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ABSTRACT

The rapid popularisation of the Internet has increased the volume of data collected by business,

industry and society. A need has arisen in new ways of marketing and user targeting for the e-

commerce websites in development and revenue increasing tasks. The proper usage of

customer’s personal information has had a significant impact on business activity and sales, this

personal information relates mainly to customer purchases and viewing history. Personal

recommendations from retail sale sites such as Amazon and eBay are suggesting products for

online shopping, reddit.com suggesting interesting websites, and last.fm, Netflix helping people

to find movies and music have shown an increase in company profits

The aim of this project is to build a recommender system for an online website based on an

empirical study using real-world data. The real world data was taken from the website

Www.kiwi.kz which is an online video sharing website, providing online video, broadcast and

radio to users since 2009.

The research problem sought to develop the most suitable recommender system for an online

video sharing website and to evaluate the effectiveness of this model on the real world data. This

research attempts to develop the recommender system which will suggest possibly interesting

video clips for users on an online video sharing website. It also proposes methods and techniques

that can be used to implement recommender systems and evaluate its effectiveness on an offline

experiment. This project is based on performing an empirical evaluation to establish whether a

recommender system can be developed that will predict whether people will like a particular

video.

Key words: Recommender systems, collaborative filtering, content-based filtering, text analysis,

similarity metrics, prediction, Python, video, user-item matrix, ratings
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1. INTRODUCTION

1.1 Introduction

The rapid popularisation of the Internet has increased the volume of data collected by business,

industry and society. Companies are drowning in tonnes of data, and identifying valuable and

explicit knowledge from that data remains a key challenge.

A need has arisen in new ways of marketing and user targeting for the e-commerce websites in

development and revenue increasing tasks. The proper usage of customer’s personal information

has had a significant impact on business activity and sales, this personal information relates

mainly to customer purchases and viewing history. If this information is used correctly it can be

used to increase revenue and customer satisfaction.

According to Akioka S. et al (2008), “The quick spread of web services has triggered the flood

of information, and requests people to choose a valid set of queries for useful information

retrieval in order to extract what they really need”. Recommender systems aim to provide a

service, which suggests to customers the “items” which they could find interesting or useful for

themselves. A proper implemented recommender system could increase both companies business

and customer’s satisfaction, whereas the bad recommendation system can push away customers.

Youtube, is available on the internet, it allows people all over the world to share their personal

videos, it is estimated that Youtube is uploading more than 60 hours of video every minute

(January, 2012). The success of Youtube has triggered competition among other websites

providing similar services.

There are thousands of e-commerce websites and these sites make their money from customers,

it is important for e-commerce sites to provide a good quality service and maintain customer

satisfaction so that those customers will continue to use the site. Users have also become more
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demanding, by expecting fast connection, a wide range of goods and services that are high

quality. Good personal recommendations which suggest personal choices have become a means

of increasing revenue for e-commerce sites. Personal recommendations from retail sale sites such

as Amazon and eBay are suggesting products for online shopping, reddit.com suggesting

interesting websites, and last.fm, Netflix helping people to find movies and music have shown an

increase in company profits. Recommender systems as part of predictive analysis can be

represented as a combination of different fields of collective intelligence and computer science

such as machine learning, data mining, statistics, information retrieval and collaborative filtering.

The aim of this project is to build a recommender system for an online website based on an

empirical study using real-world data. The real world data was taken from the website

Www.kiwi.kz which is an online video sharing website, providing online video, broadcast and

radio to users since 2009. Kiwi.kz is one of the most popular websites in Kazakhstan with

around 450 000 registered users who can upload and share their videos, Kiwi.kz claims to have

200 000 unique users each day. Kiwi.kz provides opportunity to users to express their attitude to

particular videos by “liking” them, add as their favourites and leaving comments. A

recommender system suggesting personal video recommendations for users is an up-to-date

function for helping to increase user choice which improves user satisfaction and more

importantly company revenue.

The research problem sought to develop the most suitable recommender system for an online

video sharing website and to evaluate the effectiveness of this model on the real world data

provided by the kiwi.kz. This research attempts to develop the recommender system which will

suggest possibly interesting video clips for users on an online video sharing website. It also

proposes methods and techniques that can be used to implement recommender systems and

evaluate its effectiveness on an offline experiment. The technical implementation of the system

consists of a combination of machine learning models having for inputs data of user’s video

watching history. The impact of particular attributes of user’s behaviour such as “liking” the



3

video, and subscribing to the video have been analysed. The desired output is a recommender

system, consisting of the most valuable attributes combination, which has shown the highest

performance on the real world data available from the website.

This project is based on performing an empirical evaluation to establish whether a recommender

system can be developed that will predict whether people will like a particular video. The tasks

of the project include:

1. Review and analysis of the existing recommender system algorithms and methods

2. Knowledge representation: identifying the most valuable attributes and constructing the

data set from available data for the recommender system

3. Recommender system’s design: selecting the most appropriate similarity metrics in

collaborative filtering.

4. Evaluating the performance of the different techniques and analysing the trade-off

between the computation time and prediction score.

1.2 Research design

In order to arrive at the results and conclusions the research is based on empirical study. The

experiment involved the analysis of a given data set and the evaluation of the performance of the

data using programming tools such as Python and R. For the project’s experiment the data

mining methodologies in data preparation, data transformation and data partitioning have been

applied. Collaborative filtering techniques and evaluation metrics have been used to identify the

most suitable model throughout the experiment.

The project included:

- Data preparation and data transformation tasks such as data analysis, merging data as

a data matrix and attribute selection



4

- System design tasks including data base and programming tools selection, machine

learning and collaborative filtering techniques selection, and data partition selection

for data training and testing.

- Evaluation metrics selection for results analysis and contribution

1.3 Challenges

There are a number of challenges facing this project:

 The project requires a significant level of programming skills.

 The project requires a high level of computation power in terms of the volume of

data to be analysed and the time consumption involved.

 The data was from a website based in Kazakhstan and this meant that the textual

data contained different encodings which caused some problems.

1.4 Organisation of the dissertation

The dissertation aims to analyse the existing research in the area and to design and implement an

experiment which applied the gained knowledge to the real world data. The dissertation is

organised in the following way:

Chapter 2 – Literature review and Background research

This chapter presents an overview of the domain of recommender systems from the

technological and business sides. The definitions of information and knowledge are presented.

Recommender system functions, used data and knowledge sources, different approaches of

designing recommender systems such as collaborative filtering, content-based and hybrid models

are analysed. An overview of machine learning techniques and collaborative filtering techniques,

the use of these techniques and examples of usage of these techniques in video recommender
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systems are given. Collaborative filtering techniques are covered in more detail with an analysis

of approaches and similarity metrics used in existing projects. Collaborative techniques are the

most popular techniques in video recommender systems.

This chapter also examines text analysis and includes a brief explanation of the domain of text

mining, and how textual analysis could decrease the problem of data sparsity and increase

accuracy in recommender system being implemented on this project.

Chapter 3 –Experiment design and methodology

This chapter describes the design of the recommender system, the features and organisation of

the data from the Kiwi.kz website and explains the experimental methodology. The structure of

the used data set which has been created from the analysis of the original data and how the

attributes of this data set impacted the performance of recommender system are discussed in this

chapter.

The identification of proper similarity metrics and identification of their performances on the

original and constructed data set are covered in this chapter. In summary, the main attributes

used to create recommender system are identified and discussed.

Chapter 4 – Evaluation and Results

This chapter aims to identify the best approach for building a video recommender system based

on real data by evaluating and comparing the performance of different techniques. The

evaluation of the model is based on the accuracy of the results achieved. Results based on the

experiment are described in this chapter. The best performed method and the structure of the data

on which the model was based is discussed. The assumption and challenges during the

evaluation processes briefly discussed in the summary.
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Chapter 5 – Conclusion

This chapter includes the general overview of the results of the experiment and conclusions of

the research. The recommendation for future research in the area and challenges throughout the

research are given.
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2. LITERATURE REVIEW AND BACKGROUND RESEARCH

2.1 Introduction

This chapter provides the introduction to the recommender system domain, their types and

techniques used to implement them.

Everyday people express different opinions about different things on the internet by liking,

disliking and so forth. People rely on recommendations from other people either by word of

mouth, recommendations in newspapers, TV and so forth. Also people tend to like things that

look familiar to other things they like before. If a person likes to watch “Godfather” and

“Scarface”, it is likely that a person would like to watch another movie that includes acting by Al

Pacino. This kind of information can be used to make a prediction such as likes or dislikes.

Recommendations are all about predicting patterns of taste, and using them to discover new and

desirable things you did not already know about (Owen et al. 2012, p.14).

Recommender Systems (RSs) are software tools and techniques providing suggestions for items

that may be used by website users. Miller et al. (2004) define recommender systems as “a

popular technique for reducing information overload and finding products to purchase”.

According to Melville and Sindhwani (2010) the goal of recommender system is “to generate

meaningful recommendations to a collection of users for items or products that might interest

them”. The suggestions are related to different decision-making processes, so users are directed

toward those items that most met the criteria of user’s interest (Burke 2007). Recommender

systems have been used in various applications and provide recommendations as to what movies

to watch (like Netflix, IMDB, MovieLens), what books to read (like Bookreads, Amazon), what

web pages to look at (like Reddit, delic.io.us), or what videos to watch next (Youtube). The

“thing” or “item” suggested by a recommender system is depended on area of use of RS.
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The design of recommendation engines depends on the domain and the particular characteristics

of the data available (Melville and Sindhwani 2010). According to the design, graphical user

interface and specific types of “items” RSs use the various types of techniques to generate

recommendations. The main aim of RS is to provide recommendations that possibly help users

more effectively identify content of interest from a potentially overwhelming set of choices

related to their interest.

Increasing amounts of available information on the internet and growing popularisation of e-

commerce Websites, especially large online shopping companies such as Amazon and eBay

overwhelm customers with tonnes of information. It is important to provide quick and accurate

recommendations among the variety of choices to attract the interest of customers and bring

benefits for companies.

2.2 Recommender System Function

The use of recommender systems varies according to area of business using it. To identify the

aim of using recommender system there should be clear definitions and purposes of

recommender system role in company business strategic objectives. For instance, a movie

recommender system (such us Netflix, IMDB) suggests to customers which kind of movies to

watch, which would increase the interest on the unwatched movies by users and therefore will

increase the revenue to the companies. In general, there are different reasons for recommender

system use in business.

The five main functions of recommender system engines includes (Ricci et al., 2011, p.5-6):

Increase the number of items sold. One of the most important functions in recommender system

is to be able to sell additional set of items compared to those usually sold without any kind of
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recommendation. It is achieved by recommending items that a user will find interesting and

suitable for them.

Not only commercial organisations can benefit from recommender systems, non-commercial

organisations also have similar goals, even if they do not measure it by profit. It is close to this

research project, which is for a recommender system for an online video sharing website. As an

example there is the Youtube recommender system, which provides video recommendations to

increase the time user spent on a website.

Sell more diverse items: Suggesting items for users that might be hard find without precise

recommendations. Suggesting more suitable personal recommendation is of more benefit that

suggesting the top interested or most popular items. Personal behaviour analysis helps

recommender system to identify more interesting items for users among wide range of items.

Increase the user satisfaction: Well performed recommender system could not only satisfy user

needs, it could be a edge point in user service satisfaction. More precise personal

recommendations increase interest in the project, and user will find a service as interactive

system that could find accurate and effectively suggest items that user needs or finds interesting.

Increase user fidelity: As a well-designed recommender system performs well and produces

accurate personal recommendations, a user would find a service or website more reliable and be

more loyal to a particular website. Recommender systems identify customers and treat them as a

valuable visitor. As a result, the more time a user will spend on a website, the more accurate and

effective recommendations website will produce to the users.

Better understanding of what the user wants: The importance of information collected and

analysed by a recommender system can be used by a company in different other ways. The

analysis of the feedback from the given recommendations to a user helps recommender system to

more deeply understand the user needs.
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Resnick and Varian (1997) classify recommender systems according to their technical

characteristics, domain space characteristics and evaluation criteria. The analysis describes the

impact of a complexity of recommender system structure influence to the cost of maintaining it.

The role of recommender system is to edge an advantage for businesses in achieving their goals.

Different purposes of using recommender system have been mentioned above and different

technological methods of implementing and designing them will be discussed in the next

sections.

2.3 Data and Knowledge Sources

Data is the main source of knowledge for recommender systems. Recommender systems obtain

various kinds of data in order to build recommendations. According to available data different

techniques can be used to design RS. For example collaborative filtering techniques can be used

with the rich historic data about users past behaviour, whereas content-based filtering techniques

are more reliable on a data with good information about “items” and with less information about

users. In general recommender system uses data which can be defined as three main objects,

which are “items”, “users” and transactions (relations between users and items) (Ricci et al.,

2011, p.8-10). The objects recommended to the users are items. The items can have varying

values (positive or negative) an item with a positive value is recommended to other users. The

users themselves can vary according to the goals and functions of the recommender systems.

Transactions are the recorded data of user interactions within the system, consisting of important

information about users personal preferences and behaviour.

