density, flow sporadic, 
frequent stops, contacts with others. 

Table 2.2. Fruin LOS description for Walkway (Fruin, 1992). 
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Figure 2.2. Fruin (1971) LOS area per person as cited by Still (2000). 

To address pedestrian speed, relative to crowd density, there are a variety of methods 

in the literature. Pedestrian speed is known to be relative to many factors, including the 

country of origin, age groups or pedestrians, chaos factor, walkway type and material, 

and density of crowd (Alhajyaseen, Nakamura, & Asano, 2011). Figure 2.3 visualizes 

the fundamental characteristics of human flow, with different methods: 

 

Figure 2.3. Pedestrian flow fundamental diagrams (Daamen et al., 2005) 

As it is obvious, the Fruin pedestrian speed is not linear in the figure, however, based 

on Fruin (1971) article, the speed can be simplified as a linear formula, relative to 
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density. This is the formula chosen in this article, described as follows (As cited by 

Alhajyaseen et al., 2011): 

   , PA (person/m2) = Passwayload/Passwayarea 

As it was mentioned earlier, the pedestrian speed varies from country to country. It 

makes sense to ask why the Fruin formula is chosen over those of done in United 

Kingdom. The reason behind is that based on the Fruin formula, when density passes 

4.08 person/m2, the speed reaches zero, which means a complete clogging. This is in 

sync with Fruin level of service. 

Besides, according to the literature, average speed depends on many factors, and it is 

best represented as a range. The base speed in the literature varies from 1.0 to 1.5 

m/sec and the Fruin base speed of 1.43 is in the range. 

2.3.9  Bottlenecks  

Many factors play role in forming a bottleneck. The most basic factor is the width of 

the passway as its entrance, and passway area that determines its capacity (Tanimoto, 

Hagishima, & Tanaka, 2010). Figure 2.4 shows this effect. The exit #2 is 40cm wider 

and as it is seen, the population favours this exit. 

The majority of the agent-based evacuation methods implement a method to address 

this issue for agent decision making (Wagoum et al., 2017). 

 

Figure 2.4. The visualization of path-selection relative to exit width, and different population. 

e1=0.7m, e2=1.1m (Wagoum et al., 2017) 
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Bottleneck analysis is an active research area; however, as Multi-ACO perceives the 

world as a graph, the passway width and area are the only possible properties that can 

be attached to the graph components, so the rest of the bottleneck science falls out of 

the scope of the current research. 

2.3.10 Shortest  Loopless Path Method in a Network  

To validate the results, a baseline method is needed. Shortest path method is a method 

that is based on the method suggested by Dijkstra’s shortest path (1959). 

The shortest path method has lots of variants. The most common one uses a node as 

source and finds the shortest path from this source to other nodes in the graph, which 

constructs a shortest path tree. 

Dijkstra algorithm is a greedy algorithm, which means for each node, it iteratively 

investigates outgoing connections to make optimal solution for shortest path. Because 

of its greedy nature, when the graph is complicated, this algorithm sees a steep drop in 

performance. 

2.3.11 Multi-ACO Implementation  

The general implementation steps of a multi-ACO implementation are as follows 

(Fang et al., 2011; Zong, Xiong, Fang, & Li, 2010; Yuan & Wang, 2007): 

1. instantiation: In this step, graph is instantiated; the fundamental parameters are 

set; all the edges get the default pheromone value; the agents are instantiated 

and assigned to home nodes; and the non-dominated solution set (ND-set) is 

instantiated. 

2. path construction: for each agent which is not moving, the next node is chosen 

based on a probability formula. The formula depends on pheromones as well as 

any heuristic function that may affect the probability of the next nodes, for 

example, a reverse correlation with edge load, or edge risk may define the 

heuristics function. 

3. time is incremented and step 2 is called, until all agents find the destination 

(exit) nodes. 

4. ND-set determination. The objective functions for each path is calculated, and 

summed up to get the final score of each objective function for this iteration. 

The current solution, which is a collection of paths, is tested based on the 
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mentioned score, against other solutions in the ND-set. If the solution is non-

dominated, it will be added to the ND-set and any solution from ND-set that is 

dominated by current solution will be purged from the ND-set. 

5. Pheromone updating: Pheromones evaporate by each iteration, and if agents 

pass from an edge, an amount of pheromone is deposited on the edge. The new 

pheromone value may depend on the objective function values, or it may not, 

depending on the ACO design. 

6. The ants get back to the home nodes and step 2 is called, until the maximum 

number of iteration is reached. In this case the algorithm is terminated. 

The technical specification of the multi-ACO is described in chapter 3: design, and 

hence it is not present in this chapter.  

The first part of this chapter tried to lay the details of multi-ACO. The next part will 

give an overview of the literature in the domain. 

2.4 Related Work 

Human-flow dynamics has been a field of research form the mid-20th century. Human 

flow characteristics was dominant area of research through 50s to 80s. Shortly after, 

with the growth of crowd dynamics, the crowd movement simulation methods were 

born to aid forecasting of the complicated human flow patterns (Still, 2000). 

Fruin investigated pedestrian dynamics and released his highly cited book 

“Pedestrian planning and design” (Fruin, j, 1971). His research has been 

accepted as standard in many subsequent building construction regulations and 

hence has been reflected in many researches afterward. He defined a measure 

for safety and comfort, which relates to crowd speed and density, that is Level 

of Service. 

Many researchers followed Fruin and measured crowd dynamics in different 

countries, however, the acceptance and wide covered ground of Fruin research 

makes it a feasible solution for a research that involves multiple crowd 

dynamics criteria (Still, 2000). 

The field of path-finding and crowd-simulation also goes back to mid-20th 

century. Dijkstra, a computer programmer and physics professor, proposed a 

solution to find the shortest path between nodes in a graph, proposed in his 
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article “A note on two problems in connexion with graphs” (Dijkstra, 1959). His 

idea was utilized in many branches of computing, including path-finding for real 

life scenarios. His method was based on an iterative path-evaluation method 

starting from a node and building a distance tree for each node, updating from 

different branches to the minimum value. This gave birth to the graph based 

path-finding. 

During the last decades of the 20th century, a variety of different computer-aided 

crowd simulation methods emerged. Gwynne et al. (1999) research identifies 22 

evacuation models and categorizes them in three different major branches: 

Simulation, optimisation, and risk management. This research also defines the 

elements of the optimal design for evacuation. 

Ant-Colony Optimisation (ACO) is an optimisation method proposed by 

Dorigo, in his PhD thesis (1992). This method is based on swarm-intelligence 

seen in real ants. Dorigo denotes that ACO can be applied to a broad range of 

problems that can be presented as path-finding in a graph. 

Shortly after, Dorigo proposed the first ACO algorithm in his paper “Ant System: 

Optimization by a colony of cooperating agents” (1996). His ant-system algorithm was 

a solution to traveling salesman problem, as a proof of concept for ACO. With the 

effectiveness of the ACO known, the algorithm became a major research area quickly. 

The ACO-metaheuristics, which is a form of ACO, capable of utilizing rule-based 

method for path-finding, was first proposed in 1999 (Dorigo, Caro, & Gambardella, 

1999). The research uses a parametrized probabilistic model for pathfinding, and also 

describes a variety of ACO applications to combinatorial optimization and routing in 

communications networks. 

