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ABSTRACT

There is a lot of interest and excitement surrounding the areas of Virtual Reality and

Head-Mounted Displays with the recent releases of devices such as the Oculus Rift,

Sony PSVR and the HTC Vive. While much of the focus for these devices has been

related to sectors of the entertainment industries, namely the cinema and video game

industries, there are many more practical applications for these technologies, with

potential benefits in educational, training/simulation, therapeutic and modelling/design

software. Developing a set of reliable guidelines for Virtual Reality User Interface

Design could play a crucial role in whether the medium successfully integrates into the

mass market. The Gestalt Principles of Perceptual Organisation offer a psychological

explanation of human perception, with particular reference to pattern recognition and

how we subconsciously group entities together. There are seven Principles of

Perceptual Organisation, nearly all of which are currently widely used in User

Interface design, offering designers guidelines on what the size, shape, position and

colour the different components of an interface should be. This study presents an

analysis on the effects that the employment of the Gestalt Principles has on the

usability and mental workloads of Virtual Reality applications.

Keywords: User Interface, User Experience, Virtual Reality, Gestalt, Usability,

Mental Workload
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1 INTRODUCTION

1.1 Background 

With the proliferation of Head-Mounted Displays (HMDs) such as the Oculus Rift,

Sony PSVR and HTC Vive in 2016, Virtual Reality is an emerging market which is

begging to make a splash in the world of computing. Facebook’s acquisition of Oculus

for a reported $2 billion is an indication of the perceived potential held within this new

interactive medium, with experts predicting that the Virtual and Augmented Reality

markets will be worth a combined total of $162 billion dollars by 20201. While much

of the focus for these devices has been related to sectors of the entertainment

industries, namely the video game and cinema industries, there are many more

practical applications for these technologies, with potential benefits in educational,

training/simulation, therapeutic and modelling/design software (Burdea & Coiffet,

2003). Virtual Reality has existed in various forms since Ivan Sutherland’s 1968

Sword of Damocles HMD was developed (Sutherland, 1968), but it has only really

come to the forefront of mainstream computing in the second decade of the 21st

Century. This is largely due to the immense processing power which is needed to

render an experience which represents the immersion which VR promises; Oculus state

that a frame rate of 75 frames per second is necessary to completely maintain the

desired level of immersion (Oculus, 2015).

Due to the rapid growth of Virtual Reality in recent years, there is an increasing need

to develop standardised patterns for the design of VR applications. The Gestalt

Principles of Perceptual Organisation are a psychological explanation of human

perception, with particular reference to pattern recognition and how we subconsciously

group entities together. There are seven main Principles of Perceptual Organisation;

Proximity, Similarity, Continuity, Closure, Figure/Ground, Symmetry and Common

Fate. These Gestalt Principles are currently widely used in User Interface design,

offering designers guidelines on what the size, shape, position and colour the different

components of an interface should be (Rosson & Carroll, 2002).

1� htp://uk.businessinsider.com/virtual-and-augmented-reality-markets-will-reach-162-billion-by-
2020-2016-8?r=US&IR=T
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1.2 Research Project/problem 
Virtual Reality is a relatively new technology in mainstream computing. There is a

very real possibility that Virtual Reality and Head-Mounted Displays may make a

significant entry into the market, especially with companies like Oculus who are, with

the backing of Facebook, pouring millions of dollars into the development of such

devices. The ability to develop effective, attractive and efficient User Interfaces will be

a huge determining factor in whether the platform will be a success.

Much of the focus for Virtual Reality software has been relating to video games. Video

game User Interfaces tend to differ drastically from those of professional software and

browser based interfaces, as do the requirements for these UIs. With the relative youth

of VR in terms of mainstream computing, design conventions have not yet been

established for VR applications. This paper aims to discern if the Gestalt Principles of

Perceptual Observation are viable as guidelines for developing applications for VR. 

1.3 Research Objectives 
The primary objective of this research paper is to evaluate the effectiveness of

implementing the Gestalt Principles of Perceptual Observation when designing

applications for Virtual Reality. This effectiveness will be measured in terms of two

metrics; usability and mental workload. By testing a Virtual Reality application which

has two User Interfaces – one heavily influenced by the Gestalt Principles and one not

– and comparing the results of the usability and mental workload metrics, it should be

possible to determine how effective the Gestalt Principles are for VR application

design. As the first paper to directly investigate the relationships between the Gestalt

Principles and usability/mental workload in the context of Virtual Reality, this paper

will contribute to the body of knowledge in this field by testing the effectiveness of the

principles in a scientific manner. 

1.4 Research Methodologies 
Descriptive statistics will be generated through the project experiment which involves

user-based evaluation. A quantitative analysis of these statistics will provide the
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foundation of this project’s research. Mean and Standard Deviation calculations as

well as t-Tests and Pearson’s Correlation Coefficients will form the basis of the

statistical methods implemented to achieve the research objectives.

1.5 Scope and Limitations 
The scope of this project is to examine the effectiveness of the Gestalt Principles in

terms of their impact on usability and mental workload. Usability and UX/UI design

are completely intertwined, with progress made in either field leading to advances in

the other. Usability and mental workload are also intrinsically linked. The strong

relationships between these two metrics, as well as the well-established methods to test

them were at the heart of the decision to focus on these aspects of software design. 

There were no limitations for the participant observation in terms of the

sociodemographic distribution of the volunteers.  

1.6 Document Outline 
This body of this paper is comprised of four main chapters, as well as this introductory

chapter and a conclusion chapter at either end. 

Chapter Two - Literature Review will outline the bodies of knowledge relevant to

this research project. Conclusions will be drawn based on the work of other researchers

in the fields of the Gestalt Principles of Perceptual Observation, Virtual Reality,

Mental Workload and Software Usability.

Chapter Three - Design & Methodology will discuss the design of the experiment, in

particular the thought processes behind each aspect of the application design process

and how the Gestalt Principles were applied for one User Interface and omitted in the

other. The methodologies and formulas used to process the results will also be outlined

in this section.

Chapter Four - Implementation & Results will analyse the actual implementation of

the project’s experiment and provide details on the results which the experiment

generated.

13



Chapter Five - Evaluation & Analysis will analyse the results data which was

presented in Chapter Four and attempt to accompany the results with plausible

explanations which relate to the theories discussed in Chapter Two.

14



2 LITERATURE REVIEW

2.1 Introduction
This chapter will examine the existing literature for four topics which are at the heart

of this research project. The effectiveness of the Gestalt Principles of Perceptual

Observation is under scrutiny in this paper, so naturally the ideals of Gestalt

Psychology will be discussed. What distinguishes this paper from the many other

papers testing the Gestalt Principles as a UX/UI design tool is that this paper focuses

on their effect for Virtual Reality applications. For this reason, Virtual Reality and the

design principles which drive it will also be researched. Due to the relatively young

age of VR, there is not a huge range of validated and distinguished papers written on

the platform, and as of the time of writing, there is yet to be a field defining paper

written on the subject. Thankfully that is not the case with either Mental Workload or

Software Usability, which are the last two topics which will be examined.

2.2 The Gestalt Principles of Perceptual Observation

There are seven Gestalt Principles of Perceptual Observation which are commonly

implemented in visual design; Proximity, Similarity, Symmetry, Continuity, Closure,

Common Movement and Figure/Ground. Literature on each of these seven principles

and their relationships with User Experience and User Interface (UX/UI) design will

be briefly discussed, as will the use of Gestalt Psychology as a whole with regards to

the field of Human-Computer Interaction (HCI).

The Gestalt Principles offer an explanation to how humans perceive each component

in any given environment. This can be applied to audial, tactile and visual

environments, although this paper will focus solely on Gestalt Psychology in relation

to the visual environment. Having the ability to perceive the structure of the visual

environment enables one to better comprehend the elements contained within that

environment. This leads to us being able to react to any events which take place within

that same environment quicker and more efficiently (Koffka, 1935a). Allowing users

to more easily get their bearings with a system tends to produce more positive

performances in terms of both statistics and perception. (Shneiderman, 2000). By
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applying the Gestalt Principles to a user interface, a designer can improve the overall

clarity of their software solution. This is due to the fact that “visual interfaces often

rely heavily on association between graphical elements, such as the placement of a

label next to a checkbox, or the grouping of items in a list” (Yee, 2002). The Gestalt

Principles have been widely adopted for improving software user interfaces as they

allow users to subconsciously take control of any software environment because of the

human species’ innate ability to cluster the elements and add context to each element

without need for explicit instructions or explanation (Lidwell, Holden & Butler, 2010).

2.2.1 Principle of Proximity

“Proximity is one of the most powerful means of indicating relatedness in a design,

and will generally overwhelm competing visual cues”. (Lidwell et al., 2010)

Arranging the elements in an interface so that elements which are related are located

close to one another causes the user to assume that these components are related to one

another.  Different layouts of the elements in a user interface can portray a plethora of

different kinds of relationships between these elements. As an example, elements

which overlap or are in some way connected are generally perceived to share one or

more common attributes, while elements which are not connected but are positioned

close to each other are usually interpreted as being independent of each other while

still being related. This is demonstrated in Figure 2.1 (Lidwell, Holden & Butler,

2010). 

Figure 2.1The Gestalt Principle of Proximity (Lidwell, Holden & Butler, 2010)

Han et al. argue that proximity is the most useful of the Gestalt Principles for allowing

users to distinguish which components of the system are the most important and/or
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useful, as well as making the organisation of the components easier, allowing for better

overall usability. (Han, Humphreys & Chen, 1999)

2.2.2 Principle of Similarity

“It [similarity] asserts that similar elements are perceived as a single group or chunk,

and are interpreted as being more related than dissimilar elements”. (Fisher & Smith-

Gratto, 1999).

Elements which are similar in their physical appearance, be that through size, shape,

colour or texture, are most likely to be perceived as being members of the collective

group. Efficient employment of the Principle of Similarity can be used to highlight any

element or group of elements (Fisher & Smith-Gratto, 1999). Similarity makes

interfaces simpler, easier to navigate and more aesthetically pleasing while also

emphasising the relationships (or lack thereof) between a collection of elements. Size

and colour are the best tools for portraying connectedness, with shape and texture

being more useful for illustrating differences (Lidwell, Holden & Butler, 2010).

The Principles of Proximity and Similarity are intrinsically linked to one another.

Chang et al. state their reasoning for selecting these two principles as the primary focus

of their study by saying “the principles of similarity and proximity have been selected

for the experiment because they are two important and commonly-used Gestalt

principles that have been identified as higher level principles for the design of multi-

sensory displays” (Chang, Nesbitt & Wilkins, 2007). In combination, the use of the

Principles of Proximity and Similarity is the most widely adopted implementation of

Gestalt Psychology in UX/UI design (Weiser, 2006).
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2.2.3 Principle of Symmetry

“Its [symmetry’s] great value to design lies in its power of transition or movement

from one form to another in the system. It produces the only perfect modulating

process in any of the arts” (Hambridge, 2012).

Elements which are placed or shaped symmetrically tend to be easier to remember - in

terms of both recognition and recall - due to the fact that symmetry lends itself to

simpler design and the fact that humans tend to be better at remembering designs

which are considered beautiful rather than designs perceived as being ugly or

uninteresting (Lidwell, Holden & Butler, 2010).  If an element of an interface (or even

the interface as a whole) does not have some aspect of symmetry and/or balance in its

design - be it through reflection, rotation or translation - there is a tendency for it to

appear to the end user that an aspect of the interface is missing. This can lead to

confusion or disillusionment for the user, thereby negatively affecting the usability of

the system (Chang, Nesbitt & Wilkins, 2007).

2.2.4 Principle of Closure

“The principle of closure enables designers to reduce complexity by reducing the

number of elements needed to organize and communicate information. … [closure]

not only reduces its complexity, but it makes it more interesting to look at — viewers

subconsciously participate in the completion of its design”  (Lidwell et al., 2010).