The most popular transactional data that recommender system collects are ratings. The collection

of ratings is an explicit source of information for designing recommender system. The most

popular recommender systems use collaborative filtering techniques, where recommendations

are based on the rating.
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The ratings are based on the opinions of users to particular items and can either be explicit in the

form of scales, such as 1-5 ratings, and in implicit form such as purchases or click-through (Su

and Khoshgoftaar 2009). Explicit forms of ratings such as 1 to 5 scale, express opinions of users

to particular items in a numeric form, where 1 could be related to not interested/very bad and 5

could be very interesting/the best. The data about user’s item purchases usually converts into a

user-item matrix, where values represent user’s ratings, and missing values are items not rated by

users. In Table 2-1, an example of a user-item matrix, where 1 is a rating for videos liked by

users, 0 is not strong enough to represent liked videos, and missing cells are unwatched videos.

Video 1 Video 2 Video 3 Video 4 Video 5

User 1 1 0 1

User 2 1 1 0

User3 0 1 0

User4 0 0 1 1

Table 2-1 Example of user-item matrix on binary ratings

2.4 Recommendation Techniques

The core function of recommender systems is to identify the useful items for the user. The

system must predict items which a user may find interesting. Prediction may be based on the

correlation between user’s preferences to the same items, user’s purchase history and so on.

Recommendation techniques based on knowledge sources divided into four different classes

(Burke 2007):

Collaborative: The main source of information in collaborative filtering techniques is user

ratings. Recommendations are generated based on the similarity between users rating history.

According to Resnick et al. (1994) “Collaborative filtering help people make choices based on

the opinion of other people. Predicting is based on the heuristic that people who agreed in the
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past will probably agree again”. Melville and Sindhwani (2010) suggest that collaborative

filtering can perform in domains where there is much content associated with items, or where the

content is difficult for a computer to analyse, and that CF has the ability to provide serendipitous

(lucky) recommendations, which can recommend items that are relevant to the user, but do not

necessarily match with content from the user’s profile.

Content-based: The system generates recommendations from the features associated with

products/items the user has rated highly. The system tries to predict and suggest items that are

similar to those which user has liked or purchased before. The main idea of content-based

recommender system is to compare preferences and interests of a user profile with the attributes

of a content item, to recommend to the user new interesting items. The content-based approach

has its roots in the information retrieval (IR) community, and employs many of the same

techniques (Balabanovic and Shoham 1997).

Demographic: A demographic recommender provides recommendations based on a

demographic profile of the user. Recommendations produced by a recommender system based

on combination of information about demographic area of a user and user’s rating history, for

example a recommendation for a user can be varied depending on the language, country or age

of the user. Structured demographic information about users and the characteristics of web pages

can be treated as a main source of information in demographic recommender systems.

Pazzani (1999) proposed an alternative approach for demographic recommender systems.

Proposed approach minimising the effort of obtaining demographic information and leveraging

work on text classification to classify users with Winnow algorithm to learn the characteristics of

web pages associated with users.

Knowledge-based: Knowledge-based systems recommend items based on specific domain

knowledge about how certain item features meet users’ needs and preferences and, ultimately

how the item is useful for the user. A system suggests products based on inferences about a
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user’s needs and preferences. Knowledge-based recommender systems are not dependent on

large amount of statistical data about particular rated items or particular users, and systems need

only enough knowledge to judge items as similar to each other (Burke 2000).

Additional classes of recommender systems have been proposed by (Ricci et al., 2011, p.13-14):

Community based: This type of system recommends items based on the preferences of the users

friends and it is related to the social recommender systems, this type of recommender system

acquires information about user’s friends’ preferences and build models based on user’s friend’s

ratings. Evidence suggests that people tend to rely more on recommendations from their friends

than on recommendations from similar but anonymous individuals. The advantages of the

community-based approach of dealing with a new user or a new item and improving

recommendation accuracy has been analysed by Arazy et al., (2009).

Hybrid recommender systems:

This type of recommender system is based on a combination of two or more techniques

mentioned above. The advantage of this system is that one type of system is used to fix the

disadvantages of the other system, so they can outperform using only one of them.

Cotter and Smyth (2000) proposed an approach which allows collaborative filtering and content-

based methods to produce separate ranked lists of recommendations, and then merge their results

to produce a final list. Another approach proposed by Claypool et al., (1999) was combination of

the two predictions using an adaptive weighted average, where the weight of the collaborative

component increases as the number of users accessing an item increases. Balabanovic and

Shoham (1997) proposed the hybrid system called Fab using both collaborative and content-

based approaches, which has benefits in 1) scaling (to an increasing number of users and an

increasing number of items) and 2) automatically identifying emergent communities of interest



14

in the user population. The hybrid system of collaborative and content-based filtering (Debnath

et al., 2008) has shown better results when compared to pure content-based method.

2.5 Collaborative Filtering

The term “collaborative filtering” was first introduced by Goldberg et al., (1992). The introduced

mail system called Tapestry, helped users to identify relevant and interesting mails in tonnes of

mails. The main aim of collaborative filtering is to predict a list of items to a particular user (the

active user) based on other users votes with similar taste in past (the user database). Resnick et

al. (1994) defines collaborative filters as a tool which helps people make choices based on the

opinion of other people and proposes a collaborative filtering based system called GroupLens,

which helps people to find articles which they like in the huge stream of available articles.

Sarwar et al., (1998) gives definition of collaborative filtering as “system helping address

information overload by using the opinions of users in a community to make personal

recommendations for documents to each user”. Breese et al, (1998) use collaborative filtering

term as equal to “recommender system”, and define it as “use of database of user preferences to

predict additional topics or products a new user might like”.

Collaborative filtering collects user’s feedback to exploit similarities in user expression

behaviour between users. Miller et al. (2004) argue that the main assumption of collaborative

filtering is that two users (user A and B) rate number of items (n items) in similar way, or have

similar behaviours (like watching, listening, reading), therefore will rate or act on other items

similarly. Therefore, the recommendation to a user is based on the similarities between other

users with the high degree of similarity in the past. Recommendations based on collaborative

filtering techniques use the data from a database of preferences for items by users. Usually

preference database contains a list of users n {u1, u2, ..., un) and a list of items m {i1, i2, ..., im),

and each user ui has a list of items Iu, which user has rated, or expressed their attitude to
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particular item. Collaborative filtering algorithm uses the preference data and produce

recommendations based on the similarities between users (user based approach) or between

items (item based approach).

Collaborative filtering is the most popular technique used in recommender system, and most

popular services such as Amazon, Netflix, eBay and so forth use collaborative filtering

techniques in their systems. Collaborative filtering provides three key advantages over content-

based filtering: 1) support for filtering items whose content is not easily analysed by automated

processes; 2) the ability to filter items based on quality and taste; 3) the ability to provide

serendipitous recommendations (Herlocker et al, 1999). Rashid et al, (2005) argues that the

advantage of collaborative filtering is in users opinion based decisions. Collaborative filtering

interpret information that are formal, quantitative and observed and analyse it directly through

data. However, there are remaining challenges in the collaborative filtering recommender

systems. The two fundamental challenges remain in collaborative filtering (Sarwar et al, 2001).

Firstly, the challenge is improving scalability of collaborative-filtering algorithms.

Existing algorithms work well with tens of thousands of users, but the reality demands fast

algorithm for computation for millions of potential neighbours. The fast search requires reducing

scalability in neighbour identification, which affects to the result of recommendations. The

second challenge is to improve the quality of the recommendations for the users.

Recommendations must be trustful and help users to find item which they might like. More

additional challenges in collaborative filtering and their characteristics include (Su and

Khoshgoftaar 2009):

Data sparsity challenge: Recommendations for collaborative filtering are based on user-item

matrix, which is in reality very sparse. The difficulty of providing recommendations to a new

user or item due to the lack of information about them is called cold start problem. New items
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need to be rated before being recommended and new users need to purchase items to create

personal history to allow providing recommendations to them.

Associations: The problem with the same items with different names or entries is refers to the

problem of synonymy. Most recommender applications are unable to identify latent associations

and treat them as different items.

The challenges of “gray sheep” and “black sheep” refers to the opinions of some group of people

whose taste are almost opposite to the most people (black sheep) or do not consistently agree or

disagree with any group of people (gray sheep).

The problem of shilling attacks refers to the problem, where user may express purposely their

opinions by giving positive recommendations to the products they are related to, and negative

recommendations to the products of competitors.

Collaborative filtering according to approaches uses in producing recommendations is divided

into two main categories: Memory-Based and Model based algorithms (Melville and Sindhwani

2010; Sarwar et al, 2001; Segaran 2007).

2.5.1 Memory-based algorithm

Memory-based algorithms or neighbourhood based algorithm make predictions based on user-

item database, where a prediction to the active user is based on a weighted combination of

ratings from a group of users similar to the active user on user-item database. Recommender

system use prediction techniques to find a set of users, known as neighbours, which have a

similar profile history to the target user. The k-nearest neighbour algorithm is the most widely

used approach in memory-based collaborative filtering.

The memory-based algorithm consists of 3 steps (Melville and Sindhwani 2010):
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1. Assign a weight to all users with respect to similarity with the active user.

2. Select k users that have the highest similarity with the active user (also called as the

neighbourhood)

3. Compute a prediction from weighted combination of the selected neighbours’

ratings.

In step one, the measure for the weight w(a,i) between the active user a and user i can be

any similarity or correlation measures such as Pearson correlation, Euclidean distance or Jaccard

distance. Next, the number of users with the highest similarity is chosen. In the step three,

prediction computed as the weighted average, and equation (1) can be used.

Breese et al., (1998) suggested that the predicted rating of the active user for item is a

weighted sum of ratings of the k-nearest neighbours.

puj = Ra + k∑n
i=1w(a,i)(Ri,j-Ri) (1)

Where paj predicted rating for item j, n is the number of users with non-zero weights, Ri,j a

set of ratings corresponding to the rating for user i on item j.  w(a,i) reflect similarity, correlation

or distance between k neighbours for each user i and the active user a.

Recommendations and predictions for the target user are based on the preferences of

neighbours by applying different algorithms on the neighbours profile data.

2.5.1.1 Similarity metrics

Similarity between two users or items can be measured by treating each document as a vector of

ratings for items. Similarity can be measured by similarity metrics such as Pearson correlation,

Euclidean distance or Jaccard index. Pearson correlation is widely used in most existing

recommender systems (Linden et al., 2003; Resnick et al., 1994; (Sarwar et al, 2001)) and
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according to Segaran (2007) Pearson correlation has better results over Euclidean distance in

situations where the data is not well normalised.

Pearson Correlation

Pearson correlation coefficient was first used in collaborative filtering for GroupLens project

(Resnick et al., 1994), where was defined as the basis for the weights. Pearson correlation is a

similarity between two users u and v, and is measure of how well two sets of data fit on a straight

line. The formula of Pearson correlation is:

w(u,v) =(∑iϵI(Ru,i –Ru) (Rv,i –Rv))/(√ (∑iϵI(Ru,i –Ru)2)√ (∑iϵI(Rv,i –Rv)2) (2)

Where the i ϵ I summations are over the items that both the users u and v have rated and Ru is the

average rating of the co-rated items of the uth user (Su and Khoshgoftaar 2009).

For item-based algorithm the formula of Pearson Correlation will be:

w(i,j) =(∑uϵU(Ru,i –Ri) (Ru,j –Rj))/(√ (∑uϵU(Ru,i –Ri)2)√ (∑uϵU(Ri,j –Rj)2) (3)

where u ϵ U is a set of users who both rated items i and j, Ru,i is the rating of user u on item i, Riis

the average rating of ith item by those users.

Euclidean_distance

To identify neighbours in dimensional space, Euclidean distance (or Pythagorean distance) can

be used. Euclidean distance (dE) defined by equation 4 (Deza 2009):

du,v = ||u − v||2 = √((u1 - v1)2 + ... + (un - vn)2) (4)

where u and v are two users, and u1... un, v1... vn are ratings of two users to the same items

respectively. du,v gives the numeric value, which represent the distance between two users in

dimensional space. The less value of du,v gives close neighbours, therefore two users possibly

have high rate of similarity.

Jaccard index

The Jaccard index, also known as the Jaccard similarity coefficient, is used to measure similarity

and diversity of sample sets. The Jaccard coefficient defined as the size of intersection of two

sample sets divided by the size of the union of the two samples.
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J(u,v) = | u ᴗ v | / | u ᴖ v | (5)

Where | u ᴗ v | is a set of videos rated same by user u and v, and | u ᴖ v | is a set of co-rated

videos by user u and v. Dissimilarity between two sample sets is called Jaccard distance, and

measured by formula

Jd(u,v)= 1- J(u,v) = (| u ᴗ v | - | u ᴖ v | ) / | u ᴗ v | (6)

For example, Jaccard distance between user 1 and 2 from Table 1 will be J(1,2)=0.5, because

user 1 and 2 co-rated videos 1 and 3, and gave same rating only for first video. Consequently,

jaccard distance between user 1 and 2 is Jd(1,2)=0.5.

2.5.1.2 User-based v Item-based approach

Memory based approaches can be divided into user-based approaches and item-based

approaches. Both approaches use the same memory based algorithm described above. In the first

step of user-based approach the unknown rating is predicted by averaging the weighted known

ratings of the test item by similar users, whereas in item-based approach the unknown rating is

predicted by identifying similar items.

User-to-User

To predict ratings for videos not yet watched by an active user, a table of k neighbours can be

build. The table includes ratings of neighbours for videos the active user has not watched yet and

the similarity between the active user and the nearest neighbours. The process of predicting

rating includes 2 steps:

1) The ratings of neighbours are multiplied by the similarity, so a neighbour who is similar

to the active user will contribute more to the overall score than a neighbour with a low

similarity.
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2) The sum of the rating multiplied by similarity is divided by the sum of all the similarities

for neighbour rated particular video. The result produced by the division gives the

predicted rating.