The multi-objective ACO was first proposed in 2003-04. The article “Solving Multi-

criteria Optimization Problems with Population-Based ACO” (Guntsch & Middendorf, 

2003), proposed the multi-objective ACO for the first time. This article proposed 

methods which are the fundamental part of the todays Multi-ACO algorithms. The 

algorithm used a set to store dominant solutions found during iterations. It used a 

pheromone matrix for each optimisation criterion, and the decision making of ants 

were based on a weighted method that rasterized the pheromones from different 
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matrices. This method becomes inefficient quickly as the population grows, because 

updating and combining the matrices is a CPU intensive task. 

The next milestone was set by the research “On the Design of ACO for the Biobjective 

Quadratic Assignment Problem” (López-Ibáñez, Paquete, & Stützle, 2004), that 

defined objective function vectors and pheromone updating strategies. The experiment 

showed that the local search strategy and the correlation between objective functions 

play an essential role in the efficiency of the algorithm. 

From 2006 on, the majority of the ACO researches in the field of evacuation science 

were trying to define innovative objectives for the ACO to address varying needs of 

different evacuation scenarios. 

Yuan and Wang (2007) proposed a Multi-ACO solution that used both egress time and 

total traversed time to minimize the complexity of routes. They combined these two 

objectives with another objective function to minimize risk of the path, simply by 

taking into account the distance from the danger zone. The research evades testing the 

solution on huge networks and predicts performance hit for the large networks. 

Fang et al. (2011) describe the inefficiency of Multi-ACO for high population 

numbers, over 10000, and big enclosures. They propose a hierarchical routing system 

in which evacuees navigate to a middle set of nodes, and not directly to the exit. They 

also refuse to rasterize the results of objective functions, and only use Pareto-optimal 

method to find the best solutions. This method may cause confusion as to the 

importance of the objective function are not mentioned and getting quantitative 

analysis is way harder. 

The Multi-ACO during the last years has not seen fundamental changes. There are 

quite a few innovative methods proposed in these years, one of them is the research by 

Zhang and colleges about binary pheromone updating strategies. In their paper 

“Quantum ant colony algorithm-based emergency evacuation path choice algorithm”, 

they propose a solution to facilitate optimisation by updating the pheromones by a 

growing weight, gradually during iterations. They claim that this method prevents 

premature permutations and help improving the rate of optimisation during 

simulations. 

In the recent years, in the domain of the evacuation path-finding algorithms, other 

algorithms have emerged, that some of them are compared to the ant-colony and the 

researchers claim a better bottleneck handling for evacuation. Evacuation routing using 

fish swarm algorithm is one of the eye-catching new algorithms in the field. This 
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method which is based on swarm-intelligence like Multi-ACO, works based on 

intelligent divisions in the population, and not just the agent selection. The researchers 

claim that it is both quicker and more efficient than Multi-ACO, in terms of congestion 

handling, however, the egress time is left out of the equation, which makes it hard to 

compare them side by side. 

2.5 Technologies 

This section gives a review of the tools used to develop and test the solution. 

2.5.1  C# 

The programming language used to develop the Multi-ACO is C#. it is an object-

oriented programming language developed by Microsoft that tries to combine the 

computing power of C++ with the programming ease of Visual Basic (Rouse, 2007). 

C# is based on C++ and contains features similar to those of Java. 

The researcher was familiar with a variety of different programming languages; 

however, C# was chosen because of the following advantages: 

• C# is native to the windows, unlike Java and Python it directly translates to 

object code, and runs without a medium. The performance is leveraged in this 

situation. 

• C# is a EcmaScript compatible language, which is readable to anyone who is 

familiar with JavaScript and Java. It is also a simpler language than Java and 

C++; it does garbage collection automatically, manages instantiating and 

passing the references and values automatically, and has a lot of extra libraries 

and resources available online. 

• C# has a powerful debugging tool inside the Visual Studio, the default editor. 

• C# originally worked based on Microsoft .Net Framework, exclusive to 

windows. Nowadays the .Net Core library has made C# portable to any 

operating system, so if there is a need to develop the solution on a different 

machine and operating system in the future, it is possible with this language.  

The risks associated with C# are as follows: 

• Performance improves on native languages, however, this makes the 

evaluation of performance harder, as the system may have some services 
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running in the background, affecting the performance. So, the test 

conditions should be monitored carefully. 

• The part about passing instances by value or reference turns out to be a 

troublesome. When the instances of classes are automatically passed as 

reference, any changes to them is reflected in the main instance of the class. 

For example, any operation on the nodes of the world graph, affects the 

future parts of the application. 

2.5.2  Tableau 

The visualization software used to present the visuals of the research is Tableau. It is 

an interactive visualization tool that enables users to produce customized set of 

visualization in its dashboard with ease (Ahmed, 2017). The ease of using the interface 

along the reasonable variety of visualization styles made this a good choice for the 

research. 
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3 DESIGN 

This chapter describes the specifications of the experiment, including the Multi-ACO 

algorithm technical specification, the algorithm from enclosure, and population 

perspective. The data gathering and comparison strategies are also described. In the 

second part of the chapter a small review of software design is presented. 

3.1 The Experiment Design 

This section documents the details of the design of the experiment, which includes the 

proposed Multi-ACO mathematical description, and Multi-ACO from enclosure and 

population perspective. The baseline method that is the shortest path is also described 

in this section, 

3.1.1  Multi-ACO Algorithm Specifications  

The multi-ACO is a multi-step algorithm, as described in chapter two. Here, the 

formula used in each step and their purpose, alongside the parameters are listed. 

Variables and parameters are as follows: 

• The environment is defined as a bi-directional graph G(V, A) where N={1, 2, 

…, n} is the set of nodes, and V ⊆ N × N is a set of bi-directional arcs, 

defined by two nodes. 

• eij is the edge that connects node i and j 

• lij is the length of aij and areaij is its area. 

• Cij is the maximum capacity of the aij, based on Fruin velocity formula 

described in chapter two, the maximum capacity is 4 p/m2,           hence: 

Cij = ⌊ areaij×4 ⌋ 

• M is the total number of agents, N is the total number of edges. 

• tk
ij is the time for agent k, to pass aij 

• Nij is the current load of aij, or the number of agents on that arc. 

• ωij is the congestion degree of aij, xij is the number of agents on edge ij. 

• Sk is the path agent k traversed, a path is a set of arcs in order. 
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• τ0 is the initial pheromone value for edges, and τij is the current pheromone of 

edge ij. 

• dT is the discrete time frame value, by which time increases in a simulation. 

•  is the speed of an agent, and  is the next node arrival time. 

The formulation of multi-ACO is as follows: 

The objective functions: 

min f1 = max tSk         (f1 

min f2 =       (f2 

min f2 =        (f3 

The first objective function (f1) tries to minimize evacuation time, which is equal to 

maximum egress time by any agent, and third one (f3) tries to minimize total traversed 

edge time by all agents. 