The Principle of Closure explains why instead of seeing a random collection of

individual elements strewn across the screen, we can relate each of these elements as

being part of a pattern or interconnected system (Lidwell, Holden & Butler, 2010). A

good example of this can be seen in the logo of IBM, where instead of seeing a

collection of independent white lines on a blue background, we instead see the letters

‘I’, ‘B’ and ‘M’, even though the letters are not fully drawn, as can be seen in Figure

2.2 (Chang, Dooley & Tuovinen, 2002).
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Figure 2.2 The IBM logo -  a good example of closure in design

Using closure allows UI designers to decide on the appropriate locations for every

component when used in conjunction with other Gestalt Principles, most notably the

Principles of Proximity, Symmetry, Continuity and Figure/Ground. While the

implementation of the Principle of Closure does not necessarily result in greater

usability, examples where Closure is omitted tend to cause problems with the

integration of visuals and text (Moore, 1993).

2.2.5 Principle of Continuity

“Elements arranged in a straight line or a smooth curve are perceived as a group, and

are interpreted as being more related than elements not on the line or curve” (Lidwell

et al., 2010). 

When sections of a perceived linear pattern are covered or obscured, our brains tend to

mentally continue along the path the line would have taken and we expect to see the

line re-emerge and an approximate location. For this reason, when developing a user

interface, linear continuity should be at the forefront of the designer’s thoughts when

placing the components of the interface (Lidwell, Holden & Butler, 2010). 

2.2.6 Principle of Common Fate

The Principle of Common Fate explains how we perceive moving elements of an

interface. Elements that move in the same direction are perceived to be related to one

another and to be independent of elements which are either stationary or moving in a

different direction (Lidwell, Holden & Butler, 2010).  The Principle of Common Fate

has traditionally not been widely implemented in traditional User Interface Design due

to the fact that the majority of UIs since the introduction of the Graphical User
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Interface (GUI) have been static, with little or no moving parts. However, with recent

developments in UX/UI and the emergence of platforms such as AngularJS and other

dynamic UI development tools, the Principle of Common Movement has begun to

become more important in modern UX/UI design (Johnson, 2013).

2.2.7 Principle of Figure/Ground (Prägnanz)

“Changes in the figure/ground relationship are important and provide valuable

feedback to the user by visually informing the user that action will occur when the link

is clicked.” (Graham, 2008).

The Principle of Figure/Ground demonstrates how when multiple interpretations of a

design are available, each individual will first perceive the interpretation which is

simplest or most familiar to them (Lidwell, Holden & Butler, 2010). Users can

interpret changes in the Figure/Ground of an environment, making this a powerful tool

for user feedback. A common example of this in software and web development is the

‘hovered’ functionality, whereby the cursor image changes or some other visual

indication is given to the user that they are hovering over any given component

(Graham, 2008). Norman lists this type feedback as one of the six principles of design

(Norman, 1983).

2.3 Virtual Reality 

One of the biggest problems facing developers who are looking to move to Virtual

Reality development is that User Interfaces for Virtual Reality and Head Mounted

display software do not yet have any design conventions. Whether they be adaptations

of more established patterns or the development of newer design patterns, finding and

cementing design principles is likely to be a decisive factor as to whether the Virtual

Reality platform manages to integrate into the wider market.  (Alger, 2015).

Many of the newer design philosophies surrounding Virtual Reality revolve around the

idea of immersion. Bowman and McMahan argue that high levels of immersion and

realism are the keys to the successful implementation of Virtual Reality, citing the

20



success of VR applications in the fields of phobia therapy and military training. The

paper argued that their experiments suggest that VR applications with highly

immersive UIs result in more efficient task performance and a greater level of user

understanding (Bowman & McMahan, 2007). By contrast, Morie and Williams make

the argument that too much emphasis is being places on photo and audio-realism to

enhance immersion, with not enough focus on how these inputs are perceived and

processed by the user and how they affect the overall user experience (Morie &

Williams, 2003). Alger argues that the most important factor in building a successful

UI for VR is to correctly “zone” each area of the interface (i.e.) ensure that each

component is at the appropriate depth and in the appropriate region of the screen

(Alger, 2015).

Testing and evaluation methods for Virtual Reality User Interfaces will also need to be

established for the VR platform to grow successfully. Sutcliffe and Gault expanded

upon Nielsen’s Heuristics to create a model to evaluate the usability of Virtual Reality

interfaces. Twelve heuristics are outlined in the paper, two of which are solely

applicable to VR applications, with the other ten being closely linked to the existing

guidelines outlined in Nielsen’s Heuristics (Sutcliffe & Gault, 2004). Sawyerr, Brown,

and Hobbs have outlined a hybrid method of evaluation for three dimensional

interfaces which is used to effectively highlight usability issues with VR applications,

specifically those which fully utilise the full 360° displays and the depth of field that

VR can provide (Sawyerr, Brown, & Hobbs, 2013).

While Virtual Reality applications may cause more frustration than a traditional

desktop application, the differences between the mental workloads of both platforms

was insignificant in the case of their experiments. The increased frustration is likely

caused by the lack of experience of the average user when it comes to using a Virtual

Reality application as opposed to carrying out the same task on a more traditional

platform (Stefanidis et al., 2006).

In terms of design patterns or principles, there are varying opinions on how to

approach VR design. Sherman argues that a standard design approach is the best

possible design philosophy when designing a VR app. He does state however, that this

is based on the idea that it is more beneficial to have an idea which you believe VR can
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provide a solution to, rather than starting with the idea of building an app in Virtual

Reality and searching for a possible application of the technology. If a suitable

problem is identified, Sherman encourages an Agile Development cycle, stating 

“Once a decision is made to explore virtual reality as a means to attain a

goal, standard design techniques should be followed. In particular, involve

users. Get their ideas up front and get feedback from them at each stage of

the development. Iterate over the design. Continually refine the experience

by implementing, testing, and analysing the work as it progresses and be

willing to throw away bad ideas, no matter how much effort was put into

them” (Sherman, 2002). 

Alger argues that design principles from other mediums will need to be adopted in

order to fully unlock the potential which VR holds, citing areas such as web design,

architecture, interior design, theatre, motion graphics and print design as areas which

can provide better design principles than the traditional software development methods

(Alger, 2015).

2.4 Mental Workload

Mental workload is a multidimensional concept borrowed from psychology which is

difficult to define uniquely (Longo, 2014) (Longo, 2015a) (Rizzo, Dondio, Delany, &

Longo, 2016). “Mental workload is described in terms of time, distance to desired

goal, and effort”. Mental workload has a profound effect on the stress induced by the

software and thus also affects the performances of its users as much as the actual

usability of the system. The mental workload required can be a determinate factor in

the overall performances of complex tasks (Hancock, 1988). Having the ability to

estimate the mental workload imposed by an interface allows designers to add or

remove complexity as needed to optimise the demands of the system. By being able to

identify the perceived mental workload of any given interface at an early stage in

development, both time and money can be saved in the development process (Wu &

Liu, 2009). Application of the concept of mental workload are various. For instance,

(Longo, 2011) proposed to adopt mental workload to contribute to the assessment of
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cognitive engagement in the World Wide Web, of for adaptive and personalised web-

design (Longo, 2012). The same author also investigated its relation with the concept

of usability (Longo, Rusconi, Noce, & Barrett, 2012) (Longo & Dondio, 2015) and

applied it in the context of health-care and medical systems (Longo, 2015b) (Longo,

2015c), (Longo, 2016), (Longo, Dondio, & Barrett, 2010).

An interface which is perceived as being too simple, creating a mental underload, can

be as detrimental to a system as the mental overload caused by an overly complex

interface. Creating an interface which is challenging without being overbearing or

which is simple without being uninteresting or tedious is an ideal mental workload

design goal (Xie & Salvendy, 2000). The levels of mental workload which fall into the

categories of underload, overload or optimal load vary from person to person. This is

based largely on what Jex refers to as our “meta-controller devices”. By this, he is

referring to each individual’s ability to adapt to the difficulty of the task, choose an

appropriate strategy to handle a given problem, interpret the environment of the system

and other such cognitive tools (Jex, 1988). To gauge the perceived mental workload of

a system, testing of large and diverse groups needs to be set in place. The most widely

implemented tool for testing the mental workload of a system is the NASA Task Load

Index (NASA-TLX), a multidimensional subjective rating system developed at the

National Aeronautics and Space Administration (NASA) over a number of years in the

mid-1980s. The NASA-TLX involves a questionnaire which contains six main

dimensions; Mental Demand, Physical Demand, Temporal Demand, Overall

Performance, Frustration and Effort (Moroney, 1992). The paper released by NASA to

demonstrate the effectiveness of the Task Load Index model provides data which

indicates that using this standardised format can contribute greatly towards developing

a system with an optimal workload. The data provided is based on the metrics of task

performance, a weighted workload (WWL) score and “experimental variables reported

elsewhere” (Hart & Staveland, 1988). Xiao et al. reported that, from their experiments

at least, the NASA-TLX proved to be highly retestable, with high correlations and

Cronbach’s Alphas between participants who were tested using the same unchanged

system on multiple occasions (Xiao, Wang, Wang & Lan, 2005). In their study, which

compared NASA-TLX to two other mental workload assessment tools - Subjective

Workload Assessment Technique (SWAT) and Workload Profile - Rubio et al found
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that NASA-TLX is the optimal choice for predicting user performance (Rubio, Díaz,

Martín & Puente, 2004).

In recent years, there has been a strong movement for an adaptation of the NASA-TLX

model known as Raw Task Load Index (RTLX). The RTLX provides a similar

framework to the NASA-TLX, but no weighting is placed on any of the dimensions.

Cao et al. report that there is a high correlation between test groups who are tested

using NASA-TLX and RTLX. RTLX allows the researcher to set questions more

specific to the system being tested (Cao, Chintamani, Pandya & Ellis, 2009).

Bustamante argues that this shorter, condensed version of NASA-TLX improves the

validity of the questionnaires as compared to the full version (Bustamante, 2008). Hart

states that across 29 different implementations of RTLX that there were examples of it

outperforming, being outperformed by and performing equally as well as the full

version of NASA-TLX (Hart, 2009).

2.5 Software Usability

According to the International Organization for Standardization (ISO), usability can be

defined as “The extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency, and satisfaction in a specified context of

use”. 

Nielsen expands on this definition, stating that usability is an umbrella term which can

be used to describe many different aspects of an interface including the efficiency at

which tasks can be completed, how easy the system is to learn, how memorable the

system is and how errors are handled (Nielsen, 1992). Abran et al. state that usability is

“no longer a luxury”, but is now a necessity in a market which is constantly evolving

and becoming more competitive (Abran, Khelifi & Suryn, 2003). 

There are three main categories for doftware usability evaluation; user-based

evaluation, expert-based evaluation and model-based evaluation. User-based

evaluation involves target users testing and evaluating the system. Expert-based

involves hiring a UX/UI expert to assess and evaluate the application’s usability.
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Model-based evaluation implements a number of criteria which the system must meet

in order to predict the performances of the end users (Dillon, 2001). The experiment

outlined in this paper will be implementing a user-based evaluation. There are

numerous tools available to developers for user-based evaluation of software usability.

