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Abstract

Work has been done to measure Mental Workload based on applications mainly re-

lated to ergonomics, human factors, and Machine Learning. The influence of Machine

Learning is a reflection of an increased use of new technologies applied to areas conven-

tionally dominated by theoretical approaches. However, collaboration between MWL

and Natural Language Processing techniques seems to happen rarely. In this sense, the

objective of this research is to make use of Natural Languages Processing techniques

to contribute to the analysis of the relationship between Mental Workload subjective

measures and Relative Frequency Ratios of keywords gathered during pre-tasks and

post-tasks of MWL activities in third-level sessions under different topics and instruc-

tional designs. This research employs secondary, empirical and inductive methods to

investigate Cognitive Load theory, instructional designs, Mental Workload foundations

and measures and Natural Language Process Techniques. Then, NASA-TLX, Work-

load Profile and Relative Frequency Ratios are calculated. Finally, the relationship

between NASA-TLX and Workload Profile and Relative Frequency Ratios is analysed

using parametric and non-parametric statistical techniques. Results show that the

relationship between Mental Workload and Relative Frequency Ratios of keywords, is

only medium correlated, or not correlated at all. Furthermore, it has been found out

that instructional designs based on the process of hearing and seeing, and the inter-

action between participants, can overcome other approaches such as those that make

use of videos supported with images and text, or of a lecturer’s speech supported with

slides.
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Chapter 1

Introduction

1.1 Background

Mental workload (MWL) is the amount of cognitive work that an individual requires

to complete a task over time (Longo, 2016). It is a concept that is invoked when the

complexity of that task needs to be measured, considering the interaction between fac-

tors related to the person, circumstances and the requirements of that activity (Hart,

2006; Longo & Barrett, 2010; Longo, 2015b). It has applications in ergonomics, hu-

man factors, computer systems and it is increasingly analysed in recent years with the

collaboration of new technologies such as Machine Learning. Xie and Salvendy (2000)

suggest that mental overload and underload have a negative effect on performance.

Furthermore, Longo (2016) refers to mental underload as the stage when individuals

may feel frustrated or annoyed whereas mental overload is related to the stage when

an individual is confused, decreasing performance and increasing possible mistakes.

In this sense, from a learning point of view, there are factors that may affect working

memory load and such factors depend on the manner in which a material is presented

or its intrinsic nature (Paas, Renkl, & Sweller, 2003). Thus, to achieve knowledge, the

way in which information is presented and the learning activities required should be

considered when planning instructional designs (Van Merrienboer & Sweller, 2005).

1



CHAPTER 1. INTRODUCTION

1.2 Research Problem

Work has been done to measure Mental Workload under instructional designs to en-

hance learning based on applications mainly related to ergonomics, human factors, and

Machine Learning. The use of Machine Learning reflects the increased application of

new technologies to areas conventionally dominated by theoretical approaches. How-

ever, collaboration between MWL and Natural Language Processing techniques seems

to rarely happen. Boundaries of research of related works can be extended based on

framing scholarships to contribute to knowledge in fields already studied. Although

research has been done to analyse MWL, the need for more studies seems evident

due to the complexity of measuring it. In this sense, the increased application of new

technologies, such as Machine Learning, to MWL open up the question as to whether

Natural Language Processing techniques can also make a contribution.

Furthermore, instructional designs should be planned to enhance learning. In this

sense, if it is well planned, considering the way in which the information is presented

and the learning activities required, it will have a positive impact on individuals learn-

ing, and it might contribute to achieving an optimal Mental workload. Thus, the con-

tent of an instrument design translated into text, and keywords of activity given under

that instrument design, could be processed using NLP techniques and then analysed to

measure how those keywords are related to the Mental Workload in terms of learning.

1.3 Research Methodologies

This experiment is considered as secondary, empirical and inductive research. It is a

secondary analysis because the data was obtained from external sources. Namely, the

sources were a dataset built by Dr Luca Longo from Dublin Institute of Technology

and an open source called WordNet lexical database. It is empirical and inductive

because this research is direct and measurable, establishing the inductive basis for

future work based on the analysis between subjective measures of Mental Workload,

instructional designs and the use of Natural Language Processing techniques to text

related to topics taught by Dr Luca Longo.
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1.4 Scope and Limitations

This research will use data gathered between 2015 until 2017, from Mental workload

experiments that were conducted by Dr Luca Longo during third-level classes at Dublin

Institute of Technology (DIT). During those experiments, different topics were taught

using instructional designs where the NASA-TLX and Workload Profile questionnaires

were used to collect factors and weights necessary to measure MWL. Along with the

questionnaires, keywords were also collected from the participants during pre-tasks

and post-tasks. Under those circumstances, the size of the data collected from those

sessions is considered a limitation because the datasets contain 105 and 120 records

respectively and they could not achieve statistically significant results when conducting

the experiments.

1.5 Document Outline

This research involves five chapters, namely: Literature review and related work;

Experiment design and methodology; Implementation and results; Evaluation; and

Conclusion. A brief overview of their contents is presented as follows:

1. Chapter 2 provides a literature review, related works and gaps in the funda-

mental fields of study which are necessary to formulate the research question.

The fundamental fields are Instructional Design, Mental Workload and Natural

Language Processing. Firstly, the Instructional Design section is presented. It

begins with an analysis of Cognitive Load Theory, its definition and purpose,

characteristics, and the relationship between it and instructional designs. Then,

it covers types of instructions. The Mental Workload section analyses its founda-

tions. Then, the main categories of the Mental Workload measures are presented

followed by the subjective measures NASA Task Load Index and Workload Pro-

file. Finally, the related work and summary sections present the work that has

been done based on Instructional Designs, Mental Workload and Natural Lan-

guage Processing and the gaps that motivate the formulation of the research
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question.

2. Chapter 3 presents a definition of the hypotheses necessary to answer the re-

search question. It also involves software selection, data understanding, data

preparation, model design, evaluation and hypotheses testing and strengths and

limitations of the design approach.

3. Chapter 4 provides the results of the performed data understanding, data

preparation and modelling of the designed research. It begins with the pro-

cess of inspecting the data used in this research. Its aim is to identify data

quality problems and to discover insights. This involves a number of approaches

to conduct the analysis. The data preparation involves the generation and re-

duction of features and the data processing of the corpus. Thus, data quality

problems are handled, along with the assessment of normality of the variables.

Finally, the modelling part is presented and the analysis of normality, linearity

and homoscedasticity between variables is conducted.

4. Chapter 5 involves the hypotheses testing and the reflection of strengths and

limitations of findings based on the analyses performed during the previous sec-

tions.

5. Chapter 6 presents the conclusion of this thesis, which involves: a research

overview; problem definition; design experimentation, evaluation and results;

contribution and impact; and future work recommendations.
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Chapter 2

Literature review and related work

This chapter provides the literature review, related work and gaps in the fundamentals

fields of study which are necessary to formulate the research question (see figure 2.1).

These fundamental fields are Instructional Design, Mental Workload, and Natural

Language Processing.

Figure 2.1: The Literature review process and related work which involves an overview

of the fundamentals necessary to the formulation of the research question.

Firstly, the Instructional Design section is presented, which begins with an analysis

of Cognitive Load Theory, its development, its definition and purpose, characteristics,
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and the relationship between it and instructional designs. Then, it covers types of

instructions, namely diverse media and auditory learning, their importance and their

related approaches.

The Mental Workload section outlines its foundations which describes the concept,

applications and the negative impact of mental overload and mental underload in per-

formance. Then, the main categories of the Mental Workload measures are presented

followed by the subjective measures NASA Task Load Index and Workload Profile.

The Natural Language Processing section begins with the factors which have in-

fluenced the development of Natural Language Processing during the last ten years.

Then, its definition is presented and the different procedures and applications com-

monly used are described. Also, it contextualises the techniques related to the ap-

proaches and forms, and the research question. Specifically, it contextualises tech-

niques for text preprocessing, similarity measures and weighting scheme for words.

Finally, the related work and summary sections present the work that has been done

based on Instructional Designs, Mental Workload and Natural Language Processing

and the gaps that motivate the formulation of the research question.

2.1 Instructional Design

2.1.1 Cognitive Load Theory

The literature indicates that work in Cognitive load theory has been increasing since

it was developed in 1980 (Sweller, Van Merrienboer, & Paas, 1998; Paas et al., 2003;

Van Merrienboer & Sweller, 2005; Paas, van Gog, & Sweller, 2010; Leppink, Paas,

Van der Vleuten, Van Gog, & Van Merriënboer, 2013; Paas & Ayres, 2014; Kalyuga

& Singh, 2016; Schilling, 2017; Costley & Lange, 2017). Cognitive load theory studies

the ease with which information may be processed in working memory (Sweller et al.,

1998) and examines ways in which the working memory is used to transfer information

into the long-term memory (Costley & Lange, 2017). Paas et al. (2003) suggest that

there are factors that may affect working memory load and that such factors depend on

the manner in which material is presented (extraneous and germane cognitive loads)
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or its intrinsic nature (intrinsic cognitive loads).

The main purpose for instructional designers is the design of practice and the or-

ganisation and the presentation of information. Instructional interventions can alter

extraneous and germane cognitive loads (Van Merrienboer & Sweller, 2005). A poorly

designed instruction will be reflected in the effort required by the extraneous cognitive

load to process it. On the other hand, when the designed instruction contributes to

the generation of schemas of knowledge, it will be reflected in the germane cognitive

load. In this sense, appropriate instructional designs decrease extraneous cognitive

load but increase the germane cognitive load (Sweller et al., 1998). Although instruc-

tional designs can affect extraneous and germane cognitive loads, they cannot alter

intrinsic cognitive load because that is intrinsic to the material dealt with and also

depends on the interaction between elements of information that a learner must pro-

cess (interactivity) combined with previous knowledge (Sweller et al., 1998; Paas et

al., 2003; Van Merrienboer & Sweller, 2005; Costley & Lange, 2017). However, the

intrinsic cognitive load is added directly to extraneous cognitive load when planning

instructional designs.

Furthermore, instructional designs should be planned to enhance learning, thus

enhancing germane cognitive load. To achieve knowledge, some factors such as the

way in which information is presented and the learning activities required should be

considered (Van Merrienboer & Sweller, 2005). Based on results that show a positive

relationship between auditory, visual and total media and germane cognitive load,

Costley and Lange (2017) suggest that instructions should focus on ways of enhancing

this cognitive load indicating that video lectures with the diverse forms of media may

lead to increase it.

2.1.2 Diverse media and auditory learning

Work has been done that indicates that Diverse media and Auditory instructional

designs play an important role in how students perceive lectures and how it affects the

learning process (Sweller et al., 1998; R. E. Mayer & Moreno, 2003; Kalyuga & Singh,

2016; Costley & Lange, 2017; R. Mayer, 2017; Boyer, Bevilacqua, Susini, & Hanneton,
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2017).

Diverse media involves approaches that promote better understanding and enhance

the germane cognitive load. It includes different methods such as presenting the same

content multiple times using various forms of media (Paivio, 1991; Schmidt-Weigand

& Scheiter, 2011; Khl, Scheiter, Gerjets, & Gemballa, 2011; van Genuchten, van Hooi-

jdonk, Schler, & Scheiter, 2014). Also, it involves the use of animations instead of

still images (Khacharem, Zoudji, & Kalyuga, 2015; Dindar, Kabak Yurdakul, & nan

Dnmez, 2015; Morrison, Watson, & Morrison, 2015) and the use of videos accompa-

nied by collaborative text (Sloan & Lewis, 2014; Yu, Wang, & Su, 2015; Costley &

Lange, 2017; Boyer et al., 2017). On the other hand, auditory learning promotes an

optimal germane cognitive load through the process of hearing or speaking, based on

approaches such as music and sound added to lectures (Costley & Lange, 2017); and

discussions and brainstorming during the learning sessions. Although some research

indicates that music and sound added to the class contributes to more learning (Sun

& Cheng, 2007), other studies suggest that it may increase distractions affecting the

comprehension of the content (R. E. Mayer & Moreno, 2003).

2.2 Mental Workload

2.2.1 Foundations

Longo (2016) suggests that Mental Workload (MWL) is the amount of cognitive work

that an individual requires to complete a task over time. This concept is invoked

when the complexity of that task needs to be measured. Hart (2006) also suggests

that Mental Workload is the result of the interaction between factors related to the

person, circumstances and the requirements of that task.

The literature indicates that MWL has applications in ergonomics (Fallahi, Mo-

tamedzade, Heidarimoghadam, Soltanian, & Miyake, 2016; Chen, Kang, & Lin, 2016;

Doebler, Ryan, Shortall, & Maguire, 2017; J.-Y. Zhang, Liu, Feng, Gao, & Zhang,

2017; Boele-Vos, Commandeur, & Twisk, 2017), human behaviours (Wickens, 2008),

computer systems (J. Zhang, Yin, & Wang, 2015; Moustafa, Luz, & Longo, 2017;
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Gmyzin, 2017; Caywood, Roberts, Colombe, Greenwald, & Weiland, 2017) and other

diverse areas (Cinaz, Arnrich, La Marca, & Tröster, 2013; Wu, Xu, & Lin, 2017;

Lassalle et al., 2017; Longo & Leva, 2017).

Xie and Salvendy (2000) suggest that mental overload and underload have a nega-

tive effect on performance. Longo (2016) also points out that mental underload refers

to the stage when individuals may feel frustrated or annoyed whereas mental overload

is related to the stage when an individual is confused, decreasing performance and

increasing possible mistakes.

2.2.2 Mental Workload measures

The literature indicates that Mental Workload measures can be classified into three

main categories (Young, Brookhuis, Wickens, & Hancock, 2015; Longo, 2016; Moustafa

et al., 2017; Gmyzin, 2017). These categories are physiological measures, task perfor-

mance measures, and subjective measures:

1. Physiological measures involve the analysis of physiological indicators and

responses of the operator’s body obtained from electroencephalogram tests, eye

tracking and heart rate measures (Moustafa et al., 2017) that are believed to be

correlated to MWL (Longo, 2016).

2. Task performance measures relate to the time spent completing a task, the

time spent reacting to a second task (indirect quantification of MWL) and the

errors made on the primary task (Moustafa et al., 2017; Gmyzin, 2017).

3. Subjective or self-assessment measures involve the analysis of a subjective

feedback provided by the participant interacting with the task and the system

(Moustafa et al., 2017). Longo (2016) points out that an accurate judgement of

the task and the MWL experience can only be provided by the person interacting

with the task. The Mental Workload, in this case, is usually conducted through

surveys or questionnaires related to a post-activity, which relies on two commonly

used measures such as the NASA Task Load Index (NASA-TLX) (Hart, 2006)

and the Workload profile (WP) (Tsang & Velazquez, 1996).
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2.2.3 Subjective measures

NASA-TLX

Subjective measure of MWL that was originally aimed to be used for aviation tasks by

pilots within the NASA agency (Moustafa et al., 2017), which then was extended to

other fields (Rubio, Dı́az, Mart́ın, & Puente, 2004; Rizzo, Dondio, Delany, & Longo,

2016; Rizzo & Longo, 2017). The NASA-TLX is built based on six factors (di) and

weights (wi) that reflect the perception of the Mental Workload of a task (Moustafa

et al., 2017; Gmyzin, 2017). Such factors are Mental Demand, which is related to

the mental skills required to complete the task (remembering, thinking, deciding and

other); Physical demand, which involves physical activities (pushing, pulling, and

other); Temporal demand, which is related to the pressure felt during the task; Per-

formance, which is measured as self-estimated satisfaction of the perform during the

task; Effort, which relates to the amount of effort that the participant applied to

achieve the task; and Frustration, which measures how uncomfortable the task was.

The weights are calculated using a rating binary choice system related to the com-

bination of the factors in pairs (Longo & Dondio, 2015; Longo, 2017). Based on the

factors and the weights, the NASA Task Load Index can be calculated as defined in

equation (2.1):

NASA− TLXMWL =

(
6∑

i=1

di ∗ wi

)
1

15
(2.1)

Workload Profile

Wickens (2008) proposed Workload Profile as subjective assessment method under

the Multiple Resource Theory (MRT). This measure is based on eight dimensions (di)

required to perform a task identified by Moustafa et al. (2017). Dimensions of process-

ing such as perceptual or central, response, spatial, verbal, visual, auditory, manual

responses and speech responses, which obtained from self-report during the perfor-

mance of the task (Moustafa et al., 2017; Gmyzin, 2017). Based on the dimensions,

the Workload Profile can be calculated as defined in equation (2.2):
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WPMWL =
8∑

i=1

di (2.2)

For a further understanding of the subjective measures of Mental Workload, the

reader is referred to Longo (2012, 2011, 2014, 2015a).

2.3 Natural Language Processing

The literature based on Natural Language Processing indicates that there has been

an immense growth in this field during the last ten years due to an increase of large

amounts of electronic sources, memory and speed of computers and the use of the in-

ternet (Goel, 2017). When a data processing system requires the use of the knowledge

of the language, it becomes a language processing system (Jurafsky & Martin, 2014).

This is the basis for a set of technologies and theories for the analysis of text (Goel,

2017). There are different mathematical and linguistic approaches used for NLP to

solve practical problems and direct real-world applications (Manning, Schütze, et al.,

1999). Such approaches or key concepts are subdivided into categories such as syntax,

semantics, discourse, and speech:

1. Syntax focuses on the rules and techniques that dictate the structure of the

sentence in languages (Hurwitz, Kaufman, & Bowles, 2015). It involves sub-

categories such as lemmatization (Kettunen, Kunttu, & Jrvelin, 2005; Han,

Shen, Wang, & Liu, 2012); morphological segmentation (Guinard, 2016); part-of-

speech tagging (Lv, Liu, Dong, & Chen, 2016); terminology extraction (Lossio-

Ventura, Jonquet, Roche, & Teisseire, 2016); and stemming (Kettunen et al.,

2005; Han et al., 2012).