Based on the Fruin LOS, congestion degree of an edge (ωij) is defined relative to Fruin 

LOS index. Fruin LOS index is calculated based on agent per cubic meter (PA), so load 

for each edge, and in each incremental time frame, is calculated as follows: 

• ωij(t0)=0, ωij is zero at the beginning 

• PA > 3.25, level A: ωij = (ωij + 0)dT = (ωij)dT 

• 2.32 < PA ≤ 3.25, level B: ωij = (ωij + 1)dT 

• 1.39 < PA ≤ 2.32, level C: ωij = (ωij + 2)dT 

• 0.93 < PA ≤ 1.39, level D: ωij = (ωij + 3)dT 

• 0.46 < PA ≤ 0.93, level E: ωij = (ωij + 4)dT 

• PA ≤ 0.46, level F: ωij = (ωij + 5)dT 

PA itself is calculated as the current population of the edge on its area, as follows: 

          (f4 

Total congestion degree for a time frame of dT, ωdT for an edge, is the sum of all 

congestion degrees for all edges in a solution, multiplied by the discrete time amout, 
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dT. For example, if time increase by 0.5 second, the congestion degree is multiplied by 

half. The sum of all congestion degrees for all time frames, is the ωtotal which is the 

same as the second objective function. 

Each iteration is an iterative process of path-construction by agents. Time starts from 0 

and after all agents decide where they want to go, time is incremented by a discrete 

amount and the process goes on. 

Agents that are already moving do not need to choose next node. When agents reach 

their next node, they need to choose where to go from that node. The traversed nodes 

for an agent are stored in a list. The agent cannot move to any node from this list. 

Agent chooses the outgoing node as the next node based on probabilities. The 

probabilities of the next edges add up to one, and for an edge, is calculated with the 

following formula (f5). 

   (f5 

Formula 5 denotes that if the capacity is reached, the probability of an edge being 

selected is set to zero. 

ηij is the heuristics function that alters the possibility based on the defined objectives. 

The heuristics function (f6) is defined bellow: 

ηij          (f6 

The heuristics function has linear relation with capacity of the edge, and negative 

linear relation with the load of the edge. The more loaded the edge is, less possible to 

be chosen. ij is the current pheromone of the edge. Constants α and β are the 

importance of functions, which are powers of the pheromone and heuristics function. 

The last part of the denominator is an exponential function which relates to the width 

of the edge exit (bij). The pivot point of the exp(-2/bij) is when bij = 2. This means 

that for the lengths more than two, the possibility of being chosen spikes rapidly and 

for less than 2 it is reduced exponentially. 

The formula (f6) addresses the variable throughput and width of the exit issue, defined 

in chapter two, congestion section. 
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After all the agents choose their next node, the next node arrival time is calculated 

based on the Fruin (1971) pedestrian flow speed, described in chapter 2. The formula 

is as follows: 

 , PA agent/m2 as described in (f4)   (f7 

          (f8 

When there is no agent left without a destination node, the time is incremented, and the 

statuses of the agents are checked again, if they reach the next node, the process if 

repeated again, until all the agents construct their path to exit. The egress time will be 

the maximum time taken by any agent to get to any exit on the map. This egress time 

is defined by the first objective function (f1). 

This is the process that happens in one iteration. After an iteration, the objective 

functions are calculated, which are the egress time (f1), total congestion degree for all 

edges (f2), and total traversed time (f3). 

Upon finishing the calculation of objective functions, the solution will be checked 

against the current ND-set. If it is non-dominated, the pheromones will be updated. 

The pheromone updating process is described by formula bellow: 

      (f9 

The (1-ρ)τij covers the pheromone evaporation process. Each iteration, the current 

pheromones on an edge is reduced, and if agents passed the edge, new pheromone is 

deposited on the edge. The new pheromone is calculated as follows: 

                   (f10 

              (f11 

The pheromone evaporation is controlled by ρ (rho). The new pheromone function 

(f10) is a sum of new pheromone values for each edge. This new pheromone value 

(f11) is defined as a constant Q as numerator, on the path egress time multiplied by the 

total path congestion degree. The amount of Q depends on the initial pheromone value 

of the edges, that is τ0. 

The traditional way of calculating the total path congestion degree is described by the 

following formula (f12): 
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                 (f12 

This research will try to substitute this with the new edge load formula as described 

before in LOS calculation section. 

It is necessary to mention that the fact that pheromone updating function has negative 

relation with the two of the objective functions is not a coincident. This is the practice 

in many multi-ACO implementations (Fang et al., 2011; Liu et al., 2016; Yi & Kumar, 

2007). The reason behind this is that when the objective function value is high, the 

solution is less-optimal and it is natural for agents to leave less pheromone. When the 

solution becomes more optimal during iterations, the amount of the pheromone 

deposits increases. 

3.1.2  Design of the Simulation  

Since this research aims at comparing the heuristic function in path-finding, it needs to 

be tested against a variety of different conditions. These conditions must ensure that: 

• The constants in the Multi-ACO are optimised and do not affect the efficiency. 

• The conditions should vary randomly to minimize the effect of randomly 

biased results. 

• The conditions set for each instance of simulation, which is randomised for 

next instance, should be used to generate data for each algorithm. 

The results from each variation is compared with baseline, which is the shortest path 

algorithm, and the traditional variation of multi-ACO that uses a simple, commonly 

found, congestion degree objective function, defined below (f13): 

 

During each iteration of a single simulation, in which time increases by a discrete 

amount, the congestion degree for each edge is calculated with the congestion degree 

formula, multiplied by the discrete time value. The final total congestion value is the 

sum of all congestion degrees, over simulation time. 

The implemented Multi-ACO has two objective functions, one calculates total egress 

time and the other calculates total congestion degree.  
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Aside from the effect of the heuristics function, there are two variables that affect the 

total time, that need to be either randomized, or tested in multiple design groups. There 

are listed here: 

• The physical form and capacity of the enclosure, that is the environment which 

is represented as a graph. 

• The population of agents, and their positioning at the beginning. 

The environment cannot be randomized, as it is represented by a graph, which is 

derived from the physical layout of the building, hence there is a need to test the 

algorithm against a variety of enclosures with different capacities. Because of the scale 

of the research, two different enclosures are designed for the test. The enclosures are 

described in the next section. 

As for the population standpoint, which refers to the number and positioning of the 

agents. For the population, three different groups are defined, based on the real-life 

conditions, low-density population, medium-density population and high-density 

population environments. The details are described in the population section. 

For the positioning of the agents, the feasible solution is to distribute population 

randomly on the home nodes. Hence the results must represent a battery of 

simulations. This is true for all the comparisons. 

To fulfil the first objective, which is proving the effectiveness of heuristics function, a 

battery of simulations is done. For each simulation, it is done once with multi-ACO 

and once with shortest path. And for the next simulation, the population is relocated 

randomly. Then the battery of simulations is run for other population groups as well, 

meaning each battery gives results of fixed number of agents, with random positioning. 

The first objective function also depends on the effectiveness of pheromone updating 

function, which itself depends on a set of parameters. These parameters will affect the 

rate of improvement of path-finding in each iteration of a simulation.  

Since there are a variety of practices in the literature, and no dominant best practice 

exists, an experiment with different set of parameters also should be carried out to 

extract the parameters for the formula. 

To measure the improvements, all the paths constructed by agents, in each iteration of 

a simulation, will be compared against the shortest path from the home node to the 

nearest exit, and the differences in each iteration will mark the improvement. This 

method writes off the second objective function which is the congestion degree 
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function. Since the fundamental purpose of an evacuation simulation is to minimize 

the evacuation time, and the optimal answer to the congestion degree cannot be 

extracted, this solution is the most feasible one. 

3.1.3  Enclosure and Population Perspective  

The specifications suggest the need for at least two enclosure designs. The 

architectural plans for the first building block is shown in figure 3.1. 

