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ABSTRACT 

This study evaluated the performance of an artificial neural network (ANN) multi-layer 

perceptron model and a logistic regression logitboost (LR) model to predict default in 

chit funds. The two types of default investigated were late payment of 30 days and late 

payment of 90 days. The dataset was broken up into training and validation datasets 

using random sampling and K folds cross validation was used on the training dataset to 

assess performance of the tuning parameters. The validation dataset was used to compare 

performance of both algorithms. Principle component analysis (PCA) was used to 

reduce the feature set while still explaining 95% of the variance in the data. The classes 

were highly imbalanced and Synthetic Minority Oversampling Technique (SMOTE) and 

down sampling were used to overcome the class imbalance. 16 experiments were ran, 8 

for each of the two defaults. The three key metrics that were measured for these 

experiments were balanced accuracy, Area under the ROC curve (AUC) and F1 score. 

After making Bonferroni’s adjustment to the original p value statistical significance was 

set to 0.003 when comparing multiple experiments. 

 

In these experiments the ANN model had the best results for balanced accuracy, AUC 

and F1score. Statistical analysis using a paired t test showed that there was a statistically 

significant difference in the results between ANN and LR. The results of these 

experiments also showed that there was very little difference in the contribution of the 

top 20 features to the first 30 principal components, which were used to predict default. 

These features included family id, income and address. Features that had little or no 

contribution to the principle components included Commission, Auction Amount, and 

type of relation the nominee is to the chit fund member. These findings are context 

specific and in this case the context is chit funds from a digital chit fund operator in 

India. 

 

Key words: chit funds, artificial neural networks, logistic regression, default, 

predicting default 

 



 

iii 

 

ACKNOWLEDGEMENTS  

 

I would like to express my sincere thanks my dissertation supervisor Mohammed 

Mesabbah who guidance throughout the dissertation process was invaluable. I would 

also like to thank my family and friends for their support throughout. 

 

 

  



 

iv 

 

TABLE OF CONTENTS  

ABSTRACT ................................................................................................................ II 

ACKNOWLEDGEMENTS ..................................................................................... III 

TABLE OF CONTENTS .......................................................................................... IV 

TABLE OF FIGURES ............................................................................................ VII 

TABLE OF TABLES ............................................................................................ VIII 

TABLE OF ABBREVIATIONS ............................................................................... IX 

1 INTRODUCTION ................................................................................................. 1 

1.1 BACKGROUND .................................................................................................... 1 

1.2 RESEARCH PROBLEM .......................................................................................... 2 

1.3 RESEARCH QUESTION ......................................................................................... 2 

1.4 RESEARCH AIMS AND OBJECTIVES ..................................................................... 3 

1.5 RESEARCH METHODOLOGIES ............................................................................. 3 

1.6 SCOPE AND LIMITATIONS ................................................................................... 4 

1.7 DOCUMENT OUTLINE ......................................................................................... 4 

2 LITERATURE REVIEW .................................................................................... 6 

2.1 CHIT FUNDS AND DEFAULT ................................................................................. 6 

2.1.1 Rotating and Saving Credit Association (ROSCA) ................................. 6 

2.1.2 Definition of Default ............................................................................... 6 

2.1.3 Predicting Default and late payment ...................................................... 8 

2.2 MACHINE LEARNING FOR PREDICTION ................................................................ 9 

2.2.1 Machine Learning Algorithms ................................................................ 9 

2.2.2 Artificial Neural Networks .................................................................... 11 

2.2.3 Logistic Regression ............................................................................... 12 

2.3 MODEL PERFORMANCE AND PERFORMANCE ISSUES ......................................... 14 

2.3.1 Evaluating Model Performance ............................................................ 14 

2.3.2 Overfitting ............................................................................................. 17 

2.3.3 K Folds Cross Validation ..................................................................... 18 



 

v 

 

2.3.4 Type I and Type II errors ...................................................................... 19 

2.3.5 Imbalanced Classes .............................................................................. 20 

2.3.6 Sampling Techniques ............................................................................ 22 

2.4 FEATURE SELECTION AND MODEL TOOLS.......................................................... 23 

2.4.1 Model Features ..................................................................................... 23 

2.4.2 Correlation ........................................................................................... 23 

2.4.3 Principle Component Analysis ............................................................. 23 

2.4.4 Caret Package ...................................................................................... 25 

3 DESIGN AND METHODOLOGY ................................................................... 27 

3.1 DATA EXPLORATION ........................................................................................ 27 

3.2 DATA PRE-PROCESSING .................................................................................... 27 

3.3 DATA MODELLING ANN .................................................................................. 28 

3.4 DATA MODELLING LR ..................................................................................... 28 

3.5 EVALUATION OF MODELS ................................................................................ 29 

4 IMPLEMENTATION AND RESULTS ........................................................... 30 

4.1 DATA OVERVIEW ............................................................................................. 30 

4.2 DATA QUALITY ISSUES ENCOUNTERED............................................................. 30 

4.3 DATA CLEANING AND DATA MERGE IN KETTLE .............................................. 34 

4.4 DATA PRE-PROCESSING IN R ............................................................................. 36 

4.5 MODEL SETUP AND TUNING FOR ANN ............................................................. 37 

4.6 MODEL SETUP AND TUNING FOR LOGISTIC REGRESSION ................................. 40 

4.7 PROCESS TO EVALUATE THE MODELS ............................................................... 41 

4.8 CORRELATION .................................................................................................. 41 

4.9 PCA RESULTS .................................................................................................. 43 

4.10 RESULTS ....................................................................................................... 46 

4.11 COMPARISON OF MODEL RESULTS ................................................................ 59 

5. ANALYSIS, EVALUATION AND DISCUSSION ............................................. 62 

5.1 COMPARING MODELLING RESULTS TO OTHER STUDIES ......................................... 62 

5.2 MAIN CONTRIBUTORS TO PRINCIPLE COMPONENTS ............................................. 66 

6. CONCLUSIONS .................................................................................................... 70 

6.1 RESEARCH OVERVIEW .......................................................................................... 70 



 

vi 

 

6.2 PROBLEM DEFINITION .......................................................................................... 71 

6.3 DESIGN/EXPERIMENTATION, EVALUATION & RESULTS ........................................ 71 

6.4 CONTRIBUTIONS AND IMPACT ............................................................................... 73 

6.5 FUTURE WORK & RECOMMENDATIONS ................................................................ 74 

BIBLIOGRAPHY ...................................................................................................... 76 

APPENDIX ................................................................................................................. 83 