2. Semantics is the study of the meaning of words and their combination into

meaningful sentences, constructions and utterances (Manning et al., 1999). It

involves a number of applications which utilise text theoretically and through

implementation. Applications such as lexical semantics (McInnes & Pedersen,

2013; Faruqui et al., 2014); collocations (Manning et al., 1999; Gupta, Nenkova,
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& Jurafsky, 2007); named entity recognition (Habib, 2008), (Dai, Lai, Chang, &

Tsai, 2015); question answering (Garg & Kumar, 2016); and sentiment analysis

(Manke & Shivale, 2015).

3. Discourse involves the process of the comprehension and production of natu-

ralistic language as it can provide clues that draw the attention to the aspects

of the text that should be focused on and remembered (Crossley, Allen, Kyle, &

McNamara, 2014). In NLP, it has a number of applications such as automatic

summarisation (Gambhir & Gupta, 2017); conference resolution (Sapena, Padró,

& Turmo, 2013); and discourse analysis (Lehmann & Guenthner, 1991).

4. Speech has begun to merge with Natural Language Processing as both fields

are based on common resources such as raw speech and text corpora, annotated

corpora, part-of-speech, among others (Jurafsky & Martin, 2014). In NLP, it

involves applications such as speech recognition (Lee & Cho, 2016); speech seg-

mentation (Toro, Sinnett, & Soto-Faraco, 2005), (Panda & Nayak, 2016); and

text-to-speech (Shadiev, Huang, & Hwang, 2017).

The definitions provided above, provide a general picture of the applications and

approaches of NLP. The aim of this section is to contextualize techniques related to

those categories with the research question. In particular, techniques of Natural Lan-

guage Processing for text preprocessing (tokenizing, stop-words removal, lemmatizing

and stemming), similarity measures and weighting scheme for words.

2.3.1 Text preprocessing

1. Tokenizing is defined as the process of separating a group of string characters

(words, phrases, symbols or other meaningful elements) into tokens after the

language of that group of string characters has been identified (Hurwitz et al.,

2015).

2. Stop-words removal is the process of removing auxiliary words like prepo-

sitions, pronouns, conjunctions and interjections that have trivial semantic in-
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formation. Therefore, it reduces the total number of words in the corpus and

increases the accuracy of semantic algorithms (Furlan, Batanovi, & Nikoli, 2013).

3. Lemmatizing and Stemming are techniques used in NLP applications to re-

duce morphological variations of words mapping them to their base forms (Singh

& Gupta, 2016). The difference between both is that stemming obtains the ba-

sic word form (the stem), whereas lemmatizing determines the canonica, dictio-

nary or citation form (the lemma) of a word (Paredes-Valverde, Valencia-Garca,

Rodrguez-Garca, Colomo-Palacios, & Alor-Hernndez, 2016). The main disad-

vantage of stemming compared to lemmatizing is that suffix removal algorithms

cannot stem the alternate inflection of a word that could have been declared in a

different verb tense, or in its plural form, whereas algorithms for lemmatization

can find the lemma of the word that correspond to the collection of all word

forms that have the same meaning. For example, with a word such as ”defined”

(past tense of ”define”), the stemming algorithm would return ”defin”, whereas

the lemmatizing algorithm would return ”define”. In this sense, without know-

ing the real base form, it is not possible to resolve the meaning of the word and

the use of those algorithms in applications like word-sense disambiguation it is

not feasible (Singh & Gupta, 2016).

2.3.2 Semantic similarity

Determining the relatedness of a word/concept has played an important role in appli-

cations for summarising texts, detecting duplicate content and plagiarism, in discourse

structures (Harispe, Ranwez, Janaqi, & Montmain, 2017). Harispe et al. (2017) de-

fine semantic relatedness as the strength of semantic interactions between two terms

without having restrictions on the type of semantic links. Thus, two elements can be

highly related despite the fact that they are not similar. In the case that two elements

share few of their semantic constitutive properties, semantic similarity, a subset of

relatedness, it is used to evaluate the semantic interaction between them based on

their taxonomic relationship within an ‘is-a’ hierarchy.
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Similarity Measures

McInnes and Pedersen (2013) categorized Semantic similarity measures into two groups:

Path-based, which is based on the shortest path information; and Information content,

which is based on the shortest path information but incorporating the probability of

the concept occurring in a corpus of text.

1. Path-based involves a number of approaches such as Distance measure (Rada,

Mili, Bicknell, & Blettner, 1989); Reciprocal of length of the shortest path

(Caviedes & Cimino, 2004); Distance measure with depth of the Least Com-

mon Subsumer (LCS), the WUP similarity method (Wu & Palmer, 1994); Path

measure with depth and taxonomy (Leacock & Chodorow, 1998); and other

ontology-based approaches (Noy, 2004; Nguyen & Al-Mubaid, 2006; Yang, Yang,

& Yuan, 2007; Taieb, Aouicha, & Hamadou, 2014).

2. Information content involves a Corpus-based approach that uses the infor-

mation gained from large corpora to measure the semantic similarity between

two concepts (Zhu & Iglesias, 2017); and Taxonomy-based which captures the

generality and concreteness of a concept by looking at its incoming (ancestors)

and outgoing (descendant) links based on its placement within the hierarchy

(McInnes & Pedersen, 2013).

WUP similarity method is a path-based similarity measure proposed by Wu

and Palmer (1994). It measures the semantic similarity of two concepts as twice

the depth of the most specific concept that is a shared ancestor of the two concepts

(LCS), divided by the product of the depths of each individual concept. This semantic

similarity measure can be calculated as defined in equation (2.3):

simwup =
2 ∗ depth(lcs(c1,c2))

depth(c1) + depth(c2)
(2.3)

A large lexical database of English words, WordNet (Miller, 1995), makes use of

the Wu and Palmer (1994) method to measure semantic similarity.

WordNet groups nouns, verbs, adjectives and adverbs into sets of cognitive syn-

onyms (synsets) (Faruqui et al., 2014). The literature makes reference to WordNet to
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determine the semantic similarity between words and concepts as it organizes nouns

and verbs into hierarchies relations of ”is-a” (Manning et al., 1999; Budanitsky &

Hirst, 2006; Taieb et al., 2014; Faruqui et al., 2014; Zhu & Iglesias, 2017). This lexi-

cal database can be used for synonym search, for example, as applied in the work of

Paredes-Valverde et al. (2016) for querying linked data using NLP.

Synonym search approaches have been proposed based on processing word-level

terms (Taboada, Rodriguez, Gudivada, & Martinez, 2017). New synonyms are cre-

ated from multi-word phrases by replacing one or more words with known synonyms

(Allones, Martinez, & Taboada, 2014). A mismatch can happen when a word which

is a synonym of another is within a document but is not mentioned in it, thus, reduc-

ing the effectiveness of a system and limiting expressiveness by restricting vocabulary

(Paredes-Valverde et al., 2016).

2.3.3 Weighting scheme for words

Gupta et al. (2007) suggest that attention has been given to multi-document sum-

marisation in response to a complex user query. Summaries can be of two types:

generic or query-focused (Gambhir & Gupta, 2017). Generic summarisation gives an

overview of the information in documents, whereas a topic or query can determine

what information is appropriate for inclusion in the summary. Regarding aspects of

the topic-focused scenario, studies have been conducted in word schemes, such as Word

probability and Log-likelihood Ratio (LLR) (Nenkova, 2005; Conroy, Schlesinger, &

O’Leary, 2006; Nenkova, Vanderwende, & McKeown, 2006; Gupta et al., 2007).

Relative Frequency ratios

Manning et al. (1999) consider the interpretation of relative frequency ratios as like-

lihood ratios (an approach to hypothesis testing). Relative frequency ratios between

two words can be used to determine the importance of a word that is characteristic

of a corpus (core text) when compared to a background corpus (contrastive corpus)

(Damerau, 1993). It can be measured as the relative frequency of a word in the core

text (Eq. (2.4)), divided by the relative frequency of the word in the contrastive text
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(Eq. (2.5)). This measure can be calculated as defined in equation (2.6).

FT =
fwordcoreText

totalWordscoreText

(2.4)

FC =
fwordcontrasText

totalWordscontrastText

(2.5)

RFR =
FT

FC
(2.6)

The purpose of the relative frequency ratio is to compare a general text with a subject-

specific text (Manning et al., 1999). In this sense, a relative frequency ratio greater

than 1 would indicate that the word is more important to the core text than to the

contrastive text. If it is close to 1, then the word is of equal importance to the core

text and the contrastive text. Finally, if it is less than one, then the word is more

important to the contrastive text than to the core text.

2.4 Related work

Work has been done to measure Mental Workload under instructional designs to en-

hance health and learning based on applications mainly related to ergonomics (Fallahi

et al., 2016; Chen et al., 2016; Doebler et al., 2017; J.-Y. Zhang et al., 2017; Boele-Vos

et al., 2017), human factors (Wickens, 2008), machine learning (J. Zhang et al., 2015;

Moustafa et al., 2017; Gmyzin, 2017; Caywood et al., 2017) and other diverse areas

(Cinaz et al., 2013; Wu et al., 2017; Lassalle et al., 2017). However, collaboration be-

tween Mental Workload techniques and Natural language Processing seems to rarely

happen. Therefore, to extend the boundaries of the search, related scholarship with

particular goals is valuable. For example, Moustafa et al. (2017) applied NASA-TLX

and WP to instructional designs to determine the relationship between their indexes

and an actual class assigned to the volunteers at the end of the Mental Workload ac-

tivity. Gmyzin (2017) proposed subjective techniques to compare the performances of

these theory-driven measures and of the supervised machine learning models that were
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trained using the NASA-TLX and WP factors as features to predict a class (indexes

of NASA-TLX and WP). Ott et al. (2016) proposed a measure for Mental Workload

using multi-modal metrics, namely text, keyboard dynamic data and unstructured

linguistics to build a supervised machine learning model. Finally, the studies pro-

posed by McInnes and Pedersen (2013) and by Furlan et al. (2013) related to semantic

similarity to text.

2.5 Summary

2.5.1 Gaps in literature

The literature review indicates that the collaboration between Mental workload tech-

niques and Natural language Processing seems to rarely happen. Also, it indicates

that Supervised Machine learning has been used to MWL, which reflects an increase

application of new technologies to areas usually dominated by theory-driven models

such as the subjective measures. Thus, this can be taken as an initial indication that

Natural Language Processing can also be used for the same purpose.

It seems that NLP has not yet been applied to MWL under instructional designs

and a gap from the studies of Moustafa et al. (2017) and Gmyzin (2017) can provide

an idea of what can still be done. In both cases, the hypotheses aimed to determine

the relationship between MWL scores (indexes of NASA-TLX and WP) or scores ob-

tained using supervised machine learning models on the one hand and a class applying

correlation techniques on the other. The class was collected and designated at the end

of the MWL task to each participant or from the NASA-TLX and WP scores. How-

ever, from another point of view, it would have been interesting to obtain ratings from

text data aiming to measure levels of Mental Workload by applying Natural Language

Processing, for example, using keywords collected at the beginning and the end of each

task along with the subjective measures.
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2.5.2 Research Question

As an appropriate instructional design can increase the germane cognitive load en-

hancing learning (Sweller et al., 1998), if it is well planned, considering the way in

which the information is presented and the learning activities required, it will have

a positive impact on individuals’ learning, and it might contribute to achieving an

optimal Mental workload. Thus, the content of an instrument design translated into

text and keywords of activity given under that instrument design can be processed

using NLP techniques and then analysed to measure how those keywords are related

to the Mental Workload in terms of learning. Accordingly, this research will seek to

determine if there is a relationship between Mental Workload and Relative Frequency

Ratios of keywords gathered from students during third-level classes under different

topics and instructional designs?
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Chapter 3

Experiment design and

methodology

This chapter provides a definition of the hypotheses necessary to answer the research

question. It also involves software selection, data understanding, data preparation,

model design, evaluation and hypotheses testing and strengths and limitations of the

design approach (see figure 3.1)).

Figure 3.1: The process of experiment design and methodology which involves an

overview of the approaches necessary to answer the research question
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The first section begins with the context that permits the formulation of the hy-

potheses that aims to answer the research question. Then, the hypotheses definition

is outlined.

The software section involves the selection criteria of the tools that will be used

to conduct each part of the experiments. Thus, the software are presented along with

their tasks to be performed.

The data understanding section aims to identify data quality problems and to

discover insights into the data. It describes a number of approaches chosen to analyse

the NASA-TLX and WP datasets. Also, it presents the analysis and explanation

of four core texts, namely: Science, the Scientific Method, Planning Research, and

Literature Review. It concludes with the analysis and selection of a contrastive corpus.

For the data understanding of the corpus, two pseudo codes are proposed.

The data preparation section presents the steps necessary to solve possible data

quality problems such as missing values, outliers, abbreviations, misspellings and as-

sessment of normality during feature generation of the subjective measures of Mental

Workload. Also, the steps for feature reduction of the set of keywords features of

NASA-TLX and Workload Profile datasets are presented. Finally, during this section

five pseudo codes are proposed.

The modelling part aims to determine the importance of a keyword that is charac-

teristic of a core text when compared to a contrastive corpus. It involves the calculation

of the similarity between two words, a synonym search and the calculation of Relative

Frequency of keywords in a corpus. Finally, the steps to calculate the Relative Fre-

quency Ratios of keywords are presented. During this section, four pseudo codes are

proposed.

The evaluation and hypothesis testing section presents the selection of the statisti-

cal technique most suitable to address the research question. Then, different possible

scenarios are analysed to accept or reject the hypotheses.

Finally, the last section presents the strengths and limitations of the designed

approach.

20



CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

3.1 Hypotheses definition

Between 2015 until 2017, Mental workload experiments were conducted by Dr Luca

Longo during third-level classes at Dublin Institute of Technology (DIT). During those

experiments four different topics were taught using three instructional designs namely,

traditional class, Video-delivery and Video-collaborative. During the sessions, the

NASA-TLX and Workload Profile questionnaires were used to collect factors and

weights necessary to measure MWL using their mathematical equations (see chapter

2). Along with the questionnaires, keywords were also collected from the participants

during the pre-task and post-task. Under those circumstances, the data collected from

those sessions permit the formulation of hypotheses that can answer the research ques-

tion. Based on that, the following two hypotheses are presented (see figures 3.2 and

3.3):

• H1: There is a statistically significant relationship between Mental Workload

(MWL) and Relative Frequency Ratios (RFR) of keywords gathered from stu-

dents during third-level classes under different topics.

Figure 3.2: Hypothesis definition H1

• H2: The strength of the correlation between MWL measures and RFR scores us-

ing Video-collaborative (C3) is greater than the correlation related to the video-
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delivery approach (C2) which is also greater than when using a traditional ap-

proach (C1).

Figure 3.3: Hypothesis definition H2

The content of instructional designs (topics) translated into text along with key-

words of activity given under those instrument designs can be analysed to measure

how those keywords are related to the Mental Workload. In this sense, the first hy-

pothesis is based on the assumption that Relative Frequency Ratios obtained from

the keywords collected during the experiments of MWL at third level sessions and the

topics in form of text data provide insights of the MWL activity.

The second hypothesis is an extension of the first assumption but focuses on the

instructional designs in terms of the acquisition of learning. Diverse forms of instruc-

tional designs approaches promote better understanding and enhance the germane

cognitive load. If an instructional design is properly developed and planned, it will

have a positive impact on individual’s learning and it might contribute to achiev-

ing an optimal Mental Workload. During the MWL experiments, topics were given

using three instructional designs namely, traditional class, Video-delivery and Video-

collaborative. The traditional class involved the presentation of slides along with

a lecturer’s speech. The video-delivery approach involved the use of videos where
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the lecturer was pre-recorded explaining the topics along with use of images and text.

The video-collaborative approach implemented the video-delivery approach along with

group activities to promote discussions supported with the PDF of the slides of the

traditional class. In this sense, the hypothesis H2 assumes that the strength of the cor-

relation between MWL measures and RFR scores using Video-collaborative is greater

than when using the other two instructional designs, being also the strength of the

correlation related to the video-delivery approach greater than when using the tradi-

tional approach. The use of Video and collaborative activities as through the process

of hearing and seeing and the interaction between the participants can promote an

optimal germane cognitive load and it might outperform the video-delivery and the

traditional approaches because it is a combination of the former and also it adds discus-

sions between the participants supported with the PDF of the slides of the traditional

approach. At the same time, the video-delivery approach might outperform the tradi-

tional class because a video of the lecturer supported with images and text, instead of

a lecturer’s speech supported with slides, might have engaged the participants more.

3.2 Software

Due to a wide range of specific issues that might arise from the data understanding

section, this research will conduct each part of the experiments using the most appro-

priate tool for it based on the criteria that some tools perform differently depending

on the activity thus providing different level of efficiency (Gmyzin, 2017).

IBM SPSS statistics has been chosen for the data exploration of the NASA-TLX

and Workload Profile datasets and for the statistical analysis of the experiments. Its

selection is based on the way it manages data and performs analysis in one go providing

a range of techniques to conduct descriptive statistics, test of normality, and statistical

tests to determine the relationship between variables.

Python Programming Language has been also selected for data understanding,

data preparation, modelling and data visualisation as it provides a range of libraries

that facilitate the use of Natural Language Processing techniques. Python will be used
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for the data analysis of the corpus texts and keyword features. Furthermore, its use is

aimed to obtain measures such as the total number of tokens and distinct words in the

core texts, percentage of lexical richness, percentage of stop-words and other measures.