The Post-Study System Usability Questionnaire (PSSUQ), the User Experience

Questionnaire (UEQ) and the Software Usability Measurement Inventory (SUMI) are

all examples of popular usability evaluation tools. However, the Software Usability

Scale (SUS) has established itself as the most popular method to establish a system’s

usability based on user feedback. In particular, it has emerged as a suitable evaluation

tool for smaller sample sizes, which makes it preferable to the PSSUQ for this research

project. Bangor et al. found that the SUS had a Cronbach's Alpha coefficient of .91;

Cronbach's Alpha being a method to determine the reliability and consistency of a data

set (Bangor, Kortum and Miller, 2008).
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2.6 Conclusion

The Gestalt Principles have been utilised to great effect across a plethora of mediums

for much of the last century and have played an important role in the formation of

many of the UX/UI design patterns commonly implemented today. In particular, the

Principles of Proximity, Similarity, Symmetry and Figure/Ground have led to the

formation of many design conventions many designers take for granted today. The

implementation of these principles tends to have a profound effect on the usability of

any interface.  Many of the lessons taught by Gestalt Psychology should be

transferable to the Virtual Reality platform since they are general design principles,

rather than patterns which are specific to the design of two-dimensional user interfaces.

This is important because as of yet, no Virtual Reality design conventions have been

established, with some authors believing that borrowing from other areas of design

will be crucial to the survival of VR and to unlocking the true potential that it holds. 

Most who have studied VR will agree that immersion is another factor which will also

play an important part in the success or failure of the platform. The ability of

researchers and designers to figure out what levels of immersion help to develop

highly usable VR applications will undoubtedly be fundamental to whether

commercial, professional and industrial uses of Virtual Reality come to fruition. 

With any emerging technology, new users will need time to adapt to the novel

challenges and nuances of a new system, so maintaining a manageable mental

workload will likely influence the initial impressions of those using VR for the first

time. 
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3 DESIGN AND METHODOLOGY

3.1 Introduction

This chapter will outline the design of the experiments carried out as part of this

research project. The experiment was devised with the intention of discerning the value

of the Gestalt Principles of Perceptual Observation when designing User Interfaces for

Virtual Reality software. This was to be achieved through the development of a Virtual

Reality application with two different User Interfaces; one of which is intended to

measure the effectiveness of the Gestalt Principles by strongly exhibiting features of

Gestalt Psychology in its design, the other which acts as a control with little or no

thought of the Gestalt principles when designed. This would then be followed by

having participants test and evaluate the usability and perceived mental workloads of

the application with both UIs. The participants would fill out a pre-questionnaire

before attempting each task assigned to them in order to gain an insight into their

mental state prior to undertaking each task. Upon completing each task, the user will

then complete a post-questionnaire comprised of two parts; a mental workload

questionnaire based on the Raw Task Load Index (RTLX) model and the System

Usability Scale (SUS) questionnaire for measuring the system’s usability. These

questionnaires are designed to give subjective information to process. 

During the act of completing these tasks, the application will be recording data such as

length of time taken to complete each task and the number of mistakes made by the

user. This data will provide objective information, which can be used in conjunction

with the data from the mental workload and SUS results.  

By triangulating the subjective and objective feedback data, it should be possible to

provide an insight into the effectiveness of the Gestalt Principles for a basic VR

application. It was intended that the application be designed in a way that no prior

knowledge or experience with Virtual Reality was necessary for the participants. It was

also intended that the participants be from diverse backgrounds in terms of age,

gender, nationality and experience/comfort with computers and high technologies.
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In this chapter, detailed accounts of the software design and development processes

will be outlined, as well as the thinking behind the quantitative methods of evaluation

which were used and the approach to handling the results of the experiments. Also to

be discussed in this chapter will be the technologies (in terms of both hardware and

software) which were used for the development and evaluation of the experiments. 

3.2 Hardware and Software Implemented

3.2.1 Hardware Implemented

The application was built to run on an Oculus Rift Head Mounted Display (HMD) as

the Oculus Rift is the most established Virtual Reality platform on the market currently

and has become the go-to platform for VR development since the release of the Oculus

Rift DK1 in March 2013, even more so since the release of the DK2 in July 2014.

While the Oculus Rift is less powerful than its major competitor the HTC Vive, the

Oculus Rift has better developer support than the HTC Vive (Alger, 2015). 

For the experiment, the participants were required to wear an Oculus Rift HMD. An

XBOX One Gamepad was to be used as the user’s input device. The XBOX One

Gamepad was chosen as the input device because of its compatibility with both

Windows and the Oculus platform, its easy integration through the engine in which the

software was built, its portability/mobility compared to a keyboard or mouse and the

lack of availability of any motion-control or haptic I/O devices for this research

project. 

3.2.2 Software Implemented

The application itself was built using a game engine developed by Epic Games called

Unreal Engine 4 (UE4). UE4 is the second most popular open-source game engine on

the market behind Unity Technology’s Unity3D 5 engine when it comes to developing

desktop applications. While both engines have integrated support for Virtual Reality

application development, UE4 has emerged as the leading development tool for

creating VR games due to a more intuitive design and through its blueprints system

(Shah, 2014). 
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The application was developed using a combination of UE4’s baked-in tools for VR

development, UE4’s Blueprints functionality for programming and scripting, as well as

personally written C++ code. Unreal Engine 4 implements C++ version 11, so this is

the C++ version in which all the code for this project is written.

For the results processing, a combination of the Python Pandas data analysis library,

RStudio 3.3.2 and Google Spreadsheets was used.

3.3 Application Design

3.3.1 Application Design - Tasks

Two tasks were to be developed for the participants to carry out during the experiment.

The tasks were designed to differ in the levels of complexity and the mental workload

required to accomplish each assignment. One of these tasks would be a very simple

rudimentary task which would not be mentally taxing for the user. The second task

would require a greater level of concentration and would necessitate the participant

having to use their short-term memory to complete the task correctly and efficiently.

The reasoning for this is to test the effectiveness of the Gestalt Principles for both the

ease of use for mundane tasks which the user can complete on autopilot as well as

measuring the ease of use for tasks which require split concentration when the Gestalt

Principles are applied. This follows the recommendations outlined by Nielsen who

states that it would be beneficial for testers to complete both “typical tasks” and tasks

which involve “cumbersome steps, steps that would not be natural for users to try”

(Nielsen, 1994). 

That being said, it is important to ensure the balance of the more mentally taxing task’s

level of difficulty. While it is important to create a task which demands a relatively

high mental workload, it is equally as important to avoid creating a task which is

overly difficult as doing wo may lead to a possibility of the results being warped by the

difficulty of the task at hand, relying more on the abilities of the participants and less

on the effectiveness of the user interface’s design (Chen & Vertegaal, 2004).
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Both tasks designed for the experiment were based around the manipulation of the

cells in a grid which the user is greeted with as soon as the experiment begins. The grid

contained nine cells, in a three by three pattern, as is outlined in the prototype diagram

displayed in Figure 3.1.

Figure .3 A low fidelity prototype for the front facing view of the software, with the grid in the centre and the
functional panels on either side.

As can be seen in this low fidelity prototype, there are four main elements on the

screen when the user starts the application; the grid in the centre, panels on either side

of the grid, and a User Interface Widget above the grid. In the panel on the left are a

selection of tools for the user to implement; a directory containing a selection of

patterns for the user to apply to the grid, a fill tool which fills one of the cells to a

different colour, as well as undo and redo buttons. The panel on the right-hand side

contains a selection of colours for the user to choose from. Above the grid is a User

Interface Widget which displays to the user which tool and colour is currently selected.

The arrangement, positioning and layout of the components on each of these elements

of the UI will be at the heart of the difference between the two different interfaces,

with implementation of the Gestalt Principles being the driving force behind the

actualisations of those properties in one interface, and a lack thereof being the primary

design goal for the other.

Both tasks will be started remotely by the observing party once the participant has

informed them that they are ready to begin. As soon as the task has started and all the
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components have rendered, the software begins tracking an array of objective

information which will be processed for the experiment’s results. The information

being tracked is as follows: 

 The time taken to complete the task - a task being completed faster may

indicate a greater ease of use. Participants will be told to complete the task at

their own leisurely pace. As the participants will be observed during the

experiment, the speed at which the participants attempt to complete the task

will be determined by the observer and a rating of fast, regular or slow will be

assigned to the user to weight the results of the time taken appropriately. 

 The total number of clicks - a lower number of clicks needed to complete a

task may indicate a better level of usability as it would indicate that the user has

less required of them in order to complete a given task. Results indicating a

higher number of clicks needed to complete a task may indicate inefficient

interface design. As both interfaces will share the exact same functionality, the

minimum number of clicks necessary to complete the task will be the same for

both UIs.

 The total number of errors - for the experiment, errors are defined as any

time the user makes a mistake related to completing the task (e.g.) selecting the

wrong tool or incorrectly manipulating one of the grid cells.

 The total number of misclicks - for this system, a misclick will be defined as

any time a user clicks on an area of the screen which has no functionality. The

number of misclicks will be tallied and a proportion of the misclicks will be

removed from the total number of clicks metric, as these clicks will not fairly

represent the data which the total number of clicks in attempting to compile.

The same proportion of misclicks which is deducted from the total number of

clicks will be added to the total number of errors metric.

 Field of View (FOV) utilised by the participant- this metric is specific to the

Virtual Reality platform, as the 360° design space allows for different

opportunities when designing an interface for a VR HMD. The FOV covered

by the two interfaces differ slightly. Results which show that the participant

utilised a FOV similar to the total FOV which the interface covers would
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indicate an efficient use of the three-dimensional space, whereas if a participant

utilises a FOV which is greatly higher or lower than that of the interface, this

may indicate that the interface was implemented inefficiently considering the

platform.

Upon completion of the given task, calculations to derive the total number of mistakes

are performed based on the total number of errors and misclicks. Also calculated in the

percentage differential between the FOV utilised by the user and the FOV

implemented by the interface. The values stored for the time taken, the number of

clicks, the number of mistakes and a the FOV differential are then output.

For the first, easier task, the user is given an overlay on top of the grid, telling them

which colour to fill each cell with. The user will be told to change the colours of each

tile in the grid, but will not be instructed on how to do so. The colour pattern the user

is instructed to colour each panel is the same for all participants.

To complete this task, the user must select the Fill tool which is indicated by the paint

bucket icon which has become synonymous with a function such as this from other

Graphical/Image Manipulation software such as Microsoft Paint or Adobe Photoshop.

After having selected the Fill tool, the user must then select the appropriate colour

from the colours panel and apply it to the relevant cell. Once the system recognises

that each cell has been correctly filled with the colour corresponding to the overlay, it

finishes recording the data previously outlined and writes the result to a log file, along

with a participant ID integer and binary values indicating the task which was

undertaken and on which interface it was completed. 

For the second task, the user was greeted with a similar scene to that of the first task.

As with the simple assignment, when the application is launched the user will be

greeted with a grid with an overlay telling them which colours to fill each cell with. On

this occasion, some of the colours listed will not be available to the user from the

colours panel. Participants will instead have to navigate through the directory to find

an image which corresponds to the overlay and apply this image to the grid. This will

require the user to remember the pattern they have been asked to recreate while trying

to navigate through a file system. With the added mental workload of having to retain
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this information, this task should be a decent indication of how usable the two

directory UIs are for complex, mentally taxing goal-oriented exercises. The directory

UIs for both interfaces will differ significantly based on their levels of adherence to the

principles of Gestaltist Psychology. 

3.2.3 Application Design - Interfaces

There are three main components to the User Interface for the application. Firstly,

there are the buttons for selecting the tools and colours. The second main component is

the directory system implemented in the second task. The final facet of the UI is what

is known as a Heads-Up Display (HUD), which displays information to the user

without them having to make an effort to look for this information (i.e.) the user

should not have to move their FOV to find this information, it should be visible to

them at all times. Each of these three components would require different designs in

order to amplify the effects of the presence or absence of the Gestalt Principles of

Perceptual Observation. This section will outline the design philosophies for both

interfaces across the three UI components.

For the purpose of distinction between the two User Interfaces implemented in this

experiment, from hence forth the interface which exhibits the features of the Gestalt

Principles will be referred to as Interface A, whereas the interface which lacks the

Gestalt Principles in its design will be referred to as Interface B. Likewise, the simpler

task will from this point be referred to as Task A, with the more complex task being

referred to as Task B.