Item-to-Item

To generate prediction based on Item based approach, User-Item matrix can be reversed, and

similarity between items first need to be computed. Table 1 need to be reverse as in Table 2-2

User1 User2 User3 User4

Video1 1 1 0

Video2 0 0

Video3 0 1 1

Video4 0 1

Video5 1 0 1

Table 2-2 Example of user-item matrix for item based approach

To predict rating for users who did watched video yet for video1, the same methodology used for

user-based approach can be applied.

Both approaches use the data from user-item matrix to predict unknown ratings by identifying

similar users or similar items. Recent research have found the advantages of an item-based

approach over a user-based approach (Linden et al., 2003; Sarwar et al., 2001.; Herlocker et al.,

1999; Breese et al., 1998). Popular e-commerce websites such as Amazon and eBay use the

item-based approach as a core method in their recommender systems (Linden et al., 2003;

Melville and Sindhwani 2010).

2.5.2 Model-based algorithm

A model based approach uses training data to recognise complex patterns and generate a model

that is able to make intelligent predictions for the ratings for items that a test user has not rated
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before. The model based collaborative filtering algorithms use different machine learning

algorithms such as Bayesian network, decision trees, clustering, regression, and rule based

approaches (Su and Khoshgoftaar 2009; Mobasher et al., 2006; Breese et al., 1998).

The Bayesian network model formulates a probabilistic model for collaborative filtering problem

(Su and Khoshgoftaar 2009; Breese et al., 1998). Clustering models treat for collaborative

filtering as a classification problem, as grouping users with a high degree of similarity into

clusters, and computing the conditional probability of an estimated rating for the user (Sarwar et

al., 2001; Breese et al., 1998). Rule based approaches use association rule discovery algorithms

to identify an association between items purchases at the same time and then generates item

recommendation based on the strength of the association between items (Sarwar et al., 2001).

Su and Khoshgoftaar (2009) suggest that model based algorithms may not be practical for

extremely sparse data. An approach of reducing dimensionality or transforming multiclass data

into binary may decrease recommendation performance, and model-building expenses may be

high. Therefore, there is a trade-off between prediction performance and scalability for many

algorithms. Wang et al., (2006) argue that the advantage of the memory-based methods over

their model-based alternatives is that less parameters have to be tuned; however, the data sparsity

problem is not significantly handled.

2.5.3 Data sparsity

One of the key challenges in the collaborative filtering recommender system is data sparsity. The

data sparsity is a measure of how much useful information is available in the data. In this

research, data sparsity is measured as the percentage of all possible ratings that exist in the

matrix.

Data sparsity = total number of ratings / (total number of users * total number of videos (7)
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The alternative measure proposed by (Sarwar et al., 2001) called sparsity level measured by

equation 8:

sparsity level =  1 – (nonzero entries)/(total entries). (8)

In other words, spasity level = 1 – data sparsity.

Most recommender systems suffer from the data sparsity problem, and it is still a key challenge

for collaborative filtering recommender system (Herlockeret al., 1999; Breese et al., 1998). Data

sparsity in the experiments of previous work in recommender systems has shown the degree

between 1% and 10% (Demiriz 2004; Sarwar et al., 2001).

2.6 Content – based approach

Content-based filtering is a widely used approach in designing recommender systems. The

algorithm of the system is based on the characteristics of the items, and similar items to the items

that were previously liked by the user are recommended. The assumption in content-based

filtering is that items with similar features will be rated similarly. An example of movie

recommendation as in an introduction can describe the process of content-based recommender

system. In order to recommend movies to user a, the recommender application searches for the

similarities among movies the user has highly rated/watched/favourite in the past. The movies

previously unseen and with a high degree of similarity to movies from user profile would be

recommended to user. Analysis of the text documents which provide the content and finding

regularities in this content are the main issues in content-based algorithms. To evaluate the

similarity between items every item is represented by a feature vector or an attribute profile.

Machine learning techniques such as Bayesian classifiers, decision trees, and cluster analysis are

used as specialised version of classification learners, in which the goal is to learn a function that

predicts which class a document belongs to. Other Projects such as Pandora (Howe 2010), Jini
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(Joshi and Xu 2003) and Internet Movie Database (Debnath et al., 2008) use pure content-based

approach in their recommender systems.

One of the examples of a content-based approach used in business is Pandora. Online radio

provider Pandora uses content-based approach in their recommender system called The Music

Genome Project. In their recommendations, the recommender system uses the properties of a

song or artist, and recommends by matching up the user’s artist and song likes with other songs

that are similar. Even though the method of recommendations employed by Pandora appears to

be successful, there is a key challenge for Pandora in classifying songs in their database and

building their musical taxonomy. The major issue with the method is scalability. The author

suggests few ways to solve the problems such as speeding up the manual classifications,

automate the classifications and to determine a trusted way for more people to contribute ratings.

But the most promising strategy according to is allowing users to contribute classifications in

line with a more collaborative filtering strategy. These issues are the key to moving forward to

maintain their recommendation quality while scaling their music library (Howe 2010).

Mooney and Roy (1999) introduced content-based book recommender system called LIBRA.

The database of books information from Amazon.com was used in the experiment. Libra uses a

naive Bayesian text classifier according to its better results than other methods. The basic results

of the experiment were quite encouraging. In order to analyse the results, results tested on the

data with combination of collaborative filtering techniques. The experiment results have shown

that using collaborative content demonstrated significant advantages according to one or more

metrics. The author suggests that information obtained from collaborative methods can be used

to improve content-based recommending.

The advantages of content-based techniques over collaborative-filtering include (Ricci et al.,

2011, p.78-80).
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User-independence: Content-based recommenders use only the user’s own ratings, whereas

collaborative filtering build their recommendations based on the data from other users to

calculate similarities, estimate ratings and recommend items.

Transparency: The way a recommendation appears recommendation in the recommendation list

can be explained easily in content-based filtering by listing features or descriptions of the

recommended items. Those explicit features tend to promote trust in a recommender system,

whereas collaborative systems are black boxes, where an explanation of an appeared

recommendation is based on the taste of similar user.

New item: Ability to recommend new items which have not yet rated by other user is another

advantage of content-based systems. Therefore, content-based filtering systems do not suffer

from a first-rater problem. Collaborative filtering systems require items to be rated by a number

of users before recommending it to others.

The disadvantages of content-based techniques over collaborative-filtering include (Ricci et al.,

2011, p.80-82).

Limited-content analysis: Information about item features could not be enough to diversify the

items according to the interest of the user. If the analysed content does not contain enough

information to discriminate items the user likes from what the user does not like, the system

cannot provide reliable suggestions.

Over-specialisation: The content-based method does not find unexpected items. The system

analyses the items and compares them to the item from user history, therefore recommends items

similar to the items user previously liked, and produces recommendations with a limited degree

of novelty. This drawback also called a lack of serendipity.

Hiralall (2011) suggests that the advantage of the content-based approach is that approach does

not need knowledge about the domain. Broadly speaking, as this approach uses item features and
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compares it with other items, it does not matter what the items is to give recommendations.

Attribute representation is very important in content-based approach, and an approach works

well if the items can be properly represented as a set of features.

There are a number of limitations of content-based systems (Shardanand and Maes, 1995;

Balabanovic and Shoham, 1997). First of all, not all information is capable of useful feature

extraction. Feature extraction in fields such as music, movie cannot extract all the valuable

information using current technology. Inability of the system to evaluate aesthetic qualities of

information is also influence to the feature extraction task. Items must be of some machine

parsable form (e.g. text), or attributes must have been assigned to the items by hand.  Secondly,

there is a problem of over-specialisation. The system is unable to predict the new item which is

different to the items have been purchased before. And finally there is a problem of eliciting user

feedback. The user’s own ratings are only the source of influencing for future performance, as

quantity will reduce the performance will reduce in the same way.

However Iaquinta et al., (2008) argues that the content-based approach assumption (the user is

interested in what is similar to what she/he has already bought/searched/visited) is wrong. The

design and implementation of a content-based recommender system that includes serendipitous

heuristic in order to mitigate the over-specialisation problem with surprising suggestions

proposed in their work.

Content-based filtering method is widely used recommendation technique. It has advantages and

disadvantages, and can be applied for a certain type of projects.

2.7 Text analysis

85% of business information exists in the form of text (Hotho et al., 2005). An ability to analyse

text and discover knowledge in the text could increase an understanding of obtained data and a
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proper use of the information within the organisation. Text mining refers to the process of

deriving high-quality information from text, and focused on discovering hidden knowledge and

interesting patterns from unstructured textual data. Solka (2008) defines text data mining as

“concerned with data mining methodologies applied to textual sources”. Text mining is related to

areas such as information extraction and inherits their methods and techniques in the process of

extracting patterns from texts. Information extraction techniques are widely used for tasks such

as document matching, ranking, and clustering. The process of text analysis can be divided into 3

steps: structuring input text data, deriving patterns in the data, and evaluation and interpretation

of the produced data. There are different text mining tasks such as document classification, text

clustering, document summarisation and sentiment analysis. Data mining methods, such as

classification and clustering are widely used in text mining to structure the collection of

documents and identify hidden knowledge. The challenge in text mining is linguistic knowledge

base and representation of this knowledge. Most of applications need more structured linguistic

base for precisely knowledge extraction.

Pre-processing techniques for text analysis task includes making decision for each word or

phrase in order to give single label to entire document collection or sentence. Luhn (1958)

suggested that the significance of a particular word can be measured by its frequency in a

document. Feature extraction included stemming and removing stop words.

Solka (2008) defines stop words as “common words that do not add meaningful content to the

document” and stemming as “the process of removing suffixes and prefixes, leaving the root or

stem of the word”. The pre-processing step is to prepare text in a format which can be analysed

by text mining methods in order to produce a result.

Sentiment analysis or opinion mining is the identification and extracting subjective information

from source materials in natural language processing and text analytics applications. The aim of

sentiment analysis is to identify the attitude of the person with respect to the opinion in a
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document, sentence or an entity. Expressed attitude or opinion of a person can be positive,

negative or neutral (Feldman and Sanger 2006). There are two most popular approaches in

sentiment analysis – lexicon and supervised machine learning (classification). To evaluate the

textual expression a list of polar words and phrases such “like”, “dislike”, “good”, “bad”, and so

forth are required. Lexicons or dictionaries contain a list of polar words which recognise text as

“negative” or “positive”. Sentiment classification task labels document expressions or sentences

as overall positive or overall negative (Pang and Lee 2008). One of the simplest ways of textual

representation is “bag of words” approach. In this approach, text is represented as a collection of

unordered words, where grammar and words order is not considered. The bag of words approach

can be used in sentiment classification, where each word represents some numeric value, and

overall value of the text will be sum of this values. To transform to classification problem, bag of

words approach will use a dictionary, a list of prepared words representing positive and negative

expression, and each word in text will be matched with dictionary. For example, there are two

expressions, and a dictionary with positive and negative words.

Positive words: like, nice, awesome

Negative words: bad, worse, awful

1. I like this game, it is nice.

[ “I”:0, “like”:1, “this”:0, “game”:0, “it”:0, “is”:0, “nice”:1] = 1+1 = 2

2. It was awful.

[ “It”:0, “was”:0, “awful”:-1] = -1

Each word in the two examples sentences is compared against the dictionaries, and if they match

a positive or negative score is returned. All other words not in dictionary were assumed to be

stop words, and have value 0 as not giving any emotional value. The final value for each

sentence is a sum of scores of each word returned from a dictionary. The overall score is the
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sentiment for the sentence, where positive score (all scores higher than 0) indicates positive

opinion and negative score (all scores less than 0) indicates negative opinion.

Text analysis aims to identify hidden knowledge in textual information. Analysis of user

comments for a particular item can give additional information about user preferences for these

items and can be used to increase explicit data used in the recommender systems.

2.8 Conclusions

This chapter has discussed the domain of recommender systems, their functions and types. The

definitions and purposes of recommender system roles in business have been analysed. The main

functions of recommender system have been mentioned and described. The importance of

obtained data and knowledge sources in order to build recommender system has been discussed.

A role of information types of data such as explicit and implicit data used to build recommender

model have been discussed.

The purposes and objectives of the recommendation techniques such as collaborative filtering,

content-based, demographic, knowledge-based, community-based, and hybrid have been

compared and analysed. It is clear from this research that the recommender system can have a

positive effect on revenue for an online company, however it is important as demonstrated here

that the choice of appropriate recommender technique is important to generate recommendations

that satisfy user needs.

The most popular recommendation technique, collaborative filtering has been analysed more

broadly. Model based and memory based approaches of collaborative filtering have been

defined. The high performance of user based and item based approaches have been proved by

success of e-commerce websites such as Amazon and Netflix. The process of predicting ratings

based on different similarity metrics such as Pearson correlation, Euclidean distance and Jaccard
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coefficient has been clarified. The key challenges of building recommender system based on

collaborative filtering have also been mentioned. The definition of data sparsity has been

discussed. This research has shown advantages of using collaborative filtering method on real

examples, the process of creating recommendations based on different approaches and similarity

metrics.

Examples of recommender systems based on content-based technique have been discussed

above. The process of building recommendations, the types of data used to build it, advantages

and disadvantages of the approach have been analysed. Comparison between collaborative

filtering and content-based filtering techniques revealed advantages and disadvantages of each

technique according to the purpose of recommender system and available data. This section

indicates the key challenges in content-based recommender system, and discusses how content-

based approach can be used in hybrid systems to improve the performance of recommender

system.