In data preparation, it will be applied to manage missing values, for feature selection,

tokenizing, stop-words removal and lemmatization. For data modelling, it will be

used to determine the Relative Frequency Ratios of the keywords features. Finally,

for data visualization, Python will be used to present graphs, namely: histograms and

box-plots to facilitate the understanding of the results.

3.3 Data Understanding

3.3.1 Datasets

This step will begin with the process of inspecting the NASA-TLX and Workload

Profile datasets to identify data quality problems and to discover first insights into

the data. The approaches that will be taken to conduct this exploratory analysis are

based on the type of features that those datasets have.

NASA-TLX dataset

The table 3.1, NASA-TLX dataset features, indicates that this dataset is divided into

five main groups that vary in type. Instruction Designs, Topics and Keywords pre

and post tasks are categorical features with categories based on strings. On the other

hand, Dimensions is a range continuous feature and Pairwise comparison is a binary

categorical feature. In this sense, an analytic Base Table (ABT) will be built for the

Dimensions and Pairwise comparison features. It will include the number of records,

Minimum, Maximum, Mean and Standard Deviation. A table of frequencies will be

created for the Instruction Designs and Topics features that will include the count

and percent of frequency measures. Also, a table of frequencies will be built for the

Keywords pre and post tasks features that will contain the count and unique values.
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Workload Profile dataset

The table 3.1, Workload Profile dataset features, indicates that this dataset is divided

into four main groups that vary in type. Instruction Designs, Topics and Keywords pre

and post tasks are categorical features with categories based on strings while Dimen-

sions is a range continuous feature. In this sense, an analytic Base Table (ABT) will

be built for the Dimensions features. It will include the number of records, Minimum,

Maximum, Mean and Standard Deviation. A table of frequencies will be created for

the Instruction Designs and Topics features that will include the count and percentage

of frequency measures. Also, a table of frequencies will be built for the Keywords pre

and post tasks features that will contain the count and unique values.
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Table 3.1: NASA-TLX and WP datasets’ features (R = Range, C = Categorical, B =

Binary, S = String)

NASA-TLX features Workload Profile features

# Name Type # Name Type

Instruction designs Instruction designs

1 intru design C-S 1 intru design C-S

Topics Taught Topics Taught

1 topic C-S 1 topic C-S

Dimensions (d) Dimensions (d)

1 NASA Mental R 1 WP solving deciding R

2 NASA Physical R 2 WP response selection R

3 NASA Temporal R 3 WP task space R

4 NASA Performance R 4 WP verbal material R

5 NASA Frustration R 5 WP visual resources R

6 NASA Effort R 6 WP auditory resources R

Pairwise comparison (pc) 7 WP manual response R

1 NASA TempFrus C-B 8 WP speech response R

2 NASA PerMen C-B Keywords pre and post tasks

3 NASA MenPhy C-B # Name # Name Type

4 NASA FrusPer C-B 1 WP k1 pre 1 WP k1 post C-S

5 NASA TempEffort C-B 2 WP k2 pre 2 WP k2 post C-S

6 NASA PhyFrus C-B 3 WP k3 pre 3 WP k3 post C-S

7 NASA PerTemp C-B 4 WP k4 pre 4 WP k4 post C-S

8 NASA MenEffort C-B 5 WP k5 pre 5 WP k5 post C-S

9 NASA PhyTemp C-B 6 WP k6 pre 6 WP k6 post C-S

10 NASA FrustEffort C-B 7 WP k7 pre 7 WP k7 post C-S

11 NASA PhyPerf C-B 8 WP k8 pre 8 WP k8 post C-S

12 NASA TempMen C-B 9 WP k9 pre 9 WP k9 post C-S

13 NASA EffortPhy C-B 10 WP k10 pre 10 WP k10 post C-S

14 NASA FrustMen C-B 11 WP k11 pre 11 WP k11 post C-S

15 NASA PerfEffort C-B 12 WP k12 pre 12 WP k12 post C-S

Keywords pre and post tasks 13 WP k13 pre 13 WP k13 post C-S

# Name # Name Type 14 WP k14 pre 14 WP k14 post C-S

1 NASA k1 pre 1 NASA k1 post C-S 15 WP k15 pre 15 WP k15 post C-S

2 NASA k2 pre 2 NASA k2 post C-S

3 NASA k3 pre 3 NASA k3 post C-S

4 NASA k4 pre 4 NASA k4 post C-S

5 NASA k5 pre 5 NASA k5 post C-S

6 NASA k6 pre 6 NASA k6 post C-S

7 NASA k7 pre 7 NASA k7 post C-S

8 NASA k8 pre 8 NASA k8 post C-S

9 NASA k9 pre 9 NASA k9 post C-S

10 NASA k10 pre 10 NASA k10 post C-S

11 NASA k11 pre 11 NASA k11 post C-S

12 NASA k12 pre 12 NASA k12 post C-S

13 NASA k13 pre 13 NASA k13 post C-S

14 NASA k14 pre 14 NASA k14 post C-S

15 NASA k15 pre 15 NASA k15 post C-S
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3.3.2 Corpus

Core texts

The Mental workload experiments were conducted by Dr Luca Longo during third-level

classes at Dublin Institute of Technology (DIT) under four different topics. Namely,

Research Methods and Computer Science, The Scientific Method, Planning Research

and Literature review. The lessons were previously translated from Power-point format

without using images to a storytelling format. Thus, the third level classes were taught

based on the core texts in a storytelling format using three main instructional designs

namely, traditional, Video-delivery and Video-collaborative.

1. Science is a corpus that has 1888 tokens. The topic involves the definition of

Science, the types of Science, its origins, famous scientists, interest of a scientist

in research, the relationship between Science and Engineering and the definition

of Computer Science.

2. The Scientific Method is a corpus that has 2348 tokens. It involves different

research methods for Computer Science. It begins with the definition of method

and the history of scientific method. Then, it covers approaches for establishing

scientific knowledge, its history, famous scientists and their methodologies. Fi-

nally, it provides the elements of scientific method, testing hypotheses, problems

of inductivism and considerations to take when defining a scientific method.

3. Planning Research has a size of 879 tokens. It begins with a concept widely

used in research, which formulates the questions what, how, where, who, when

and why. Then, it covers approaches for idea generation (Top-down and Bottom-

up). Finally, it provides a path of how to start the formulation of a problem.

4. Literature Review is a corpus that contains 2353 tokens. It defines a literature,

and outlines the contribution of a literature review in defining a specific thesis,

problem or research question. Also, it provides tips on writing a literature review

for an article, a chapter, or a book. Finally, the literature review and research

questions are linked and the formulation of a hypothesis is explained.
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Contrastive text

As suggested by Damerau (1993), to determine the importance of a word that is

characteristic of a corpus (core text), it is necessary to compare it to a background

corpus. In this sense, this research selected an academic topic unrelated to the four

core texts explained above and an academic topic with a size (number of tokens) close

to the average of the size of the core texts. Based on that, a fragment from the work

of Costley and Lange (2017) has been chosen and converted from a PDF format to a

‘.txt’ format. The topic is focused on the effects of instructional designs in Cognitive

Load. The fragment of the article includes the introduction, theoretical background,

total diversity learning theories, and empirical research supporting total diversity. In

size, the corpus has 2044 tokens, thereby following the criteria defined in this mater.

The sizes of the four Core texts and Contrastive text were obtained from Python

based on algorithm 1. This analysis was carried out as an initial understanding of the

corpus and to be able to select the contrastive text. The algorithm uses the NLTK

library for Natural Language Processing where the sequence of characters (tokens),

treated as a group, are obtained and then counted.

Algorithm 1 Size of a corpus

1: Import word tokenize from the nltk library

2: Read txt file under encoding=”utf-8” given the path

3: Assign content of the file to an object

4: Get tokens using word tokenize applied to the object

5: Get length of tokens. Eq(A)

Approaches

The analysis will begin determining how many distinct words the corpus contains to see

the number of tokens without duplicates. Then, the lexical richness will be calculated

to evaluate the percentage of distinct words and how many times in average each

word is used. Also, the frequency of the word tokens will be determined to see their

distribution across the texts. Finally, the number of stop-words, punctuation symbols,
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the total number of effective tokens and their percentage will be calculated. To carry

out this step, the algorithm 2 has been proposed.

Algorithm 2 Data Understanding of corpus

1: Get length of tokens. Eq(A)

2: Get distinct words in text. Eq(B)

3: Get lexical richness of the text as Eq(B) ∗ 100/Eq(A).

4: Get frequency distribution of the tokens.

5: Get top 25 most common tokens.

6: Get the number of tokens without stop-words. Eq(C)

7: Get the number of tokens without stop-words and punctuation symbols. Eq(D)

8: Get percent of stop-words as (Eq(A)− Eq(C)) ∗ 100/Eq(A)

9: Get percent of punctuation symbols as (Eq(C)− Eq(D)) ∗ 100/Eq(A)

10: Get the total number of effective tokens. Eq(D)

11: Get percent of the total number of effective tokens as Eq(D) ∗ 100/Eq(A)

3.4 Data Preparation

3.4.1 Datasets

This step involves solving possible data quality problems such as missing values, out-

liers, abbreviations, misspellings and assessment of normality during the generation of

the subjective measures of Mental Workload and the reduction of the set of keywords

features of NASA-TLX and Workload Profile datasets.

NASA-TLX and Workload Profile (WP)

The NASA Task Load Index and the Workload Profile scores will be calculated using

their mathematical equations (see equations (2.1) and (2.2) in chapter 2). For the

Workload Profile measure, the calculation will be based on the group of Dimensions

features of the WP dataset (see table 3.1) using algorithm 3. For NASA-TLX, the
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calculation will be based on the group of Dimensions and Pairwise comparison features

of the NASA-TLX dataset (see table 3.1) using algorithm 4.

Algorithm 3 Workload Profile (WP)

1: Read csv file as Dataframe given the path.

2: Create an object for each WP dimension feature (d1...d8 objects).

3: . See table 3.1 for reference to the lines 2.

4: Initialize a counter (i = 0).

5: Initialize a list.

6: for i in range from 0 to the length of d1 do:

7: for values (id1, ..., id8) in objects (d1, ..., d8) do:

8: Calculate WP as id1 + ... + id8

9: Append WP to the list from line 5.

10: Increment counter i = i + 1

11: end for

12: if i equal to the length of d1 is true then

13: break

14: end if

15: end for

16: Covert list with WP scores to Dataframe

17: Merge WP Dataframe to the original Dataframe from line 1.
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Algorithm 4 NASA-TLX

1: Read csv file as Dataframe given the path.

2: Create an object for each NASA-TLX dimension feature (d1...d6 objects).

3: Create an object for each NASA-TLX pairwise comparison feature (pc1...pc15 ob-

jects).

4: . See table 3.1 for reference to the lines 2 and 3.

5: Initialize a counter (i = 0).

6: Initialize a list.

7: for i in range from 0 to the length of d1 do:

8: Initialize 6 counters (w1...w6 = 0)

9: for values (id1, ..., id6, ipc1, ..., ipc15) in objects (d1, ..., d6, pc1, ..., pc15) do:

10: if weight achieved from pairwise comparison is true then:

11: increment counter (wi = wi + 1)

12: end if

13: . Lines 10 to 12 refer to determining the weight associated to each

dimension (w1...w6) verifying if it was achieved applying an if statement for each

pairwise comparison value (ipc1, ..., ipc15).

14: Calculate NASA-TLX as (id1 ∗ w1 + ... + id6 ∗ w6)/15

15: Append NASA-TLX to the list from line 5.

16: Reset counters (w1...w6 = 0)

17: Increment counter i = i + 1

18: end for

19: if i equal to the length of d1 is true then

20: break

21: end if

22: end for

23: Covert list with NASA-TLX scores to Dataframe

24: Merge NASA-TLX Dataframe to the original Dataframe from line 1.
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Assessing normality of NASA-TLX and WP

As parametric techniques, such as Pearson correlation, assume normally distributed

scores, the frequency distribution of the NASA-TLX and WP will be evaluated to

check the violation of this assumption.

The normality will be assessed based on the analysis of the frequency distribu-

tion (histogram) of each feature compared to those shown in figure 3.4. A normal

distribution will have characteristics of a bell curve indicating that the mean, mode

and median are equal. A positive skewness will indicate a clustering of values at the

low level of the graph and a negative skewness will indicate a clustering of values at

the high end of the graph. To validate the assessment of normality, the statistical

test of Kolmogorov-Smirnov will be conducted (Pallant, 2013). A no-significant value

(greater than 0.05) will indicate normality. Otherwise, it will suggest that there is a

violation of the assumption of normality.

Figure 3.4: Normal Distribution and positive and negative Skewness

Finally, in the case where the scores are positively or negatively skewed, a trans-

formation of the scores will be conducted using mathematical formulas making the

variable more ‘normally’ distributed Pallant (2013).

Keywords

As each dataset has 15 features for pre and post tasks (see table 3.1), those features

will be merged to obtain only two main groups (see figure 3.5). To do the aggregation,

the missing values must be treated first. During the Mental Workload experiments,
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participants were asked to write 15 groups of keywords or 15 concepts that described

what the participant learned from the teaching session. However, there might be cases

where participants left blank spaces as they gave up writing, the task finished because

the time was over or the task was completed but the answer was not clear because of

the handwriting style. In this sense, the missing values will be imputed with the label

‘unknown’. For the reduction of the set of keywords features and the imputation of

missing values of the keywords, the algorithm 5 has been proposed.

Figure 3.5: Reduction of sets of Keywords features to two main features.

Algorithm 5 Aggregation of sets of Keywords features

1: Read csv file as Dataframe given the path.

2: For the categorical features of Dataframe, fill missing values with ‘unknown’.

3: Create a new feature in the Dataframe named KW-aggregation-pre that will con-

tain the aggregation of the set of 15 features related to the pre task of MWL.

4: Create a new feature in the Dataframe named KW-aggregation-post that will

contain the aggregation of the set of 15 features related to the post task of MWL.

5: . The aggregation of the features should be done along axis = 1 separated by ‘;’.

Once KW-aggregation-pre and KW-aggregation-post are created, the data under-

standing and data preparation of the new groups of features will be conducted using
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the algorithm 6.

Algorithm 6 Data understanding and preparation of KW-aggregation features

1: function READ WORD GROUP(KW-aggregation as Dataframe):

2: Convert KW-aggregation from Dataframe to a list.

3: Create an emptied list that will contain calculations for data understanding.

4: Create an emptied list that will contain a group of tokens for each participant

of the MWL task.

5: for item in the KW-aggregation list do:

6: Get calculations obtained with algorithms 1 and 2.

7: Append calculations to a list.

8: Convert the list of calculations to a Dataframe where each calculation will

be a feature.

9: Using the Dataframe from line 8 and the list from line 7, create a dictionary

that will have: total number of tokens, total number of distinct words, average

of percentage of lexical richness, average of percentage of stop-words, average of

percentage of punctuation symbols, total number of effective tokens, average of

percentage of total number of effective tokens.

10: Convert dictionary to a Dataframe to return calculations

11: Get object equal to tokens converted to lower-case, without stop-words and

punctuation symbols, and lemmatized in terms of verbs, adjectives, nouns and

adverbs.

12: Append tokens to a list of group of tokens.

13: end for

14: end function return calculations (line 10) and list of group of tokens (line 12).

For the data understanding, the analysis will be conducted in terms of totals and

averages for each group of aggregated features. The aim is to calculate the number

of distinct words, the average percentage of lexical richness, the average percentage

of stop-words, the average percentage of punctuation symbols, the total number of

effective tokens and the average percentage of the total number of effective tokens.
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The data preparation of the keywords features will begin using the misspelling checker

of Microsoft Excel on the datasets to correct any misspelled word. Then, the key-

words will be processed to get tokens converted to lower-case, without stop-words and

punctuation symbols, and lemmatized in terms of verbs, adjectives, nouns and adverbs

(see line 12 of algorithm 6). Also, the features will be inspected in Python using algo-

rithm 7 to find any possible abbreviation that the participants could have used when

writing the keywords during the Mental Workload activities. The aim is to find the

words in the next and previous position of the possible abbreviations to analyse them

to determine whether the possible abbreviation is in fact an abbreviation. Finally,

a dictionary of abbreviations will be created with the abbreviations (keys) and their

words (values).

Algorithm 7 Inspection of Abbreviations

1: function INSPECT-ABB(keywords):

2: for words in keywords do:

3: for token in words do:

4: if length of token is less or equal to 2 then:

5: Find the index of the token in the previous position of token and

check if the position is greater or equal to 0 to get the word in the previous position.

6: Find the index of the word in the following position of token and

check if the position is greater than the length of words −1. If the condition

is true, the token is the last element in words. Otherwise, get the word as the

following word.

7: Print the length of the token, the token, the previous word and the

following word.

8: end if

9: end for

10: end for

11: end function

Once the abbreviations have been identified, the algorithm 8 will be used to replace
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them with the related word. Each abbreviation will be checked comparing the previous

and the next words of the possible abbreviation. If an abbreviation is found, it will be

replaced with its related word obtained from the dictionary created after the inspection

when using algorithm 7.

Algorithm 8 Replace abbreviation for word

1: function REPLACE-ABB(keywordsList,dictionary):

2: Get keys of the dictionary and assign them to an object.

3: for words in keywords do:

4: for token in words do:

5: if length of token less of equal to 2 then:

6: Find the index of the token in the previous position of token and

check if the position is greater or equal to 0 to get the word in the previous position.

Otherwise, pass.

7: Find the index of the token in the following position of token and

check if the position is greater than the length of words −1. If the condition is

true, the token is the last element in words. Otherwise, get the following word.

8: Print the length of the token, the token, the previous word and the

following word.

9: Obtain an input from user to verify if the token is an abbreviation

(yes 1, otherwise 0). If input is equal to 1, check if the token is within the abbre-

viations in the dictionary and print the word related to the abbreviation found.

