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Abstract

Over the last fifty years, conversational agent systems have evolved in their ability

to understand natural language input. In recent years Natural Language Processing

(NLP) and Machine Learning (ML) have allowed computer systems to make great

strides in the area of natural language understanding. However, little research has

been carried out in these areas within the context of conversational systems.

This paper identifies Convolutional Neural Network (CNN) and Support Vector

Machine (SVM) as the two ML algorithms with the best record of performance in ex-

isting NLP literature, with CNN indicated as generating the better results of the two.

A comprehensive experiment is defined where the results of SVM models utilising sev-

eral kernels are compared to the results of a selection of CNN models. To contextualise

the experiment to conversational agents a dataset based on conversational interactions

is used. A state of the art NLP pipeline is also created to work with both algorithms

in the context of the agent dataset. By conducting a detailed statistical analysis of

the results, this paper proposes to provide an extensive indicator as to which algo-

rithm offers better performance for agent-based systems. Ultimately the experimental

results indicate that CNN models do not necessarily generate better results than SVM

models. In fact, the SVM model utilising a Radial Basis Function kernel generates

statistically better results than all other models considered under these experimental

conditions.

Keywords: Conversational Agent, Intent Detection, Natural Language Process-

ing (NLP), Machine Learning (ML), Convolutional Neural Network (CNN), Support

Vector Machine (SVM),
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Chapter 1

Introduction

This chapter will introduce the concepts of conversational agents and the application

of Natural Language Processing (NLP) and Machine Learning (ML) in that context

of these conversational systems. Next, the overall problem being addressed by this

thesis will be detailed. Thereafter, the research objectives will be specified. This will

be followed by a definition of the research methodologies and then by the experiment

with a detailing of the scope and limitations of the experiment. Finally, an outline of

the document, with an overview of the chapters will be provided.

1.1 Background

Conversational agents are computer systems which communicate with users employing

natural language and fall into two broad categories; chatbots and task-oriented agents

(Jurafsky & Martin, 2009). Chatbots are systems which attempt to converse with

users without any tasks to be carried out, often with a goal of passing the Turing Test

(Turing, 1950). Task-oriented systems (or agents), on the other hand, aim to provide

a natural language interface to facilitate users in data access or invoking actions on

computer systems.

The early conversational systems developed in the 1960’s and 1970’s, like ELIZA

and PARRY, can be classified as chatbots (Weizenbaum, 1966; Colby, 1981). These

systems utilised basic pattern matching systems to achieve some rudimentary nat-
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CHAPTER 1. INTRODUCTION

ural language understanding. With the development of AIML in the 1990’s, more

sophisticated chatbots could be constructed, with this also leading to advancements

in task-oriented agents (Wallace, 2009). In recent years, the development of modern

NLP methods and ML algorithms has seen much growth in the ability for computers

to process natural language, with abundant research carried out in these areas. How-

ever, a lack of conversational agent datasets based on task-oriented systems has lead

to a shortage of research in this particular area.

1.2 Research Project/Problem

Conversational interface systems are beginning to make use of NLP with ML to solve

complex problems that they face in effectively and efficiently processing natural lan-

guage input. Nevertheless, few experiments have been carried out on the effectiveness

of the NLP processes and machine learning algorithms within this domain. There is

an extensive background of work using these processes and algorithms in other do-

mains, in addition to a general area of language processing, but few are focused on

the conversational system area and making use of conversational interface data.

Figure 1.1: Example flow of data and components in a conversational agent system

for travel bookings.

Figure 1.1 illustrates some of the components and data flow of a sample agent

system. In this example, the user enters the text into the agent’s interface which

represents their desire to travel to Florida. Due to the nature of language, there are

2



CHAPTER 1. INTRODUCTION

many ways a user can write the statement. The Natural Language Understanding

(NLU) component of an agent must then classify the incoming text to one of the tasks

that the system is designed to handle; ‘Book Flight’ in this case. Traditional agent

systems defined specific patterns of words which, when detected, would match to one

of the systems tasks. At its core, NLP tries to solve the problem of understanding

the meaning of a sentence, or what the users intent was in writing the supplied text

(Feldman, 1999). The problem, therefore, becomes how NLP and ML techniques can

be applied to the NLU component of a conversational agent, and what techniques and

algorithms within those domains offer the best results in the context of conversational

agents.

1.3 Research Objectives

1. Literature Review To conduct a detailed analysis of existing literature in the

conversational agent context. Specifically, their evolution, the different compo-

nents of agent systems, and how natural language input is processed. In addition,

a review of common ML algorithms in the NLP space with particular attention

to their use in agent systems. Additionally, an analysis of the state of the art

procedures in the context of NLP tasks. Finally to define a research question

based on the reviewed literature.

2. Experiment Design Firstly, to define a hypothesis H1 based on the research

question from the previous chapter. The next objective is to design an experi-

ment to test the defined hypothesis. This experiment will follow the CRISP-DM

process for data analytics tasks. The objective of this experimental design is to

generate a rigorous experiment which will ultimately provide as comprehensive

an answer to the research question as possible, in the time-frame available.

3. Experiment Implementation To detail the actions taken and tools used at

each step of the designed experiment, and to provide the results of the exper-

iment. The impacts of the data processing step on the dataset are presented

3



CHAPTER 1. INTRODUCTION

along with the outcome of the grid search optimisation for each model. This is

followed by the experimental results for all metrics of every model.

4. Evaluation The primary objective is to accept the hypothesis H1 defined in the

experimental design. As such, the statistical analysis steps defined in the design

are to be carried out. If the analysis results agree with the hypothesis H1 then

it will be accepted, and otherwise rejected.

5. Discussion Finally, to analyse the results and evaluation in the context of the

literature identified during the review. The ultimate goal here is to explain the

results and evaluation of the experiment in the background of the literature.

This discussion will help to suggest why the results agree or disagree with the

existing literature.

1.4 Research Methodologies

The methodologies employed in this paper are classified as empirical, secondary, and

qualitative research, utilising inductive reasoning. This paper is considered to take

the form of empirical research as a detailed review of existing literature is carried

out. From that detailed review, a general theory is formulated in the form of a re-

search question. In this case, the theory is that Convolutional Neural Network (CNN)

models achieve better results than Support Vector Machine (SVM) models for intent

detection in natural language interfaces. A hypothesis is then defined based on the

research question identified. The research hypothesis is clearly defined, testable, and

contains well-defined variables, so that it may ultimately be accepted or rejected. The

objective of this paper is quantitative research as the hypothesis defines a clear ex-

pected outcome with measurable variables. The experiment is subsequently designed

to accept or reject the hypothesis generates measurable results, which are thereafter

quantitatively evaluated using statistical techniques. This paper is secondary research

as the conversational dataset which is used to contextualise the experiment to conver-

sational agent systems was generated and published by El Asri et al. (2017). Finally,
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this paper is inductive reasoning as the methods utilised in the experiment take a spe-

cific dataset of conversational agent data, and general models are constructed of both

SVM and CNN algorithms. Furthermore, a detailed review of the existing general

literature provides a specific hypothesis which is ultimately accepted or rejected by

the experiment detailed in this paper. This provided a specific answer to the question

defined in the literature review chapter.

1.5 Scope and Limitations

The overall scope of this experiment is an evaluation of supervised machine learning

techniques for use as an intent detection process in the natural language understand-

ing component of a conversational interface. The intention is to identify the optimal

ML algorithm for use in the construction of conversational systems. Due to the nature

of NLP pre-processing pipelines, CNN architectures, and SVM kernels, there are an

almost limitless number of possible permutations for generating classification models.

Exploring every possible variation for each model would prove to be an extremely

time-consuming process. Thus the scope of this experiment is limited to the two ma-

chine learning algorithms which are most commonly identified as achieving the optimal

performance in classification experiments. The SVM models will utilise a number of

commonly available kernels with an exploration of their optimal parameters in this

setting. Within the scope of this experiment, a number of CNN architecture varia-

tions have been defined based on the existing literature. Ideally, other kernels and

architectures would be considered if the scope of the experiment could be expanded

beyond the time limitations of this study. Additionally, the grid search implementa-

tions considered a narrow range of available SVM parameters for each kernel which

would ideally be expanded to broader ranges. The CNN grid search only considered

three parameters, but a more detailed exploration of the filter sizes and settings may

result in an optimised CNN model.

Furthermore, a pre-processing pipeline has been devised which uses the state-of-

the-art components which have been identified in the existing literature and which are
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compatible with the ML models. The experiment suggests that the Pre-processing

steps taken may considerably impact the performance of the models. As such, a

broader consideration of the pre-processing steps and their impact may result in better

model performance in this experiment.

The experiment is also scoped to utilise the Maluuba Frames dataset (El Asri et

al., 2017). This dataset contains information which represents conversational agent

data for a travel booking system. Intrinsically , the scope is limited to conversational

agent systems and not chatbots. While the data available in the system is highly

contextually relevant, it suffers from a very high degree of class imbalance. The use

of random oversampling would have resulted in a large volume of repeated samples

being added to the dataset (dataset increase from approx. 20,000 to 100,000+). The

use of random undersampling would have given rise to a considerable volume decrease

(dataset decrease from approx. 20,000 records to 280 records). Synthetic oversampling

techniques would have had the consequence of many synthetic records being created,

and the impact of synthetic records could not be determined prior to the implementa-

tion of the NLP pre-processing pipeline. In addition, ten-fold stratified validation was

utilised for the actual experiment. However, due to time limitations, two-fold stratified

validation was used for both the SVM and CNN grid search implementations. Ideally,

ten-fold would be employed for the grid search as well.

1.6 Document Outline

This paper contains six chapters (including this introductory chapter). A summary of

the five other chapters is presented in this section.

Chapter 2: Review of existing literature

This chapter provides a comprehensive literature review, first detailing the evolution

of conversational agents from their inception in the 1960’s, to the present day. Next,

the architecture of several modern conversational agent systems is reviewed, including

a discussion on the tools on which these systems are built. Followed closely by a re-
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view of classification experiments in the NLP space where ML algorithms are used for

classification. Two machine learning algorithms; SVM and CNN are next discussed in

detail. This includes a basic description of both algorithms including; linear vs non-

linear kernels in SVM, multi-class problems in SVM, the layers of CNN architectures,

and definitions of several CNN architectures for NLP. Finally, gaps in the literature

are identified and a research question is defined in this chapter.

Chapter 3: Experiment design and methodology

In this chapter, first and foremost, the research hypothesis is defined. Subsequently,

an understanding of the data in the dataset is built up. Thereafter, the pre-processing

steps to be carried out on the data are defined: lexicon normalisation, noise reduction,

feature extraction, feature selection, and splitting the data into training and test sets.

Following on, the details of the SVM and CNN models are defined from the frame-

works to be used, to the mechanism for grid search in terms of parameter optimisation,

to how the evaluation metrics will be measured. Finally, the steps for evaluating the

results with statistical tests are detailed.

Chapter 4: Implementation and results

This chapter commences with a comprehensive analysis of the data in the dataset.

Following on from the analysis, the details of each of the pre-processing steps, and

how these steps impact the data in the dataset is explored. Specifics of the lexicon

normalisation, noise reduction, feature extraction, and feature selection steps are cat-

alogued at this juncture. Particulars of the grid search for the SVM and CNN models

are presented and discussed, with the results of the execution of each metric and every

model being displayed.

Chapter 5: Evaluation and analysis

Opening with an analysis of the normality of the results for every model, each of the

three metrics are examined; precision, recall, and F1. Thereafter, a statistical analysis

is carried out for each metric, where the results of all the models are compared. This
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analysis determines if there is any improvement when comparing the results for each

model, with a 95% confidence level. The results of the statistical tests are presented

and, subsequently, an analysis is carried out. An overall investigation of the results

is carried out at this juncture, with reference to the existing literature. This leads to

the hypothesis either being accepted or rejected, with the results being discussed in

relation to the overall research question and hypothesis. Finally, the strengths and

limitations of the designed experiment are detailed.

Chapter 6: Conclusion

Presented in the final chapter is an overview of the research carried out, with a defi-

nition of the problem addressed by this experiment. Subsequently, the experimental

design, implementation, evaluation, and results are presented. The contributions and

impact of the paper are analysed and, ultimately, recommendations are made regard-

ing future work based on the findings of this experiment.
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Chapter 2

Review of existing literature

Reviewing existing literature related to conversational agents in the form of a history

of their evolution and a review of what components make up modern agent systems is

outlined in this first chapter. Subsequently, an overview of the empirical work carried

out in the areas of NLP and Machine Learning are examined. Thereafter,a detailed

look at common NLP steps and tools isfollowed by a comprehensive review of the

two most popular ML algorithm identified in the empirical work; CNN and SVM. In

conclusion, gaps in the literature are identified, and a research question is formed.

Conversational Agents

Agents NLP ML Empirical work Summary

Evolution

Anatomy

Overview

Tokenization

Lexicon Norm.

Noise Reduction

Feature Extrac-

tion

Overview

Supervised

Semi-supervised

Unsupervised

Evaluation

SVM

CNN

Agents

ML

NLP

Summary

Gaps in Re-

search

Research Ques-

tion

Figure 2.1: Areas of the literature review
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2.1 Conversational Agents

A conversational agent refers to a system that allows natural dialogue interactions

with humans through one or more language mediums, for example; text, or speech

(Niculescu et al., 2014). Conversational agent systems first began to appear in the

1960’s with the development of systems like ELIZA (Weizenbaum, 1966). ELIZA

received natural language input from a user and scanned the input for keywords.

When a keyword was identified, the containing sentence was transformed utilising the

rule associated with that keyword. In the 1970s, the PARRY system was an agent

which was created to model the reactions of an individual suffering from paranoid

schizophrenia (Colby, 1981). PARRY built on the rule-based system from ELIZA by

including a model of mental state which was impacted by the input from the user and,

in turn, modified the responses of the agent.

In the 1990s the pattern matching employed by agent systems began to evolve with

the development of the A.L.I.C.E system, which was initially designed as a replacement

for ELIZA (Wallace, 2009). An XML based syntax called AIML was developed, and

formed the basis for the system. AIML is a framework for constructing bots utilising

pattern matching techniques in order to determine the users intent and respond ac-

cordingly. The AIML script defines sentences or sentence patterns which are matched

against the natural language input from the user. The script also defines a template

response for each input pattern. This development provided a foundation for future

agents to be developed on top of AIML with the development of custom scripts.

One of the primary characteristics of each of the three conversational agents de-

scribed; ELIZA, PARRY, and A.L.I.C.E., is that each performs a type of pattern

match, and responds with a pre-scripted or patterned reply. The PARRY system does,

however, maintain a limited state which is impacted by, and impacts on, the input

and output. These types of systems are often referred to as chatterbots. Chatterbots

can hold somewhat limited conversations with users but with little real understanding,

and are typically limited to relaying the information that they have been scripted to

provide.
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? (?) survey the current state of conversational agents, highlighting that they are

becoming more common in recent years. The rise in popularity of instant messaging

platforms is leading to a resurgence of text-based agents. Furthermore, voice-based

virtual private assistants are also becoming popular. One of the reasons given for

these rises in popularity is that modern agents facilitate a natural language interface

for tools that can be employed in everyday life. In order to differentiate these types

of agents from the chatterbots which were prevalent in previous decades, the term

botplications has been coined.

Bieliauskas and Schreiber (2017) delineate a knowledge engineering conversational

agent which uses regular expression pattern matching in order to determine the users

intent. Once the users intent has been identified, the system generates specific visu-

alisations from its dataset based on the that intent. This represents a system which

processes the user input, carries out actions on those inputs through the employment of

external tools and processes, and subsequently responds to the user with appropriate

results.

Graf, Krüger, Müller, Ruhland, and Zech (2015) describe a conversational agent

system called Nombot which was designed to utilise an instant messaging platform

for user input. The system allows users to track their food intake and weight through

the message platform. AIML is utilised to parse the user input by implementing

AIML input phrases with placeholders. When the appropriate phrase is detected, the

placeholder information is extracted and the appropriate data is sent to or retrieved

from a database. Because of the employment of AIML, the users of the system are

either required to enter particular patterns for actions to be carried out, or many

variations of natural language strings are required to be mapped in AIML.

Sarikaya et al. (2016) outline a system which utilises several machine learning SVM

models in place of the traditional pattern matching used in previous examples. These

models are employed to parse the input into commands which can be executed by an

agent in order to carry out tasks on external systems, for instance playing music, web

searches, setting alarms, and such likes. This machine learning approach has some

advantages over the traditional pattern matching approaches in that it is often able
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to determine the users intent from the input text without having to specify every

variation of the text for pattern matching.

As evidenced by the papers above, the area of conversational agents has evolved

since its first inception in the 1960’s. Early agents utilised simple pattern matching,

which gave way to more complex pattern matching techniques like AIML, for the pur-

poses of translating user text input into a format which can be actioned by a computer

system. However, due to advancements in NLP and ML, more recent versions of agents

utilise these techniques as it is believed that these techniques allow for improved text

analysis, with a more generalised ability to process variations of the same input.

2.1.1 Anatomy of a Conversational Agent

Wang and Yuan (2016) audited modern practices in the field and state that there

are three primary components for conversational agents: NLU, dialogue management

(DM), and natural language generation (NLG). A graphical representation of the com-

ponents, their relationship, and how data flows through the system can be seen in

Figure 2.2.

Figure 2.2: Primary components and sub-components of a sample conversational agent

system (Wang & Yuan, 2016)

The NLU unit is made up of three sub-components; Domain identification, Intent
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identification, and Semantic Parsing. Domain identification is the NLP task of iden-

tifying the particular problem domain to which the text relates. Intent identification

is the NLP task of determining the intent of the statement or statements input to the

agent. Semantic parsing is the construction of a machine-understandable command

from the natural language input.

The DM unit contains two sub-components; State tracking and Act generation.

The state tracking component receives the machine commands generated by the Se-

mantic parsing component and modifies its internal state accordingly. The Act gen-

eration component reacts to the state changes made and determines the appropriate

response.

The NLG unit contains two sub-components; Sentence Planning and Surface Re-

alisation. The Sentence planning component is responsible for generating syntax as a

response to the Act Generation step. Surface realisation is the process of creating a

linear sentence which follows correct syntactical guidelines.

The system described by Sarikaya et al. (2016) follows a similar structure to the

one defined by Wang and Yuan (2016). The system is broken down into three primary

components; Input, Update state, Processing. The Input component translates the

natural text into machine understandable factors. The Update state maintains the

current state of the agent and determines the action to take based on the state, and

generates the response. The Processing component applies the appropriate action

to the external systems and procedures based on the output of the Update state

component.

Rahman, Sohan, Zinnah, and Hoque (2017) characterises an overall structure for a

conversational interface which is similar to those defined before. The NLU component,

which they term the Natural Language Interface Engine, can be seen in 2.3. This paper

delineates in more detail the individual steps that the engine takes in processing natural

language input. The Lexical Analysis and Syntax step splits the input text into tokens

(words) and subsequently utilises lexical analysis to stem the tokens. The Parts of

Speech Tagging step associates each token with the appropriate parts of speech tags.

The Named Entity Recognition step identified the variables that the agent will use
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when processing commands. Sentence Dependency Parsing is exercised to generate a

tree structure which identifies the relationships between different parts of the input

text. Lastly, the Keyword Based Intent Analysis step utilises a keyword approach to

identifying intent, much like the ELIZA and PARRY programs. The system makes use

of several modern NLP concepts in terms of lexical analysis, part of speech tagging,

and names entity recognition but utilises a keyword based intent identification step as

was employed by the basic agents developed in the 1960’s and 1970’s.

Figure 2.3: Primary components and sub-components of an alternate conversational

agent system (Rahman et al., 2017)

The conversational agent system described by Draskovic, Gencel, Zitnik, Bajec, and

Nikolic (2016) defines structures which are analogous to the components delineated

previously, e.g. (Wang & Yuan, 2016). A number of NLP sub-components make up

an equivalent to the NLU component. This is followed by a state management and

command parsing component.

