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Abstract

Mental Workload assessment in educational settings is still recognized as an open re-

search problem. Although its application is useful for instructional design, it is still

unclear how it can be formally shaped and which factors compose it. This paper

is aimed at investigating a set of features believed to shape the construct of mental

workload and aggregated together in models trained with supervised machine learning

techniques. In detail, multiple linear regression and decision trees have been chosen

for training models with features extracted respectively from the NASA Task Load

Index and the Workload Profile, well-known self-reporting instruments for assessing

mental workload. Additionally, a third feature set was formed as a combination of the

two aforementioned feature sets and a number of other features believed to contribute

to mental workload modeling in education. Models were trained with cross-validation

due to the limited sample size. On the one hand, results show how the features of the

NASA Task Load index are more expressive for a regression problem than the other

two feature sets. On the other hand, results show how the newly formed feature set

can lead to the development of models of the mental workload with a lower error when

compared to models built with the other two feature sets and when employed for a

classification task.

Keywords: Mental Workload, Cognitive Load Theory, Education, NASA-TLX, Work-

load Profile, Decision Trees, Multiple Linear Regression, Regression, Classification,

Machine Learning, Modeling
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Chapter 1

Introduction

1.1 Background

A person affected by Mental Workload is likely to show some psychological symptoms

such as emotional stress and inability in achieving goals which is typically felt over a

sustained period of time. This is often accompanied by feelings of hopelessness and

inadequacy resulting in more errors in task performance and results (Miyake, 2001).

Hence, Mental Workload on a student in the third level education can directly impact

on the effectiveness and quality of ones learning process (Fredricks, Blumenfeld, &

Paris, 2004).

The third level Education System in Ireland comprises of all training after second-

level, encompassing higher education in universities and colleges, further education on

Post Leaving Certificate and other courses. The degree-awarding authorities can grant

awards at all academic levels 1, approved by the Government of Ireland. According to

The Higher Education Authority (HEA, 2004), the 35 years from 1965 to 2000 saw the

number of students in the third level education grow from 18,200 to almost 120,000

2. These rapidly increasing numbers reflect the number of third-level students seeking

help with depression, anxiety, relationship problems and academic issues. Today these

numbers have reached unprecedented levels. Members of Psychological Counsellors in

1https://en.wikipedia.org/wiki/Third-level education in the Republic of Ireland
2www.education.ie (A Brief Description Of the Irish Education System)
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CHAPTER 1. INTRODUCTION

Higher Education pointed to a 40% increase in demand for counseling over the last

10 years, with waiting lists for counseling services at many colleges 3. In 2016, the

USI Student Dropout Survey found that 61.6% of students experienced burnout while

attending third level and 27.6% dropped out due to stress and anxiety 4.

Nowadays, diversity appears in many fields, especially in the third level education.

Many students who study together come from a different culture, different background,

different mother-tongue, different ages, male and female, and often different in behav-

ior. Considering all of this, it is necessary to value the Mental Workload through

the verbal or written feedback of students. Based on self-assessment, the lecturer can

predict the Mental Workload on students participated in study activities.

Previous studies have focused mainly on laborer Mental Workload in the ergonomics

area of the industry and on working environments in order to improve staff produc-

tivity or performance. This study aims to investigate three subjective rating scales

of Mental Workload, which is still recognized as an open research problem in higher

education.

1.2 Research Project

Many studies nowadays discuss Mental Workload in the office and factory environment.

How about Mental Workload in education, especially in the third level education? And

the question is: can a mechanism that creates “machine learning” support a lectures

strategy?

In this research, Mental Workload is measured through three self-assessment instru-

ments: the NASA Task Load Index, the Workload Profile, well-known self-reporting

instruments for assessing mental workload and a third feature set which was formed as

a combination of the two above but also considering features believed to contribute to

mental workload modeling in Education. The students would carry out self-assessment

3https://www.irishtimes.com/news/education/there-is-a-tsunami-of-third-level-students-with-

mental-health-problems-1.2924516
4https://www.independent.ie/irish-news/education/going-to-college/coping-with-college-

37239268.html
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before and after their class activities. To obtain a more accurate prediction model,

strong correlation variables and good control features will allow for the critical im-

provements in this research. Measurable attributes need to be included in designing

advanced responses to problem case and reference models.

1.3 Research Objectives

Literature review is for stating the concepts and opinions on Mental Workload, which is

the indicator equivalent to Cognitive Load Theory, but in education. The design of the

experiment is to create a proper model learning environment for three self-assessment

scales of Mental Workload. Implementation and execution of the designed solution are

required in order to find the optimal model. This is done by algorithms of error-based

and information-based data which, once learnt, become critical in forming the data

structure of three given data sets. For the evaluation of proposed solutions for models,

as a continuous target and a categorical target, are two combined indicators (RMSE,

R-squared) and the combination of Accuracy, Precision and Recall, respectively.

1.4 Research Methodologies

Mental Workload is an excellent measure for designing instructional conditions and

also for use a relevant indicator in predicting the learning processes. With the clarity

of relevant variables and a validated ques

tionnaire, we can adopt two supervised learning algorithms which are good pre-

dictors for optimal training of categorical and continuous, namely, Decision Tree and

Linear Regression, respectively.

The research methodologies are quantitative, i.e., finding the relationship between

student Mental Workload and statistically significant features, learning algorithms,

training models, and carrying out hypothesis tests on comparative indicators for the

optimal model selection.

3



CHAPTER 1. INTRODUCTION

1.5 Scope and Limitations

The domain is a supervised process set to identify the correlated variables in the

relationship between student Mental Workload and the features affecting instructional

conditions.

The scope of the research is limited to one module and the number of classes in

four years with only one lecturer. Thus, the sample may not be entirely representative

of the whole student population base.

1.6 Document Outline

This document is organized into five chapters:

• Chapter 1 is this introduction to the dissertation which provides the overall

context and answers to two important questions needed in order to proceed with

the research: who cares? and what for?

• Chapter 2 introduces the theoretical frameworks, including Cognitive Load The-

ory and how to apply it for education through measuring Mental Workload

indirectly by the subjective rating scales. This will present the practical aspects

of designing instructional conditions based on individual Mental Workload score.

Subsequently, this research will fill the gap in existing research by its findings.

• Chapter 3 describes the research hypothesis and makes an approach in solving

the stated problem. It also attempts to clearly explain the steps to collect and

prepare the data, in order to proceed with model training and testing. Lastly,

selecting the optimal model is based on the best outcome of accuracy and least

errors found.

• Chapter 4 focuses on the implementation of the optimal model and the results

thereof. Based on this there is a critical discussion about the results and the

existing research in similar contexts.
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• Finally, chapter 5 concludes the contribution of the research to the existing body

of knowledge.
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Chapter 2

Literature review and related work

2.1 Cognitive Load Theory

Cognitive load is mainly referred to as human Mental Workload in the field of Er-

gonomics, used to improve working conditions (Ree et al., 2014; Weigl, Mller, An-

gerer, & Hoffmann, 2014; Balfe, Crowley, Smith, & Longo, 2017). Regarding that,

it becomes increasingly popular as one of the first-hand indicators when taking into

account learning interaction (Foo et al., 2013). J. Sweller (1988) discussed learners can

absorb and retain information effectively only if it is provided in a way that does not

“overload” their mental capacity. In other words, instructional design and materials

of an instructor can be used to reduce cognitive load in learners (J. Sweller, 1994).

An instructor would play her/his role to help learners become an expert in a given

topic. An expert can categorize problems using the capacity of long-term memory;

the ability to explain and perform tasks easily.

Cognitive load theory (CLT) is a contemporary educational psychology theory

applying cognitive science principles to instructional design (V. M. J. Sweller J. &

Paas, 1998). It has been considered among instructional designers for early years

to create resources in such a way that encourages the activities of the learners and

optimizes their learning performance (Jeng-Chung, 2014). Within CLT, three types

of cognitive load have been conceptualized to have an adequate Mental Workload. It

would be a balance between the intrinsic difficulties of a task (intrinsic load) (Galy &

6



CHAPTER 2. LITERATURE REVIEW AND RELATED WORK

Mlan, 2015), the way it is presented (extraneous load) (Blayney, Kalyuga, & Sweller,

2015; Galy & Mlan, 2015) and the amount of effort performed by the learner to

integrate the new knowledge into the old one (germane load).

2.1.1 Types of cognitive load theory

Cognitive Load is understood under three types, namely, intrinsic cognitive load, ex-

traneous cognitive load, and germane cognitive load.

• Intrinsic Cognitive Load is the term that was first used in the early 1990s by

Chandler and Sweller (1991). It describes how much capacity of the working

memory is used by the interactivity of the units of information being processed.

• Extraneous Cognitive Load is the term used to express some type of unnec-

essary (artificially induced) cognitive load which is attributed to the design of

the instructional materials. Chandler and Sweller (1991) introduced this con-

cept of extraneous cognitive load to report the results of experiments. These

experiments were conducted to investigate the working memory load, such as

instructors presentation, the textbook in its format and the external distrac-

tions, the internal emotional concerns, etc. Many of these experiments involved

materials demonstrating the split-attention effect. They found that the format

of instructional materials either promoted or limited learning.

• Germane Cognitive Load was first described by V. M. J. Sweller J. and Paas

(1998). It is known as the processing, construction, and automation of schema.

Therefore, a germane load is working memory of learners, which will process new

information into advanced and more complex memory storage.

The three types of Cognitive Load mentioned above together have an interactive

impact on learners. The more extraneous load, the less room there will be for the

germane load. Hence it is necessary to have the instructional materials designed to

limit the amount of extraneous load and to facilitate the increase in germane load.
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2.1.2 Instructional conditions in the third level education

Third level students, who get involved in class activities will improve in various men-

tal abilities like critical thinking, decision making, memory and analytical skills, etc.

However, psychological fear and a sense of inferiority can lead to non-optimal mental

workload devoted to the learning task, with higher chances of error, less productivity,

and a predominant sense of uneasiness. As a driving factor in class activity, a lecturer

needs to recognize and to predict the students problem and to build teaching activities

and instructional materials in order to resolve the Mental Workload

In practice, interactive learning is related to instructional strategies, in-class activ-

ities, goal setting, and individual personalities (Wei, Chen, & Kinshuk, 2012) (pg 540).

A good way to increase learner’s interaction is by reducing the human Mental Work-

load when interacting on workflow. Instead of assessing learning progress, it would

be have a greater impact to assess human Mental Workload (MWL), as it is proven

to have an early effect on student performance. This study attempts to identify the

different variations of student Mental Workload through a variet of teaching methods

and lessons in class through self-assessment techniques, such as the NASA Task Load

Index (NASA-TLX) and Workload Profile (WP).

Direct instructions

Direct instruction is a general term used for the explicit teaching of a skill-set to

students through lectures or demonstrations of source material. It is a teacher-directed

method, meaning that the teacher stands in front of a classroom and presents the

information, in contrast to exploratory models such as inquiry-based learning. Direct

instruction includes tutorials, participatory laboratory classes, discussion, recitation,

seminars, workshops, observation, active learning, practice, or internships.

Multimedia learning

As in the context of information explosion, the studying and teaching are always

relevant to the internet wholly or partly. A human can access or process only a finite
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amount of information at a time, despite the huge amount of information available

on the Internet. The human brain does not interpret multimedia instructions made

by words, sensory information and pictures in a mutually exclusive way. As a result,

the combination of direct instructions one-way to the electronic communication and

extended to group activity multiple-way is the adopted way in modern times.

According to Cognitive Theory of Multimedia Learning (CTML), instructional

condition is based upon three assumptions: (1) dual-channel, or the auditory and

the visual channel (Wong, Castro-Alonso, C., Ayres, & Paas, 2015; Gough Young,

Wodehouse, & Sheridan, 2015; Jaewon, Dongsik, & Chungsoo, 2016); (2) limited

processing capacity, each channel has a finite capacity (Haji et al., 2016; Lin et al.,

2017); and (3) active processing, learning is an active process including selection,

filtering, organization and integration of information to prior knowledge (Macken &

Ginns, 2014; Blayney et al., 2015; Agostinho et al., 2015) . The expected result is that

higher learning outcomes and lower cognitive load (Yung & Paas, 2015); whatsoever

the level of instructional guidance needed to match learners’ levels of expertise (Yuling,

Yuan, Tzu-Chien, & Sweller, 2015; Kalyuga, Chandler, & Sweller, 1998). For such

instances, the designed instructional conditions should keep intrinsic load being static

(Haji, Rojas, Childs, Ribaupierre, & Dubrowski, 2015), minimizing extraneous load

(Jihyun, Dongsik, & Chungsoo, 2014) and promoting germane load (Leahy, Hanham,

& Sweller, 2015; Young, Van Merrienboer, Durning, & Ten Cate, 2014).

Social constructivist

Social constructivist emphasizes the importance of culture and context in understand-

ing what occurs in society and in constructing knowledge based on this understanding.

Social constructivist approaches can include reciprocal teaching, peer collaboration,

cognitive apprenticeships, problem-based instruction, web quests, anchored instruction

and other methods that involve learning with others (Kim, 2001).

On the whole, the expected outcome is that learners can transfer learned concepts

to a new context. By that way, the thinking of the group as a whole at first, with

the objective of processing certain information is aimed at increasing understanding

9
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(Orru, Gobbo, O’Sullivan, & Longo, 2018). As referred to the cognitive-effective theory

of learning with media, learner’s mood had an effect on germane load, extraneous

load, and intrinsic motivation (Liew & Tan, 2016). These three loads when combined

into computational methods, in the context of Mental Workload representation and

assessment, will quantify the Mental Workload imposed on learners by social teaching

activities and instructional material (Galy & Mlan, 2015; Kalyuga & Singh, 2016).

2.2 Mental Workload

In education, the main reason for assessing cognitive load or Mental Workload is to

measure the mental cost of performing a learning task with the goal of predicting

the learner’s performance (Jimenez-Molina, Retamal, & Lira, 2018; Byrne, Tweed, &

Halligan, 2014). Cognitive Load Theory (CLT) in the context of instructional design

theory is one of the important indicators to measure. It not only works on the de-

sign phase but also becomes a guideline for designers in making appropriate structural

changes (Foo et al., 2013). The assumption in design approaches is that the more

difficult the task is, the more Mental Workload increases and the performance usu-

ally decreases (Xie et al., 2017). However, it is personal and complicated in different

ways that are difficult to predict (Longo, 2015a). To construct the measurement in

educational settings, the majority of research used Mental Workload in Ergonomics as

the alternative one (Longo & Barrett, 2010), i.e., the experience of Mental Workload

depends on each individual by way of different cognitive style, different education,

and upbringing. There is no widely accepted definition of MWL in spite of the to-

tal cognitive load needed to accomplish a specific task under a finite period (Cain,

2007). As a consequence, Mental Workload (MWL) is a fundamental design concept

in Human-Computer interaction (HCI) and Ergonomics (Human Factors) and some-

times is referred to as Cognitive Load, specifically in Cognitive Psychology.

There is leading research in measuring and evaluating the Mental Workload. How-

ever, how it effects instructional design or performance measurement when linked with

the workload measure is still unclear (Hancock, 2017).
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2.2.1 Measurement methods

To measure MWL is as necessary in predicting human performance as in designing

technologies (Longo & Leva, 2017), interfaces (Longo & Dondio, 2015), information-

based procedures and instructions (Longo, 2016). There are different ways proposed

for measuring MWL, but categorized into three main techniques:

Self-assessment or subjective measures

This measure is based on the analysis of the subjective feedback provided by human

interacting with an underlying task or system (Moustafa, Luz, & Longo, 2017). The

form is often a survey or questionnaire, mostly post-survey. The common instruments

are the NASA Task Load Index (NASA, NASA-TLX) (G. Hart & E. Stavenland, 1988),

the Workload Profile - Multiple resource Theories (WP) (Tsang & L. Velazquez, 1996),

the Subjective Workload Assessment Technique (SWAT) (Reid & Nygren, 1988) and

the simplified SWAT (Luximon & Goonetilleke, 2001).

Task performance measures

This measure refers to primary and secondary task measures and is considered as

an objective performance measurement. The time to complete a task, the reaction

time to secondary tasks and the number of errors on the primary task are examples

of measures, are concrete ways of tracking the different actions performed by a user

during a primary task. However, these human performance indicators can be assessed

by subjective usability (Longo, 2017, 2018).

Physiological measures

This measure performs as the analysis of physiological indicators and responses of

the human body, including EEG (electroencephalogram), eye tracking and heartbeat

measurements during the time of completion of the tasks.
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2.2.2 Multi-dimensional and uni-dimensional measures

Concerning subjective measures, the NASA-TLX and WP are multi-dimensional be-

cause they include more than one method to assess and measure; whereas uni-dimensional

measure has only one. The Rating Scale Mental Effort (RSME) is a uni-dimensional

procedure that considers the exerted subject’s effort and subjective ratings. These

ratings are indicated across a continuous line, within the interval 0 to 150 with ticks

every ten units. Labels on ’absolutely no effort’, ’almost no effort’, ’a little effort’,

’some effort’, ’rather much effort’, ’considerable effort’, ’great effort’, ’very great ef-

fort’ and ’extreme effort’ are used along the line. On the one hand, the procedure is

relatively simple, quick and it has shown a good degree of sensitivity. On the other

hand, it has also demonstrated to have a poor diagnostic capacity (Zijlstra, 1993).