10: Obtain an input from user to select the word related to the abbre-

viation (yes 1, otherwise 0). If input is equal to 1, replace abbreviation for the

related word (value in the dictionary). If there are two or more possible words for

the abbreviations, ask the user to select one of the options.

11: end if

12: end for

13: end for

14: return the list of keywords

15: end function
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3.4.2 Corpus

For data preparation, the core and contrastive texts will be processed to get tokens

converted to lower-case, without stop-words and punctuation symbols, and lemmatized

in terms of verbs, adjectives, nouns and adverbs. The aim is to obtain outputs for each

corpus that will be used during the modelling part, namely: a list that contains the

tokens of the corpus, another list with the tokens and their individual counts, and the

total number of effective tokens. To achieve this task, algorithm 9 has been proposed.

Algorithm 9 Data preparation of a corpus

1: function process corpus(path):

2: Read txt file under encoding=”utf-8” given the path.

3: Assign content of the file to an object.

4: Get calculations obtained with algorithms 1 and 2.

5: Get object equal to tokens converted to lower-case, without stop-words and

punctuation symbols, and lemmatized in terms of verbs, adjectives, nouns and

adverbs.

6: Use a counter that stores the elements of the object (line 5) as dictionary keys

and their counts as dictionary values.

7: Initialise two lists list1 and list2

8: for element, count in counter (line 6) do:

9: Append element to list1 and element and count to list2.

10: end for

11: end function return tokens (list1), tokens and count (list2), total number of

effective tokens (from line 4).

3.5 Modelling

The modelling part aims to determine the importance of a keyword that is charac-

teristic of a core text when compared to a contrastive corpus. It will be measured

as the relative frequency of a keyword in the core text (FT), divided by the relative
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frequency of the keyword in the contrastive text (FC) as defined on the equation (2.6)

in chapter 2. As shown in figure 3.6, there are n keywords for each participant of the

Mental Workload activity. For each keyword, a Relative Frequency Ratio (RFR) will

be calculated. Then, the average of the Relative Frequency Ratios (RFRavg) for each

participant will be obtained.

Figure 3.6: Relative frequency ratio of keywords

Relative frequency of a keyword in a corpus

For the calculation of FT and FC, the frequency of a keyword in the corpus will be

divided by the total number of words of the corpus. During this process, a mismatch

can happen when a keyword that is a synonym of a word that is within the corpus

is not mentioned on it, affecting the effectiveness of the model. To avoid this issue,

a synonym search will be conducted based on the similarity of two words under the

WUP path-based similarity measure. This task will be carried out using the lexical

databased of English words, WordNet, which makes use of Wu and Palmer (1994)

method.

1. Similarity between two words

WordNet returns a set of cognitive synonyms (synsets) organized into hierarchies

relations. Thus, the semantic similarity of two words will be obtained compar-

ing their sets of synsets applying the WUP measure to each synset. A WUP
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similarity value will vary from 0 to 1. The minimum value will indicate that the

words are neither equal nor synonyms of each other. Otherwise, a similarity of

1 will indicate that the words are equal or have the same meaning. As a word

can have multiple synonyms, the maximum of the WUP similarity value will be

determined from the synsets found, thus, returning the synonym most similar.

To achieved this task, algorithm 10 has been proposed.

2. Synonym search of a keyword in a corpus

To check if a keyword is a synonym of a word that is within the corpus, the key-

word has to be compared to each word using the search of the similarity of two

words (algorithm 10). In this scenario, each possible synonym and its WUP sim-

ilarity value will be compared using the maximum to obtain the synonym most

similar to the keyword. To achieve this task, algorithm 11 has been proposed.

With the implementation of the synonym search of a keyword in a corpus based

on the similarity of two words, it will be possible to determine the relative frequencies

FT and FC. In this sense, algorithm 12 has been proposed.

Relative frequency Ratio

Once FT and FC are determined using the algorithm 12. For each keyword, a Rel-

ative Frequency Ratio (RFR) will be calculated. Then, the average of the Relative

Frequency Ratios (RFRavg) for each participant will be calculated. This task will be

achieved using algorithm 13.
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Algorithm 10 Similarity between two words

1: function FIND-SIMILARITY-TWO-WORDS(word1,word2):

2: Determine set of synonyms (syns1) of word1.

3: Determine set of synonyms (syns2) of word2.

4: Initialize a list (similist = []).

5: for synonym (s1) in syns1 do:

6: Initialize a counter (i = 0)

7: for i in range from 0 to the length of syns2 do:

8: for synonym (s2) in syns2 do:

9: Check the WUP similarity between s1 and s2 greater than a thresh-

old value. Then, append to list in line 4 the synonym found s2 and the WUP

similarity value. Otherwise, keep checking.

10: . The threshold value for this experiment (line 9) is equal to 0.8.

11: Increment counter (i = i+ 1) and check if the counter (i) is equal to

the length of syns2 to finish the search.

12: end for

13: end for

14: end for

15: Initialize counter (maximum = 0).

16: for WUP similarity value in list(similist) do:

17: Find the maximum checking if the WUP similarity value greater than max-

imum and assign WUP similarity value as maximum when found.

18: end for

19: To return the output of the function, check if the maximum value found is

different than 0. Thus, return the WUP similarity value equal to maximum and

word2 as the synonym found. Otherwise, return the WUP similarity value equal

to 0 and word1.

20: end function
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Algorithm 11 Synonym search

1: function FIND-SYNONYM-KEYWORD-CORPUS(word1,corpus−words):

2: Initialize a list (maxlist = [])

3: Initialize an object.

4: for word in corpus− words do:

5: Apply the function FIND-SIMILARITY-TWO-WORDS (algorithm 10) to

check the semantic similarity between the keyword (word1) and a word within the

corpus (word). This function will return a synonym and its WUP similarity value.

6: Check if the WUP similarity found (line 5) is different than 0. Then, if

the condition is true append the synonym and its WUP similarity value to a list

(maxlist). Otherwise, keep checking.

7: Initialize a counter (maximum = 0)

8: for WUP similarity value in list(similist) do:

9: Find the maximum checking if the WUP similarity value is greater than

maximum. If the condition is true, set WUP similarity value as the maximum and

assign its synonym to an object (line 3).

10: end for

11: end for

12: To return the output of the function, check if the maximum value found is

different than 0. Thus, return the WUP similarity value equal to maximum and

the object (line 9) as the synonym found. Otherwise, return the WUP similarity

value equal to 0 and the keyword (word1).

13: end function
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Algorithm 12 Relative frequency of a keyword in a corpus

1: function FREQ-KEYWORD-IN-CORPUS(Input-1,Input-2,Input-3):

2: . Input-1 refers to the group of keywords

(keywods); Input-2 refers to the group of tokens (words) and their frequencies of

a corpus (corpusWordsCount) and Input-3 refers to the group of tokens (words)

of the corpus (corpusWords).

3: Initialize counter (i = 0)

4: Initialize a list (lfreq = [])

5: for i in range from 0 to the lengh of in keywods do:

6: Initialize a list (temp list = [])

7: for item in keywods[i] do:

8: Check if the keyword (item) is in the corpus (corpusWordsCount). If

the condition is true, append the keyword matched and its frequency to a list

(temp list). Otherwise, apply the FIND-SIMILARITY-TWO-WORDS function

(algorithm 11) using the keyword (item) and words in the corpus (corpusWords)

to find a possible synonym and its WUP similarity value.

9: Get the synonym and its frequency in the corpus (corpusWordsCount)

and append those elements to the list (temp list). If a synonym if not found,

append to the list (temp list) the keyword (item) and the frequency of the keyword

equal to 0.

10: end for

11: Append the list temp list to the list lfreq.

12: Determine the frequency of each keyword in the corpus using the list lfreq

that contains the keywords and their frequencies along with the total number of

effective tokens of the corpus. Assign these calculations to a list that will be the

output of the function.

13: end for

14: return a list containing the frequency of each keyword in the corpus.

15: end function
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Algorithm 13 Relative frequency ratio averages

1: function RFR-AVERAGE(FT ,FC):

2: Initialize a counter (j = 0).

3: Initialize a list (fList = []).

4: for j in range from 0 to the length of in FT do:

5: Initialize a counter (rfr = 0)

6: For each keyword determine the Relative Frequency Ratio (RFR) dividing

FT by FC. Then, increment the counter rfr adding each Relative Frequency

Ratio (RFR).

7: Determine the average of the Relative Frequency ratios RFRavg dividing

the counter rfr by the length of the group of keywords for each participant

(FT [j][1]).

8: Append to a list (fList) the average of the Relative Frequency ratios

(RFRavg).

9: Reset counter (rfr = 0).

10: end for

11: return a list (fList) containing the average of the Relative Frequency ratios

RFRavg.

12: end function

3.6 Evaluation and hypothesis testing

The nature of the features that are included in this research will determine which sta-

tistical technique is suitable to address the research question. For exploring relation-

ships among the MWL measures (NASA-TLX and WP) and the Relative Frequency

Ratio scores (RFR), the Pearson correlation parametric technique and the Spearman

Correlation non parametric technique have been chosen. Thus, the Pearson correla-

tion coefficient (r) and the Spearman correlation coefficient (rs) will be calculated

representing the correlation between MWL and RFR.

To apply the Pearson correlation, the features must be either interval or ratio
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measurements and must be approximately normally distributed. A linear relationship

between the two variables must exist and the outliers should be kept to a minimum

or removed. Finally, a homoscedasticity of the data must exist (Pallant, 2013). The

coefficient r can range from -1 to +1 where the sign in front will indicate whether as

one variable increases, the other increases too (Positive correlation) or as one variable

increases the other decreases (Negative correlation) (Pallant, 2013). If the assump-

tions of the Pearson correlation are violated, the Spearman correlation will be used to

determine the strength and direction of the monotonic relationship between the fea-

tures, thus, evaluating whether the score of one variable increases, so the score of the

other variable increases too or whether the score of one variable increases, the score of

the other variable decreases. It works with two variables under the assumption that

they must be either ordinal, interval or ratio.

The value of r or rs along with the pvalue will be used to accept or reject the

hypotheses. As suggested by Cohen (1988), a value between 0.10 and 0.29 will indicate

a small correlation, a value between 0.30 and 0.49 will refer to a medium correlation

and between 0.50 and 1 to a large correlation. A correlation of 0 will suggest no

relationship at all. To obtain an idea of how much variance MWL and RFR share,

the coefficient of determination will be calculated squaring r then multiplied by 100

(Pallant, 2013). This value will provide an indication of how the Relative Frequency

Ratios of keywords (RFR) help to explain Mental Workload.

Accepting or rejecting H1

A non-significant value (p− value > 0.05) of r or rs will indicate that the hypothesis

H1 can be rejected, thus, stating that there is not a statistically significant relationship

between MWL and RFR of keywords gathered from students during third-level classes

under different topics. On the other hand, a significant value of r or rs will indicate

that H1 can be accepted, thus, stating that there is a statistically significant relation-

ship between MWL and RFR of keywords gathered from students during third-level

classes under different topics.
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Accepting or rejecting H2

The hypothesis H2 states that the strength of the correlation between MWL measures

and RFR scores using Video and collaborative (C3) is greater than the strength of

the correlation related to the video-delivery approach (C2) which is greater than when

using a traditional approach (C1). If the assumption C3 > C2 > C1 based on the cor-

relation coefficient (r or rs) is not met, the hypothesis H2 will be rejected. Otherwise,

it will be accepted.

3.7 Strengths and limitations of designed approach

3.7.1 Strengths

The first major strength is that this is novel research that proposes algorithms

that are a robust integration of Natural Language Processing techniques to

contribute to analyse Mental Workload, which aligns with the increased use of

new technologies applied to theoretical approaches. Algorithms will determine distinct

words in a corpus, lexical richness, and the distribution of words across a corpus. They

will also calculate NASA-TLX and WP scores, identify and replace abbreviations

in texts, and process tokens to lower-case, stop-words and punctuation removal and

lemmatization of verbs, adjectives, nouns and adverbs. Also, they will find and replace

synonyms, and determine the importance of keywords that are characteristic of a core

text when compared to a contrastive corpus (RFR).

Another strength of this design is the moderately wide range of cases to be

evaluated, as the experiments are based on two datasets, NASA-TLX and WP, where

each dataset has four topics and three instructional designs, the combination thereof

facilitates more analyses, rather than focusing only on one subjective measure, topic

and instructional design.

Finally, this research is a contribution for future work because the exper-

iments and models could be expanded to continue the recent need to analyse MWL

using Supervised Machine Learning data-driven models. The data generated from this
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project can be used across different experiments in future works.

3.7.2 Limitations

The first major weakness of this research is the relatively small size of the data

sets. This makes it difficult to find statistically significant results from the data.

Although the NASA-TLX and WP questionnaires were collected from 2015 until 2017,

the small size of the datasets is due to the difficulties in conducting Mental Workload

activities at third-level sessions because they consume a lot of time which is otherwise

spend on teaching the required syllabus, the participants’ desirability bias, and the

potentially low response rate.

Secondly, a major weakness is the presence of null values of keywords (miss-

ing values). In particular, there might be cases where participants gave up writing,

the task was finished because the time was over, or the task was completed but the

answer was not clear because of the handwriting style. As the main analysis is based

on the keywords to get their importance in corpus to determine relative frequency ra-

tios, the missing values pose their own challenges to this research by introducing their

imputation based on the assignation of the label ‘unknown’ which has to be added

and handled to a stop-word list during the data preparation section.

Finally, another limitation of the designed approach is related to the misspelling

inspection and correction of the text data, which although will be performed

using a property of Microsoft Excel because of its easy application, it could have

been assessed through the use of a designed algorithm. However, the time will be

allocated and spent on the identification and replacement of abbreviations, synonyms,

word disambiguation in terms of verbs, nouns, adjectives and adverbs and for the

calculation of the Mental Workload measures and Relative Frequency Ratios.
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Implementation and results

This chapter presents the results of the performed data understanding, data prepara-

tion and modelling of the designed research (see figure 4.1).

Figure 4.1: Implementation and results process.

The first section begins with the process of inspecting the NASA-TLX and Work-

load Profile datasets and five corpus, namely: Science, The Scientific method, Planning

Research, Literature Review and Contrastive. It is aimed to identify data quality prob-

lems and to discover insights into their data, thus, involving a number of approaches

chosen in the previous chapter to conduct the analyses.
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The data preparation involves the generation of the subjective measures of Mental

Workload; the reduction of the set of keywords features of NASA-TLX and Workload

Profile datasets; and the data processing of the corpus. Thus, data quality problems

namely, missing values, outliers, abbreviations, stop-words and punctuation symbols

are handled, along with the assessment of normality of the variables.

Finally, the modelling part aims to determine the importance of a keyword that is

characteristic of a core text when compared to a contrastive corpus. For the NASA-

TLX and WP datasets under four core texts, three instructional designs and a con-

trastive corpus, this section begins with the calculation of relative frequencies of key-

words. Then, mismatches are avoided using a synonym search, based on the similarity

of two words under the WUP path- based similarity measure. Thus, a Relative Fre-

quency Ratio (RFR) is calculated for each keyword and the average of the Relative

Frequency Ratios (RFRavg) for each participant is obtained. Finally, the analysis

of normality, linearity and homoscedasticity between Mental Workload and Relative

Frequency Ratios is conducted.

4.1 Data Understanding

4.1.1 Datasets

This step begins with the process of inspecting the NASA-TLX and Workload Pro-

file datasets, based on the approaches proposed during the experiment design and

methodology.

NASA-TLX dataset

An analytic Base Table (ABT) was built for the Dimensions and Pairwise comparison

features (see table 4.1) that includes information for each variable presented as number

of records (N), Minimum, Maximum, Mean and Standard Deviation. For the set of

Dimensions, the features have information from 120 respondents (non missing values),

ranging in average from 1.3 (very low) to 18.83 (very high), with a mean of 8.505 and
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standard deviation of 4.307. On the other hand, the set of Pairwise comparison,

as binary features, vary from 0 to 1 with the presence of missing values for each

feature, meaning that not all participants considered a factor that represented the

most important contributor to workload during the teaching sessions. Accordingly, the

missing values will be handle during the data preparation as the pairwise comparison

features will be used for the calculation of NASA-TLX.

Table 4.1: NASA-TLX: ABT table of Dimensions and partial comparisons features

Features N Min Max Mean Sd

Feature set: Dimensions of NASA-TLX

NASA Mental 120 2 20 10.09 3.503

NASA Physical 120 1 20 6.02 3.949

NASA Temporal 120 1 20 8.82 3.644

NASA Performance 120 2 16 8.70 3.499

NASA Frustration 120 1 17 7.75 4.096

NASA Effort 120 1 20 9.65 4.148

Feature set: pairwise comparison of NASA-TLX

NASA TempFrus 117 0 1 0.23 0.423

NASA PerMen 117 0 1 0.55 0.500

NASA MenPhy 116 0 1 0.07 0.254

NASA FrusPer 117 0 1 0.80 0.399

NASA TempEffort 115 0 1 0.63 0.486

NASA PhyFrus 118 0 1 0.50 0.502

NASA PerTemp 118 0 1 0.47 0.501

NASA MenEffort 117 0 1 0.32 0.470

NASA PhyTemp 117 0 1 0.82 0.385

NASA FrustEffort 117 0 1 0.79 0.406

NASA PhyPerf 117 0 1 0.91 0.281

NASA TempMen 117 0 1 0.74 0.443

NASA EffortPhy 118 0 1 0.09 0.292

NASA FrustMen 117 0 1 0.81 0.392

NASA PerfEffort 117 0 1 0.53 0.501

A table of frequencies was created for the Instruction Designs and Topics features

with information presented as the count and percentage of frequency measures (see

table 4.2). For the Instruction Designs feature, 65 participants (55.2%) attended a

traditional class, 46 participants (38.3%) attended a video delivery class, and 9 par-

ticipants (7.5%) attended a video delivery and collaborative session in the sample,

giving a total of 120 participants. On the other hand, for the Topics feature, 20 par-
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ticipants (16.7%) attended a class where the topic delivered was Literature Review,

31 respondents (25.8%) participated in a class related to Planning Research, 36 par-

ticipants (30%) attended a class related to the Science and 33 respondents (27.5%)

participated in a class where the topic delivered was The Scientific Method, giving a

total of 120 participants.