Each identified agent system architecture contains a component which translates

natural language into a meaning and format, which can be processed by the agent,

generally termed Natural Language Understanding. Modern agent systems are built

around an NLU component which is based on the principles of natural language pro-

cessing and machine learning, as opposed to the pattern based systems of the past.
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2.2 Overview of Natural Language Processing

Natural language can be defined as the language that is utilised by humans to com-

municate on a daily basis. The many human languages in use have evolved over time

and as such, it is difficult to define a set of rules for any language, which could al-

low for easier understanding by logical systems. At its core NLP can be described as

the understanding of natural language inputs for the purpose of providing useful and

meaningful responses to the input Bird, Klein, and Loper (2009). Improvements in

the ability of conversational agents in the area of natural language understanding can

be considered to be a critical area in advancing the utilisation of conversational agents

(Ortiz, 2014).

2.2.1 Tokenization

Tokenization is the process of deconstructing text into smaller chunks called tokens

(Webster & Kit, 1992). These tokens typically represent the smallest unit that a

textual representation can be broken down to, while still retaining some meaning. At

its simplest, this is achieved by regarding each word as a token. However, the process

may also take punctuation into account when creating tokens and, in addition, may

remove punctuation from the output. It is the resulting tokens which are processed

and parsed to form the final input to the model in a text categorisation task.

2.2.2 Lexicon Normalisation

Lexicon normalisation is the process of reducing different variations of words to a

single root. For example, better, best, and good, may all be distilled down to good.

By replacing all instances of the example words with their root, classification algo-

rithms have to deal with less variation in building classification models. There are

two differing processes primarily employed in NLP for this purpose: Stemming, and

Lemmatisation. Stemming is the process of mapping related words to a root form

(Gharatkar, Ingle, Naik, & Save, 2017). A Stemming algorithm typically has a pre-
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identified list of prefix and suffix character sets. Each word in the target corpus is

processed to remove matching leading and trailing characters from the algorithms

dataset. For example, with the suffixes -es, and -ed, the words studies and studied

both become studi. The Lemmatisation process, on the other hand, utilises morpho-

logical analysis of words based on dictionaries embedded within the algorithms, to

reduce words to their root meaning, also known as a lemma (Zeroual & Lakhouaja,

2017). For example, the lemma for better is good, resulting in the replacement of the

word better with the word good.

Korenius, Laurikkala, Järvelin, and Juhola (2004) compared the effectiveness of

both stemming and lemmatisation for text processing as input to a clustering algo-

rithm for use with the Finnish language, in a classification task. The experiment

conducted a statistical analysis of the results which concluded that there was a sta-

tistical improvement with 95% confidence when the models using a lemmatised input

were compared to those using a stemmed input.

Zeroual and Lakhouaja (2017) compared stemming and lemmatisation for informa-

tion retrieval purposes on several Arabic datasets. The data gathered illustrates that

lemmatisation is a more effective process for identifying the occurrence of words with

similar meanings. This indicates that the lemmatisation process is a valuable step in

reducing noise for the purposes of NLP modelling. However, no machine learning mod-

els were created or evaluated in the context of the lexicon normalisation algorithms.

Additionally, no statistical analysis of the experimental results was carried out.

Both of the identified papers suggest that the lemmatisation process generates

better results for NLP tasks than stemming. However, neither is carried out on an

English language dataset, and only one related to a text classification task.

2.2.3 Noise Reduction

Noise reduction is the process of reducing the occurrence of words and characters which

provide little information in the context of the data under evaluation. This is related

to lexicon normalisation in that both steps aim to reduce the input to just the most

relevant information needed for carrying out the task under consideration thus it can

16



CHAPTER 2. REVIEW OF EXISTING LITERATURE

help to improve the accuracy of ML models (Furlan, Batanovic, & Nikolic, 2013).

Stop words are the most commonly employed words in a language or corpus. In

English these are words like ‘the’, ‘be’, ‘to’, ‘of’, and ‘and’. These commonly occurring

words can occur so frequently that they provide little meaning to individual records and

as such can increase confusion in the context of text categorisation tasks. Furthermore,

the identification and removal or replacement of entities within the input text may also

reduce noise. In effect, this is similar to the lexicon normalisation step as the identified

entities are reduced to a core representation. Some entities which can be considered

are; dates, places, names, and currency values. For example, a single city name may

occur a single time in a travel booking dataset, i.e. “I want to travel to Vienna”. This

may be identical to other strings in the dataset with the exception of the destination

city. By replacing all identified city names with a common representation (e.g. “I want

to travel to [City]”), the overall meaning of the sentence is maintained while allowing

for potentially easier pattern recognition during model training.

2.2.4 Feature Extraction

Bag-of-Words (BoW) is vectorisation process where the entire corpus of a dataset is

first converted into a vector where each unique word is represented by a dimension

in the vector. For each record to be vectorised, the words in the record are parsed

to their corresponding dimensions in the BoW representation, and the value of that

dimension is either set to 1 (Wallach, 2006). This mechanism which can be referred

to as one-hot-encoding, informs the models which utilise the output from the bag-

of-words transformation that particular words exist in the record, but not how many

times those words occur. A variant of this approach is called Term Frequency (TF).

Instead of binary encoding, this approach increments the values for that word, instead

of setting the word to 1 (Zhao & Mao, 2018). Both processes output a fixed length

vector based on the number of words in the corpus, e.g. a dataset with 1000 unique

words would be represented by a vector with 1000 dimensions. TF-IDF is a further

extension of the TF process. In this model, the corpus is converted to a fixed size

vector with a dimension per unique word, as in the bag-of-words model. However, the
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values for each dimension for a given record are based on a statistical computation

of the frequency of the word in the record, offset by the frequency of the word in

the overall corpus. This results in words which appear regularly in the overall corpus

being given less weight than less frequently occurring words (Mishra & Vishwakarma,

2015).

Word embedding models are a form of vectorisation technique where vector rep-

resentations are learned in a non-supervised manner, by machine learning models.

Word2Vec for example takes a text corpus as input and generates a vector space

where each unique word from the input corpus is represented by a dimension (like

TF-IDF and BoW). The words are represented in the vector so that commonly as-

sociated words are located in close proximity in the vector representation. However,

each word dimension is represented by a vector representation of embedding values.

Within the context of Word2Vec there are two model architectures used to generate

the output; continuous bag-of-words (cbow) and continuous skip-gram (Mikolov, Chen,

Corrado, & Dean, 2013). GloVe is another popular word embedding technique which

aims to combine the principles of both the cbow and continuous skip-gram models

from Word2Vec in order to provide an algorithm which is superior to both (Sharma,

Agrawal, Jain, & Kumar, 2017).

Lilleberg, Zhu, and Zhang (2015) conducted an experiment comparing Word2Vec

and TF-IDF for the purposes of text classification using an SVM classification model.

The results indicate that TF-IDF model achieved a better average accuracy than the

Word2Vec model. The experiment does suggest that models, where both TF-IDF

and Word2Vec were combined, achieved a higher classification accuracy. However, no

statistical tests were carried out as to the significance of the differences in output for

any of the results.

On the other hand, the experiment carried out by Y. Zhang and Wallace (2017)

compared Word2Vec, GloVe, combined Word2Vec with GloVe, and one hot encoding

(BoW) as the feature extraction process for CNN models built on several datasets.

The experiment finds that the performance of Word2Vec versus GloVe is dependent

on the dataset. The results of the one hot encoding and combined models are reported
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as not being as good as either Word2Vec or GloVe. However only the GloVe results

are reported and no statistical analysis is carried out.

2.3 Overview of Machine Learning

Mitchell (1997) describe machine learning as a computer program which can learn from

performing tasks where the performance of the program improves with experience.

That equates to the computer program iteratively improving its ability to carry out

an assigned task over time. Machine learning is often utilised for two types of problems,

prediction and classification. In prediction, a model is generated which attempts to

generate an estimate for a continuous variable based on the data supplied to the

model. In categorisation, the model attempts to assign the data to one or more

label. Machine learning is typically divided into three areas; supervised learning,

unsupervised learning, and semi-supervised learning.

Conversational agent Intent Detection is analogous with Text Categorisation within

the broader NLP and ML context (Purohit, Dong, Shalin, Thirunarayan, & Sheth,

2015). A user enters a sentence or sentences, the NLU component of a conversational

agent then applies a method in order to discern the intent of the user in relation to the

applicable functions that the agent can carry out. The text input for conversational

interfaces is typified by short lines of text, often one sentence in length. The input is,

therefore, a short section of natural language and the output is a defined action that

the conversational agent can action or respond to (Intent).

Machine learning can be categorised as a key research area in the context of NLU

for conversational agents (Zue & Glass, 2000). Sebastiani (2002) details the approaches

and benefits of using machine learning algorithms for text classification when compared

to knowledge engineering approaches. They suggest that the introduction of machine

learning techniques like SVM has lead to substantial improvements in the ability to

automatically categorise text.
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2.3.1 Supervised Learning

Supervised learning is characterised by the use of a labelled training set which contains

both variables and expected output. ML algorithms utilise this information to alter

their internal weights and parameters in order to minimise the error value generated

by the model (Bonaccorso, 2017). This type of learning algorithm typically requires

a large amount of labelled data in order to generate effective models, which can be

an issue in some problem spaces (Al-Dmour & Al-Ani, 2016). Examples of super-

vised learning algorithms include: SVM, CNN, Recurrent Neural Network (RNN),

K-Nearest Neighbour (K-NN), Decision Tree (DT), Naive Bayes (NB), and Hidden

Markov Models (HMM).

Both CNN and RNN are examples of neural networks, but many other neural net-

work algorithms have been defined. Typical modern neural networks are characterised

as having an input layer, an output layer, and one of more hidden layers in between the

other two. Each node consists of a number of nodes. In the input layer there is a node

for each of the dimensions in the supplied vector. In the output layer, this takes the

form of a node per expected result, e.g. if it is a three class classification problem the

output layer may contain three nodes, one representing each output class. The hidden

layer contains any number of nodes. Each node in every layer is connected to all of the

nodes in the previous layer. Each connection typically has a weight and each hidden

layer node contains a mathematical transform function for example, sigmoid. The in-

put data feeds through each layer and is transformed utilising the weights connecting

the nodes. Through the use of back propagation the weights of the neural network

are altered in an attempt to reduce the error value generated for each input record

(Nazzal, M. El-Emary, & A. Najim, 2008). In a CNN model the system described

above is analogous to the fully connected layer. However, CNN models can feature

many other layers in an effort to transform the data for classification or prediction, for

example, convolutional layers for input transformation and reduction, dropout layers

to prevent over-fitting and output layers for final translation to the expected result.

RNN models expand on these principles by adding a temporal element to the clas-
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sification mechanism. The previous state of the neural network becomes an input

variable for the model so that the previous context of the network helps to inform

the prediction or classification for the current record. This can help when processing

sequential data like radio signals.

SVM model develop a hyperplane or multiple hyperplanes in high dimensional

space, such that the optimal hyperplanes have the greatest distance to the points in

the dimensional space of the model. This means that every input vector is mapped to

the high-dimensional space and each point is classified as one or the other class label.

The optimal separator therefore is the one which provides the most distance between

the points representing the two classes. The training data is first introduced to the

model and the hyperplanes are formed. When the data to be classified is supplied to

the model and rendered on the feature space, the output of the SVM prediction or

classification is based on the points location relative to the optimal separator (Burges,

1998).

Decision Trees are a group of algorithms based on the principal that a complex

decision can be be formed through the union of multiple simple decisions. There are

many different DT implementations but the core concept is recursive data partitioning,

where the data is split into two or more branches based on the optimal split for that

node using the specific metric for the algorithm (Ignatov & Ignatov, 2017). Metrics

include Gini impurity, information gain, and variance reduction.

For the K-NN algorithm, input vectors are represented in a multi-dimensional

feature space. During training all of the input vectors are mapped to the feature

space, then during classification the individual input vector is mapped to the space

and the most common label among the k nearest neighbours is assigned to the vector

under classification (Ryoo, Arunachalam, Khanna, & Kandemir, 2018).

2.3.2 Unsupervised Learning

In contrast to supervised methods, in unsupervised learning unlabelled data is provided

to the algorithm which then attempts to group each record into clusters based on the

similarities of the features in the record (Al-Dmour & Al-Ani, 2016). Examples of
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supervised learning algorithms include k-means clustering and Apriori association rule

mining.

In k-means clustering the aim of the algorithm is to separate every input vector into

k different groups or clusters. This has the result of identifying similar records within

the input dataset as they are grouped together based on the identified similarities in

the input dimensions. When developing a k-means clustering model the number of

clusters is defined and then the model is trained with un-labelled data. The output is

the identification of k different groups which demonstrate data similarities (Hartigan

& Wong, 1979).

The Apriori association rule mining algorithm is designed to identify transactions

with similar data subsets in the input dataset. A threshold value C is set and all

records which are subsets of at least C transactions in the input data (Hipp, Güntzer,

& Nakhaeizadeh, 2000).

2.3.3 Semi-Supervised Learning

Semi-supervised learning methods draw on the principles of both supervised and un-

supervised learning in order to form a hybrid approach. It utilises a small amount of

labelled data, combined with a large volume of unlabelled data in order to classify the

records. Labelled data is costly to generate and semi-supervised learning attempts

to compensate for that cost by employing a relatively small amount of labelled data

(Cheung & Li, 2017). Examples of semi-supervised learning algorithms include are

graph based models and transductive SVMs.

Graph based models apply transductive reasoning to graph theory in order to

achieve semi-supervised learning(Vapnik, 1998). In graph theory the data is mapped

to euclidean space and connections are formed between entities. Relationships are

calculated from the data and the distance between nodes (or number of connections)

is used as a measure of similarity between any two nodes. (Culp & Michailidis, 2008).

Transductive SVMs (TSVM) are an extension of supervised SVMs where the prin-

ciples of transduction have been applied (Vapnik, 1998). When training a TSVM both

labelled and unlabelled data is input to the model. The model generates the optimum

22



CHAPTER 2. REVIEW OF EXISTING LITERATURE

separating hyperplane function for both the labelled and unlabelled data (Joachims,

1999).

2.3.4 Evaluating Performance

Evaluation metrics are used to provide a measure of the effectiveness of ML algorithms.

By measuring the the outcome of the models it allows different models to be compared

in order to determine which is more effectiveness. Several common metrics are utilised;

precision, recall, accuracy, F1 score. Table 2.1 details these evaluation metrics.

Utilising the complete dataset to train a model and then applying metrics to eval-

uate that model is not recommended. When the model performance is measured on

all the available data it is not a good assessment of that models ability to generalise in

order to classify or predict on data that it has not seen (Witten, Frank, Hall, & Pal,

2016). Therefore, data is typically split into training and test sets, where the training

set is used to build the model and the test set is used to evaluate the model. This

process is known as the holdout method. Typically the training set will be made up

of the larger portion of the data. Typical splits are to utilise seventy to eighty percent

of the data for training. An alternative approach is to utilise stratified k-fold cross

validation. In this method, the data is split k times into stratified samples so that

each sample is a proportional representation of the overall dataset. This results in k

models being trained and evaluated. For each model creation k-1 folds are used to

train the model and the remaining model is used for evaluation. This is carried out

in sequence so that each fold is used a single time for evaluation. Ten-fold stratified

cross validation has generally been found to produce the most accurate metrics for

most data analysis tasks (Witten et al., 2016).
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Table 2.1: Summary of common evaluation metrics

Metric Formula Notes

Precision tp
tp+fp

The proportion of the positive predictions

which were incorrect (Sarwar, Karypis, Kon-

stan, & Riedl, 2000)

Recall tp
tp+fn

The proportion of actual positives which

were correctly identified (Sarwar et al., 2000)

Accuracy tp+tn
tp+tn+fp+fn

The proportion of overall values which were

correctly predicted (Sarwar, Karypis, Kon-

stan, & Riedl, 2001)

F1 Score 2 · precision·recall
precision+recall

Harmonic mean of precision and recall (Yang

& Liu, 1999)

2.4 Empirical work on Machine Learning in the

Natural Language Processing space with a fo-

cus on Conversational Agents

Draskovic et al. (2016) defines a conversational agent for utilisation with a social

media platform. The Maximum Entropy classifier is used for Intent classification,

stating that “This paper will observe maximum entropy classifier (MaxEnt) as the

most convenient one for textual message classification” (Draskovic et al., 2016, p. 2).

However, no evidence is provided in the paper to support that assertion. The paper

denotes a pipeline for NLU which includes part-of-speech tagging, ngram conversion,

with the identification, tagging, and transformation of date inputs. The paper sug-

gests that utilising a neural network model instead of a Maximum Entropy classifier

would be more accurate, but no supporting information is provided. Additionally,, no

experiment is carried out in order to determine the effectiveness of any element of the

system.
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Sarikaya et al. (2016) discuss some of the operational details of Microsoft’s Cortana

system. Specifically, the paper focuses on the NLU element of the system. The Cortana

system utilises several different SVM models in order to carry out the NLU tasks;

Domain detection, Intent detection, and Slot filling. The SVM models were evaluated

against conversational data collected by Cortana, encompassing over 400,000 records,

spread across ten different domains. A measure of the efficiency of the models over

all of the datasets is presented for each of the three NLU tasks. For Domain and

Intent detection the average accuracy over all datasets is presented as 86% and 83%

respectively. For Slot filling the F1 score is presented as 85%. The paper posits that

SVM models are an excellent choice for NLU, but makes no mention of other options

for carrying out NLU tasks. Furthermore, there is little-detailed information regarding

the datasets under consideration, or the SVM models used to perform the evaluation.

Lee and Dernoncourt (2016) suggest that RNN and CNN models offer better clas-

sification performance than other ML models for short text classification. Three differ-

ent datasets are used to appraise the text and models were trained and evaluated for

RNN, CNN, and Majority Class. A general NLP dataset consisting of 362,000 records

is used for this experiment. The accuracy statistics for these models were recorded

and compared to other experiments carried out on the same datasets in other papers.

The CNN model utilises a single layer with Relu activation and max pooling, as such

it can be described as a shallow CNN. Only one dataset compares the results to an

SVM model, in this, the RNN is presented as having an accuracy score of 66.2% com-

pared to the SVM models 57%. Another dataset is compared to both Graphical Model

and NB models. In this, the CNN model provides better accuracy. The final dataset

compares the models to HMM, memory-based learning, and Interlabeler agreement.

CNN provides better accuracy than the comparable models on this final dataset. The

experiment does compare several models in a short text scenario. However, the three

datasets are based on human dialogue from meetings and other transcripts and, as

such, are not an ideal representation if evaluating for conversational interfaces. The

results are compared to a separate experiment where an SVM model is created, but

in the context of NLP, the pre-processing steps could have a significant impact on the
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resulting models. Without carrying out the same pre-processing steps for both the

CNN and SVM models, an accurate comparison could be challenging to achieve. In

addition, the experiment does not perform a statistical analysis of the results, a simple

comparison of the measured values is executed.

Hijjawi, Bandar, and Crockett (2013) performs an experiment where several ma-

chine learning classifiers are compared for effectiveness against a general Arabic text

dataset, consisting of 1,318 records. The purpose of the experiment was to identify

the best classifier for employment as the intent identifier in a conversational agent

called ArabChat. The classifiers evaluated were; NB, Bayesian Network (BN), OneR,

ZeroR, and J48. A bag-of-words approach was used to convert the Arabic strings

to vectors. The J48 DT algorithm was found to have the best overall performance

when run against the Arabic corpus using 10-fold cross-validation and a paired t-test

were used to determine the significance of the results. The J48 classifier was found to

achieve the best results of the classifiers evaluated. The Arabic dataset was created

for the experiment by selecting several different sources of text, these typically took

the form of transcriptions of interviews, books, and news articles. These data sources

are general NLP in origin and would not represent the optimal for an experiment in a

conversational agent context.