3.2.3.1 Scene and Component Layout

With regards to the overall layout of the scene and each of its components, the Gestalt

Principles which were followed most closely for Interface A were the principles of

Proximity, Similarity and Symmetry. By contrast, these principles were either entirely

ignored or purposely contradicted when designs were being created for Interface B. 
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The Principle of Proximity states that we perceive objects which are positioned closely

to one another as being somehow related to one another (Koffka, 1935a). For this

reason, the tools and colours panels were placed at opposite sides of the scene, with the

user needing to look left to view the tools panel, whereas to view the colour selection

panel they would have to look to their right. The purpose of this was to have the user

perceive these two panels of being independent of one another. A selection of a button

on either panel does not directly affect the selection of a button on the other panel. By

contrast, the buttons contained within each panel do immediately affect the other

buttons on that panel, so they were position next to each other to convey to the user

that these buttons are all related. 

For Interface B, the placement of each component within the scene (with the exception

of the grid which remained in its central location) was entirely randomised. With such

disorganisation amongst these components, the positions of the buttons on this

interface represent the antithesis of the Gestalt Principle of Proximity.

The Principle of Similarity states that we perceive objects which are similar in their

physical appearances to be related (Koffka, 1935a). Adherence to the Principle of

Similarity drove the decision to make each button the same size as the other buttons on

its own panel, but different to the buttons on the other panel. The reasoning for this is

the same as was described when discussing the Principle of Proximity. The panels

themselves are identical in both their appearance (except for their contents) and their

dimensions. The intention of this is to inform the user that they serve the same

purpose.

As was the case with the Principle of Proximity, the design behind the shape and

appearance of each element of the interface was designed to go against all that the

Principle of Proximity teaches. Each of the components were warped from their

original shape, creating an array of components of different shapes, dimensions,

rotations and scales. In doing so, this should not give the user any perception of the

components being related to each other.

The Principle of Symmetry states that when we perceive objects, we perceive them

around a central point, also sometimes referred to as mirror line (Koffka, 1935a).

34



Objects which are equidistant from this point, or mirror one another across this point

may be perceived as being related. In the case of this application, there are a few

different instances of central points around which objects may be perceived. First and

foremost, the position of the camera within the scene itself acts as a central point, with

all scene components surrounding the user. This means that the components

themselves should be located symmetrically along each of the three axes in relation to

the camera. For example, supposing the camera is positioned at the origin (0,0,0), a

component at a position of 50,100,0 could have a corresponding component at

-50,100,0, mirroring the first component along the X-axis. One of the biggest

difference between developing interfaces for traditional platforms and developing for

Virtual Reality is the introduction of a Z-axis, which introduced the semblance of

depth to the application’s interface. Another example of a centre point is at the centre

of each panel, with the buttons for the tools and colours being positioned based upon

the dimensions, rotations and location of each panel and the positions of the other

buttons relative to the centre as determined by these parameters.

With Interface A, major every component is symmetrically aligned with another

component it shares some characteristics with. The camera is located at the origin

within the scene. The tools panel has a location of -270,100,35 and a rotation of 335°.

The colours panel mirrors the tools panel along the X-axis, with a location of

270,100,35 and mirrors the tools panel’s rotation with a rotation of 25°. Likewise, as

was previously mentioned, the two panels are identical in terms of their dimensions.

This results in each panel being equidistant from the camera and having a perfect

symmetry from the user’s perspective.

As was mentioned earlier, the locations and rotations of the components were

completely randomised for Interface B. This obviously had a major negative impact on

the symmetry of the elements within the scene itself. Whereas in Interface A each

element is perfectly symmetrical with another element or is positioned in a way so that

it is mirrored along the same axis as the camera, this is not the case whatsoever with

Interface B. 
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3.2.3.2 Directory Systems

The directory system is implemented to allow the users to pick a pattern to colour the

grid based on a series of clues given to them. By using a more user-friendly, Gestaltist

interface, it is hoped that the user will be able to focus more on the task at hand and

following the clues properly, rather than being distracted by a clunky or unintuitive UI.

Yet again, the employment/negligence of the principles of Proximity, Similarity and

Symmetry were central to the designs of this facet of the two interfaces. The directory

was implemented as a 2-Dimensional panel in both interfaces. This is largely down to

a lack of time to properly design and implement a 3D directory interface. Both

directory UIs feature five buttons; three face buttons for selecting clues, a back button

and an apply button. There are three layers to the directory, with any clue leading to

three more clues until the grid is correctly coloured in, at which point they can press an

‘Apply’ button, which will end the task.

For Interface A, each of the three buttons were equal in dimensions, shape and were

positioned symmetrically relative to the centre of the directory panel. Each of the three

buttons were also all coloured the same. This meant that all three of the buttons were in

line with the principles of Proximity, Similarity and Symmetry. Likewise, the Back

and Apply buttons were the same in terms of dimensions, shape and were positioned at

opposite ends of the panel, equidistant from the centre. The Apply and Back buttons

were coloured differently to the three main face buttons to distinguish them from the

buttons which had a different functionality. The two buttons were also different

colours from one another; the Back button was coloured red whereas the Apply button

was coloured blue. This was designed to further enforce the differences between these

two buttons.

For Interface B, the buttons were all different in terms of dimensions. No two of the

face buttons were the same size, whereas one of the face buttons was the same size and

shape as the Back button. The buttons were also scattered across the panel in a non-

symmetrical fashion. 
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3.2.3.3 Heads Up Displays (HUDs)

Displayed on the HUD were two snippets of information for the user to consume; the

currently selected tool and the currently selected colour. Whenever the user selects a

tool or colour, the HUD is automatically updated. The HUD was attached to the

camera, so the user could see this information always, regardless of which part of the

screen they were looking at. The HUD could be opened or closed by pressing a button

on the XBOX One Gamepad which was to be used as the primary input device.

For Interface A, the HUD was positioned along the top of the user’s FOV, in a central

area at the top. The HUD was attached to a spring arm component, which meant that it

followed the camera, so the HUD was always in the same position as far as the

participant’s FOV was concerned (i.e.) if they panned the camera to the left, the HUD

would still be in the same area of the visible screen. This complies with two of the

Gestalt Principles that have so far not yet been discussed; the Principle of Common

Movement and the Principle of Figure/Ground.

Because the participant can always see the HUD no matter where they are looking, and

due to the fact that it is the only actor which they perceive to be static, they

immediately perceive that it is a different component to all other components. This

comes from the Principle of Common Movement, which states that we comprehend

objects perceived to be moving together to be related to one another. 

The Gestalt Principle of Figure/Ground would suggest that as the HUD is perceived as

being in a fixed position which is always visible, the user tends to focus on the other

screen components.

All components of the HUD were sized identically and all the text was the same

colour. They are also spaced evenly and positioned in a symmetrical manner. In this

way, the design of the HUD for Interface A also complies with the Principles of

Proximity, Similarity and Symmetry.

When it came to designing the HUD for Interface B, none of the principles outlined

above were implemented. While the HUD remained in the user’s FOV at all times, it’s

position on the screen was not fixed. If the user moved the camera to the right, the
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HUD would remain in the same area of the screen it was at the start of the task, but

once it reached left edge it would stay there (and vice versa for when they moved their

head to the left). By making it appear that the HUD is moving in tandem with the other

on-screen components, Gestalt Psychology would suggest that the user dismisses it as

being part of the scene and not part of the UI. In this way, the Principles of Common

Movement and Figure/Ground are not followed. 

The Principles of Proximity, Similarity and Symmetry are also ignored in the HUD

design for Interface B, with each HUD component differing in size and colour, and

being positioned randomly inside the HUD widget component.

3.3 Result Processing

The results processing can be broken down into three distinct sections; objective

results processing, subjective results processing and data triangulation. The first two of

these sections involve a quantitative analysis of the data sets provided by the

participants during the participant observations and the pre-test and post-test

questionnaires. These two data sets will then be triangulated to provide an overall

metric by which to judge the usability and required mental workloads of the two

Interfaces. 

The subjective data will be used to measure two different aspects of the system. The

first metric to be measured is the system’s usability. In order to measure the usability

of both User Interfaces, a tool developed by John Brooke at Digital Equipment

Corporation in 1986 called the System Usability Scale (SUS) will be implemented.

The other aspect under investigation is the mental workload imposed on the

participants in attempting to complete their assigned tasks on each interface. The

interfaces’ mental workloads will be examined using an adaptation of the NASA Task

Load Index (NASA-TLX) tool which was developed at the National Aeronautics and

Space Administration (NASA) in 1986. This adapted version of the NASA-TLX tool,

known as Raw TLX (RTLX) has been optimised to measure the mental workload

requirements of a software solution, in particular one which implements Virtual

Reality technologies. 
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3.3.1 System Usability Scale (SUS)

The feedback regarding the usability of the interfaces from this project’s experiment is

collected through the use of a well-established tool for usability testing called the

System Usability Scale (SUS). The System Usability Scale is a ten-question survey,

with alternating positive and negative statements, each of which the participant

indicates on a five-point scale how much they agree with the statement.

Figure 3.4 The System Usability Scale questionnaire (Brooke, 1986)

Several methods for subjective evaluation were considered, most notably instruments

such as the Post-Study System Usability Questionnaire (PSSUQ), the User Experience

Questionnaire (UEQ) and the Software Usability Measurement Inventory (SUMI). The

SUS has, over the past three decades, proven to be an effective method for post-test

evaluation of both hardware and software systems. This longevity, along with its lack
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of a licensing fee, were arguably the two most important factors in choosing SUS as

the method for collecting the subjective user feedback. 

3.3.2 Raw Task Load Index (RTLX)

The tool selected to measure the perceived mental workload of each interface was an

adaptation of the NASA Task Load Index (NASA-TLX) called the Raw Task Load

Index (NASA-TLX). Like the SUS, NASA-TLX has been well established as a leading

tool in its field for three decades, with the RTLX adaptation gaining popularity in more

recent years. Bustamante argues that this shorter, condensed version of NASA-TLX

improves the validity of the questionnaires as compared to the full version

(Bustamante, 2008). Hart states that across 29 different implementations of RTLX that

there were examples of it outperforming, being outperformed by and performing

equally as well as the full version of NASA-TLX (Hart, 2009). The main benefit of

RTLX over NASA-TLX is that it is simpler and less time consuming to implement.

The questions asked in the questionnaires can be found in the appendices.

3.3.3 Objective Results Processing

The processing of the objective results was relatively straightforward for this

experiment and did not follow any guidelines or theoretical models in particular, but

rather would apply a descriptive statistical analysis on the data collected by the

application during the experiment’s runtime. The time taken to complete the task, the

total number of clicks performed by the participant, the total number of mistakes made

by the participant and the Field of View (FOV) differential are the metrics which are

measured and compared during the objective results processing phase.

A number of formulae are required to calculate some of these metrics. For example, to

calculate the total number of mistakes made by the participant during any task, there

are multiple factors which the system considers. Firstly, definitions for what counts as

an error need to be established. An error is recorded on every occasion that the

participant performs an action which does one of two things: 
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 Any action which does not progress the participant towards the completion of

the experiment

 Any action which is performed incorrectly

An example of the first error would be if the participant selects the wrong tool. If, for

example, the participant was asked to perform Task A, which involves colouring each

square individually and they select any tool other than the ‘Fill’ tool, this would be

perceived as an action which does not further their progress towards the completion of

the task, so an error is recorded. Likewise, if the user repeatedly clicked to select a tool

or colour which was already selected, this would be perceived as an error by the

system.

The second error type is recorded when the participant attempts the correct function,

but does so incorrectly. An example of this would be if they were attempting Task A

and they coloured any of the squares the wrong colour (e.g.) all participants are asked

to colour the top left square of the grid blue, so an error would be recorded if they

filled the top square with any colour other than blue. Similarly with Task B, where

participants are instructed to select the correct statement based on the pattern shown to

them, if the participant selects an untrue statement an error is recorded.