 

Figure 3.1. Architectural floor plan for the first block. Scale 1:200. 

The building is a simple block of rooms in the centre, which can be populated. The 

design is generic and can be assigned many roles. An isometric view of the block is 

shown in Figure 3.2. 

 

Figure 3.2. An isometric perspective of first block’s architectural layout. 
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The different roles mentioned for the building blocks is for real-life scenarios in which 

the block can be populated with different number of occupants, to address the need for 

different scenarios for congestion degrees. Three roles were designed for the 

experiment which are listed here: 

1. Low-density residential service rooms. The total number of residents are 8 for 

small enclosure and 24 for big enclosure, each room may have zero to 2 

residents. The occupants will be scattered randomly for each instance of the 

simulation. In this scenario, there is no congestion, because the capacity of the 

edges, which are the connections between rooms and intersections in the main 

hallways is way higher than being overload with 8 agents. This scenario gives 

the opportunity of comparing the total egress time of Multi-ACO with the 

shortest path algorithm, without comparing the congestions. This is important 

because the shortest path algorithm does not address congestions, which is 

assumed to have an impact on the egress time of the shortest path algorithm. 

2. Medium-density office block during working days. Total number of residents 

will be 30 for small and 90 for big enclosure which makes 3.75 occupants for 

each room. Each room may have between 2 to 6 residents. This scenario will 

fill the gap between a low-loaded first scenario and a highly-loaded third 

scenario. According to the expectation, depending on the way occupants are 

scattered, the congestions may appear near the exit nodes, specifically in the 

intersections. 

3. High-density exhibition centre. In this scenario, there are 60 occupants for the 

small enclosure and 180 occupants for big enclosure, between 6 to 10 

occupants for each room. The congestion degree is expected to be high, 

especially in the narrower northern walkways. This phase of the experiment 

will shed light on the efficiency of the walkway width, which is present in the 

agent node selection probability formula. Also, the efficiency of the Multi-

ACO compared to the baseline shortest path will be bold here. 

The breakdown of the space to build the world graph is shown in Figure 3.3. 
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Figure 3.3. The graph of first building block, derived from architectural layout. 

The breakdown of rooms and their connections are visible in Figure 3.4. 

 

 

Figure 3.4. The breakdown of rooms and connections. Red are is the room and the blue are is 

the connection between the room, and intersection in the walkway. 

From Figure 3.4. it is logical to ask about the fairness of how the node 14 represents 

the whole room, as it is located in the centre of the room. In defence of this design, it is 

necessary to note that first, the occupants are logically scattered across the room, so if 

it takes less time for those near the exit, the randomness of scattering means that there 

may be other occupants that need to cover longer distance to reach the next node. The 

same logic goes for the edge that connects node 19 and 20. The occupants that rush out 

may be in the half near or far from the 19. 

The other aspect that makes this design logical is that the Multi-ACO, as a network 

optimisation method, considers the occupant movements optimal, and hence the 
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disruptions caused by collisions in the intersections is not a part of agent behaviour in 

this method. So, it is possible to look at occupants like scattered moving chess pieces. 

The second block needs to be more complicated to address more real-life egress 

scenario. The problem with the first building block is that the rooms are symmetrically 

distributed from the exits, so the shortest path and Multi-ACO results for the low and 

medium density scenario may not vary much. The second block is designed with 

asymmetric exits and more complex layout. Isometric and world graph view of the 

second model is shown in Figure 3.5 and 3.6. 

 

Figure 3.5. Isometric view of the second building block. 

 

Figure 3.6. The world graph for second building block. Nodes 1 and 42 are the exits. 
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3.1.4  Shortest  Path Algorithm 

The shortest path algorithm which is the baseline, is a method that constructs a tree of 

nodes with their shortest distances from the original node. 

This method is based on the Dijkstra’s algorithm, the variation for finding the list of 

shortest loopless paths in an open graph. 

The algorithm is quite simple in its nature. The steps to produce the graph is show in 

Figure 3.7. 

 

Figure 3.7. The Dijkstra’s algorithm. steps from a to f (Smith College, 2015). 

The Dijkstra’s algorithm process shown in the figure above is described in the 

following steps: 

1. First node distance is marked zero and the others are marked infinity. 

2. The outgoing edges have lengths, the direct nodes from the first node are 

marked as the distance of their edges, as the distance from the home node. 

3. For each secondary node, the process from step 1 is repeated, forming new 

branches. The branches make a graph of nodes that resembles the world graph, 

however, the process shown in Figure 3.7 is a visual one on paper, so it does 

not show the built graph. The new nodes get the distance of current node plus 

the distance of their edge. 
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4. If any of the outgoing edges already have a distance, if the new distance is less 

than what it already has, the new distance is the shortest distance from the 

home node. This is visible in the Figure 3.7, for node ‘x’, from step b to c. 

5. The process is repeated for different branches until they reach the home node, 

or a dead-end is reached. For the fact that the process is loopless, a list of 

visited nodes for each branch is stored, so each branch cannot visit a node 

twice, however, different branches may reach a node multiple time. 

The Dijkstra’s algorithm produces a list of shortest paths for each node. The problem 

here is that this research needs the list of the shortest paths to each node as well. So, 

the list of the shortest paths will be stored in each node, and updated alongside the 

shortest path value, during the branching process. 

The shortest path algorithm in this research needs another feature to address multiple 

exits on the world map graph. So, the process of shortest paths is repeated for each 

exit, and this results in two instance of shortest path data, for each exit. 

When the shortest path data is constructed for each exit, the process of simulation may 

begin. The shortest path simulation process used in this paper is described in the 

following steps: 

1. The world graph is constructed and the rooms are marked. 

2. The shortest path data is calculated for each exit, according to the Dijkstra’s 

algorithm described before. 

3. The agents are placed on the map, assigned to home nodes, which are rooms. 

4. The process of simulation is quite like ACO, there is a timeline starting from 

zero. Agents select the nearest exit based on the shortest path to any exit. If the 

path is the same distance, they choose either exits randomly. 

5. The agents move to next nodes, which means they will populate edges. Then 

the time will increase by discrete intervals. For each interval, the load for each 

edge is calculated the same way it is calculated for the Multi-ACO. In the case 

the edge capacity is reached, the agents will not move, until when the edge 

capacity is less than maximum capacity. 

6. The process from step 5 is repeated and time will increase until all agents are 

evacuated. 

7. The results are gathered and stored as the final solution for the current 

configuration of occupant population and positioning. 
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Unlike Multi-ACO, the shortest path algorithm is run one time to get the final results. 

The occasion in which the shortest path is run is described in the next section. 

3.1.5  Data Gathering and Comparison Strategies  

This research gathers data from the self-managed simulations. The process of 

simulation is described for both Multi-ACO and shortest path algorithm. This section 

tries to point out where, and when the data is logged, also the type gathered data needs 

to be known beforehand. 

During a single Multi-ACO simulation, each iteration generates a collective set of 

paths and paths are ranked by objective functions. At the end, there remains a set of 

ND-Set of solutions with their objective function values. This set of solutions make the 

final solution for the simulation. These solutions and their values are logged as the 

final solution, inside a matrix with a solution as a row, and objective functions as 

columns. 

To get a fair distribution of population positioning, the simulation for each enclosure 

and population will be repeated 100 times. Each time, the results will be added to the 

result matrix. There will be different matrices, which means the results will be grouped 

by the population count, as well as enclosure. 