 



 

vii 

 

TABLE OF FIGURES  

FIGURE 2.1: MACHINE LEARNING APPROACHES ................................................... 10 

FIGURE 2.2: EXAMPLE OF AN ARTIFICIAL NEURAL NETWORK .................................. 11 

FIGURE 2.3: EXAMPLE OF AN ROC CURVE .......................................................... 15 

FIGURE 2.4: EXAMPLE OF A CONFUSION MATRIX .................................................. 16 

FIGURE 2.5 EXAMPLE OF OVERFITTING ............................................................... 18 

FIGURE 2.6: EXAMPLE OF K FOLD CROSS VALIDATION ........................................... 19 

FIGURE 2.7: EXAMPLE OF  PCA ......................................................................... 24 

FIGURE 2.8: EXAMPLE OF A SCREE PLOT ............................................................. 25 

FIGURE 4.1 : DATACLEANER COMPLETENESS ANALYSER OUTPUT ......................... 31 

FIGURE 4.2: STRING ANALYSER SAMPLE OUTPUT ................................................. 31 

FIGURE 4.3: SAMPLE OUTPUT FROM NUMBER ANALYSER ...................................... 32 

FIGURE 4.4: YEAR DISTRIBUTION SAMPLE OUTPUT ............................................... 33 

FIGURE 4.5: DATE/TIME ANALYSER SAMPLE OUTPUT ............................................ 33 

FIGURE 4.6: HIGH LEVEL DESIGN FOR ETL PROCESS IN KETTLE ............................ 34 

FIGURE 4.7: KETTLE TOOLS USED IN DATA INTEGRATION PROCESS ........................ 36 

FIGURE 4.8: TRAINCONTROL USED FOR EXPERIMENTS .......................................... 38 

FIGURE 4.9: TRAIN FUNCTION PARAMETERS USED ................................................ 38 

FIGURE 4.10: CLASS IMBALANCE OF RESPONSE FEATURES ................................... 40 

FIGURE 4.11: TRAIN PARAMETERS FOR LOGISTIC REGRESSION ............................. 41 

FIGURE 4.12: TOP 20 CORRELATIONS WITH DEFAULT1 ......................................... 42 

FIGURE 4.13: TOP 20 CORRELATIONS WITH DEFAULT2 ......................................... 43 

FIGURE 4.14: SCREE PLOT OF THE FIRST 30 PRINCIPLE COMPONENTS ................... 44 

FIGURE 4.15: SCREE PLOT SHOWING CUMULATIVE VARIANCE EXPLAINED .............. 44 

FIGURE 4.16: TOP 20 FEATURES THAT CONTRIBUTE TO FIRST 30 PCA .................. 45 

FIGURE 4.17: CONTRIBUTION OF BOTTOM 20 FEATURES TO FIRST 30 PCA ............ 46 

FIGURE 4.18: ROC VERSUS NUMBER OF HIDDEN NEURONS FOR MLP ................... 50 

FIGURE 4.19: ROC CURVE FOR MLP VALIDATION FOR DEFAULT1 ......................... 50 

FIGURE 4.20: COMPARISON OF MLP AND LR MODELS FOR DEFAULT1 ................... 51 

FIGURE 4.21: ROC CURVE FOR MLP FOR TEST DATA FOR DEFAULT2 .................... 56 

FIGURE 4.22: COMPARISON OF MLR AND LR FOR DEFAULT2 ............................... 57 

 



 

viii 

 

TABLE OF TABLES

TABLE 4.1 : INITIAL ACCURACY AND BALANCED ACCURACY ................................... 47 

TABLE 4.2: BALANCED ACCURACY RESULTS FOR DEFAULT1 ................................. 48 

TABLE 4.3: ROC RESULTS FOR DEFAULT1 .......................................................... 49 

TABLE 4.4: DEFAULT 1 F1 MEASURE ................................................................... 52 

TABLE 4.5: DEFAULT 1 AUC VALUES .................................................................. 53 

TABLE 4.6: DEFAULT2 BALANCED ACCURACY...................................................... 54 

TABLE 4.7: DEFAULT2 ROC RESULTS ................................................................. 55 

TABLE 4.8: F1 MEASURE FOR DEFAULT2 ............................................................. 58 

TABLE 4.9: AUC RESULTS FOR DEFAULT2 ........................................................... 58 

TABLE 4.10: T TEST RESULTS OF DIFFERENCES FOR AUC .................................... 59 

TABLE 4.11: T TEST RESULTS OF DIFFERENCES FOR BALANCED ACCURACY ............ 60 

TABLE 4.12: T TEST RESULTS OF DIFFERENCES FOR F1 SCORE ............................. 60 

TABLE A.1: DETAILS OF THE 13 INPUT FILES ........................................................ 84 

TABLE A.2 LIST OF FEATURES DROPPED IN THE EARLY STAGES OF PRE-PROCESSING

.................................................................................................................. 85 

TABLE A.3 LIST OF DATE FEATURES REMOVED ..................................................... 85 

TABLE A.4 STATISTICS FOR FIRST 30 PCAS ........................................................ 86 

TABLE A.5: CONTRIBUTION OF EACH FEATURE TO TOP 30 PCA ............................. 88 

TABLE A.6: TOP 30 CORRELATED FEATURES TO DEFAULT1 .................................. 89 

TABLE A.7: TOP 30 CORRELATED FEATURES TO DEFAULT2 .................................. 90 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

 

TABLE OF ABBREVIATIONS  

ANN:   Artificial Neural Networks 

AUC:  Area Under the receiver operating characteristic Curve 

FN:   False Negative 

FP:   False Positive 

FPR:   False Positive Rate 

LR:   Logistic Regression 

KNN  K nearest neighbour 

MLP:   Multi-Layer Perceptron 

OLS:  Ordinary Least Squares 

ROC:   Receiver Operator Characteristic 

ROSCA:  Rotating and Saving Credit Association 

TP:   True Positive 

TN:   True Negative 

TRP:   True Positive Rate 



 

1 

 

1 INTRODUCTION 

This chapter presents the background of the research topic and discusses the research 

problem outlining its importance. This is followed by the research question including 

the research hypothesis, the aims and objectives and the research methodologies. It then 

outlines the scope and limitations of the study and ends with an outline of how the rest 

of the dissertation is organised. 