The second statistic which was necessary to calculate the total number of mistakes was

the number of times either the ‘Undo’ or ‘Redo’ tools were utilised by the participant.

The idea behind recording this is that by hitting either of these buttons, the participant

is displaying an awareness of the error they had made. For this reason, each time these

buttons were selected and an action was undone/redone, a variable which was to be

deducted from the total number of errors was incremented.

The last statistic to be calculated in order to output the number of mistakes made was

the total number of misclicks. A misclick was recorded on every instance the

participant clicked on an area of the screen which has no functionality (i.e.) they

clicked an empty space. The number of misclicks is divided by the total number of

clicks (as outlined in the previous section). This number is then multiplied by the total
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from the number of undo/redos deducted from the number of errors to produce the

equations output. 

Equation 1: The Mistakes Calculation Formula

Note: The output of this algorithm was supposed to be a floating-point number, but

due to a programming error, it was actually output as an integer. Because of this, the

results which were output have been rounded to the nearest whole number.

Another algorithm was required to create a measurable output for the FOV differential

between the FOV viewed by the participant and the FOV utilised by the components of

each interface. In order to calculate the differential, the following four statistics needed

to be tracked by the application during the experiments:

 Highest X-Axis value viewed - translates to how far to their right the

participant looked during the experiment.

 Lowest X-Axis value viewed - translates to how far to their left the participant

looked during the experiment.

 Highest Y-Axis value viewed - translates to how far up the participant looked

during the experiment.

 Lowest Y-Axis value viewed - translates to how far down the participant

looked during the experiment.

These statistics would return a floating-point value, which could be compared to co-

ordinates of the actors at the extremities of each interface. The formula to put a

numerical value to both FOV metrics to allow this comparison is outlined in Fig 3.5. 

Equation 2: FOV calculation formula
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Because the camera is in a fixed position, with only rotations allowed and not

transformation, the Z-Axis (depth) values are always determined by which actor in the

scene the participant is looking at. For this reason, the Z-Axis values did not need to be

included as part of the calculations. 

The output for the FOV differential is the percentage difference between the number

for the FOV viewed by the participant and the FOV utilised by the interface. It is

calculated by dividing the difference between the two values stored for the FOVs by

the value of the Interface FOV. For example, if the FOV utilised by the interface was

set at a value of 100, if the user viewed a FOV of either 95 or 105 the percentage

differential would be 5%.

As for the other two metrics - time and clicks - neither of these required any algorithms

or formulae to have their values calculated. A timer begins as soon as the party

observing the experiments and is automatically stopped when the application detects

that its “win condition” has been met. Regarding the clicks metric, a variable with a

default value of 0 is instantiated whenever a task is started by the observing party and

its value is incremented whenever the application receives a certain input.

To prepare the objective data for the triangulation process, an overall score had to be

generated. This was done so using the formula devised below, in Figures 3.6 and 3.7

Equation 3: Formulae for calculating the objective variables Time, Clicks and Mistakes

Equation 4: Overall objective score calculation formula
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In the above formula, T represents the time taken by the individual participant for that

particular task performance, whereas t represents the average time taken to complete

than task on that interface. Likewise, C represents the number of clicks performed

during that task attempt with c representing the average clicks required to complete the

task on that interface. M represents the individual’s mistakes with m representing the

average number of mistakes. 

For each of the variables, the actual times, clicks are mistakes of each participant are

divided by the average of the relevant metric. This number is then subtracted from 100.

This creates a metric on a 100-point scale (although it is possible for a task

performance to receive a negative score). The average of each of the three variables is

calculated to provide the objective score.

3.3.4 Data Triangulation

Denzin describes triangulation as “the combination of methodologies in the study of

the same phenomenon.” (Denzin, 1978). In the case of this project, the methodologies

being mixed are the objective quantitative research and the subjective quantitative

research.

By triangulating the subjective and objective data, an Overall Triangulated Score

(OTS) which encompasses the usability and perceived mental workload of the

application’s two interfaces can be formed. The formula used to triangulate the data

can be seen below in Figure 3.7.

Equation 5: Overall Triangulated Score (OTS) Calculation Algorithm

To calculate the OTS, three variables were required. The first of these was the overall

objective score which was calculated using the formula which can be seen in Figure

3.6. The second variable is calculated by subtracting the RTLX score from 100. This

calculation is performed because the RTLX scores work on a reverse 0-100 scale, with

44



a lower score being preferable to a higher score. By subtracting the score from 100, a

positive RTLX score receives a higher value which can be processed in the

triangulation algorithm. The final variable to be taken into account is the SUS score.

The average of these three variables is then calculated to produce the overall score. No

weighting is used, as each variable was deemed to be no more or less important than

any of the other variables.

3.4 Design Limitations

There were several limitations to the design of this experiment. Most of these

limitations were imposed due to time or resource constraints, while some were due to

the inexperience of the researcher. 

Ideally, testing the tasks on more than two User Interfaces would have been better. The

initial plan for the experiment was to develop three interfaces; one interface strongly

exhibiting the Gestalt Principles of Perceptual Observation, one of which completely

goes against the teachings of Gestaltism, and a third control interface which meets

these two designs somewhere in between. Unfortunately, this target had to be

abandoned when it became clear that developing a third interface would have been too

time-consuming and infeasible. This initial plan also involved creating a third task for

the participants to perform, but this was also discontinued due to the lack of the time

necessary to develop a third task. By consequence of these limitations, the experiments

will produce a two by two results matrix, rather than a three by three results matrix

which would have allowed for a better understanding of the effects of Gestaltism over

a wider variety of tasks and other such situations. 

Another limitation of the experiment is the fact that an XBOX One Gamepad had to be

used, rather than the ideal scenario of motion controls being implemented.

Unfortunately, the Oculus Rift Developer Kit 2 (which is the Virtual Reality Head-

Mounted Display (HMD) which was used for the development process) does not

include the Oculus Touch, a recently released peripheral sold separately to the Oculus

Rift which the user holds in each hand, allowing the system to track the position of

their hands relative to the HMD. Using a game console gamepad, which utilises a

45



button mimicking the click action of a mouse, takes away from the overall immersion

that any Virtual Reality application is striving to achieve. Motion controls help to

cement this immersive experience and make using a VR application entirely distinct

from traditional desktop computing. For this reason, having access to motion controls

would have allowed for more meaningful and interesting research.

4 IMPLEMENTATION AND RESULTS

4.1 Introduction

This chapter will outline the implementation of the experiments described in Chapter

Three. Also to be discussed and highlighted are the results of the experiment. 

4.2 Participant Observation

The Participant Observations took place over two days in December 2016 at the

Dublin Institute of Technology’s Kevin Street Campus. Each participant was assigned

a 45 minute slot to complete the experiment. Each participant began by reading and

signing an ethics/consent form. Also given to the participants upon entry was a

document outlining the purpose of the experiment and Frequently Asked Questions

(FAQ) about the experiment. Copies of both the consent form and the study

information can be found in the appendix.

The participant observation consisted of each participant completing two tasks using

the Virtual Reality software whilst wearing an Oculus Rift, with a pre-questionnaire to

be filled out before completing each task and a post-questionnaire to be filled out after

the task has been completed. Participants were given a short break of roughly five

minutes between each task. Each participant completed both tasks and used both

interfaces. No participants used the same interface twice, nor were any of them asked

to complete the same task on more than one occasion.
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The participants were divided into two groups, Group A and Group B. The participants

in Group A were assigned Task A on Interface A and Task B on interface B, whereas

the participants in Group B performed Task A on Interface B and Task B on Interface

A. 

Table 4.1 Participant Group Distribution

As can be seen in Table 4.1, there were eight participants in Group A and seven

participants in Group B. In total, there were sixteen participants observed. One

participant completed the pre-test questionnaire and completed the first task, but did

not complete a post-test questionnaire or partake in the second half of the experiment,

so that participant’s results will not be counted. Because of this, the dataset contains

the experiment data for the remaining fifteen participants who fully completed both

tasks and filled in both pre-test and post-test questionnaires.

4.2.1 Participant Demographics

The demographics of the participants was quite diverse, with seven different

nationalities from four different continents represented. Of the fifteen participants,
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eight were native English speakers. The gender distribution was 86% male to 14%

female. The age of the participants ranged from 19 years old to 44 years old, with the

majority of participants being between the ages of 24 and 28. The distribution of the

participants ages can be seen in Figure 4.1.

Figure 4.5 Participant Age Distribution

Out of the fifteen participants who took part in the experiment, three needed to wear

glasses at all times, with another six participants requiring reading glasses. As a

Virtual Reality application is by nature an entirely visual experience, it was possible

that limited vision may have hindered overall performances when attempting to

complete any of the assigned tasks. For this reason, the participants who required

glasses were spread across the two groups as evenly as possible in order to protect the

integrity of the results. None of the participants were colour-blind, which is important

as Task A relies heavily on the participants’ abilities to identify colours.

Another important aspect of the participants’ backgrounds was their familiarity with

using a gaming console gamepad, as experience using such an input device allowed for

easier instruction and consequently faster performances of the task. Of the fifteen

participants, four had never used a gamepad of any sort before, whereas two had used

gamepads other than an XBOX controller but did not associate themselves as people

who played video games or used such a controller often. Of the remaining nine

participants, seven regularly used a gamepad other than the XBOX controller with the

other two regularly using XBOX gamepads.
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During each participant observation, only the participant and the researcher overseeing

the experiments were present in the room. During the observation of two of the

participants, the experiment was disturbed by another participant entering the room

briefly.

4.3 Results

For the purpose of distinguishing between the two User Interfaces implemented in this

experiment, the interface which exhibits the features of the Gestalt Principles will once

again be referred to as Interface A, whereas the interface which lacks the Gestalt

Principles in its design will again be referred to as Interface B. Task A will refer to the

simpler task of manually colouring in each square, while Task B will refer to the more

demanding task of applying a pattern to the grid based on a series of clues.

4.3.1 Objective Results

When each task was started and all components had rendered, the software began

tracking objective data about each participant's attempt to complete the task they were

assigned. Upon completion of the task, this data was written to file. The metrics output

were the time taken to complete the task, the total number of clicks by the user in

completing the task, the total number of mistakes made by the participant while

attempting the task and the percentage differential between the Field of View (FOV)

observed by the participant and the FOV utilised by the interface.

4.3.1.1 Time

The first objective metric to be examined is the time taken by each participant to

complete each task. A global float variable was instantiated at the beginning of each

task and was output to an accuracy six decimal places.

The times taken (in seconds) to complete each task across the two interfaces can be

seen in the tables below. It is important to note that some of the participants were not

native English speakers and that they needed to have the tasks explained to them on
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more than one occasion, which naturally will have slowed down their progress in

completing the tasks. However, this limitation applied to tasks being performed on

both User Interfaces across both tasks, and thus should not influence the results of the

experiment in any meaningful way.

Table 4.2Time

        

As can be seen in Table 4.2, the average time taken to complete each task is vastly

lower for Interface A than the time taken to complete the same task on Interface B.

Task A took on average 104 seconds to be completed on Interface A, whereas on

Interface B this same task needed 241 seconds to be completed. This represents a huge

difference, with the tasks on Interface B taking on average 231% longer to complete.

As well as having a shorter average completion time, four of the five fastest

completions of Task A were achieved on Interface A, including all three of the fastest

recorded times. At the other end of the scale, all five of the slowest completion times

which were recorded were when the Task was being attempted on Interface B. The

slowest attempt on Interface A lasted 170 seconds, whereas on Interface B there were

five attempts which took over 200 seconds to finish successfully.