Text analysis is a part of data mining, aimed at revealing unseen patterns in unstructured data.

The process and techniques used to reveal knowledge from textual information have been

described. It is clear from this research that a possibility to obtain additional information from

textual data can increase the knowledge of the provided data.

Based on the research in this chapter the following recommendations have been made

concerning the experiment design:

1) Collaborative filtering technique approach is to be used in the experiment. Information

about user’s “likes” and “favourites” will be used as explicit user ratings.

2) Similarity metrics based on Euclidean distance and Jaccard distance will be used in the

experiment. Pearson correlation coefficient does not suit to this project, according to the

data type (likes and favourites) available in the dataset, which is binary.
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3) The usage of text mining to analyse the comments of users on particular video to suggest

whether they liked or disliked it, can provide more information for recommendation. The

combination of data about user’s likes, favourites and their comments on specific videos

can reduce data sparsity and give more information on which to determine the user’s

rating for an item.
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3. EXPERIMENT DESIGN AND METHODOLOGY

3.1 Introduction

In this project the most popular approaches to recommender systems have been analysed in the

literature review chapter. Among these approaches collaborative filtering, content-based filtering

and hybrid systems have shown the higher performance compared to other approaches. Many of

successful commercial websites such as Amazon, eBay, MovieFinder and so forth use one of

these approaches or a combination of them (Linden et al., 2003; Schafer et al., 1999).

The benefits of a collaborative filtering over content-based filtering, and the challenges of

content-based approaches were mentioned in chapter 2.5. The hybrid recommender systems have

shown good results in existing research, but it should be mentioned that these types of

recommender systems require much more computational power, and there is a trade-off between

accuracy and performance of the recommender system. According to the advantages of the

collaborative filtering approach and taking into consideration the structure of the data for this

research project the collaborative filtering approach has been chosen as the most appropriate

above others.

The purpose of this section is to describe structure of the data used in the project and the

experimental methodology. The data set section includes information about the data set built

from the original data and used in the experiment. The provided data gives information on the

user’s opinion of videos which a rating for the video will be extracted and used in the

recommender system.

3.2 Data set

The kiwi.kz website does not have a rating system for their videos. Each video on the website

consist title, tags and the name of the user uploaded video.  Registered users on the website can
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express their attitude to the videos by clicking buttons “like” and/or “add as favourite”. The

number of “likes” for a video is displayed under the video, and shows how many times it was

liked by users. The videos added as “favourite” stored in user’s profile, and can be easily find by

user. Also users can leave comments on the video, which gives more information on the opinion

of the user. Structure of comments is constructed in a way, where comments for videos is

displayed on the left side of a page, and replies for comments between users displayed in a form

of tree, one under another. The original data provided by the company consists of 7 different

files about users, videos and their user histories. The data provided by the company consisted

explicit and implicit types of data for a 2 month of period.

The data consisted of information about 998 users, 105412 videos, 39081 watched videos by

users, 11557 comments of users, 2312 videos added as favourite, and 384 liked videos. The

information from the data allows to identify what watched videos users had liked, favourite or

entered comments. In order to build recommender system the original data was transformed and

new files were constructed. 3 different files based on user likes, favourites and comments were

constructed. The first file includes information about user’s attitude to particular video by

indicating whether it was only watched or watched and liked. First file stores information about

users who expressed their attitude to videos by liking it at least once. It means user who only

watched videos does not included to the file.

The second file was constructed for users who expressed their attitude to particular videos by

adding them as favourite. Again, only users who added videos as favourite at least one time were

included. The third file included information about users who entered comments for particular

videos. Information about users who left their comments under other user comment was assumed

as discussion between users, and was removed. Only comments left under video was considered

in the third file and consisted of 6742 comments. The full names, attributes and transformation

process of each file in the data are provided in the Appendix B.



33

The data set represents the attitudes of users to particular videos in different ways. Users can like

them, add as their favourite or comment on it. A key assumption in the experiment lies in the

classification of the user’s opinion based on the historical data. The attitude of users to videos

can be classified as “positive”, “negative” or “neutral”. Analysis of the data set allows us to

classify the data into three classes. These classes will be used to build user-item matrices which

will include ratings for the videos for specific users. Different recommender systems will be built

on the different matrices to see which data provides the best information on user opinions to use

for providing the best recommendations. Four different user-item matrices were built, these are

explained below:

Information about videos liked by users can be classified into two classes. Videos only watched

by users cannot reveal “positive” or “negative” opinion for videos, and can be classified as

“neutral”. Users who “liked” videos express their opinion to videos in a positive way; therefore

can be classified as “positive”. Based on this classification task, user-item matrix based on

videos liked by users can be built. The ratings in the user-item matrix for videos watched and

liked by users represent “positive” attitude and have a value of “1”.

Videos only watched by users in the user-item matrix represent “neutral” attitude and have a

value of by “0”. Blank spaces in the matrix represent that a video has not watched by users,

therefore there is no opinion and rating for these videos. The detail about the user-item matrix

where rating is based only on the likes is provided in Tables 3-1.

Number of user who liked video 86

Number of videos 7628

Number of ratings 9862

Data Sparsity 1,5%

Ratings values used 0, 1

Table 3-1 User-Item matrix, where rating is user “likes”
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The user-item matrix includes 86 users who watched 7628 videos and liked some of them. The

total number of ratings in the user-item matrix is 9862 (“0” for neutral and “1” for positive).

Data sparsity in the user-item matrix is 1,5%, and indicates that data is sparse.

Information about videos added as favourite can be classified in the same way as videos liked by

users. The attitude of users who watched and added videos as favourites can be classified as

“positive”, and attitude to videos watched but not rated as favourite can be classified as

“neutral”. The user-item matrix built from file about videos added as favourite videos have

includes ratings “0” and “1” which represent “neutral” and “positive” attitude for videos

respectively. Blank spaces in user-item matrix give information about videos not watched by

users. Table 3-2 provides details about user-item matrix where ratings are “favourites”.

Number of users 369

Number of videos 10712

Number of ratings 16281

Data Sparsity 0,4%

Ratings values used 0, 1

Table 3-2 User-Item matrix, where rating is user favourites

The total number of users, videos and ratings in user favourites file is higher than in user likes

file. The data sparsity in user favourites file is 0.4%, which indicates high level of sparsity in the

user-item matrix. Data sparsity in user likes file is 1,5% and higher than in user favourites file

due to the less total number of users, videos and ratings.

The further user-item matrix is built from a combination of information about videos which were

“liked” and “favourite” by users. The aim of combination of these two attributes is to decrease

the imbalance of ratings. Ratings in the both user-item matrixes for “likes” and “favourites” are

very imbalanced. Only 4% of ratings in likes and 14% of ratings in favourites have rating value

of “1”. Users who liked and/or favourited videos express their attitude to videos as “positive”.

However, the nature of videos added as favourite is different from liked videos. The videos
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added as favourite are stored in user profile, and it is suggested that people tend to add videos ass

favourite videos to keep them and to be able to find them easily when they need them. Therefore,

it is suggested that the “positive” ratings from user-item matrix for favourite videos have a

higher value than the “positive” ratings from liked videos, and have given rating of 2. The new

user-item matrix has ratings, where “0” represents “neutral” attitude for only watched videos,

“1” represents videos only liked by users, “2” represents videos added as favourite and rating “3”

is given for videos added as likes and favourites. Details of the user-item matrix constructed

using information from both user likes and favourites are shown in Table 3-3.

Number of users 388

Number of videos 11549

Number of ratings 17877

Data Sparsity 0.35%

Ratings values used 0, 1, 2, 3

Table 3-3 User-Item matrix, where rating is combination of user likes and favourites

The number of users, videos and ratings is increased comparing to only user likes and favourites.

However the data in the constructed user-item matrix is more sparse, and has value 0,35%,

which is less than in the user – item matrix of user likes (1,5%) and user favourites (0,4%). The

new table has been built by using MySQL and full code is provided in Appendix C.

A further user-item matrix was built from data that used a combination of available explicit types

of data (user’s likes and favourites) and implicit data type derived from comments. Semantic

analysis on comment file has been done to generate a numeric score for the video which

represents the user’s opinion as expressed in the comment. The comments for videos can

represent “positive”, “negative” or “neutral” attitude of users. All scores higher than “0”

represent “positive” attitude and scores less than “0” represent “negative” attitude for videos.

The score with value “0” express “neutral” attitude for videos.
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The file including user comments has been used to identify attitude for videos. The semantic

analysis was done with the R statistical tool and was done as follows:

Two vocabularies or list of words with positive sentiment and negative sentiment respectively

were extracted manually from the comments. The lists contain words in 3 different languages

(Kazakh, English and Russian) which are written in two different alphabetic writing systems

(Cyrillic and Latin) according to the nature of comments. The full list of positive and negative

words contains 365 positive and 116 negative words and is included in Appendix C.

The sentences in the comments were parsed and tokenised into words to identify positive or

negative opinion for a whole comment. The total number of comments to videos in the data was

6742. Each word from the comment was checked against the positive and negative lists and

scores were accumulated, a positive score for a positive word and a negative score for a negative

word. Initial transformation has given numeric values representing user opinion from -7 to 3.

Class Positive Neutral Negative

Score 3 2 1 0 -1 -2 -3 -4 -5 -7

Number of

ratings
7 66 936 4890 722 95 17 6 1 2

Table 3-4 Initial sentiment scores of comments

To reduce the effect of outliers, all positive resulting scores were given an overall sentiment

score of 1, whereas all negative resulting scores were given an overall sentiment score of -1.

Class Positive Neutral Negative

Ratings values used 1 0 -1

Number of ratings 1009 4890 843

Table 3-5 Overall sentiment scores of comments
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The last user-item matrix is built from a combination of user-item matrix of likes with favourites

and with user-item matrix from comments file, where ratings are scores representing attitude of

users to videos in comments.

Ratings in the new user-item matrix were created by comparing user-item pair in both matrixes.

If a video from likes and favourites has also been commented on by the same user, the new

rating in user-item matrix is became a sum of the ratings from the two matrixes. To remove

negative values in the user-item matrix, all ratings in the user-item matrix are incremented by 1.

Class Negative Neutral Positive

Ratings 0 1 2 3 4

Number 758 19301 1222 2034 152

Percentage 3,2% 82,2% 5,2% 8,7% 0,7%

Table 3-6 Ratings distribution of combined user-item matrix

The generated user-item matrix has ratings, where “0” represents “negative” attitude for watched

videos, “1” represents “neutral” attitude for watched videos and ratings with values “2”, “3”, “4”

represent “positive” attitude for watched videos. The full code of the transformation processes

and lists of positive and negative words are described in Appendix C and the process of

transformation comments into score is described in Appendix B.

3.3 Experimental Methodology

The objective of this project is to build different recommender systems using real world data and

to evaluate the accuracy of the predicted recommendations. Each experiment will use a specific

user-item matrix as described above to see whether good recommendations can be predicted and

to see which data can produce the best recommendations.

The Python software programming language has been chosen for this experiment as one of the

most effective tools. Python is a convenient tool used for implementing recommender systems.
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(Segaran 2007; Celma 2010; Caraciolo et al., 2011) contain examples of existing recommender

systems based on Python.

The data from the user-item matrices has been divided into a test set and s training set. 20% of

the data has been used as a test set and 80% of the data has been used as a training set in each

experiment. 80% of the data in the training set used to predict ratings for the ratings in the test

set. Evaluation of predicted ratings was based on accuracy of predicted ratings comparing with

actual ratings in the test set. Information about the number of ratings used in the test data used in

each experiment is provided in Table 3-7.

User-item matrix, where ratings are: The number of ratings in the test set

LIKES 1973

FAVOURITES 3257

LIKES AND FAVOURITES 3579

LIKES, FAVOURITES AND COMMENTS 4756

Table 3-7 Number of ratings used in the test data

The experimental process for each experiment is follows:

1. Load user-item matrix into Python programming tool

User-item matrix including user ID, video ID and ratings are upload to software for further

analysis. The software stores information about user preferences and produce recommendations

based on the information defined by user in steps 2, 3, and 4.

2. Choosing similarity metric

The similarity metric needed to be defined for further identification of similar users or items. The

first step in memory-based prediction algorithms is to weight all users with respect to similarity

with the active user. Similarity weighted measures such as the Jaccard coefficient and Euclidean

distance have been chosen to evaluate similarities between similar users to build

recommendations. Pearson correlation coefficient has not been used in this experiment due to the

ratings in the user-item matrices which are binary.
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Pearson correlation coefficient measures the strength of the association between the two

variables and gives high results on interval data, whereas the data used in the experiment is

binary.

3. Define memory based collaborative filtering approach

Similarity metric chosen in step two will be used to calculate similarity between users or items.

Memory based approaches such as user based and item based approaches need to be chosen in

the third step. In order to suggest items for test user or item the measure of the weight between

test user or item and neighbours is calculated. Similarity between users based on metric chosen

in the second step is calculated in the user based approach and similarity between items is

calculated on item based approach.

4. Choose the test user and calculate top N neighbours using the selected similarity measure

A test user needs to be chosen in the step 4. Predicted rating for item is depended from the

number of neighbours used to calculate weighted sum of ratings. The similarity metric chosen in

step 2 is used to measure the weight between the test user and the neighbours. Number of

neighbours with the highest similarity is needs to be defined in order to calculate predicted

ratings.

5. Generate recommendations based on top N neighbours.

Top N neighbours with the highest similarity with the test user are used to compute a prediction

for videos the test user has not watched yet. The predicted rating of the test user for item is a

weighted sum of ratings of the top N neighbours (Equation 1 in 2.5).