Xu and Sarikaya (2013) analyse the use of CNN models for joint Intent detection

and Slot filling. In this case, the models evaluated output both a categorised intent

and identified slots of variables. A general NLP dataset consisting of 6,362 records

was employed for this experiment. The designed CNN for Intent detection has a sin-

gle convolutional layer with an output layer where a single unit is representing each

categorised output. They report that a max pooling layer provided no significant dif-

ference in accuracy. A rectifier activation function is utilised, and a dropout rate of

50% is included. The dataset transcribed from voice conversations for an airline travel

information system was employed. The error rate of the CNN for Intent detection

is compared to other published results on the same dataset, namely an SVM model

for intent detection. Both an independent CNN and the joint CNN created for the

experiment maintained a lower error rate than the SVM model. The dataset under
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consideration is not the most appropriate representation of the interaction for a con-

versational agent. As with the previous experiment, the generated model is compared

to the results of an existing experiment, which may make an accurate comparison of

the models challenging to achieve. This experiment does not conduct a statistical

analysis. Instead, a comparison of the values between the models is presented.

Nii, Tsuchida, Kato, Uchinuno, and Sakashita (2017) implements an experiment

where Word2Vec and CNN are combined to classify a nursing care dataset consisting of

8,313 medical notes collected in Japan. The CNN model utilised a single convolutional

layer of 100 features in a range of sizes from two to five units. A tanh activation

function was utilised. The convolution layer was followed by a max pooling layer

and, subsequently, a dropout layer with a rate of 50%. Three final classification

layers were evaluated, softmax, SVM, and K-NN. They identified K-NN as the optimal

classification layer given the results generated. The results were compared to those

generated by previous experiments with the same data but using SVM models for

classification. It was also reported that more records were correctly classified by the

CNN model than the SVM model. However, the previous experiment made use of

bag-of-words for vectorisation and not Word2Vec. Furthermore, no statistical analysis

of the results CNN results compared to the SVM results was carried out.

Firmino Alves, Baptista, Firmino, Oliveira, and Paiva (2014) perform an exper-

iment where a collection of 2,270 Portuguese tweets are processed through a text

classification process in order to determine positive or negative sentiment. Two ma-

chine learning techniques are employed; SVM and Naive Bayes. The bag-of-words

algorithm is utilised to transform the text into vectors for processing. 10-fold cross-

validation is used to evaluate the techniques, and accuracy, precision, recall, and F1

are the metrics employed. The SVM model is identified as generating the overall best

results in the experiment. However, the metrics are merely compared without any

statistical analysis step. Additionally, the dataset was constructed for the experiment

by gathering tweets in the Portuguese language with specific hashtags. Thereafter,

a combination of a process based on emoji characters and manual labelling was used

to build the sentiment portion of the dataset for training an analysis. This type of
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data processing may lead to more errors where data is mislabelled before training and

evaluation.

Chen, Zhang, and Mark (2012) evaluated several classifiers for utilisation as intent

detection in a dataset of 1,539 questions and statements taken from Yahoo answers

and manually labelled. The classifiers evaluated were SVM with a linear kernel, C45,

Random Forrest, Naive Bayes, and K-NN. The experiment was conducted using 5-

fold cross-validation. The SVM model with linear kernel was reported as generating

the best results. However, no mention is made to data processing steps taken e.g.

vectorisation technique. In addition, no statistical tests were reported for the results

comparing the models. Instead it is stated that the linear SVM model generated the

best results and only the results for that model are presented.

Bhargava, Celikyilmaz, Hakkani-Tr, and Sarikaya (2013) designed an experiment

where a labelled dataset of 27,565 spoken sentences in the conversational agent field

was translated into a textual representation. Three machine learning models were

trained to perform both intent detection and slot filling; a linear SVM, a combined

SVM and HMM, and Conditional Random Fields. Ten-fold cross-validation was used

to generate and evaluate the models. The paper concludes that SVM models are

generally a better choice for Intent Detection but noted no statistical significance

between the SVM and the combined SVM with HMM models. In this experiment,

only the accuracy is utilised as an evaluator. Furthermore, there is no information

provided regarding data pre-processing steps carried out, beyond the transcription of

vocal commands to text. One interesting note is a portion of the experiment where

the previous intent was included as an input into the model, resulting in an increase

in model accuracy.

Ding, Liu, Duan, and Nie (2015) design a system for deriving intent from posts on a

micro-blogging platform, using a CNN model. A dataset of 1,000 records was generated

for this experiment. They first utilise a C&W model (Collobert et al., 2011) to generate

word embeddings as the input to the CNN. A one-dimensional convolutional layer is

employed, followed by a max pooling layer. A fully connected layer with a sigmoid

activation function is used. Finally, an output layer utilising softmax activation is
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employed as an output for the two variables. For comparison, two SVM models were

also evaluated. Both used a linear kernel, but one utilised word embedding, and the

other utilised bag-of-words encoding. The accuracy metric was employed to evaluate

the models. It is reported that the CNN model achieved a higher accuracy than the

SVM models. A single training/test/evaluation run was executed for the experiment,

instead of multiple which would result in a more accurate representation of the results.

No statistical tests were carried out, the accuracy results were simply compared.

Gaikwad and Joshi (2016) carried out an experiment to evaluate several models

for the categorisation of text data from a micro-blogging system. A dataset of 8,000

records was generated for this experiment. The experiment compared SVM, Naive

Bayes, and K-NN models. No further details are provided as to the exact settings used

for each model. The data was processed to remove stop words, replace emoticons with

words, and remove special characters. Term Frequency-Inverse Document Frequency

(TF-IDF) was utilised for feature extraction, and this data was fed into the three

models. The data was split into a 90% training split and a 10% evaluation split, but

repeated evaluation was not employed. The accuracy, precision, recall, and F1 were

used to evaluate the models. For almost all metrics SVM outperformed the other

models. No statistical analysis was carried out on the results.

Hassan and Mahmood (2017) suggest a model where the output from the convolu-

tional layer is passed to a recurrent layer long short-term memory, instead of a more

traditional pooling layer. A general NLP dataset consisting of 259,855 records was

utilised in this evaluation. Pre-trained word embeddings are used as the input to the

convolutional layer, using Word2Vec. A 50% dropout rate was included in order to

prevent over-fitting of the model but an early stopping strategy is also put into place.

A backpropagation through time strategy was employed as the loss function, this is

with recurrent networks. The suggestion is that by combining both CNN and Recur-

rent model elements, the model will achieve a better classification rate for sentiment

analysis. The accuracy and error rates are compared to the rates reported from other

experiments. The presented results report an improvement in accuracy over several

models including SVM. The accuracy results are very similar to more traditional CNN
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models to which it is compared. In fact, one of the CNN models reports a slightly

higher accuracy. The reported error rate is compared to fewer models than the ac-

curacy. The reported results are largely similar to the comparable models. A single

test/training split was used for the evaluation instead of multiple evaluations as in k-

fold cross-validation. The results of the new proposed model are compared to models

from other papers which raises potential concerns due to the differences in preparing

and evaluating the data and models between experiments. In addition, no statistical

tests are carried out as to the significance of any improvements.

Dumais, Platt, Heckerman, and Sahami (1998) conducted an evaluation of several

machine learning classifiers for the purposes of text classification on an general NLP

English dataset of 9,982. The classifiers evaluated were; Find Similar, NB, BN, DT,

and an SVM (linear). The accuracy metric was utilised to evaluate the models over

a 70/30 split of the data. The SVM model reported the highest accuracy in the

experiment. However, no statistical analysis was carried out, and the evaluation was

carried out on a single data point for each models metric.

Imane and Mohamed (2017) conduct an experiment in order to evaluate several

ML classifiers in the context of multi-label text categorisation. A dataset of 65,843

French death certificates is employed as the basis of the evaluation. First a number

of data preparation tasks are carried out: tokenization, convert to lower case, remove

stop-words and punctuation, and stemming. The data is subsequently split into 80%

training data with 20% test data. Following this, the data is vectorized using TF-IDF,

but one-hot-encoding and term frequency were considered. Three ML algorithms were

evaluated: DT, SVM (linear kernel), and AdaBoost using DT. However, no further

details as to the settings of the models are presented. The precision, recall, and F1

score for the three models are presented. The F1 score is the primary metric used

to evaluate the models, with DT model generating the best results, with the SVM

model providing the second best results which are very close to the DT results. The

experiment performed a simple comparison of the single F1 score generated for each

model, so no statistical analysis was carried out, and only a single score was utilised

for the evaluation of the models.
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Li and Shen (2017) investigates the introduction of Latent Semantic Analysis (LSA)

on classification for several models; Naive Bayes, linear SVM, logistic regression, and a

non-linear SVM (where the kernel is not identified). LSA is a method of dimensionality

reduction which analysis words and their distributional semantics in order to generate

a set of concepts, this is somewhat similar to a Principle Component Analysis (PCA)

process. TF-DF is used as a vectorisation process. Each model is trained and evaluated

on a dataset of 6,000 records from a micro-blogging platform, hence individual records

can be considered short text. The precision, recall, and F1 are reported for each

model. The experiment is subsequently run again but including an LSA step. The

same metrics are employed and the numbers from both experiments are compared.

The results indicate at least some improvement for each metric of every model when

LSA is utilised. In this experiment the linear SVM model generated the optimal results

for each metric. However, no statistical analysis is carried out, and the metrics are

generated from a single training/test execution on the dataset.

R. Zhang et al. (2017) conduct an experiment to evaluate Two SVM models with

a Rule-Based Learning (RBL) system. This experiment was conducted using 6,174

medical records in order to assign the correct classification to each one. The data

was split into 60% for training, and 40% for evaluation and a single iteration of the

experiment was conducted. Two SVM models were used, one with bag-of-words as

input, and another using bag-of-words with ngrams included. English stop words

were removed, and Lexical Variant Generation was performed. There are no details

provided for the kernel or settings of the SVM models and no similar information

provided for the Rule-Based Learning models. The results indicate little difference

between SVM (using n-grams) and RBL with RBL resulting in higher precision, but

SVM resulting in higher recall and F1. The SVM with bag-of-words did not generate

comparable results to the other models. However, no statistical analysis was carried

out on any of the results.

A summary of the identified literature can be seen in Table 2.2. Several of the

experiments suggest that SVM is the optimum machine learning model to use for

text categorisation tasks (Sarikaya et al., 2016; Firmino Alves et al., 2014; Chen et
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Table 2.2: Summary of empirical research identified for ML in NLP. CA represents

that the data used in the experiment is from a conversational context. ES indicates if

the experiment carried out was empirical

Paper CA ES Dataset

Size

ML Models Optimal ML

Draskovic et al.

(2016)

Yes No N/A Maximum Entropy Maximum

Entropy

Sarikaya et al.

(2016)

Yes No 400,000 SVM SVM

Lee and Dernon-

court (2016)

No No 362,000 RNN, CNN, Majority Class,

SVM, Graphical Model, NB,

HMM

RNN/CNN

Hijjawi et al. (2013) No Yes 1,318 NB, BN, OneR, ZeroR, J48 J48

Xu and Sarikaya

(2013)

No No 6,362 CNN, SVM CNN

Nii et al. (2017) No No 8,313 CNN, SVM CNN

Firmino Alves et al.

(2014)

No No 2,270 SVM, NB SVM

Chen et al. (2012) No No 1,539 SVM, C45, Random Forrest, NB,

K-NN

SVM

Bhargava et al.

(2013)

No Yes 27,565 SVM, HMM, CRF SVM

Ding et al. (2015) No No 1,000 CNN, SVM CNN

Gaikwad and Joshi

(2016)

No No 8,000 SVM, NB, K-NN SVM

Hassan and Mah-

mood (2017)

No No 259,855 CNN, RNN, SVM CNN

Dumais et al.

(1998)

No No 9,982 Find Similar, NB, BN, DT, SVM SVM

Imane and Mo-

hamed (2017)

No No 65,843 SVM, DT, adaBoost (DT) DT

Li and Shen (2017) No No 6,000 NB, SVM, Logistic Regression SVM

R. Zhang et al.

(2017)

No No 6,174 SVM, RBL SVM
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al., 2012; Bhargava et al., 2013; Gaikwad & Joshi, 2016; Dumais et al., 1998; Li &

Shen, 2017; R. Zhang et al., 2017). However, many of the newer papers compare

CNN models to older models (including SVM), and they suggest that CNN models

offer better performance (Lee & Dernoncourt, 2016; Xu & Sarikaya, 2013; Nii et al.,

2017; Ding et al., 2015; Hassan & Mahmood, 2017). Only two experiments could

be identified which focus on the intersection of ML, NLP, and conversational agents

(Draskovic et al., 2016; Sarikaya et al., 2016). Of these, only Sarikaya et al. (2016)

conducted an experiment where a conversational agent dataset was evaluated with an

ML model, SVM in this case. However, no other ML algorithms were evaluated in

this experiment. The remaining experiments are conducted on general NLP datasets.

Three experiments suggest that a DT model provided optimum results (Draskovic et

al., 2016; Hijjawi et al., 2013; Imane & Mohamed, 2017). However, only one of these

compared results to SVM models, and no comparison was made to CNN models.

Additionally,Draskovic et al. (2016) detail a conversational agent system based on a

DT model, with no consideration of other models or experiment conducted.

2.5 Supervised Machine Learning Algorithms

2.5.1 Support Vector Machine (SVM)

The basic principle of SVM models is the construction of a hyperplane which separates

the data between two classifiers with the largest margin. Traditional machine learning

algorithms mainly aim to minimise error on the training dataset in an approach called

Empirical Risk Minimisation (ERM). SVMs, on the other hand, follow the principle of

Structural Risk Minimisation (SRM) where the models’ complexity is balanced with

its success at fitting the training data. SRM based algorithms are generally regarded

as providing better generalisation on unseen data than ERM based models. (Byun &

Lee, 2002)

Linear SVM models are applied where the data representing the two classifiers

under examination is linearly separable. However, linear classification models can
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find it difficult to classify real-life problems. To combat this difficulty with linear

models, a kernel function can be applied to SVM in order to provide a non-linear

translation to the data. By applying a linear function, the data can be mapped into a

higher dimensionality feature space which can allow for better linear separability. A

representation of a linear SVM model can be seen in Figure 2.4 (Byun & Lee, 2002).

Figure 2.4: Representation of linear separating hyperplanes for the separable case.

The support vectors are circled. (Burges, 1998)

There are a number of non-linear kernels defined for SVM but some of the most

popular are Radial Basis Function (RBF), Polynomial, and Sigmoid. The equations

for each of the kernels is presented below (Ayat, Cheriet, & Suen, 2005). The symbols;
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r, d, and γ represent the parameters for the kernels.

• Linear: K(X, Y ) = XTY

• RBF: K(X, Y ) = exp(XY 2/2σ2)

• Polynomial: K(X, Y ) = (γXTY + r)d, γ > 0

• Sigmoid: K(X, Y ) = tanh(γXTY + r)

While traditionally SVM is based on a two-class problem, they can be extended

to multi-class problems. There are two primary approaches for achieving this: one

versus one (OVO), and one versus rest (OVR). In the OVO mechanism each classifier

is trained and evaluated against every other classifier and the best the results are

amalgamated. In OVR each classifier is evaluated against a grouping of all other

classifiers and the results are combined. (Byun & Lee, 2002)

2.5.2 Convolutional Neural Network (CNN)

CNN’s can achieve strong results in the context of sentence classification within NLP

(Y. Zhang & Wallace, 2017). As such many recent papers have examined the use

of CNN’s for multiple NLP tasks, and often compared the results to other machine

learning algorithms. An example CNN architecture can be seen in Figure 2.5. A

typical CNN architecture will accept a vectorised input which could contain multiple

dimensions. This is followed by several different layers which can be constructed in

many configurations, the primary layers are; Convolutional Layer (CN), the Pooling

Layer (PL), and the Fully Connected Layer (FC). The convolutional layers are made

up of a number of filters of a defined size which move over the input vector to create

smaller transformed vectors from the input. The CN is typically followed by a pooling

layer, which often utilises max or average pooling. The pooling layers transform the

output from the previous layers into smaller inputs (often of a single neuron) for the

following layer. Max pooling takes the highest value out from the previous layer,

and average pooing takes an average of the output values. The pooling layer may

subsequently be followed by a number of fully connected layers which represent a more
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Figure 2.5: Illustration of an example CNN architecture with multiple filters and

pooling layers (Y. Zhang & Wallace, 2017)

traditional neural network architecture. In this layer, there exist multiple neurons

which are each connected to every other neuron with a weight variable. The inputs

from the previous layer are processed with the connecting weights for the connection

along with the activation function for that neuron. Fully connected layers are often

employed to define the final output from the model. To combat over-fitting, a dropout

is sometimes included in the FC layer. With a dropout layer, a random portion of the

neurons in the layer are ignored during each training iteration.

CNN Architectures
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Collobert and Weston (2008) describe a general architecture for multi-class CNN’s in

the context of NLP text categorisation. A representation of this CNN architecture can

be seen in Figure 2.6. The architecture delineated takes a vectorised representation

of text as input. This feeds into a convolutional layer with a number of filters of a

size determined by the input. This is followed by max pooling layer. An optional

fully connected layer is subsequently suggested. Finally an output layer with softmax

activation with an output unit per class. This general model is utilised as the basis

of a number of NLP related tasks on a large text corpus. The architecture is opti-

mised for each task by including/excluding elements and utilising linear or non-linear

activation functions for the convolutional and fully connected layers. However, there

is no direct comparison between the results of the models against models built with

different algorithms, so the true effectiveness is difficult to determine.

In Y. Zhang and Wallace (2017) a baseline CNN architecture is defined, and sev-

eral options are evaluated for word-embedding, filter sizes, number of filters, activation

function, pooling strategy, and regularisation. In order to evaluate each option individ-

ually, a baseline model is created and evaluated. The options selected for evaluation

are thereafter trained and evaluated in turn, comparing the results to the baseline.

Each evaluation is carried out using ten-fold cross-validation.

The results of the word-embedding analysis carried out by Y. Zhang and Wallace

(2017) were reported previously. In summary, it was reported that either Word2Vec

or GloVe generated the best results, dependent on the dataset under evaluation.

The experiment also examines multiple filter sizes along with combining several

feature sizes in a single model. The optimal filter size is found to depend on the

dataset being evaluated, with each having an optimum size. It is also reported that

multiple filters of different sizes do not inherently result in better performance. This

is especially evident when filters with substantial deviation from the optimum for the

dataset are included. In relation to the number of filters, it is also reported to be

dependent on the dataset (Y. Zhang & Wallace, 2017).
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Figure 2.6: Proposed general CNN architecture for NLP tasks (Collobert & Weston,

2008)

For pooling strategy multiple sized pools using both average and max pooling. It

is reported that max pooling with a single output is the optimum strategy for the

datasets and models evaluated. Due to poor performance and slow training times the

average pooling experiments were not completed (Y. Zhang & Wallace, 2017).

In respect to regularisation both dropout (with multiple rates) and L2 norm are

evaluated. The effect of dropout is found to be dependent on the dataset, but for

many of the evaluated datasets, it was found that dropout and L2 norms had little

impact on the effectiveness of the model, but it is pointed out that it may have more
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of an effect with multiple layer models. The suggestion is to utilise a small dropout

rate between 0.0 and 0.5 (Y. Zhang & Wallace, 2017).

The activation functions considered are ReLU, tanh, sigmoid, SoftPlus, Cube func-

tion, and tanh cube. ReLU and tanh are reported as achieving the best performance

for eight out of the nine evaluated datasets. SoftPlus performed best on the remaining

dataset. It is suggested that for shallow models, exploration of both ReLU and tanh

be carried out (Y. Zhang & Wallace, 2017).

2.6 Summary of literature review

Conversational agents systems originated in the 1960’s with simple pattern matching

mechanisms for dealing with user text input. Over time these pattern matching sys-

tems evolved with the utilisation of tools like regex and AIML. Within the context of

these systems, there are many different components which combine in order to form a

modern agent. The use of machine learning algorithms has become a significant area

of focus within the conversational agent domain and there are several areas where nat-

ural language processing can be applied to the components of conversational agents,

including the area of Intent Identification.