There are two enclosures, and three population groups, which makes 6 matrices in 

general, for Multi-ACO. 

The results for shortest path is also stored in a matrix, however, the shortest path 

algorithm generates a single solution for each simulation. The shortest path simulation 

is run right after each Multi-ACO simulation to preserve the population count and 

distribution of the Multi-ACO simulation. 

The comparison of the results is done through visualization of the matrices. Since the 

results are a distribution of numbers, the box-plot method for each objective function 

seems a feasible solution. 

To visualize the fluctuations against the shortest path, results will be summed up. A 

mean of the medians of the data for each scenario is calculated and visualize as bar 

charts. 

The last part is to calculate the significance of constant Q and its effect on the path-

updating formula. The new pheromone formula for each edge, as defined by f7 and f8 

was as follows: 
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The denominator has two factors, the egress time of the path, multiplied by total 

congestion degree of the current edge. These factors are dynamic and depend on size 

of the premise and number of the agents, and how optimal current solution is, 

however, regardless of the mentioned factors, Q is always constant in the literature. 

The reason is that according to pheromone updating function, mentioned bellow, the 

pheromones get evaporated as iterations increase, and even if ∆τij is a small amount 

compared to the initial edge pheromone value, the edge pheromones, τij, will evaporate 

to smaller amounts, and eventually they will level with the ∆τij , so new pheromone 

becomes effective in path-selection, as it should be. As a reminder, pheromone 

updating function is as follows: 

 

The only issue is that Q should not be so small that it takes a lot of iterations for initial 

pheromone value to evaporate and they become level. It also should not be so big that 

in the first iteration, new pheromone value for edges exceeds the initial pheromone 

value. If this happens, the final results will be biased toward the first edges that were 

chosen randomly by agents, and this renders the Multi-ACO useless. 

Another factor in the pheromone updating function is the evaporation rate ρ. This rate 

clarifies how fast the current pheromone will evaporate, and how fast new pheromone 

is deposited. As the conclusion, the relation between Q and ρ and the denominator of 

new edge pheromone function which is the egress time multiplied by total congestion 

degree are the key role players for the efficiency of optimisation. 

 To watch this event, the results of the first objective function, another battery of 

simulations, with variable constants is needed. The values for constants Q and ρ are 

taken from the best practices in the literature. This experiment will compare the results 

of the rasterized objective functions to that of the optimal, defined by the shortest path 

and optimal congestion degree formula defined before.  
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The faster iterations get close to the optimal values, more successful the constants are. 

This experiment will also clarify the needed Tmax, the maximum iterations needed for 

Multi-ACO. This is assumed because the material in the literature suggest that after 

around 150 iterations, the results will reach the maximum efficiency, and do not get 

better afterward. 

 

 

3.2 Software Design 

This section will present an overview of the implemented software solution. 

C# manages packages by namespaces. Each file in a directory belongs to the same 

package, and classes in packages have access to their methods, except for private 

methods and properties. Each file may contain multiple classes. 

The Object-Oriented Programming (OOP) mindset was chosen for the implementation. 

As the solution solution boast distinct objects like world graph with edges and nodes, 

ants, and two solvers: Multi-ACO and shortest paths, they can be easily broken into 

multiple classes, in different files. The classes were organized in three files, World 

manager; Shortest Path; and ACO. The class diagram of the solution is shown in 

Figure 3.8. 
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Figure 3.8. Class diagram of the software solution. 
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The dotted enclosure contains classes that represent the graph, and they are share by all 

the classes, so to simplify the graph they have been grouped in the diagram. 

The order in which the application runs is described here: 

1. The worldManager is instantiated by the static entry function (main). 

2. The WorldManager instantiates the graph by reading graph data from the static 

class GraphData. Two GraphData classes are available to address to enclosures. 

3. WorldManager instantiates the ACOSolver and passes the graph to it. 

4. ACOSolver Instantiates the ShortestPath class and passes the graph to it. 

5. ACOSolver solves the shortest path, stores the data inside the ShortestPath-

Data class which is a data transfer object (DTO) class, and passes it back to 

ACOSolver. 

6. ACOSolver then starts the iterative process of solution making, ND-Set 

determination and pheromone updating in a loop until maximum iterations are 

reached. 

7. The output data will be logged using the CSV-Logger method in Util class. 

8. If more simulations are needed, application entry will call step one in a loop 

until desired numbers of simulations are carried out. 
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4 RESULTS, ANALYSIS & CONCLUSION 

This chapter describes findings of the experiment. The figures are presented and 

analysed during the chapter. The conclusion and the future work is also included in 

this chapter. 

4.1 Findings 

This section will discuss the findings during the experiments. First part is about the 

unexpected phenomenon of biased results, observed during the first instances of 

simulation, and the solution to this problem. 

4.1.1  Biased Optimisation, and Solution  

The first instances of the simulation were run for deciding the constant values showed 

an unexpected result. This simulation was run on the small enclosure, with low 

population. With these conditions, it is possible to get the optimal results for egress 

time and total traversed time from the shortest path method, and the optimal 

congestion degree is zero in this case, because there is no congestion for this 

population size. 

Regardless of the values of the constants Q, ρ, α, and β, the results of objective 

functions were scattered over a big range. This conclusion is based on comparing the 

deviation of the results with the findings in the literature. This means that the results 

deviated too often from the optimal values. The reason was that in many cases, during 

a simulation, the objective functions would get stuck on suboptimal results far from the 

near-optimal results derived from the shortest path algorithm. The result of this 

experiment is listed in Figure 4.1. 
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Figure 4.1. Objective function values visualized. ACO is Multi-ACO (blue); SP is the shortest 

paths (green). 

For an optimisation solution, which works based on stochastic metaheuristics, this 

means the random part of the solution narrows the possibility for change toward a 

better solution. 

This effect is because an outgoing edge from a node may be chosen multiple times in a 

row, based on random probabilities, and the pheromone on other outgoing edges get 

evaporated to a very low amount. This means the other edges may not get chosen 

because the possibility, decided by pheromone, leans toward the mentioned edge 

quickly, where the other edges may actually produce a more optimal result. 

This effect is show in Figure 4.2. 

 

Figure 4.2. Biased pheromone updating. Left side is the default pheromone value. time is 

incremented for each picture from left to right. 

The solution to this problem found in the literature is min-max ant system (MMAS) 

which sets lower and upper bounds for the pheromone value of an edge. The minimum 

and maximum amount are defined as multipliers to the initial edge pheromone, τ0. 

The optimal amounts of the minimum and maximum multipliers were found through 

another experiment, another battery of simulations, with fixed conditions for the small 
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enclosure, and multiple min max values. The experiment decided min=0.2 and max=2. 

The results of the experiment are shown in Figure 4.3. 

 

Figure 4.3. Effect of setting min-max pheromone limits on objective functions, as MMAS 

suggests. Old is Multi-ACO (blue); New is MMAS Multi-ACO (orange); SP is shortest path 

(green). 

With this in mind the Q, ρ, α, and β values were extracted from the best practices in 

the literature, in three groups, as described at the end of section 3.1.4. The objective 

function experiment with the three constant groups are seen in Figure 4.4 bellow: 

 

Figure 4.4. Objective function distribution for three constant groups: Group 1, blue (Yuan & 

Wang, 2007): Q=1, ρ=0.3, α=1, β=3; Group 2, orange (Zong et al., 2010): Q=100, ρ=0.7, α=1, 

β=3; Group 3, green (Duan, Xiong, & Jiang, 2012): Q=1000, ρ=0.8, α=0.7, β=0.3. 