Following the research of MWL, subjects performed two laboratory tasks sepa-

rately (single function) and simultaneously (dual function). The multi-dimensional

procedure compared better than the uni-dimensional methods regarding sensitivity to

task demands, concurrent validity with performance, and test-retest reliability. This

finding strongly supports the notion that MWL is multi-dimensional in nature (Tsang

& L. Velazquez, 1996).

2.2.3 Criteria for evaluating Mental Workload measures

There are different criteria for the development of MWL measurement methods and

hence an array of literary terms needed to evaluate their inferential capacity (ODonnel

& Eggemeier, 1986).

• Sensitivity: the measurement method should be responsive to variations in task

difficulties and other factors believed to influence MWL on the task level;

• Diagnosticity: the method should be diagnostic and be capable of identifying

the changes in workload variation and the causes of these changes;

• Intrusiveness: the method should not be intrusive or interfere with the primary

task performance;
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• Requirements: the method should demand minimum requirements to avoid in-

fluencing the performance of the person during primary task execution;

• Acceptability: the method should achieve high acceptance from the person;

• Selectivity: the method should be highly sensitive to MWL factors and not

affected by other factors that are not related to MWL;

• Bandwidth and reliability: the method should be consistent or stable;

• Validity: comprising of face validity (the method covers the construct of MWL)

and concurrent validity (the degree to which measures of MWL expected to be

theoretically related, are related).

A measurement technique including in all the criteria above is ideal, but it is not always

the case. First things first is a good construct built for Mental Workload representation

& assessment (Guastello, Marra, Correro, Michels, & Schimmel, 2017). In the study

of Longo (2015a) has demonstrated how the framework outperformed state-of-the-

art subjective MWL assessment techniques regarding sensitivity, diagnosticity, and

validity (Longo, 2018, March). So far, the criteria for evaluating MWL assessment

techniques were also in the research of (Rizzo & Longo, 2017).

2.3 Subjective rating scales

In the perspective of research, human Mental Workload is measured by subjective

rating scales which are easy to administer and analyze by comparison of two other

measures: performance and physiological (Xiaoru, Damin, & Huan, 2014). Subjective

measures provide an index of general workload, and multi-dimensional measures can

determine the source of Mental Workload. The main drawback is that they can only

be administered post-task, thus influencing the reliability of long tasks. In addition,

meta-cognitive limitations can diminish the accuracy of reporting and cause difficulty

in performing comparisons among raters on an absolute scale. Despite that, they ap-

pear to be the most appropriate types of measurement for assessing Mental Workload
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because they have demonstrated high levels of sensitivity and diagnosticity (Rubio,

Daz, Martn, & Puente, 2004).

To measure the Mental Workload, subjective workload techniques recently used are

NASA-TLX, (Seker, 2014; Byrne et al., 2014; Longo, 2018; Foo et al., 2013; Adar &

Delice, 2017; Xiaoru et al., 2014; Mitropoulos & Memarian, 2013; Weigl et al., 2014) or

Workload Profile (Valdehita, Ramiro, Garca, & M. Puente, 2004; ?, ?). Both are multi-

dimensional measures applied in the field of psychology or technological improvements.

Furthermore, when evaluating the cognitive load, it is better to consider combined

measures (Xiaoru et al., 2014; Adar & Delice, 2017). A regression equation is often

applied to predict the model for Mental Workloads, such as Partial Least Square of

Structural Equation Modelling (Kuo-Kuang, Chung-Ho, Shuh-Yeuan, & Wei-Jhung,

2013).

2.3.1 NASA Task Load Index

Figure 2.1: Six components of NASA Task Load Index

The NASA Task Load Index (NASA, NASA-TLX) instrument has been used far be-

yond its original application (aviation), in the field of requiring concentration (crew

competence), health care (Colligan, Potts, Finn, & Sinkin, 2015), language (English)

14



CHAPTER 2. LITERATURE REVIEW AND RELATED WORK

and other complex socio-technical domains (G Hart, 2006). The Human Performance

Group developed it at NASA’s Ames Research Center over a three-year development

cycle that included more than 40 laboratory simulations (G. Hart & E. Stavenland,

1988). It is a combination of six factors believed to influence MWL (figure2.1). The

goal was to summarize the productivity during activities performed by the test sub-

jects in different environments.

2.3.2 Workload Profile - Multiple resource theory

Figure 2.2: Workload Profile - Multiple Resource Theory

Tsang and L. Velazquez (1996) built the Workload Profile (WP) upon the Multiple

Resource Theory proposed in the structure of Wickens (2008). The theory was shown

to be partially relevant to the concept of Mental Workload, with the greatest relevance

to decreased performance due to dual-task overload (Wickens, 2017). Its history comes

from a computational version of the multiple resource model which was applied to

multitask driving simulation data. The importance of four dimensions accounts for
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task interference and the association of resources within the brain structure. In this

theory, individuals have different capacities or resources related to:

• stage of information processing - central processing, response selection;

• code of information processing - spatial processing, verbal processing;

• resources - visual input, auditory input;

• response - manual response, speech response.

The most important application of the multiple resource model is to recommend

design changes when conditions of multitask resource overload exist.

2.4 Summary

2.4.1 Gaps in research

The majority of models in the research predict a cognitive load score through to-

tal cognitive load by multi-criteria (Jaewon et al., 2016) or combined measurement

methods:

• Adar and Delice (2017) evaluated MWL using Multi-criteria HFLTS method:

a new decision-making method, Hesitant Fuzzy Linguistic Term Set, and eval-

uating the mental workload by employing the dimensions used in NASA-TLX.

The HFLTS method, which allows qualitative and quantitative criteria is used

in alternative evaluation interchangeably.

• Sewell, Boscardin, Young, Cate, and O’Sullivan (2016) measured cognitive load

during procedural skills training with colonoscopy as an exemplar: the instru-

ment (the Cognitive Load Inventory for Colonoscopy) using a multi-step process

and cognitive load theory to develop a self-report instrument measured three

types of cognitive load (intrinsic, extraneous and germane load).

16



CHAPTER 2. LITERATURE REVIEW AND RELATED WORK

• Naismith, Cheung, Ringsted, and Cavalcanti (2015); Ngu and Phan (2016)

had evidence of correlation of intrinsic cognitive load and instructional design.

Naismith et al. (2015) showed limitations of subjective cognitive load measures

in simulation-based procedural training: The questionnaires appear to be in-

terchangeable as measures of intrinsic cognitive load, but not of total cognitive

load.

Some research indicated the effect of cognitive load theory on cognitive types in

designing the learning conditions framework. Nevertheless, it is still unclear as to how

it can formally shape a successful framework and which factors compose it:

• In the research of the germane load impact (Schwonke, 2015; Cheon & Grant,

2012), Cheon and Grant (2012) described the effects of the metaphorical interface

on germane cognitive load in Web-based instruction. The results indicated that

germane cognitive load positively affected learning performance despite there

being no relationship between germane cognitive load and students’ prior knowl-

edge. That being said, both germane cognitive load and prior knowledge simi-

larly contributed to learning performance. Besides, Schwonke (2015) considered

a metacognitive type of load in resource-oriented theories, which was expected

to have the as same effect as cognitive load theory.

• Effects of cues and real objects on learning in a mobile device supported envi-

ronment (Liu, Lin, & Paas, 2013): The theoretical framework of cognitive load

theory with arrow-line cues would decrease extraneous cognitive load. But there

is no proof of overlap between the different sources of information used and that

it affects learning, i.e., the availability of real plants would increase germane

cognitive load.

• Xiaoru et al. (2014) suggested improving pilot MWL evaluation with combined

measures. However, the inconsistent conclusions on the sensitivities of various

MWL evaluation indices probably resulted from the different experiment tasks,

which were designed to induce MWLs.
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There are leading research to fill the gaps above:

• On one hand, a defeasible reasoning framework (Longo, 2015a; Blayney et al.,

2015) was essential. The research provided an extensible framework built upon

defeasible reasoning, and implemented with argumentation theory, in which

MWL can be better defined, measured, analyzed, explained and applied with

different human-computer interactive contexts. On the other hand, Kalyuga

and Singh (2016) studied within the frameworks of productive failure and inven-

tion learning that has reportedly demonstrated as minimally guided tasks before

explicit instruction might benefit novice learners.

• Blayney et al. (2015) found out more finely-grained methods of evaluation of

learner prior experience, which required for optimal tailoring of instructional

methods to levels of learner expertise. The benefit of rapid diagnostic tests is to

monitor learners progress and alter the instructional techniques in real time.

• Davids, Halperin, and Chikte (2015) applied evidence-based design principles

to manage cognitive load and optimize usability. It is essential to improve the

educational impact of e-learning resources, especially relevant to multimedia

resources.

There are experiment research in Mental Workload prediction in aviation (Xu,

Xiaoru, & Damin, 2015) to optimize human factors and reduce human errors (Smith,

2017), in education to understand why negative sentence is more difficult to remember

(Macbeth et al., 2014), in communication (Longo, 2015b) and networking technology

(Colombi et al., 2012). This study aims to predict the total Mental Workload by

subjective rating scales with statistically significant variables.

2.4.2 Research question

To what extent ”can a model of Mental Workload be built upon a set of features

extracted from the literature of mental workload and applied in third-level education?”
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Design and methodology

The study will be implemented in four main parts. Firstly, the phase of data under-

standing, which includes data collection, description, exploration and quality verifica-

tion. Secondly, the phase of data preparation, which describes how to select, clean,

construct, integrate and format data for the purpose of analysis. Thirdly, the phase of

modeling, describing the chosen technique; how to generate test design, how the model

is built and assessed. Fourthly, the evaluation phase, which describes the reliability

and validity of the results, and suggests the next steps for development.

The schema of research is shown in figure 3.1. Each subjective rating scale or

subjective measure in the training set and test set, contains a constant value and

categorical value of output (MWL). The chosen model should reflect the type of output.

If it were a case of Mental Workload score (as a continuous feature), it would be trained

and tested through Linear Regression and Decision Tree GINI Regression; if it were a

case of Mental Workload level classes (as a categorical feature), it would be trained and

tested through Decision Tree Information Gain and Decision Tree GINI Classification.

As such, there were twelve models in total for three subjective measures.
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Figure 3.1: Schema of research

3.1 Business understanding

The application of Human Mental Workload in third level education will allow the

prediction of student performance. The benefits of which include restricting the num-

bers of students at risk of failure, and allowing the design of class conditions to reduce

the load on learners. In the current era of information explosion, the significant task
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of continuous knowledge gathering is crucial to higher education.

3.1.1 Extended Feature Sets

Figure 3.2: Extended Feature Sets

Human behaviour is both personal and complicated, in different ways that are difficult

to predict. A working model to assess Mental Workload, comprising of task assessment

(NASA) and multiple resources effects (WP) with additional education factors, is the

aim of the complete subjective rating scales, which is the Extended Feature Sets (EFS).

The other education factors are listed below:

• Context - distractions/ interruptions during the teaching session

• Parallelism - not engaged with teaching session or engaged in other parallel tasks

• Motivation - motivated by teaching session

• Skill - have no influence or help

• Utility - teaching session useful for learning

• Past Knowledge Expertise - experience with the session
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• Arousal - sleepy tired or fully cognizant

3.1.2 Research hypothesis

This research aims to investigate the optimal model in predicting the Mental Workload

score with the new subjective rating scale (EFS). The hypothesis of the research:

• Ha: A model trained with EFS lead to significantly more accurate and less error

in prediction of overall Mental Workload than models trained with NASA-TLX

or WP (through Decision Tree, Linear Regression).

3.2 Data understanding

3.2.1 Data collection

The dataset has been collected from delivering the Research Design & Proposal Writing

module from 2015 to 2018. The training and test sets split from the data of 684

records. Two different groups of part-time and full-time students participated in the

study. They attended the MSc module ’Research design and Proposal writing’ in

different years. Both groups spent time on four topics in Science; The scientific method;

Planning research; Literature Review in two conditions (1) multimedia slides verbally

presented by lecturer on a white-board, (2) multimedia video projected on a white-

board. At the end of each topic, students were asked to fill in questionnaires, aimed

at quantifying the Mental Workload during the class.

The NASA-TLX, the WP and the EFS are multi-dimensional and thus require

participants to answer some questions. RSME (Rating Scale Mental Effort) is uni-

dimensional adding one further question to compare to the other scale in the same

delivered questionnaire. The formation of the two subgroups, one received the NASA-

TLX, one received the WP and the other proceeded EFS randomly.
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3.2.2 Data description

Table 3.1: Variable definition of 3 subjective measures

Feature Description
MWL - Perception of Mental Workload, multi-dimensional measure is also

the target variable in 3 subjective measures (NASA-TLX, WP and EFS).
- Continuous variable, range from 0 to 100; Ordinal type with 5 groups:
Extreme underload [0-10], Underload [11-25], Optimal load [26-75],
Overload [76-90], Extreme overload [91-100]

Features below are continuous variables and having the range from 0 to 100
NASA Ment - Task demand features, Mental and perceptual activity required,

the teaching session easy or demanding, simple or complex.
NASA Phys - Task demand features, Physical activity required,

the teaching session easy or demanding, slack or strenuous.
NASA Temp - Task demand features, Time pressure due to the pace,

the space was slow or rapid.
NASA Perf - Perceived performance, how successful or satisfied felt with

learner’s performance.
NASA Frus - Cognitive state, how irritated, stress, annoyed felt.
NASA Effo - Cognitive state, how hard (mentally, physically)

to accomplish the performance.
WP Solv - Central Processing, attention for activities like remembering,

problem-solving, decision-making and perceiving.
WP Resp - Response Processing, attention for selecting the proper response

channel (manual or speech) and its execution.
WP TaSpa - Task and space, attention for spatial processing.
WP Verb - Verbal material, attention for reading or processing

linguistic material or listening to verbal conversations.
WP Visu - Visual resources, attention for attending the teaching session

based on the visual information.
WP Audi - Auditory resources, attention for attending the teaching session

based on the auditory information.
WP Manu - Manual response, attention for manually responding to the teaching session.
WP Spee - Speech response, attention for producing the speech response

(engaging in a conversation, answering questions).
Features comprise of the factors in NASA and WP

EFS nasa Ment - Mental demand (NASA).
EFS Para - Just attending teaching session or engaged in other parallel tasks

(mobile browsing/ social networks, chatting, reading, conversation).
EFS nasa Temp - Temporal demand (NASA).
EFS wp Manu - Manual response (WP).
EFS wp Visu - Visual resources (WP).
EFS nasa Effo - Effort (NASA).
EFS wp Solv - Central Processing (WP).
EFS nasa Frus - Frustration (NASA).
EFS Cont - Interruptions during the teaching session

distractions (mobile, noise, questions, other participants,..)
EFS wp TaSpa - Task & space (WP).
EFS Moti - Motivated by the teaching session.
EFS wp Verb - Verbal material (WP).
EFS Skil - Skills have no influence or help.
EFS wp Audi - Auditory resources (WP).
EFS nasa Phys - Physical demand (NASA).
EFS wp Spee - Speech response (WP).
EFS Util - The teaching session was useful for learning.
EFS Know - How much experience knowledge with the session.
EFS Arou - Sleepy tired or fully activated awake.
EFS nasa Perf - Performance (NASA).
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3.2.3 Data exploration

Table 3.2: Data exploration of NASA

Feature set 1: NASA-TLX (N=230)
Feature type miss n min 1stQ median 3rdQ max mean sd
RSME [0-150] R 1 229 10 40 50 73 105 53.74 21.72

Features below range from 0 to 100
MWL R 1 229 10 45 55 65 85 53.65 14.84
Mental R 0 230 5 40 50 65 100 50.20 16.99
Physical R 0 230 5 15 25 50 100 31.10 20.75
Temporal R 1 229 5 30 45 55 100 45.28 17.86
Performance R 0 230 10 30 45 60 85 44.35 18.04
Frustration R 0 230 5 25 35 55 95 38.24 19.52
Effort R 0 230 5 35 50 60 100 49.13 19.24

R: Range, Q: quarter

There were 230 students enrolling in the NASA questionnaire. The mean and median

of MWL (MeanMWL = 53.65, MedianMWL = 55) and RSME (Mean = 53.74, Median

= 50) were not so different. Two features having the opposite trend of MWL were

Physical demands and Frustration. In terms of six features having the impact on

MWL, the lowest score was Physical demands (mean = 31.1) and the highest one was

Mental demands (mean = 50.2).