A modern NLP pipeline typically consists of several steps; tokenization, lexicon

normalisation, noise reduction, and feature extraction. Many algorithms can be ap-

plied to each of the steps. TF-IDF is effective for feature extraction, and lemmatisation

for lexicon normalisation. Some tools can be applied for noise reduction but the actions

to be carried out are largely dataset dependent. Several papers have been identified

which compare ML models for text classification in an NLP context. However, only a

single experiment has been identified which conducts an evaluation of any ML models

against a conversational agent dataset for the purposes of intent detection (Sarikaya

et al., 2016). In this experiment only SVM models are considered and evaluated. Sev-

eral of the identified experiments in NLP have identified SVM models as offering the

best performance for text categorisation: (Sarikaya et al., 2016; Firmino Alves et al.,

2014; Chen et al., 2012; Bhargava et al., 2013; Gaikwad & Joshi, 2016; Dumais et al.,
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1998; Li & Shen, 2017; R. Zhang et al., 2017). However, several more recent papers

in NLP have identified CNN models (Lee & Dernoncourt, 2016; Xu & Sarikaya, 2013;

Nii et al., 2017; Ding et al., 2015; Hassan & Mahmood, 2017) as offering better results

than other ML algorithms, including SVM models. In addition, very few papers could

be identified which consider the optimal classification technique within the context

of conversational systems. Finally, few of the identified papers conduct a thorough

statistical analysis of the results when comparing ML classifiers in an NLP context.

SVM models attempt to construct a hyperplane which separates data with the

largest margin. When the data is linearly separable a linear kernel can be applied to the

data in order to identify the effective hyperplane. In cases where the data is not linearly

separable, non-linear kernels like polynomial, RBF, and sigmoid can be applied. Each

kernel has a number of parameters which can be employed to optimise the performance

of SVM models. Typically SVM models are applied for binary classification problems,

but through the use of OVR and OVO mechanisms, SVM can also be applied to

multi-class problems.

CNN architectures can be made up of several different layers, typically consisting

of; convolutional layers, pooling layers, and fully connected layers. CNN’s can be

applied to many different areas including text classification in NLP. Collobert and

Weston (2008) has defined a CNN architecture for carrying out general NLP tasks.

Like SVM there are a number of options which can impact the performance of the

CNN models, from the size and number of filters, to the activation and optimisation

functions. The parameters utilisation are dependent on the overall architecture of the

model, the data under evaluation, and the problem being solved.

2.6.1 Gaps in research

The identified research suggests that there are two machine learning algorithms at

the forefront of NLP research for the purposes of text classification; Support Vector

Machines and Convolutional Neural Networks. Most literature in which both CNN and

SVM models are compared assert that in the context of NLP tasks, CNN models can

achieve better performance than SVM models. In the majority of cases where CNN
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models are not evaluated, SVM models are indicated as offering the best performance.

Additionally, only SVM models have been evaluated within the context of NLU for

conversational agents. However, there are few identified experiments which compare

the two algorithms in a rigorous manner, by conducting detailed statistical tests on

the results and considering multiple metrics.

By designing and conducting a comprehensive and rigorous experiment to evaluate

the performance of both algorithms, and including statistical tests to evaluate and

compare the results, this paper proposes to determine if CNN models are superior to

SVM models in the area of intent detection. Additionally, by building and evaluating

the models on a dataset which is generated by, or closely mimics the interaction of users

and a modern conversational agent, this experiment proposes to be a valid evaluation

of the utilisation of ML algorithms within the context of NLU for conversational agent

systems.

2.6.2 Research Question

“Are CNN more effective than SVM at determining intent, for use in con-

versational agents?”

This research question will be investigated in detail in the next chapter through the

formalisation of a research hypothesis and the design of an experiment to test that

hypothesis.
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Chapter 3

Experiment design and

methodology

Experiment design and methodology begins by defining a research hypothesis based

on the research question defined in the previous chapter. An experimental design is

presented which is designed to ultimately approve or reject the defined hypothesis.

3.1 Hypothesis definition

The research question that this paper has identified suggests that CNN models may

generate better results than SVM models when used as an intent detection mecha-

nism for conversational agent systems. A supposition that can, therefore, be drawn

from this research question is that CNN models produce better results when trained

and evaluated using a conversational agent dataset. To accept the hypothesis, the

results from evaluating the models must be better for CNN models when compared

to SVM models. To define a hypothesis that can ultimately be accepted or rejected

through an experimental implementation, measure-able metrics which define ‘better

results’ need to be specified. By utilising several metrics, the hypothesis will require

a comprehensive experiment for it to be accepted or rejected. Hence, the answer to

the research question could also be considered to be more comprehensive. The three

metrics which the hypothesis will define to determine if the CNN results are better are;
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precision, recall, and f1 score. Precision is a measurement of the agreement between

positive labels assigned by the classifier compared to the actual data labels. Recall is

the effectiveness of the classifier at identifying positive labels. F1 is a measurement of

the relationship between the positive labels assigned by the model when compared to

the actual labels (Sokolova & Lapalme, 2009).

By defining a hypothesis based on the supposition that CNN models are better,

by using a conversational agent dataset to provide context, and by measuring and

comparing the defined metrics for the models using statistical tests, a hypothesis is

defined which can ultimately be accepted or rejected through an experimental process.

By accepting or rejecting the hypothesis, the research question can be answered. If the

hypothesis is accepted, the answer to the question is that ‘yes’, CNN models produce

better results in this context. Otherwise, the answer becomes no, CNN models do not

necessarily produce better results. A graphical representation of the thesis can be seen

in Figure 3.1.

• H1: CNN models achieve a statistically higher (with 95% confidence) precision,

recall, and F1 score than SVM models when utilised to determine the intent of

users in a conversational interface dataset.

• H0: CNN models do not achieve a statistically higher (with 95% confidence)

precision, recall, and F1 score than SVM models when utilised to determine the

intent of users in a conversational interface dataset.

3.2 Methodology

The experiment will follow many of the steps outlined in the CRISP-DM model

(Shearer, 2000). The steps in question are Data Understanding, Data Preparation,

Modelling, and Evaluation.
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Figure 3.1: Graphical representation of research hypothesis

Figure 3.2: Representation of the CRISP-DM model for data analysis (Shearer, 2000)
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3.3 Experiment Overview

The experimental process carried out is illustrated in Figure 3.3. Here the NLP data

preparation steps can be seen as Lexicon Normalisation, Noise Reduction, Feature

Extraction, and splitting the data. Next, the modelling steps can be seen where the

SVM and CNN grid search and optimised modelling tasks are carried out. Finally, the

evaluation step is designed to compare and evaluate the results from the modelling

steps to ultimately accept or reject the hypothesis. Not represented in the figure is

an initial step where an understanding of the dataset utilised for the experimental

evaluation is gathered.

Figure 3.3: Overview of the experimental process with the associated CRISP-DM

phases on the bottom and the NLP, modelling, and evaluation steps illustrated as

blocks in the chain.

3.4 Data Understanding

The data understanding step is dedicated to gathering a greater understanding of all

data elements that make up the dataset.

3.4.1 The Dataset

The Maluuba Frames dataset (El Asri et al., 2017) will be employed to evaluate the

effectiveness of the algorithms in this context. The dataset consists of 19,986 individual

statements which were collected in a Wizard-of-Oz fashion. Two users communicated
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via a chat interface for the purpose of booking flights and accommodation, where one

user took the place of the computer agent in the conversational interface paradigm.

The dataset consists of a single file containing a JSON representation of the Frames

data. This data includes many data points but for intent detection, only the statements

entered by the users, and the primary intent identified for that statement, will be

extracted. Every statement and its matching intent will be extracted from the JSON

file, and stored for review and processing. If a statement has no identified intent, then

the intent will be set to ‘NO INTENT’.

3.5 Data Preparation

In the data preparation step, the individual statements will be cleaned to remove bad

or noisy data, the text will be converted into vectors for modelling, and the data will

be split so that separate data is utilised for training and evaluating the models.

3.5.1 Missing Data

Any statement which has been associated with the ‘NO INTENT’ intent will be ex-

cluded from the dataset before any further data preparation actions are carried out.

The statements without an identified intent may have no common features which could

be used for classification. Without an identified commonality to the statements, they

could be misclassified by the models, leading to poorer performance scores.

3.5.2 Lexicon Normalisation

Comparing the two examples utilised to illustrate Stemming and Lemmatisation in the

literature review, we can see that using a Lemmatisation process on better and good

would result in no change to the date. However, using Lemmatisation on ‘studies’ and

‘studied’ would result in their replacement with ‘study’. As a result, a Lemmatisation

process will be applied to the dataset to perform lexicon normalisation.
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3.5.3 Noise Reduction

By utilising the Python Natural Language Toolkit (NLTK) and its POS Tagging sys-

tem, a majority of the nouns representing geopolitical entities (GPE) can be identified.

GPE is the term employed by the NLTK toolkit to identify location names. As the

tagger analyses sentence structure, it can correctly identify fictional place names as

GPEs. However, it does also identify some non-nouns as GPEs because of their con-

text within the sentences. Each word identified by the POS Tagger will be replaced

with the token: [GPE]. By replacing the word with a token we keep the high-level

meaning of the word in the sentence, but reduce the variables in the dataset.

Date and time information occurs in the dataset in order to indicate periods when

holidays could be taken and to indicate when flights and accommodation can and have

been booked. The specific date related information that is provided for information

could impair the accuracy of the model. However, the presence of date information

could be valuable to the model in determining intent. By replacing the date informa-

tion with a generic token we provide the model with enough information to indicate

that date information was supplied, while reducing noise to the model with unique

tokens representing each value. The data will be manually reviewed and common date

and time patterns will be identified. A regex will be defined which covers the deter-

mined patterns. The regex will be executed against each statement, and matching

patterns in the statement will be replaced with the token [DATETIME]. Due to the

nature of the free-form input in conversational interfaces, and the volume of data, it

is not possible to identify a pattern which covers 100% of cases.

Currency based information is used in the dataset to inform about budgets and

to communicate actual prices. As with the date information discussed above, a regex

pattern will be identified which matches the majority of date and time patterns that

have been pinpointed in the data. Every matching instance of currency will be replaced

with the token: [CURRENCY]. As with the date time date, it will not be possible to

identify a pattern which covers 100% of cases.

Punctuation characters occur frequently in written text but may not provide much
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information to a classification model. The text will be reviewed in order to identify

common punctuation characters. Each of the identified punctuation characters will be

removed from the text.

Commonly employed words, also known as stop words, may not be relevant to the

context of the statements and therefore are often described as noise for the purposes of

classification exercises. A common list of stop words will be identified from reviewing

the data. This list will be built by reviewing common stop words from the English

language combined with the most common words which occur in the data. The stop

words will take into account the context of the data. For example, this is a travel-

related dataset and a common pattern which could occur is ‘from [GPE] to [GPE]’, in

this context it may be better to keep from and to in the dataset.

A common feature of many chat interfaces are emoji. As the dataset was collected

using a chat interface, the text will be reviewed for the presence of emoji characters.

Some emoji can be utilised to convey information but that is not always the case.

During the review, it will be determined if it is beneficial to retain or remove the

emoji characters from the statements. If it is identified as beneficial, a pattern will be

determined which can be used to identify and remove the characters.

3.5.4 Feature Extraction

Both the SVM and CNN algorithms accept vectors of a fixed size as their input. A

vectorisation technique will be applied to convert the statements into fixed-length

vectors. There are a number of algorithms utilised in the NLP space for the purposes

of converting text to vectors.

The Bag-of-words (BOW) model is a vector representation of text where every

existing word in the corpus is represented by a single integer number in the vector.

This model disregards grammar and word order but does maintain multiplicity. For

example, the phrase; “To be or not to be, that is the question” contains eight distinct

words, resulting in a vector with eight columns. The columns representing ‘to’ and

‘be’ would contain a value of two, and all other columns would contain a value of one.

TF-IDF is a numerical factor which represents the importance of a word (or set of
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words) in a statement in relation to its importance (frequency) in the overall corpus.

The TF-IDF algorithm value increases as words are employed more frequently in the

statement being analysed, but this is offset by the number of occurrences in the overall

corpus. This effectively applies a weighting to de-prioritise words which occur very

frequently in the overall dataset. In addition, to single words (unigrams), TF-IDF can

also be utilised to consider combinations of words as bigrams (two words), trigrams

(three words), etc.

Word2Vec is a collection of algorithms in the word embeddings space where shallow

neural networks are used to generate a vector space from a corpus of text. The vector

representations which have a common context within the corpus are located in close

proximity within the vector space. Word2Vec contains two primary algorithms cbow

and Skip-gram.

TF-IDF has advantages in this context over BOW in that it weights words based on

their frequencies both in the statement being categorised and the overall text corpus.

In addition, the ability to consider not just single words but pairs of words can help

with accuracy in an NLP context. Word2Vec has similar advantages and has recently

become a popular choice for feature extraction tasks. However, Word2Vec cannot

be directly applied as an input for an SVM model due to the nature of its output,

as it generates multi-dimensional vector representations of the text. Instead, the

generated vectors would need to undergo another transformation to reduce the vectors

representing words into a representation with a single dimension. CNN models, on the

other hand, can make use of two-dimensional convolutional layers in order to process

the output of Word2Vec models directly. The experiment by Lilleberg et al. (2015)

also suggests that TF-IDF can generate better results than using Word2Vec when

building linear SVM models.

Because of the extra transformation step needed to carry out Word2Vec with SVM,

TF-IDF will instead be employed as the input as it is supported by both SVM and

CNN models. The feature extraction step of the process will generate a vector space

where each column represents a unigram or bigram from the overall corpus. Until

the data cleaning exercise is completed and the feature extraction process has been
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executed, there is no way to determine its size.

3.5.5 Feature Selection

The TF-IDF feature extraction process outlined above will create at least a single

feature per word in the dataset, resulting in an enormous vector representing each

record. Large vectors will increase the time required to generate machine learning

models. In addition, by reducing the features to only the most important ones which

can be identified as important for the intents being identified, the noise is further

reduced for the modelling process. Therefore, a feature selection process will be applied

to reduce the vector size to support faster modelling and evaluation. In this case, two

feature selection mechanisms will be employed Chi-squared and PCA.

Firstly, a Chi-squared test will be run for every feature in the vector space. The

Chi-squared test is a measure of independence of two features. In this case the inde-

pendence of every feature with the intent. A significance value can be determined for

each feature, the lower the significance value, the more correlated that feature is to

the intent. Any feature which indicates a significance of ≤ 0.05 will be retained and

the remainder will be discarded.

Secondly, PCA will be applied to further reduce the vector size. PCA transforms

the possibly correlated features in the vectors into uncorrelated features called princi-

pal components. A PCA will be run on the complete vector representation from the

Chi-squared algorithm. One of the outputs from a PCA is the explained variance. By

graphing the explained variance as a scree plot, the impact of the principal components

can be observed. The number of significant principal components for the dataset can

be determined by observing the impact of the data in the scree plot.

3.5.6 Imbalanced Data

As seen in Figure 4.1, the classes in the dataset are highly unbalanced. There are sev-

eral potential techniques for addressing sample imbalance. Over and under sampling

are the primary mechanisms utilised, where oversampling adds more minority records,
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and under-sampling removes majority records until all classes are in balance. A hybrid

approach is also possible where the data is first over-sampled and then under-sampled

to provide a balanced dataset.

For oversampling, Synthetic Minority Over-sampling Technique (SMOTE) can be

applied to generate new artificial records for the dataset. To generate synthetic data

k-nearest neighbours are determined for each data point and new data points are

generated between the data point and its neighbours. However, due to the nature of

NLP and its vector representations, this is not a viable approach for this experiment.

Random oversampling, however, is a potential option where the minority classes are

sampled with replacement until the dataset is balanced.

With under-sampling, Tomek links can be applied to remove very similar records

from the dataset. With this algorithm, the k-nearest neighbours are mapped and

very closely mapped records can be removed as they ‘overlap’ with other data points.

Another option for under-sampling is simply to randomly remove data points from the

majority classes until a balance is achieved. A drawback with under-sampling is that

you are excluding valid data records from the dataset.

In the dataset, there is a vast disparity between the number of samples in the

minority class (14) and the majority class (8,239). If oversampling is applied, approx-

imately 160,00 new records would be created by random oversampling. This is eight

times larger than the original dataset and as such oversampling will not be carried out.

If under-sampling a vast majority of the data in the dataset would be discarded to

balance the dataset to the smallest class. As such under-sampling will not be carried

out. A hybrid approach would result in less artificial data being created, and less data

being discarded, but ultimately still suffers from the issues with both approaches.

Instead, the modelling and evaluation steps of the experiment will attempt to take

into account the imbalance. The modelling step will apply a weighted error value

for each class to apply a greater penalty when incorrectly identifying the minority

classes. The scikit-learn compute class weight class will be employed to determine the

appropriate weights for each class. Also, the F1 score will be utilised as the primary

metric for evaluation as it is less susceptible to imbalanced data when compared to
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precision or recall alone.

3.5.7 Training and Evaluation Data

K fold stratified cross-validation will be employed to evaluate each model. The dataset

will be split into ten separate sections, and each section will retain the same represen-

tation of the classes as the overall dataset. All models will be trained and evaluated

ten times. For each training and evaluation, nine of the ten sections will be utilised to

train the model, and the final section will be utilised to evaluate the model. For every

iteration, a different section will be employed to evaluate the dataset so that every

record in the data is used for evaluation once.

3.6 Modelling

The goal of this experiment is to compare the SVM and CNN machine learning al-

gorithms for intent detection. Both algorithms have multiple options. As a result,

several different configurations of each model will be trained and evaluated on the

dataset.

3.6.1 SVM

The python scikit-learn packages SVC module will be employed to build the SVM

models. There are a number of different parameters that can be provided for build-

ing SVM models and each can have an impact on the ability of the SVM model to

identify the intents. There are four SVM kernels available in the scikit-learn package.

Each kernargel represents a different algorithm which is applied for pattern analysis

within the SVM implementation. The kernels are Linear, Polynomial (Poly), RBF,

and Sigmoid. Some of the other variables which can be applied to the SVM process

are dependent on the kernel.

For this experiment, the best parameters for each of the four kernels will be iden-

tified, and those parameters will be applied when training a model for each of the
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kernels. To identify the best combination of parameters, a grid-search will be em-

ployed. The grid-search process will use the prepared vectors and two-fold stratified

cross-validation to execute each kernel with every possible combination of parameters

(for that particular kernel). The F1 score will be utilised as the evaluation metric as

it represents a composite evaluator for both the precision and recall. This results in

every combination of parameters being trained and evaluated two times. The F1 score

will be calculated and averaged for every iteration of each parameter combination, and

the combination with the highest averaged F1 score will be applied for SVM modelling

for the experiment.

The reason two-fold stratified cross-validation is employed for the grid-search in-

stead of ten-fold, is down to time required to run the entire search. Preliminary tests

of SVM model generation using the dataset in a ten-fold configuration showed that

each model generation and evaluation took approximately thirty minutes, resulting

in over one-thousand, seven-hundred and ninety-five minutes of CPU execution time

(or over seventy-four days). The dimensionality of the dataset had been reduced to

a minimum, therefore to control the time variable in the equation, it was found that

the volume of data used to generate the model needed to be reduced. Using two fold

validation, the time needed to train each model was approximately five minutes, and

overall, fewer models would be generated.

The SVM algorithm is designed to work for only two classes, so every record is

classified as one of the two classes. However, there are ways of using SVM for multi-

class datasets like the one in this experiment, these are referred to as decision functions.

There are two possible decision functions for the SVC module: OVO and OVR. OVO

attempts to classify each classifier against each other, one at a time. OVR, on the

other hand, attempts to classify a single classifier compared to all others as a single

grouped entity. Both of the potential decision functions will be evaluated for each of

the kernels.

The C, or penalty parameter is the error term which represents the balance between

training error and testing error. This parameter is valid and will be evaluated for, each

of the kernels. The following range of values has been identified for this parameter:
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0.001, 0.01, 0.1, 1, 10, 100, 1000. Gamma represents the range of influence that

each training vector has when building the model. This parameter is relevant for the

poly, RBF, and sigmoid kernels only (not the linear kernel). The following range of

values has been identified for this parameter: 0.01, 0.1, 1, 4, 16. Degree represents

the flexibility of the decision boundary for the kernel. Higher values represent more

flexible decision boundaries. The following range of values has been identified for this

parameter: one, three, six, twelve.