1.1 Background  

Chit funds have been used for over 60 years in India as a form of savings and loans often 

used by low income households and small businesses (Anderson, 1966; Rottenberg, 

1968). Chit funds are a type of Rotating and Saving Credit Association (ROSCA) 

(Salamon, Kaplan, & Goldberg, 2009). ROSCAs are a rotating financial circle often run 

on a local basis.  

 

Rottenberg (1968) asserts that in a chit fund a group of people come together and agree 

to pay a set amount into a fund on an agreed basis. At the end of each month the group 

meet and decide who will receive this monthly fund, picking this person either by lottery 

or allocating the fund to the lowest bidder. The fund operator is paid a commission and 

any unused funds are distributed evenly throughout the group. Every person in the chit 

fund is awarded the fund once and the group continue to meet until all fund members 

have received the fund.  

 

Accurate prediction of loan default and late payment is important to lenders because it 

can negatively affect the liquidity of a lender (de Carvalho, 2015). This applies to chit 

funds and ROSCAs too, even though the lender in these cases is not a financial 

institution but the individual members of the ROSCA. Non-performing loans (NPLs) 

are loans that are in default and these can impact negatively on economic growth and 

increase the chance of financial crisis (Kelly & McCann, 2016; Li & Ng, 2013). 

 

For modelling prediction of late payment and loan default, credit risk models such as 

Ohlsons’s O-score, Altman’s Z-score and the Merton distance to default model 

(MDDM) are regularly used by financial institutions (Castagnolo & Ferro, 2014). 
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Statistical algorithms such as multiple linear regression (MLR) and LR are also regularly 

used for prediction (Bardak, Tiryaki, Bardak, & Aydin, 2016; de Carvalho, 2015). For 

the past 20 years, machine learning algorithms such as support vector machines (SVM) 

and ANN have increased in popularity for many areas of prediction (Krogh, 2008; 

Noble, 2006).  

1.2 Research Problem  

Company A is an Indian digital company that have created a platform for chit fund 

companies. This project used transactional, family connection, demographic and referral 

history data provided by Company A to predict the factors that contributed to default. 

 

One of the main challenges for chit companies is to decide if a new member can be 

admitted into a chit group. Prospective new members must provide personal ID 

information, photographs, reference letters and bank statements (if available). However, 

most chit funds still operate on a trust basis, chit funds trust their members not to default 

on their payments and the members trust the chit fund to keep their money safe. 

 

Company A currently use domain knowledge of chit fund employees to determine the 

risk of a loan default or late payment of a chit fund subscriber. The problem is that this 

domain knowledge can take years to develop and is lost with employee turnover. To 

overcome this issue Company A need an automated solution that determines the factors 

that contribute to default so they can use this knowledge to screen potential chit fund 

customers more accurately. 

 

1.3 Research question  

Can an artificial neural network model outperform a logistic regression model when 

predicting risk of default and late payment in chit funds using demographic, 

transactional, referral history and family ties data? 
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Research Hypothesis 

𝐻0 :Considering demographic, transactional, referral history and family connection 

factors, an artificial neural network model will not statistically enhance (using 95% CI), 

the prediction of risk of default as compared to considering the same factors with a 

logistic regression model using area under the ROC curve and balanced accuracy. 

 

𝐻𝑎 :Considering demographic, transactional, referral history and family connection 

factors, an artificial neural network model will statistically enhance (using 95% CI), the 

prediction of risk of default as compared to considering the same factors with a logistic 

regression model using area under the ROC curve and balanced accuracy. 

 

1.4 Research Aims and Objectives  

The aims and objectives of the research are: 

i. Critically analyse the literature regarding chit funds, default, prediction models 

and suitable configurations for the prediction models. 

 

ii. Statistically analyse the factors that can predict default in chit funds. 

 

iii. Evaluate the performance of an ANN and LR model for predicting default and 

late payment using real world chit fund data. 

 

iv. Provide empirical evidence to accept or reject the null hypothesis based on 

determining if the difference in results is statistically significant using a 95% 

confidence level. 

1.5 Research Methodologies  

The research consisted of both a literature review phase and an experimental phase. The 

literature review phase was done first and consisted of a review of the related literature 

to determine what chit funds were, the most appropriate methods to predict default and 
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typical issues encountered. The experimental phase used real world data and consisted 

of these steps: 

i. Principle component analysis was used to reduce the feature set so that 95% of 

the variance was explained.   

ii. Parameter tuning was evaluated using K folds cross validation and a hold-out 

sample was used to assess and compare model performance. 

iii. The model with the highest ROC and balanced accuracy on the validation dataset 

was considered the best model. The F1 score was also noted. The next step taken 

was to determine were the differences seen statistically significant and a paired 

t test was used. Bonferroni’s adjustment was made to the original p value when 

comparing multiple experiments. When comparing the results from a single 

experiment the p value was kept at 0.05. The result of the paired t test determined 

if the null hypothesis could be rejected. 

 

1.6 Scope and Limitations  

The scope of this research included the statistical analysis of factors that predict default 

in chit funds. This research used demographic, family connection, transaction and 

referral history data to determine which machine learning algorithm (LR or ANN) 

achieved a statistically significantly higher ROC and higher balanced accuracy when 

predicting default in chit funds. 

 

In terms of limitations of the study, a number of years of data from one Indian financial 

company was used for this study so only limited generalisations outside of this can be 

made. Other limitations include the small number of cases of default in the data and 

sampling techniques were used to overcome this issue. 

 

1.7 Document Outline   

The literature review is presented in chapter 2 along with similar studies and empirical 

evidence. Chapter 3 will cover the experimental design and methodology used. Chapter 

4 reviews the implementation and results and explains the tools and algorithm 
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parameters used. Analysis, evaluation and discussion are presented in chapter 5 which 

includes a comparison to other similar studies. The conclusions, contributions and future 

work are covered in chapter 6. 
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2 LITERATURE REVIEW  

This chapter presents the literature review. ROSCAs and group lending are discussed 

and that is followed by explanation of what default is and prediction methods related to 

it.  The next section presents Machine learning algorithms and the following two sections 

focus on ANN and LR. This is followed by a discussion on how models are evaluated, 

typical issues seen in modelling and how to overcome them. The final section deals with 

information about the modelling tool used. 