It was much the same story with Task B. The average completion time for Task B on

Interface A was approximately 166 seconds, compared to taking 280 seconds on

Interface B. This represents an increase of 169% to complete the task on Interface B in

comparison to the completion time for the same task on Interface A. As was the case

with Task A, four of the five fastest recorded times for Task B were when the

participant was attempting to complete the task on Interface A. Likewise, the bottom

end of the scale was dominated by attempts which were made on Interface B, with six
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of the seven slowest attempts being recorded on the Interface which omitted the

Gestalt Principles of Perceptual Observation.

4.3.1.2 Clicks

The next metric to be examined is the number of clicks required by the user to

complete the task. A global integer variable named clickCount was instantiated at the

beginning of each task. This variable was updated upon certain events, as will be

outlined in the coming paragraphs. The value stored for clickCount was output upon

completion of each task and the value reset to its default value of 0.

When undertaking each task, the participants only had two buttons on the XBOX

Gamepad which offered any functionality. The first of these was the ‘A’ Face Button

on the Gamepad, which was used to select whichever actor was being hovered over -

an equivalent to the left click function on a typical mouse I/O system. A click is

recorded on every occasion when the participant hits the ‘A’ Face Button on the

XBOX One Gamepad. 

The second button on the gamepad which offered functionality to the user was the left

trigger button. When this button was pressed, whichever scene component was at the

centre of the screen - therefore being the actor which the participant would select if

they were to hit the ‘A’ Face Button - would highlight, acting as a guide to the user so

that they could get a better understanding of how the camera and focusing worked with

a Head Mounted Display. This comes from the ideas outlined in the Gestalt Principle

of Figure/Ground. As this was more of a guide button and not a button which

progressed the completion of the task, presses of the left trigger button did not

increment the value stored for the number of clicks. None of the other buttons on the

gamepad had any effect on the clickCount variable.

The minimum possible number of clicks required to complete Task A was 19. For

Task B, the minimum number of clicks the participants needed to make to successfully

complete the task was five clicks. Both numbers were true for completing the tasks on

both Interface A and Interface B.
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Table 4.3 Clicks

The results for the actual number of clicks taken by each participant across both tasks

indicate a big difference between Interface A and Interface B. 

With Task A, the average number of clicks performed by each participant when

observed using Interface A was 25.875 clicks. This represents a margin of 6.875 clicks

more than the absolute minimum number of clicks required, which equates to a total

number of clicks roughly 36% higher than the best possible performance. When the

participants were undergoing the task on Interface B, the average number of clicks

shoots up enormously to a value of 62. This margin of 43 extra clicks equates to an

increase of 226%. With the exception of one well performing participant on Interface

B, all the attempts on Interface B recorded more clicks than every attempt on Task A. 

However, it should be noted that one participant struggled greatly to complete the task

on Interface B. This participant’s total of 147 clicks is an extreme outlier and brings

the average number of clicks for this test group up to 62, whereas without this

participant’s data included, the average number of clicks needed to complete Task A

on Interface B drops significantly down to 47.8333 clicks. This lower margin of

28.8333 clicks equates to a 151% increase on the best possible performance.

The results of Task B mirrored those of Task A. The average number of clicks

performed in completing Task B on Interface A worked out at 14.43 clicks. This

represents an increased click rate of 189% compared to the best possible performance

of this task in terms of clicks. When performed on Interface B, the average number of
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clicks rises to 29.375, roughly double the average number of clicks required on

Interface A. Like the results of the time metric, four of the five “worst” performances

were attempts made on Interface B, while four of the five “best” performances were

recorded on Interface A.

4.3.1.3 Mistakes

Note: The output for this metric was supposed to be a floating-

point number, but due to a programming error, it was actually

output as an integer. As a result of this, the results which were

output have been rounded to the nearest whole number.

The mistakes metric was calculated with an algorithm based on a number of statistics

which were recorded during the experiment process. The algorithm used can be seen in

Fig 3.4.

The tables in Table 4.4 show the results for the total number of mistakes made by each

participant on each task. 

Table 4.4 Mistakes

For Task A, the number of mistakes made ranged from a minimum of eight to a

maximum of seventeen on Interface A, with the average number of mistakes made

working out at 11.75 mistakes per participant. This is in stark contrast with the results

for Task A when performed on Task B. While the lowest number of mistakes made

only increased by two, up to ten mistakes, the highest number of mistakes made by
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participants attempting Task A on Interface B was recorded at 97, 80 mistakes more

than any participant attempting the same task on Interface A. It will come as no

surprise that this total of 97 mistakes was made by the same participant identified

earlier as being an outlier in previous categories. However, all bar one of the

participants attempting to complete Task A on Interface B recorded at least seventeen

mistakes. One participant recorded just ten mistakes on Interface B, one participant

equalled the highest number of mistakes made on Interface A, but after those two

participants, all of the others recorded more mistakes than the worst performing

Interface A attempt.

Three participants who attempted Task B on Interface A successfully completed the

task without making a single mistake. Naturally this resulted in a low average mistake

count for this task on Interface A, with the mean number of mistakes being calculated

as roughly 3.714 mistakes per participant. On the other hand, with Interface B, all

participants made at least two mistakes, with seven of the eight participants making

more mistakes than the average number of mistakes made on Interface A for the same

task. The average number of mistakes made when attempting Task B on Interface B

rose to 12.875 mistakes per user. This represents 246% more mistakes made on

Interface B for Task B when compared to Interface A.

4.3.1.4 Field of View (FOV) Differential

The Field of View (FOV) differential refers to the amount of the 3-Dimensional space

which the participant viewed/utilised during the task completion compared to the

actual space which is filled by the Interface. 

The results of the FOV differentials can be seen below in Table 4.5.
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Table 4.5 FOV Differential

When participants attempted Task A on Interface A, the average FOV differential

came to 0.97%, meaning that the FOV viewed by the participants was almost identical

to the FOV utilised by the User Interface. The difference between the FOVs for Task

A on Interface B was also minimal, clocking in at 2.97%. Once again, there is one

outlier in the dataset, as one of the participants had a differential of 8.71%, a

differential 5.46% higher than the next highest percentage. 

The FOV differentials for the two interfaces were much closer for Task B. Participants

who attempted Task B on Interface A averaged a differential of 1.84%, with those who

performed the same task on Interface B averaging 1.94%.

Table 4.6 displays the results from when the formula to determine each of the overall

objective scores was applied to each performance of Task A.

Table 4.6 Task A Overall Objective Results

The average score for the task performances attempted on Interface A was 80.94 out of

a possible 100, with scores ranging from a lowest score of 72.3 up to a highest score of

94.93. By contrast, the average score for Task A performances on Interface B was
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down to 50.35, with a worst score of -12.14 and the best performance earning a score

of 82.71.

Table 4.7 Task B Overall Objective Results

As can be seen in Table 4.8, the results for Task B tell a similar story. The average

score for Interface A stays at roughly the mark, dropping marginally down to a score

of 79.26 out of a possible 100 for Task B. The best score recorded on Interface A while

attempting Task B was 89.07, with the worst score registering at 65.72. The average

scores for Interface B do improve slightly from the first task, but they once again have

a notably lower mean score, this time averaging 54.2. The best score of all Interface B

attempts of Task B was 83.39, whereas the lowest score recorded was an alarmingly

low 19.76.

4.3.2 Subjective Results

The participants filled out questionnaires prior to attempting each task as well as after

having completed the tasks, meaning all participants filled out four questionnaires; two

pre-test questionnaires and two post-test questionnaires. These questionnaires were

designed to receive the participants’ feedback on two different aspects of the software;

the usability of the software and the effect the application had on each participant

regarding the mental workload required. The answers from the pre-test questionnaire

would provide data for the mental workload analysis, whereas the post-test

questionnaire would provide data for both the mental workload and system usability

analyses. 

4.3.2.1 Usability - System Usability Scale (SUS)
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To measure the usability of the application, a tool developed by John Brooke at Digital

Equipment Corporation in 1986 called the System Usability Scale (SUS) was

implemented. The SUS is comprised of ten statements, alternating between positive

and negative statements, which the participant indicates on a five point Likert Scale to

what degree they agree with. These statements can be seen in Fig 3.1. This section will

briefly review the results of each participant’s answer to each statement as well as

reviewing the overall SUS score for each Interface based on the Task assigned to the

participant. Note that in the following results tables a 1 signifies that the participant

indicated that they “Strongly Disagree” with the statement, whereas a 5 indicates that

they “Strongly Agree” with it.

The first statement of the SUS which the participants are asked to react to reads “I

think that I would like to use this system frequently”. 

Table 4.8 SUS Q1 Results

For both tasks, Interface A received a more positive overall score than Interface B,

with Interface A averaging higher than three for both tasks and Interface B averaging

lower than three for both tasks.

The second statement reads “I found the system unnecessarily complex”.
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Table 4.9 SUS Q2 Results

Interface A also receives more positive overall scores for the second statement, with

lower scores indicating disagreement that the systems were too complex for Interface

A on both tasks and higher scores for Interface B indicating an agreement with the

statement.

The third statement reads “I thought the system was easy to use”.

Table 4.10 SUS Q3 Results

The results for this question indicate that the participants agreed with the notion that

the system was easy to use on Interface A, with average scores of 3.875 and 4.143 out

of 5 for their ease of use for Task A and Task B respectively. For Interface B, these

numbers drop, both to in and around the 2.5 out of 5 mark.

The fourth statement reads “I think that I would need the support of a technical person

to be able to use this system”.
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Table 4.11 SUS Q4 Results

The reactions to this statement were generally of disagreement for tasks performed on

Interface A and of mild agreement for tasks performed on Interface B. This is indicated

by the fact that both Interface A averages were less than two whereas the Interface B

averages were both in the region of 2.5-3 out of 5.

The fifth statement reads “I found the various functions in this system were well

integrated”.

Table 4.12  SUS Q5 Results

This is the first metric where there is an instance of Interface B outperforming

Interface A. For Task A, the average result was 3.5, with Interface B receiving a

marginally higher average score of 2.571. By contrast, with Task B, Interface A

performed significantly better than Interface B, with the interfaces scoring 4.143 and

2.625 respectively.

The sixth statement reads “I thought there was too much inconsistency in this system”.
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Table 4.13 SUS Q6 Results

The results across both tasks indicate that the participants felt there was a good level of

consistency in Interface A, with the average scores for Interface A on both task both

being calculated to a value less than two. The average scores for Interface B were both

higher that their Interface A counterparts, with the averages from both tasks working

out to be greater than two. 

The seventh statement reads “I would imagine that most people would learn to use this

system very quickly”.

Table 4.14 SUS Q7 Results

The average scores for Interface A across both tasks were higher than four for this

statement, meaning that the participants Strongly Agreed that they felt Interface A was

easy to learn quickly. For Interface B, the scores for Task A maintained a high average

score of 3.857, which is unsurprising due to the simple nature of Task A. For the more

complex Task B, the average score dropped from 4.429 on Interface A to just 2.625 on

Interface B.
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The eighth statement reads “I found this system very cumbersome to use”.

Table 4.15 SUS Q7 Results

With scores hovering around the two mark, the participants indicated that they did not

find Interface A particularly cumbersome to make use of for either Task A or Task B.

When questioned about Interface B, the scores indicated that the users found that UI to

be clunkier than Interface A with both tasks averaging a score greater than three on

that interface.

The ninth statement reads “I felt very confident using the system”.

Table 4.16 SUS Q9 Results

Once again, the results for both tasks on Interface A earned average scores above four,

giving an indication that the participants strongly believed that in their own abilities to

complete their assignments on the given UI. The scores drop to roughly 3.1 for both

tasks on Interface B, implying that while the participants still felt comfortable and

confident using Interface B, they did not feel the same level of comfort as those who

performed the tasks on the Gestaltist UIs did.
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The tenth and final statement reads “I needed to learn a lot of things before I could get

going with this system”.