Table 4.2: NASA-TLX: Frequency table of Instruction Designs and Topics features

Frequency Percent Valid Per-

cent

Cumulative

Percent

Feature set 4: Instruction designs

intru design

traditional 65 54.2 54.2 54.2

video delivery 46 38.3 38.3 100.0

video and collaborative 9 7.5 7.5 61.7

Total 120 100.0 100.0

Feature set 5: Topic

topic

literature review 20 16.7 16.7 16.7

planning research 31 25.8 25.8 42.5

science 36 30.0 30.0 72.5

the scientific method 33 27.5 27.5 100.0

Total 120 100.0 100.0

A table of frequencies was built for the Keywords pre-task and post-task features

with information for each variable presented as the count (see table 4.3). It can be

said that there exists the presence of missing values for all keywords features except

for NASA k1 pre and NASA k2 pre. There is also a pattern shown in table 4.3 that

indicates that as the number of keywords features increase, the number of missing

values increase too. That might have happened because participants left blank spaces

as they gave up writing or the task finished because the time was over. Accordingly,

the missing values will be imputed with the label ‘unknown’ during the preparation

part as proposed in the previous chapter.
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Table 4.3: NASA-TLX: Frequency table of keywords pre-task and post-task

count count

Feature set: keywords pre-task and post-task

NASA k1 pre 120 NASA k1 post 112

NASA k2 pre 120 NASA k2 post 112

NASA k3 pre 116 NASA k3 post 111

NASA k4 pre 115 NASA k4 post 111

NASA k5 pre 114 NASA k5 post 109

NASA k6 pre 112 NASA k6 post 109

NASA k7 pre 111 NASA k7 post 108

NASA k8 pre 109 NASA k8 post 105

NASA k9 pre 107 NASA k9 post 103

NASA k10 pre 107 NASA k10 post 103

NASA k11 pre 104 NASA k11 post 101

NASA k12 pre 100 NASA k12 post 98

NASA k13 pre 100 NASA k13 post 94

NASA k14 pre 96 NASA k14 post 90

NASA k15 pre 94 NASA k15 post 87

Workload Profile dataset

An analytic Base Table (ABT) was built for the Dimensions features (see table 4.4)

that includes information for each variable presented as number of records (N), Min-

imum, Maximum, Mean and Standard Deviation. For the set of Dimensions, the

features have information from 105 respondents (non missing values), ranging in av-

erage from 2.5 to 20, with a mean of 11.224 and standard deviation of 4.003.

Table 4.4: WP: ABT table of Dimensions features

Features N Min Max Mean Sd

Feature set: Dimensions of Workload Profile

WP solving deciding 105 4 20 11.586 3.7497

WP response selection 105 1 20 10.71 3.7881

WP task space 105 1 20 9.052 4.3434

WP verbal material 105 5 20 12.271 3.6971

WP visual resources 105 3 20 12.79 3.902

WP auditory resources 105 4 20 13.005 3.7879

WP manual response 105 1 20 10.37 4.486

WP speech response 105 1 20 10.01 4.507
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A table of frequencies was created for the Instruction Designs and Topics features

with information presented as the count and percent of frequency measures(see table

4.5). For the Instruction Designs feature, 68 participants (64.8%) attended a tradi-

tional class, 28 participants (26.7%) attended a video delivery class, and 9 participants

(8.6%) attended a video delivery and collaborative session in the sample, giving a to-

tal of 105 participants. On the other hand, for the Topics feature, 20 participants

(19%) attended a class where the topic delivered was Literature Review, 28 respon-

dents (26.7%) participated in a class related to Planning Research, 28 participants

(26.7%) attended a class related to the Science and 29 respondents (27.6%) partici-

pated in a class where the topic delivered was The Scientific Method, giving a total of

105 participants.

Table 4.5: WP: Frequency table of Instruction Designs and Topics features

Frequency Percent Valid Per-

cent

Cumulative

Percent

Feature set 4: Instruction designs

intru design

traditional 68 64.8 64.8 64.8

video delivery 28 26.7 26.7 100

video and collaborative 9 8.6 8.6 73.3

Total 105 100 100

Feature set 5: Topic

topic

literature review 20 19 19 19

planning research 28 26.7 26.7 45.7

science 28 26.7 26.7 72.4

the scientific method 29 27.6 27.6 100

Total 105 100 100

A table of frequencies was built for the Keywords pre-task and post-task features

with information for each variable presented as the count (see table 4.6). It can be

said that there exists the presence of missing values for all keywords features except

for WP k1 pre, WP k2 pre and WP k3 pre. There is also a pattern shown in table 4.6

that indicates that as the number of keywords features increase, the number of missing

values increases too, similar to the keywords features of the NASA-TLX dataset.
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Table 4.6: WP: Frequency table of keywords pre-task and post-task

count count

Feature set: keywords pre-task and post-task

WP k1 pre 105 WP k1 post 104

WP k2 pre 105 WP k2 post 104

WP k3 pre 105 WP k3 post 104

WP k4 pre 103 WP k4 post 104

WP k5 pre 102 WP k5 post 101

WP k6 pre 100 WP k6 post 102

WP k7 pre 98 WP k7 post 102

WP k8 pre 98 WP k8 post 102

WP k9 pre 96 WP k9 post 98

WP k10 pre 92 WP k10 post 99

WP k11 pre 90 WP k11 post 94

WP k12 pre 86 WP k12 post 93

WP k13 pre 81 WP k13 post 87

WP k14 pre 81 WP k14 post 85

WP k15 pre 76 WP k15 post 83

4.1.2 Corpus

The calculations of the descriptive measures of the corpus were obtained using algo-

rithm 1 and 2 proposed in chapter 3. As shown in table 4.7 the information for each

corpus is presented as the number of distinct words, lexical richness, frequency of the

word tokens, the number of stop-words, punctuation symbols, the total number of

effective tokens and the percentage of total number of effective tokens.

Table 4.7: Descriptive of core texts

Measure

Science The Scientific

Method

Planning Research Literature

Review

Contrastive

Total tokens 1888 2348 879 2353 2044

Total distinct words 745 784 346 686 568

Percent Lexical richness 39% 33% 39% 29% 28%

Percent Stop-words 28.44% 31.77% 37.77% 36.04% 26.71%

Percent other symbols 20.87% 18.40% 17.86% 17.85% 21.53%

Total effective tokens 957 1170 390 1085 1058

Percent effective tokens 50.69% 49.83% 44.37% 46.11% 51.76%

1. Science

The Science corpus has 1888 tokens (words and punctuation symbols) and 745
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distinct words (word types and punctuation symbols) which represent 39% (lex-

ical richness) of the total number of words indicating that each word is used two

times on average. From the total number of tokens, 28.44% are stop-words and

20.87% represent other symbols, which means that when removing them during

the data preparation, the total number of effective tokens will be 50.69% (957

tokens).

Figure 4.2 shows the 25 most frequently occurring word types and punctuation

symbols in the Science corpus. The words ‘Science’, ‘Computer’, ’engineering’

and ’Died’, are the most informative in this text. This makes sense because this

topic involves the definition of Science, its types, its origins, famous scientists, the

relationship between Science and Engineering, and the definition of Computer

Science. It can be noticed from figure 4.2 that the rest of the words do not

provide enough information about the text as most of them are stop-words and

punctuation symbols. Also, there are capitalised words in the text and cases of

different word forms that have the same meaning (’computer’ and ‘computers’).

Stop-words and punctuation symbols removal, lower-case transformation and

lemmatization will be conducted during the data preparation.

Figure 4.2: Frequency distribution of Science Core text indicating how the top 25

number of word tokens in the text are distributed across the vocabulary items.
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2. The Scientific Method

The Scientific Method corpus has 2348 words and punctuation symbols and 784

distinct words which represent 33% (lexical richness) of the total number of

words indicating that each word is used three times on average. From the total

number of tokens, 31.77% are stop-words and 18.40% represent other symbols,

which means that when removing them during the data preparation, the total

number of effective tokens will be 49.83% (1170 tokens).

Figure 4.3 shows the 25 most frequently occurring word types and punctuation

symbols in the Scientific Method core text. The words ‘scientific’, ‘method’,

‘science’ and ‘hypothesis’ are the most informative in this topic and they occur

around 30 times. This makes sense because this topic involves the definition of

method, the history of scientific method and its elements, and testing hypotheses

techniques. On the other hand, the rest of the words do not provide enough

information about the text because most of them are stop-words and punctuation

symbols that will be removed in the next section.

Figure 4.3: Frequency distribution of The Scientific Method Core text indicating how

the top 25 word tokens in the text are distributed across the vocabulary items.

3. Planning Research

55



CHAPTER 4. IMPLEMENTATION AND RESULTS

The Planning Research corpus has 879 words and punctuation symbols and 346

distinct words which represent 39% (lexical richness) of the total number of

words indicating that each word is used 2 times on average. From the total

number of tokens, 37.77% are stop-words and 17.86% represent other symbols,

which means that when removing them during the data preparation, the total

number of effective tokens will be 44.37% (390 tokens).

Figure 4.4 shows the 25 most frequently occurring word types and punctuation

symbols in the Planning Research core text. The words ‘Problem’ and ‘Research’

are the most informative words in this topic and they occur around 10 times.

This makes sense as the Planning Research topic covers a concept widely used

in research and the formulation of a problem. On the other hand, the rest of the

words do not provide enough information about the text as most of them are

stop-words and punctuation symbols that will be removed in the next section.

Figure 4.4: Frequency distribution of The Planning Research Core text indicating how

the top 25 word tokens in the text are distributed across the vocabulary items.

4. Literature Review
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The Literature Review corpus has 2353 tokens and 686 distinct words which

represent 29% (lexical richness) of the total number of words indicating that

each word is used two times on average. From the total number of tokens,

36.04% are stop-words and 17.85% represent other symbols, which means that

when removing them during the data preparation, the total number of effective

tokens will be 46.11% (1085 tokens).

Figure 4.5 shows the 25 most frequently occurring word types and punctuation

symbols in the Literature Review core text. The word ‘Research’ is the most

informative word in this topic and it occurs around 60 times. Also, the words

‘review’, ‘question’, and ‘literature’ provide information about the corpus and

they appear around 30 times. This makes sense because this topic involves the

definition of what a literature review is and its contribution to define a research

question. On the other hand, the rest of the words do not provide enough

information about the text as most of them are stop-words and punctuation

symbols that will be removed in the next section.

Figure 4.5: Frequency distribution of The Literature Review Core text indicating how

the top 25 number of word tokens in the text are distributed across the vocabulary

items.
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5. Contrastive

The Contrastive corpus has 2044 tokens and 568 distinct words which represent

28% (lexical richness) of the total number of words indicating that each word

is used 3 times on average. From the total number of tokens, 26.71% are stop-

words and 21.53% represent other symbols, which means that when removing

them during the data preparation, the total number of effective tokens will be

51.76% (1085 tokens).

Figure 4.5 shows the 25 most frequently occurring word types and punctuation

symbols in the Literature Review core text. The words ‘media’, ‘load’, ‘content‘,

‘students’, ‘cognitive’ and ‘learning’ are the most informative words in this topic

and they occur around 25 times. This makes sense because the contrastive topic

is focused on the effect of instructional designs in Cognitive load on students,

including theoretical background and total diversity learning theories. On the

other hand, the rest of the words do not provide enough information of the text

as most of them are stop-words and punctuation symbols that will be removed

in the next section.

Figure 4.6: Frequency distribution of The Contrastive corpus indicating how the top

25 word tokens in the text are distributed across the vocabulary items.
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4.2 Data Preparation

4.2.1 Datasets

This step involves the feature generation of the subjective measures of Mental Work-

load and the feature reduction of the set of keywords features of NASA-TLX and

Workload Profile datasets. Thus, data quality problems namely, missing values, out-

liers and abbreviations are handled along with the assessment of normality of the

variables.

NASA-TLX

During the data understanding of the NASA-TLX dataset, the set of Pairwise com-

parison features were found with missing values. This means that not all participants

considered a factor that represented the most important contributor to the workload

during the teaching sessions. For the calculation of NASA-TLX those values would

determine the weights that multiply their related dimension. Accordingly, it was de-

cided that the missing values would represent weights equal to 0 because replacing

them with the mean value for the variable or excluding them could severely distort

the results of the analysis.

For NASA-TLX, the calculation was based on the group of Dimensions and Pair-

wise comparison features of the NASA-TLX dataset (see tables 3.1 and ??) using the

algorithm 4 (see chapter 3).

As shown in figure 4.7a, NASAT-TLX has a mean of 9.03 and standard deviation

of 2.97 for 120 participants, with an actual shape of distribution that tends to be

symmetrical with two peaks in the centre. Looking at the tails of the distribution,

there are data points sitting on their own out on the extremes, indicating the presence

of potential outliers.
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(a) Histogram. (b) Boxplot.

Figure 4.7: NASA-TLX: Assessment of normality.

The boxplot on the right (figure 4.7b), confirms the analysis of the distribution,

indicating the presence of two outliers that extend more than 1.5 box-lengths from the

edge of the box (participants with ID equal to 44 and 46). From checking the outliers’

scores in the dataset, it was found that the participants (44 and 46) did not assign

weights for the dimensions of NASA-TLX. As the weights multiply the dimensions,

this produced a measure of Mental Workload equal to 0 (see equation 2.1 in chapter

2). As the outliers turn out to be genuine scores, it was decided to remove them from

the data file.

Based on the significant result of the test of normality of Kolmogorov-Smirnov

shown in table 4.8 (0.012 < 0.05), it can be said that the NASA-TLX does not have

a normal distribution.

Table 4.8: NASA-TLX : Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

NASA-TLX 0.094 120 0.012
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When removing the outliers from the dataset (see figure 4.8), a second test of

normality was conducted for 118 participants (see table 4.9). The output of the test

indicates an improvement of the distribution of NASA-TLX but a significant result of

0.021 < 0.05 was still obtained.

Figure 4.8: NASA-TLX: boxplot without outliers.

Table 4.9: NASA-TLX : Test of normality (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

NASA-TLX 0.094 118 0.021

WP

For the Workload Profile measure, the calculation was based on the group of Dimen-

sions features of the WP dataset (see table 3.1) using the algorithm 3 (see chapter

3).

As shown in figure 4.9a, WP has a mean of 89.79 and standard deviation of 22.42

for 105 participants, with an actual shape of distribution that tends to be symmetrical

with peaks in the centre. On examination of the tails of the distribution, there is a
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data point sitting on its own, out on the right extreme, indicating the presence of a

potential outlier.

(a) Histogram.
(b) Boxplot.

Figure 4.9: WP: Assessment of normality.

The boxplot on the right (figure 4.9b), confirms the analysis of the distribution

indicating thus the present of one outlier that extends more than 1.5 box-lengths from

the edge of the box (participant with ID equal to 18). From checking the outlier’s

scores in the dataset, it was found that the participant assigned the maximum values

for the dimensions of WP. As the dimensions are added to calculate the measure of

the Mental Workload activity, it produced the highest value (160) (see equation 2.2

in chapter 2). As the outlier turns out to be a genuine score outside two standard

deviations of the mean, it was decided to remove it from the data file.

Based on the non-significant result of the test of normality of Kolmogorov-Smirnov

shown in table 4.10 (0.2 > 0.05), it can be said that WP has a normal distribution.

Table 4.10: WP: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

WP 0.067 105 0.2
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When removing the outlier from the dataset (see figure 4.10), a second test of

normality was conducted for 104 participants (see table 4.11). The output of the test

indicates that after removing the outlier WP is still normally distributed.

Figure 4.10: WP: boxplot without outliers.

Table 4.11: WP: Test of normality (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

WP 0.070 104 0.02

Keywords

During the data understanding of the NASA-TLX and WP datasets, the set of key-

words pre-task and post-task features were found with missing values, meaning that

some participants left blank spaces as they gave up writing or the task finished because

the time was over. As proposed in chapter 3, the missing values were imputed with

the label ‘unknown’. Then, the features were merged to obtain two main groups for

each dataset (see table 4.12). The reduction of the set of keywords features and the

imputation of their missing values were conducted using the algorithm 5 (see chapter

3).
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Table 4.12: Keywords: Frequency table of keywords pre-task and post-task for NASA-

TLX and WP datasets

count

Features set: Keywords

NASA KW aggregation pre 118

NASA KW aggregation post 118

WP KW aggregation pre 104

WP KW aggregation post 104

Once the new features were created, the data understanding and data preparation

were conducted using the algorithm 6 proposed in chapter 3. As shown in table 4.13

the information for each keyword feature is presented as the number of distinct words,

average of the percentage of lexical richness, average of the total number of stop-words,

average of the total of punctuation symbols, the total number of effective tokens and

the average of the percentage of total number of effective tokens.

Table 4.13: Descriptive statistics of group of sets of Keywords related to the WP pre

task.