The fact here is that with the presence of min-max approach, the changes in the results, 

as the mean and the deviation are not as significant and drastic as that of the last 
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experiment, however, there are meaningful fluctuations seen in the results of the next 

experiment, aimed at examining the improvement rate of the first objective function, 

seen in Figure 4.5. 

 

Figure 4.5. The rate of improvement of egress time during simulation iterations for three 

constant groups. Group 1, blue (Yuan & Wang, 2007): Q=1, ρ=0.3, α=1, β=3; Group 2, orange 

(Zong et al., 2010): Q=100, ρ=0.7, α=1, β=3; Group 3, green (Duan, Xiong, & Jiang, 2012): 

Q=1000, ρ=0.8, α=0.7, β=0.3. 

According to the experiment, Q=1, ρ=0.3, α=1, β=3 were decided. The results of the 

experiment are shown in Figure 3.zxc. 

This conclusion is based on the fact that the amount of pheromone on the edges were 

monitored during the experiment. For high Q values, the pheromone on the edges 

would quickly reach the higher limit, 2. This means that the optimisation is not taking 

advantage of the pheromone updating function, and is solely working based on the 

stochastic part. 

4.1.2  The Multi-ACO Comparison 

As it is related to the main goal of the research, after deciding the constants, the battery 

of simulations was run according to the design specifications. 

The results of traditional heuristics function, which utilizes the edge load and capacity, 

for the small enclosure and different population sizes, are seen in Figures below. 
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Figure 4.6. Egress time for small enclosure and different population sizes, from left to right, 8, 

30, and 60 agents. Multi-ACO is blue, shortest path is green. 

 

Figure 4.7. Egress time for big enclosure and different population sizes, from left to right, 24, 

90, and 180 agents. Multi-ACO is blue, shortest path is green. 

For small population sizes, the result of the egress time if the shortest path algorithm is 

supposed to be optimal. This is because the low congestion degree of such small 

population should not affect the egress time. The median of the Multi-ACO results is 

close to that of the shortest paths, however the upper bound bounces to 18 seconds. It 

is safe to conclude that since distribution of the population is random, some 

placements cause Multi-ACO perform poorer, and this is expected because of the 

stochastic nature of Multi-ACO and its pheromone updating process. The shortest 

paths handle the low population quite solidly for low population in both enclosures. 
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As it is seen, in the big enclosure, which has a higher route complexity, with the 

growth of the population, the efficiency of Multi-ACO becomes bolder than the 

shortest paths. This is also the case with small enclosure, except the low population 

scenario. 

Multi-ACO has the best improvement rate for the high population size, and this 

becomes bolder in the more complex enclosure, which shows 300% improvement in 

the egress time.  

The shortest path results for big enclosure and high population shows some out of 

bound data, which is the results of congestions in some randomly formed bottlenecks. 

The pattern that is observable here is the steady growth of the Multi-ACO results when 

the population size grows, for both enclosure sizes. And the shortest path is the 

opposite of that. This is also the case for Multi-ACO congestion degree for both 

enclosures, seen in the figures next page. 

Another feature of the Multi-ACO compared to the shortest path is the coherency of 

the produced results. Except for the small population samples in small enclosure, the 

rest of the results demonstrate denser distribution of the results compared to the 

shortest paths. 

The results of the total traversed time objective function follow the same pattern of the 

egress time. The results are seen in Appendix A. 
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Figure 4.8. Congestion degree for small enclosure and different population sizes, from left to 

right, 8, 30, and 60 agents. Multi-ACO is blue, shortest path is green. 

 

Figure 4.9. Congestion degree for big enclosure and different population sizes, from left to 

right, 24, 90, and 180 agents. Multi-ACO is blue, shortest path is green. 

The congestion degree follows the same pattern for high population samples. Figure 

4.9 shows the congestion degree for big enclosure, and Figure 4.8 is for the small 

enclosure. The only instance that shortest path excels in lowering the congestion is the 

medium population for the big enclosure. 

It seems like the heuristics part of the Multi-ACO effectiveness is related to the 

population size and has a negative relation to the path complexity. The heuristics 

function is the ηij defined in f6 in 3.1.1. 
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For the medium population size, it is expected that some congestions start to form, 

particularly on the edges closer to the exits. This congestion formation is reflected in 

the results of the total congestion degree of both Multi-ACO and shortest path 

algorithms, and becomes bolder for high population size, where shortest path results 

sky rockets, especially for the big enclosure and high population samples. 

The results of the experiments are according to the expectations, except for the egress 

time of low population in small enclosure which shows a high variance. 

The results of the experiment show that the Multi-ACO is conditionally a feasible 

solution compared to the baseline, however, two important unaddressed issues remain. 

First is the difference that new Fruin congestion degree calculations make with the 

trad-itional method, and the second issue is the performance of the Multi-ACO. 

Before proceeding to the Fruin LOS evaluation it is important to mention that one of 

the failed aspects of the experiment was the usage of Fruin LOS data for tracking the 

total edge load during a single iteration. Since the proposed method is a discrete 

quantitative method, it produces a discrete number of results for the congestion which 

is not desirable for load calculation because the proposed method records zero load for 

LOS level A and this results in zero loaded edges in the denominator of the  

formula, described as f11 in 3.1.1. It also results in discrete ranges in next node arrival 

time for an agent, since the formula (f7) is a linear formula that is corelated to the edge 

load, which finally results in discrete time results, which is both unrealistic and 

problematic for ND-Set determination of egress time objective function. 

Still, the total congestion degree calculation is done by the Fruin formula. It presents 

the final congestion degree, and since this objective function value is also used in the 

ND-Set determination function, hence may affect the final results. Figure 4.10 

compares the results of Multi-ACO with Fruin and traditional load calculation method 

side by side. 
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Figure 4.10. Congestion degree for big enclosure, high population. Left is Fruin LOS based 

Multi-ACO, right is the traditional crowd-density based Multi-ACO. 

At the first glance, the congestion degree results for Fruin Multi-ACO are smaller than 

that of the traditional one. Aside from that, the shape and distribution of the results 

look the same, except one lower out of bound data for the traditional, which may be a 

product of stochastic method. 

However, there is more to this comparison. As for each iteration, it is possible to 

calculate the mean congestion score, by dividing total congestion, divided by the 

number of populated edges. This value which can be calculated with the following 

formula: 

 

This gives the average congestion degree for one second. For Fruin, this value can be 

directly translated to a LOS, as for the experiment above, the results give a mean 

congestion value of .32 which according to the Fruin LOS values mentioned in 3.1.1, 

translates to LOS level C. 
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As for the traditional method, it gives a person/edge density. It is quite obvious that the 

Fruin LOS, as a widely accepted Level of Service measure, is more helpful for 

planners as it can be directly translated to how easy the crowd flows. 

The last part of the experiment is the performance of the algorithm, in the manners of 

computational duration. The following visualization addresses the issue. The 

experiment was conducted on a machine with Windows 10, Inter® Core™ i5-3230 @ 

2.6GH, and 8gb of RAM. The solution took about 25% of CPU load on average. 

 

Figure 4.11. Computation time in millisecond, for Multi-ACO in small enclosure left, Multi-

ACO in big enclosure middle, Shortest path in big enclosure right. 