Each kernel will be set up with a random seed number of 42. The class weights

will be set to the values determined in the imbalanced data step. All other variables

will employ the default values set by the SVC library. The default tolerance for the

stopping criterion is 1e-3. Coef0 which is the independent term utilised by the poly

and sigmoid functions which will have a default value of 0.0. A shrinking heuristic

will be applied by the SVC library to speed up optimisation. The cache size and max

iterations parameters will be determined during the experiment based on the resources

available.

For the linear kernel, the potential parameters represent fourteen possible com-

binations of the decision function and C parameters. This represents twenty-eight

models being generated and evaluated on the dataset for this kernel. The poly and

RBF kernels parameters represent seventy parameter combinations for the decision

function, C, and gamma. This equates to one-hundred and forty models generated for

training and evaluation by the grid-search for each of the two kernels. The parameters

for the poly kernel represent two hundred and eighty parameter combinations for the

decision function, C, gamma, and degree parameters. This equates to five-hundred

and sixty models generated for training and evaluation by the grid-search. This leads

to a total of eight-hundred and sixty-eight training and evaluations by grid-search.

Once the optimal parameter combination has been identified for each kernel, each

one will be trained and modelled against the ten, k-fold stratified cross-validation

datasets. The precision, recall, and F1 score will be calculated for each of the iterations

by using the scikit-learn tools in weighted mode. This will provide ten values for the

three evaluation metrics, for each optimised kernel configuration. These results will be
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recorded and utilised to compare and evaluate the effectiveness of the SVM models.

3.6.2 CNN

The python keras package utilising a Tensorflow backend will be employed to build

the CNN models. There are several different patterns available when building CNN’s,

ranging from simple shallow models with a minimum number of layers to deep learning

models with several convolutional and fully connected layers. Additionally, there are

several options that can be used when building each model.

Five architectures have been identified through initial research and execution.

These architectures are based on the work of Collobert and Weston (2008) as seen in

Figure 2.6. The best initial results were found by having a large number of small filters

with a pooling layer, followed by fully connected layers. The addition of a dropout

layer in both the shallow and deep models had an adverse impact on the performance

of the models and has therefore not been included. Once a shallow architecture with

acceptable results was identified, it was extended to follow similar principles with mul-

tiple convolutional and fully connected layers to form a ‘deep’ architecture. A grid

search will be carried out on a range of parameters to identify the best performing

parameter combination for each architecture.

The grid search will utilise the entire training set in a two-fold cross-validation split.

Each identified architecture configuration will be executed against every fold, and the

F1 score will be calculated. The average F1 score for the folds will be employed to

identify the best performing combination for that architecture. The identified optimal

configuration for each CNN pattern will be utilised to evaluate the CNN classification

mechanisms on the dataset.

Each of the five architectures will accept the transformed PCA records as input.

Each will have a final fully connected layer of twenty units utilising a softmax acti-

vation. The twenty units of the final layer will result in twenty outputs, one for each

of the intents identified for the data. The softmax activation will ensure that the

sum of the output values for each record is 1. The output with the highest value is

the predicted intent for that record. Each of the models will employ accuracy as its
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evaluation metric for training the network. A categorical cross-entropy loss function

will be applied to attain the expected categorical output for the final layer.

The options to be explored for each architecture are; pooling, activation, and

optimiser. Both max and average pooling will be evaluated for each architecture. Each

pooling layer in each instance will utilise the same pooling mechanism. The following

list of activations will be evaluated: ReLU, softmax, elu, selu, softplus, softsign, tanh,

sigmoid, hard sigmoid, and linear. The same activation will be employed for each

convolutional and fully connected layer of the architecture instance, with the exception

of the final fully connected layer which will utilise softmax as defined previously. The

following optimisation functions will be evaluated: adam, sgd, rmsprop, adagrad,

adadelta, adamax, and nadam.

Every iteration will utilise an early stopping mechanism in order to terminate the

training before over-fitting can occur. The early stopping callback will monitor for

loss, will define a minimum change in loss of 0.005, and will terminate if there is no

change to the loss value for the instance after ten epochs. Batches of 100 records will

be supplied to each instance for training.

The first shallow architecture will consist of a single convolutional layer containing

one hundred filters of a single dimension and will utilise a stride of one, and global

pooling. This will be followed by the output layer which was previously discussed.

This is represented visually in Figure 3.4.
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Figure 3.4: Representation of the layers of the Shallow 1 CNN architecture

The second shallow architecture will consist of a single convolutional layer contain-

ing one hundred filters of a single dimension and utilising a stride of one, and global

pooling. This will be followed by a fully connected layer of one hundred units, which

is followed by the output layer. This is represented visually in Figure 3.5.

Figure 3.5: Representation of the layers of the Shallow 2 CNN architecture

The third shallow architecture will consist of a single convolutional layer containing

one hundred and fifty filters of a single dimension and utilising a stride of one and will

utilise global pooling. This will be followed by a fully connected layer of one hundred
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and fifty units, which is followed by the output layer. This is represented visually in

Figure 3.6.

Figure 3.6: Representation of the layers of the Shallow 3 CNN architecture

The first deep architecture will consist of three convolutional layers, each containing

one hundred filters of a single dimension and utilising a stride of one and utilising non-

global pooling with a width of a single unit. These layers will be followed by a global

pooling layer. This will be followed by a fully connected layer of one hundred units,

which is followed by the output layer. This is represented visually in Figure 3.7.

The second deep architecture will consist of six convolutional layers, each contain-

ing one hundred filters of a single dimension and utilising a stride of one and utilising

non-global pooling with a width of a single unit. These layers will be followed by a

global pooling layer. This will be followed by two fully connected layers, each of one

hundred units. This is followed by the output layer. This is represented visually in

Figure 3.8.
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Figure 3.7: Representation of the layers of the Deep 1 CNN architecture

Figure 3.8: Representation of the layers of the Deep 2 CNN architecture

There are 112 combinations of parameters for each of the five models, resulting
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in 700 total combinations. Each will be executed twice due to the two-fold stratified

cross-validation, resulting in 1,400 models being executed and evaluated. As with the

SVM grid search, the F1 score will be employed as the evaluation metric. The scikit-

learn packages, f1 score class, will be utilised to calculate a weighted F1 score due to

the multi-class nature of this dataset. The score will be calculated for each model

execution and the average over the two folds will be calculated. The individual model

with the best F1 score for each of the five architectures will be used to evaluate the

effectiveness of the CNN models on this dataset.

Once the optimal parameter combination has been identified for each architecture,

each one will be trained and modelled against the ten, k-fold stratified cross-validation

datasets. The precision, recall, and F1 score will be calculated for each of the iterations

by using the scikit-learn tools in weighted mode. This will provide ten values for the

three evaluation metrics, for each optimised architecture configuration. These results

will be recorded and utilised to compare and evaluate the effectiveness of the CNN

models.

3.7 Evaluation

Four core SVM models have been identified (Linear, Polynomial, RBF, Sigmoid). Five

CNN models have been identified (three shallow and two deep). This provides nine

models to be evaluated. Once the optimal parameter set for each of the identified

models has been identified, every model will be trained and evaluated against each of

the folds in the defined ten-fold cross-validation set, utilising the optimum identified

parameters. The F1 score, precision, and recall will be calculated for each iteration of

every model, resulting in a total of thirty evaluation metrics per model.

For each of the nine datasets, a ShapiroWilk test will be executed to determine

the normal distribution of each result set. Thereafter, further statistical tests will be

carried out in order to determine if there are significant differences between the results

for each model. Dependent T-Tests will be executed comparing each result for every

model, to the matching results for all other models. The Dependent T-Test will be
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executed if the data is normal and there are no significant outliers. If the assumptions

are not met then Wilcoxon signed-rank tests will be carried out instead.

If the executed test indicates that the CNN model results offer a significant im-

provement (with 95% confidence) over the SVM model results for each of the three

metrics, the null hypothesis will be rejected, and H1 will be accepted. Otherwise, if

the tests indicate that there is not a significant improvement for any metrics, the null

hypothesis will be accepted, and H1 will be rejected.

3.8 Summary of design

A number of data preparation steps will be carried out on the dataset in order to

prepare for the modelling step. Firstly records with no intent will be discarded. This

is followed by a Lemmatisation process will be carried out in order to determine the

root of words in the dataset. A noise reduction process will be enacted to replace

instances of dates, times, and currencies. Punctuation and emoji characters will also

be removed.

Once data cleanup has been completed, a TF-IDF algorithm will be applied in order

to convert the text statements into vectors. In order to reduce the dimensionality of

the dataset, a Chi-squared test will be executed to identify the significant variables in

the data and the remaining non-significant variables will be ignored. Finally, a PCA

will be run to identify the most effective transformed vectors.

The prepared dataset will be split using ten-fold stratified cross-validation in order

to provide ten splits of the data for training and evaluation. As the data is imbal-

anced, a weighting calculation based on the occurrences of the intents within the

dataset. These weights will be supplied to each model generation in order to combat

the imbalance within the data.

Four SVM kernels are available in the chosen toolkit. A GridSearch will be carried

out in order to identify the optimum parameter combination for each kernel. The grid

search will be carried out using a two-fold cross-validation pattern. The F1 score will

be employed as the single evaluation metric for both grid search actions.
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Five CNN algorithms have been identified for the experiment. A GridSearch will be

carried out in order to identify the optimum parameter combination for each algorithm.

The grid search will be carried out using a two-fold cross-validation pattern. The F1

score will be used as the evaluation metric.

Each of the optimal models will be trained and evaluated against each of the ten

stratified folds of the dataset. The F1 score, precision, and recall metrics will be

calculated for each iteration of each model. The normality for each result set will be

determined. Dependent T-Tests or Wilcoxon signed-rank tests will be carried out to

compare the results of all models. If the CNN models show a significant improvement

over the SVM models with 95% confidence the null hypothesis will be rejected and

otherwise it will be accepted.

3.8.1 Delimitation and scope

The main focus of this experiment was the evaluation and comparison of the effective-

ness for SVM and CNN algorithms for the purposes of intent detection in the context

of a natural language interface.

This experiment will be carried out using only the data available in the Maluuba

Frames dataset (El Asri et al., 2017). A number of SVM and CNN models have been

identified and optimised for the purposes of this experiment. Some selections of tools

and methods were made as a consideration of resources available.

3.8.2 Strength and limitations of approach taken

The main strength of this experiment is its evaluation against a dataset which closely

mimics the interactions of a true conversational user interface. All bar a single identi-

fied experiment utilised general NLP datasets for building and evaluating the machine

learning models. The single identified experiment which employed a conversational

dataset only evaluated a single model (SVM) with no comparison to other models.

In this experiment a number of variations of both SVM and CNN models are

defined, optimised, and evaluated. For SVM, models based on four common kernels
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(one linear and three non-linear) are evaluated. For each of these models a grid search

is carried out in order to find the optimal parameter configuration, so that each model

generates the best possible results in the context of this experiment.

In addition, a number of CNN architectures are defined based on the existing

research, ranging from shallow models with single CN, PL, and FC layers, to deep

models with multiple instances of each layer. A grid search is employed in order to

identify the optimal combination of activation function, pooling type, and optimisation

function. As with the SVM models, this helps to ensure that each of the models

generates the maximum results for the experiment.

As this is an experiment in the NLP domain, the NLP processes and tools utilised

are incredibly important to the overall results of the experiment, and can have a

significant impact on the overall performance of the models. The NLP process utilised

in this experiment has been created to achieve the optimal results based on the domain

(travel) and problem (intent detection for conversational interfaces). The cutting-edge

mechanisms for vectorisation (TF-IDF), and lexicon normalisation (lemmatisation)

have been identified and applied as part of this process. In addition, specific steps for

noise reduction like replacement of date, currency, and location information have been

put in place.

There are a number of potential weaknesses in the experiment. Firstly, the im-

balance present in the dataset may adversely impact the training and evaluation of

the models. This imbalance may impact some models more strongly than others, re-

sulting in incorrect results for some models. The experiment attempts to deal with

this imbalance but further research would be required in order for the impact to be

determined.

Secondly, the optimum parameters for each model were identified using two-fold

stratified cross-validation instead of the ten-fold stratified cross-validation that the

experiment ultimately utilises. Ideally, ten-fold stratified cross-validation would be

employed in order to determine the optimum parameters for all the models. Two-fold

validation was applied in order to reduce the time needed to execute the grid search so

that they could be delivered in the time-frame needed in order to complete this thesis.
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Thirdly, there are other potential configurations of both algorithms which could

have been considered. For example, the SVM algorithm has many other kernels avail-

able, other than the ones employed in this experiment. The potential scope of CNN

architectures is even greater due to the possible number of architectures and options

which could be combined to build CNN models. A number of shallow and deep archi-

tectures have been defined but it is possible to create an almost unlimited number of

combinations.
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Chapter 4

Implementation and results

In this chapter, the dataset will be analysed and then pre-processing steps will be

implemented in order to prepare the data for modelling. The gridsearch will be im-

plemented for each model, and the results will define the particular models to be

generated on the prepared dataset. Finally, the results of the optimised models will

be provided.

4.1 Data Understanding

4.1.1 The Dataset

A Python script was written to extract and analyse the data from the JSON format

provided by the dataset. The dataset consists of an array of top-level JSON entities

described as a ‘dialogue’. Each dialogue consists of an array of entities named ‘turns’,

where each turn represents a statement from a user. Every turn contains a ‘text’

attribute as its first data point, and this attribute is the statement entered by the

respective user. All turns also contain a ‘labels’ array. The majority of labels arrays

contain an ‘acts’ array. Any turn which does not contain any acts will have their intent

defined as ‘NO INTENT’. For all remaining records, the first element in the args array

contains the intent within an element labelled as ‘name’. The statement and intent

are extracted from this JSON format into a data structure within the python script.
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4.1.2 Statements and Intents

Individual statements in the dataset have been categorised into one of twenty different

intents (classifiers) as seen in Figure 4.1. A 21st classifier ‘NO INTENT’ has been

added to represent the records with no classifier. The number of instances for each

intent varies considerably. The most common is ‘inform’ which consists of 8,239 in-

stances, while ‘reject’ has the least number of instances at 13. There are 138 of the

records assigned to ‘NO INTENT’.

Figure 4.1: Illustration of the intents in the unprocessed dataset compared to the

number of occurrences of that intent. A clear imbalance can be seen.

There are an average of 12.6 words per statement, with a median word count of

nine. The longest statement contains 112 words, and the shortest containing just one

single word. The distribution of word counts can be seen in Figure 4.2.
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Figure 4.2: Frequency of word counts per statements in the unprocessed dataset. This

illustrates that the statements tend to be short, with a large portion being made up

of less than 20 words.

Of the statements in the dataset, 9,469 contain a full stop, 7,700 contain a question

mark, and 2,613 contain an exclamation point. Also, there are several other punctu-

ation symbols present. There are 428 instances of emoji characters occurring in the

dataset. The dataset contains some words which occur very frequently, and some

which appear quite rarely. Table A.1 lists the words which arise over 500 times in the

dataset. Words such as ‘the’ occur very frequently and potentially increase noise in the

dataset. However, there are some common words which may be extremely relevant to

the categorisation process, for example, ‘hotel’ is the fourteenth most common word.

As this dataset was built around booking flights and accommodation, this could be

a significant word in the process of determining intent. There are 7,127 words which

arise only a single time in the dataset. Similarly to words which commonly appear,

infrequent words can increase noise in the data. These infrequent words are often;

prices quoted for trips (in a variety of formats), slang, dates (in a range of formats),
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and nouns (some real and some imaginary place names, e.g. Detroit, and Atlantis).

4.2 Data Preparation

4.2.1 Missing Data

A total of 138 records in the dataset have not been categorised with an intent and will

be excluded from the data for this experiment. The removal of the records with no

identified intent has no significant impact on the data. The graph of statements by

the number of instances can be seen in Figure 4.3.

Figure 4.3: Illustration of the intents in the processed dataset compared to the number

of occurrences of that intent. The nointentcategoryhasbeenremoved.

4.2.2 Lexicon Normalisation

The python NLTK package will be employed to perform the normalisation process.

The WordNetLemmatizer contained in this package will be executed against each word
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in the corpus. If the algorithm returns a new value, this is the identified lemma of the

specified word and will replace the original word in that statement.

4.2.3 Noise Reduction

The first phase of noise reduction will be carried out at a statement level for [DATE-

TIME], [GPE], and [CURRENCY]. This means that each statement will be isolated

and pattern matched for replacement of the pattern with the identified token. A

Regex pattern string (see Table A.3) has been identified which handles the majority

of date patterns that have been identified in the data. Every identified instance of

currency will be replaced with the token: [DATETIME]. When GPE replacement is

carried out it results in 7,502 instances of identified GPE’s being replaced with [GPE].

The date time-related noise reduction results in the replacement of 4,692 instances of

dates and times in the statements, with the [DATETIME]. Similarly, currency-related

replacement results in 3,233 instances of currency being replaced by [CURRENCY].

The next phase of noise reduction will be carried out at the individual word level.

Every statement will be split on space character in a process known as tokenisation.

The individual tokens will be analysed for instances of emoji, punctuation, and such

likes, where the relevant replacement will be carried out. Once all replacements are

executed, each statement will be re-constituted by joining every non-empty token back

together. Each of the 428 identified instances of Emoji characters in the dataset will

also be removed. This will be achieved through a simple replacement of each identified

instance with an empty string. Emoji tokens are defined as beginning and ending with

the ‘::’ characters. The following words will be removed from the dataset: the, i, you,

a, and, , for, is, have, in, would, of, can, that, are, this, be, it, on, we, like, do, at, with,

me, your, will, my, there, but, or, not, if, any, get, has, want, just, i’m, as, and also.

All remaining common words are potentially relevant to this particular task. After

completing the tidy up of the data, there is an average of 7.62 words per statement,

with a median word count of 6. The longest statement contains 76 words and the

shortest contain just a single word. The distribution of word counts can be seen in

Figure 4.4.
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Figure 4.4: Frequency of word counts per statements in the processed dataset. When

compared to Figure 4.2 we can see that there has been a shift to the left, indicating

that the statements are now generally shorter after processing.

Outlined in the Table A.2, the 500 most frequently occurring words in the processed

dataset can be seen. When comparing to the most frequent words in the original

dataset as seen in Table A.1, it can be observed that there are now fewer commonly

occurring words at a count of 51 to 78. The entity tokens: ‘[gpe]’, ‘[datetime]’, and

‘[currency]’, are now among the most common words. The most frequently arising

word is ‘[gpe]’ with 7502 occurrences, compared with ‘to’ which appears 8,550 times

in the original dataset. It can also be observed that many of the commonly occurring

words in the processed dataset are travel related, i.e. hotel, star, package, trip, book,

budget, rating, economy, guest, cost, parking, etc.
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4.2.4 Feature Extraction

The scikit-learn package’s TfidfVectorizer will be employed to convert each statement

into its vector representation. This vectorisation mechanism has several defined pa-

rameters which can be specified. The following parameters will be applied, and all

other parameters defined by the implementation will utilise the default values spec-

ified by the package. The sublinear df parameter will be set to ‘True’ to employ

logarithmic frequency in the transformation. The min df will be set to ‘5’ to ignore

words which occur fewer than five times in the dataset. The norm will be set to ‘I2’

which causes all feature vectors to have a Euclidean norm of 1. The ngram range will

be set to ‘1,2’ to employ unigrams and bigrams. Unigrams represent single words,

and bigrams represent word pairs. By including word pairs, we encode that data as

specific columns in the data which forces the pairs to be considered regarding signifi-

cance and modelling. Trigrams were considered, but the increased size of the feature

set resulted in memory problems on the available hardware. The stop words will be

set to ‘None’ as corpus specific stop words have already been identified and removed.

The TfidfVectorizer generates a vector map with 8,174 columns.