NASA KW aggregation WP KW aggregation

Measure pre post pre post

Total tokens 5716 5657 5086 5349

Total distinct words 2889 2784 2583 2696

Avg Percent Lexical richness 50.37% 48.38% 50.65% 50.44%

Avg Percent Stop-words 9.34% 9.58% 10.73% 12.72%

Avg Percent other symbols 30.44% 31.49% 30.47% 29.21%

Total effective tokens 3444 3342 2979 3098

Avg Percent effective tokens 60.22% 58.93% 58.80% 58.07%

For the NASA-TLX dataset, the feature related to the keyword pre-task has 5716

tokens and 2889 distinct words which represent on average 50.37% of the total number

of keywords. From the total number of tokens on average, 9.34% are stop-words and
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30.44% represent other symbols, which means that when removing them during the

data preparation, the total number of effective tokens will be 60.22% (3444 keyword

tokens). On the other hand, the feature related to the keyword post-task has 5657

tokens and 2784 distinct words which represent on average 48.38% of the total number

of keywords. From the total number of tokens on average, 9.58% are stop-words and

31.49% represent other symbols, which means that when removing them during the

data preparation, the total number of effective tokens will be 58.93% (3342 keyword

tokens).

For the WP dataset, the feature related to the keyword pre-task has 5086 tokens

and 2583 distinct words which represent on average 50.65% of the total number of

keywords. From the total number of tokens on average, 10.73% are stop-words and

30.47% represent other symbols, which means that when removing them during the

data preparation, the total number of effective tokens will be 58.80% (2979 keyword

tokens). On the other hand, the feature related to the keyword post-task has 5349

tokens and 2696 distinct words which represent on average 50.44% of the total number

of keywords. From the total number of tokens on average, 12.72% are stop-words and

29.21% represent other symbols, which means that when removing them during the

data preparation, the total number of effective tokens will be 58.07% (3098 keyword

tokens).

The data preparation of the keyword features began using the misspelling checker

of Microsoft Excel on the datasets to correct any misspelled word. Then, in Python,

the keywords were converted to tokens where each token was transformed to lower-case.

The label ‘unknown’, assigned to the missing values of the keyword features, was added

to the list of stop-words used for the experiments from the NLTK library in Python.

The features were inspected using algorithm 7 (see chapter 3) to find any possible

abbreviation that the participants could have used when writing the keywords during

the Mental Workload activities. The abbreviations found were ‘c’ for ‘computer’,‘s’

for ‘science’ or ‘scientific’,‘cs’ for ‘computer-science’ and ‘vs’ for ‘versus’. From the

inspection, a dictionary, with the abbreviations (keys) and their words (values) was

created. Then, the abbreviations were replaced with the related word using algorithm
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8 proposed in chapter 3. The stop-words and the punctuation symbols were then

removed. As a final step for data preparation, the tokens were lemmatized in terms

of verbs, adjectives, nouns and adverbs.

Finally, after the data preparation, for the NASA-TLX dataset, the feature related

to the keyword pre-task resulted with 3444 effective tokens (60.22%) and the post-

task feature resulted in 3342 effective tokens (58.93%). On the other hand, for the

WP dataset, the feature related to the keyword pre-task resulted in 2079 effective

tokens (58.80%) and the post-task feature resulted in 3098 effective tokens (58.07%).

4.2.2 Corpus

The corpus were processed to get tokens converted to lower-case, without stop-words

and punctuation symbols, and lemmatized in terms of verbs, adjectives, nouns and

adverbs, using algorithm 9 (see chapter 3). Thus, the Science corpus was left with

957 effective tokens, which represents a 50.69% of its total number of tokens. The

Scientific Method corpus resulted with 1170 effective tokens, a 49.83% from its total

number of tokens. The Planning Research corpus was left with 390 effective tokens,

which represents 44.37% from its total number of tokens. The Literature review corpus

resulted in 1085 effective tokens, a 46.11% from its total number of tokens. Finally,

the Contrastive corpus was left with 1085 effective tokens, which represents 51.76% of

its total number of tokens.

4.3 Modelling

The modelling part was aimed to determine the importance of a keyword that is char-

acteristic of a core text when compared to a contrastive corpus. It was measured as the

relative frequency of a keyword in the core text (FT), divided by the relative frequency

of the keyword in the contrastive text (FC) as defined on the equation (2.6) in chapter

2. For the NASA-TLX and WP datasets under four core texts, three instructional de-

signs and a contrastive corpus, this section began with the calculation of FT and FC,

where the frequency of each keyword in the corpus was divided by the total number of
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words of the corpus. During that process, mismatches were avoided using a synonym

search, based on the similarity of two words under the WUP path-based similarity

measure, and the task that was carried out using algorithm 10 proposed in chapter 3.

Secondly, each possible synonym and its WUP similarity value was compared based

on the maximum value of WUP to obtain the synonym most similar to the keyword

using algorithm 11 (see chapter 3). Then, the Relatives frequencies FT and FC were

determined using algorithm 12 proposed in chapter 3. For each keyword, a Relative

Frequency Ratio (RFR) was calculated. Finally, the average of the Relative Frequency

Ratios (RFRavg) for each participant was obtained. Thus, those tasks were achieved

using algorithm 13 proposed during the experiment design and methodology.

4.3.1 NASA-TLX

1. Science

(a) NASA-TLX

The distribution of NASA-TLX for the Science topic is analysed based on

figure 4.11 along with the result obtained from the test of normality of

Kolmogorov-Smirnov shown in table 4.14.

(a) Histogram. (b) Boxplot.

Figure 4.11: NASA-TLX: Assessment of normality.
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Table 4.14: NASA-TLX: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

NASA-TLX 0.090 36 0.200

Figure 4.11a indicates that for 36 respondents, NASA-TLX has a mean of

8.49 and a standard deviation of 2.926 with a frequency distribution that

suggests normality. Furthermore, figure 4.11b indicates the non-presence

of outliers. Finally, based on the non-significant result obtained from

Kolmogorov-Smirnov, 0.2 > 0.05, it can be said that NASA-TLX for the

Science topic is normally distributed.

(b) Pre-task

Firstly, the distribution, linearity and homoscedasticity of the Relative Fre-

quency Ratios of keywords under the topic Science pre-task are analysed

based on figure 4.12 along with the result obtained from the test of normal-

ity of Kolmogorov-Smirnov shown in table 4.15.

(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.12: Science (RFR1): Assessment of normality, linearity and homoscedasticity

pre-task.
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Table 4.15: Science (RFR1): Test of normality pre-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR1 0.187 36 0.003

Figure 4.12a suggests that for 36 participants, RFR1 pre-task, has a mean

of 3.486 and a standard deviation of 2.915 with a skewed to-the-right fre-

quency distribution that indicates non-normality. Furthermore, figure 4.12b

suggests the presence of outliers. Based on the significant result obtained

from Kolmogorov-Smirnov, 0.003 < 0.05, it was said that NASA-TLX is

not normally distributed. Finally, figure 4.12c shows that there is no indi-

cation of a linear relationship between NASA-TLX and RFR1. Also, it is

evident that the relationship between both variables is not the same across

all values.

Based on the analysis conducted above, the Relative Frequency Ratios of

keywords under the topic Science pre-task was transformed applying the

log10 to it. Thus, the new frequency distribution, linearity and homoscedas-

ticity are analysed based on figure 4.13 along with the result obtained from

the second test of normality of Kolmogorov-Smirnov shown in table 4.16.

(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.13: Science (RFR1): Assessment of normality, linearity and homoscedasticity

pre-task (2nd test).
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Table 4.16: Science (RFR1): Test of normality pre-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR1-LOG10 0.120 36 0.200

Figure 4.13a indicates that for 36 respondents, RFR1 pre-task transformed,

has a mean of 0.42 and a standard deviation of 0.32 with a frequency

distribution that suggests normality. Furthermore, figure 4.13b indicates

the non presence of outliers. Based on the non-significant result obtained

from Kolmogorov-Smirnov, 0.2 > 0.05, it can be said that the transformed

RFR1 pre-task is normally distributed. Finally, figure 4.13c shows that

there is a small indication of a linear relationship between NASA-TLX and

RFR1. Also, it is evident that the relationship between both variables is

tending to be the same across all values.

(c) Post-task

The distribution, linearity and homoscedasticity of the Relative Frequency

Ratios of keywords under the topic Science post-task are analysed based

on figure 4.14 along with the result obtained from the test of normality of

Kolmogorov-Smirnov shown in table 4.17.

(a) Histogram. (b) Boxplot. (c) Sccatterplot.

Figure 4.14: Science (RFR1): Assessment of normality, linearity and homoscedasticity

post-task.

70



CHAPTER 4. IMPLEMENTATION AND RESULTS

Table 4.17: Science (RFR1): Test of normality post-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR1 0.085 36 0.200

Figure 4.14a indicates that for 36 respondents, RFR1 post-task, has a mean

of 10.174 and a standard deviation of 3.15 with a frequency distribution

tending to skew to the left. Furthermore, figure 4.14b indicates the presence

of one outlier (ID = 34). Based on the non-significant result obtained from

Kolmogorov-Smirnov, 0.2 > 0.05, it can be said that RFR1 post-task is

normally distributed. From checking the outliers score in the dataset, it was

found that the keywords that the participant (ID = 34) wrote during the

post-task were the least important to Science corpus. Even though it was

a genuine score, it was decided to exclude this outlier from the calculations

related to it in further analysis. Finally, figure 4.14c shows that there is an

indication of a linear relationship between NASA-TLX and RFR1. Also,

it is evident that the relationship between both variables tends to be the

same across all values.

2. The Scientific Method

(a) NASA-TLX

The distribution of NASA-TLX for the Scientific Method topic is analysed

based on figure 4.15 along with the result obtained from the test of normal-

ity of Kolmogorov-Smirnov shown in table 4.18.
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(a) Histogram. (b) Boxplot.

Figure 4.15: NASA-TLX: Assessment of normality.

Table 4.18: NASA-TLX: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

NASA-TLX 0.084 31 0.200

Figure 4.15a indicates that for 31 participants, NASA-TLX has a mean of

9.98 and a standard deviation of 2.608 with a frequency distribution that

suggest normality. Furthermore, figure 4.15b indicates the non-presence

of outliers. Finally, based on the non-significant result obtained from

Kolmogorov-Smirnov, 0.2 > 0.05, it can be said that NASA-TLX for the

Scientific Method topic is normally distributed.

(b) Pre-task

The distribution, linearity and homoscedasticity of the Relative Frequency

Ratios of keywords under the Scientific Method Topic are analysed based

on figure 4.16 along with the result obtained from applying the test of

normality of Kolmogorov-Smirnov shown in table 4.19.
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(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.16: The Scientific Method (RFR2): Assessment of normality, linearity and

homoscedasticity pre-task.

Table 4.19: The Scientific Method (RFR2): Test of normality pre-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR2 0.150 31 0.072

Figure 4.16a indicates that for 31 respondents, RFR2 pre-task has a mean

of 5.506 and a standard deviation of 2.656 with a frequency distribution

that tends to be normally distributed. Furthermore, figure 4.16b indicates

the non-presence of outliers. Based on the non-significant result obtained

from Kolmogorov-Smirnov, 0.072 > 0.05, it was said that RFR2 pre-task

has a normal distribution. Finally, figure 4.16c shows that there is no

indication of a linear relationship between NASA-TLX and RFR2. Also,

it is evident that the relationship between both variables is not the same

across all values.

(c) Post-task

The distribution, linearity and homoscedasticity of the Relative Frequency

Ratios of keywords under the Scientific Method topic post-task are anal-

ysed based on figure 4.17 along with the result obtained from the test of
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normality of Kolmogorov-Smirnov shown in table 4.20.

(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.17: The Scientific Method (RFR2): Assessment of normality, linearity and

homoscedasticity post-task.

Table 4.20: The Scientific Method (RFR2): Test of normality post-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR2 0.122 31 0.200

As shown in figure 4.17a, RFR2 post-task, has a mean of 4.234 and a

standard deviation of 2.338 with a frequency distribution that tends to

be normally distributed. Also, figure 4.17b, indicates the non-presence

of outliers. Based on the non-significant result obtained from table 4.20,

0.200 > 0.05, it can be said that RFR2 post-task has a normal distribution.

Finally, figure 4.17a shows that there is no indication of a linear relationship

between NASA-TLX and RFR2. Also, it is evident that the relationship

between both variables is not the same across all values.

3. Planning Research

(a) NASA-TLX
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The distribution of NASA-TLX for the Planning Research topic is anal-

ysed based on figure 4.18 along with the result obtained from the test of

normality of Kolmogorov-Smirnov shown in table 4.21.

(a) Histogram. (b) Boxplot.

Figure 4.18: NASA-TLX: Assessment of normality.

Table 4.21: NASA-TLX: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

NASA-TLX 0.126 31 0.200

Figure 4.18a indicates that for 31 participants, NASA-TLX has a mean of

9.03 and a standard deviation of 2.674 with a frequency distribution that

suggest normality. Furthermore, figure 4.18b indicates the non-presence

of outliers. Finally, based on the non-significant result obtained from

Kolmogorov-Smirnov, 0.2 > 0.05, it can be said that NASA-TLX for the

Planning Research topic is normally distributed.

(b) Pre-task

Firstly, the distribution, linearity and homoscedasticity of the Relative Fre-

quency Ratios of keywords under the Planning Research topic pre-task are

analysed based on figure 4.19 along with the result obtained from the test

of normality of Kolmogorov-Smirnov shown in table 4.22.
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(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.19: Planning Research (RFR3): Assessment of normality, linearity and ho-

moscedasticity pre-task.

Table 4.22: Planning Research (RFR3): Test of normality pre-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR3 0.217 31 0.001

Figure 4.19a suggests that for 31 participants, RFR3 pre-task has a mean

of 3.665 and a standard deviation of 1.3716 with a skewed to-the-right

frequency distribution that indicates non-normality. Furthermore, figure

4.19b suggests the presence of outliers. Based on the significant result

obtained from Kolmogorov-Smirnov, 0.001 < 0.05, it was said that RFR3

pre-task is not normally distributed. Finally, figure 4.19c shows that there

is no indication of a linear relationship between NASA-TLX and RFR3.

Also, it is demonstrated that the relationship between both variables is not

the same across all values.

Based on the analysis conducted above, the Relative Frequency Ratios of

keywords under the Planning Research topic pre-task was transformed ap-

plying the log10 to it. Thus, the new frequency distribution, linearity and

homoscedasticity are analysed based on figure 4.20 along with the result
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obtained from the second test of normality of Kolmogorov-Smirnov shown

in table 4.23.

(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.20: Planning Research (RFR3): Assessment of normality, linearity and ho-

moscedasticity pre-task (2nd test).

Table 4.23: Planning Research (RFR3): Test of normality pre-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR3-LOG10 0.162 31 0.037

Figure 4.20a indicates that for 31 respondents, RFR3 pre-task transformed,

has a mean of 0.54 and a standard deviation of 0.143 with a frequency dis-

tribution that suggest normality. Furthermore, figure 4.20b indicates the

non-presence of outliers. Based on the significant result obtained from

Kolmogorov-Smirnov, 0.037 < 0.05, it can be said that RFR3 pre-task

transformed is not normally distributed. Finally, figure 4.20c shows that

there is no indication of a linear relationship between NASA-TLX and

RFR3. Also, it is shown that the relationship between both variables is

not the same across all values.

(c) Post-task
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The analyses of distribution, linearity and homoscedasticity of the Relative

Frequency Ratios of keywords under the Planning research topic post-task

are based on figurefig:nasa-post3-t1-h1-b1 and the result obtained from the

test of normality of Kolmogorov-Smirnov shown in table 4.24.

(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.21: Planning Research (RFR3): Assessment of normality, linearity and ho-

moscedasticity post-task.

Table 4.24: Planning Research (RFR3): Test of normality post-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR3 0.114 31 0.200

As shown in figure 4.21a, RFR3 post-task has a mean of 5.2834 and a

standard deviation of 2.703 with a frequency distribution that suggests

normality. Furthermore, figure 4.21b indicates the non-presence of outliers.

Based on the non-significant result obtained from table 4.24, 0.2 > 0.05,

it can be said that RFR3 post-task is normally distributed. Finally, figure

4.21c shows that there is a small indication of a linear relationship between

NASA-TLX and RFR3 that tends to be the same across all values.

4. Literature Review
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(a) NASA-TLX

The distribution of NASA-TLX for the Literature Review topic is analysed

based on figure 4.22 and the result obtained from the test of normality of

Kolmogorov-Smirnov in table 4.25.

(a) Histogram. (b) Boxplot.

Figure 4.22: NASA-TLX: Assessment of normality.

Table 4.25: NASA-TLX: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

NASA-TLX 0.130 20 0.200

Figure 4.22a indicates that for 20 participants, NASA-TLX has a mean

of 9.45 and a standard deviation of 2.575 with a frequency distribution

that tends to be symmetrical. Furthermore, figure 4.22b indicates the non-

presence of outliers. Finally, the non-significant result obtained from table

4.25, 0.2 > 0.05 suggests that NASA-TLX has a normal distribution.

(b) Pre-task

Firstly, the distribution, linearity and homoscedasticity of the Relative Fre-

quency Ratios of keywords under the Literature Review topic pre-task are

analysed based on figure 4.23 and the result obtained from the test of nor-

mality of Kolmogorov-Smirnov shown in table 4.26.
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(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.23: Literature Review (RFR4): Assessment of normality, linearityand ho-

moscedasticity pre-task.

Table 4.26: Literature Review (RFR4): Test of normality pre-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR4 0.196 20 0.043

As shown in figure 4.23a, RFR4 pre-task, for 20 participants, has a mean of

3.787 and a standard deviation of 1.344 with a frequency distribution that

tends to be normally distributed. Also, figure 4.23b indicates the presence of

outliers. The non-significant result obtained from table 4.26, 0.043 < 0.05,

suggests that RFR4 pre-task in not normally distributed. Finally, figure

4.23a shows that there is no indication of a linear relationship between

NASA-TLX and RFR4. Also, it is evident that the relationship between

both variables is not the same across all values.