Table 3.3: Data exploration of WP

Feature set 2: Workload Profile (N=217)
Feature type miss n min 1stQ median 3rdQ max mean sd
RSME [0-150] R 1 216 0 35 50 70 100 50.36 20.95

Features below range from 0 to 100
MWL R 0 217 5 40 50 65 90 51.72 16.63
Central R 0 217 5 45 55 70 100 55.03 19.47
Response R 0 217 5 35 50 65 100 49.44 21.72
Spatial R 1 216 5 25 47.5 60 100 44.13 22.85
Verbal R 0 217 5 50 65 75 100 61.97 19.19
Visual R 0 217 10 50 65 75 100 61.47 19.09
Auditory R 1 216 5 55 65 75 100 64.16 18.88
Manual R 0 217 5 30 50 65 100 46.89 24.41
Speech R 0 217 5 25 50 65 100 46.18 24.93

R: Range, Q: quarter

The number of 230 students enrolled in the NASA questionnaire. The mean and

median of MWL (MeanMWL = 53.65, MedianMWL = 55) and RSME (Mean = 53.74,

Median = 50) were not so different. Two features having the opposite trend of MWL

were Physical demands and Frustration. Regarding six features having an impact on

MWL, the lowest score was Physical demands (mean = 31.1), and the highest one was

Mental demands (mean = 50.2).
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Table 3.4: Data exploration of EFS

Feature set 3: Extended Feature Sets - EFS (N=237)
Feature type miss n min 1stQ median 3rdQ max mean sd

Features below range from 0 to 100
MWL R 2 235 5 40 50 60 95 50.79 16.60
NASA Men R 0 237 5 35 50 60 90 48.46 16.50
Parallelism R 0 237 5 10 15 35 80 25.50 21.42
NASA Tem R 1 236 10 45 50 60 85 51.40 14.24
WP Manual R 0 237 5 30 50 65 100 47.74 24.25
WP Visual R 1 236 10 50 65 75 100 62.5 17.94
NASA Eff R 4 233 10 40 55 65 100 51.83 18.74
WP Central R 0 237 10 35 50 70 100 52.65 21.76
NASA Fru R 1 236 5 30 50 55 90 44.13 19.07
Context R 0 237 5 10 20 35 95 25.74 20.31
WP Spatial R 0 237 5 15 35 55 100 36.46 23.01
Motivation R 0 237 5 50 65 75 100 61.73 20.32
WP Verbal R 1 236 5 45 60 70 100 57.92 20.20
Skill R 1 236 5 35 52.5 65 100 49.96 23.32
WP Audi R 0 237 5 50 60 70 100 59.05 18.93
NASA Phy R 0 237 5 10 25 45 80 29.43 20.72
WP Speech R 0 237 5 20 40 60 100 40.61 24.06
Utility R 0 237 5 55 70 80 100 66.62 20.37
PastKnow R 1 236 5 35 55 66.25 95 52.5 20.83
Arousal R 0 237 10 45 55 70 100 57.81 19.38
NASA Per R 0 237 10 45 65 75 100 61.71 18.82

R: Range, Q: quarter

The number of 237 students enrolled in the EFS questionnaire. The mean and

median of MWL were not so different (MeanMWL = 50.79, MedianMWL = 50). Four

features having the opposite trend of MWL were two additional features (Parallelism,

Context), one feature relevant to NASA (Physical demands) and one relevant to WP

(Spatial Processing). In the total of twenty features having the impact on MWL, the

lowest score was Parallelism (mean = 25.50), Context (mean = 25.74); and the highest

one was Utility (mean = 66.62).

3.2.4 Data quality verification

The data set of assessing Mental Workload with three measures are NASA-Task

Load Index (N=230), Workload Profile (N=217) and Extended Feature Sets (N=237).

There are 0.5-2 % missing values, and the median of each variable values are imputed.

The descriptive features are factors in measuring and classifying the levels of Mental

Workload score. The target feature is the perception of Mental Workload score.
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3.3 Data preparation

3.3.1 Data selection

Data is randomly divided into approximately 70:30 for training and test sets. For each

data division of the three subjective scales, the target variable is Mental Workload,

but the description variables can be different in quantities and characteristics. For

instance, NASA-TLX has six independent factors (mental demand, physical demand,

temporal demand, performance, frustration, and effort); WP has eight factors (central,

response, spatial, verbal processing, visual and auditory input, manual and speech

response); EFS is the combination of 6 factors in NASA-TLX as above, 7 factors in

WP as listed above without response processing variable; and 7 others (parallelism,

context, motivation, skill, utility, past knowledge expertise and arousal) which has 20

factors in total.

Three measures will have the list of datasets extracted from cross-validation by ten

folds and ten occurences.

3.3.2 Data cleaning

The first step is testing for normality of target feature. There are two main methods of

assessing normality, graphically by histogram, and numerically by Shapiro-Wilk Test

or skewness and kurtosis measure for skewed data.

If seeing Mental Workload shows as an interval, the second step would be ana-

lyzing the correlation between the Mental Workload score and independent variables

(descriptive features) to illustrate the factors put into the model. The Mental Work-

load score is an interval scale, but non-parametric as the distribution is discrete in

the lowest and highest range. When the Mental Workload score is non-parametric,

we carry out two tests: Kruskal-Wallis (as for nominal descriptive feature); Spearman

(as for numeric descriptive feature). The correlation will be a reasonable explanation

for the essential variables in models of Multiple Linear Regression and Decision Tree

Gini Regression after training. If Mental Workload shows as ordinal, the second step
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is resolving a class imbalance. In classification problems, a disparity in the frequencies

of the observed classes can have a significant negative impact on model fitting. One

technique is to subsample the training data in a manner that mitigates the issues.

There are three types of sampling methods. Firstly, down-sampling randomly subset

all the classes in the training set so that their class frequencies match the least preva-

lent level. Secondly, up-sampling sample randomly (with replacement) the minority

class to be the same size as the majority class. Lastly, hybrid methods are techniques

such as SMOTE down-sample the majority class and synthesize new data points in

the minority class. This method is used for the models of Decision Tree Information

Gain and Decision Tree Gini Classification.

Lastly, the best model will be the one with less error or better accuracy after

comparing the training and evaluation output.

3.4 Modelling

In the prospect of matching Machine Learning approaches to projects, the pre-requisites

of a project are mostly the viable creation of an accurate prediction model. Firstly,

data should be split into training and test sets (70:30) to train and validate the model.

With the training set, data is trained in Decision Tree and Multiple Linear Regression.

The nature of the target value is similar to the Likert scale as rating scales to capture

estimations of magnitude. Data from Likert scales and continuous rating scales are

quantitative (Joshi, Kale, Chandel, & Pal, 2015) which is interval data. However, it

can also be ordinal scale in some point of views (Joshi et al., 2015). As in the context,

the Multiple Linear Regression is applied for Mental Workload score as a continuous

feature; the Decision Tree is applied to train in two methods, Information Gain (ap-

plied C5.0) to deal with ordinal value and Gini index (applied CART) to deal with

both viewpoint as interval or ordinal value. Therefore, there are four models (2 models

for numeric target value and 2 models for categorical target value) on each instrument.

Accordingly, twelve models will be produced to compare the accuracy, precision, and

recall of actual and predicted value for categorical models; and RMSE, R-squared for
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numeric models.

To achieve a representative sample to select for the optimal predictive model,

requires cross-validation to take place. Cross-validation is primarily used in applied

machine learning to estimate the skill of a machine learning model on unseen data.

To use a limited sample for estimating how the model performs predictions on data,

which is the test set not applied during the training of the model. The procedure is

as follows:

1. Shuffle the dataset randomly

2. Split the dataset into k groups

3. For each unit group:

• Take the group as a hold-out or test data set

• Take the remaining groups as a training data set

• Fit a model on the training set and evaluate it on the test set

• Retain the evaluation score and discard the model

4. Summarize the skill of the model using the sample of model evaluation scores

Any preparation of the data prior to fitting the model occurs on the cross-validation

assigned training dataset within the loop rather than on the broader data set. The

tuning of hyperparameters also applies to cross-validated training. A failure to perform

these operations within the loop may result in data leakage and an optimistic estimate

of the model skill ((Gareth, Daniela, Trevor, & Robert, 2013), pg 181). The results

of running k-fold cross-validation are the mean of the model skill scores ((Stuart &

Peter, 2016), pg 708).

The ”caret” package (short for Classification and Regression Training) is a set

of functions that attempt to streamline the process for creating predictive models.

The ’train’ function can be used to evaluate, resample, estimate the effect of model

tuning parameters on performance. It is used for training models, dealing with class

imbalance and testing data on the background of RStudio software. Also, ”ggplot”

package is also used for visualization comparison of models.
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3.4.1 Error-based learning

Multiple Linear Regression

Multiple Linear Regression is fundamental to error-based learning. Linear Regression

models determine the optimal values for the weights in the model, in fact, reducing the

error of the weights. Proceeding the Multiple Linear Regression by multiplying the

weights by the descriptive features. The weights of Linear Regression are the effect of

each descriptive feature on the predictions returned by the model. In detail, regression

is a method of modeling that a target value (named y) based on independent predic-

tors (named x1, x2, x3). Hence, for estimating and discovering the cause and effect

relationship between variables, one would apply regression. The regression equation

can differ in the number of xi variables and the type of relationship between the xi

and y.

In general, the simple linear regression equation is y = m*X + b, where “m” is the

slope and “b” is the intercept. In machine learning, the equation above will be:

y(x) = w0 + w1*x, where ws are the parameters of the model, x is the input, and y

is the target variable. Different lines will have different values of w0 and w1. In real

value, having the multiple input variables data set; and the Multiple Linear Regression

Machine Learning model would be described as: y(x) = w0 + w1*x1 + w2*x2 + +

wi*xi. The question must then be asked for how well do the coefficients of “w” predict

the target value? This can be determined by (1) squaring the error difference between

the predicted value y(x) and the target value y-true; (2) sum over all data points; (3)

divide that value by the total number of data points. This value provides the average

squared error over all the data points. These three steps are called cost function also

known as the Mean Squared Error (MSE) function, as:

J(w) =
1

n

n∑
i=1

(y(xi) − yitrue)
2 (3.1)

The method used in ”caret” package is ’lm’. The tuning parameter for the model

is the intercept.
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3.4.2 Information-based learning

Machine learning algorithms build predictive models using only the most informative

features. The most informative features are the descriptive features whose values split

the instances of the data set into similar sets for the target feature value.

Decision Tree through Information Gain

The ideal discriminatory feature will partition the data into pure subsets where all the

instances in each subset have the same classification. Information Gain of a descriptive

feature is a measure of the reduction in the overall entropy of a prediction task by

testing on that feature. As in, entropy is a computational measure of the impurity or

heterogeneity of the elements in a set.

The method used in ”caret” package is ’C5.0’. C5.0 pruning technique adopts the

Binomial Confidence Limit method. The tuning parameters are trials, models and

winnow.

Decision Tree through Gini Index

Gini index shows the frequency of instance misclassification in a data set, if classifying

it based on the distribution of classifications in the data set. The Decision Tree model

uses the Gini Index as its splitting criteria.

The method used in ”caret” package is ’CART.’ CART can handle both nominal

and numeric attributes to construct a decision tree. The tuning parameter is cp (com-

plexity pruning) which removes excess branches from the decision tree for improved

accuracy.

3.5 Evaluation

In the course of model evaluation, three other important issues to be considered are

“prediction speed, capacity for retraining and interpretability” (D.Kelleher, Namee, &

Darcy, 2015).
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For the data cleaning step, data is imputed and transformed properly on the type

of output. Training samples are randomly created by ”createDataPartition” a list of

indices represented for chosen instances from 70 percent of the whole data 10 times,

and 10-fold cross-validation in all experiments. The correlation between the Mental

Workload score and relevant feature characteristics in the subjective rating scale is

tested on hypothesis tests (ANOVA, independent T-test, Pearson or Kruskal-Wallis,

Mann-Whitney, Spearman) by pvalue. If pvalue < 0.05, there do exist a connection.

Equally important testing the results of 12 models is, test sets are from 30 percent

of the whole data, which has different instances from 10 training sets. Then, the

comparisons of (RMSE, R-squared), and (Accuracy, Precision, Recall) were counted

on ten results of these 10 test sets through hypothesis tests and visualized illustration.

For evaluating the optimal model, there are two types by testing the difference of

predicted and actual values within each instrument and between instruments through

RMSE, R-squared, Accuracy, Precision, and Recall. Within instruments, Friedman

ANOVA or chi-squared are performed for the hypothesis of statistically significant

difference between observed (actual values) and predicted values in one random test

set. Between instruments, to decide a stronger predictive relationship between the

Mental Workload models, density plots and box plots are for visualization comparison

and ANOVA or Kruskal-Wallis are for testing the statistically significant difference of

Accuracy, Precision, Recall as the categorical target in the average of 10 results on each

model. Similarly, RMSE and R-squared of the continuous target is also compared in

the average of 10 results on each model. The threshold of significant difference between

models is pvalue < 0.05.

The purpose of an evaluation is threefold: determine which is the most suitable

model for a task, estimate how the model will perform, and convince users the model

will meet their needs. For a categorical target, those three indicators are Accuracy,

Precision, and Recall. Accuracy or classification accuracy is the number of correct

classifications in the total number that reflects the optimal predictive model. Precision

captures when a model makes a positive prediction (correct prediction). Recall defines

how confident that all the instances with a positive target level found. Besides, F1 is
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the central tendency measuring of precision and recall that takes the average of a set of

values but is less sensitive to outliers. For a continuous target, two evaluated indicators

are RMSE (Root Mean Squared Error) and R-squared. R-squared is a statistical

measure of how close the data are to the fitted regression line in the range of 0 and 1

that is the larger the number, the better the model fits data. RMSE emphasizes large

individual errors while MAE is the absolute of RMSE that the smaller the number,

the more exact the model.

3.6 Strength and limitation

The key step in any predictive analytics project is deciding which type of model to

use. There are two approaches to learning in this research: error-based (Multiple

Linear Regression) and information-based (Decision Tree). The first distinction be-

tween models is the distinction between parametric and non-parametric models. It

generally describes whether the size of the domain representation to define a model by

the number of features in the domain or by the number of instances in the data set.

In a parametric model, the size of the domain representation is independent of the

number of instances in the data set, whereas, in a non-parametric model, the number

of parameters (the domain representation) used by the model increases as the number

of instances increases. Multiple Linear Regression is the parametric model, and Deci-

sion Tree is non-parametric. Generally, parametric models make stronger assumptions

about the underlying distributions of the data in a domain. Non-parametric models

are more flexible but can struggle with large data sets; however, it runs into time and

space complexity issues as the number of instances grows.

The other important distinction made between classification models is whether

they are generative or discriminative. In terms of this, Linear Regression and Decision

Tree are discriminative models, which learn the boundary between classes rather than

the characteristics of the distributions of the different classes. The Regression models

learn a soft boundary, which considers the distance from the boundary. Decision Trees

are induced by recursively partitioning the feature space into regions belonging to the
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different classes.

The primary requirement of a project is to create an accurate prediction model.

Besides that, interpretability is the important driver for decision making in a busi-

ness scenario. Decision Trees and Linear Regression models are easy to interpret in

comparison of support vector machines or ensembles.
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Chapter 4

Results and discussion

This chapter is structured to describe, give evaluations and discuss relevant studies in

depth:

• the data structure of three subjective rating scales (subjective measures)

• the results of four training models for each subjective rating scales

• model comparison in each subjective rating scales

• lastly model selection within each subjective rating scales (4 models for each)

and between subjective rating scales (6 models using Mental Workload as the

continuous feature and 6 models using Mental Workload as the categorical fea-

ture).
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4.1 Data description

Figure 4.1: Histogram of Mental Workload score in three subjective rating scales

Three histograms of NASA-TLX (N=230), WP (N=217) and EFS (N=237) showed

that they seem discrete, despite, the histograms not giving a strong indication of non-

normality. There were slightly shorter right tail in three of them: more students in

underload than overload level (figure 4.1).
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4.1.1 NASA Task Load Index

Figure 4.2: Q-Q plot of NASA dataset (N=230)

Figure 4.3: Boxplot of NASA dataset (N=230)

If the data is normally distributed, the points in the QQ-normal plot will lie on a

straight diagonal line. The normal distribution having a skewness of 0, or between

-0.5 and 0.5 is relatively symmetrical. For the kurtosis looks at the combined size

of the tails will have the value of 0 of a normal distribution. So, if a dataset has a

positive kurtosis, it has more in the tails than the normal distribution. If a dataset

has a negative kurtosis, it has less in the tails than the normal distribution.

The figure 4.2 showed the upper right and bottom left points not fitting with

the line. The points in the range 40 to 70 were on the line. A Shapiro-Wilk test
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was performed to confirm NASA set distribution explicitly, (figure A.1) pvalue <0.001

rejecting the hypothesis that this data was independently drawn from a standard

normal distribution. This distribution was apparent both in the box plot (figure 4.3

which exhibited a short up-trend; and in the histogram, which advocated a moderately

left skewed tail (-0.507) and light-tailed on kurtosis (-0.108).