6. Evaluate the performance of recommender system.

Perform an evaluation of how recommender system predicts ratings for the test user. The

evaluation metric used in evaluation process is described more broadly in section 3.6.
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3.4 Evaluation metric

User’s satisfaction with recommendation depends on how well and effectively collaborative

filtering methods work on the data. The evaluation of algorithms will be based on an evaluation

metric. To identify how well recommender system predicts recommended videos, accuracy has

been chosen as the evaluation criterion. Accuracy assessment is an important step in the

classification process. The aim is to quantitatively identify how effectively classes were grouped

in the experiment under investigation. The accuracy is the degree to which repeated

measurements under unchanged conditions show the same results (Feldman and Sanger 2006).

Accuracy measures the percentage of recommendations which was correctly predicted.

Accuracy = Number of correct recommendations / (Total number of recommendations) (8)

Average class accuracy has shown less sensitivity to highly imbalanced ratings than overall

ratings (Ismail and Jusoff 2008). Average class accuracy provides more precise accuracies than

overall accuracy in cases, where the amount of information in one class is much higher than in

others. The average class accuracy is the average of the accuracies for each class. For example,

for “positive”, “negative” and “neutral” classes, the average accuracy is an average of total

accuracy of each class.

Accuracy (Positive) = Number of correct positive recommendations/Total number of

positive recommendations (9)

Accuracy (Neutral) = Number of correct neutral recommendations/Total number of

neutral recommendations (10)

Accuracy (Negative) = Number of correct negative recommendations/Total number of

neutral recommendations (11)

The accuracies of each class first need to be computed and then average class accuracy is found

by division sum of each of the class accuracies to the sum of classes.

Average class accuracy = (Accuracy (Positive) +Accuracy (Neutral)+

Accuracy(Negative))/Sum of classes (12)
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Fitzgerald et al. (1994) claims that the average class accuracy has been shown to be statistically

more sophisticated measure of classifier agreement and therefore gives better interclass

discrimination than overall accuracy.

3.5 Conclusion

This chapter has discussed the structure of the design of the experiment, the data used in the

experiment, and the methodology of building and evaluation of recommendations.

Information about the original data, the amount of information in the data and transformed data

used in the experiment has been discussed. Details of the data with rating based on likes and

favourites are provided. The problem of data sparsity and imbalance in the ratings distribution is

discussed.

Analysis of creating more complex user-item matrices built from combination of available

explicit and implicit data and possibility to handle data sparsity and imbalance in ratings

distribution problems has been discussed.

Explanations of selection criteria for similarity metrics used in the experiment have been written.

Definitions of accuracy and average class accuracy used in the evaluation have been explained.

Experimental methodology has been analysed. The process of building recommendation, where

prediction rating is based on the weighted sum of the ratings from the neighbours with the

highest similarity is defined. The importance of evaluation algorithm also been discussed.
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4. EVALUATION AND RESULTS

4.1 Introduction

The objective of this chapter is to implement several tests on the real data to identify the most

suitable collaborative filtering approach and examine the possibility of increasing performance

of the recommender system by combining the user ratings data from both explicit sources (such

as likes and favourites) and implicit sources (user comments). This chapter presents experimental

results of applying collaborative filtering techniques on the different user-item matrices for

generating predictions. Three experiments have been done in order to evaluate the performance

of recommender system based on accuracy.

The first experiment involved two separate user matrices – the one built from ratings based on

user likes and the other built from ratings based on favourites. The aim of the experiment is to

identify the best performing collaborative filtering approach. This experiment choosing between

memory - based approaches such as user based and item based approaches, and similarity

measures such as Euclidean distance and Jaccard coefficient. Based on the highest average class

accuracy in the experiment results with user likes and favourites, the best approach was then

used in experiment two and three.

The second experiment includes testing the best approach from the first experiment on the user-

item matrix build from a combination of likes and favourites ratings. The aim of combination of

those two user-item matrices is to reduce the imbalance in the distribution of the ratings.

The aim of the third experiment is to identify how a combination of explicit and implicit types of

data can influence to the performance of recommender systems. The third experiment involved

running a test on the data build from combination of explicit and implicit type of data. The

ratings from user-item matrix built from combination of user-item matrices of likes and

favourites used as explicit form of ratings.
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The semantic score derived from user comments on videos has been used as implicit form of

rating in the experiment. A text analysis of comments, where positive and negative words in each

comment counted has been used to derive semantic score for each comment. The sum of scores

represents the attitude of a user to a video, and used as implicit data in the experiment.

Average class accuracy has been used as the main assessment parameter in the experiment. The

distribution of the ratings in the data is much imbalanced, therefore average class accuracy is

chosen than overall accuracy.

Parameters of the experiment were determined before the experiment. The data is divided into a

training set and a test set. 80% of the data was used as training set and 20% of the data was used

as test set. Accuracy of predicted ratings from training data on the ratings from the test data is

measured to identify the performance of the experiment.

Experimental platform: All experiments were implemented using Python and run on PC with

Intel Core Duo processor having 4Gb of RAM and a speed of 1.7GHz.

4.2. Experiment 1

The first experiment includes building recommendations based on two different user-item

matrices in order to identify the best collaborative filtering approach. Experiments using data on

user likes and favourites have been performed using user based and item based approaches.

Euclidean distance and Jaccard coefficient have been used to compute similarity between users

and items in memory based approach.

4.2.1 Experiment based on user likes

The first experiment uses the data where user express their attitude to videos by liking it. The

experiment includes test of two different collaborative filtering techniques (Euclidean distance
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and Jaccard coefficient) based on two memory – based approaches (user based and item based

approach).

The distribution of ratings, where the ratings are built from user likes:

Class Neutral Positive

Rating 0 1

Total number 9484 378

Percentage 96% 4%

Table 4-1 The distribution of ratings, where the ratings are built from user likes

Data sparsity in user likes file is 1.5% and the distribution of ratings is much imbalanced, where

4% of the total ratings were “positive” and 96% were “neutral” ratings. The data was divided

randomly into a training set and a test set, where 80% of the ratings used as a training set and

20% of the ratings used as a test set. The predicted rating where compared with actual ratings

and accuracy of prediction has been used to identify the performance of used techniques. The

actual ratings in the user-item matrix have ratings “0” and “1” representing “neutral” and

“positive” attitude respectively. The predicted ratings are lie in the scale between 0 and 1. The

sliding-scale in Figure 1 represents the distribution of predicting rating value.

Neutral Positive

0 0.1 0.2          0.3            0.4         0.5           0.6           0.7         0.8        0.9       1

Figure 4-1 The sliding-scale representing the distribution of predicting rating values for the

first experiment

The threshold has been used to identify the attitude of a user. Threshold for predicted ratings is

used to find whether a user find a video “positive” or “neutral”. Threshold of 0.5 has been
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chosen in evaluation process. Predicted ratings equal to or greater from 0.5 were attributed as

“positive” attitude, and predicted ratings less than 0.5 were attributed as “neutral” attitude.

Average class accuracy and overall accuracy have been calculated for predicted ratings. In the

experiment, average class accuracy is an average of accuracy of predicted “positive” and

“neutral” class accuracies. Overall accuracy is an accuracy of a whole test data. Due to the very

high imbalanced ratings distribution, where only 4% of ratings are positive, average class

accuracy has been chosen as more reliable evaluation assessment over overall accuracy.

The evaluation based on user based and item based approaches with a threshold 0.5 compared

two similarity metrics Euclidean distance and Jaccard coefficient. Details of the evaluation

results are in Table 4-2.

Memory-based

approach
Accuracy Euclidean distance Jaccard coefficient

User-based

approach
Accuracy(Positive) 14,02% 11,72%

Accuracy(Neutral) 99,97% 97,02%

Average class accuracy 56,99% 54.37%

Overall accuracy 94,86% 93,72%

Item-based approach Accuracy(Positive) 8,74% 6,96%

Accuracy(Neutral) 99,65% 97,76%

Average class accuracy 54,19% 52,36%

Overall accuracy 94,49% 93,02%

Table 4-2 Details of the user likes experiment evaluation results

The average class accuracy of user based approach based on Euclidean distance is 56,99%,

which was calculated from the accuracy of predicting positive ratings (14,02%) and the accuracy

of predicting neutral ratings (99,97%). Overall accuracy is higher than average class accuracy,
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but it does not reflect the accuracy of positive recommendations in a fair way. The high result of

overall accuracy is influenced by the accuracy of “neutral” class accuracy.

The average class accuracy for collaborative filtering techniques based on Euclidean distance has

shown slightly higher results than collaborative filtering techniques based on Jaccard coefficient

in both user based and item based approaches. The user based approach has shown higher results

based on two different similarity metrics in both overall and average class accuracy metrics. This

is surprising considering that item-based approaches typically outperform user – based

approaches for companies such as Amazon and eBay (Linden et al., 2003; Melville and

Sindhwani 2010). This can possibly be due to the nature of video data which is very sparse and

the ratings in the data are binary. Most of collaborative filtering recommender systems in

companies such as Amazon, eBay, Netflix and so on provide ratings on a scale from 1(disliked)

to 5(liked) to assess the quality of interaction between users and items (Melville and Sindhwani

2010; Linden et al., 2003).

4.2.2 Experiment based on user favourites

The ratings built from the user favourites are used in the experiment. The methodology and

process of experiment is the same as the first experiment where ratings are built from the user

likes. Both user-item matrices have binary ratings, representing “neutral” or “positive” classes.

Class Neutral Positive

Rating 0 1

Total number 14074 2207

Percentage 86% 14%

Table 4-3 The distribution of ratings, where the ratings are built from user favourites
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Comparing to user – item matrix of user likes, the user-item matrix based on favourites is

sparser. However, the imbalance in rating distribution in favourites file is less. 14% of ratings in

favourites are positive whereas only 4% of ratings in likes are positive.

The data was divided into 20% of a test set and 80% of a training set, where the number of

ratings in the test set was 3257.

Evaluation of predicted ratings based on the Euclidean distance and Jaccard coefficient similarity

is provided in Table 4-4.

User-based approach Accuracy Euclidean distance
Jaccard

coefficient

Accuracy(Positive) 11,03% 9,85%

Accuracy(Neutral) 98,89% 97,24%

Average class accuracy 54.96% 53,54%

Overall accuracy 85,24% 84,87%

Item-based approach Accuracy(Positive) 5,95% 5,01%

Accuracy(Neutral) 99,25% 98,89%

Average class accuracy 52,60% 51,95%

Overall accuracy 85,11% 83,76%

Table 4-4 Details of the user favourites experiment evaluation results

Collaborative filtering technique using user based approach with Euclidean distance and Jaccard

coefficient has shown slightly higher results than item based approach using same similarity.

Accuracy of predicted ratings based on Euclidean distance has shown better results in both user

based and item based approaches.
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User based approach has shown higher result than item based approach in predicting “positive”

class ratings, 11,03% and 5,95% respectively. The user based collaborative filtering with

Euclidean distance as similarity metrics has shown the highest result than other approaches, with

average class accuracy 54,96%.

Comparison between performance of recommender system based user-item matrixes where

ratings are likes and favourites has shown that average class accuracy and overall accuracy of

predicted ratings in the user-item matrix of user likes is higher than in the user-item matrix of

user favourites. Average class accuracy of the user-item matrix from user likes based on user

based approach with Euclidean distance as similarity metrics has shown almost 2% better results

than the same approach in user – item matrix of user favourites. Considering that the number of

user and videos in the user – item matrix of user favourites is higher and therefore data sparsity

is higher than in user likes, it is understandable that performance of recommendations based on

user likes is higher.

The results from experiment 1 have shown that user based approach of collaborative filtering

using Euclidean distance performs better than other approaches. Based on the received results,

user based collaborative filtering technique using Euclidean distance as similarity metric has

been chosen as a main approach for the second and third experiments.

4.3 Experiment 2

The objective of the second experiment is to test how a combination of two available explicit

rating types can impact on the performance of predicted recommendations. User likes and

favourites file were combined to build one user – item matrix with more diverse ratings. Based

on the results from 1 experiment, user based approach with Euclidean distance as similarity

metric has been used to build and evaluate recommendations.
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Constructed user – item matrix attempts to decrease imbalance of ratings distribution in order to

improve the quality of recommendations. According to the nature of the data from user

favourites, all rating s from this file have rating value 2. If a user liked and added as favourite the

same video, the new rating for this video will be a sum of the likes and favourites ratings which

is equal to value 3. All ratings equal or higher than 1 represent “positive” attitude for videos

from users. Just watched videos have rating 0 and express neutral attitude to the videos.

The distribution of ratings, where the ratings are built from combination of user likes and user

favourites is provided in Table 4-5.

Class Neutral Positive

Rating 0 1 2 3

Total number 15340 331 2160 46

Percentage 85,8% 2% 12% 0,2%

Table 4-5 The distribution of ratings, where the ratings are built from combination of user

likes and user favourites

The number of users, videos and ratings is increased by combination of user likes and favourites

user-item matrices. The imbalance of the ratings distribution in the generated user – item matrix

is almost the same with the user-item matrix of user favourites. The scale of ratings is increased

from 0 to 3, but the imbalance of positive and neutral ratings are still around 86% for neutral and

14% for positive ratings.