4.2.5 Feature Selection

Executing a Chi-squared test (using scikit-learn) against the data indicates that 1128

have a p-value of ≤ 0.05. This indicates a high significance for those columns within

the dataset. The remaining non-significant vectors will not be utilised for modelling

and evaluation.

In addition to the Chi-squared test, a PCA is run to further reduce the number of

vectors. The PCA is executed using scikit-learn. The PCA is first executed to calculate

the components for all 8,174 columns with the svd solver parameter set to ‘full’. The

explained variance for the PCA can be seen in Figure 4.5. This demonstrates that there

is a diminished return with the transformed data at around 200 PCA components. The

PCA is subsequently executed to restrict the transformation to 200 components, also

using svd solver set to ‘full.
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Figure 4.5: PCA Explained Variance of the dataset for dimensionality reduction. This

illustrates that the impact of the vectors declines after approximately the first two-

hundred.

4.2.6 Imbalanced Data

The compute class weight class in scikit-learn is utilised to determine the balanced

class weights. The class weight parameter will be set to ‘balanced’ to determine a

balanced weight for each intent. The weights for each intent can be seen in Table A.4.

4.2.7 Training and Evaluation Data

The scikit-learn StratifiedKFold function is employed to split the data into ten folds of

almost identical size and composition. This function is initialised with a random state

of ‘42’ and shuffle will be set to True. All other parameters retain the default values

specified by the scikit-learn package implementation.
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4.3 Modelling

4.3.1 SVM

Within the scikit-learn packages model selection namespace there is a GridSearchCV

method for identifying optimal parameter sets. GridSearchCV accepts a classifier,

a cross-validation definition, a dictionary containing the parameters to execute, and

numerous other parameters like the scoring mechanism to use and the number of jobs

to execute in a multi-threaded environment.

In this instance, the classifier is an SVM definition created using the scikit-learn

SVC implementation. Separate SVC definitions were created for each kernel (‘linear’,

‘rbf’, ‘poly’, and ‘sigmoid’) and decision function (‘ovr’ and ‘ovo’). Decision functions

are not a criterion that the GridSearchCV can accept in its dictionary of parame-

ters to search. This leads to eight SVC definitions being employed as the classifier

for the GridSearchCV function. Each SVC implementation was initialised with a

random state of ‘42’ and a cache size of ‘2,000’ (based on available resources). The

weighted intents defined for each class were supplied using the class weight parameter,

as represented in Table A.4 for the list of class weights .

The cross-validation instance, in this case, is the StratifiedKFold method from

the scikit-learn model selection namespace. The n splits parameter representing the

number of splits to make in the data was set to ‘2’. the random state parameter

representing the initial random state for the instance was set to ‘42’, and shuffle was

set to True in order to shuffle the data before it was split.

An appropriate param grid dictionary was constructed for each of the SVM ker-

nel types. The linear model param grid contained only the list of potential C values

already outlined. The poly kernel param grid contained the list of C, gamma, and de-

gree values. The RBF and sigmoid kernels param grids contained the C and gamma

values.The other parameters set for the GridSearchCV instance are n jobs, represent-

ing the threads to utilise for the modelling and evaluation. In this case, the n jobs was

set to ‘8’ as the exercise was being carried out on an eight core machine. The scoring
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parameter was set to ‘f1 weighted’, which represents using a weighted F1 score from

each iteration as the scoring mechanism for identifying the best parameters.

Execution of the GridSearchCV hasidentified the best parameter combinations for

each SVC instance, these are outlined in Table 4.1. For each kernel, the best criterion

and score are identical for both the ovr and ovo decision functions. This indicates

that there is no difference in impact for the decision function utilised in this problem.

As such the ovr decision function will be employed to build the final SVM models for

each kernel, as it is the default parameter utilised by the SVC model. This will result

in four SVM models being generated for the final evaluation of SVM models for this

problem and dataset. Each kernel will utilise the identified best criterion combination

for C, gamma, and degree as specified in Table 4.1. The RBF kernel shows the most

promising results from the grid search, followed by the polynomial, linear, and sigmoid.

Table 4.1: Optimum parameter configuration for each kernel from the grid search of

the SVM algorithm. Ovr and ovo results are identical for each kernel.

Kernel Decision Function C Gamma Degree Score

RBF ovo 10 4 N/A 0.69

RBF ovr 10 4 N/A 0.69

Poly ovo 1000 3 1 0.67

Poly ovr 1000 3 1 0.67

Linear ovo 1000 N/A N/A 0.64

Linear ovr 1000 N/A N/A 0.64

Sigmoid ovo 1000 0.01 N/A 0.63

Sigmoid ovr 1000 0.01 N/A 0.63

4.3.2 CNN

Each of the identified 700 models is built as a sequential model in the keras package

by iterating through all possible parameter combinations. As the input for each model

is the output from the PCA, which is a single dimensional vector, 1D convolutional
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and pooling steps will be employed for all models. Each architectural model will be

built by adding the appropriate convolutional, pooling, and fully connected layers to

each model. Each layer will utilise the appropriate activation for that model, with the

exception of the final fully connected layer for each model which employs a softmax

activation and a fixed size of 20 units. The model is compiled using the defined loss

(‘categorical crossentropy’), optimizer (dependent on model instance), and metrics

(‘accuracy’) for that iteration.

The first shallow architecture termed ‘Shallow 1’ is a sequential model, with a

Conv1D as its first layer. This layer contains 100 filters, with a kernel size of 1,

padding is ‘valid’, a stride of 1, and an input shape of (None, 200). The activation

parameter will be the appropriate activation for this model instance. This layer is

followed by a GlobalMaxPooling1D or GlobalAveragePooling1D layer. Pooling type

is dependent on the configuration of this model instance.

Termed ‘Shallow 2’, the second shallow architecture is a sequential model, with

a Conv1D as its first layer. This layer contains 100 filters, with a kernel size of 1,

padding is ‘valid’, a stride of 1, and an input shape of (None, 200). The activation

parameter will be the appropriate activation for this model instance. This layer is

followed by a GlobalMaxPooling1D or GlobalAveragePooling1D layer. Pooling type is

dependent on the configuration of this model instance. The pooling layer is followed by

a fully connected layer with 100 units and the appropriate activation for the instance.

A third shallow architecture termed ‘Shallow 3’ is another sequential model, with

a Conv1D as its first layer. This layer contains 150 filters, with a kernel size of 1,

padding is ‘valid’, a stride of 1, and an input shape of (None, 200). The activation

parameter will be the appropriate activation for this model instance. This layer is

followed by a GlobalMaxPooling1D or GlobalAveragePooling1D layer. Pooling type is

dependent on the configuration of this model instance. The pooling layer is followed by

a fully connected layer with 150 units and the appropriate activation for the instance.

The first deep architecture termed ‘Deep 1’ is a sequential model, with a Conv1D as

its first layer. This layer contains 100 filters, with a kernel size of 1, padding is ‘valid’,

a stride of 1, and an input shape of (None, 200). The activation parameter will be
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the appropriate activation for this model instance. Pooling type is dependent on the

configuration of this model instance. This layer will be followed by a MaxPooling1D or

AveragePooling1D layer. Each combined Conv1D and pooling layer will be repeated

until the model contains three of the layers. These three pairs of layers are followed

by a GlobalMaxPooling1D or GlobalAveragePooling1D layer as appropriate for the

instance. The pooling layer is followed by a fully connected layer with 100 units and

the appropriate activation for the instance.

A second deep architecture termed ‘Deep 2’ is a sequential model, with a Conv1D as

its first layer. This layer contains 100 filters, with a kernel size of 1, padding is ‘valid’,

a stride of 1, and an input shape of (None, 200). The activation parameter will be

the appropriate activation for this model instance. Pooling type is dependent on the

configuration of this model instance. This layer will be followed by a MaxPooling1D or

AveragePooling1D layer. Every combined Conv1D and pooling layer will be repeated

until the model contains six of the layers. These six pairs of layers are followed

by a GlobalMaxPooling1D or GlobalAveragePooling1D layer as appropriate for the

instance. The pooling layer is followed by two fully connected layers with 100 units

each and the appropriate activation for the instance.

In order to train and evaluate each instance, the scikit-learn StratifiedKFold class

is employed to generate two stratified splits of the data. To achieve this, the n splits

property is set to ‘2’, the random state is set to ‘42’ and shuffle is set to ‘True’. This

results in two folds, each consisting of training and evaluation data.

Each fold is iterated and some transformations are carried out in order to convert

the data in the format expected by keras. A scikit-learn LabelEncoder class is applied

to encode the text-based intents as integer numbers. The class weights determined for

the imbalanced data are also encoded using this mechanism. In addition, keras expects

the input in the format of a tensor. The numpy reshape method is employed to alter

the shape of the input values for both the training and test data. In addition, the

categorical crossentropy loss function expects one hot encoded values so the intents

for the training data are encoded using keras to categorical for num classes set to ‘20’.

The intents for the test data are not encoded.
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The fit method is called for each model where the training and test data for the

fold are utilised. A batch size of 100 is employed. Each fit has its epochs parameter

set to 5,000 but an EarlyStopping callback is defined to terminate the execution early.

The EarlyStopping callback is defined with the monitor param set to ‘loss’, patience

set to ‘10’, and min delta set to ‘0.005’. The class weight is set to the encoded class

weights determined previously.When the fit is completed for each model the predict

method will be called with the test data supplied. This returns the predicted intent

generated by the model for each of the test cases. The scikit-learn f1 score method

is applied to determine the score. It accepts the predicted intents, along with the

correct intents, and an average parameter set to ‘weighted’ in order to account for the

imbalanced multiple classes. This score is recorded for that model instance. Once all

model instances have been evaluated against both folds, the scores for each instance

are averaged and recorded. The results for the highest scoring implementation of each

model can be seen in Table 4.2

Table 4.2: Optimum parameter configurations for each of the CNN architectures, from

the results of the grid search.

Name Activation Pooling Type Optimizer Score

Shallow 1 softsign max nadam 0.69

Shallow 2 ReLU max adam 0.68

Shallow 3 ReLU max nadam 0.70

Deep 1 ReLU avg adadelta 0.69

Deep 2 selu avg adagrad 0.66

The results above agree somewhat with the existing literature reviewed. Y. Zhang

and Wallace (2017) indicated that ReLU activation was amongst the most effective

for the shallow models evaluated in the paper. In this case, the GridSearch identified

ReLU as the optimum activation for three of the architectures, two of which are

shallow. Two remaining patterns utilise softsign or selu, which were not identified as

the best performing but the activation function may be dependent on the dataset under

77



CHAPTER 4. IMPLEMENTATION AND RESULTS

evaluation and the other elements of the model. For example, the Shallow 1 model

consists of a CN and an output layer, but the other shallow models both feature an

FC layer in between. It could be that the inclusion of this FC layer impacts the model

so that ReLU generates the best performance. Nii et al. (2017) also utilised ReLU

activation for a shallow model, but no comparison was made with other activation

functions.

Max pooling proved to be the most effective pooling technique for shallow archi-

tectures, whereas average pooling proved most effective for the two deep architectures.

Y. Zhang and Wallace (2017) identified Max pooling as the most effective mechanism

for shallow architectures. Nii et al. (2017) employ max pooling for its shallow archi-

tecture. No identified papers utilised Average pooling, but no deep architectures were

established.

4.4 Results

4.4.1 Precision

The generated results for the precision metric for each model are shown in Table 4.3.

The SVM model with an RBF kernel demonstrates the highest precision score for 80%

of the folds, while the SVM model with a Sigmoid kernel demonstrates the highest

precision score for 20% of the folds.

A box plot showing the range of comparable results for each model can be seen in

Figure 4.6. This illustrates that the SVM model using the RBF kernel attained the

highest overall precision scores. A probability density plot of the values is also shown

in Figure 4.7, from this it can be seen that the RBF results appear to be improved

but the difference compared to the sigmoid kernel is not very pronounced.
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Table 4.3: Weighted precision metric results for each fold of every SVM and CNN

model. The highest precision score for each fold is highlighted in bold.

Fold Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 Linear RBF Poly Sigmoid

1 0.693 0.686 0.696 0.683 0.699 0.689 0.722 0.689 0.713

2 0.691 0.693 0.683 0.655 0.704 0.686 0.723 0.686 0.705

3 0.690 0.692 0.685 0.669 0.679 0.678 0.701 0.678 0.684

4 0.684 0.680 0.684 0.670 0.693 0.700 0.725 0.698 0.715

5 0.675 0.680 0.683 0.682 0.676 0.685 0.711 0.685 0.691

6 0.707 0.691 0.691 0.699 0.694 0.685 0.727 0.686 0.708

7 0.686 0.692 0.674 0.681 0.700 0.687 0.718 0.684 0.714

8 0.682 0.687 0.686 0.674 0.691 0.686 0.703 0.686 0.707

9 0.680 0.672 0.686 0.673 0.696 0.687 0.709 0.688 0.710

10 0.696 0.687 0.692 0.690 0.705 0.696 0.722 0.696 0.718

Figure 4.6: Boxplot representation of the weighted precision metric for each SVM and

CNN model
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Figure 4.7: Probability Density of the weighted precision metric results for each SVM

and CNN model

4.4.2 Recall

The generated results for the precision metric for each model are shown in Table 4.4.

The SVM model with an RBF kernel demonstrates the highest recall score for all of

the folds.

Table 4.4: Weighted recall metric results for each fold of every SVM and CNN model.

The highest recall score for each fold is highlighted in bold.

Fold Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 Linear RBF Poly Sigmoid

1 0.670 0.654 0.677 0.659 0.633 0.645 0.718 0.649 0.636

2 0.664 0.652 0.662 0.632 0.633 0.643 0.713 0.646 0.627

3 0.658 0.670 0.654 0.639 0.634 0.627 0.692 0.627 0.600

4 0.654 0.656 0.657 0.630 0.623 0.655 0.713 0.655 0.630

5 0.646 0.623 0.665 0.647 0.642 0.637 0.701 0.641 0.613

6 0.669 0.650 0.672 0.675 0.642 0.639 0.717 0.645 0.628

7 0.655 0.667 0.661 0.639 0.620 0.640 0.709 0.640 0.629

8 0.652 0.656 0.674 0.646 0.658 0.635 0.692 0.638 0.621

9 0.647 0.634 0.634 0.634 0.634 0.640 0.697 0.688 0.627

10 0.668 0.656 0.667 0.668 0.657 0.696 0.710 0.651 0.640
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A box plot showing the range of comparable results for each model can be seen in

Figure 4.8. The SVM model with an RBF kernel demonstrates the highest recall score

for all of the folds. A probability density plot of the values is also shown in Figure 4.9,

this clearly illustrates that the RBF model results are an improvement over the recall

results from other models.

Figure 4.8: Boxplot representation of the weighted recall metric for each SVM and

CNN model

Figure 4.9: Probability Density of the weighted recall metric results for each SVM and

CNN model
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4.4.3 F1 Scores

The generated results for the F1 score metric for each model are shown in Table 4.5.

This illustrates that the SVM model using the RBF kernel attained the highest overall

recall scores.

Table 4.5: Weighted f1 metric results for each fold of every SVM and CNN model.

The highest f1 score for each fold is highlighted in bold.

Fold Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 Linear RBF Poly Sigmoid

1 0.662 0.646 0.664 0.650 0.623 0.632 0.717 0.637 0.612

2 0.658 0.642 0.653 0.625 0.621 0.629 0.711 0.633 0.607

3 0.646 0.661 0.645 0.628 0.623 0.611 0.688 0.611 0.576

4 0.645 0.648 0.648 0.618 0.609 0.639 0.707 0.641 0.605

5 0.634 0.606 0.653 0.633 0.631 0.621 0.697 0.626 0.589

6 0.655 0.639 0.664 0.666 0.630 0.624 0.712 0.632 0.602

7 0.643 0.657 0.654 0.621 0.603 0.623 0.705 0.623 0.603

8 0.640 0.648 0.668 0.637 0.650 0.621 0.689 0.626 0.595

9 0.637 0.625 0.669 0.639 0.628 0.624 0.694 0.627 0.604

10 0.660 0.643 0.655 0.657 0.647 0.638 0.706 0.639 0.620

A box plot showing the range of comparable results for each model can be seen

in Figure 4.10. This illustrates that the SVM model using the RBF kernel attained

the highest overall F1 scores. A probability density plot of the values is also shown

in Figure 4.11, this clearly illustrates that the RBF model results are an improvement

over the F1 results from other models.
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Figure 4.10: Boxplot representation of the weighted f1 metric for each SVM and CNN

model

Figure 4.11: Probability Density of the weighted f1 metric results for each SVM and

CNN model
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Chapter 5

Evaluation and analysis

In this chapter an evaluation will be carried out based on the results from the previous

chapter. This evaluation takes the form of a detailed statistical analysis of the result

data in order to identify the optimal models for each metric. The results of this

evaluation will then be analysed in order to suggest why the experiment generated

these results. Finally the hypothesis H1 will be accepted or rejected based on the

evaluation results.

5.1 Evaluation

5.1.1 Normality Tests

A Shapiro-Wilk test was run against each set of results for each set of scores to de-

termine if it was normally distributed. This test was implemented using the SciPy

packages Shapiro-Wilk test implementation. The null hypothesis for the Shapiro-Wilk

test is that the data is normally distributed. A p-value of <0.05% results in the null

hypothesis being rejected.

Precision Metric Normality Test Results

The results of the normality tests for the precision metric can be seen in Table 5.1. The

null hypothesis is accepted for each of the models, indicating that they are normally

distributed.
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Table 5.1: Shapiro-Wilk normality test results for the precision metric

Model W p-val Null-Hypothesis

Shallow 1 0.974 0.929 Accepted

Shallow 2 0.889 0.167 Accepted

Shallow 3 0.937 0.520 Accepted

Deep 1 0.979 0.960 Accepted

Deep 2 0.905 0.250 Accepted

sigmoid 0.866 0.091 Accepted

rbf 0.899 0.214 Accepted

linear 0.882 0.137 Accepted

poly 0.899 0.215 Accepted

Recall Metric Normality Test Results

The results of the normality tests for the recall metric can be seen in Table 5.2. The

null hypothesis is accepted for each of the models, indicating that they are normally

distributed.

Table 5.2: Shapiro-Wilk normality test results for the recall metric

Model W p-val Null-Hypothesis

Shallow 1 0.921 0.366 Accepted

Shallow 2 0.892 0.177 Accepted

Shallow 3 0.927 0.417 Accepted

Deep 1 0.939 0.540 Accepted

Deep 2 0.950 0.664 Accepted

sigmoid 0.938 0.530 Accepted

rbf 0.937 0.518 Accepted

linear 0.939 0.546 Accepted

poly 0.944 0.599 Accepted
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F1 Metric Normality Test Results

The results of the normality tests for the F1 metric can be seen in Table 5.3. The

null hypothesis is accepted for each of the models, indicating that they are normally

distributed.

Table 5.3: Shapiro-Wilk normality test results for the f1 metric

Model W p-val Null-Hypothesis

Shallow 1 0.912 0.297 Accepted

Shallow 2 0.893 0.184 Accepted

Shallow 3 0.948 0.648 Accepted

Deep 1 0.939 0.538 Accepted

Deep 2 0.924 0.389 Accepted

sigmoid 0.896 0.200 Accepted

rbf 0.883 0.142 Accepted

linear 0.963 0.818 Accepted

poly 0.961 0.801 Accepted

5.1.2 Statistical Analysis

As the Shapiro-Wilk normality test indicates that all results are normally distributed,

dependent T-Tests were executed for the model results. The test was run to compare

the three metric results for each model to the same metric generated by every other

model.

Analysis of Precision Results

The significance results for the precision metric can be seen in Table 5.4. Models with

a significance of <0.05 are considered to be significant at the confidence level of 95%.

There are significant differences indicated between many of the results. However, there

is no significant difference indicated between; Shallow 1 and linear, Shallow 1 and poly,

Shallow 2 and linear, Shallow 2 and poly, Shallow 3 and linear, Shallow 3 and poly,

Deep 2 and linear. This indicates that the CNN Shallow 1, Shallow 2, Shallow 3, and
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Deep 2 models do not offer significantly improved results when compared to some of

the SVM models for the precision metric.