The target feature treated as a categorical value would show the order below:

Table 4.1: MWL as categorical feature in NASA

Levels (N=230) Frequency (6 levels) % Frequency (4 levels) %

extreme underload 1 0.435

underload 14 6.087 15 6.522

optimal load 1 79 34.348 79 34.348

optimal load 2 131 56.957 131 56.957

overload 5 2.174 5 2.174

extreme overload 0 0.000

Table 4.1 showed there was a substantial imbalance in underload and overload

levels compared to optimal load levels. The percent of highest level was optimal load

2, and the least was overload. Students often had self-assessment in the bottom and

up levels less than in the middle levels.

4.1.2 Workload Profile

Figure 4.4: Q-Q plot of Workload Profile dataset (N=217)
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Figure 4.5: Box plot of WP dataset (N=217)

The figure 4.4 showed fitted points from 10 to 70 on the diagonal line, and above

points (above 70) were under the line. The median of WP in the box plot (figure

4.5 was lower than the median of NASA Mental Workload score. The Shapiro-Wilk

test for data distribution performed pvalue <0.001, as means of the data were not nor-

mally distributed. The histogram described WP data was fairly symmetrical through

skewness(-0.285) and light-tailed kurtosis (-0.272).

The target feature treated as a categorical value would show the order below:

Table 4.2: MWL as categorical feature in WP

Levels (N=217) Frequency (6 levels) % Frequency (4 levels) %

extreme underload 3 1.382

underload 17 7.834 20 9.217

optimal load 1 95 43.779 95 43.779

optimal load 2 95 43.779 95 43.779

overload 7 3.226 7 3.226

extreme overload 0 0.000

Table 4.2 showed there was a substantial imbalance in underload and overload levels

compared to optimal load levels. The percent of highest level was as optimal load 1

as optimal load 2, and the least was overload. Students often had self-assessment in

the bottom and up levels less than in the middle levels.
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4.1.3 Extended Feature Sets

Figure 4.6: Q-Q plot of EFS dataset (N=237)

Figure 4.7: Box plot of EFS dataset (N=237)

The figure 4.6 showed QQ plot of EFS having fitted points from 40 to 80 on the diagonal

line and bottom points were under the line. The median of EFS in boxplot was as

same as NASA (figure 4.7. The Shapiro-Wilk test confirmed EFS distribution with

pvalue <0.001 meaning the data not normally distributed. This data was symmetrical

skewness (-0.207) and very light kurtosis tailed (-0.091) which was close to 0.

The target feature treated as a categorical value would show the order below:
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Table 4.3: MWL as categorical feature in EFS

Levels (N=237) Frequency (6 levels) % Frequency (4 levels) %

extreme underload 3 1.266

underload 24 10.127 27 11.392

optimal load 1 107 45.148 107 45.148

optimal load 2 93 39.241 93 39.241

overload 9 3.797 10 4.219

extreme overload 1 0.422

Table 4.3 showed there was a strong imbalance in underload and overload levels

compared to optimal load levels. The percent of highest level was optimal load 1

(differing from NASA set was optimal load 2), and the least was overload. Students

often had self-assessment in the bottom and up levels less than in the middle levels.

On the whole, Mental Workload score has been measured by the Likert scale. To be

seen as a continuous or categorical variable, it depends on the target and the context

of research. Likert items are often done in attitude surveys, and regarded as a true

ordinal scale; although it is wise to report both mean/SD and % of response in the

two highest categories. If the score is as a continuous value, showing that scores differ

when considering variety group of participants. If the score is treated as a categorical

value, highlighting how response patterns vary across subgroups, then item scores as

the discrete choice among a set of answer options and look for item-response models

or statistical model that allows coping with polytomous items.

The Mental Workload score was skewed in three of rating scales; as if its levels

were an imbalance when being divided into four. Sub-sampling the training data was

applied by upSample or SMOTE methods to increase effectively learning models. Up-

Sampling randomly sampled (with replacement) the minority class to be the same

size as the majority class; SMOTE drew artificial samples by choosing points that

lie on the line connecting the rare observation to one of its nearest neighbors in the

feature space. Both techniques outperformed over and under-sampling. However, in

the nature of subjective rating scales there was lack of samples in two-tailed of data,

Up-sampling showed more effectively than SMOTE sampling (figure A.5, A.6).
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4.2 Data exploration

4.2.1 Correlation between Mental Workload score and its fac-

tors of three rating scales in whole datasets

NASA Task Load Index

Figure 4.8: NASA Scatter plot matrix (N=230)

The distribution of each variable was shown on the diagonal line in scatter plot matrix

(figure 4.8, 4.9, 4.10, 4.11, 4.12). On the bottom of the diagonal: the bivariate scatter

plots with a fitted line were displayed. On the top of the diagonal: the value of the

correlation plused the significance level as stars. Each significance level was associated
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to a symbol: pvalue (0.001, 0.01, 0.05, 0.1, 1) as symbols (”***”,”**”,”*”,”.”,” ”).

Table 4.4: Correlation of Mental Workload score & factors in NASA set

MWL Ment Phys Temp Perf Frus Effo

MWL 1 0.54 0.23 0.41 0.16 0.24 0.41

Ment 1 0.50 0.49 0.20 0.16 0.60

Phys 1 0.47 0.13 0.13 0.45

Temp 1 0.22 0.23 0.51

Perf 1 0.41 0.22

Frus 1 0.24

Effo 1

MWL: Mental Workload, Ment: Mental, Phys: Physical, Temp: Temporal, Perf: Performance, Frus:

Frustration, Effo: Effort

Linear regression is the extent to which two variables have a straight line relation-

ship. The closer to +/−1 the Cohen’s effect size is, the stronger the relationship is.

If the absolute value of the Cohen’s effect size is higher than the range [-0.5,0.5] it

is a strong relationship, higher than [-0.3,0.3] is moderate and higher than [-0.1,0.1] is

weak.

Table 4.4 and figure 4.8 showed a strong relationship between Mental Workload

and Mental demands, a moderate one with Temporal demands and Effort and a weak

one with Physical demands, Frustration.
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Workload Profile

Figure 4.9: Workload Profile Scatter plot matrix (N=217)

Table 4.5: Correlation of Mental Workload score & factors in WP set

MWL Solv Resp TaSpa Verb Visu Audi Manu Spee

MWL 1 0.43 0.34 0.24 0.37 0.34 0.32 0.293 0.20

Solv 1 0.68 0.42 0.45 0.43 0.42 0.58 0.48

Resp 1 0.56 0.38 0.40 0.27 0.65 0.59

TaSpa 1 0.32 0.33 0.22 0.56 0.47

Verb 1 0.54 0.49 0.35 0.35

Visu 1 0.59 0.48 0.44

Audi 1 0.34 0.24

Manu 1 0.73

Spee 1

MWL: Mental Workload, Solv: Solving, Resp: Response, TaSpa: Task&Space, Verb: Verbal, Visu:

Visual, Audi: Auditory, Manu: Manual, Spee: Speech

Table 4.5 and figure 4.9 showed a moderate relationship between Mental Workload

and Central Processing (Solv), Response Processing (Resp), Verbal Processing (Verb),
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Visual Input (Visual), Auditory Input (Audi); and a weak one with Spatial Processing

(TaSpa), Manual Response (Manu) and Speech response (Spee).

Extended Feature Sets

Figure 4.10: EFS Scatter plot matrix with NASA factors (N=237)

Table 4.6: Correlation of Mental Workload score & NASA factors in EFS set

MWL Ment Phys Temp Perf Frus Effo

MWL 1 0.65 0.25 0.43 0.08 0.23 0.49

Ment 1 0.35 0.48 0.14 0.26 0.62

Phys 1 0.27 0.11 0.10 0.39

Temp 1 0.10 0.18 0.56

Perf 1 -0.34 0.11

Frus 1 0.26

Effo 1

MWL: Mental Workload, Ment: Mental, Phys: Physical, Temp: Temporal, Perf: Performance, Frus:

Frustration, Effo: Effort
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Figure 4.11: EFS Scatter plot matrix with WP factors (N=237)

Table 4.7: Correlation of Mental Workload score & WP factors in EFS set

MWL Solv TaSpa Verb Visu Auditory Manu Spee

MWL 1 0.32 0.26 0.36 0.42 0.21 0.36 0.19

Solv 1 0.45 0.36 0.49 0.24 0.49 0.41

TaSpa 1 0.25 0.25 0.09 0.38 0.47

Verb 1 0.45 0.47 0.38 0.22

Visu 1 0.43 0.41 0.29

Audi 1 0.18 0.13

Manu 1 0.40

Spee 1

MWL: Mental Workload, Solv: Solving, TaSpa: Task&Space, Verb: Verbal, Visu: Visual, Audi:

Auditory, Manu: Manual, Spee: Speech
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Figure 4.12: EFS Scatter plot matrix with additional factors (N=237)

Table 4.8: Correlation of Mental Workload score & additional factors in EFS set

MWL Para Cont Moti Skil Util Know Arou

MWL 1 0.003 0.12 0.19 0.21 0.21 -0.05 0.01

Para 1 0.29 -0.04 0.10 -0.09 0.14 -0.09

Cont 1 -0.07 0.07 -0.17 0.14 -0.10

Moti 1 0.48 0.66 0.08 0.50

Skil 1 0.40 0.25 0.27

Util 1 0.06 0.43

Know 1 0.09

Arou 1

MWL: Mental Workload, Para: Parallelism, Cont: Context, Moti: Motivation, Skil: Skill, Util:

Utility, Know: Knowledge, Arou: Arousal

For the relevant factors in NASA, table 4.6 and figure 4.10 showed a strong relation-

ship between Mental Workload and Mental demands, a moderate one with Temporal

demands and Effort and a weak one with Physical demands, Frustration.
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For the relevant factors in WP, table 4.7 and figure 4.11 showed a moderate rela-

tionship between Mental Workload and Central Processing (Solv), Verbal Processing

(Verb), Visual Input (Visual), Manual Response (Manu); and a weak one with Spatial

Processing (TaSpa), Auditory Input (Audi) and Speech response (Spee).

For additional factors, table 4.8 and figure 4.12 showed a weak relationship between

Mental workload and ”interruptions during the teaching session” (Cont), ”motivated

by teaching session” (Moti), ”skill have no influence or help” (Skil), ”teaching session

useful for learning” (Util).

Above all, in consideration of numeric models, there was a strong relationship

between Mental Workload and Mental demand, moderate relationship with Temporal

demand, Effort, Frustration in NASA set (table 4.4) and in EFS which inherited a

part of NASA set (table 4.6). This result was in line with the discovery in the paper

(Reid & Nygren, 1988), MWL can be largely explained by three component factors:

Time Load, Mental Effort Load, and Psychological Stress Load.

To WP set (table 4.5), a moderate relationship was found between Mental Work-

load and Central processing, Response processing, Verbal processing, Visual input and

Auditory input; the same as in EFS set with relevant factors to WP (table 4.7), and

Manual response. The additional factors of EFS set had no relationship with Mental

Workload score (table 4.8).

4.2.2 Difference between Mental Workload score of three rat-

ing scales in training datasets

Does the difference in training datasets of each rating scales help to overrule the

variation of datasets in building learning models? If the training sets were not different,

repeated sampling would give more samples for training and the test sets would be

the same for ten samples.
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NASA Task Load Index

Figure 4.13: Histogram of 10 NASA training sets (N=154)

Figure 4.14: Box plot of 10 NASA training sets (N=154)
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The distribution of NASA set was non-normality (section 4.1.1). So far, the whole

data which divided into the training set and test set with the ratio 70:30 was as left-

skewed as non-normality (figure 4.13). The differences of 10 training sets were not

significant difference shown in boxplot (figure 4.14)

Workload Profile

Figure 4.15: Histogram of 10 WP training sets (N=153)

As described above (section 4.1.2), the distribution of WP set was non-normality. So,

the whole data which divided into the training set and test set as 70:30 would be

slightly right-skewed non-normality (figure 4.15). The difference of 10 training sets

were not significant, as per the difference shown in boxplot (figure 4.16)
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Figure 4.16: Box plot of 10 WP training sets (N=153)

Extended Feature Sets

Figure 4.17: Histogram of 10 EFS training sets (N=155)

50



CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.18: Box plot of 10 EFS training sets (N=155)

As stated above (section 4.1.3), the distribution of EFS set was non-normality. So far,

the whole data, which divided into training set and test set as 70:30, were left-skewed

non-normality (figure 4.17). The difference of 10 training sets was not a significant

difference, as shown in boxplot (figure 4.18).

4.3 Model training

Cross-validation is a resampling procedure used to evaluate machine learning models

on a limited data sample. A single parameter called “k” splits a given data sample into

the number of groups. As such, the procedure is often called k-fold cross-validation,

such as k=10 becoming 10-fold cross-validation. A value of k=10 is prevalent in

the field of applied machine learning that has been found through experimentation to

generally result in a model skill estimate with low bias a modest variance (Max & Kjell,

2013). However, there are some variations on the k-fold cross-validation. They are

commonly known as [1] train/test split, [2] LOOCV (leave-one-out cross-validation),
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[3] stratified - the splitting of data into folds by criteria such as each fold has the same

proportion of observations with a given categorical value/ class outcome value, and

[4] repeated - the k-fold cross-validation repeated n times where the sample is shuffled

prior to each repetition resulting in a different split of the sample.

These models trained below had the 10-fold and 10-repeated times cross-validation

which meant ten groups split and repeated ten times in each below model. However,

the ”stratified” method of k-fold cross-validation should be taken into account for

improvisation as there were still missing values during the training time in some cases

(table 4.14, 4.16, 4.17, 4.34). So that, the repeated cross-validation may lead to

inaccurate learning models on categorical outcome value.

4.3.1 NASA Task Load Index

Multiple linear regression

Figure 4.19: NASA training result of sample 1 cross-validation (10 times, 10 folds)
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Table 4.9: Summary of NASA training result of 10 samples cross-validation (10 times,

10 folds)

Sample R-squared AdjR-squared RMSE Residual SE Significant vars

#1 0.41 0.39 11.86 11.71 Mental demand

#2 0.39 0.36 12.44 12.14 Mental, Temporal demand

#3 0.36 0.34 12.03 11.85 Mental, Temporal demand

#4 0.39 0.37 11.85 11.67 Mental demand

#5 0.38 0.35 11.75 11.64 Mental demand, Effort

#6 0.34 0.31 12.55 12.35 Mental demand, Frustration

#7 0.36 0.33 12.52 12.34 Mental, Temporal demand

#8 0.35 0.33 12.67 12.45 Mental demand

#9 0.31 0.28 12.65 12.44 Mental demand

#10 0.45 0.43 11.44 11.3 Mental demand, Frustration

The overall significance (pvalue) of training sets are all <0.001

In Linear Regression, sample train 10 had the highest R-squared and the lowest RMSE

(R-squared = 0.45, RMSE = 11.44, table 4.9).

The model was trained by multiple linear regression with cross-validation resam-

pling (10 folds, repeated 10 times). Based on the result, first of all, the selected model

as linear regression was correct. The constant in a regression model guaranteed that

the residuals had a mean of zero and prevented the bias of regression coefficients and

predictions. That was because the constant value (intercept) had a statistically sig-

nificant difference and Mental demand was the statistically significant factor on the

model (pvalue < 0.001) which followed the equation of linear form. The pvalue for the

F-test of overall significance tests was less than the significance level (0.05) affirmed

rejecting the null-hypothesis and concluding that the model provided a better fit than

the intercept-only model.

Table 4.9 showed the average result of R-squared ranged from 0.31 to 0.45 or AdjR-

squared from 0.28 to 0.43, RMSE ranged from 11.44 to 12.67. R-squared explained

the impact of the linear model on average of 31 to 45% of the Mental Workload score

variation. In other words, the Mental demand had 41% impact on Mental Workload

score (training sample 1, tab4.9).
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Table 4.10: Variable importance of NASA in model

Variables Overall (%) Variables Overall (%)

Mental demand 100.00 Frustration 0.27

Temporal demand 15.17 Performance 0.00

Physical demand 8.10

Figure 4.20: Correlation of MWL and Mental demand in NASA set

Figure 4.21: Correlation of MWL and Temporal demand in NASA set
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In 10 training sets, the relationship between Mental Workload score and significant

variables was investigated using a Pearson correlation. The model yielded a high

correlation between model predictions and important variables, in other words, the

models with more important variables were higher R-squared 4.10. A strong positive

correlation was found (R-squared=0.41, n=153, p<0.001, training sample 1, table 4.9).

R-squared alone cannot determine whether the coefficient estimates and predictions

are biased, which need to assess the residual plots using residual plots to determine

if the difference between the expected value and the observed. The difference must be

unpredictable. The residuals (observed error) should not be either systematically high

or low. So, the residuals should be in the center of zero throughout the range of fitted

values. In other words, the model is correct on average for all fitted values. Further, in

the context of ordinary least squares, random errors are assumed to produce residuals

that normally distributed. Therefore, the residuals should fall in a symmetrical pattern

and have a constant spread throughout the range.

Figure 4.22: Training of NASA in Residual plot

Looking at figure 4.22, first of all, there was the difference between the expected

55



CHAPTER 4. RESULTS AND DISCUSSION

value and the observed; secondly, there were some points the residuals was in the range

of 40 to 75 (median=55); lastly, the residuals were not normally distributed and not

spread continuously throughout the range (seen histogram in the view of vertical axis).