Table 4.17 SUS Q10 Results

All participants who completed Task A on Interface A replied to the final question of

the questionnaire to say that they Strongly Disagreed that they felt they needed to learn

a lot of things before being able to find their feet with this system. Similarly for Task

B, the average score of 1.571 indicates that the other set of participants found it easy to

dive straight into the application, despite being assigned the more taxing task. With

Interface B, both tasks achieved an average score of roughly 2.25, suggesting that the

participants felt they had to learn slightly more before being able to get going on the

control interface.

After having examined each of the individual metrics of the SUS, next to be processed

was the overall SUS scores given by each participant to each Interface for the tasks

they performed on them. The results of the SUS scoring formula being applied to the

result sets can be seen in Table 4.19 below. For both Task A and Task B, Interface A

averages significantly higher results than Interface B does. The average score for Task

A on Interface A is a very respectable 78.75 out of a possible 100. By contrast, the

results for performances of Task A on Interface B are mediocre, with an average score

of just 53.93 out of the maximum 100 points. These results are consistent with the

findings of Task B where Interface A greatly outperformed Interface B. With the more

complex task, Interface A again scored admirably, with an average result of 75.71. As

was the case with Task A, Interface B’s performance left much to be desired,

averaging a score of 56.875.
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Table 4.18 Overall SUS Scores

The average SUS score across all recorded task attempts works out at 66.4166667. Out

of the fifteen tasks performed on Interface A, eleven of the SUS scores are higher than

the overall average mark. On the other hand, out of the fifteen task performances on

Interface B, only one participant gave the system a usability score higher than the

overall average mark. The top seven scores were all recorded on Interface A, whereas

the eight lowest scores were all taken from tasks performed on Interface B.
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4.3.2.2 Mental Workload - Task Load Index

With regards to the post-test questionnaires, there were two statistics whose

examination of were most important. These were the overall Raw TLX (RTLX) score

and the averages of each participant’s own assessment of their performances.  The

results of these metrics should give a decent idea of just how mentally taxing each

interface was for each task. 

Table 4.19 The average overall RTLX and self-assessed performance scores

Table 4.19 gives us a good indication of the mental workloads of each interface for

each task, also hinting at a correlation between the two statistics. Under the score

heading is the average RTLX score for the given interface on the given task. The score

is marked on a 0-100 scale, with 0 denoting a low mental workload and 100 indicating

a mentally taxing system. The performance index is also marked on a 0-100 scale as

each participant was asked to rate their own performance of the task out of 100 on the

post-test questionnaire. A lower score indicates that the participants felt they

performed poorly, whereas a high score indicates that they felt confident that they had

performed the task with aplomb. 

The RTLX score averages for Interface A across both Tasks are both quite low,

coming in at 22.84 for Task A and 25.22 on Task B. These two low mental workloads

were accompanied with excellent performance ratings of 84.375 and 86.43

respectively. Conversely, the perceived mental workloads for Interface B were

significantly higher. The average RTLX score for the Interface B implementations of

Task A is 38.48, a 15.64% increase on its Interface A counterpart. Task B also had a

noteworthy increase in perceived mental workload on Interface B, with the average

score clocking at 39.6875. The performance indexes decrease dramatically when the

participants were using Interface B, with scores of 50.71 for Task A and 53.75 for

Task B, both representing a roughly a 33.5% decrease from the Interface A

performances.
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4.3.3 Triangulated Results

Having compiled the results of the RTLX, SUS and Objective metrics for each

participant, the results were ready to be triangulated. The average scores for both

interfaces over the two tasks can be seen below in Table 4.21. The formula to calculate

the Overall Triangulated Score (OTS) can be viewed in Figure 3.7

Table 4.20 Average OTS results for each Interface on each task

As would be expected having seen the results leading up to this point, the OTS results

for Interface A are far more positive than those of Interface B. This is most evident

when comparing the OTS results for Task A. For performances of Task A on Interface

A, the average OTS result was 78.95 out of a possible 100. When this simpler task was

performed on Interface B, the average OTS drops to 55.27.

The numbers for Task B also indicate a superiority across this sample group for

Interface A over Interface B. The average OTS for Interface A in this instance was

76.59 compared to an average score of 57.13 for Interface B.
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5 EVALUATION AND ANALYSIS

5.1 Introduction

The purpose of this chapter is to dissect, analyse and evaluate the results outlined in

the previous chapter. This chapter will aim to question why the results turned out the

way they did and to discuss the significance of the results with regards to the research

question. As well as the descriptive statistics provided in the previous chapter,

additional data analytics tools such as t-Tests will be applied to further test the

difference between the two interfaces across each task as well as testing the validity of

the data. 

The primary purpose of a t-Test is to test a null hypothesis. Consequently, establishing

the null hypothesis being tested for this section is of utmost importance. The null

hypothesis can be equated to the following statement:

“The application of the Gestalt Principles of Perceptual Observation has no effect -

positive or negative - on the usability or perceived mental workload of a Virtual

Reality User Interface.”

Each of the four main measurable metrics outlined in the previous chapter (Objective,

Usability, Mental Workload and Overall Triangulated Score) will be examined. The

use of statistical tools such as a t-Test was particularly important for Objective results

set and the Overall Triangulated Score (OTS) results as these results were generated by

formulas I developed myself, rather than tried and tested formulas. 

Due to the fact that there were fifteen total participants spread across two groups, the

sample sizes for each task-interface combination were uneven. Thus, a paired t-Test

could not be performed. Instead, the t-Tests performed for the data analysis in this

chapter are homoscedastic independent two-sample t-Tests. 

5.2 Objective Results
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Firstly, we will examine the overall objective results scores, which was calculated by

taking the time, clicks and mistakes from each task performance as arguments for the

algorithm outlined in Figure 3.7. Wang states that one of the goals of any user interface

is to allow its users to command and control the application in as comfortable a way as

possible (Wang, 1998). Examining the objective metrics associated with each task

performance will give as clear an insight as possible into how the participants could

command and control both interfaces for each task.

The objective metrics returned positive results for backing up the hypothesis that the

application of Gestalt Principles of Perceptual Observation is beneficial to the usability

of a Virtual Reality User Interface. The mean overall objective scores for both tasks

when performed on Interface A were notably higher than those of Interface B. When

both tasks were combined, the mean score for Interface A was 80.101, whereas for

Interface B the average score across both tasks was 52.278. This represents

approximately a 35% reduction in the objective performance of the participants across

both tasks when the UI which did not exhibit the Gestalt Principles was being used. It

is important to note at this time that all participants completed tasks on both interfaces,

so the likelihood that this drop in performance is due to the skill/confidence levels of

the participants is minimal. 

Interestingly, there was a positive correlation between the objective scores recorded

and the participant’s self-assessments during the post-test questionnaires. When a

Pearson’s Coefficient was applied between these two metrics, a coefficient of 0.8118

calculated, which indicates a strong positive correlation. This indicates that the

participants were aware of their own level of performance when trying to complete the

task. As Jung Schneider and Valacich point out, this is a positive attribute for any User

Interface to have, as it users to properly gauge how much time they will need to

dedicate to becoming comfortable with the system, which oftentimes can be a decisive

factor in whether a person decides to continue using a piece of software (Jung,

Schneider & Valacich, 2010)
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Figure 5.6 Graphical Representation of a Pearson’s Coefficient between the Objective Results (X-Axis) and
Participant’s Self-Assessment of their Performances (Y-Axis)

Applying a t-Test to the result sets from both Tasks also yielded positive results, with

both returning a value of ≤ 0.02, indicating a highly significant difference between the

two User Interfaces.  The results of both t-Tests indicate that the null hypothesis is

incorrect, at least from the perspective of objective performance. This is hardly

surprising, given the significant differences in the mean scores as well as the

differences between each individual objective metric. The averages across every

objective metric were widely varied, with the Gestaltist Interface posting more

impressive numbers in the vast majority of cases. 

Interface n Mean SD t df p 95% Confidence Interval
A 8 80.941 3.748
B 7 50.352 31.789

Total 15 65.647 17.769 2.7147 13 0.0177 6.246 - 54.931

Table 5.21 Objective Results t-Test (Task A)
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Interface n Mean SD t df p 95% Confidence Interval
A 7 79.261 7.303
B 8 54.203 23.957

Total 15 66.732 15.630 2.6506 13 0.0200 4.635 - 45.482

Table 5.22Objective Results t-Test (Task B)

This was arguably most evident with regards to the time metric. Task A was a very

simple task, with the users simply asked to fill in each square in a 3x3 grid with the

colour written on that square. The fact that the average times taken to complete this

rudimentary task on the two interfaces differed by 140 seconds indicates that the

differences between the two interfaces had a fundamental impact on each of the

participants’ ability to perform the task. This is further strengthened by the fact that

Task B was performed on average 115 seconds faster on Interface A than it was on

Interface B. When one considers that the interface built with the Gestalt Principles in

mind outperformed the control interface to the extent that it did would suggest that not

only is the null hypothesis incorrect, but it also offers credibility to the idea that the

implementation of the Gestalt Principles when designing a UI can improve the overall

usability of a Virtual Reality application, which supports the primary hypothesis of this

research project.

5.3 System Usability Scale (SUS)

While the objective metrics can inform us on the usability in terms of statistical

performance, measuring the system’s perceived usability through the System Usability

Scale (SUS) allows us to form a much better idea of how the usability of the system

affected the participants’ opinions of the interfaces. Flavián, Guinalíu and Gurrea

argue that the perceived usability of a system directly impacts the overall user

satisfaction, which in turn acts as a catalyst for breeding user loyalty (Flavián, Guinalíu

& Gurrea, 2006). 

Considering Interface A received more positive average scores on all ten questions

across both tasks, there is no real need to cross-examine the results of each question

individually. Instead, only the overall SUS scores will be studied thoroughly. The SUS

results follow a similar pattern to the objective metrics. Again, we see a significant
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difference between the results of the Interface A and Interface B performances of both

tasks. This is highlighted by the t-Test, which again points to a significant difference

between the datasets and an invalidation of the null hypothesis. With the two-tailed P

values equalling 0.0007 and 0.0227 for Task A and Task B respectively, we can

determine that there is enough of a significant difference between the SUS results of

the two data sets to make the argument that the Gestalt Principles have a positive

impact on the usability of a Virtual Reality application.

Interface n Mean SD t df p 95% Confidence Interval
A 8 78.750 9.354
B 7 53.929 12.235

Total 15 66.340 10.7945 4.4489  13 0.0007 12.768 - 36.875

Table 5.23 SUS t-Test (Task A)

Interface n Mean SD t df p 95% Confidence Interval
A 7 75.714 14.840
B 8 56.875 12.235

Total 15 66.295 14.1265 2.5835   13 0.0227  3.085 - 34.593

Table 5.24 SUS t-Test (Task B)

There were two metrics which the SUS scores were to have a Pearson Correlation

Coefficient test against; the participant’s assessment of their own performance and the

objective results. A correlation between the SUS scores and the self-assessments

would indicate that the participants who deemed the tested interface to be highly

usable would also have rated their own performances highly, with low usability scores

corresponding to lower performance assessments. By testing the correlation between

the SUS results and the objective results, we can see if the perceived usability of the

interfaces matches the actual performances of each participant. The correlation

between the SUS scores and self-assessments of each participant was calculated to be

R=0.7151, indicating a moderate positive correlation. This tells us that the participants

who thought that they performed the task well also felt that they were doing so on a

user interface with a positive usability, with the users at the opposite end of the

performance-assessment scale feeling that their execution of the task was held back by

an interface with poor usability. 
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Figure 5.7 Graphical Representation of a Pearson’s Coefficient between the SUS Results (X-Axis) and
Participant’s Self-Assessment of their Performances (Y-Axis)

 

.