 

2.1  Chit funds and default  

2.1.1  Rotating and Saving Credit Association (ROSCA)  

A ROSCA is “an association formed upon a core of participants who make regular 

contributions to a fund which is given, in whole or in part, to each contributor in rotation” 

(Ardener & Burman, 1995). In the 60’s ROSCAs were viewed by anthropologists as a 

useful intermediate stage for developing economies where individuals learnt the benefits 

of goal orientated saving (Geertz, 1962). Now ROSCAs are recognised both for the 

financial and social support they can bring to group members (Salamon, Kaplan, & 

Goldberg, 2009).  

 

ROSCAs are similar in concept to group lending but in group lending (also called joint 

liability lending) the members borrow as a group from a microfinance institution, the 

members are self-selected and all the members of the group are jointly liable for the loan 

so if one cannot pay, the rest pay instead (Al-Azzam, Carter Hill, & Sarangi, 2012).   

 

2.1.2   Definition of Default  

Late payment is normally measured in the number of days late that a customer makes a 

payment. Kelly & McCann’s, (2016) study shows that late payment is often called days 

past due and default in financial institutions is defined as 90 days past due. From January 

2018 financial institutions used a new accounting standard called the International 
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Financial Reporting Standard 9 (IFRS 9) which also defines default as 90 days past due1. 

However it included new stages of impairment with a default of 90 days defined as a 

stage 3 impairment and a default of 30 days defined (along with other considerations) as 

a stage 2 impairment. 

 

No discussion on default would be complete without explaining expected credit loss 

(ECL).  Featherstone, Roessler, & Barry (2006) assert that PD is the probability of 

default, EAD is the exposure at default, LGD is the loss given default and ECL is defined 

as:  

ECL= PD * LGD * EAD     [1] 

Here is a worked example: 

Original home value 200,000 

Loan To Value 80% 

Loan Amount 160,000 

Outstanding loan 140,000 

Current home value 130,000 

liquidation cost 5,000 

LGD 

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑙𝑖𝑘𝑒𝑙𝑦 𝑙𝑜𝑠𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

𝐸𝐴𝐷
 

 

EAD -140,000 

Received when 

house sold 130,000 

liquidation cost paid -5,000 

Size of likely loss on 

exposure -15,000 

LGD 

 
−15,000

−140,000
 

LGD 0.11 

PD (making this 

assumption as house 

in negative equity) 50% 

ECL PD * LGD * EAD 

ECL 7,500 

                                                 
1 EBA Report on results from the 2nd EBA IFRS9 IA.pdf. (n.d.). Retrieved from 

https://www.eba.europa.eu/documents/10180/1720738/EBA+Report+on+result

s+from+the+2nd+EBA+IFRS9+IA.pdf 
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2.1.3  Predicting Default and late payment  

There are many studies that measure default and late payment (Kolodinsky & Roche, 

2009; Li & Ng, 2013). However the author found no studies on measuring default and 

late payment for chit funds or ROSCAs. Group liability lending studies were the closest 

studies found. Ahlin & Townsend, (2007) found that in group lending cooperation 

(which is measured by the amount of sharing in the group) and group members being 

related were both negatively associated with repayment.   

 

Credit risk models such as Ohlsons’s O-score, Altman’s Z-score and the Merton distance 

to default model (MDDM) are regularly used by financial institutions to measure default 

(Castagnolo & Ferro, 2014). Castagnolo & Ferro (2014) reported that studies do not 

agree on which of these financial models is the best model to predict default. They tested 

these models and found the O-score achieved the best results because it had the best 

balance between type I and type II errors (which will be explained in section 10 in this 

chapter). Statistical models such as ordinary least squares (OLS) are also used to predict 

default (Kolodinsky & Roche, 2009). OLS is the typical model used for simple linear 

regression and fits a line to the data points by ensuring the distance between the data 

points and the line is minimised.  

 

There are many studies on factors that affect mortgage default and some of these found 

that credit history, credit score and loan to value ratio have been shown to effectively 

predict mortgage default or late payment (Li & Ng, 2013; Kolodinsky & Roche, 2009). 

Credit score systems are usually better predictors of default than subjective systems 

especially when they include local economic factors and individual events (Li & Ng, 

2013) or amount of mortgage down payment and income (Kolodinsky & Roche, 2009). 

Credit scoring is the process of scoring customers usually using a model to determine 

the risk of lending to that customer (Bellotti & Crook, 2009). Different statistical and 

machine learning processes have been used since the 1930s for credit scoring (Thomas, 

Edelman, & Crook, 2002, Section 1.3).  
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2.2  Machine learning for prediction 

2.2.1  Machine Learning Algorithms 

Classification is the process of assigning a class or label to new instances during the data 

mining process i.e. predicting the correct class that the instance belongs to (Yadav & 

Shukla, 2016). A machine learning model is used to do this and the model will first need 

to be trained and validated on labelled data e.g. when emails are noted as spam that’s 

giving them a label or category. Mallapragada, Jin, Jain, & Liu (2009) defines supervised 

learning as training a model with labelled data and non-supervised learning as training 

a model with unlabelled data, which is often done using clustering. Machine learning is 

when a model learns to perform a task by using a training set of examples (Louridas & 

Ebert, 2016). It has been around since before the 1970’s and consists of both supervised 

and unsupervised learning. It’s used in many areas such as fraud detection, pattern 

recognition and image classification. 

 

There are many different machine learning algorithms that can be used for the machine 

learning process (Louridas & Ebert, 2016). Nonparametric machine learning algorithms 

such as artificial neural networks, Bayesian neural networks and support vector 

regression have been shown to outperform parametric models such as liner regression in 

benchmark tests when predicting credit default swaps spread (Son, Byun, & Lee, 2016) 

and credit default prices for certain time series predictions (Gunduz & Uhrig-Homburg, 

2011). A parametric model has a fixed number of parameters and tends to run faster than 

a non- parametric model but it makes assumptions about the data such as that the data is 

linearly related (Cai, 20142). A non-parametric model has a flexible number of 

parameters and makes less assumptions about the data so is less restrictive. See figure 

2.1 for a diagram showing the different machine learning algorithms and machine 

                                                 
2 Cai, E. (2014, January 15). Machine Learning Lesson of the Day – Parametric vs. Non-

Parametric Models. Retrieved May 5, 2018, from 

https://chemicalstatistician.wordpress.com/2014/01/14/machine-learning-

lesson-of-the-day-parametric-vs-non-parametric-models/ 

 

https://chemicalstatistician.wordpress.com/2014/01/14/machine-learning-lesson-of-the-day-parametric-vs-non-parametric-models/
https://chemicalstatistician.wordpress.com/2014/01/14/machine-learning-lesson-of-the-day-parametric-vs-non-parametric-models/
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learning approaches. Louridas & Ebert, (2016) defines supervised learning as including 

both parametric and non-parametric models that are trained on labelled data. 