Scatter plots of Actual vs. Predicted are one of the most productive forms of data

visualization. All points should be more or less close to a regressed diagonal line. So,

if the Actual is 20, the predicted should be reasonably close to 20. If the Actual is

80, the anticipated should also be reasonably close to 80. So, drawing such a diagonal

line within the graph to check out where the points lie. The lower the R-squared, the

weaker the Goodness of fit of the model, the foggier or dispersed the points are (away

from this diagonal line).

Figure 4.23: Training of NASA in comparison of Actual & Predicted values

The model above had an average R-squared (0.4) which meant 40 percent of the

points would be close to this diagonal line. The model had three subsections of perfor-

mance. The first one was where Actuals <40. Within this zone, the model did not look

as same as the Actuals. It significantly overestimated the Actual values. The second

one was when Actuals were between 40 and 75, the model mostly concentrated within
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this zone whereas some points were still random. The third zone was for Actuals >75

having no data for prediction. There was virtually no relationship between model’s

predicted values and Actuals.

Decision Tree Information Gain

Table 4.11: Summary of NASA training result of 10 samples cross-validation (10 times,

10 folds)

Sample Accuracy Tuning parameters

trials model winnow

#1 0.645 1 tree F

#2 0.580 10 tree T

#3 0.624 1 rules F

#4 0.643 10 rules F

#5 0.582 20 tree F

#6 0.579 1 rules F

#7 0.616 1 rules F

#8 0.565 10 rules F

#9 0.644 1 rules F

#10 0.627 10 tree F

The best tuning parameters among the ten samples was sample 1 (trials=1, model=tree,

winnow=F) having the highest accuracy = 0.645.
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Table 4.12: Summary of NASA Information Gain training result of 10 Up-sampling

cross-validation (10 times, 10 folds)

Sample AUC Accuracy F1 Precision Recall True Pos Rate True Neg Rate

#1 0.89 0.735 0.71 0.73 0.74 0.73 0.92

#2 0.91 0.755 0.74 0.75 0.76 0.75 0.92

#3 0.83 0.73 0.71 0.73 0.73 0.73 0.92

#4 0.92 0.784 0.77 0.79 0.78 0.79 0.93

#5 0.92 0.754 0.74 0.76 0.75 0.76 0.92

#6 0.85 0.76 0.74 0.76 0.76 0.76 0.93

#7 0.84 0.729 0.71 0.73 0.73 0.73 0.92

#8 0.91 0.784 0.77 0.79 0.78 0.79 0.93

#9 0.85 0.758 0.74 0.76 0.76 0.76 0.93

#10 0.90 0.782 0.77 0.79 0.78 0.79 0.93

AUC: Area Under the Curve,

True Pos Rate: True Positive Rate, True Neg Rate: True Negative Rate

In Decision Tree Information Gain, sample train 8 was the most optimal (Accuracy

= 0.784, Precision = 0.793, Recall = 0.784, table 4.12).

Table 4.13: Summary of NASA Information Gain training result of 10 Up-sampling

cross-validation on each class

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Underload

Accuracy 0.76 0.83 0.76 0.81 0.75 0.78 0.75 0.78 0.78 0.73

Precision 0.69 0.79 0.68 0.77 0.71 0.74 0.72 0.76 0.72 0.73

Recall 1 0.99 1 0.99 0.92 0.96 0.92 0.94 0.99 0.99

Optimal load 1

Accuracy 0.60 0.63 0.6 0.64 0.63 0.63 0.59 0.64 0.61 0.64

Precision 0.62 0.63 0.59 0.68 0.66 0.62 0.54 0.7 0.67 0.7

Recall 0.40 0.53 0.42 0.57 0.51 0.54 0.4 0.53 0.45 0.53

Optimal load 2

Accuracy 0.68 0.62 0.63 0.65 0.65 0.64 0.65 0.68 0.64 0.67

Precision 0.66 0.63 0.68 0.71 0.7 0.71 0.66 0.71 0.66 0.74

Recall 0.71 0.5 0.5 0.58 0.58 0.54 0.6 0.67 0.59 0.6

Overload

Accuracy 0.92 0.9 0.93 0.95 0.92 0.94 0.94 0.94 0.9 0.935

Precision 0.91 0.9 0.92 0.94 0.92 0.93 0.94 0.94 0.94 0.93

Recall 1 1 1 1 1 1 1 1 1 1
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The Accuracy, Precision, and Recall in underload and overload levels were quite

high, but the samples in these levels were up-sampled. So, the results may be affected.

The optimal load 2 with the three indicators evaluated was generally higher than

optimal load 1.

Decision Tree Gini Regression

Gini impurity is a measure of misclassification, which applies in a multiclass classifier

context. ”The complexity parameter (cp) which is a tuning parameter, is also used to

control the size of the decision tree and to select the optimal tree size. If the cost of

adding another variable to the decision tree from the current node is above the value

of cp, then tree building does not continue”.

Figure 4.24: NASA decision tree Gini Regression pruned at cp=0.04157 (N=154)

The regression tree of NASA was pruned from 9 branches into 3 branches which

was split by the main variables Mental demands and Temporal (illustrated by training

sample 1).
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Table 4.14: Summary of NASA Gini Regression training result of 10 samples cross-

validation (10 times, 10 folds)

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

cp 0.04 0.08 0.05 0.05 0.04 0.07 0.05 0.03 0.07 0.05

R-squared 0.38 0.31 0.26 0.35 0.25 0.26 0.28 0.31 0.22

RMSE 12.05 12.96 12.94 12.11 12.91 13.32 13.30 13.05 13.37 12.77

MAE 9.66 10.39 10.51 9.94 10.42 10.70 10.63 10.36 10.67 10.25

cp: complexity parameter (taken exactly 7 decimal points to prune the tree)

In Decision Tree Gini Regression, sample 1 (R-squared = 0.38, RMSE = 12.05,

table 4.14) was the optimal model.

Decision Tree Gini Classification

Figure 4.25: NASA decision tree Gini Classification pruned at cp=0.02985 (N=154)

The classification tree of NASA was pruned from 13 branches into 1 branch which was

split by the main variables Mental demands category (illustrated by training sample

1).
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Table 4.15: Summary of NASA Gini Classification training result of 10 samples cross-

validation (10 times, 10 folds)

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

cp 0.04 0 0.02 0.02 0.12 0 0.03 0 0.02 0.02

Accuracy 0.65 0.58 0.61 0.60 0.55 0.57 0.59 0.55 0.59 0.63

Kappa 0.27 0.17 0.20 0.18 -0.003 0.14 0.15 0.13 0.13 0.26

cp: complexity parameter (taken exactly 7 decimal points to prune the tree)

The best tuning parameters among the ten samples was sample 1 (cp=0.038) having

the highest accuracy = 0.649.

Table 4.16: Summary of NASA Gini Classification training result of 10 Up-sampling

cross-validation (10 times, 10 folds)

Sample AUC Accuracy F1 Precision Recall True Pos Rate True Neg Rate

#1 0.82 0.619 0.58 0.61 0.62 0.61 0.89

#2 0.88 0.712 0.69 0.70 0.71 0.70 0.91

#3 0.85 0.692 0.67 0.70 0.69 0.70 0.91

#4 0.88 0.709 0.69 0.72 0.71 0.72 0.91

#5 0.69 0.450 // // 0.45 // 0.85

#6 0.86 0.718 0.70 0.73 0.72 0.73 0.92

#7 0.85 0.653 0.64 0.68 0.65 0.68 0.89

#8 0.88 0.734 0.72 0.74 0.73 0.74 0.92

#9 0.86 0.690 0.66 0.70 0.69 0.70 0.91

#10 0.88 0.714 0.69 0.71 0.71 0.71 0.91

AUC: Area Under the Curve,

True Pos Rate: True Positive Rate, True Neg Rate: True Negative Rate

In Decision Tree Gini Classification was sample 8 having the most accurate (Ac-

curacy = 0.734, Precision = 0.735, Recall = 0.734, table 4.16).
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Table 4.17: Summary of NASA Gini Classification training result of 10 Up-sampling

cross-validation on each class

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Underload

Accuracy 0.69 0.77 0.71 0.72 0.60 0.74 0.66 0.73 0.71 0.73

Precision 0.58 0.74 0.62 0.65 0.39 0.66 0.60 0.67 0.60 0.66

Recall 0.93 0.93 0.94 0.92 0.74 0.95 0.73 0.90 0.97 0.92

Optimal load 1

Accuracy 0.57 0.60 0.58 0.59 0.51 0.62 0.58 0.60 0.58 0.59

Precision 0.46 0.59 0.52 0.52 0.30 0.64 0.41 0.59 0.60 0.57

Recall 0.34 0.44 0.39 0.43 0.06 0.48 0.45 0.45 0.36 0.40

Optimal load 2

Accuracy 0.55 0.61 0.61 0.63 0.50 0.61 0.61 0.66 0.60 0.64

Precision 0.61 0.59 0.71 0.72 // 0.69 0.72 0.73 0.64 0.69

Recall 0.22 0.47 0.44 0.48 0 0.45 0.43 0.58 0.43 0.53

Overload

Accuracy 0.80 0.86 0.91 0.93 0.68 0.88 0.93 0.91 0.91 0.90

Precision 0.74 0.83 0.90 0.93 0.53 0.86 0.93 0.90 0.90 0.88

Recall 1 1 1 1 1 1 1 1 1 1

The Accuracy, Precision, and Recall in underload and overload levels were quite

high, but the samples in these levels were up-sampled. So, the results may be affected.

Besides, the Accuracy and Recall of the optimal load 2 were as same as the optimal

load 1, but the higher Precision in optimal load 2.

62



CHAPTER 4. RESULTS AND DISCUSSION

4.3.2 Workload Profile

Multiple Linear Regression

Figure 4.26: WP training result of sample 1 cross-validation (10 times, 10 folds)

Table 4.18: Summary of WP training result of 10 samples cross-validation (10 times,

10 folds)

Sample R-squared AdjR-squared RMSE Residual SE Significant vars

#1 0.18 0.14 15.45 15.10

#2 0.25 0.21 14.91 14.68 Verbal Material

#3 0.26 0.21 15.23 14.81 Auditory resources

#4 0.23 0.19 14.90 14.48 Solving Deciding

#5 0.19 0.15 15.68 15.37 Solving Deciding

#6 0.24 0.20 15.32 15.01 Solving Deciding

#7 0.28 0.24 14.82 14.52 Solving Deciding

#8 0.23 0.19 15.33 14.96

#9 0.24 0.20 14.85 14.59 Solving Deciding

#10 0.23 0.19 15.16 14.85

The overall significance (pvalue) of training sets are all <0.001

In Linear Regression, sample train 7 had the highest R-squared and the lowest RMSE

(R-squared = 0.28, RMSE = 14.82, table 4.18).
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Table 4.18 showed the average result of R-squared ranged from 0.18 to 0.28 or AdjR-

squared from 0.14 to 0.24, RMSE ranged from 14.82 to 15.68. R-squared explained

the impact of linear model on average of 18 to 28% of the Mental Workload score

variation. In other words, the Central Processing (Solving Deciding) had 23% impact

on Mental Workload score (training sample 4, table 4.18).

In 10 training sets, the relationship between Mental Workload score and significant

variables was investigated using a Pearson correlation. The model yielded a high

correlation between model predictions and important variables. In other words, the

models with important variables were higher R-squared (table 4.19). A strong positive

correlation was found (R-squared=0.23, n=153, p<0.001, training sample 4, table 4.18)

Table 4.19: Variable importance of WP in model

Variables Overall (%) Variables Overall (%)

Solving & Deciding 100.00 Auditory resources 38.37

Verbal material 84.39 Response selection 23.21

Visual resources 48.41 Manual response 19.10

Speech response 40.45 Task space 0.00

Figure 4.27: Correlation of MWL and Central Processing (Solving&Deciding) in WP
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Figure 4.28: Correlation of MWL and Verbal material in WP

Figure 4.29: Training of WP in Residual plot

Looking at figure 4.29, there were three main points. Firstly, there was a difference

between the expected value and the observed. Secondly, there were only some points

the residuals centered on zero (median=55) in the range of 35 to 60 (narrower than in

NASA residual plot, figure 4.22. Lastly, the residuals did not normally distribute but
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slightly constant spread throughout the range (seeing histogram in the vertical axis

view).

Figure 4.30: Training of WP in comparison of Actual & Predicted values

The model above had an average R-squared (0.23) which meant 23 percent of

the points would be close to the diagonal line. The model had three subsections of

performance. The first one was where Actuals <35. Within this zone, the model

did not look as same as the Actuals. It significantly overestimated the Actual values.

The second one was when Actuals between 40 and 75, the model mostly concentrated

within this zone whereas some points were still random. The third zone was for

underestimated Actuals >75. There was virtually no relationship between model’s

predicted values and Actuals.
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Decision Tree Information Gain

Table 4.20: Summary of WP training result of 10 samples cross-validation (10 times,

10 folds)

Sample Accuracy Tuning parameters

trials model winnow

#1 0.453 10 rules F

#2 0.516 10 rules T

#3 0.456 1 tree T

#4 0.498 1 tree F

#5 0.495 10 rules T

#6 0.508 10 tree T

#7 0.491 1 rules F

#8 0.522 10 rules F

#9 0.518 1 rules T

#10 0.495 10 tree T

The best tuning parameters among the ten samples was sample 8 (trials=10, model=rules,

winnow=F) having the highest accuracy = 0.522.

Table 4.21: Summary of WP training result of 10 Up-sampling cross-validation (10

times, 10 folds)

Sample AUC Accuracy F1 Precision Recall True Pos Rate True Neg Rate

#1 0.86 0.689 0.67 0.67 0.69 0.67 0.91

#2 0.85 0.655 0.63 0.62 0.66 0.62 0.90

#3 0.83 0.649 0.63 0.63 0.65 0.63 0.89

#4 0.82 0.642 0.62 0.62 0.64 0.62 0.89

#5 0.85 0.648 0.63 0.63 0.65 0.63 0.89

#6 0.85 0.657 0.64 0.64 0.66 0.64 0.89

#7 0.79 0.648 0.63 0.62 0.65 0.62 0.89

#8 0.86 0.669 0.66 0.66 0.67 0.66 0.90

#9 0.80 0.680 0.67 0.67 0.68 0.67 0.90

#10 0.84 0.650 0.64 0.62 0.65 0.62 0.89

AUC: Area Under the Curve,

True Pos Rate: True Positive Rate, True Neg Rate: True Negative Rate
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In Decision Tree Information Gain, sample train 1 was the most optimal (Accuracy

= 0.689, Precision = 0.665, Recall = 0.688, table 4.21).

Table 4.22: Summary of WP training result of 10 Up-sampling cross-validation on

each class

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Underload

Accuracy 0.79 0.78 0.75 0.73 0.72 0.71 0.73 0.75 0.75 0.76

Precision 0.75 0.75 0.71 0.68 0.68 0.68 0.67 0.72 0.73 0.71

Recall 0.98 0.95 0.90 0.89 0.86 0.84 0.90 0.88 0.8 0.958

Optimal load 1

Accuracy 0.58 0.57 0.58 0.57 0.58 0.58 0.58 0.57 0.58 0.57

Precision 0.49 0.44 0.45 0.43 0.48 0.47 0.48 0.45 0.48 0.45

Recall 0.4 0.33 0.42 0.38 0.42 0.37 0.40 0.36 0.42 0.33

Optimal load 2

Accuracy 0.58 0.57 0.56 0.56 0.56 0.59 0.56 0.59 0.59 0.57

Precision 0.53 0.46 0.45 0.48 0.45 0.55 0.43 0.52 0.54 0.45

Recall 0.372 0.35 0.28 0.30 0.31 0.42 0.28 0.43 0.41 0.33

Overload

Accuracy 0.88 0.84 0.86 0.86 0.87 0.85 0.88 0.89 0.88 0.86

Precision 0.88 0.80 0.84 0.84 0.85 0.82 0.87 0.88 0.87 0.84

Recall 1 1 1 1 1 1 1 1 1 1

The Accuracy, Precision, and Recall in underload and overload levels were quite

high, but the samples in these levels were up-sampled. So, the results may be affected.

The optimal load 2 had the Accuracy and Precision were equal or higher than optimal

load 1 but lower in Recall.

68



CHAPTER 4. RESULTS AND DISCUSSION

Decision Tree Gini Regression

Table 4.23: Summary of WP Gini Regression training result of 10 samples cross-

validation (10 times, 10 folds)

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

cp 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.06

R-squared 0.17 0.22 0.26 0.18 0.24 0.27 0.23 0.18 0.21 0.17

RMSE 15.12 15.04 14.84 15.01 14.91 14.83 15.09 15.48 14.85 15.49

MAE 12.22 12.18 11.90 11.96 11.91 11.79 12.21 12.61 12.02 12.45

cp: complexity parameter (taken exactly 7 decimal points to prune the tree)

In Decision Tree Gini Regression, sample 6 was the optimal model (R-squared = 0.27,

RMSE = 14.83, table 4.23).