In order to predict ratings 80% of the data was used as a training set and 20% of the data was

used as a test set. The number of ratings in the test set was 3576. All predicted ratings were

classified into “neutral” and “positive” classes.
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Neutral Positive

0 0.5 1 2

Figure 4-2 The sliding-scale representing the distribution of predicting rating values for the

second experiment

The sliding-scale in Figure 2 represents the distribution of predicting rating values. The predicted

ratings less than 0.5 are attributed as “neutral”, and all the ratings equal or higher than 0.5 are

attributed as “positive” ratings. Accuracy of each class is computed by identification how many

of predicted “positive” or “neutral” ratings are in the actual ratings respectively.

User-based approach

Accuracy(Positive) 12,43%

Accuracy(Neutral) 98,22%

Average class accuracy 55,32%

Overall accuracy 86,23%

Table 4-6 Details of accuracy of predicted ratings based on user based approach with

Euclidean distance as similarity metric in combined user-item matrix

Accuracy of “positive” class ratings is 12, 43% and it is higher than in favourites user – item

matrix, but is less than in user – item matrix of user likes. Average class accuracy of the

combined user – item matrix is also higher than in user favourites and less than in user likes,

with a value 55, 32%, whereas average class accuracy in favourites and likes is 54, 96% and 56,

99% respectively. The overall accuracy is also shows higher results than overall accuracy in user

favourites and less than overall accuracy in user likes.
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The interesting thing in the second experiment is that even if the data became much sparser than

in favourites file, the accuracy of prediction is higher. The possible answer could be that the

distribution of ratings is more diverse, and scale 0-3 was introduced.

4.4 Experiment 3

The last experiment involved the combination of explicit data type from user likes and favourites

and implicit type of data derived from user comments. Text analysis has been done on user

comments on particular video, to identify whether user has “positive”, “negative” or “neutral”

attitude to the video. Sentiment analysis using lexicon has been used on comments file, and the

score representing attitude of a user to a video has been derived. This score is based on a count

of the positive and negative words in the comment, with +1 for each positive word and -1 for

each negative word. The initial transformation is given in Table 4-7, where a score represents the

attitude of a user to a video.

Class Positive Neutral Negative

Score 3 2 1 0 -1 -2 -3 -4 -5 -7

Number of

ratings
7 66 936 4890 722 95 17 6 1 2

Table 4-7 Initial sentiment scores of comments

The score with a value “0” represents “neutral” opinion for a video by user. The scores with a

value higher or equal to “1” represent “positive” opinion for a video, whereas scores with a value

less or equal to “-1” represent “negative” opinion for a video by a user. To avoid impact of

outliers and scores with relatively high scores, all scores higher than one classified as “positive”

and given score “1”, and all scores less than “-1” classified as “negative” and has given score “-

1”. Table 4-8 shows comments ratings with transformed sentiment scores of -1, 0, and 1.
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Class Positive Neutral Negative

Ratings 1 0 -1

Number of ratings 1009 4890 843

Percentage 14,96% 72,53% 12,51%

Table 4-8 Overall sentiment scores of comments

The combination of comments user-item matrix with a combined user-item matrices of user likes

and favourites created by merging the data from tables 14 and 17, to avoid negative values in the

data, each rating was incremented by 1 to build a rating with 0-4 scale.

Number of user 576

Number of videos 14041

Number of ratings 23467

Data sparsity 0.25%

Ratings values used 0, 1, 2, 3, 4

Table 4-9 User-item matrix where ratings are represented by combination of likes,

favourites and sentiment scores of comments

Ratings in user-item matrix are slightly less imbalanced than in user-item matrices with likes,

favourites and combination of them. The number of neutral ratings is decreased to 82, 2%,

whereas overall of positive ratings is slightly increased up to 14,6%. The new class of negative

ratings were introduced with a total of 3, 2% of all ratings. However, data is much sparser than in

previous user-item matrices.

Class Negative Neutral Positive

Ratings 0 1 2 3 4

Number 758 19301 1222 2034 152

Percentage 3,2% 82,2% 5,2% 8,7% 0,7%

Table 4-10. The distribution of ratings in the user-item where ratings are combination of
likes, favourites and sentiment scores of comments
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At the end the user-item matrix includes explicit data about preferences for videos from their

likes for videos, adding videos as their favourite and analysing comments as to whether

comments whether user liked or disliked it. In Table 19, all ratings equal or over 2 represent

possibility that user tend to like the videos with rating higher than 2. Ratings with value of 1

shows neutrality, and 0 value negative attitude for videos.

Negative Neutral Positive

0 0.5 1                1.5 2 4

Figure 4-3 The sliding-scale representing the distribution of predicting rating values for the

third experiment

Evaluation of performance of user based approach based on Euclidean distance has been done.

Threshold 0.5 for predicted ratings value has been used to classify predicted ratings. Average

class accuracy evaluated on a test data, which consisted of 20% of the data, and had 4756

ratings. The results of evaluation are in Table 4-11.

User-based approach

Accuracy(Positive) 18,84%

Accuracy(Neutral) 100%

Accuracy(Negative) 58,11%

Average class accuracy 58,98%

Overall accuracy 87,79%

Table 4-11. Details of predicted ratings with Euclidean distance as similarity metric

The average class accuracy is an average of a accuracy of 3 classes: positive, neutral and

negative, and has a value of 58, 60%. Accuracy of predicted positive class has a value of 18,

26%, accuracy of “negative” class has a value of 57, 65% and accuracy for neutral class is 100%.
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4.5 Conclusion

This chapter has examined different collaborative filtering techniques on the different user-item

matrices from the real data. Number of experiments was run to identify the best approach of

collaborative filtering and to determine which combination of available data can produce higher

results. Average class accuracy has been chosen as main evaluation criteria due to high

imbalance in the distribution of ratings.

One of the main challenges in producing accurate predictions was data sparsity. The data

provided by the company consisted explicit and implicit types of data for a 2 month of period.

DATA SPARSITY RATINGS

LIKES 1.5% 0,1

FAVOURITES 0.4% 0,1

COMBINATION 0.35% 0,1,2,3

COMMENTS 0.25% 0,1,2,3,4

Table 4-12 Data sparsity of files used in the experiment

Distribution of ratings in the likes and favourites files also has been much imbalanced. The

combination of likes and favourites files in the second experiment, and introducing implicit data

by combining sentiment scores from comments file in the third experiment attempted to increase

rating distribution and improve the range in ratings scale. With increasing number of users and

videos, the scale of rating were increased, which revealed interesting results in evaluation of

predicted ratings between 4 files.

Accuracy(Positive

)

Accuracy(Neutral

)

Accuracy(Ne

gative)

Average

class

Accuracy

Overall

accuracy

LIKES 14,02% 99,97% - 56,99% 94,86%

FAVOURITES 11,03% 98,89% - 54.96% 85,24%
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COMBINATIO

N
12,43% 98,22% - 55,32% 86,23%

COMMENTS 18,84% 100% 58,11% 58,98% 87,79%

Table 4-13 The results of evaluation of all 3 experiments

The overall accuracy in all experiment was promising, where accuracy was over 85% in all three

experiments. It should be mentioned, that the high overall accuracy was reached because of

imbalanced ratings distribution, where data consist of mainly with “neutral” class of ratings.

In this case, average class accuracy reflects more reliable evaluation metrics in the experiment.

The average class accuracy of all experiment was around 54-59% which is not high. The score of

average class accuracy is influenced by positive ratings accuracy, which was low in all the

experiments. The possible explanation of low results in positive ratings accuracy could be:

1) Data sparsity. The real data used in the experiment was very sparse (around and less than

1%) which is much less than in existing research projects.

2) Binary data, explicit forms of data such as likes and favourites was binary. The ratings scale

of the data was 0-1, where 0 rating were given for watched videos, which represented

“neutral” attitude for videos.

3) Imbalance in the data. Distribution of the ratings was much imbalanced. Only 4% of ratings

in likes were “1” and 14% of ratings in favourites were “1”. Even with the combination of

them, and adding sentiment scores in the file decreased imbalance, it is still high.

4) The accuracy of positive class ratings is low in likes, favourites and combined file, but

slightly increased in the third experiment. Accuracy of predicted positive ratings in the third

experiment, where data was constructed from explicit types of data (likes and favourites)

and implicit type of data (derived sentiment scores from user comments) was higher than in

previous experiments, at 18,84%. The accuracy of positive ratings in the third experiment

was higher for 4, 82% than in likes, 7, 81% than in favourites and 6, 41% than in

combination files even if the data was much sparser. The idea of introducing implicit type of



56

data shows great promise promising taking into consideration that accuracy is increased

despite the fact that the data became much sparser.
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5. CONCLUSION

5.1 Introduction

The final chapter of the project summarises the conclusions, main findings, contributions to the

body of knowledge and highlights the key differences with past literature. The experiment and

evaluation results are discussed. Finally, the project challenges and recommendations for future

work are highlighted.

5.2 Project review

Popularisation of the Internet and the increasing volume of data used by companies pushed e-

commerce websites to find new ways of marketing and targeting their customers in order

increase their revenue. One of the most popular solutions used in order to increase profit for

online companies is the recommender system. Recommender systems of companies such as

Amazon, Netflix, eBay and so on provide personal recommendations suggesting items which

users could find interesting for themselves.

The aim of the project was to build a recommender system for an online video sharing website

which would recommend video clips to users of the website could find interesting, and evaluate

the effectiveness of the system on sample data provided by the online video sharing website

Kiwi.kz.  The data provided by the company included information about videos which user liked,

added as favourite and left comments on it. The website is based in Kazakhstan, therefore users

left comments on three different languages (Kazakh, Russian and English) and two different

transcripts (Latin and Cyrillic) due to the languages used in the country.
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Domain of recommender systems, including examples of existing recommender systems, the

functions and the data used was analysed in order to identify the most appropriate approach for

recommender system. Different recommendation techniques such as collaborative filtering,

content-based filtering and so on have been discussed. The advantages and disadvantages of the

two main recommender system techniques, collaborative filtering and content-based filtering

were compared more broadly. The algorithms used in the collaborative filtering techniques

including user based and item based algorithms, and the process building recommendations were

defined in detail.

Recommendations are based on the predicted ratings. To predict a rating for an item, similarity

metrics based on Euclidean distance, Jaccard coefficient and Pearson correlation have analysed.

Definitions of similarity metrics and equations used to predict ratings provided. The main

challenges in collaborative filtering were explained and discussed. The domain of text analysis

was discussed in the last section of the chapter. Sentiment classification of textual data which

can be used to extract implicit ratings from the textual comments was analysed

Based on the knowledge gained from the literature review chapter, the similarity metrics used in

the experiment have been chosen. Use of textual information in the data in order to improve the

quality of recommendation was considered for the final experiment. Extracting implicit ratings

from textual comments and combination with explicit ratings from user likes and favourites

suggested.

The experiment design and methodology chapter described the data, experimental methodology

and evaluation metrics used in the experiment. The sections addressing data sets included

information about original data provided by the company, attributes of the data and

transformation processes used to build user-item matrices for the experiment.
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User-item matrices where ratings based on user likes, favourites, and combination of them were

built from the data. Semantic analysis of comments has undertaken in order to build user-item

matrix for users where ratings are sentiment scores of comments. Introducing data from implicit

sources (comments) and combination of it with explicit sources of data (likes and favourites) has

been done. The user-item matrix was based on explicit and implicit data, where ratings are a

combination of the likes, favourites and sentiment scores of comments. The issues with data

sparsity and ratings distribution imbalance in user-item matrices analysed and details of user-

matrices were provided.

The data in the experiments divided into a test set and training set to evaluate accuracy of

predicted ratings. The process of building recommendations has been described. Definitions of

accuracy metrics such as overall accuracy and average class accuracy have been provided. In this

chapter details of the data used in the experiment were provided, and methodology of the

experiment was discussed.

The goal of the experiments was to identify the most suitable collaborative filtering technique

based on the real data and examine possibility of increasing performance of recommender

system by a combination of user-item matrices based on likes, favourites and sentiment scores of

comments. The first experiment was based on two user-item matrices of user likes and

favourites, where the best performed collaborative filtering was chosen to be use in the second

and third experiment. The second experiment tried to examine performance comparing to the

first experiment based on collaborative filtering techniques chosen from first experiment on the

user-item matrix built from combination of user likes and favourites. The third experiment

involved user-item matrix built from explicit and implicit data sources in order to identify how

combination of different sources of data can influence to the performance of the recommender

system.
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Based on the results received several interesting trends were revealed from the experiment.

Overall accuracy in the experiment was poor, which could be caused by the lack of data and data

sparsity problem. The combination of available data tried to handle this problem. The

combination of available explicit types of data (likes and favourites) had slightly better accuracy

based on favourites alone, despite the fact that the data sparsity was worse. The combination of

explicit (likes and favourites) and implicit (comments) ratings performed best of all even though

the data was very sparse.

Evaluation have shown that the user-based approach performed better than the item-based

approach in all cases, which was somewhat surprising comparing to the existing recommender

systems in the projects such as Amazon, Netflix, where the item-based approach is performed

better than user-based approach. The Euclidean distance as a similarity metric has shown slightly

higher results than Jaccard coefficient. These finding possible reflects to the nature of the likes

and favourites files, which are binary. Based on the results from the experiment, user-based

approach where Euclidean distance is similarity metrics has been used in the next experiments.