Based on the analysis conducted above, the Relative Frequency Ratios of

keywords under the Literature Review topic pre-task was transformed ap-

plying the log10 to it. Thus, the new frequency distribution, linearity and

homoscedasticity are analysed based on figure 4.24 and the result obtained

from the second test of normality of Kolmogorov-Smirnov is shown in table
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4.27.

(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.24: Literature Review (RFR4): Assessment of normality, linearity and ho-

moscedasticity pre-task (2nd test).

Table 4.27: Literature Review (RFR4): Test of normality pre-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR4-LOG10 0.141 20 0.200

As shown in figure 4.24a, the transformed RFR4 pre-task for 20 participants

has a mean of 0.55 and a standard deviation of 0.145 with a frequency dis-

tribution that tends to be symmetrical. Furthermore, figure 4.24b indicates

the presence of one outlier (ID = 11). Based on the non-significant result

obtained from Kolmogorov-Smirnov, 0.2 > 0.05, it can be said that the

transformed RFR4 pre-task has a normal distribution. From checking the

outliers score in the dataset, it was found that the keywords that the par-

ticipant (ID = 11) wrote during the pre-task were the least important to

the Literature Review corpus being a genuine score. In this sense, it was

decided to exclude this outlier from the calculations related to it in further

analysis. Finally, figure 4.24c shows that there is no indication of a linear

relationship between NASA-TLX and RFR4. Also, it is shown that the
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relationship between both variables is not the same across all values.

(c) Post-task

The analysis of distribution, linearity and homoscedasticity of the Relative

Frequency Ratios of keywords under the Literature Review topic post-task

are analysed based on figure 4.25 and the result obtained from the test of

normality of Kolmogorov-Smirnov shown in table 4.28.

(a) Histogram. (b) Boxplot. (c) Scatterplot.

Figure 4.25: Literature Review (RFR4): Assessment of normality, linearity and ho-

moscedasticity post-task.

Table 4.28: Literature Review (RFR4): Test of normality pre-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR4 0.119 20 0.200

Figure 4.25a indicates that, RFR4 post-task, for 20 participants, has a mean

of 4.618 and a standard deviation of 2.297 with a frequency distribution that

suggests normality. Furthermore, figure 4.25b indicates the non-presence of

outliers. The non-significant result obtained from table 4.28, 0.2 > 0.05,

suggests that RFR4 post-task has a normal distribution. Finally, figure

4.25c shows that there is no indication of a linear relationship between
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NASA-TLX and RFR4. Also, it is demonstrated that the relationship

between both variables is not the same across all values.

During this part, 15 tests were conducted for the assessment of normality of NASA-

TLX per each topic, namely: Science, The Scientific Method, Planning Research and

Literature Review, and also each topic for Relative Frequency Ratios of pre-tasks and

post-tasks. It involved the analysis of frequency distributions (histograms), boxplots,

scatterplots and p − values (from the test of normality of Kolmogorov-Smirnov) for

each variable. In cases where normality was not achieved during a first analysis, a

second group of tests were applied after the transformation of the variable using the

log10 property (based on the skewed to-the-right distribution as in most cases). In

this sense, the summary of the results of the 15 tests is presented in table 4.29.

Table 4.29: NASA-TLX & Core texts: table of p− value of Kolmogorov-Smirnov

Kolmogorov-Smirnov (sig-val)

MWL test1 Topics

Pre-task Post-task

test1 test2 test1 test2

NASA-TLX1 0.2* Science (n = 36) 0.003 0.2* 0.2* NA

NASA-TLX2 0.2* The Scientific Method (n =

31)

0.072* NA 0.2* NA

NASA-TLX3 0.2* Planning Research (n = 31) 0.001 0.037 0.2* NA

NASA-TLX4 0.2* Literature Review (n = 20) 0.043 0.2* 0.2* NA

NA: Not Appplied

*. Variable has a normal distribution.

n: Number of participants

As part of the modelling implementation, the normality of Relative frequency Ra-

tios of keywords under three Instructional Designs (Traditional, Video-delivery and

Video-collaborative) were also tested per each corpus (Science, The Scientific Method,

Planning research and Literature Review). Thus, 42 tests were conducted for the

assessment of normality based on the test of Kolmogorov-Smirnov for each variable.

In cases where normality was not achieved during a first analysis, as well as in the
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previous analysis, a second group of tests were applied. In this sense, the results of

these experiments are presented in table 4.30.

Table 4.30: NASA-TLX & Instructional Designs: table of p − value of Kolmogorov-

Smirnov

Kolmogorov-Smirnov (sig-val)

MWL test1 Instructional Topics

Pre-task Post-task

test1 test2 test1 test2

NASA-TLX1 0.200* Traditional (n = 64)

Science 0.000 0.006 0.000 0.010

The Scientific Method 0.003 0.200* 0.026 0.200*

Planning Research 0.059* NA 0.000 0.200*

Literature Review 0.004 0.200* 0.000 0.200*

NASA-TLX2 0.200* Video-delivery (n = 44)

Science 0.001 0.169* 0.002 0.000

The Scientific Method 0.160* NA 0.000 0..000

Planning Research 0.000 0.027 0.000 0.013

Literature Review 0.200* NA 0.200* NA

NASA-TLX3 0.200* Video-Collaborative (n = 9)

Science 0.200* NA 0.009 0.021

The Scientific Method 0.200* NA 0.045 0..200*

Planning Research 0.200* NA 0.038 0.079*

Literature Review 0.200* NA 0.058* NA

NA: Not Appplied

*. Variable has a normal distribution.

n: Number of participants

Finally, the results presented above will be used to select the variables that fulfilled

or were proximate to achieve normality to calculate the relationship between MWL

and RFR.

4.3.2 WP

For the WP dataset, the procedure applied during the previous section was followed

as part of the modelling implementation. Thus, 16 tests were conducted for the as-

sessment of normality of WP per each topic, namely: Science, The Scientific Method,

Planning Research and Literature Review, and also each topic for Relative Frequency

Ratios of pre-tasks and post-tasks. It involved the analysis of frequency distributions

(histograms), boxplots and p − values (from the test of normality of Kolmogorov-

Smirnov) for each variable. In cases where normality was not achieved during a first

analysis, as well as for NASA-TLX dataset, a second group of tests were applied af-
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ter the transformation of the variable using the log10 property (based on the skewed

to-the-right distribution as in most cases). The graphs and tables of the tests are

annexed in the additional content section (A.0.1). The summary of the results of the

15 tests is presented in table 4.31.

Table 4.31: WP & Core texts: table of p− value of Kolmogorov-Smirnov

Kolmogorov-Smirnov (sig-val)

MWL test1 Topics

Pre-task Post-task

test1 test2 test1 test2

WP1 0.200* Science (n = 27) 0.031 0.200* 0.200* NA

WP2 0.200* The Scientific Method (n =

29)

0.200* NA 0.097* NA

WP3 0.200* Planning Research (n = 28) 0.002 0.200* 0.010 0.200*

WP4 0.200* Literature Review (n = 20) 0.003 0.200* 0.200* NA

NA: Not Appplied

*. Variable has a normal distribution.

n: Number of participants

The normality of Relative frequency Ratios of keywords under three Instructional

Designs (Traditional, Video-delivery and Video-collaborative) were also tested per each

corpus (Science, The Scientific Method, Planning research and Literature Review).

Thus, 43 tests were conducted for the assessment of normality based on the test of

Kolmogorov-Smirnov for each variable. In cases where normality was not achieved

during a first analysis, as well as in the previous analysis, a second group of tests were

applied. The results of these experiments are presented in table 4.32.
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Table 4.32: WP & Instructional Designs: table of p− value of Kolmogorov-Smirnov

Kolmogorov-Smirnov (sig-val)

MWL test1 Instructional Topics

Pre-task Post-task

test1 test2 test1 test2

WP1 0.200* Traditional (n = 67)

Science 0.000 0.196* 0.000 0.012

The Scientific Method 0.005 0.200* 0.000 0.052*

Planning Research 0.001 0.200* 0.000 0.039

Literature Review 0.089* NA 0.000 0.094*

WP2 0.200* Video-delivery (n = 28)

Science 0.000 0.129* 0.003 0.088*

The Scientific Method 0.154* NA 0.018 0.014

Planning Research 0.200* NA 0.021 0.200*

Literature Review 0.145* NA 0.049 0.024

WP3 0.200* Video-Collaborative (n = 9)

Science 0.002 0.058* 0.001 0.020

The Scientific Method 0.200* NA 0..200* NA

Planning Research 0.200* NA 0.008 0.200*

Literature Review 0.005 0.134* 0.200* NA

NA: Not Appplied

*. Variable has a normal distribution.

n: Number of participants

The results presented above will be used to select the variables that fulfilled or

were proximate to achieve normality to calculate the relationship between MWL and

RFR.
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Evaluation

This chapter involves the hypotheses testing and the reflection of strengths and limita-

tions of findings (see figure 5.1) based on the analyses performed during the previous

section and the results obtained from the evaluation of the relationship between Men-

tal Workload and Relatives Frequency Ratios of keywords gathered during pre-task

and post-task activities in third level sessions for the topics Science, The Scientific

Method, Planning Research and Literature Review, and also, for the instructional

designs, Traditional, Video-delivery and Video-collaborative.

Figure 5.1: Evaluation process

5.1 Hypothesis testing

The nature of the features that are included in this research and the fulfilment of the

assumptions of Pearson correlation parametric technique or Spearman correlation non-
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parametric technique determined which statistical approach was suitable to address

the research question. Based on the results obtained during the previous section, the

analysis of the relationship between the Mental Workload and Relatives Frequency

Ratios is presented as follows:

5.1.1 NASA-TLX

Accepting or rejecting H1

The relationship between NASA-TLX and Relative Frequency Ratios of keywords

gathered during MWL pre-task and post-task in third level sessions for the topics

Science, The Scientific Method, Planning Research and Literature Review, was inves-

tigated using Pearson correlation coefficient (r) and Spearman correlation coefficient

(rs). Although preliminary analyses were performed to ensure no violation of the as-

sumptions of normality, linearity, and homoscedasticity for Pearson Correlation, both

techniques were applied.

Table 5.1: NASA-TLX & RFR topics (pre-task): Table of correlations.

Comparison Topics r p-value rs p-value

NASA-TLX vs RFR

Science (n = 36) 0.066 0.703 0.148 0.39

The Scientific Method (n =

31)

0.083 0.656 0.05 0.789

Planning Research (n = 31) -0.212 0.251 -0.249 0.177

Literature Review (n = 20) 0.377 0.101 0.412 0.071

n: Number of participants

Based on the correlations coefficients and p − values shown in table 5.1, it can

be stated that there is not a statistically significant relationship between NASA-TLX

and RFR of keywords gathered from students during pre-task third-level classes under

different topics.
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Table 5.2: NASA-TLX & RFR topics (post-task): Table of correlations.

Comparison Topics r p-value rs p-value

NASA-TLX vs RFR

Science (n = 36) -0.446** 0.006 -0.379* 0.023

The Scientific Method (n =

31)

0.256 0.164 0.245 0.185

Planning Research (n = 31) -0.29 0.113 -0.274 0.136

Literature Review (n = 20) 0.008 0.973 0.058 0.808

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

n: Number of participants

Based on the correlations coefficients and p − values shown in table 5.2, it can

be stated that there is a statistically significant relationship between NASA-TLX and

RFR of keywords gathered from students during post-task third-level classes under

the Science topic with a medium, negative correlation between the two variables,

r = −0.446, n = 36, p < 0.01. The two variables that correlate r = 0.446 share only

19.89% (0.446x0.446 = 0.1989 ∗ 100) of their variance, thus, indicating the presence of

an overlap between the two variables. In this sense, the RFR helps to explain nearly

20% of the variance in participants’ scores on the Mental Workload scale (NASA-TLX

).

Accepting or rejecting H2

The correlation between MWL measures and RFR scores using Video and collaborative

(C3), video-delivery approach (C2) and a traditional approach (C1) was investigated

using Pearson correlation coefficient (r) and Spearman correlation coefficient (rs) after

ensuring no violation of their assumptions.
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Table 5.3: NASA-TLX & RFR instructional designs (pre-task): Table of correlations.

Comparison Topics r p-value rs p-value

NASA-TLX vs RFR Traditional (n = 64)

Science -0.011 0.933 0.02 0.874

The Scientific

Method

0.108 0.394 0.087 0.489

Planning Research 0.126 0.318 0.153 0.224

Literature Review -0.119 0.345 -0.103 0.416

NASA-TLX vs RFR Video-Delivery (n = 44)

Science 0.138 0.371 0.206 0.181

The Scientific

Method

0.082 0.599 0.09 0.56

Planning Research -0.207 0.177 -0.247 0.106

Literature Review -0.141 0.362 -0.157 0.31

NASA-TLX vs RFR Video-collaborative (n = 9)

Science -0.677 0.065 -0.476 0.233

The Scientific

Method

0.171 0.686 0.333 0.42

Planning Research -0.3 0.47 -0.595 0.12

Literature Review 0.171 0.685 0.405 0.32

n: Number of participants

Based on the Pearson correlation coefficient shown in table 5.3, although the cor-

relations are not statistically significant, H2 is accepted as the assumption C3 > C2 >

C1 is met when comparing the strength of relationship of MWL and RFR of Instruc-

tional designs grouped by Science, Planning and Literature Review topics. On the

other hand, H2 is rejected when comparing the strength of relationship of MWL and

RFR of the Instructional designs grouped by the Scientific Method topic.
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Table 5.4: NASA-TLX & RFR instructional designs: Table of correlations (post-task).

Comparison Topics r p-value rs p-value

NASA-TLX vs RFR Traditional (n = 64)

Science -0.162 0.197 -0.186 0.137

The Scientific

Method

-0.021 0.866 -0.038 0.767

Planning Research 0.114 0.366 0.12 0.341

Literature Review -0.12 0.34 -0.115 0.362

NASA-TLX vs RFR Video-Delivery (n = 44)

Science -0.033 0.831 0.043 0.783

The Scientific

Method

-0.13 0.4 -0.104 0.503

Planning Research -0.288 0.058 -0.282 0.064

Literature Review -0.287 0.059 -0.308* 0.042

NASA-TLX vs RFR Video-collaborative (n = 9)

Science -0.78* 0.023 -0.762* 0.028

The Scientific

Method

0.534 0.173 0.452 0.26

Planning Research 0.212 0.614 -0.024 0.955

Literature Review 0.361 0.379 0.286 0.493

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

n: Number of participants

Based on the Pearson correlations coefficient shown in table 5.4, although the

correlations are not statistically significant, H2 is accepted as the assumption C3 >

C2 > C1 is met when comparing the strength of the relationship between MWL

and RFR of Instructional designs grouped by The Scientific Method and Literature

Review topics. On the other hand, H2 is rejected when comparing the strength of the

relationship between MWL and RFR of the Instructional designs grouped by Science

and Planning Research topics.

5.1.2 WP

Accepting or rejecting H1

The relationship between WP and Relative Frequency Ratios of keywords gathered

during MWL pre-task and post-task in third level sessions for the topics Science, The

Scientific Method, Planning Research and Literature Review, was investigated using

Pearson correlation coefficient (r) and Spearman correlation coefficient (rs). Although

preliminary analyses were performed to ensure no violation of the assumptions of
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normality, linearity, and homoscedasticity for Pearson Correlation, both techniques

were applied.

Table 5.5: WP& RFR topics (pre-task): Table of correlations.

Comparison Topics r p-value rs p-value

WP vs RFR

Science (n = 27) -0.222 0.267 -0.252 0.205

The Scientific Method (n =

29)

-0.312 0.099 -0.329 0.082

Planning Research (n = 28) 0.176 0.37 0.063 0.751

Literature Review (n = 20) 0.048 0.84 0.055 0.818

n: Number of participants

Based on the correlations coefficients and pvalues shown in table 5.5, it can be

stated that there is not a statistically significant relationship between WP and RFR

of keywords gathered from students during pre-task third-level classes under different

topics.

Table 5.6: WP& RFR topics (post-task): Table of correlations.

Comparison Topics r p-value rs p-value

WP vs RFR

Science (n = 27) -0.091 0.653 -0.136 0.499

The Scientific Method (n =

29)

0.181 0.346 0.2 0.298

Planning Research (n = 28) 0.258 0.185 0.347 0.071

Literature Review (n = 20) -0.202 0.394 -0.121 0.611

n: Number of participants

Based on the correlations coefficients and pvalues shown in table 5.6, it can be

stated that there is not a statistically significant relationship between WP and RFR

of keywords gathered from students during pre-task third-level classes under different

topics.
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Accepting or rejecting H2

The correlation between MWL measures and RFR scores using Video and collaborative

(C3), video-delivery approach (C2) and a traditional approach (C1) was investigated

using Pearson correlation coefficient (r) and Spearman correlation coefficient (rs) after

ensuring no violation of their assumptions.

Table 5.7: WP & RFR instructional designs (pre-task): Table of correlations.

Comparison Topics r p-value rs p-value

WP vs RFR Traditional (n =67)

Science -0.264* 0.031 -0.246* 0.045

The Scientific

Method

-0.303* 0.013 -0.274* 0.025

Planning Research 0.106 0.391 0.155 0.211

Literature Review -0.07 0.576 -0.013 0.918

WP vs RFR Video-Delivery (n = 28)

Science -0.166 0.397 -0.337 0.08

The Scientific

Method

-0.08 0.685 0.025 0.901

Planning Research -0.315 0.102 -0.168 0.394

Literature Review -0.397* 0.036 -0.251 0.197

WP vs RFR Video-collaborative (n = 9)

Science 0.626 0.071 0.462 0.21

The Scientific

Method

0.478 0.193 0.454 0.22

Planning Research -0.159 0.682 -0.042 0.915

Literature Review 0.57 0.109 0.613 0.079

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

n: Number of participants

Based on the Pearson correlations coefficient shown in table 5.7 although the cor-

relations are not statistically significant, H2 is accepted as the assumption C3 > C2 >

C1 is met when comparing the strength of relationship between MWL and RFR of

Instructional designs grouped by the Literature Review topic. On the other hand, H2

is rejected when comparing the strength of the relationship between MWL and RFR

of the Instructional designs grouped by Science, the Scientific Method and Planning

Research topics.
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Table 5.8: WP & RFR instructional designs (post-task): Table of correlations.