Decision Tree Gini Classification

Table 4.24: Summary of WP Gini Classification training result of 10 samples cross-

validation (10 times, 10 folds)

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

cp 0.02 0.02 0.02 0.04 0.01 0.03 0.03 0.02 0.03 0.01

Accuracy 0.44 0.51 0.46 0.48 0.46 0.48 0.53 0.51 0.50 0.47

Kappa 0.01 0.13 0.03 0.08 0.04 0.07 0.16 0.13 0.11 0.06

cp: complexity parameter (taken exactly 7 decimal points to prune the tree)

The best tuning parameters among the ten samples was sample 7 (cp=0.029) having

the highest accuracy = 0.527.
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Table 4.25: Summary of WP Gini Classification training result of 10 Up-sampling

cross-validation (10 times, 10 folds)

Sample AUC Accuracy F1 Precision Recall True Pos Rate True Neg Rate

#1 0.76 0.537 0.52 0.54 0.54 0.54 0.86

#2 0.60 0.605 0.58 0.59 0.61 0.59 0.88

#3 0.78 0.605 0.58 0.61 0.61 0.61 0.88

#4 0.69 0.421 0.36 0.33 0.42 0.33 0.82

#5 0.80 0.533 0.51 0.52 0.53 0.52 0.86

#6 0.79 0.576 0.57 0.58 0.58 0.58 0.87

#7 0.74 0.499 0.49 0.48 0.50 0.48 0.85

#8 0.80 0.596 0.59 0.61 0.60 0.61 0.87

#9 0.78 0.551 0.54 0.57 0.55 0.57 0.86

#10 0.81 0.600 0.59 0.59 0.60 0.59 0.88

AUC: Area Under the Curve,

True Pos Rate: True Positive Rate, True Neg Rate: True Negative Rate

In Decision Tree Gini Classification was the optimal sample 2 (Accuracy = 0.605,

Precision = 0.594, Recall = 0.606, table 4.25).

Table 4.26: Summary of WP Gini Classification training result of 10 Up-sampling

cross-validation on each class

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Underload

Accuracy 0.60 0.71 0.68 0.58 0.61 0.62 0.61 0.64 0.62 0.66

Precision 0.52 0.66 0.60 0.42 0.50 0.65 0.48 0.57 0.61 0.57

Recall 0.51 0.84 0.79 0.45 0.57 0.49 0.58 0.65 0.51 0.75

Optimal load 1

Accuracy 0.58 0.57 0.58 0.56 0.56 0.57 0.56 0.56 0.59 0.59

Precision 0.41 0.44 0.45 0.33 0.39 0.45 0.37 0.49 0.50 0.48

Recall 0.45 0.34 0.42 0.38 0.32 0.35 0.32 0.29 0.45 0.45

Optimal load 2

Accuracy 0.54 0.55 0.55 0.50 0.55 0.58 0.52 0.58 0.57 0.54

Precision 0.44 0.41 0.59 0.14 0.36 0.42 0.27 0.43 0.40 0.43

Recall 0.20 0.24 0.20 0.02 0.25 0.46 0.09 0.45 0.38 0.20

Overload

Accuracy 0.75 0.79 0.78 0.65 0.79 0.79 0.73 0.84 0.71 0.82

Precision 0.67 0.73 0.71 0.51 0.73 0.74 0.63 0.81 0.66 0.78

Recall 0.99 1 1 0.83 1 1 1 1 0.87 1
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The Accuracy, Precision, and Recall in underload and overload levels were higher

than the other, but the samples in these levels were up-sampled. So, the results may

be affected. The Accuracy and Precision of the optimal load 2 were as same as the

optimal load 1, but the higher Recall of the optimal load 1.

4.3.3 Extended Feature Sets

Multiple Linear Regression

Figure 4.31: EFS training result of sample 1 cross-validation (10 times, 10 folds)

71



CHAPTER 4. RESULTS AND DISCUSSION

Table 4.27: Summary of EFS training result of 10 samples cross-validation (10 times,

10 folds)

Sample R-squared AdjR-squared RMSE Residual SE Significant vars

#1 0.46 0.38 13.96 12.58 Mental demand

#2 0.47 0.40 14.21 12.86 Mental demand, Solving Deciding

#3 0.52 0.45 13.45 12.29 Mental demand

#4 0.51 0.44 13.88 12.60 Mental demand

#5 0.50 0.42 13.43 12.18 Mental demand, Visual attention,

Motivation

#6 0.57 0.50 13.34 12.16 Mental, Temporal demand,

Parallelism, Solving Deciding

#7 0.46 0.38 14.28 12.80 Mental demand

#8 0.50 0.42 13.58 12.40 Mental demand

#9 0.52 0.45 13.52 12.34 Mental, Temporal demand

#10 0.52 0.44 13.55 12.42 Mental demand, Visual attention

The overall significance (pvalue) of training sets are all <0.001

In Linear Regression, sample train 6 had the highest R-squared and the lowest RMSE

(R-squared = 0.57, RMSE = 13.34, table 4.27).

Table 4.27 showed the average result of R-squared range from 0.46 to 0.57 or AdjR-

squared from 0.38 to 0.50, RMSE range from 13.34 to 14.28. R-squared explained

the impact of linear model on average of 46 to 57% of the Mental Workload score

variation. In other words, the Mental demand had 57% impact on Mental Workload

score (training sample 6, tab4.27).

Table 4.28: Variable importance of EFS in model

Variables Overall (%) Variables Overall (%)

Mental demand 100.00 Frustration 10.74

Visual attention 30.98 Speech response 10.61

Manual activity 30.93 Performance 8.28

Temporal demand 21.07 Skill 6.22

Past knowledge 15.97 Utility 5.29

Arousal 14.19 Context bias 3.31

Solving Deciding 13.36 Auditory attention 2.53

Parallelism 13.12 Task space 2.08

Motivation 13.03 Verbal material 0.74

Physical demand 10.75 Effort 0.00
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In 10 training sets, the relationship between Mental Workload score and significant

variables was investigated using a Pearson correlation. The model yielded a high

correlation between model predictions and important variables. In other words, the

models with more important variables were higher R-squared (table 4.28). A strong

positive correlation was found (R-squared=0.57, n=155, p<0.001, training sample 6,

table 4.27).

Figure 4.32: Correlation of MWL and Mental demand in EFS set

Figure 4.33: Correlation of MWL and Temporal demand in EFS set
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Figure 4.34: Correlation of MWL and Visual attention in EFS set

Figure 4.35: Training of EFS in Residual plot

Looking at figure 4.35, there were three main points. First of all, there was a

difference between the expected value and the observed. Secondly, there were only

some points the residuals centered on zero (median=50) in the range of 15 to 65

(larger than NASA residual plot, figure 4.22). Lastly, the residuals were not normally
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distributed and not constantly spread throughout the range (seen histogram in the

view of the vertical axis).

Figure 4.36: Training of EFS in comparison of Actual & Predicted values

The model above had an average R-squared (0.50) which meant 50 percent of

the points would be close to the diagonal line. The model had two subsections of

performance. The first one was where Actuals <30. Within this zone, the model did

not look as same as the Actuals. It greatly overestimated the Actual values. The

second one was when Actuals between 30 and 80, the model mostly concentrated

within this zone whereas some points were still random. The model looked more

correctly than NASA (figure 4.23, 4.30).
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Decision Tree Information Gain

Table 4.29: Summary of EFS training result of 10 samples cross-validation (10 times,

10 folds)

Sample Accuracy Tuning parameters

trials model winnow

#1 0.454 10 rules T

#2 0.428 10 tree T

#3 0.440 20 tree F

#4 0.447 20 tree F

#5 0.428 20 rules T

#6 0.444 1 tree T

#7 0.446 20 tree F

#8 0.421 10 rules T

#9 0.459 1 tree T

#10 0.485 20 tree T

The best tuning parameters among the ten samples was sample 10 (trials=20, model=tree,

winnow=T) having the highest accuracy = 0.485.

Table 4.30: Summary of EFS training result of 10 Up-sampling cross-validation (10

times, 10 folds)

Sample AUC Accuracy F1 Precision Recall True Pos Rate True Neg Rate

#1 0.90 0.733 0.72 0.73 0.73 0.73 0.92

#2 0.88 0.721 0.71 0.71 0.72 0.71 0.91

#3 0.91 0.751 0.74 0.75 0.75 0.75 0.92

#4 0.92 0.75 0.74 0.74 0.75 0.74 0.92

#5 0.90 0.735 0.72 0.73 0.74 0.73 0.92

#6 0.87 0.725 0.71 0.72 0.73 0.72 0.92

#7 0.92 0.765 0.75 0.76 0.77 0.76 0.93

#8 0.90 0.734 0.72 0.73 0.73 0.73 0.92

#9 0.86 0.714 0.70 0.71 0.71 0.71 0.91

#10 0.88 0.734 0.72 0.73 0.73 0.73 0.92

AUC: Area Under the Curve,

True Pos Rate: True Positive Rate, True Neg Rate: True Negative Rate
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In Decision Tree Information Gain, sample train 7 was the most optimal (Accuracy

= 0.765, Precision = 0.764, Recall = 0.765, table 4.30).

Table 4.31: Summary of EFS training result of 10 Up-sampling cross-validation on

each class (10 times, 10 folds)

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Underload

Accuracy 0.81 0.79 0.81 0.82 0.80 0.79 0.82 0.80 0.77 0.79

Precision 0.80 0.76 0.78 0.81 0.79 0.77 0.80 0.77 0.75 0.77

Recall 0.94 0.94 0.98 0.95 0.94 0.94 0.97 0.96 0.92 0.94

Optimal load 1

Accuracy 0.60 0.59 0.61 0.60 0.61 0.59 0.61 0.60 0.58 0.59

Precision 0.57 0.55 0.60 0.58 0.57 0.57 0.61 0.56 0.55 0.55

Recall 0.45 0.42 0.46 0.44 0.47 0.41 0.47 0.44 0.38 0.40

Optimal load 2

Accuracy 0.62 0.62 0.64 0.64 0.62 0.63 0.65 0.63 0.62 0.65

Precision 0.58 0.60 0.63 0.62 0.61 0.59 0.66 0.62 0.57 0.65

Recall 0.54 0.52 0.57 0.61 0.53 0.55 0.62 0.55 0.55 0.60

Overload

Accuracy 0.92 0.90 0.93 0.93 0.91 0.90 0.94 0.91 0.91 0.90

Precision 0.91 0.89 0.92 0.92 0.90 0.88 0.93 0.91 0.91 0.89

Recall 1 1 1 1 1 1 1 1 1 1

The Accuracy, Precision, and Recall in underload and overload levels were quite

high, but the samples in these levels were up-sampled. So, the results may be affected.

The optimal load 2 had the three indicators (accuracy, precision, recall) were generally

higher than optimal load 1.
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Decision Tree Gini Regression

Table 4.32: Summary of EFS Gini Regression training result of 10 samples cross-

validation (10 times, 10 folds)

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

cp 0.05 0.06 0.06 0.07 0.07 0.05 0.07 0.04 0.06 0.04

R-squared 0.34 0.32 0.26 0.35 0.27 0.36 0.27 0.33 0.31 0.31

RMSE 13.48 14.09 14.83 13.84 14.12 14.31 14.37 13.81 14.33 14.35

MAE 10.73 11.26 11.87 11.31 11.10 11.78 11.75 11.02 11.59 11.47

cp: complexity parameter (taken exactly 7 decimal points to prune the tree)

In Decision Tree Gini Regression sample 1 was the optimal model (R-squared = 0.05,

RMSE = 13.48, table 4.32).

Decision Tree Gini Classification

Table 4.33: Summary of EFS Gini Classification training result of 10 samples cross-

validation (10 times, 10 folds)

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

cp 0.04 0.05 0.07 0.05 0.06 0.02 0.03 0.04 0.05 0.01

Accuracy 0.44 0.41 0.43 0.38 0.40 0.40 0.36 0.39 0.48 0.51

Kappa 0.08 -0.04 -0.004 -0.05 -0.03 0.04 -0.10 -0.03 0.15 0.20

cp: complexity parameter (taken exactly 7 decimal points to prune the tree)

The best tuning parameters among the ten samples was sample 9 (cp=0.047) having

the highest accuracy = 0.484.
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Table 4.34: Summary of EFS Gini Classification training result of 10 Up-sampling

cross-validation (10 times, 10 folds)

Sample AUC Accuracy F1 Precision Recall True Pos Rate True Neg Rate

#1 0.81 0.599 0.52 0.49 0.60 0.49 0.88

#2 0.80 0.579 0.57 0.59 0.58 0.59 0.87

#3 0.76 0.548 // // 0.55 // 0.86

#4 0.81 0.601 0.58 0.53 0.60 0.53 0.88

#5 0.79 0.565 0.50 0.49 0.57 0.49 0.87

#6 0.83 0.656 0.63 0.64 0.66 0.64 0.90

#7 0.81 0.619 0.57 0.54 0.62 0.54 0.89

#8 0.81 0.588 0.58 0.56 0.59 0.56 0.88

#9 0.80 0.626 0.43 0.49 0.63 0.49 0.89

#10 0.85 0.681 0.66 0.68 0.68 0.68 0.90

AUC: Area Under the Curve,

True Pos Rate: True Positive Rate, True Neg Rate: True Negative Rate

In Decision Tree Gini Classification was the optimal sample 10 (Accuracy = 0.681,

Precision = 0.675, Recall = 0.681, table 4.34).

Table 4.35: Summary of EFS Gini Classification training result of 10 Up-sampling

cross-validation on each class

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Underload

Accuracy 0.72 0.67 0.69 0.74 0.69 0.72 0.71 0.71 0.72 0.71

Precision 0.68 0.63 0.66 0.69 0.65 0.67 0.62 0.66 0.66 0.66

Recall 0.84 0.74 0.78 0.90 0.78 0.88 0.92 0.86 0.90 0.83

Optimal load 1

Accuracy 0.57 0.56 0.50 0.50 0.56 0.53 0.51 0.55 0.50 0.57

Precision 0.41 0.42 0.17 0.30 0.36 0.45 0.27 0.38 0.07 0.48

Recall 0.34 0.31 0 0.01 0.37 0.15 0.05 0.24 0 0.34

Optimal load 2

Accuracy 0.54 0.56 0.60 0.62 0.54 0.63 0.61 0.55 0.61 0.64

Precision 0.40 0.43 0.39 0.45 0.33 0.57 0.51 0.40 0.49 0.69

Recall 0.21 0.28 0.67 0.70 0.23 0.59 0.53 0.27 0.60 0.56

Overload

Accuracy 0.78 0.76 0.69 0.72 0.79 0.81 0.79 0.77 0.79 0.84

Precision 0.71 0.68 0.70 0.71 0.82 0.77 0.75 0.71 0.73 0.81

Recall 1 1 0.73 0.80 0.88 1 0.98 0.98 1 1
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The Accuracy, Precision, and Recall of underload and overload levels were quite

high, but the samples in these levels were up-sampled. So, the results may be affected.

The Accuracy of the optimal load 2 was similar to optimal load 1, but the Precision

and Recall of optimal load 2 were higher than optimal load 1 in most cases.

Data correlation of variables indicates the impact on models. Consequently, in the

Linear Regression model the higher weights and more important variables are strong

or moderate relationships in the scatter plot matrix (table 4.9, 4.18, 4.27). Also, they

are the factors to split branches in the Decision Tree (figure 4.24, 4.25). The additional

factors of EFS set had no relationship with Mental Workload score (table 4.8); in spite

the impact showing on Linear Regression model (table 4.27).

”The ultimate goal of machine learning is to make a machine system that can

automatically build models from data without requiring tedious and time consuming

human involvement.” One of the difficulties is that learning algorithms (e.g., decision

trees, random forests, clustering techniques, etc.) require parameters to be set in the

model. The tuning parameters allow to tune the optimal values of a learning task in

the best way possible. Thus, tuning an algorithm or machine learning technique can

be simply thought of as a process which one goes through in which they optimize the

parameters that impact the model to enable the algorithm to perform the best.

In Decision Tree Information Gain, C5.0 is the package applied to train the model

which is short of Decision Trees and Rule-Based Models. There are three tuning pa-

rameters in this application as in [1] trials specifying the number of boosting iterations,

how many the model used, [2] models as rules indicating should the tree be decomposed

into a rule-based model, and [3] winnow indicating whether predictor winnowing (i.e

feature selection) should be used. In Decision Tree Gini, CART is the package applied

to train interval and numeric variables as its name Classification and Regression Trees.