Please note that the Multi-ACO values are average of one iteration, so for 200 

iterations that are run during one simulation, it takes 200 times that. 

The Multi-ACO values raise in a linear fashion, relative to the population size. The 

enclosure size does not have a strong effect on small sizes, it certainly plays an 

important role in big population samples as the values for high population in big 

closure is 8 times greater than that of the small enclosure. 

The other notable observation is the shortest path, which increases sharply, where it 

should be independent of the population size of Multi-ACO. This is perceived to be the 

effect of C# garbage collector during runtime, since the instance of ACO gets heavier 
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and more ram greedy when the population grows. Hence the results for shortest path is 

incorrect and irrelevant to the point. 

The drastic increment in the computation power, where the population grows to 180 

agents means that Multi-ACO takes more processing power relative to the population. 

This is also mentioned in the literature and could threaten the feasibility of the solution 

in a scenario with a very large population. One of the reasons that researchers pick 

optimization methods is that these methods are supposed to be quick. The conclusion 

is that the feasibility of the Multi-ACO from the computational standpoint also 

depends on the case, and is relative to the population and enclosure size. 

4.2 Conclusion 

The objectives of the research were tested in this chapter. A Multi-ACO was 

developed with the Fruin LOS and pedestrian speed integrated. The implementation 

was successful, however, there was an issue with the usage of LOS as edge load for 

pheromone updating formula, which resulted in fallback to edge crowd density for this 

particular formula. This did not affect the usage of Fruin LOS and speed formula for 

the objective functions. 

Then the feasibility of the solution was tested in multiple evacuation scenarios. Two 

enclosures and three population sizes were tested. 

During the tests, it was confirmed that Multi-ACO can improve the results compared 

to the baseline method which is the shortest path by up to 300%. However, it turned 

out that the solution is not feasible in all circumstances. 

The performance of Multi-ACO depends on the population size and the enclosure size, 

known as network size. The solution is more effective on the large networks with more 

agents, however, with the growth of enclosure and the population, the performance of 

the solution, in terms of CPU cycles also go up. Defining a range for the feasibility of 

the solution was out of the scope of this research. 

As for application of Fruin LOS integrated into Multi-ACO, it turned out that it gives 

readable results for the average level of service, which can be helpful during the design 

phase of the building and the ERP, as well as finding the flow degree of evacuees 

during an evacuation. This can be even more helpful by limiting the edges to a small 

set, to monitor a specific part of the building, changing them and getting the new 

average LOS to clarify if the part will act as bottleneck or not. 
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4.3 Future Work 

This paper evaluated the proposed Multi-ACO against the shortest path as the baseline 

method. While the shortest path method is used widely across the literature, the 

inability of this method to handle any population shift, that is congestions, makes it 

hard to give a proper understanding of where Multi-ACO is placed among the methods 

that are capable of handling the issue, however, the shortest path is still a viable 

method, since it resembles the human behaviour, that is going to the nearest exit. 

For the future work, the proposed method can be tested against another widely used 

method, like forward-backward shortest paths. 

The other aspect that can be evaluated is the efficiency of the method for large 

enclosures, such as transportation network of a city, with lots of evacuees. This will 

address the concern of the computation time, which increases rapidly as the network 

grow. 

 



 

 64 

BIBLIOGRAPHY 

Abrahams, J. (1994). Fire Escape in Difficult Circumstances, Design Against Fire, 

Eds. Stollard, P., Johnston, L., FN Spon, Great Britain, 88–96. 

Ahmed, R. (2017). What is Tableau? Visualizing Data Using Tableau. Retrieved 

January 3, 2018, from https://www.edureka.co/blog/what-is-tableau/ 

Alhajyaseen, W. K. M., Nakamura, H., & Asano, M. (2011). Effects of Bi-directional 

Pedestrian Flow Characteristics upon the Capacity of Signalized Crosswalks. 

Procedia - Social and Behavioral Sciences, 16, 526–535. 

http://doi.org/10.1016/J.SBSPRO.2011.04.473 

Beni, G., & Wang, J. (1993). Swarm Intelligence in Cellular Robotic Systems. In 

Robots and Biological Systems: Towards a New Bionics? (pp. 703–712). Berlin, 

Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-58069-

7_38 

Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009). A survey on 

metaheuristics for stochastic combinatorial optimization. Natural Computing, 

8(2), 239–287. http://doi.org/10.1007/s11047-008-9098-4 

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of 

Life Reviews, 2(4), 353–373. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S1571064505000333 

Blum, C., & Merkle, D. (2008). Swarm intelligence : introduction and applications. 

Springer. Retrieved from 

https://books.google.ie/books?id=6Ky4bVPCXqMC&pg=PA49&lpg=PA49&dq=

artificial+ants+leave+pheromone+just+on+their+way+back&source=bl&ots=reaz

hjMCq9&sig=346mOm3HXCC5gn-

OriAuFA7Qnfg&hl=en&sa=X&ved=0ahUKEwiBwJ2U6KDYAhXqB8AKHVsa

A8EQ6AEILzAB#v=onepage&q=artifici 

BuildingCodeNYC. (2013). Elements of a Means of Egress System. Retrieved October 

18, 2017, from http://buildingcodenyc.com/sketches/elements-of-a-means-of-

egress-system/ 

Chen, X., Kwan, M.-P., Li, Q., & Chen, J. (2012). A model for evacuation risk 

assessment with consideration of pre- and post-disaster factors. Computers, 

Environment and Urban Systems, 36(3), 207–217. 

http://doi.org/10.1016/j.compenvurbsys.2011.11.002 

Chien, K. F., Wu, Z. H., & Huang, S. C. (2014). Identifying and assessing critical risk 

factors for BIM projects: Empirical study. Automation in Construction, 45, 1–15. 

http://doi.org/10.1016/j.autcon.2014.04.012 

Daamen, W., Hoogendoorn, S., & Bovy, P. (2005). First-Order Pedestrian Traffic 

Flow Theory. Transportation Research Record: Journal of the Transportation 

Research Board, 1934, 43–52. http://doi.org/10.3141/1934-05 

Department of Homeland Security. (n.d.). Emergency Response Plan. Retrieved 

October 17, 2017, from 

https://www.ready.gov/business/implementation/emergency 

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische 

Mathematik, 1(1), 269–271. http://doi.org/10.1007/BF01386390 

Dorigo, M., Caro, G. Di, & Gambardella, L. M. (1999). Ant Algorithms for Discrete 

Optimization. Artificial Life, 5(2), 137–172. 

http://doi.org/10.1162/106454699568728 



 

 65 

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The Ant System: Optimization by a 

colony of cooperating agents. IEEE Transactions on Systems, Man, and 

Cybernetics–Part B IEEE Transactions on Systems, Man, and Cybernetics, Part–

B, 2626(11), 1–131. Retrieved from http://iridia.ulb.ac.be/dorigo/dorigo.html 

Duan, P., Xiong, S., & Jiang, H. (2012). Multi-objective optimization model based on 

heuristic ant colony algorithm for emergency evacuation. In 2012 15th 

International IEEE Conference on Intelligent Transportation Systems (pp. 1258–

1262). IEEE. http://doi.org/10.1109/ITSC.2012.6338611 

Fang, Z., Zong, X., Li, Q., Li, Q., & Xiong, S. (2011). Hierarchical multi-objective 

evacuation routing in stadium using ant colony optimization approach. Journal of 

Transport Geography, 19(3), 443–451. 

http://doi.org/10.1016/J.JTRANGEO.2010.10.001 

Fruin, j,  j. (1971). PEDESTRIAN PLANNING AND DESIGN. Retrieved January 2, 

2018, from 

https://books.google.ie/books?id=bRHgnQAACAAJ&dq=Pedestrian+Planning+a

nd+Design&hl=en&sa=X&ved=0ahUKEwiBwuznmbrYAhVkF8AKHdd4DJ8Q6

AEILjAB 

Fruin, J. (1992). Designing for pedestrians. Public Transportation United States. 