The second part of the experiment was focused on the possibility of increasing performance of

recommender systems by combining explicit and implicit sources of data. User based approach

where Euclidean distance used as similarity metric has been applied on two user-item matrices

where ratings were combination of user likes and favourites and combination of user likes,

favourites and sentiment scores of comments. Evaluations based on average class accuracy have

been compared between results of the all experiment. The results have shown interesting trends:

1) The recommender system predicts a low level of positive ratings in both user likes and

favourites, 14, 02% and 11, 03% respectively. The average class accuracy shows results

around 56, 99% and 54, 96% for user likes and favourites, comparing to 94, 86% and 85,

24% in overall accuracy. This level of accuracy is dependent on the amount of data used
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in the experiment, where ratings are significantly imbalanced, and the number of positive

ratings is much less than neutral ratings.

2) By a combination of user – item matrices of user likes and favourites, number of users

and videos increased and the data became much sparser in the user – item matrix with

combined ratings.  However, the average class accuracy and accuracy of positive class

ratings slightly increased than in user-item matrix of user favourites. Possible explanation

of the increased results could be that the imbalance of ratings is less than in user-item

matrix of user likes, and ratings have more diverse scale of ratings 0-3 rather than

previous binary ratings 0-1.

3) Introducing implicit sources of data has increased the accuracy of the recommender

system in both positive ratings and average class ratings. Data sparsity in the user-item

matrix was 0, 25% which is less than previous user-item matrices in user likes, favourites

and combination of them, with values 1,5%, 0,4% and 0,35% respectively. A more

diverse scale of ratings, and negative ratings class was introduced in the user-item matrix.

Accuracy of positive ratings was higher than in user likes, favourites and combination of

them respectively, despite. The idea of bringing implicit data into explicit data has shown

promising results due to increased accuracy in predicting positive ratings.

5.3 Personal reflection

The aim for this project was to gain a deep knowledge of the domain of recommender systems,

implement recommender systems using real data and evaluate the effectiveness of the

recommender system. It required a good understanding of the processes involved in making

recommendations and the appropriate methods used in the recommender system. Existing

recommender systems are dependent on the nature of the data they are built on, therefore this

project depended on a good understanding of the real world data provided by the online website.

There were a number of personal and technical challenges in this project.
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 This type of project required a significant level of programming skills in order to write

code for recommender systems and the evaluation part. Frameworks based on Python

programming languages are written for existing projects, but they was not suitable for the

data used in the experiment. User likes and favourites used as explicit ratings in the

experiment, which have scale of rating 0-1. Existing projects are designed for typical

scale of ratings 1-5. Writing a code for a recommender system was one of the main

challenges in the project.

 The amount of data used in the experiment was significantly large which required high

computational power. Evaluation processes took hours on a local machine which

influenced the timetable of the project.

 The lack of experience in the experiment processes had an impact on the proper use of

time in the project. Using the part of the data without valuable information, including

excessive information about videos not used in predicting recommendations and selecting

the wrong thresholds for evaluation cost time, but valuable experience was gained for

future research.

 The problem of understanding and transformation processes of textual information in

different languages with different encodings was another challenge. The piece of code

available was not enough to handle the encoding problems and the list of positive and

negative words was only for the English language. The process of creating the list of

positive and negative words required analysing number of existing comments, which are

very diversified and challenged in classification of them.

5.4 Future work and promising directions

This project provides scope for further investigations and future work. In particular previously

highlighted directions include the investigation on the possibility of combining available explicit
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binary types of the data. The possibility of evaluation the data with less data sparsity and ratings

combined from binary ratings offer an interesting opportunity for future work.

One of the most promising directions in the recommender system is the combination of explicit

and implicit source of information. Adding implicit sentiment scores to explicit ratings increased

accuracy in the experiment. Further investigation including more deep text analysis and a

combination of sentiment score with more diverse scale of ratings could lead to a broader range

of perspectives and advantages for performance of recommender systems.
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APPENDIX A

Code in Python building recommendations

from __future__ import division
from math import sqrt
import string
import sys
from itertools import imap

def jaccard_distance(videos,user1,user2):
sim={}
for item in videos[user1]:

if item in videos[user2]:
sim[item]=1

if len(sim)==0: return 0

intersect = 0
s1 = 0
s2 = 0
dist=0
for item in videos[user1]:

if item in videos[user2]:
if videos[user1][item]==videos[user2][item]: intersect += 1
for item in videos[user1]: s1 +=1
for item in videos[user2]: s2 +=1
dist = float(intersect/(s1+s2-intersect))
return dist

def euclidean_distance(videos,user1,user2):
sim={}
for item in videos[user1]:

if item in videos[user2]:
sim[item]=1

if len(sim)==0: return 0
square_sum=sum([pow(videos[user1][item]-videos[user2][item],2)
for item in videos[user1] if item in videos[user2]])
return 1/(1+square_sum)

def pearson_correlation(prefs,p1,p2):
si={}
for item in prefs[p1]:

if item in prefs[p2]: si[item]=1
if len(si)==0: return 0
n=len(si)
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
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if den==0: return 0
r=num/den
return r

def topSimilar(videos,person,n=5,similarity=jaccard_distance):
counts=[(similarity(videos,person,other),other)

for other in videos if other!=person]
counts.sort( )
counts.reverse( )
return counts[0:n]

def RecommendVideos(videos,choose,person,n=5,similarity=jaccard_distance):
totals={}
simSums={}
a=0
for other in videos:

if other==person: continue
sim=similarity(choose,person,other)

if sim<=0: continue
for item in videos[other]:

if item not in videos[person]:
totals.setdefault(item,0)
totals[item]+=videos[other][item]*sim
simSums.setdefault(item,0)
simSums[item]+=sim

rankings=[(total/simSums[item],item) for item,total in totals.items()]
rankings.sort()
rankings.reverse()
return rankings[0:n]

def RecommendVideosNum(videos,person,n=5,similarity=euclidean_distance):
totals={}
simSums={}
for other in videos:

if other==person: continue
sim=similarity(videos,person,other)

if sim<=0: continue
for item in videos[other]:

if item not in videos[person]:
totals.setdefault(item,0)
totals[item]+=videos[other][item]*sim
simSums.setdefault(item,0)
simSums[item]+=sim

rankings=[(total/simSums[item],item) for item,total in totals.items()]
rankings.sort()
rankings.reverse()
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return rankings[0:n]

def transformvideos(videos):
result={}
for person in videos:

for item in videos[person]:
result.setdefault(item,{})
result[item][person]=videos[person][item]

return result

def calculatesimilarItems(videos,n=10):
# Create a dictionary of items showing which other items they
# are most similar to.
result={}
# Invert the preference matrix to be item-centric
itemvideos=transformvideos(videos)
c=0
for item in itemvideos:

# Status updates for large datasets
c+=1
if c%100==0: print "%d / %d" % (c,len(itemvideos))
# Find the most similar items to this one
counts=topMatches(itemvideos,item,n=n,similarity=sim_distance)
result[item]=counts

return result

def getRecommendedItems(videos,itemMatch,user):
userRatings=videos[user]
counts={}
totalsim={}
# Loop over items rated by this user
for (item,rating) in userRatings.items( ):

# Loop over items similar to this one
for (similarity,item2) in itemMatch[item]:

# Ignore if this user has already rated this item
if item2 in userRatings: continue
# Weighted sum of rating times similarity
counts.setdefault(item2,0)
counts[item2]+=similarity*rating
# Sum of all the similarities
totalsim.setdefault(item2,0)
totalsim[item2]+=similarity
# Divide each total score by total weighting to get an average
rankings=[(score/totalsim[item],item) for item,score in counts.items( )]
# Return the rankings from highest to lowest

rankings.sort( )
rankings.reverse( )
return rankings
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def loadKiwiData(path='c:/Users/Tair/Desktop/Recommender systems/Data/kiwi_data'):
# Get movie titles
videos={}
for line in open(path+'/video-copy.csv'):

(id,account_id,category_id,adult,views,rating,duration,count_comments,count_likes,creat
ed)=line.split(';')

videos[id]=id
videos[views]=views

# Load data
likes={}
for line in open(path+'/video_likes'):

(id,account_id,video_id,created)=line.split(';')
likes.setdefault(account_id,{})
likes[account_id][views]=video_id

return likes

def loadWatchedData(path='c:/Users/Tair/Desktop/Recommender systems/Data'):
watched={}
for line in open(path+'/test/view_history'):

(id,account_id,video_id,created)=line.split(';')
watched.setdefault(account_id,{})
watched[account_id][video_id]=0

return watched

def loadNumericLikesData(path='c:/Users/Tair/Desktop/Recommender systems/Data'):
test={}
int_likes={}
for line in open(path+'/test/matrix'):

line = line.strip('\n')
(account_id,video_id,likes)=line.split(';')
test.setdefault(account_id,{})
test[account_id][video_id]=likes
for likes in test[account_id][video_id]:

mylikes=int(likes)
test[account_id][video_id]=mylikes

return test

def loadVectorLikesData(path='c:/Users/Tair/Desktop/Recommender systems/Data'):
test={}
for line in open(path+'/test/matrix'):

line = line.strip('\n')
(account_id,video_id,likes)=line.split(';')
likes=likes.replace('\'','')
test.setdefault(account_id,{})
test[account_id][video_id]=video_id+"-"+likes

return test

def loadMoviesLikesData(path='c:/Users/Tair/Desktop/Recommender systems/Data'):
test={}
for line in open(path+'/test/matrix'):



75

line = line.strip('\n')
(account_id,video_id,likes)=line.split(';')
likes=likes.replace('\'','')
test.setdefault(video_id,{})
test[video_id][account_id]=account_id+"-"+likes

return test

def loadCommentsData(path='c:/Users/Tair/Desktop/Recommender systems/Data'):
scores={}
#int_likes={}
for line in open(path+'/test/comment_score'):

line = line.strip('\n')
(user_id,video_id,score)=line.split(';')
scores.setdefault(user_id,{})
scores[user_id][video_id]=int(score)

return scores
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APPENDIX B

Data preparation and transformation

Collaborative filtering techniques use a database of preferences for items by users. To build

recommendations user-item matrix should be built on the data. Original data provided by kiwi.kz

consists of 7 files. Figure A-1 shows the original name and size of each files provided by the

company.

Figure A-1.

File 1. ACCOUNTS

The file ACCOUNTS consists information about user, except personal information due to privacy

policy and agreement. Each user has unique ID, which is linked to other files as ACCOUNT_ID.

The file consists information about user’s gender, birthday, account creation time, the number of

group, subscriptions and subscribers, city and country of a user, and verify is user banned or not.

The file consists of information about 998 users.

Figure A-2.

File 2. ACCOUNT_SUBSCRIPTIONS

The file ACCOUNT_SUBSCRIPTIONS consists information about each users subscriptions. The

data about each user ID, ID of a subscribed user, the time when it was subscribed, and

confirmation of sending email consists in the file. The file has 603 rows.
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Figure A-3

File 3. COMMENTS

File COMMENTS consist of information about textual comment each user left under a particular

video clip. The file store information about user ID, ID of commented video, textual comment of

a user, the time when comment was left, the rating of comments, ID of user who upload the

video, and ID of the user, if it is reply to particular user comment. There are 17999 rows in the

file.

Figure A-4.

File 4. VIDEO

File VIDEO consist of information about video clip. The data about a uploaded user, category

belong to, video title, tags, description, created time, duration, the number of likes, views and

comments are stored in the file. File store 105412 rows of information about videos.

Figure A-5

File 5. VIDEO_FAVES
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Users on the website can add videos as their favourite ones. The VIDEO_FAVES file store

information about each user ID, video ID, and time when a video was added as favourite. The

number of rows in the file is 2312.

Figure A-6

File 6. VIDEO_LIKES

Additionally user can express their attitude to a particular video clip by “liking” it. Each time

user press “like” button, information about it recorded to VIDEO_LIKES file. Each user ID,

video ID and created time are stored in the file. There are 384 rows in the file.

Figure A-7

File 7. VIEW_HISTORY

Each time user has watched a particular video clip, information about it recorded to

VIEW_HISTORY file. Information about user ID, ID of watched video and time of each

transaction is stored in the file. File has 39080 rows.

Figure A-8
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Data transformation

LIKES_MATRIX file

User likes matrix, where each cell Ru,i corresponds to the preference (like or not) of user u for

item i was build based on VIDEO_LIKES and VIEW_HISTORY files. The new file was created

by using MySQL 5.5. The full code of generated new file is attached in Appendix A. And the

full process of creating it described in Appendix B. Created new file called LIKES_MATRIX

represent data about user ID, video ID, and whether user liked or not liked it (Figure 9). The file

has 20264 rows, where the number of liked video is 378. It is around 2% from all watched video.

Figure A-9

FAVOURITES_MATRIX file

FAVOURITES_MATRIX file, consisting of user favourites matrix was created in the same way as

LIKES_MATRIX file. The new file (Figure A-10) has 22171 rows and the number of users, added

videos as their favourite is 2211. It is almost 10% of all watched videos.

Figure A-10
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It should be mentioned that all three files have duplicated data (number of rows of original files

is more than in created new files). In data preparation process, all duplicated data were removed

in MySQL, and new created files do not contain duplicated data.

COMMENTS_MATRIX file

One of the promising available data provided by kiwi.kz was COMMENTS file. Users left

comments on particular video clip and expressed their opinions about the video. Collaborative

filtering techniques can be used to comments, if the comments will be transformed to some

numerical data type. R software programming tool has been used to transform textual data into

numerical data type by semantically analysing data.

Only information about user ID, video ID and textual comment by itself was left in the new file

called COMMENTS_TEXT (Figure A-11).

Figure A-11

After analysing comments text, the program produce the numeric value for each comment from

minus to plus, like -1 negatively, 0 neutral or +2 double positively. In Figure N, analysis of

comments is shown, and numeric values of column score added to user and video ID to produce

new Comments_Matrix file (Figure A-12).