Figure 5.8 Graphical Representation of a Pearson’s Coefficient between the SUS Results (X-Axis) and Objective
Results (Y-Axis)

This is important because, as Johnson points out, users like to feel that they are good at

using an application, which in turn leads to a higher perceived usability for that

software solution (Johnson, 2013). A moderate positive correlation between the SUS

results and the objective scores was also calculated, with 0.6419 being the correlation

coefficient for these two data sets. considering the positive correlation between the
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objective results and the performance assessment results, it was expected that this

would also provide another moderate positive correlation. 

With Interface A receiving an average SUS score of 77.232 across both tasks and

Interface B receiving an average of 55.402, we are again given an indication that the

implementation of the Gestalt Principles of Perceptual Observation is indeed beneficial

for the usability of Virtual Reality applications.

5.4 Raw Task Load Index (RTLX)

As well as testing the usability of the two interfaces, another purpose of this research

project was to measure the differences between the perceived mental workloads of the

two UIs across each task performance. 

The results from the t-Test point towards a very significant difference between the two

interfaces in terms of mental workload. Upon processing the RTLX statistics, the t-

Test returned with results of t(13) = 3.1069, p = 0.0034 for Task A and t(13) = 3.2775,

p = 0.0021 for Task B. With p values well below 0.05 for both tasks, we are given

another clear indication that the null hypothesis is likely to be invalid. 

As was the case in the previous two sections, not only are the results sets significantly

different, but the differences highlight a superiority for Interface A. Interface A was

determined to have a low overall mental workload, with a result of 24.029 out of 100.

Interface B was proven to be more mentally taxing for the participants as they

attempted to perform their assigned tasks. The average mental workloads across both

tasks for Interface B was a moderate 39.084 out of 100, It is interesting to note that the

gaps between the interfaces perceived mental workloads actually shortened on the task

which was designed to be more mentally taxing. Whereas on the simpler Task A the

difference between the average scores was 15.64, that gap was narrowed to 14.47

between the means of the Task B performances. This could possibly indicate that the

Gestalt Principles are slightly more effective for less mentally taxing tasks. Another

possible (and more likely) explanation is that the users became more focused on the

task at hand when filling out the RTLX post-test questionnaire after Task B, rather

than the interface which they performed the task. 
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Another interesting aspect of the results was the differences between the pre-test scores

depending on which interface the first task was performed on. One of the questions the

participants were asked during the pre-test questionnaires was “How irritated, stressed

and annoyed are you versus content, relaxed and complacent are you?”. While the

results did not change much for the participants who performed their first task on

Interface A, the figures for this metric were markedly different for the participants who

first performed a task on Interface B. For the Group A participants, the initial pre-test

questionnaire returned an average of 30 for the Frustration metric, with a mean of

28.75 for the second pre-test Frustration results. For test Group B, the initial frustration

average was calculated to a value of 29.29, but prior to undertaking the second task,

their average frustration had risen to 37.14. Pearson’s Coefficient tests found no

correlations between any of the pre-test results and the performances of each task

execution.

The results from the RTLX pre-test and post-test questionnaires provide yet more

evidence which backs up the primary hypothesis of this research project that the

Gestalt Principles of Perceptual Observation are beneficial to create Virtual Reality

applications with better usability and lower mental workload and cognitive load

requirements.

5.5 Overall Triangulated Score (OTS)

The Overall Triangulated Score (OTS) results are intended to give a comprehensive

final verdict on the overall usability of the two interfaces based on the objective and

subjective data provided by the participant observations. Considering the results of the

previous three sections, all of which provide the data used to calculate the OTS results,

it should come as no surprise that the OTS scores tell the same story as the previously

discussed metrics. As expected, the t-Test once again returns with p values which

indicate a significant difference between the two data sets across both tasks. The OTS

results indicate that the null hypothesis is invalid. 
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Both tasks returned similar results in terms of the average mark for each interface. The

average OTS score for all Interface A performances was 80.15731688, with a standard

deviation of 5.53499388. For Interface B, the average score worked out to be

52.40621855 while the standard deviation of the Interface B results across both tasks

was 26.90772694. 

Interface n Mean SD t df p 95% Confidence Interval
A 8 80.941 3.749
B 7 50.353 31.789

Total 15 65.647 10.7945 2.7147  13 0.0177 6.246 - 54.931

Table 5.25 OTS t-Test (Task A)

Interface n Mean SD t df p 95% Confidence Interval
A 7 79.261 7.303
B 8 54.203 23.957

Total 15 66.732 15.630 2.6506   13 0.0200  4.635 - 45.482  

Table 5.26 OTS t-Test (Task B)

The low standard deviation value for Interface A highlights the fact that the clear

majority of performances on the Gestalt-influenced version went very smoothly. For

Interface B, the much higher standard deviation indicates that some users struggled

much more than others. This was to be expected as there was one major outlier in the

Interface B performances which skew the results slightly. However, even with the

results of this outlier omitted, the results still favour Interface A across all metrics.

5.6 Conclusion

All of the results across each of the four topics of Objective scores, SUS results, RTLX

results and OTS scores indicate that the employment of the Gestalt Principles of

Perceptual Observation is highly useful for developing Virtual Reality applications.

The results of this experiment indicate that perceived mental workload was reduced

and usability was improved simply through the implementations of the Gestalt

Principles. At this point it is quite clear that the evidence from this experiment backs

up the research project’s hypothesis quite strongly. Every t-Test performed indicated
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that the null hypothesis was incorrect, suggesting that the Gestalt Principles have an

impact on both the usability and the mental workload of a Virtual Reality application

and the statistics presented suggest that this impact is a positive one.

These positive results give credence to the idea that the Gestalt Principles can be used

as an effective guideline for Virtual Reality developers and designers. As Alger states,

“What’s particularly interesting about this section of time is that digital volumetric

interfaces do not yet have established conventions. Where writing, film, television,

radio, theatre, graphic design, etc. have expected elements, head-mounted displays

remain conceptually open-ended. As a community, we are discovering the medium’s

unexpected strengths and weaknesses” (Alger, 2015).  Considering the relative youth

of the field of Virtual Reality and the subsequent lack of previous work in this new

medium, establishing the Gestalt Principles of Perceptual Observation as a viable

design convention is a positive outcome for this experiment. Because of the novelty

involved with VR and the many differences it has with traditional desktop or even

mobile computing, having the ability to develop applications which are usable for a

plethora of different user groups could prove to be a decisive factor in the success or

failure of the platform. 
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6 CONCLUSION

6.1 Research Overview

This research project examined the effectiveness of the Gestalt Principles of Perceptual

Observation with regards to the usability and mental workloads of Virtual Reality

applications when these Principles are implemented in their design. This was achieved

by developing an application to be used on the Oculus Rift with two separate

interfaces, one of which strongly exhibited the Gestalt Principles and one which did

not. An experiment was carried out whereby participants were observed attempting

two tasks on the application, performing one task on each interface. The participants

filled out questionnaires which helped to determine the perceived usability and mental

workloads of each interface, while performance data was being recorded during each

task execution which recorded objective data. By triangulating the data from the

subjective and objective datasets provided by the experiments and comparing the

results of each interface for both tasks, this project would contribute information

regarding how effective the Gestalt Principles are for VR designers. This is the first

paper to directly research the benefits of Gestalt Psychology for Virtual Reality design.

6.2 Findings

Through a combination of primary research and the results of the experiment, this

research paper has supplied evidence to support the hypothesis that the Gestalt

Principles of Perceptual Observation are beneficial for Virtual Reality designers and

developers. In terms of both the objective performance statistics and the subjective

performance analyses of the participants, all the data gathered from the experiment

indicates that the Gestalt Principles significantly improve the usability of Virtual

Reality applications. Developing applications with excellent usability is becoming ever

important in an industry in which User Experience is quickly developing into one of

the most important aspects companies look at when designing software. By identifying

a design pattern which has been proven effective in the past as a viable design

convention for VR, this paper has contributed to the ever-growing body of knowledge

in an exciting and rapidly expanding area of Human-Computer Interaction.
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The research also suggests that the perceived mental workloads of Virtual Reality

applications can be reduced by designing a user interface which follows the guidelines

set in place by Gestalt Psychology. Using a new technology can be quite daunting. The

fact that VR Head-Mounted Displays cover the user’s vision of their immediate

environment in order to better immerse them in the virtual world can also lead to stress

for some users. By establishing a design convention which the evidence suggests can

lower the mental workload of a VR application, no additional technostress need be

instigated by mental over- or under-loads as a result of poor interface design.

6.3 Limitations

There were several limitations which significantly impacted upon the design and

execution of the experiment. Three months is a very short time to have to learn how to

develop a Virtual Reality application, study a set of psychological principles, build a

full application which will be ready for a participant observation, carry out the

experiments, process the results and write a paper about all of this. In this way, a more

feasible project should probably have been chosen for this Master’s Dissertation. The

time constraints led to having to create a very basic application with two relatively

simple tasks. The tasks which were created for this project do not serve a practical

purpose other than allowing for differentiation between the two interfaces. Time

constraints also meant that only fifteen participants were observed as part of the

experiment. The initial hope was to have a sample size of at least 30 participants.

Having such a small sample group has likely undermined much of the project’s

credibility, although the fact that each task performance created three datasets,

measuring different aspects of the software’s usability and mental workload, does help

to negate the negative effects of having a smaller number of participants.

6.4 Future Work & Recommendations

This study has examined the effectiveness of the Gestalt Principles by comparing the

results of all seven principles being used in tandem in one interface versus the

omission of many of the principles in another. While evidence was generated to
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suggest that the Gestalt Principles are beneficial to designers and developers, it does

not supply information as to which of these seven principles are the most impactful.

This sort of information could be attained by creating a similar version of this

experiment but with many more than just two interfaces, each with varying levels of

each of the seven principles. In this way, we could attain a better understanding of

which principles are the most beneficial and which principles can afford a lower

priority for designers. Having a better understanding of the effects each principle has

on an application’s usability and mental workload would certainly provide strong

guidelines for creating very efficient Virtual Reality applications. A project of this

undertaking would also require a much larger sample size than was used for the

experiments of this project. Only having fifteen participants made the sample size of

this experiment unsatisfactorily small, but a lack of time and resources meant that this

was as large a sample size as was achievable for this project. Ideally for future

experiments, hundreds of participants would take part to provide a much larger and

more significant sample group. This would allow for more diversity within the test

groups and more consistent data in general.

Another positive step would be to replace the XBOX One gamepad which was used

with motion controls for the experiment. The future of VR almost certainly lies with

motion controls. Using a gamepad takes away from the immersive nature of VR and

reminds the users that they are not actually part of the environment their visual senses

are telling them they are. Motion controls certainly help to further enhance the

immersive experience. Changing the main input method would undoubtedly influence

the system’s usability, especially when motion controls are so different from what the

majority of the general population are used to when interacting with a computer.

Seeing how the motion controls are affected by the Gestalt Principles (and vice versa)

would make for interesting research. It would also allow for the introduction of another

side of Gestalt Psychology. This paper focused on the Gestalt Principles within the

visual spectrum, but the Gestalt Principles are also applicable when it comes to haptic

perception. Incorporating tactile feedback into the research would create interesting

data which could prove useful to designers as we move towards ubiquitous Virtual

Reality devices and software. Audial perception could also be added to create an all-

encompassing methodology for creating ergonomic and satisfying VR apps. 
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For such large undertakings, it would also be beneficial to develop tasks which are

more practical and more appropriate to the platform. The tasks which were

implemented in the application developed for this research project were chosen largely

because of the feasibility of developing them in a small window of time, while still

allowing for a decent amount of variance between the levels of Gestaltism in the two

UIs. Developing software which could serve a commercial or industrial purpose, such

as a Computer Aided Design (CAD) or medical training application would provide far

more relevant data than an application as simple as was used for this experiment.
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