Table 5.4: Matrix of the Dependent T-Test P-Vals for the precision metric for each

model (DF=9). Significant results (<0.05%) are highlighted in bold.

Model Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 sigmoid rbf linear poly

Shallow 1 N/A 0.338 0.395 0.016 0.116 0.001 <.001 0.944 0.843

Shallow 2 0.338 N/A 0.97 0.096 0.047 <.001 <.001 0.533 0.620

Shallow 3 0.395 0.97 N/A 0.044 0.046 <.001 <.001 0.439 0.488

Deep 1 0.016 0.096 0.044 N/A 0.009 <.001 <.001 0.032 0.035

Deep 2 0.116 0.047 0.046 0.009 N/A <.001 <.001 0.059 0.044

sigmoid 0.001 <.001 <.001 <.001 <.001 N/A 0.007 <.001 <.001

rbf <.001 <.001 <.001 <.001 <.001 0.007 N/A <.001 <.001

linear 0.944 0.533 0.439 0.032 0.059 <.001 <.001 N/A 0.328

poly 0.843 0.620 0.488 0.035 0.044 <.001 <.001 0.328 N/A

The t-statistic values for the Dependent T-Test of the precision metric can be seen

in Table 5.5. The Dependent T-Tests are carried out in pairs, a negative number

indicates that the results for the first model in the comparison are not as good as

the results for the second model. Only the SVM RBF model results indicate that its

precision results are significantly better than the precision results of both the CNN

models and the other SVM models. The performance is also represented in Figure

5.1 where it can be seen that the RBF kernel generates better results than the other

models.

When comparing the CNN model results to those of the SVM models, it is evident

that the Deep 2 model generated significantly better results than the SVM poly model

for the precision statistic. No other CNN model generated significantly better results

than the SVM models.

The CNN model comparisons indicate that Shallow 1 generated significantly better

results than the Deep 1 model. The Shallow 3 model also generated significantly better

results than the Deep 1 model. The Deep 2 model generated significantly better results

than the Shallow 2, Shallow 3, and Deep 1 models, making it the most effective CNN
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model in relation to the precision statistic. A ranking of the models based on the

precision statistic results can be seen in Table 5.6. This ranking is based on the

number of models where the model being evaluated generates a statistically improved

result.

Table 5.5: Matrix of the Dependent T-Test T-statistic for the precision metric for each

model (DF=9). Significant results (p-val <0.05%) are highlighted in bold. A result

of >0 indicates that a model generated better results, with results of <0 indicating

poorer results. Reading from the left take the left value, reading from the top take

the right value.

Model Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 sigmoid rbf linear poly

Shallow 1 N/A 1.01/-1.01 0.89/-0.89 2.93/-2.93 -1.74/1.74 -4.73/4.73 -10.12/10.12 0.07/-0.07 0.20/-0.20

Shallow 2 -1.01/1.01 N/A -0.03/0.03 1.86/-1.86 -2.30/2.30 -4.85/4.85 -8.93/8.93 -0.64/0.64 -0.51/0.51

Shallow 3 -0.89/0.89 0.03/-0.03 N/A 2.33/-2.33 -2.31/2.31 -5.59/5.59 -9.34/9.34 -0.80/0.80 -0.72/0.72

Deep 1 -2.93/2.93 -1.86/1.86 -2.33/2.33 N/A -3.34/3.34 -6.56/6.56 -9.28/9.28 -2.52/2.52 -2.47/2.47

Deep 2 1.74/-1.74 2.30/-2.30 2.31/-2.31 3.34/-3.34 N/A -7.05/7.05 -8.41/8.41 2.15/-2.15 2.33/-2.33

sigmoid 4.73/-4.73 4.85/-4.85 5.59/-5.59 6.56/-6.56 7.05/-7.05 N/A -3.42/3.42 7.98/-7.98 7.87/-7.87

rbf 10.12/-10.12 8.93/-8.93 9.34/-9.34 9.28/-9.28 8.41/-8.41 3.42/-3.42 N/A 11.83/-11.83 11.74/-11.74

linear -0.07/0.07 0.64/-0.64 0.80/-0.80 2.52/-2.52 -2.15/2.15 -7.98/7.98 -11.83/11.83 N/A 1.03/-1.03

poly -0.20/0.20 0.51/-0.51 0.72/-0.72 2.47/-2.47 -2.33/2.33 -7.87/7.87 -11.74/11.74 -1.03/1.03 N/A

Figure 5.1: Probability density of Dependent T-Test T-statistics for the precision

metric
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Table 5.6: Ranking of models by significantly improved (p-val <0.05) precision results

as indicated by the Dependent T-Test

Rank Model Type No. Sig. Worse Models

1 rbf SVM 8

2 sigmoid SVM 7

3 Deep 2 CNN 4

4 Shallow 3 CNN 1

4 Shallow 1 CNN 1

4 poly SVM 1

4 linear SVM 1

5 Deep 1 CNN 0

5 Shallow 2 CNN 0

Analysis of Recall Results

The significance results for the recall metric can be seen in Table 5.7. Models with a

significance of <0.05 are considered to be significant at the confidence level of 95%.

There are significant differences indicated between many of the results. However, there

is no significant difference indicated between; Shallow 2 and poly, Deep 1 and poly,

Deep 1 and linear, Deep 2 and poly, Deep 2 and linear. This indicates that the CNN

Shallow 2, Deep 1, and Deep 2 models do not offer significantly improved results when

compared to some of the SVM models for the precision metric.

When the precision results are compared with 5.1 it does not appear that the RBF

model is significantly better than the sigmoid models, as the statistical tests indicate.

The Shapiro-Wilks test for normality has a 5% chance of indicating that the data is

normal, even if it is not (this is regardless of the sample size). If some of the data is

not normally distributed, it may result in an invalid result for the dependent t-test

which assumes normality of the supplied data. In this case, two SVM models are of

concern, so the ultimate results of this experiment are not significantly impacted.
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Table 5.7: Matrix of the Dependent T-Test P-Vals for the recall metric for each model

(DF=9). Significant results (<0.05%) are highlighted in bold.

Model Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 sigmoid rbf linear poly

Shallow 1 N/A 0.198 0.053 0.043 0.003 0.001 <.001 <.001 <.001

Shallow 2 0.198 N/A 0.031 0.636 0.085 <.001 <.001 0.026 0.076

Shallow 3 0.053 0.031 N/A 0.001 <.001 <.001 <.001 <.001 <.001

Deep 1 0.043 0.636 0.001 N/A 0.03 <.001 <.001 0.06 0.128

Deep 2 0.003 0.085 <.001 0.03 N/A 0.002 <.001 0.954 0.614

sigmoid 0.001 <.001 <.001 <.001 0.002 N/A <.001 <.001 <.001

rbf <.001 <.001 <.001 <.001 <.001 <.001 N/A <.001 <.001

linear <.001 0.026 <.001 0.06 0.954 <.001 <.001 N/A 0.009

poly <.001 0.076 <.001 0.128 0.614 <.001 <.001 0.009 N/A

The t-statistic values for the Dependent T-Test of the recall metric can be seen

in Table 5.8. The Dependent T-Tests are carried out in pairs, a negative number

indicates that the results for the first model in the comparison are not as good as

the results for the second model. Only the SVM RBF model results indicate that its

precision results are significantly better than the precision results of both the CNN

models and the other SVM models. The performance is also represented in Figure

5.2 where it can be seen that the RBF kernel generates better results than the other

models.

When comparing the CNN model results to those of the SVM models, it is evident

that the Shallow 3 model generated significantly better results than all other models

except Shallow 1 and the SVM RBF model.

The CNN model comparisons indicate that Shallow 1 generated significantly better

results than the Deep 1 and Deep 2 models. The Shallow 3 model also generated sig-

nificantly better results than the Shallow 2, Deep 1, and Deep 2 models. The Deep 2

model generated significantly better results than the Deep 1 model. The results in-

dicate that the Shallow 3 model generated the most significantly better results of the

CNN models. A ranking of the models based on the recall statistic results can be seen

in Table 5.9. This ranking is based on the number of models where the model being
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evaluated generates a statistically improved result.

Table 5.8: Matrix of the Dependent T-Test T-statistic for the recall metric for each

model (DF=9). Significant results (p-val <0.05%) are highlighted in bold. A result

of >0 indicates that a model generated better results, with results of <0 indicating

poorer results. Reading from the left take the left value, reading from the top take

the right value.

Model Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 sigmoid rbf linear poly

Shallow 1 N/A 1.39/-1.39 -2.23/2.23 2.34/-2.34 3.98/-3.98 14.23/-14.23 -23.97/23.97 7.52/-7.52 6.33/-6.33

Shallow 2 -1.39/1.39 N/A -2.56/2.56 0.49/-0.49 1.93/-1.93 6.31/-6.31 -10.54/10.54 2.66/-2.66 1.99/-1.99

Shallow 3 2.23/-2.23 2.56/-2.56 N/A 4.70/-4.70 7.52/-7.52 14.65/-14.65 -11.22/11.22 8.34/-8.34 8.35/-8.35

Deep 1 -2.34/2.34 -0.49/0.49 -4.70/4.70 N/A 2.56/-2.56 7.18/-7.18 -12.80/12.80 2.14/-2.14 1.67/-1.67

Deep 2 -3.98/3.98 -1.93/1.93 -7.52/7.52 -2.56/2.56 N/A 4.35/-4.35 -11.89/11.89 0.05/-0.05 -0.52/0.52

sigmoid -14.23/14.23 -6.31/6.31 -14.65/14.65 -7.18/7.18 -4.35/4.35 N/A -35.77/35.77 -12.12/12.12 -12.71/12.71

rbf 23.97/-23.97 10.54/-10.54 11.22/11.22 12.80/-12.80 11.89/-11.89 35.77/-35.77 N/A 31.6/-31.6 33.99/-33.99

linear -7.52/7.52 -2.66/2.66 -8.34/8.34 -2.14/2.14 -0.05/0.05 12.12/-12.12 -31.66/31.66 N/A 3.29/-3.29

poly -6.33/6.33 -1.99/1.99 -8.35/8.35 -1.67/1.67 0.52/-0.52 12.71/-12.71 -33.99/33.99 -3.29/3.29 N/A

Reading from left take the left number, reading from top take the right number - Significant results in bold

Figure 5.2: Probability density of Dependent T-Test T-statistics for the recall metric
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Table 5.9: Ranking of models by significantly improved (p-val <0.05) recall results as

indicated by the Dependent T-Test

Rank Model Type No. Sig. Worse Models

1 rbf SVM 8

2 Shallow 3 CNN 6

3 Shallow 1 CNN 4

4 linear SVM 2

4 Deep 1 CNN 2

4 Shallow 2 CNN 2

5 Deep 2 CNN 1

5 poly SVM 1

6 sigmoid SVM 0

Analysis of F1 Results

The significance results for the F1 metric can be seen in Table 5.10. Models with a

significance of <0.05 are considered to be significant at the confidence level of 95%.

There are significant differences indicated between many of the results. However,

there is no significant difference indicated between; Shallow 2 and linear, Shallow 2

and poly, Deep 1 and linear, Deep 1 and poly, Deep 2 and linear, Deep 2 and poly.

This indicates that the CNN Shallow 2, Deep 1, and Deep 2 models do not offer

significantly improved results when compared to the SVM linear and poly models for

the F1 metric.
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Table 5.10: Matrix of the Dependent T-Test P-Vals for the f1 metric for each model

(DF=9). Significant results (<0.05%) are highlighted in bold.

Model Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 sigmoid rbf linear poly

Shallow 1 N/A 0.145 0.043 0.034 0.002 <.001 <.001 <.001 <.001

Shallow 2 0.145 N/A 0.032 0.65 0.076 0.001 <.001 0.067 0.164

Shallow 3 0.043 0.032 N/A <.001 <.001 <.001 <.001 <.001 <.001

Deep 1 0.034 0.65 <.001 N/A 0.032 <.001 <.001 0.182 0.324

Deep 2 0.002 0.076 <.001 0.032 N/A 0.032 <.001 0.591 0.311

sigmoid <.001 0.001 <.001 <.001 0.032 N/A <.001 <.001 <.001

rbf <.001 <.001 <.001 <.001 <.001 <.001 N/A <.001 <.001

linear <.001 0.067 <.001 0.182 0.591 <.001 <.001 N/A 0.013

poly <.001 0.164 <.001 0.324 0.311 <.001 <.001 0.013 N/A

The t-statistic values for the Dependent T-Test of the F1 metric can be seen in

Table 5.11. The Dependent T-Tests are carried out in pairs, a negative number in-

dicates that the results for the first model in the comparison are not as good as the

results for the second model. Only the SVM RBF model results indicate that its F1

results are significantly better than the F1 results of both the CNN models and the

other SVM models.

The performance is also represented in Figure 5.3 where it can be seen that the RBF

kernel generates better results than the other models. When comparing the CNN model

results to those of the SVM models, it is evident that Shallow 1, Shallow 2, Shallow 3,

and Deep 1 models generated significantly better results than the SVM sigmoid, linear,

and poly models for the F1 statistic. The Deep 2 model only generated better results

than the SVM sigmoid model. The CNN model comparisons indicate that Shallow 3

offered the best performance, with a significantly better result than all other models

except the SVM RBF model. A ranking of the models based on the F1 statistic results

can be seen in Table 5.12. This ranking is based on the number of models where the

model being evaluated generates a statistically improved result.
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Table 5.11: Matrix of the Dependent T-Test T-statistic for the f1 metric for each

model (DF=9). Significant results (p-val <0.05%) are highlighted in bold. A result

of >0 indicates that a model generated better results, with results of <0 indicating

poorer results. Reading from the left take the left value, reading from the top take

the right value.

Model Shallow 1 Shallow 2 Shallow 3 Deep 1 Deep 2 sigmoid rbf linear poly

Shallow 1 N/A 1.59/-1.59 -2.35/2.35 2.48/-2.48 4.21/-4.21 9.86/-9.86 -20.42/20.42 5.43/-5.43 4.80/-4.80

Shallow 2 -1.59/1.59 N/A -2.53/2.53 0.46/-0.46 2.00/-2.00 4.63/-4.63 -10.38/10.38 2.08/-2.08 1.51/-1.51

Shallow 3 2.35/-2.35 2.53/-2.53 N/A 4.95/-4.95 8.24/-8.24 12.52/-12.52 -10.52/10.52 7.29/-7.29 7.44/-7.44

Deep 1 -2.48/2.48 -0.46/0.46 -4.95/4.95 N/A 2.53/-2.53 5.04/-5.04 -12.04/12.04 1.44/-1.44 1.04/-1.04

Deep 2 -4.21/4.21 -2.00/2.00 -8.24/8.24 -2.53/2.53 N/A 2.53/-2.53 -11.63/11.63 -0.55/0.55 -1.07/1.07

sigmoid -9.86/9.86 -4.63/4.63 -12.52/12.52 -5.04/5.04 -2.53/2.53 N/A -31.10/31.10 -7.39/7.39 -8.79/8.79

rbf 20.42/-20.42 10.38/-10.38 10.52/-10.52 12.04/-12.04 11.63/-11.63 31.10/-31.10 N/A 28.45/-28.45 30.87/-30.87

linear -5.43/5.43 -2.08/2.08 -7.29/7.29 -1.44/1.44 0.55/-0.55 7.39/-7.39 -28.45/28.45 N/A -3.07/3.07

poly -4.80/4.80 -1.51/1.51 -7.44/7.44 -1.04/1.04 1.07/-1.07 8.79/-8.79 -30.87/30.87 3.07/-3.07 N/A

Reading from left take the left number, reading from top take the right number - Significant results in bold

Figure 5.3: Probability density of Dependent T-Test T-statistics for the f1 metric
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Table 5.12: Ranking of models by significantly improved (p-val <0.05) f1 results as

indicated by the Dependent T-Test

Rank Model Type No. Sig. Worse Models

1 rbf SVM 8

2 Shallow 3 CNN 7

3 Shallow 1 CNN 5

4 Deep 1 CNN 2

5 Shallow 2 CNN 1

5 Deep 2 CNN 1

5 poly SVM 1

6 sigmoid SVM 0

6 linear SVM 0

Overall Results

An overall ranking combining the ranking results for all three metrics is presented in

Table 5.13. The SVM RBF model provided the most consistently better results of all

the models evaluated. This is followed by the Shallow 3, and Shallow 1 CNN models.
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Table 5.13: Ranking of models by significantly improved (p-val <0.05) results for all

metrics as indicated by the Dependent T-Test

Rank Model Type No. Sig. Worse Models

1 rbf SVM 24

2 Shallow 3 CNN 14

3 Shallow 1 CNN 10

4 sigmoid SVM 7

5 Deep 2 CNN 6

6 Deep 1 CNN 4

7 Shallow 2 CNN 3

7 poly SVM 3

7 linear SVM 3

5.1.3 Analysis

For this experiment the same data input was employed for all nine models, using

Chi-squared test and PCA for dimensionality reduction, and TF-IDF to vectorise the

text input. With this process, the input is converted into vectors with two-hundred

dimensions, these dimensions represent the ones which are the most significantly tied

to the intent for each record. As seen in Table 5.13, Shallow 3 is the best performing

CNN model. In this case, Shallow 3 makes use of a CN layer with 150 one-dimension

filters, instead of the 100 one-dimension filters employed by the other CNN models.

By making use of more of the significant dimensions than the other models, this may

explain why Shallow 3 model generated better results in this experiment.

Of the SVM models evaluated, the linear kernel provided amongst the poorest

results, this would indicate that the data is not linearly separable to a great degree.

However, the non-linear polynomial kernel tied with the linear kernel regarding gen-

eral performance. The sigmoid kernel generated better results, with the RBF kernel

generating the best results. The high performance of some of the non-linear kernels
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would suggest that the kernel trick of mapping the data into a higher dimensional

plane proves effective at transforming that data into a linearly separable set.

Figure 5.41 illustrates the decision boundaries in a 2-dimensional plane, for the

four kernels, on three small sample datasets.

Figure 5.4: Representation of SVM kernel hyperplane separation on three sample

datasets based on: 1

The first two datasets are not linearly separable but the final dataset is. This

representation in Figure 5.4 demonstrates the differences between the three nonlinear

models which were utilised for the evaluation. The linear and poly models generated

the worst results of those evaluated. The linear model decision boundary is a very rigid

line separating the two pools of data, and polynomial is somewhat similar but less

rigid in its separation. The sigmoid model generated the second best results and the

representation illustrates that it is capable of forming multiple highly curved decision

boundaries as needed. The RBF kernel forms the least rigid decision boundaries of

those evaluated, with the boundaries able to flow around the data to form the best fit.

As the model’s transition from less to more flexible, there is, however, a concern that

the models generated would over-fit the data. In this experiment, based on the data

available and the NLP pre-processing steps carried out on the data, the RBF model

was able to generate the most accurate model. This would indicate that the decision

boundaries between the data points benefit from the most flexibility in terms of the

1http://scikit-learn.org/stable/auto examples/classification/plot classifier

comparison.html#sphx-glr-auto-examples-classification-plot-classifier-comparison

-py
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models’ ability to fit the boundary or boundaries.

An experiment conducted by Min and Lee (2005) in the area of financial prediction

where PCA was implemented for dimensionality reduction, and an SVM model for each

of the four kernels (linear, RBF, sigmoid, polynomial) was trained and evaluated.

The experiment suggested that either the RBF or polynomial kernels provided the

best results, dependent on their hyper-parameters. The experiment ultimately found

that the RBF kernel generated the best results. Although the experiment was not

conducted in an NLP context, the results show similarities. This raises the question

as to the impact of conducting a PCA on the SVM kernels. It may be that some

kernels i.e. RBF and polynomial, are better at modelling the data generated by a

PCA.