Figure N Figure A-12
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Figure A-13.

The new file containing user_id, video_id and numeric values to comments provided in Figure

A-13.
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APPENDIX C

Code in MySQL.

1. Creating a table consisting user-item matrix, where rating is video likes

1) insert into video_liked_history(`account_id`, `video_id`, `liked`)

SELECT DISTINCT

l.account_id, l.video_id, l.liked

#v.account_id, v.video_id, v.liked

FROM video_likes_edit l, view_history_edit v

WHERE v.account_id=l.account_id and v.video_id=l.video_id

2) (SELECT l.account_id AS account_id, l.video_id AS video_id, l.liked AS liked

FROM  video_likes_edit AS l

LEFT JOIN view_history_edit AS v ON (v.account_id=l.account_id AND
v.video_id=l.video_id)

WHERE (v.account_id AND v.video_id) IS NULL)

3) insert into video_liked_history(`account_id`, `video_id`, `liked`)

(SELECT distinct v.account_id AS account_id, v.video_id AS video_id, v.liked AS liked

FROM  view_history_edit AS v

LEFT JOIN video_likes_edit AS l ON (v.account_id=l.account_id AND
v.video_id=l.video_id)

WHERE (l.account_id AND l.video_id) IS NULL)

2. Creating a table consisting user-item matrix, where rating is favourited videos

1) insert into video_faved_history(`account_id`, `video_id`, `favourite`)

SELECT DISTINCT   f.account_id, f.video_id, f.favourite

#v.account_id, v.video_id, v.liked

FROM video_faves_edit f, view_history_edit v

WHERE v.account_id=f.account_id and v.video_id=f.video_id

2) insert into video_faved_history(`account_id`, `video_id`, `favourite`)
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(SELECT f.account_id AS account_id, f.video_id AS video_id, f.favourite AS favourite

FROM  video_faves_edit AS f

LEFT JOIN view_history_edit AS v ON (v.account_id=f.account_id AND
v.video_id=f.video_id)

WHERE (v.account_id AND v.video_id) IS NULL)

3) insert into video_faved_history(`account_id`, `video_id`, `favourite`)

(SELECT distinct v.account_id AS account_id, v.video_id AS video_id, v.liked AS liked

FROM  view_history_edit AS v

LEFT JOIN video_faves_edit AS f ON (v.account_id=f.account_id AND v.video_id=f.video_id)

WHERE (f.account_id AND f.video_id) IS NULL)

3. Cleaning up comments file

1) Deleting rows where user id = 0

delete from comments_id where user_id="0"

Affected rows: 435

2) Deleting all user comments, which are replies to comments of other user

DELETE  FROM comments_id where prev_id>'0'

Affected rows: 4635

3) Deleting all duplicated data

insert into comments_previd(`user_id`, `video_id`, `prev_id`,`comment`)

select distinct * from comments_id

Affected rows: 6796

4. Combining Likes_matrix and Favourite_matrix files, with coefficient=2 for favourites and

coefficient=1 for likes.

select l.account_id, l.video_id, l.liked, f.account_id, f.video_id, f.favourite from
video_liked_history l, video_faved_history f where f.account_id=l.account_id and
f.video_id=l.video_id and f.favourite='1' and l.liked='1'
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insert into fav_and_like (account_id, video_id, rating)  select l.account_id, l.video_id, l.liked
from video_liked_history l, video_faved_history f where f.account_id=l.account_id and
f.video_id=l.video_id and f.favourite='1' and l.liked='1'

update fav_and_like set rating='3'

delete from fav_and_like_2

update fav_and_like_2 set rating='2'

select f.account_id,f.video_id,f.favourite from fav_and_like fl, video_faved_history f where
(fl.account_id!=f.account_id) and (fl.video_id!=f.video_id)

insert into fav_and_like (account_id, video_id, rating) select f.account_id, f.video_id,
f.favourite*2   from video_faved_history f left join fav_and_like fl on
(fl.account_id=f.account_id and fl.video_id=f.video_id) where (fl.account_id is NULL and
fl.video_id is NULL)

5. Combining Likes, favourites and scores of comments file

update fav_and_like_comment flc, comment_score_change ch set flc.rating=flc.rating+ch.score
where (flc.account_id=ch.account_id and flc.video_id=ch.video_id)

insert into fav_and_like_comment (account_id, video_id,rating) select flc.account_id,
flc.video_id, flc.rating+ch.score from fav_and_like_comment flc,comment_score_change ch
where (flc.account_id=ch.account_id and flc.video_id=ch.video_id)

Code in R for analyzing comments

setwd("C:/Users/Tair/Desktop/Text analysis")

positive = scan('positive-words-list.txt',what='character',comment.char=';')

negative = scan('negative-words-list.txt',what='character',comment.char=';')

score.sentiment = function(sentences, pos.words, neg.words, .progress='none')

{

require(plyr)
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require(stringr)

scores = laply(sentences, function(sentence, pos.words, neg.words) {

sentence = gsub('[[:punct:]]', '', sentence)

sentence = gsub('[[:cntrl:]]', '', sentence)

sentence = gsub('\\d+', '', sentence)

sentence = tolower(sentence)

word.list = str_split(sentence, '\\s+')

words = unlist(word.list)

pos.matches = match(words, pos.words)

neg.matches = match(words, neg.words)

pos.matches = !is.na(pos.matches)

neg.matches = !is.na(neg.matches)

score = sum(pos.matches) - sum(neg.matches)

return(score)

}, pos.words, neg.words, .progress=.progress )

scores.df = data.frame(score=scores, text=sentences)

return(scores.df)

}

comments<-read.csv("test.csv", sep=";", header=T)

result=score.sentiment(comments[,3],positive,negative)

hist(comments[,3], breaks = bins,main = paste("Histogram of faves,likes and comments"),
xlab='rating',ylab='number',xlim=range(bins),labels=TRUE)

bins<-seq(-2,5,by=1)

List of positive words

Luv, love, Супер, супер, респект, Респект, хехехе, Хехехе, hehehe, Hehehe, whahaha,
Whahaha, ухахаха,Ухахаха, ахахаха, Ахахаха, хахаха, Хахаха, hahaha, lol, грамотно,
нравится, тема, Тема, Охринеть, Ohrinet, Ohrinet’, Ахринеть, Прикольно, прикольно,
Prikol’no, Prikolno, prikolno, Prikol, prikol, Прикол, otlichnyi, отличный, нереально,
нереальный, 'без б', nereal'no, nerealno, 'bazaru net', 'базара нет', красава, krasava, horoshi,
horowi, хороши, понравилось, ponravilos, realno, real'no, реально, реальный, realnyi,
классно, класно, классная, класная, классный,класный, klasnaya, klasnyi, klasno,
нормально, норма, ништяк, Ништяк, угар, ugar, ugarno, угарно, молодцы, молодца,
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молодец, molodec, molotok, молоток, смешно, smeshno, потрясающее, потрясно,
красавчики, красавчик, krasavchiki, krasavchik, neploho, неплохо, +100500, ржачь, ржака,
rjach, шикарно, shikarno, респектище, шик, любимый, любимая, люблю, lyublyu, lublu,
lubimaya, lubimyi, жгут, ниче, niche, цепляет, прет, хороший, хорошо, хороша,
хорошенько, horosho, horosha, horoshyi, horoshi, ulibnulo, улыбнуло, вахахаха, вахаха,
маладцы, прикооол, круто, kruto, захватывающее, ух, улыбаюсь, веселая, весело, жееесть,
здорово, Здорово, zdorovo, gramotno, klassno, nice, Лучшие, лучшие, рулит, rulit, зачотно,
зачет, zachet, Афигенскии, пасиб, Зашибенно ,креативно, мощно, Мощные, жжжесть
,ахнуть ,нравица ,нравиццо ,ниче ,) ,A.W.E.S.O.M.E., awesome, пять, +5, жсть, классика,
зачетно, коры, шикарные, =), :), ;), :D, Афигеть, Капец, rulit, рулит, 'убил  ваще', Раритет,
Позитивно, охренеть ,Вахахахааха, шоке, шок, shok, эхехехехе, кул, cool, тащусь,
masterclass, мастеркласс, мастер, впечатлил, впечатление, Уахахаахах, пять, приятный,
завораживает, завораживающе, Кайф, кай, тащусь, оригинально, отличное, зачот, жжет,
Жжет, маладетс, Плюсую, аахахах, позитив, ржал, хех, Хех, интересно, Вахахаха,
Ахахахах, awesome, Щикарно, 'Нефига себе', отжиг, отлично, Ура, Шпасибо, 'Спасибо за',
Шикарный, Интересный, понравился, великолепно, Уххаахха, Стеб, жжошь, ахаха,
креативненького, 'самый лучший', 'От души', хаха, 'просто прет', Ржач, ахах, йа плакаль,
айс, вахах, Круть, Красавцы, xD, good, Офигенно, thanks, кульноооо, красиво, охуенно,
Акуеть, прикольная, +10, 'O_o', 'love it', ахуенна, задорно, 'очень нравится', 8-D, хахахаха,
Уииии, вау, красаво, АХЕРЕННАЯ, уахахахахахахаха, Щикарна, избранное, красота,
Бугага, вхаха, отличная, Отличный, Хаахах, +1, Ваахаххаха, Ураааа, Офигенный,
ржакаааа, ЛЫЩ, teeeema, жесть, жжоте, СУУУПЕР, XD, xD, оригинально, 'эта пять',
прикольная, Молодцы, Nice, офигенный, Понравился, klassnaya, найс, 5, ржак, Охуенна,
Базара нет, Гут, кору, нефиговый, посмеялся, опупенное, ахуенное, жгет,
ПАЦТАЛОМНАХ, хехехех, охереееть, Улыбнуло, 'не хуйня', Офигеть, axaxaxaxa,
обожаю, уахахахахаха, классссс, уаахахахаха, ахахах, Обожаю, Прикольная ,Бест
,+100000000 ,Cool, Оооо, бугагашки, прикольный, realnyui, суперская, 'ох какой', 'но
слабовато', убило, Восхитительно.

List of negative words

Мля, мммда..., мда..., фигня, лажа, нет, скучная, ниочем, ХУЕЮ, нах, пистес, настоибали,
неновая, Бляяяяя, Бля, 'немогут', :(, (, блядь, фуу, отстой, 'Прибилбы', ссаное,
идиканахуйблять, жестко, херня, 'неувидел', плохой, жалею, жуть, поганый, странные,
'невтеме', Дибилы, тьфу, Бред, спижжена, гавно, 'ничеговыдающегося', 'неполучается',
'неизменяется', ебанутый, ублюдки, Ебало, 'Неверю', странно, хрень, ужасный, наёбка,
тупой', неправ', 'неочень', позор, ждёсткий, НЕЛЫЩ, Капец, убогое, мешки, shit,
ЕБНУТЫЕ, Страшная, 'NEPONEL', ЖУТКО, нихуя, хуйня, постанова, пиздешь, дура,
несамый, бред, уроды, долбан, лошары, фуууууу, ДОЛБОЁБЫ, слабоВАТО, Тупая,
дура,'таксебе', вате, вата.
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APPENDIX D

Examples of building recommendations on Python

The first thing in experiment was to upload user-item matrix into python, by transforming the

file VIDEO_LIKES into matrix, represented as an array. The full code of Python is attached in

Appendix A. First of all array of user preferences, where their attitude to particular video

represented as vector is uploaded.

Figure D-1

Array likes represents the matrix user-item, where each implication to a particular video by a

user is represented as a vector “video_id-likes”. This was done to calculate jaccard_distance

similarities based on vector.

To calculate Euclidean distance, numeric values of user likes are needed.

Figure D-2

Jaccard_similarity function calculates similarity between two users. In Figure D-3, the function

calculates similarity based on jaccard coefficient between users 1 and 4, 1 and 14, and between

556 and 14. Results are shown that user 1 and user 4 are more similar than others based on

jaccard similarity.

Figure D-3
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Euclidean_distance function is used to calculate similarity between two users based on Euclidean

distance. In Figure D-4 similarity between users 1, 4, 14 and 556 calculated based on Euclidean

distance.

Figure D-4

Based on similarity measures, program can identify the most similar users to particular user.

topSimilar function calculates and identifies the user ID and shown the degree of similarity of

the user. By default the similarity function is jaccard_distance, and function shows the top 5

similar users. In Figure D-6, topSimilar function shows the most similar users to users with ID 1,

4, 14, and 556.

Figure D-6

To calculate similarities based on Euclidean distance, the name of the functions should be added

into topMatches function. Figure D-7 shows top 5 similar users based on Euclidean distance and

Pearson correlation for users 1, 4, 14 and 556.

Figure D-7
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The next step in program is to suggest videos to watch with a certain degree of confidence,

which is degree of similarity for particular video. RecommendVideos function suggests a list of

videos to watch based on one of the similarity metrics. In Figure D-8, the list of 30 videos based

on jaccard distance similarity metric suggested to users 1 and 556. This list gives not only a

ranked list of movies, it also get a guess of a degree of liking video for each movie. For example,

video with ID 985723 probably will be definitely liked by user 1, whereas, video with ID 935398

probably will be liked only by 0.73 of 1 by user 556.

Figure D-8

RecommendVideosNum function gives a list of ranked videos with a guess of liking based on

Euclidean distance or Pearson correlation. In Figure D-9, the list of 30 videos for users 1 and 556

has shown based on Euclidean distance metric.

Figure D-9
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