Unsupervised learning is training a model on unlabelled data and involves looking for 

unknown patterns in the data. 

 

Bellotti & Crook (2009) assert that support vector machines (SVMs) have been used for 

credit scoring since the late 1990’s and when compared to other methods in a study 

achieved good performance for predicting credit card default. However there are 

numerous prediction studies that show LR or ANN achieved the highest prediction 

accuracy and some of these studies were applied to predicting consumer loan default 

and late payment (Bardak et al., 2016; Son, Byun, & Lee, 2016; Stallkamp, Schlipsing, 

Salmen, & Igel, 2012). 

 

Figure 2.1: Machine Learning Approaches 

Diagram showing the different machine learning algorithms and machine learning 

approaches (Louridas & Ebert, 2016) 

 

In a number of studies ANN achieved the best predictive performance, for example Son, 

Byun, & Lee, (2016) who used root mean squared error (RMSE) as the performance 
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measure and Tsai, Lin, Cheng, & Lin, (2009) who used misclassification and sensitivity 

as the performance measures. 

 

2.2.2  Artificial Neural Networks  

ANN algorithms work by mimicking the human learning processes and consists of 

layers and nodes similar to neurons in the brain (Were, Bui, Dick, & Singh, 2015). There 

are three types of layers and these are the input layer, the hidden layer and the output 

layer. The input layer is the first layer and this has nodes that send the values to the 

hidden layer. The hidden layer is between the input and output layer and this does a 

partial classification of the inputs and sends it on to the output layer (Krogh, 2008). The 

output layer gathers the partial classifications and uses these to determine a final 

classification. See figure 2.2 for an example of an artificial neural network. 

 

 

Figure 2.2: Example of an artificial neural network 

(Says, 2016)3 

                                                 
3 Says, D. V. R. M. (2016, August 3). The Evolution and Core Concepts of Deep 

Learning & Neural Networks. Retrieved May 1, 2018, from 

https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-

learning-neural-networks/ 
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There are a number of different neural network algorithms and the multi-layer 

perceptron with back propagation is usually considered the most popular (Were, Bui, 

Dick, & Singh, 2015; Zekić-Sušac, Šarlija, Has, & Bilandžić, 2016). Krogh (2008) 

asserts that the back propagation algorithm uses feed forward neural networks with 

continuous output. At the start of the training all the weights in the network are assigned 

small random numbers. Then for each input value the network gives an output and the 

squared difference between the output and the required output is determined and is the 

error. The sum of all these differences for the training data is the total error of the 

network and the smaller this number, the better the network. The error is sent back 

through the network enabling the model to learn from its mistakes (Gschwind, 2007). 

 

When modelling an ANN, the three main parameters that are configured are the number 

of neurons in the hidden layer, the number of hidden layers and the initialisation 

parameters (Krogh, 2008). Finding the number of hidden neurons is important for 

efficiency and its recommended to find this through experimental tests (Bardak, Tiryaki, 

Bardak, & Aydin, 2016). Zekić-Sušac et al. (2016) study ran tests using between one 

and thirty neurons and found the least error using 13 hidden neurons, while Tsai et al. 

(2009) achieved the best results with 4 hidden neurons. Bardak et al. (2016) study 

asserted that the correct number of hidden layers is important for efficiency and both 

they and Tsai et al., (2009) used one hidden layer in their experiments. One of the main 

purposes of training is to determine the optimum initialisation parameters including 

learning weights and the optimum value is normally determined by experimentation 

(Bardak et al., 2016). 

2.2.3  Logistic Regression  

LR is used when you want to predict a discreet or binary outcome, which is where there 

are a certain set number of outcomes (usually two) such as the customer will default or 

the customer will not default (Gschwind, 2007). Zekić-Sušac et al. (2016) concurs with 

this definition when they say that logistic regression is used when the outcome is 

categorical and that the outcome can be binary or multinomial. However they also point 

out that it can also be used when the outcome is ordinal which means the outcome is 
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ranked in a certain order. Linear regression is used when you want to predict a 

continuous outcome such as the height of an individual (Gschwind, 2007). LR is one of 

the most popular statistical modelling techniques for predicting financial distress. One 

of the advantages of LR is that it doesn’t require the data to be normally distributed and 

both dependant and independent features do not have to be linearly related (Bardak et 

al., 2016; Qing Cao, Parry, & Leggio, 2011). Linear regression which is related to 

logistic regression has these data requirements so is more restrictive. 

 

Sainani (2014) study shows that logistic regression works by trying to fit a line with an 

intercept and a slope to the data. The line is not fit directly to the data, instead it uses a 

transformation of the outcome called the log odds or Logit. This function shows how it  

is related to probability:  

Logit = 𝑙𝑛 (
𝑝

1−𝑝
)      [2] 

Where p is probability and ln is the natural logarithm. 

Here is a worked example: 

Let p be the Probability of 

passing a course 0.525 

1-p 0.475 

Logit Ln(0.525/0.475) 

Logit 0.100 

 

Calculus is used to find the equation of the best fit line and an example of a logistic 

regression model to determine likelihood to pass a course is:  

Logit (passing a course) = -3.5 + 0.26 * homework hours per week  

Where -3.5 is the y intercept and 0.26 is the slope of the line. The slope shows that for 

every 1 hour of homework per week, the log odds of passing the course increases by 

0.26. The slope is also called the beta coefficient or odds ratio and in this example the 

odds ratio for homework is calculated as: 

 ORhomework = exp0.26       

Where exp is the exponent and in this example the odds ratio is calculated to be 1.3. This 

means that for every hour of homework per week, the odds of passing the course increase 

by 30%. If the model contained interaction terms i.e. a model contains more than one 

predictor and the predictors affected each other either positively or negatively, then 

determining the odds ratio is more complex. For example if gender was included in the 
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model then there would be two odds ratios for homework time, one for males and another 

for females. 

 

2.3  Model Performance and performance issues  

2.3.1  Evaluating Model Performance  

Goldblatt, You, Hanson, & K Khandelwal (2016) study proposed that performance is 

measured on unseen data using one of these techniques: 1) A hold-out validation sample 

that is not used to train the model, 2) K folds cross validation which is where the dataset 

is divided into k parts and goes through k iterations of testing, 3) Bootstrapping which 

is where the dataset is sampled uniformly with the data and using replacement.  