Comparison Topics r p-value rs p-value

WP vs RFR Traditional (n =67)

Science 0.169 0.171 0.137 0.27

The Scientific

Method

-0.02 0.872 -0.075 0.544

Planning Research 0.022 0.859 0.011 0.929

Literature Review 0.13 0.296 0.116 0.348

WP vs RFR Video-Delivery (n = 28)

Science -0.162 0.409 -0.155 0.431

The Scientific

Method

-0.117 0.554 -0.097 0.623

Planning Research 0.141 0.475 0.144 0.464

Literature Review -0.134 0.496 -0.054 0.786

WP vs RFR Video-collaborative (n = 9)

Science 0.005 0.99 0.176 0.65

The Scientific

Method

-0.233 0.547 -0.21 0.587

Planning Research 0.563 0.115 0.65 0.084

Literature Review -0.03 0.94 0.286 0.456

n: Number of participants

Based on the Pearson correlations coefficient shown in table 5.8 although the cor-

relations are not statistically significant, H2 is accepted as the assumption C3 > C2 >

C1 is met when comparing the strength of relationship between MWL and RFR of

Instructional designs grouped by The Scientific Method and Planning Research topics.

On the other hand, H2 is rejected when comparing the strength of relationship be-

tween MWL and RFR of the Instructional designs grouped by Science and Literature

Review topics.

5.2 Strengths and limitations of findings

5.2.1 Strengths

The procedures and steps taken to conduct the experiments were clearly

identified to achieve high standard results. This research focused specifically

on understanding and preparing the data to solve issues that could have affected the

interpretation and analysis of text using Natural Language Processing techniques.

It solved a major weakness presented during the limitation of designed approach as

94



CHAPTER 5. EVALUATION

blank spaces of keywords (missing values) were imputed with the label ‘unknown’ and

handled as stop-words during the data preparation section.

The selection of the statistical techniques was successfully assessed based

on the nature of the features that are included in this research and the assumption

of the Pearson correlation parametric technique and the Spearman Correlation non-

parametric technique. Thus, in the cases where the scores were positively or negatively

skewed, transformations were conducted using mathematical formulas making the vari-

ables more ‘normally’ distributed. Although preliminary analyses were performed to

ensure no violation of the assumptions of normality, linearity, and homoscedasticity

for Pearson Correlation, both techniques were applied.

As the experiments were based on two datasets, NASA-TLX and WP, where each

dataset has four topics and three instructional designs, the combination of the top-

ics and instructional designs facilitated a moderately wide range of analyses

which show that the relationship between Mental Workload and Relative Frequency

Ratios of keywords, is only medium correlated, or not correlated at all. Furthermore,

from the analyses of multiple cases, it has been found that instructional designs based

on the process of hearing and seeing, and the interaction between participants can

outperform other approaches, such as those that make use of video supported with

images and text, or of a lecturer’s speech supported with slides.

5.2.2 Limitations

As identified in the section on the limitations of the designed approach, the first major

weakness of this research was the relatively small datasets which might render

it difficult to generate statistically significant results. Based on that constraint,

moderate correlations did not reach statistical significance at the statistical level of

p < 0.05 which led in more cases to the rejection of the hypothesis H1. In this sense,

the quality of the results would be greatly increased if more data is collected.

Another limitation of the results is related to the missing keywords.

Although null values of keywords were successfully handled, those imputed missing

values might have affected the scores of the Relative Frequency Ratios, decreasing
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them, which could have influenced the final results when determining the relationship

between MWL and RFR.

Finally, another limitation of the research is related to the misspelling inspection

and correction of the text data, which although was performed using a property

of Microsoft Excel because of its easy application, it could have been assessed through

the use of a designed algorithm. However, the time was allocated and spent on the

identification and replacement of abbreviations, synonyms, word disambiguation in

terms of verbs, nouns, adjectives and adverbs and for the calculation of the Mental

Workload measures and Relative Frequency Ratios.
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Chapter 6

Conclusion

6.1 Research Overview

This research involved five chapters namely, Literature review and related work, Ex-

periment design and methodology, Implementation and results, Evaluation and Con-

clusion. An overview of their contents is presented as follows:

1. Chapter 2 outlined a literature review, critically describing related works and

the gaps in the fundamentals, namely: Instructional Design, Mental Workload

and Natural Language Processing, because they were necessary to formulate the

research question. Firstly, the Instructional Design section was presented, which

began with the Cognitive Load Theory, answering the question as to when it

was developed, its definition and purpose, factors and the relationship between

it and instructional designs. Then, it covered types of instructions, namely di-

verse media and auditory learning, their importance and the related approaches.

Then, the Mental Workload section was presented which outlined its foundations

including the concept, applications and the negative impact of mental overload

and mental underload in performance. Then, the main categories of the Mental

Workload measures were presented, followed by the subjective measures NASA

Task Load Index and Workload Profile. The Natural Language Processing sec-

tion began with the factors that have influenced the development of Natural
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Language Processing during the last ten years. Then, its definition was pre-

sented and the different procedures and applications commonly used. Also, it

contextualised the techniques related to the approaches and forms and the re-

search question, namely techniques for text preprocessing, similarity measures

and weighting scheme for words. Finally, the related work and summary sections

presented the existing work based on Instructional Designs, Mental Workload

and Natural Language Processing and the gaps that motivated the formulation

of the research question.

2. Chapter 3 provided a definition of the hypotheses necessary to answer the re-

search question. It also involved software selection, data understanding, data

preparation, model design, evaluation and hypotheses testing and strengths and

limitations of the designed approach. The first section began with the context

that permitted the formulation of the hypotheses that aimed to answer the re-

search question. Then, the hypotheses definition was conducted. The software

section involved the selection criteria of the tools that were used to conduct each

part of the experiments. Thus, the software were presented along with their

tasks to be performed. The data understanding section aimed to identify data

quality problems and to discover insights from the data. It involved a num-

ber of approaches chosen to analyse the NASA-TLX and WP datasets and also

the analysis and explanation of four core texts, namely: Science, The Scientific

method, Planning Research, and Literature Review. Finally, the analysis and

selection of a contrastive corpus was conducted. For the data understanding

of the corpus, two pseudo codes were proposed. The data preparation section

presented the steps necessary to solve data quality problems, namely: missing

values, outliers, abbreviations, misspellings and assessment of normality dur-

ing feature generation of the subjective measures of Mental Workload. Also,

the steps for feature reduction of the set of keywords features of NASA-TLX

and Workload Profile datasets were presented. Finally, during this section five

pseudo codes were proposed. The modelling part aimed to determine the im-

portance of a keyword that is characteristic of a core text when compared to
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a contrastive corpus. It involved the calculation of the similarity between two

words, a synonym search, the calculation of Relative Frequency of keywords in a

corpus. Finally, the steps to calculate the Relative Frequency Ratios of keywords

were presented. During this section, four pseudo codes were proposed. The eval-

uation and hypothesis testing section presented the selection of the statistical

techniques most suitable to address the research question. Then, different possi-

ble scenarios were analysed to accept or reject the hypotheses. Finally, the last

section presented the strengths and limitations of the designed approach.

3. Chapter 4 presented the results of the performed data understanding, data

preparation and modelling of the designed research. The first section began

with the process of inspecting the NASA-TLX and Workload Profile datasets

and five corpus, namely: Science, The Scientific method, Planning Research,

Literature Review and Contrastive. It aimed to identify data quality problems

and to discover insights into the data, which involved a number of approaches

chosen in chapter 3. The data preparation involved the generation of the subjec-

tive measures of Mental Workload; the reduction of the set of keywords features

of NASA-TLX and Workload Profile datasets; and the data processing of the

corpus. Data quality problems, namely: missing values, outliers, abbreviations,

stop-words and punctuation symbols, were handled along with the assessment

of normality of the variables. Finally, the modelling part aimed to determine

the importance of a keyword that is characteristic of a core text when compared

to a contrastive corpus. For the NASA-TLX and WP datasets under four core

texts, three instructional designs and a contrastive corpus, this section began

with the calculation of relative frequencies of keywords. Then, mismatches were

avoided using a synonym search, based on the similarity of two words under the

WUP path-based similarity measure. Thus, a Relative Frequency Ratio (RFR)

was calculated for each keyword and the average of the Relative Frequency Ra-

tios (RFRavg) for each participant was obtained. Finally, the analysis of nor-

mality, linearity and homoscedasticity between Mental Workload and Relative

Frequency Ratios were conducted.
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4. Chapter 5 involved the hypotheses testing and the reflection of strengths and

limitations of findings. It was based on the analyses performed during chap-

ter 4 and the results obtained from the evaluation of the relationship between

Mental Workload and Relatives Frequency Ratios of keywords gathered during

pre-task and post-task activities in third level sessions for the topics Science,

The Scientific Method, Planning Research and Literature Review, and also, for

the instructional designs, Traditional, Video-delivery and Video-collaborative.

5. Chapter 6 concluded by presenting the problems encountered in this thesis. It

also discussed the nature of the findings. Moreover, it critically analysed the

contribution and impact of this thesis and outlined the implications for future

research.

6.2 Problem Definition

To answer the research question, this thesis focused on the following objectives:

1. Investigate the Cognitive Load theory and its relation with instructional designs.

2. Investigate instructional designs and the benefits of a good instructional design

to Cognitive Load.

3. Investigate Mental Workload foundations and methods.

4. Investigate Natural Language Processing techniques to analyse importance of

keywords in a corpus.

5. Select techniques for synonym search and semantic similarity between two words.

6. Select software according to the most suitable task.

7. Select statistical techniques identifying assumptions.

8. Analyse datasets’ features and corpus.

9. Identify data quality problems such as missing values, outliers and abbreviations.
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10. Generate and reduce features for the implementation of the model aimed to

answer the research question.

6.3 Design/Experimentation, Evaluation & Results

The content of instructional designs translated into text, along with keywords of ac-

tivities given under those instrument designs, were analysed to measure how those

keywords were related to the Mental Workload. In this sense, the first hypothesis was

based on the assumption that Relative Frequency Ratios obtained from the keywords

collected during the experiments of MWL at third level sessions and the topics in form

of text data provide insights of the MWL activity. Thus, the relationship between the

variables was investigated using Pearson correlation coefficient (r) and Spearman cor-

relation coefficient (rs). Although preliminary analyses were performed to ensure no

violation of the assumptions of normality, linearity, and homoscedasticity for Pearson

Correlation, both techniques were applied. Based on that, it was shown that from

four corpus, only one gave an indication of a medium, negative relationship between

Mental Workload (NASA-TLX) and Relative Frequency Ratios of keywords gathered

from students during post-task in third-level sessions that helps to explain nearly 20%

of the variance in participants’ scores on the NASA-TLX scale.

The second hypothesis was an extension of the first assumption but it focused on

the instructional designs in terms of the acquisition of learning. In this sense, the

hypothesis H2 assumed that the strength of the correlation between MWL measures

and RFR scores using Video-collaborative was greater than the video-delivery ap-

proach which was greater than when using the traditional approach. Based on that,

it was demonstrated that video-collaborative evinced a greater correlation than the

other instructional designs in most of the evaluated cases. Thus, it was shown that

the process of hearing and seeing, and the interaction between the participants, can

promote an optimal germane cognitive load outperforming the video-delivery and the

traditional approaches. At the same time, the video-delivery approach outperformed

the traditional class, thus indicating that a video of the lecturer supported with im-
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ages and text instead of a lecturer’s speech supported with slides, resulted in greater

engagement with the participants.

Finally, diverse forms of instructional designs approaches promote better under-

standing and enhance the germane cognitive load. An instructional design, properly

developed and planned, will have a positive impact on individuals learning and might

reflect insights in relation to Mental Workload.

6.4 Contributions and impact

This thesis is a novel research project which made use of algorithms that were a robust

integration of Natural Language Processing techniques to analyse Mental Workload.

Driven by gaps in the existing literature, this research is a demonstration of the appli-

cation of new technologies to contribute to the analysis of theoretical approaches. As

such, it is an expansion of the existing analysis of framing scholarships to contribute

to the evaluation of instructional designs and Mental Workload to learning.

6.5 Future Work & recommendations

It is recommended that this work be extended, applying Supervised Machine Learning

models to the processed data which was generated from the data preparation.

The main constraint faced by this research was the limitation of available data

from which the experiments were based. This limitation may, however, be overcome

if more Mental Workload activities can be conducted to generate more data for the

dataset.
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Appendix A

Additional content

A.0.1 WP & RFR: Assessment of normality

1. Science

(a) WP

(a) WP: distribution. (b) WP: boxplot.

Figure A.1: WP: Assessment of normality.

Table A.1: WP: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

WP 0.116 27 0.200
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(b) Pre-task

(a) Science (RFR1): distri-

bution pre-task.

(b) Science (RFR1): box-

plot pre-task.

Figure A.2: Science (RFR1): Assessment of normality pre-task.

Table A.2: Science (RFR1): Test of normality pre-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR1 0.176 27 0.031

(a) Science (RFR1): distri-

bution pre-task (2nd test).

(b) Science (RFR1): box-

plot pre-task (2nd test).

Figure A.3: Science (RFR1): Assessment of normality pre-task (2nd test).
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Table A.3: Science (RFR1): Test of normality pre-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR1-LOG10 0.109 27 0.200

(c) Post-task

(a) Science (RFR1): distri-

bution post-task.

(b) Science (RFR1): box-

plot post-task.

Figure A.4: Science (RFR1): Assessment of normality post-task.

Table A.4: Science (RFR1): Test of normality post-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR1 0.085 27 0.200

2. The Scientific Method

(a) WP
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(a) WP: distribution. (b) WP: boxplot.

Figure A.5: WP: Assessment of normality.

Table A.5: NWP: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

WP 0.130 29 0.200

(b) Pre-task

(a) The Scientific Method

(RFR2): distribution pre-

task.

(b) The Scientific Method

(RFR2): boxplot pre-task.

Figure A.6: The Scientific Method (RFR2): Assessment of normality pre-task.
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Table A.6: The Scientific Method (RFR2): Test of normality pre-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR2 0.158 29 0.062

(c) Post-task

(a) The Scientific Method

(RFR2): distribution pre-

task.

(b) The Scientific Method

(RFR2): boxplot pre-task.

Figure A.7: The Scientific Method (RFR2): Assessment of normality post-task.

Table A.7: The Scientific Method (RFR2): Test of normality post-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR2 0.149 29 0.097

3. Planning Research

(a) WP
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(a) WP: distribution. (b) WP: boxplot.

Figure A.8: WP: Assessment of normality.

Table A.8: WP: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

WP 0.128 28 0.200

(b) Pre-task

(a) Planning Research

(RFR3): distribution

pre-task.

(b) Planning Research

(RFR3): boxplot pre-task.

Figure A.9: Planning Research (RFR3): Assessment of normality pre-task.
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Table A.9: Planning Research (RFR3): Test of normality pre-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR3 0.213 28 0.002

(a) Planning Research

(RFR3): distribution

pre-task (2nd test).

(b) Planning Research

(RFR3): boxplot pre-task

(2nd test).

Figure A.10: Planning Research (RFR3): Assessment of normality pre-task (2nd test).

Table A.10: Planning Research (RFR3): Test of normality pre-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR3-LOG10 0.125 28 0.200

(c) Post-task
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(a) Planning Research

(RFR3): distribution

post-task.

(b) Planning Research

(RFR3): boxplot post-task.

Figure A.11: Planning Research (RFR3): Assessment of normality post-task.

Table A.11: Planning Research (RFR3): Test of normality post-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR3 0.191 28 0.010

(a) Planning Research

(RFR3): distribution

post-task (2nd test).

(b) Planning Research

(RFR3): boxplot post-task

(2nd test).

Figure A.12: Planning Research (RFR3): Assessment of normality post-task (2nd

test).
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Table A.12: Planning Research (RFR3): Test of normality post-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR3-LOG10 0.095 28 0.200

4. Literature Review

(a) WP

(a) WP: distribution. (b) WP: boxplot.

Figure A.13: WP: Assessment of normality.

Table A.13: WP: Test of normality.

Kolmogorov-Smirnov

Statistic df Sig.

WP 0.123 20 0.200

(b) Pre-task
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(a) Literature Review

(RFR4): distribution

pre-task.

(b) Literature Review

(RFR4): boxplot pre-task.

Figure A.14: Literature Review (RFR4): Assessment of normality pre-task.

Table A.14: Literature Review (RFR4): Test of normality pre-task.

Kolmogorov-Smirnov

Statistic df Sig.

RFR4 0.243 20 0.003

(a) Literature Review

(RFR4): distribution

pre-task (2nd test).

(b) Literature Review

(RFR4): boxplot pre-task

(2nd test).

Figure A.15: Literature Review (RFR4): Assessment of normality pre-task (2nd test).
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Table A.15: Literature Review (RFR4): Test of normality pre-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR4-LOG10 0.156 20 0.200

(c) Post-task

(a) Literature Review

(RFR4): distribution

post-task.

(b) Literature Review

(RFR4): boxplot post-task.

Figure A.16: Literature Review (RFR4): Assessment of normality post-task.

Table A.16: Literature Review (RFR4): Test of normality pre-task (2nd test).

Kolmogorov-Smirnov

Statistic df Sig.

RFR4 0.099 20 0.200
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