Likewise, the tuning parameter cp is the fundamental driver for over/under-fitting. In

other words, it determines depth of the tree and number of terminal nodes.
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4.4 Model comparison

4.4.1 NASA Task Load Index

Multiple Linear Regression

Table 4.36: NASA multiple linear regression test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

R-squared 0.18 0.26 0.31 0.23 0.27 0.31 0.29 0.33 0.41 0.13

RMSE 13.28 12.14 12.66 13.24 13.22 11.87 11.69 11.44 11.62 14.35

MAE 9.38 9.23 9.59 10.19 10.33 9.07 8.94 8.11 8.85 10.12

Decision Tree Information Gain

Table 4.37: NASA decision tree Information Gain test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Overall accuracy 0.59 0.51 0.48 0.49 0.51 0.48 0.44 0.49 0.41 0.48

p-valueAcc>NIR 0.88 0.01 0.81 0.74 0.95 0.65 0.55 0.81 0.65 0.55

Underload

Accuracy 0.56 0.53 0.52 0.54 0.54 0.52 0.55 0.54 0.53 0.52

Precision 0.25 0.50 0.25 0.50 0.50 0.25 0.25 0.50 0.50 0.25

Recall 0.50 0.125 0.11 0.167 0.18 0.09 0.33 0.15 0.12 0.11

Optimal load 1

Accuracy 0.57 0.60 0.58 0.58 0.54 0.56 0.57 0.56 0.54 0.58

Precision 0.38 0.48 0.43 0.38 0.19 0.33 0.43 0.29 0.24 0.43

Recall 0.44 0.50 0.45 0.50 0.36 0.41 0.38 0.43 0.28 0.47

Optimal load 2

Accuracy 0.68 0.65 0.63 0.64 0.67 0.66 0.61 0.66 0.63 0.64

Precision 0.73 0.51 0.54 0.57 0.68 0.59 0.46 0.62 0.51 0.54

Recall 0.66 0.83 0.61 0.64 0.66 0.71 0.61 0.68 0.70 0.67

Overload

Accuracy 0.33 0.57 0.50 0.60 0.60 0.50 0.53 0.50 0.50 0.50

Precision 1 1 0 0 1 0 1 0 0 0

Recall 0.50 0.25 0 0 0.33 0 0.13 0 0 0

Acc: Accuracy, NIR: No Inforamtion Rate
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Decision Tree Gini Regression

Table 4.38: NASA Gini Regression test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

R-squared 0.12 0.16 0.26 0.11 0.34 0.08 0.26 0.20 0.26 0.17

RMSE 14.36 13.19 13.07 14.65 12.60 14.76 12.12 13.12 13.02 13.02

MAE 11.40 10.34 10.04 11.60 9.68 11.05 9.52 10.15 10.40 9.91

Decision Tree Gini Classification

Table 4.39: NASA Gini Classification test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Overall accuracy 0.48 0.44 0.48 0.43 0.06 0.30 0.41 0.41 0.44 0.46

p-valueAcc>NIR 0.97 0.99 0.97 1 1 1 1 1 0.99 0.98

Underload

Accuracy 0.54 0.53 0.50 0.53 0.52 0.53 0.53 0.53 0.53 0.52

Precision 0.25 0.13 0 0.13 0.08 0.14 0.14 0.12 0.09 0.09

Recall 0.25 0.50 0 0.50 0.75 0.75 0.50 0.50 0.50 0.25

F1 0.25 0.20 // 0.21 0.14 0.23 0.22 0.19 0.15 0.13

Optimal load 1

Accuracy 0.59 0.58 0.62 0.61 0.50 0.52 0.58 0.57 0.57 0.58

Precision 0.36 0.41 0.48 0.46 // 0.22 0.41 0.38 0.44 0.50

Recall 0.62 0.43 0.67 0.62 0 0.10 0.43 0.38 0.38 0.38

F1 0.46 0.42 0.56 0.53 // 0.13 0.42 0.38 0.41 0.63

Optimal load 2

Accuracy 0.61 0.62 0.61 0.59 0.50 0.58 0.60 0.61 0.61 0.64

Precision 0.75 0.80 0.73 0.75 // 0.62 0.78 0.73 0.86 0.69

Recall 0.41 0.43 0.43 0.32 0 0.35 0.38 0.43 0.49 0.54

F1 0.53 0.56 0.54 0.45 // 0.45 0.51 0.54 0.62 0.61

Overload

Accuracy 0.60 0.56 0.50 0.50 0.51 0.52 0.53 0.50 0.50 0.50

Precision 0.33 0.20 0 0 0.04 0.09 0.11 0 0 0

Recall 1 1 0 0 1 1 1 0 0 0

F1 0.50 0.33 // // 0.08 0.17 0.20 // // //

Acc: Accuracy, NIR: No Information Rate

For NASA models, when performing on test sets, sample 8 (RMSE = 11.44) and

sample 9 (R-squared = 0.41) were the best one in Linear Regression (table 4.36);
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sample 7 (RMSE = 12.12) and sample 5 (R-squared = 0.34) as in Gini Regression

(table 4.38); sample 1 (overall Accuracy = 0.59) as in Information Gain (table 4.37)

and also sample 1 (overall Accuracy = 0.48) as in Gini Classification (table 4.39).

4.4.2 Workload Profile

Multiple Linear Regression

Table 4.40: WP multiple linear regression in 10 test results

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

R-squared 0.37 0.17 0.18 0.23 0.36 0.22 0.12 0.24 0.19 0.24

RMSE 14.11 15.45 15.01 15.79 13.50 14.46 16.22 14.56 15.47 14.82

MAE 10.91 12.38 11.65 12.55 10.88 11.28 12.7 11.34 11.64 12.01

Decision Tree Information Gain

Table 4.41: WP decision tree information gain test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Overall accuracy 0.41 0.47 0.41 0.33 0.36 0.36 0.34 0.39 0.33 0.44

pvalueAcc>NIR 0.18 0.65 0.81 0.97 0.44 0.06 0.95 0.99 0.88 0.55

Underload

Accuracy 0.55 0.52 0.52 0.54 0.55 0.56 0.51 0.57 0.51 0.57

Precision 0.67 0.17 0.17 0.33 0.5 0.67 0.17 0.5 0.17 0.5

Recall 0.2 0.17 0.1 0.2 0.2 0.24 0.08 0.3 0.08 0.33

Optimal load 1

Accuracy 0.58 0.63 0.56 0.57 0.56 0.59 0.57 0.54 0.56 0.59

Precision 0.39 0.61 0.32 0.39 0.32 0.36 0.29 0.21 0.29 0.39

Recall 0.5 0.55 0.43 0.39 0.41 0.63 0.44 0.38 0.42 0.58

Optimal load 2

Accuracy 0.59 0.59 0.62 0.56 0.58 0.57 0.60 0.61 0.59 0.60

Precision 0.39 0.43 0.57 0.29 0.39 0.32 0.46 0.57 0.43 0.50

Recall 0.61 0.5 0.55 0.4 0.5 0.53 0.46 0.47 0.48 0.50

Overload

Accuracy 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Precision 0 0 0 0 0 0 0 0 0 0

Recall 0 0 0 0 0 0 0 0 0 0

Acc: Accuracy, NIR: No Inforamtion Rate
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Decision Tree Gini Regression

Table 4.42: WP Gini Regression test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

R-squared 0.31 0.24 0.19 0.29 0.22 0.18 0.21 0.30 0.28 0.24

RMSE 14.87 14.75 14.86 15.39 14.73 14.98 14.92 14.02 14.84 14.81

MAE 11.65 11.38 11.77 12.59 11.77 12.28 11.58 10.62 11.70 11.57

Decision Tree Gini Classification

Table 4.43: WP Gini Classification test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Overall accuracy 0.42 0.41 0.39 0.31 0.34 0.39 0.27 0.41 0.38 0.39

p-valueAcc>NIR 0.65 0.73 0.81 0.99 0.95 0.81 1 0.73 0.87 0.81

Underload

Accuracy 0.56 0.52 0.54 0.55 0.54 0.50 0.53 0.52 0.52 0.55

Precision 0.25 0.11 0.17 0.23 0.17 0 0.12 0.13 0.11 0.21

Recall 0.50 0.17 0.50 0.50 0.67 0 0.50 0.17 0.17 0.50

F1 0.33 0.13 0.25 0.32 0.27 // 0.19 0.14 0.13 0.30

Optimal load 1

Accuracy 0.61 0.64 0.60 0.62 0.58 0.56 0.56 0.57 0.60 0.61

Precision 0.46 0.61 0.50 0.53 0.59 0.50 0.40 0.53 0.52 0.54

Recall 0.61 0.61 0.50 0.61 0.36 0.25 0.29 0.32 0.46 0.50

F1 0.52 0.61 0.50 0.57 0.44 0.33 0.33 0.40 0.49 0.52

Optimal load 2

Accuracy 0.57 0.56 0.57 0.50 0.57 0.63 0.55 0.61 0.57 0.57

Precision 0.78 0.58 0.67 // 0.57 0.51 0.67 0.48 0.48 0.62

Recall 0.25 0.25 0.29 0 0.29 0.64 0.21 0.57 0.36 0.29

F1 0.38 0.35 0.40 // 0.38 0.57 0.32 0.52 0.41 0.39

Overload

Accuracy 0.50 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Precision 0 0.07 0 0 0 0 0 0 0 0

Recall 0 0.50 0 0 0 0 0 0 0 0

F1 // 0.12 // // // // // // // //

Acc: Accuracy, NIR: No Inforamtion Rate

For WP models, when performing on test sets, sample 5 (RMSE = 13.50, R-squared

= 0.36) were the best one in Linear Regression (table 4.40); sample 8 (RMSE = 14.02)

84



CHAPTER 4. RESULTS AND DISCUSSION

and sample 1 (R-squared = 0.31) as in Gini Regression (table 4.42); sample 2 (overall

Accuracy = 0.47) as in Information Gain (table 4.41) and sample 1 (overall Accuracy

= 0.42) as in Gini Classification (table 4.43).

4.4.3 Extended Feature Sets

Multiple Linear Regression

Table 4.44: EFS multiple linear regression in 10 test results

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

R-squared 0.48 0.44 0.25 0.33 0.37 0.18 0.35 0.36 0.5 0.43

RMSE 12.81 12.37 14.68 13.25 14.48 14.14 13.17 13.15 12.17 12.79

MAE 10.06 10.02 11.18 10.57 11.47 11.32 10.02 9.9 9.4 9.67

Decision Tree Information Gain

Table 4.45: EFS decision tree information gain test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Overall accuracy 0.39 0.36 0.39 0.37 0.44 0.42 0.44 0.42 0.45 0.44

p-valueAcc>NIR 0.95 0.65 0.44 0.92 0.87 0.34 0.81 0.34 0.92 0.95

Underload

Accuracy 0.58 0.56 0.59 0.51 0.52 0.55 0.50 0.50 0.57 0.50

Precision 0.57 0.43 0.71 0.14 0.14 0.43 0 0 0.43 0

Recall 0.33 0.27 0.36 0.08 0.2 0.21 0 0 0.33 0

Optimal load 1

Accuracy 0.57 0.56 0.58 0.61 0.59 0.57 0.60 0.60 0.56 0.60

Precision 0.41 0.31 0.38 0.52 0.45 0.34 0.48 0.45 0.28 0.41

Recall 0.4 0.39 0.48 0.54 0.5 0.48 0.54 0.54 0.44 0.6

Optimal load 2

Accuracy 0.56 0.57 0.55 0.55 0.59 0.61 0.58 0.60 0.62 0.61

Precision 0.33 0.38 0.29 0.25 0.54 0.54 0.5 0.46 0.67 0.63

Recall 0.42 0.39 0.3 0.35 0.42 0.51 0.4 0.52 0.48 0.45

Overload

Accuracy 0.50 0.55 0.60 0.55 0.50 0.50 0.60 0.58 0.60 0.50

Precision 0 0.5 0.5 0.5 // 0 0.5 1 0.5 0

Recall 0 0.2 0.5 0.2 // 0 0.5 0.29 0.5 0

Acc: Accuracy, NIR: No Information Rate
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Decision Tree Gini Regression

Table 4.46: EFS Gini Regression test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

R-squared 0.28 0.39 0.26 0.19 0.30 0.15 0.31 0.23 0.16 0.31

RMSE 15.17 12.88 14.32 14.65 14.92 14.67 14.31 14.97 15.26 13.42

MAE 12.01 10.37 11.37 12.42 11.98 11.40 11.91 10.74 11.60 11.10

Decision Tree Gini Classification

Table 4.47: EFS Gini Classification test results of 10 samples

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Overall accuracy 0.29 0.39 0.39 0.34 0.32 0.39 0.37 0.45 0.37 0.31

p-valueAcc>NIR 1 0.92 0.92 0.99 0.99 0.92 0.95 0.65 0.95 1

Underload

Accuracy 0.56 0.61 0.59 0.56 0.58 0.56 0.59 0.58 0.56 0.55

Precision 0.25 0.37 0.32 0.24 0.30 0.27 0.32 0.31 0.27 0.33

Recall 0.71 1 0.86 0.71 0.86 0.57 0.86 0.71 0.57 0.29

F1 0.37 0.54 0.46 0.36 0.44 0.36 0.46 0.43 0.36 0.31

Optimal load 1

Accuracy 0.58 0.52 0.50 0.50 0.58 0.50 0.50 0.54 0.50 0.55

Precision 0.46 0.40 // // 0.40 // // 0.63 // 0.50

Recall 0.38 0.07 0 0 0.48 0 0 0.17 0 0.21

F1 0.42 0.12 // // 0.44 // // 0.27 // 0.29

Optimal load 2

Accuracy 0.50 0.61 0.62 0.61 0.50 0.63 0.61 0.65 0.63 0.57

Precision // 0.54 0.45 0.44 // 0.47 0.44 0.59 0.50 0.37

Recall 0 0.54 0.71 0.67 0 0.75 0.67 0.67 0.71 0.46

F1 // 0.54 0.55 0.53 // 0.58 0.53 0.63 0.59 0.41

Overload

Accuracy 0.53 0.54 0.55 0.50 0.50 0.56 0.53 0.55 0.56 0.50

Precision 0.11 0.14 0.20 0 0 0.22 0.14 0.18 0.15 0

Recall 1 1 0.50 0 0 1 0.50 1 1 0

F1 0.20 0.25 0.29 // // 0.36 0.22 0.31 0.27 //

Acc: Accuracy, NIR: No Inforamtion Rate, //: NaN

For EFS models, When performing on test sets, sample 9 (RMSE = 12.17, R-squared

= 0.50) were the best one in Linear Regression (table 4.44); sample 2 (RMSE = 12.88,
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R-squared = 0.39) as in Gini Regression (table 4.46); sample 9 (overall Accuracy =

0.45) as in Information Gain (table 4.45) and also sample 8 (overall Accuracy = 0.45)

as in Gini Classification (table 4.47).

4.5 Model selection

4.5.1 Within three subjective rating scales

NASA models

The Mental Workload score of NASA models (Linear Regression, Decision Tree Gini

Regression, Actual values) did not significantly change over models (chi-squared =

3.53, p = 0.17).

The chi-squared test for independence indicated no significant difference between

Information Gain NASA models and Actual values (chi-squared = 14.70, p = 0.1).

Similarly, a chi-squared test for independence indicated no significant difference be-

tween Decision Tree Gini Classification NASA models and Actual values (chi-squared

= 13.32, p = 0.15).

On the whole, in testing the difference between models with NASA sets, there was

no statistically significant difference between predicted value and actual values in four

NASA models.

WP models

The Mental Workload score of WP models (Linear Regression, Decision Tree Gini

Regression, Actual values) did not significantly change over models (chi-squared =

2.47, p = 0.29).

A chi-squared test for independence indicated no significant difference between

Information Gain WP models and Actual values (chi-squared = 2.75, p = 0.97). Sim-

ilarly, a chi-squared test for independence indicated no significant difference between

Decision Tree Gini Classification WP models and Actual values (chi-squared = 12.05,

p = 0.21).
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On the whole, in testing the difference between models with WP sets, there was

no statistically significant difference between predicted value and actual values in four

WP models.

EFS models

The Mental Workload score of EFS models (Linear Regression, Decision Tree Gini

Regression, Actual values) did not significantly change over models (chi-squared =

1.68, p = 0.43).

A chi-squared test for independence indicated no significant difference between

Information Gain EFS models and Actual values (chi-squared = 10.01, p = 0.35).

Similarly, a chi-squared test for independence indicated no significant difference be-

tween Decision Tree Gini Classification EFS models and Actual values (chi-squared =

15.14, p = 0.09).

On the whole, in testing the difference between models with EFS sets, there was

no statistically significant difference between predicted value and actual values in four

EFS models.

In each training sets of three instrumental scales, there were four models applied

to see the difference of Mental Workload among ten sample sets. In the event of

Mental Workload as a continuous feature, Linear Regression and Decision Tree Gini

Regression were chosen; and in the event of Mental Workload as a categorical feature,

Decision Tree Information Gain and Decision Tree Gini Categorical were chosen ones.