Retrieved from https://ntl.bts.gov/DOCS/11877/Chapter_8.html 

Georgiadou, P. S., Papazoglou, I. A., Kiranoudis, C. T., & Markatos, N. C. (2007). 

Modeling emergency evacuation for major hazard industrial sites. Reliability 

Engineering & System Safety, 92(10), 1388–1402. 

http://doi.org/10.1016/j.ress.2006.09.009 

Glover, F., & Sörensen, K. (2015). Metaheuristics. Scholarpedia, 10(4), 6532. 

http://doi.org/10.4249/scholarpedia.6532 

Greco, S., Figueira, J., & Ehrgott, M. (2005). Multiple criteria decision analysis. 

Springer’s International Series. Retrieved from 

http://link.springer.com/content/pdf/10.1007/978-1-4939-3094-4.pdf 

Guntsch, M., & Middendorf, M. (2003). Solving Multi-criteria Optimization Problems 

with Population-Based ACO (pp. 464–478). Springer, Berlin, Heidelberg. 

http://doi.org/10.1007/3-540-36970-8_33 

Gwynne, S., Galea, E. R., Owen, M., Lawrence, P. J., & Filippidis, L. (1999). A 

review of the methodologies used in the computer simulation of evacuation from 

the built environment. Building and Environment, 34(6), 741–749. 

http://doi.org/10.1016/S0360-1323(98)00057-2 

Koo, C., Hong, T., & Kim, S. (2015). An integrated multi-objective optimization 

model for solving the construction time-cost trade-off problem. Journal of Civil 

Engineering and Management, 21(3), 323–333. 

http://doi.org/10.3846/13923730.2013.802733 

Liu, M., Zhang, F., Ma, Y., Pota, H. R., & Shen, W. (2016). Evacuation path 

optimization based on quantum ant colony algorithm. Advanced Engineering 

Informatics, 30(3), 259–267. http://doi.org/10.1016/j.aei.2016.04.005 

López-Ibáñez, M., Paquete, L., & Stützle, T. (2004). On the Design of ACO for the 

Biobjective Quadratic Assignment Problem (pp. 214–225). Springer, Berlin, 

Heidelberg. http://doi.org/10.1007/978-3-540-28646-2_19 

Neufert, E., Neufert, P., & Kister, J. (2012). Architects’ data. Wiley-Blackwell. 

Pelechano, N., & Malkawi, A. (2008). Evacuation simulation models: Challenges in 

modeling high rise building evacuation with cellular automata approaches. 

Automation in Construction, 17(4), 377–385. 

http://doi.org/10.1016/J.AUTCON.2007.06.005 



 

 66 

Rouse, M. (2007). What is C#? - Definition from. Retrieved January 3, 2018, from 

http://searchwindevelopment.techtarget.com/definition/C 

Saeed Osman, M., & Ram, B. (2017). Routing and scheduling on evacuation path 

networks using centralized hybrid approach. Computers & Operations Research, 

88, 332–339. http://doi.org/10.1016/j.cor.2017.06.022 

Santos, G., & Aguirre, B. E. (2004). A Critical Review Of Emergency Evacuation 

Simulation Models. Retrieved from http://udspace.udel.edu/handle/19716/299 

Shen, T.-S. (2006). Building Egress Analysis. Journal of Fire Sciences. 

http://doi.org/10.1177/0734904106052549 

Singapore Civil Defense Force. (2013). Evacuation Planning Guidelines. Retrieved 

from https://www.scdf.gov.sg/content/scdf_internet/en/building-

professionals/fire-safety-permit-and-certification/emergency-response-

plan1/_jcr_content/par/download_3/file.res/ERP - Evacuation Planning 

Guidelines v2.pdf 

Smith College. (2015). Dijkstra’s Algorithm. Retrieved December 29, 2017, from 

http://cs.smith.edu/~streinu/Teaching/Courses/274/Spring98/Projects/Philip/fp/dij

kstra.htm 

Still, K. (2000). Crowd Dynamics. University of Warwick. Retrieved from 

http://www.gkstill.com/CV/PhD/CrowdDynamics.html 

Tanimoto, J., Hagishima, A., & Tanaka, Y. (2010). Study of bottleneck effect at an 

emergency evacuation exit using cellular automata model, mean field 

approximation analysis, and game theory. Physica A: Statistical Mechanics and 

Its Applications, 389(24), 5611–5618. http://doi.org/10.1016/j.physa.2010.08.032 

Triantaphyllou, E. (2000). Multi-criteria Decision Making Methods: A Comparative 

Study (Vol. 44). Boston, MA: Springer US. http://doi.org/10.1007/978-1-4757-

3157-6 

Vanumu, L. D., Ramachandra Rao, K., & Tiwari, G. (2017). Fundamental diagrams of 

pedestrian flow characteristics: A review. European Transport Research Review, 

9(4), 49. http://doi.org/10.1007/s12544-017-0264-6 

Wagoum, A. U. K., Tordeux, A., & Liao, W. (2017). Understanding human queuing 

behaviour at exits: an empirical study. Royal Society Open Science, 4(1), 160896. 

http://doi.org/10.1098/rsos.160896 

Yi-fan, L., Jun-min, C., Jie, J., Ying, Z., & Jin-hua, S. (2011). Analysis of Crowded 

Degree of Emergency Evacuation at “Bottleneck” Position in Subway Station 

Based on Stairway Level of Service. Procedia Engineering, 11, 242–251. 

http://doi.org/10.1016/j.proeng.2011.04.653 

Yi, W., & Kumar, A. (2007). Ant colony optimization for disaster relief operations. 

Transportation Research Part E: Logistics and Transportation Review, 43(6), 

660–672. http://doi.org/10.1016/j.tre.2006.05.004 

Yuan, Y., & Wang, D. (2007). Multi-Objective Path Selection Model and Algorithm 

for Emergency Evacuation. In 2007 IEEE International Conference on 

Automation and Logistics (pp. 340–344). IEEE. 

http://doi.org/10.1109/ICAL.2007.4338583 

Zong, X., Xiong, S., Fang, Z., & Li, Q. (2010). Multi-Objective Optimization for 

Massive Pedestrian Evacuation Using Ant Colony Algorithm. In International 

Conference in Swarm Intelligence (pp. 636–642). Springer, Berlin, Heidelberg. 

http://doi.org/10.1007/978-3-642-13495-1_78 

 



 

 67 

APPENDIX A: TOTAL TRAVERSED TIME FIGURES 

 

Total traversed time for small enclosure and different population groups. Blue is Multi-ACO, 

green is shortest path. Distribution of the results resembles that of the egress time. 

 

 

Total traversed time for small enclosure and different population groups. Blue is Multi-ACO, 

green is shortest path. 
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