When considering linear kernels, W. Zhang, Yoshida, and Tang (2008) conducted

an experiment to compare the classification results of a linear and non-linear SVM

(RBF kernel) for an NLP classification task. NLP pre-processing was carried out

and TF-IDF was employed to vectorise the text. No dimensionality reduction was

carried out in this experiment. The experiment determines that the linear SVM model

generated better results than the non-linear model. This agrees with the results seen

in this experiment and the one carried out by Min and Lee (2005) in that the steps

carried out to process the data, namely any dimensionality reduction may have an

impact on which kernel proves most effective. In this experiment the dataset contained

over a thousand dimensions after TF-IDF was applied. Another experiment carried

out by Gamon (2004) conducted an NLP classification exercise using a linear SVM

with good accuracy and F1 score. Again no PCA was carried out but some feature

reduction steps were carried out to form datasets ranging in size between 1,000 and

4,000 dimensions. This could suggest that linear SVM models perform best in datasets

with large dimensions without a transformation like PCA.

The experiments identified in the literature review generally reported better results

for the CNN models when compared to other models, including SVMs. However, in

this experiment, the CNN models did not generate the best results when compared to

the SVM models evaluated. Two of the CNN models did generate results which were
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often better than SVM models. The question is why did some models generate better

results than others?

When comparing the results of this experiment with others where SVM and CNN

models were evaluated, it would suggest that the model effectiveness can be dependent

on the pre-processing steps carried out. This agrees with (Gaikwad & Joshi, 2016)

when they state that: “The accuracy of the model is highly dependent on the way pre-

processing is done”. By altering the pre-processing steps carried out in this experiment,

the effectiveness of any of the models could be increased or decrease.

Many of the NLP experiments identified, which make use of CNN models utilised

a word embedding system like Word2Vec in order to generate the input vectors. These

experiments generally report better performance for the CNN models than the other

models evaluated. This may explain the difference between this experiment and the

others identified. When CNN is combined with word embedding it may generate

improved results. In addition, the proximity of words in a word embedding output

is an important element of that output. When a typical CNN convolutional layer is

considered, where the layer contains multiple filters of varying length, there is potential

for the proximity-based output of a word embedding step to improve performance.

Filters of length greater than a single dimension mean that several closely placed

dimensions may be considered as input. Whereas, there is no such significance to

the placement of dimensions in the output of the TF-IDF process employed in this

experiment.

In addition, the application of PCA may also impact the performance with respect

to CNN’s. A typical CNN model is designed to utilise multiple filters of varying sizes

in order to map the input. In this case, the initial experimentation of CNN models

indicated that a single input dimension provided good results with no appreciable

improvement for wider filters. This may be as a result of the PCA input, where the

individual dimensions generated by the PCA are unrelated. By using wider sliding

filters the CNN models are typically able to consider multiple combinations of input

dimensions. Initial experiments indicated that single dimension filters offered good

performance, possibly because the PCA generated dimensions are unrelated. When
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this is considered in relation to text inputs, it could allow the CNN model to consider

combinations of single and multiple words which would not normally be considered

as part of an individual input. The SVM models, on the other hand, consider all

two-hundred dimensions when training and evaluating the data. However, initial ex-

periments did not show an appreciable gain in the CNN models when more than 150

dimensions were included.

5.1.4 Accepting/Rejecting the Hypothesis H1

The hypothesis H1 states that CNN models result in better precision, recall, and F1

scores, compared to comparable SVM models when generated and evaluated using

a conversational dataset. The results of the Dependent T-Tests indicate that all of

the CNN models evaluated, did not generate statistically significant, improved results,

with 95% confidence, when comparing the precision, recall, and F1 metrics to the

same metrics generated by all of the SVM models. As a result, the H1 Hypothesis is

rejected.

5.2 Summary of evaluation

The first step in the evaluation process was to run Shapiro-Wilk test for normality

in order to determine the appropriate statistical tests to be carried out on the result

data. The Shapiro-Wilk test indicated that the results for all models and metrics are

normally distributed.

As the results are normally distributed, dependent t-tests were run comparing the

output of each model to every other model, for each of the three metrics; precision,

recall, and F1 score. For each of the three metrics, the dependent t-test indicates that

the SVM RBF model generated statistically better results than the other models which

were evaluated, with 95% confidence. The Shallow 3 model generated the best results

of out the five CNN models evaluated. However, the results for Shallow 3 model are

not as good as the SVM RBF model.

The hypothesis H1 states that the CNN models will generate better results for the
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three metrics when compared to the CNN models. As the results of the CNN models

are not as good as the SVM models, the hypothesis H1 is ultimately rejected.

5.2.1 Discussion

A summary of the results based on the precision metric can be seen in Figure 5.5.

This illustrates that the SVM RBF model generated statistically better results when

compared to the results of every other model. The sigmoid model generated better

results than every other model excluding RBF for this metric. The CNN Deep 2 model

generated the next best results. Therefore, two SVM models generated better results

than the best CNN model.

Figure 5.5: Representation of models by significantly improved (p-val <0.05) results

for the precision metric as indicated by the Dependent T-Test

A summary of the results based on the recall metric can be seen in Figure 5.6.

This again illustrates that the SVM RBF model generated statistically better results

when compared to the results of every other model. Unlike the precision results, the

CNN Shallow 3 and Shallow 1 models generated the next best results for this metric.

The CNN models which generated the most significant results for the recall metric are

different from those identified for the precision metric. The Shallow 3 model comes

closest to the RBF model results, but ultimately only significantly improves on six of
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the other models.

Figure 5.6: Representation of models by significantly improved (p-val <0.05) results

for the recall metric as indicated by the Dependent T-Test

A summary of the results based on the f1 metric can be seen in Figure 5.7. Once

again this illustrates that the SVM RBF model generated statistically better results

when compared to the results of every other model. Like the recall results, the CNN

Shallow 3 and Shallow 1 models generated the next best results for this metric. The

results seen here are very similar to the results of the recall metric. The Shallow 3

model comes closest to the RBF model results, but ultimately only significantly im-

proves on seven of the other models.

A summary of the results based on a combination of all metrics can be seen in

Figure 5.8. As clearly illustrated here, the model using the SVM RBF kernel generated

far more statistically better results than all of the other models. The RBF model was,

in fact, the only model which generated statistically better results when compared to

every over model over all three metrics. The next best models were the CNN models

titled Shallow 3 and Shallow 1. These models performed better than the other model

but overall are not close to matching the results of the RBF model.
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Figure 5.7: Representation of models by significantly improved (p-val <0.05) results

for the f1 metric as indicated by the Dependent T-Test

Figure 5.8: Representation of models by significantly improved (p-val <0.05) results

for all metrics as indicated by the Dependent T-Test

As the CNN models do not generate statistically better results than the SVM

models for the considered metrics, the hypothesis H1 is rejected. As the experiment

results in the hypothesis being rejected, this allows an answer to the research question

defined in the literature review chapter to be determined: “CNN models are not neces-

sarily more effective than SVM models at determining intent, for use in conversational
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agents”.

Most literature identified in the review suggested that CNN models generated

better results for text classification tasks when compared to SVM models. This ex-

periment, however, resulted in an SVM model (RBF) generating better results than

all of the evaluated CNN models. There are several factors which may explain the

difference between this experiment and the others identified.

Comparing this experiment to the others identified, it indicates that the pre-

processing steps carried out on the NLP data can have a significant impact on the

performance of the different models. For example, the inclusion of PCA as a dimen-

sionality reduction step may explain why the Shallow 3 model generates better results

than the other models, as it considers more of the important dimensions than the

other CNN models.

Existing literature suggests that using a higher dimensionality dataset with the

CNN models may lead to better results for those models. In particular, several papers

suggest using word embedding models with CNN results in better results than other

feature extraction techniques. However, changing the input dataset in this way would

require the CNN model architectures and hyper-parameters to be re-evaluated. In par-

ticular, word embedding would require two-dimensional convolutional layers instead

of the one-dimensional layers employed in this experiment. The pre-processing steps

may also impact the performance of the SVM models. The result indicates the poten-

tial that RBF and sigmoid models generate the best results when PCA is utilised in

the pre-processing phase. Research indicates that linear models may generate better

results for high dimensionality datasets which do not make use of PCA dimensionality

reduction.

5.2.2 Strengths and limitations of findings

This experiment was based on the theory that CNN models would offer better perfor-

mance for intent detection in conversational agents. Firstly, the use of a conversational

agent based dataset is a strength in terms of the stated objective of the experiment.

Very few experiments in this area have been built on a dataset which is particularly
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relevant to this domain.

As stated previously, optimum configurations for each of the four SVM kernels and

five CNN kernels were generated using a grid search mechanism. As such, this can be

described as a comprehensive review where multiple optimised models for both algo-

rithms are compared. In addition, ten independent models are trained and evaluated

for each model using k-fold stratified sampling. This results in ninety models being

created and assessed. For each of the models, three metrics are considered; precision,

recall, and f1 score, resulting in two-hundred and seventy data points for statistical

analysis, the volume of data points being a strength of this experiment.

A robust NLP pipeline was researched and defined based on the particular dataset

and the problem under review. This pipeline took into account the specific require-

ments of intent detection for conversational interfaces. In addition, cutting-edge NLP

tools like lemmatisation and TF-IDF were used to form the NLP pipeline. A thorough

statistical analysis of the results is another strength of this experiment. This analysis

consisted of seventy-two dependent t-tests being executed to compare the results for

each metric, and two-hundred and sixteen overall statistical tests for significance. This

results in a comprehensive analysis of the effectiveness of the models under review.

One drawback of this experiment is that the dataset has a significant imbalance

in the data between the twenty classes. This imbalance could potentially cause is-

sues with any of the models evaluated. The experiment attempted to mitigate the

class imbalance problems by introducing class weights in the models and by using

weighted measures of the precision, recall, and F1 metrics. However, further research

would need to be carried out in order to evaluate the full impact of the imbalanced

classes. Additionally, four SVM kernels were explored in this experiment, while over

twenty individual kernels are possible, and combinations of kernels can also be explored

(J. Zhang, 2015). The four kernels employed are some of the most popular available,

and the only ones currently implemented in the scikit-learn package which was utilised

to conduct this experiment. There is the potential that other kernels may generate

even better results than the top performing RBF kernel identified in this experiment.

There are also a large number of possible CNN models which could be applied
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to text classification problems. The basic architectures explored here are variations

of a general purpose NLP architecture (Collobert & Weston, 2008). There are many

variations of this architecture which have the potential to offer better results than the

ones evaluated. The research also indicates that the pre-processing steps carried out

may be having an impact on the CNN results. By exploring alternate pre-processing

steps, especially around vectorisation, it may be possible to obtain better CNN model

results.

Another potential drawback is the general NLP pipeline which was defined for the

experiment. A single pipeline was defined which could work with both SVM and CNN

algorithms, but there is the potential that a specific pipeline could be tuned for each

algorithm, resulting in better results for that model.
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Conclusion

This chapter provides a brief overview of the research carried out and the problem

under investigation. In addition the experimental design, evaluation, and results are

summarised. This is followed by a discussion of the contributions and impact of the

experiment and lastly an overview of future work which could expand on the work

carried out in this experiment.

6.1 Research Overview

The development and use of conversational agents has grown over the last 50 years.

From simple chatbots like ELIZA which could carry on limited conversations with

users, to modern complex bot applications which provide a conversational interface

for performing both simple and complex tasks. In the last number of years, the fields

of natural language processing and machine learning have made vast improvements

in the ability of systems to handle complex natural language interaction. These ad-

vancements can be applied to conversational agents in many areas, but a primary

use case is in natural language understanding, and more specifically, intent detection.

However, few of these advancements have been directly evaluated in a conversational

agent context.
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6.2 Problem Definition

Modern conversational agents provide a new form of user interface for traditional

software systems. With the development of modern NLP practices and tools, along

with new machine learning algorithms, the question for the construction of an agent

becomes, what practices, tools, and algorithms are best to utilisation in this context.

This research has identified a good representation of a conversational agent dataset

in the form of the Frames dataset (El Asri et al., 2017). Modern NLP pre-processing

steps have been identified to prepare the data for classification. Two of the most com-

monly identified high performing machine learning algorithms for NLP classification

tasks have been identified in the form of SVM and CNN. CNN is typically regarded as

generating better results than SVM models, so an experiment was designed to explore

multiple models for each algorithm and to scientifically compare the results.

6.3 Design/Experimentation, Evaluation & Results

The CRISP-DM life-cycle was employed as the basis for the experimental design. The

first step (data understanding) is gathering a detailed understanding of the data in the

dataset under consideration. Next comes data preparation which consists of several

steps: missing data removal, Lemmatisation, noise reduction through pattern match-

ing, feature extraction in the form of TF-IDF, feature selection using Chi-squared

tests and PCA, determining of class weights for imbalanced data, and finally ten-fold

stratified cross-validation split.

A modelling step follows where the machine learning models are built and trained.

Four SVM kernels were identified with a range of possible parameters for each kernel.

A grid search was carried out to identify the optimal parameters for each model. A

similar process was carried out for five CNN architectures which were defined based on

the existing literature. In this case, a grid search was utilised to identify the activation,

pooling type, and optimiser for each architecture. Each of the models was trained and

evaluated against all ten folds of the data, and the following metrics were recorded;
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precision, recall, F1. Every metric was calculated as a weighted average due to an

imbalance in the dataset.

In conclusion, the evaluation was carried out on the recorded metrics. Each col-

lection of data was tested for normality using Shapiro-Wilk tests, where each dataset

reported normality. Next, a series of Dependent T-Tests were carried out for each

metric, where the results from the metric for each model were compared to all of the

other results for that metric. These tests indicated that in this experiment the CNN

models did not generate significantly better results than the SVM models. In fact,

the SVM model using the RBF kernel generated significantly better results than all of

the other models, over all three metrics. As a result, the hypothesis H1 is ultimately

rejected, as the CNN models did not generate better results than the SVM models in

this experiment.

6.4 Contributions and impact

The purpose of this paper is to compare the use of SVM and CNN algorithms for use

in intent detection for conversational interfaces. As published experiments in the NLP

space typically indicate that CNN models offer better performance than SVM models,

the research question which drives the experiment is: “Are CNN more effective than

SVM at determining intent, for use in conversational agents?”

To provide a comprehensive answer to this question, several models were optimised,

trained, and evaluated for both algorithms, using ten-fold stratified cross-validation

in order to repeat the experiment multiple times utilising all available data. Then a

detailed statistical analysis was carried out on three metrics to compare the results

of all models. Through the utilisation of these rigorous methods, it is proposed that

this experiment makes a significant contribution in the area of NLP and ML for use

as intent detection in conversational agent systems.

The results of this experiment indicate that CNN models are not necessarily better

than SVM models for intent detection. In fact, it is indicated that an SVM model

using an RBF kernel has the potential to provide better results than CNN models.
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The answer to the question posed earlier is, therefore: “No, CNN are not necessarily

more effective than SVM at determining intent, for use in conversational agents”. By

indicating that SVM models can potentially achieve better results than SVM models,

this experiment suggests that SVM models should be considered for an intent detection

component of a conversational agent system. However, the experimental results in the

context of existing literature do suggest that changes to the pre-processing pipeline

like the utilisation of word embedding and the removal of PCA may alter the results

of the models. This would indicate that further research in this area is of value.

6.5 Future Work & recommendations

The primary recommendation from this experiment is to extend the comparison be-

tween the SVM and CNN models to identify the optimal pre-processing step for each

model so that each model generates the best possible results before a statistical anal-

ysis is carried out. Of particular interest are dimensionality reduction steps taken and

their impact on the models. For example, Li and Shen (2017) suggested LSA as a

viable dimensionality reduction step for NLP tasks. Additionally, there are numerous

SVM kernels, and alternate CNN architectures which can be implemented, which have

the potential to provide better results than the results generated in this experiment.

The inclusion of other parameters in the CNN GridSearch may also improve perfor-

mance, e.g. the number of filters. In conclusion, due to the imbalanced nature of the

dataset, additional work to evaluate the impact, and possibly address the imbalance

in the dataset.
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Appendix A

Additional content

Table A.1: Words with greater then 500 occurrences in the un-processed dataset

Ordinal Word No. Ordinal Word No. Ordinal Word No. Ordinal Word No.

1 to 8550 21 it 1889 41 august 1099 61 leave 676

2 the 7820 22 on 1792 42 go 1019 62 4 673

3 i 6896 23 we 1777 43 trip 901 63 need 661

4 you 6829 24 like 1765 44 about 894 64 has 643

5 a 6764 25 do 1753 45 near 890 65 only 617

6 and 5756 26 at 1747 46 no 868 66 want 613

7 for 4782 27 free 1638 47 days 858 67 leaving 600

8 is 4331 28 with 1586 48 but 833 68 flights 599

9 have 3968 29 me 1470 49 or 822 69 just 591

10 in 3163 30 package 1430 50 available 811 70 5 590

11 from 2991 31 your 1410 51 not 807 71 i’m 580

12 would 2729 32 september 1399 52 if 806 72 stay 577

13 of 2536 33 what 1390 53 guest 789 73 dates 536

14 hotel 2491 34 book 1366 54 any 763 74 budget 535

15 can 2334 35 will 1340 55 get 760 75 as 533

16 that 2028 36 how 1208 56 one 753 76 sept 530

17 star 1979 37 there 1205 57 3 708 77 also 516

18 are 1957 38 my 1202 58 economy 693 78 rating 502

19 this 1904 39 day 1103 59 where 683

20 be 1903 40 business 1100 60 class 682
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Table A.2: Words with greater then 500 occurrences in the processed dataset

Ordinal Word No. Ordinal Word No. Ordinal Word No.

1 [gpe] 7502 21 breakfast 1005 41 ok 643

2 [datetime] 4692 22 date 975 42 only 629

3 hotel 3598 23 available 964 43 leaving 605

4 from 3310 24 class 939 44 please 585

5 [currency] 3233 25 one 929 45 5 581

6 star 2467 26 about 901 46 all 521

7 day 2412 27 near 897 47 adult 518

8 package 2296 28 guest 893 48 so 517

9 free 1611 29 leave 787 49 anything 514

10 trip 1576 30 economy 778 50 out 508

11 what 1418 31 stay 761 51 more 502

12 book 1416 32 yes 755

13 go 1262 33 where 731

14 flight 1235 34 parking 710

15 wifi 1214 35 cost 710

16 how 1205 36 need 708

17 business 1166 37 3 697

18 budget 1149 38 4 674

19 no 1097 39 offer 668

20 rating 1087 40 ha 648
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Table A.3: List of Regex strings used for pattern matching and replacement during

the processing phase

Description Regex

Identify Currency

Matching: ‘$2500’,

‘2747.8 usd’,

‘3258.15usd’,

‘usd 2386.2’

‘23341.86’,

Not Matching: 2018,

7.15

(((\$)|(usd)|(usd))()?

(\d\{3,7\}(\,\d\{3\})*|(\d\{3,7))

(\.\d\{1,2\})?)|((\d\{3,7\}(\,\d\{3\})*|

(\d\{3,7))(\.\d\{1,2\})?((usd)|( usd)))|

((\d\{3,7\})(\.\d\{2\}))|(\d\{4,10\})

Identify Full Stop

Matching: ‘Thanks.’,

‘Hi...’.

Not matching: 7.15

((?<=\.)|(?<=[a-z]))(\.)
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Table A.4: List of intents and their relative weights based on the number of occurrences

in the dataset

Intent Weight

reject 76.33846153846154

hearmore 58.37647058823529

moreinfo 23.62857142857143

canthelpt 17.110344827586207

sorry 12.102439024390243

you are welcome 11.67529411764706

goodbye 7.297058823529412

request alts 5.83764705882353

request compare 5.393478260869565

confirm 3.816923076923077

negate 2.811331444759207

greeting 1.9420743639921723

affirm 1.9345029239766083

suggest 1.4279136690647483

thankyou 1.3338709677419356

no result 0.8644599303135888

switch frame 0.521218487394958

offer 0.42739018087855296

request 0.41838111298482294

inform 0.12045151110571671
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Table A.5: List of primary package versions used when conducting the experiment

Name Version

Python 3.6.4

NLTK 3.2.5

matplotlib 2.2.2

python-dateutil 2.7.0

scikit-learn 0.19.1

scipy 1.0.0

imbalanced-learn 0.3.3

keras 2.1.5

tensorflow 1.7.0

pandas ml 0.5.0

scipy 1.0.0
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