 

When evaluating model performance many researchers such as Tsai et al. (2009) and 

Bapna, Goes, Wei, & Zhang (2011) used measures such as classification accuracy and 

root mean squared error (RMSE). The accuracy of a classifier is the probability that it 

will classify a random set of samples correctly  (Goldblatt et al. 2016). Pandey, Das, 

Pan, Leahy, & Kwapinskia (2016) defines mean squared error as: 

𝑀𝑆𝐸 =  (∑
(𝑦𝑝−𝑦𝑜)

2

𝑛

𝑛
𝑖=1 )     [3] 

Where 𝑦𝑝 is the mean predicted value, 𝑦𝑜 is the actual value and n is the number of 

values. So in essence it is the sum of the differences between the predicted and the actual 

value divided by the number of the values. RMSE is the squared root of MSE.  

 

Other researchers such as Kim & Kang (2016) and Ząbkowski & Szczesny (2012) 

proposed area under the ROC curve as a suitable measure. This is often called AUC or 

AUROC. ROC stands for receiver operator characteristic and is a popular classification 

performance method (Wray, Yang, Goddard, & Visscher, 2010). An ROC curve plots 

the true positive rate (also called TP, TPR or sensitivity) against the false positive rate 

(also called FP, FPR or 1- specificity) for different cut off points. True positives are 

when a classifier predicts an outcome such as a patient has lung cancer and that patient 

does actually have lung cancer. False positives occur when a classifier predicts an 

outcome such as a patient has lung cancer but in reality the patient does not have lung 
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cancer. See figure 2.3 for an example of an ROC curve and the actual curve is the red 

line. High accuracies will have a curve line that is close to the upper left hand corner. 

 

 

Figure 2.3: Example of an ROC curve 

Shows the true positive rate against the false positive rate (Wray et al., 2010) 

 

Bardak et al. (2016) reported that the mean absolute percentage error (MAPE) and 

regression coefficient (𝑅2) are also used. 𝑅2 is also called goodness of fit and 𝑅2 of 0.91 

means that in a regression model such as: 

Height= sex + weight * sex 

91% of the variation of the response (in this case height) can be explained by the 

predictors (in this case sex and weight).  A 𝑅2 value of 0.90 or greater shows that the 

model is able to explain a large amount of the variation in the response while a 𝑅2 of 

0.82 to 0.90 would be a model that has relatively poor performance. 

 

MAPE is considered an important comparison measurement as it is an easy to 

understand generic percentage term. A MAPE of less than 10% is considered a high 

accuracy prediction, a MAPE of between 10 and 20% is considered a good predictor, a 

MAPE of between 20 and 50% is considered a reasonable predictor and a MAPE of 

greater than 50% is an inaccurate predictor. 
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No discussion on performance would be complete without explaining a confusion matrix 

(see figure 2.4 for an example of a confusion matrix). Deng, Liu, Deng, & Mahadevan, 

(2016) study says that a confusion matrix is a 2 dimensional matrix containing results 

showing the actual and predicted classifications. The actuals are normally shown along 

the side and the predicted on the top. Using the same example as before, a true negative 

is where a classifier predicts that a patient does not have cancer and that is in fact the 

case and a false negative is where a classifier predicts that a patient does not have cancer 

when in fact the patient does.  

 

Accuracy is a measure of the total number of correct predictions divided by the total 

number of predictions:  

Accuracy=  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
     [4] 

The misclassification rate is 1 - accuracy or the total number of incorrect predictions 

divided by the total number of predictions.  

Misclassification=
(𝐹𝑃+𝐹𝑁) 

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁) 
    [5] 

 

 

Figure 2.4: Example of a confusion matrix 

For a 2 classification problem (Raschka, 20144) 

                                                 
4 Raschka, S. (2014, January 1). Confusion matrix - mlxtend. Retrieved May 6, 2018, 

from https://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/ 
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F1 score is another useful metric and is often defined as the harmonic mean of precision 

and recall (Zhang, Wang, Zhao, & Wang, 2015). Precision is what proportion of true 

positives were actually correct and is defined as:  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
        [6] 

Recall is what proportion of actual positives were identified correctly and is defined as 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
       [7] 

F1 score is widely used in text classification as a performance metric because it can be 

more informative and useful in class imbalance situations and these often occur with text 

classification.   

 

A paired t Test compares means from two different sets of results from the same set of 

data and indicates if the means are different and how statistically significant the 

difference is (Salzberg, 1997).  A one tailed test is where values from the alternative 

hypothesis are tested to determine are they greater or less than values from the null 

hypothesis (Pereira & Leslie, 2009).  A two tailed test is where a test is made to check 

for differences in either direction but the direction is not specified beforehand. 

 

Recommendations for performance include regularly assessing the performance of the 

models to ensure they include relevant measures (Kolodinsky & Roche, 2009). Yadav 

& Shukla (2016) claim that for classification the highest accuracy is the best 

performance measure provided the time to train is reasonable. 

2.3.2  Overfitting 

Van der Aalst et al. (2010) defines overfitting as when models “allow for only that which 

has been observed”. In essence this means they have poor generalisation capabilities and 

the results vary greatly when new data is introduced to the model and their prediction 

accuracy reduces. This can happen when too much data is used to train the model and is 

mitigated by ensuring that enough data is used to test the model, either by using a hold-

out validation sample that is not used to train the model or using a process such as k 

folds cross validation which will be explained in the next section. When using a hold-

out sample different proportions are sometimes used to determine the optimum 
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performance, such as 70% for training and 30% for validation for one test and then 60% 

for training and 40% for validation for the next test. See figure 2.6 for an example of 

overfitting.  

 

 

Figure 2.5 Example of overfitting 

A model with 8 data points represented by the small black lines, the green line is a 

model that under fits the data that only passes through three of the data points, the 

purple line is an example of overfitting the data and the blue line is the best model 

that makes good approximations between the data points (Krogh, 2008). 

 

2.3.3  K Folds Cross Validation  

K folds cross validation is a popular technique used to evaluate performance of 

classification (Wong & Yang, 2017; Yadav & Shukla, 2016). It works by randomly 

dividing a dataset into k folds of approximately equal size. Every fold is used to test the 

model with the other k-1 folds are used to train the model for each iteration and this is 

repeated until all folds have been used to test the model and the other folds used to train 

the model. The accuracy is achieved by averaging across the k iterations (Goldblatt et 

al., 2016). See figure 2.7 for a diagram that explains the process. 
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Figure 2.6: Example of k fold cross validation 

In each iteration the hold out fold (which is the dark square) is left out of the training 

sample and used for testing instead (Goldblatt et al., 2016). 