4.5.2 Between subjective rating scales

Models of Mental Workload as continuous feature

Training results
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Figure 4.37: Training results of RMSE of Mental Workload score boxplots

Figure 4.38: Training results of R-squared of Mental Workload score boxplots
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Figure 4.39: Training results of RMSE of Mental Workload score density plots

Figure 4.40: Training results of R-squared of Mental Workload score density plots
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Figure 4.41: Significance test of difference (lower) & estimates of the difference of

RMSE, R-squared as in Mental Workload score

In the box plots and density plots of RMSE and R-squared (figure 4.37, 4.38, figure

4.39, 4.40), the higher in box plots, the more right-inclined in density plots. With the

training-result that NASALR of RMSE Mental Workload had the lowest error and

EFSLR had the highest R-squared. There were difference between models but how

significantly different was shown in figure 4.41.

As the threshold of significant test 0.05, in terms of RMSE, the model NASALR

had a statistically significant difference (pvalue < 0.001) with NASAGNReg (-1.33),

WPLR (-3.71), WPGNReg (-4.05), EFSLR (-2.11), EFSGNReg (-2.91). The model NASAGNReg

had a statistically significant difference with WPLR (-2.38), WPGNReg (-2.71), EFSGNReg

(-1.58). The model WPLR had a statistically significant difference with EFSLR (1.60).

The model WPGNReg had a statistically significant difference with EFSLR (1.94) and

EFSGNReg (1.14). In terms of R-squared, the model NASALR had a statistically sig-

nificant difference (pvalue < 0.001) with NASAGNReg (0.12), WPLR (0.23), WPGNReg

(0.27), EFSGNReg (0.13). The model NASAGNReg had a statistically significant dif-

ference with WPLR (0.11), WPGNReg (0.15). The model WPLR had a statistically

significant difference with EFSLR (-0.16), EFSGNReg (-0.10). The model WPGNReg

had a statistically significant difference with EFSLR (-0.20) and EFSGNReg (-0.14).

91



CHAPTER 4. RESULTS AND DISCUSSION

Test results

Table 4.48: Test results of Mental Workload score in comparison of RMSE, R-squared

NASALR NASAGNReg WPLR WPGNReg EFSLR EFSGNReg

MeanR-squared 0.272 0.195 0.232 0.246 0.369 0.257

MeanRMSE 12.55 13.39 14.94 14.82 13.30 14.46

Figure 4.42: Test results of RMSE of Mental Workload score boxplots
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Figure 4.43: Test results of R-squared of Mental Workload score boxplots

A Bartlett test was conducted to evaluate the difference of RMSE in 6 models when

treating Mental Workload as a continuous feature. The data of variance in RMSE did

not significantly differ between models of Mental Workload as a continuous feature (p

= 0.12). A one-way between groups analysis of variance was conducted to explore the

impact of models of Mental Workload as a continuous feature on RMSE. There was

a statistically significant difference at the p<0.05 level in RMSE for six models: F =

14.665, p<0.001.

As same for R-squared, the hypothesis test steps proceeded. A Bartlett test was

conducted to evaluate the difference of R-squared in 6 models when treating Mental

Workload as a continuous feature. The data of variance in R-squared did not signifi-

cantly differ between models of Mental Workload as a continuous feature (p = 0.47).

A one-way between groups analysis of variance was conducted to explore the impact

93



CHAPTER 4. RESULTS AND DISCUSSION

of models of Mental Workload as a continuous feature on R-squared. There was a

statistically significant difference at the p<0.05 level in R-squared for six models: F

= 5.553, p<0.001.

As in table 4.48 and figure 4.42, figure 4.43, in comparison to Linear Regression

and Gini Regression within rating scales, Linear Regression was better with a higher

R-squared and lower RMSE. In comparison to Mental Workload score between rating

scales, on the one hand, EFSLR had the highest R-squared (=0.37) which indicated

how close the data are to the fitted regression line or the model fits data; next to

was NASALR (=0.27). On the other hand, NASALR had the lowest RMSE (=12.55),

which emphasizes large individual errors.

Models of Mental Workload as categorical feature

Training results

Figure 4.44: Training results of Accuracy, Precision, Recall of Mental Workload classes

boxplots
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Figure 4.45: Training results of Accuracy, Precision, Recall of Mental Workload classes

density plots

Figure 4.46: Significance test of difference (lower) & estimates of the difference of

Accuracy in Mental Workload level classes
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Figure 4.47: Significance test of difference (lower) & estimates of the difference of

Mental Workload in Precision & Recall

In the box plots and density plots of Accuracy, Precision and Recall (figure 4.44,

figure 4.45, the higher in box plots, the more right-inclined in density plots and con-

versely. With the training-result that NASAInf of Accuracy, Precision and Recall of

Mental Workload classification had the best, next to EFSInf . There was a difference

between models but how significantly different was shown in figure 4.46, 4.47.

As the threshold of significant test 0.05, in terms of Accuracy, the model NASAInf

had a statistically significant difference (pvalue < 0.001) with the difference estimation

of NASAGNClas (0.07), WPInf (0.14), WPGNClas (0.18), EFSInf (0.05), EFSGNClas

(0.10). The model NASAGNClas had a statistically significant difference with WPInf

(0.07), WPGNClas (0.11), EFSGNClas (0.03). The model WPInf had a statistically

significant difference with WPGNClas (0.05), EFSInf (-0.09), EFSGNClas (-0.03). The

model WPGNClas had a statistically significant difference with EFSInf (-0.13) and

EFSGNClas (-0.08). The model EFSInf had a statistically significant difference with

EFSGNClas (0.05). In terms of Precision, the model NASAInf had a statistically sig-

nificant difference (pvalue < 0.001) with NASAGNClas (0.07), WPInf (0.17), WPGNClas

(0.19), EFSInf (0.06), EFSGNClas (0.11). The model NASAGNClas had a statistically

significant difference with WPInf (0.09), WPGNClas (0.12), EFSGNClas (0.04). The

model WPInf had a statistically significant difference with EFSInf (-0.11), EFSGNClas
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(-0.06). The model WPGNClas had a statistically significant difference with EFSInf

(-0.14) and EFSGNClas (-0.08). The model EFSInf had a statistically significant dif-

ference with EFSGNClas (0.05). In terms of Recall, the model NASAInf had a statis-

tically significant difference (pvalue < 0.001) with NASAGNClas (0.07), WPInf (0.14),

WPGNClas (0.18), EFSInf (0.05), EFSGNClas (0.10). The model NASAGNClas had a

statistically significant difference with WPInf (0.07), WPGNClas (0.11), EFSGNClas

(0.03). The model WPInf had a statistically significant difference with WPGNClas

(0.05), EFSInf (-0.09), EFSGNClas (-0.03). The model WPGNClas had a statistically

significant difference with EFSInf (-0.13) and EFSGNClas (-0.08). The model EFSInf

had a statistically significant difference with EFSGNClas (0.05).

Test results

Table 4.49: Test results of Mental Workload classes in comparison of Accuracy, Pre-

cision, Recall

NASAInf NASAGNClas WPInf WPGNClas EFSInf EFSGNClas

MeanAccuracy 0.782 0.714 0.647 0.600 0.734 0.681

MeanPrecision 0.787 0.714 0.620 0.592 0.728 0.675

MeanRecall 0.782 0.714 0.647 0.601 0.734 0.681

A Bartlett test was conducted to evaluate the difference of Accuracy in 6 models

when treating Mental Workload as a categorical feature. There was a statistically

significant difference in data of variance in Accuracy (p < 0.001, df = 23). So, Kruskal-

Wallis test was applied to find some statistically significant differences between models

of the Accuracy of Mental Workload as a categorical feature (p<0.001, Kruskal-Wallis

chi-squared = 141.61, df = 23).

A Bartlett test was conducted to evaluate the difference of Precision in 6 models

when treating Mental Workload as a categorical feature. There was a statistically

significant difference in data of variance in Precision (p < 0.001, df = 23). Kruskal-

Wallis test was applied to find some statistically significant differences between models

of the Precision of Mental Workload as a categorical feature (p<0.001, Kruskal-Wallis

chi-squared = 125.88, df = 23).
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A Bartlett test was conducted to evaluate the difference of Recall in 6 models when

treating Mental Workload as a categorical feature. There was a statistically significant

difference in data of variance in Recall (p < 0.001, df = 23). Kruskal-Wallis test was

applied to find some statistically significant differences between models of the Recall

of Mental Workload as a categorical feature (p<0.001, Kruskal-Wallis chi-squared =

118.41, df = 23).

Table 4.50: Legendary for boxplots of 6 models of Accuracy, Precision, Recall

V1 NASA Information Gain underload V13 NASA Gini Classification underload

V2 NASA Information Gain optimal load 1 V14 NASA Gini Classification optimal load 1

V3 NASA Information Gain optimal load 2 V15 NASA Gini Classification optimal load 2

V4 NASA Information Gain overload V16 NASA Gini Classification overload

V5 WP Information Gain underload V17 WP Gini Classification underload

V6 WP Information Gain optimal load 1 V18 WP Gini Classification optimal load 1

V7 WP Information Gain optimal load 2 V19 WP Gini Classification optimal load 2

V8 WP Information Gain overload V20 WP Gini Classification overload

V9 EFS Information Gain underload V21 EFS Gini Classification underload

V10 EFS Information Gain optimal load 1 V22 EFS Gini Classification optimal load 1

V11 EFS Information Gain optimal load 2 V23 EFS Gini Classification optimal load 2

V12 EFS Information Gain overload V24 EFS Gini Classification overload
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Figure 4.48: Test results of Accuracy of Mental Workload classes boxplots

Figure 4.49: Test results of Precision of Mental Workload classes boxplots
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Figure 4.50: Test results of Recall of Mental Workload classes boxplots

Looking at table 4.49, in comparison to Information Gain and Gini Classification

within each rating scales, Information Gain was better with a higher Accuracy, Pre-

cision, and Recall. In comparison to Mental Workload score between rating scales,

NASAInf was the best having the highest Accuracy (=0.782), Precision (=0.787),

Recall (=0.782) which indicated how optimal the predictive models are; next to was

EFSInf with Accuracy (=0.734), Precision (=0.728), Recall (=0.734).

In figure 4.48, Accuracy or classification accuracy is the number of correct classifi-

cations in the total number on each class within and between models, which was the

highest in NASAInf optimal load 2; and most cases with optimal load 2 in (WPInf ,

NASAGNClas, EFSGNClas), as same optimal load 1 as optimal load 2 in (EFSInf ), op-

timal load 1 in (WPGNClas). In figure 4.49, Precision captures when a model makes

correct prediction, which was the highest in NASAGNClas optimal load 2; also the rest

of all with optimal load 2 in (NASAInf , WPInf , EFSInf , WPGNClas, EFSGNClas). In

figure 4.50, Recall defines how confident that all the instances with a positive target

level have been found, which was the highest in NASAInf optimal load 2; and two
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cases with optimal load 2 in (NASAInf , WPInf , two cases with optimal load 1 in

(EFSInf , WPGNClas), two cases with overload in (NASAGNClas, EFSGNClas).

As the result above, the best model regarding Mental Workload score was Linear

Regression, and regarding classes of Mental Workload was Decision Tree Information

Gain. NASA (G Hart, 2006) showed the best measure between WP and EFS when the

validated indicators had a statistically significant difference among the other models.

4.6 Strengths and limitations of the results

4.6.1 Strengths of the results

The primary strength of the results is the establishment of an interpretable model of

Mental Workload in the third level of education that would be easy to consider the

Mental Workload and student interaction. Consequently, the purpose is detecting and

improving the student performance in the early stage.

The secondary strength is discovering the main factors in third level education,

which affect student Mental Workload. This discovery will be the evidence-based

design for the research relevant to the Cognitive Theory of Multimedia Learning and

active learning in the future.

The final strength of the findings is support of machine learning in feature selection,

which aims at auto-training and testing for more features or more extensive data sets.

4.6.2 Limitations of the results

In the aspect of modeling, there were more domain representations (20 independent

features) in EFS than NASA (6 independent features) and WP (8 independent fea-

tures), the more instances would be needed (larger sample size) in analyzing EFS in

Decision Tree models.

In the aspect of subjective rating scales, WP was used for the overloaded environ-

ment such as working conditions, multi-task jobs. However, the design of Research
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Design & Proposal Writing module did not cause overload state on a student. So,

there may create restrictions of WP subjective assessment. This restriction was also

in the findings in (Luximon & Goonetilleke, 2001) with SWAT assessment techniques.

Also, in Tsang and L. Velazquez (1996) it was suggested that the individual workload

profiles would only have limited predictive value on performance.

Last but not least, the target feature in three subjective rating scales were the

perception of Mental Workload in students, which was uni-dimensional measures. It

was sensitive but not specific to differentiate the difference in a small data set. For

this limitation, the comparison of two target features: the perception of MWL and

the MWL calculated based on its internal factors would be the better solution.
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Chapter 5

Conclusion

5.1 Research Overview

As mentioned in the background, Mental Workload can affect mental state which then

has an impact on task performance or the learners capacity to absorb knowledge. This

study evaluated the Mental Workload on three subjective rating scales in third level

education. From then, some findings are as:

• The Extended Feature Sets which is the mixture of NASA and WP factors with

additional factors showed the potential rating scale in the multi-dimensional

measurement in education;

• With the easy-to-interpret and training, Multiple Linear Regression and Decision

Tree Information Gain will be the driver models for more research in this area.

5.2 Problem Definition

The model trained with Extended Feature Sets was significantly more accurate and

had less errors in predicting perception of Mental Workload than the model trained

with Workload Profile; but not in the circumstance of NASA - Task Load Index. The

reason may be the small sample size of EFS, despite having more features than the

others.
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5.3 Design, Evaluation & Results

Two learning methods applied to the study are error-based and information-based as

Multiple Linear Regression and Decision Tree Information Gain, Decision Tree GINI

Regression, Decision Tree GINI Classification. This study has drawn one point of

attention that having two different models testing the two types of output feature

simultaneously: Linear Regression and Decision Tree GINI Regression trained and

tested on Mental Workload as a continuous feature; Decision Tree Information Gain

and Decision Tree GINI Classification trained and tested on Mental Workload as an

ordinal feature. RMSE and R-squared are useful for assessing the Mental Workload

as continuous feature models; while the Accuracy, Precision, and Recall are for the

Mental Workload as ordinal feature models. The results highlight some points below:

• Mental demand, Temporal demand, Frustration, Effort, Central Processing, Vi-

sual attention and Parallelism were significant factors;

• Decision Tree Information Gain and Linear Regression were the optimal model

to predict Mental Workload as categorical target or continuous target;

• Seeing Mental Workload as a categorical feature, the Accuracy, Precision and

Recall in optimal load 2 were the highest; next to optimal load 1, underload

and overload. However, there were some exceptions in the case of WP Gini

Classification in that precision and recall of optimal load 2 were lower than

optimal load 1. The same situation happened for EFS Information Gain.

5.4 Contributions and impact

The study is neither the novice research nor is it to highlight machine learning meth-

ods. However, the results and findings of this research will contribute to the ground

of Mental Workload research in education as well as suggesting the measurable and

feasible models for machine learning.

In consideration of prediction speed and capacity for retraining, Multiple Linear

Regression and Decision Tree are standards and the ideal suggestion.
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5.5 Future Work & recommendations

The study needs to have more experiments on the other technique, such as Support

Vector Machine or ensemble methods when considering prediction accuracy. Other-

wise, the same method can apply to enlarge sample size for EFS rating scales and

putting the weighted Mental Workload measured by internal factors in models.

In addition the study could be useful for Human-centered computing by exploring

Interaction design theory, concepts & paradigms for Interaction design applications.

The most applicable idea is to create a predictive model including factors to reduce

student’s risk of failure from early detection of increasing Mental workload.
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Appendix A

Additional content

A.1 NASA Task Load Index

A.1.1 Data description

Figure A.1: Shapiro-wilk test of NASA normality
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APPENDIX A. ADDITIONAL CONTENT

A.1.2 Model Training

Linear Regression

Figure A.2: Variable importance of NASA in model

Decision Tree Information Gain

Figure A.3: NASA decision tree trained by Information Gain (N=154)
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Figure A.4: NASA decision tree Information Gain with cross-validation (N=154)

Figure A.5: NASA decision tree Information Gain trained by Grid, tuning parameters

and cross-validation on actual sample (N=154)
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Figure A.6: NASA decision tree Information Gain trained by Grid, tuning parameters

and cross-validation on upSampling (N=154)

Decision Tree Gini Regression

Figure A.7: NASA model decision tree Regression trained by Gini Index (N=154)
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Figure A.8: NASA decision tree Regression trained by Gini Index (N=154)

Figure A.9: NASA decision tree Gini Regression with cross-validation (N=154)
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Decision Tree Gini Classification

Figure A.10: NASA model decision tree Classification trained by Gini Index (N=154)

Figure A.11: NASA decision tree Classification trained by Gini Index (N=154)
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Figure A.12: NASA decision tree Gini Classification with cross-validation (N=154)

A.2 Workload Profile

A.2.1 Data description

Figure A.13: Shapiro-wilk test of WP normality
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A.2.2 Linear regression

Figure A.14: Variable importance of WP in model

A.3 Extended Feature Sets

A.3.1 Data description

Figure A.15: Shapiro-wilk test of EFS normality
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A.3.2 Linear regression

Figure A.16: Variable importance of EFS in model
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