 

For large datasets (i.e. datasets with more than 100,000 instances), k folds cross 

validation has been shown to achieve higher accuracy than using a hold-out validation 

sample (Yadav & Shukla, 2016). Yadav & Shukla (2016) claim that the in k folds cross 

validation the data is normally split into two parts i.e.k=2. However studies such as 

Goldblatt et al., 2016 recommend using k of 5 or 10 to get less biased estimates. For 

large datasets using a hold-out sample to test is the typical recommended choice (Yadav 

& Shukla, 2016). However Yadav & Shukla (2016) study shows that for large datasets 

the time trade-off for using k folds validation over hold out validation is worth the 

improvement in accuracy it brings.  

2.3.4  Type I and Type II  errors 

Pereira & Leslie (2009) define a hypothesis test as a framework that enables testers to 

make decisions based on a set of statistical methods. It is used to determine the 

probability that a given statement or hypothesis is true.  There are a number of steps 

involved that start with the formulation of a null hypothesis, then the test statistic and a 

suitable significance level are chosen.  This is followed by a calculation of the 

probability and lastly the probability is compared against the significance level to 

determine if the null hypothesis can be rejected. 
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A Type I error occurs when the null hypothesis is rejected by a statistical test when it 

shouldn’t have been (Nicholson, 2014). This type of error is also known as false positive 

or the significance of the test. Nicholson (2014) defines a Type II error as occurring 

when the null hypothesis is not rejected when it should have been, while (Matuschek, 

Kliegl, Vasishth, Baayen, & Bates, 2017) defines a Type II error as “a loss in statistical 

power to detect the significance of fixed effects”. This type of error is also known as 

false negative. A decrease in Type I error (often known as α and usually set at 0.05 for 

scientific experiments) will lead to an increase in Type II error (Matuschek, Kliegl, 

Vasishth, Baayen, & Bates, 2017). In essence this means that a Type II error (often 

known as β) is inversely proportional to Type I error i.e. as one increases the other 

decreases and vice versa. A Type II error is related to statistical power by:  

Statistical Power= 1- β      [8] 

 

The Bonferroni adjustment is typically used to adjust the statistical significance of an 

experiment that consists of multiple tests (Salzberg, 1997). It consists of determining 

an adjusted value for statistical significance based on the number of tests in an 

experiment and is determined by  

𝛼 ≥ 1 − (1 − 𝛼∗)𝑛      [9] 

Where 𝛼 is the statistical significance, 𝛼∗is the adjusted statistical significance level and 

n is the number of tests in the experiment. For example if 𝛼 is set to 0.05 and there are 

16 tests in the experiment then 𝛼∗ should be 0.003. 

2.3.5  Imbalanced Classes  

Class imbalance occurs in datasets when there are many more examples of one class 

than the other (Blagus & Lusa, 2012; García & Herrera, 2009). Blagus & Lusa (2012) 

assert that class imbalance can lead to poor prediction accuracy for the minority class. 

Imbalanced data occurs in many areas such as fraud detection and medical identification 

(García & Herrera, 2009; Fernandez, Garcia, Herrera, & Chawla, 2018). Typically 

datasets have binary classifications i.e. just two classes and in imbalanced datasets the 

ratio of one class to the other can be as low as 1:100 or lower. For ratios of 1:100, the 

error of ignoring one class could be only 1% so its effect can be missed. García & 

Herrera, (2009) study says that imbalance ratio is the relation between the majority class 

and the minority class and is defined as 
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𝐼𝑅 =
𝑁−

𝑁+
      [9] 

Where IR is the imbalance ratio, 𝑁− is the total number of occurrences of the majority 

class and 𝑁+ is the total number of occurrences of the minority class. A dataset is 

imbalanced when IR is greater than 1 and datasets with an IR of 9 or above are 

considered to have a high IR. 

 

The three main methods to deal with this are (García & Herrera, 2009): 

1) Internal approaches at the algorithm level – they impose a bias on the minority 

class, i.e. class with the smaller set of examples, or use weights to improve the 

prediction performance. 

2) External approaches - these are done at the data level and involve resampling the 

data in order to decrease the effect caused by the imbalance of data. This is 

usually done at the pre-process stage. 

3) Boosting approaches - use weighting and replicate minority class instances to 

improve the performance of weak classification algorithms at the pre-process 

stage.  The weighting aims to force the algorithm to give more attention to the 

minority class. They usually consist of a number of classifiers and the two main 

examples are SMOTEBoost and DataBoost-IM. 

 

Brodersen, Ong, Stephan, & Buhmann (2010) argue that for imbalanced datasets 

accuracy can be a misleading performance measure. Imbalanced datasets can result in a 

classifier that is biased towards the class with the most instances. For highly imbalanced 

datasets if the classifier classified every instance as belonging to the majority class it 

could still achieve a very high accuracy. While sampling techniques can help to mitigate 

this they can still result in an optimistic accuracy been reported. One way to deal with 

this is to report the balanced accuracy instead. Balanced accuracy is the average accuracy 

obtained on either class so in essence it is  

Balanced Accuracy = 0.5 ∗ (
𝑇𝑃

𝑇𝑃+𝐹𝑃
+

𝑇𝑁

𝑇𝑁+𝐹𝑁
)   [10] 

Classifiers that perform well on both classes have a similar accuracy and balanced 

accuracy. Kuhn (2016) study recommends to use another statistic called Kappa for 

imbalanced data or datasets where cross validation is used. They define Kappa as the 

measure of its agreement “relative to what would be expected by chance” and it is 

suitable for categorical data only. A positive Kappa shows there is an association 
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between the observed and predicted data. A value of 0 indicates a complete lack of 

agreement and a value of 1 shows complete agreement. Negative Kappa’s can occur and 

indicate a negative association between the observed and predicted data. Kappa would 

be 0 in the case of an imbalanced dataset with 5% of one class label and 95% of the 

other, which predicted all instances to be the majority class.  

2.3.6  Sampling Techniques  

Down sampling (also called under sampling) will randomly sample a dataset so that all 

classes have the same frequency as the minority class and so it reduces the set of 

instances (García & Herrera, 2009). The aim is to balance datasets, to improve the 

classification accuracy and reduce bias for the minority class instances. Blagus & Lusa 

(2012) reported that generally under sampling improves prediction accuracy while 

oversampling does not. They also said that under sampling works by removing a subset 

of samples from the majority class so there is no class imbalance. Under sampling also 

has the benefit of reducing the training time as the set of instances to work with is 

reduced to match the minority class (Fernandez et al., 2018). Problems associated with 

under sampling are that the variance of the classifier is increased, useful examples for 

training may end up being discarded especially for high imbalance ratios and the 

generalisability of the classifier can be affected.  

 

Up-sampling (also called oversampling) is where the minority class instances are 

replicated in the dataset so they ratios of one class to another are equal (García & 

Herrera, 2009). One of the most popular techniques is SMOTE which stands for 

Synthetic Minority Oversampling Technique and its aim is to improve random 

oversampling (Blagus & Lusa, 2012). It works by generating synthetic samples from the 

minority class using the information available in the data. In tests Blagus & Lusa (2012) 

found SMOTE to be less effective than random under sampling for high dimensional 

data with most classifiers. However Fernandez et al. (2018) study says that SMOTE is 

now the standard method to deal with imbalanced data because it has a simple design 

and robust when applied to different datasets. Another oversampling technique is 

Random Oversampling Examples (ROSE) that generates synthetic balanced samples but 

generally results is less accurate results than SMOTE (Lunardon, 2015).   
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2.4  Feature selection and model tools  

2.4.1  Model Features  

In terms of features to use in the model, Sharma & Zeller (1997) found some interesting 

results such as family ties, measured by how many relatives were in the group, have a 

negative impact on repayment of group loans and religiousness measured by how many 

times a day group members prayed had a positive impact on repayment rates. They also 

found that groups with a high percentage of phone ownership had a positive correlation 

with repayment rate. Ahlin & Townsend (2007) found that family ties were negatively 

associated with repayment rate in group lending and they found that areas that instigated 

a village wide shut down to a defaulter had a positive association with repayment rate. 

Bellotti & Crook (2009) used Support vector machines to find the most useful features 

to predict default and they also found that the type of product was an important predictor 

of default. 

 

2.4.2  Correlation 

Park & Allaby (2017) define correlation as a “measure of association between two 

variables”. Two variables can be positively correlated which means as one increases the 

other also increases or negatively correlated, which is where one variable increases the 

other variable decreases. Pearson’s correlation measures the linear relationship between 

two variables. The values are measured from 0 to 1 with values closer to 0 indicating a 

weak association and values closer to 1 indicating a strong association. 

 

2.4.3  Principle Component Analysis  

Principle Component Analysis (PCA) is used to reduce the number of features in a 

dataset while still capturing as much information as possible (Hooper, 2012; Polyak & 

Khlebnikov, 2017). The aim is to explain the majority of the variation while using a 

much smaller feature set. Polyak & Khlebnikov (2017) study reports that PCA is often 

used in pattern recognition, neurobiology and risk management. PCA works by finding 

the eigenvectors associated with the largest eigenvalues of a hyperplane, which are 

known as the principle components. Eigenvalues are created from a covariance matrix. 
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Allaby (2010) describes an eigenvector as the “loading of a feature on a component” 

which is measured by the correlation between the feature and the new component. See 

figure 2.8 for a visual example of PCA. The first principle component will explain the 

largest variability in the data and the second will explain the second largest and so on. 

In PCA the original features are replaced with uncorrelated features or components that 

are orthogonal to each other (Upton & Cook, 2014). PCA has some limitations such as 

it is sensitive to outliers and sensitive to uncertainties in the underlying data. 

 

 

Figure 2.7: Example of  PCA 

In the original data space and the component space (Scholz, n.d.5). You can see PC1 

is orthogonal to PC2. 

 

A scree plot is often used to visually show the proportion of variation explained by the 

principle components (Upton & Cook, 2014). See figure 2.9 for an example of a scree 

plot. 

 

                                                 
5 Scholz, M. (n.d.). PCA - Principal Component Analysis. Retrieved April 29, 2018, 

from http://www.nlpca.org/pca_principal_component_analysis.html 
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Figure 2.8: Example of a scree plot 

In this example the first three components explain the majority of the data and the 

inflection point occurs after that (Williams, 2016). 

 

Exploratory factor analysis (EFA) is a related technique however in EFA the aim is to 

find common factors by finding the latent structure of the dataset and to explore 

underlying theoretical constructs (Hooper, 2012). 

2.4.4  Caret Package 

The caret package is one of the most popular machine learning packages in R which is 

a statistical tool. Kuhn (2008) defines caret as classification and regression training and 

confirms that it contains many tools to develop predictive models. Its aim is to simplify 

the process to build different predictive models, to enable tuning of many of the 

parameters in the models and to build a framework that can be easily extended to enable 

parallel processing. The package contains functionality for data splitting, pre-

processing, and modelling and comparing model results. The function 

createDataPartition can be used to create stratified random splits in a dataset and creates 

these within each class.  
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Kuhn (2008) asserts that many models cannot run with predictors that have a single 

unique value, which are also known as zero variance predictors. When the data is 

partitioned into test and training sets this can also cause other features that were 

previously not zero variance to become zero variance or near zero variance, which can 

cause training to fail. Also when sampling techniques such as down sampling are used 

this can result in much less data been used and can cause features that had good variance 

to become near zero variance. There is a caret function called nearZeroVar that can 

return the index of a dataset column number that meets these criteria: 1) percentage of 

unique values is less than 20%, 2) ratio of the most frequent to the second most frequent 

is greater than 20.   

 

Some models such as linear models and neural networks have poor performance when 

there is a high correlation between predictors i.e. when predictors are strongly associated 

(Kuhn, 2008). Principle component analysis removes correlations so can be used to 

reduce this affect. Once the set of predictors is finalised the values may need to be 

transformed. Some models such as support vector machines or neural networks need the 

predictors to be scaled and the pre-process function can be used to do this. 

 

This chapter presented the literature review. It discussed group lending and ROSCAs 

and explained what default it and how is measured. Methods to predict default were 

discussed with the focus on two of the most popular current methods which are ANN 

and LR. Model performance and typical issues encountered such as overfitting and 

imbalanced data were discussed. Principle component analysis is used to reduce the 

feature selection to a manageable amount and that was presented along with information 

about the tool used to model the data. The next chapter will discuss the experimental 

design and methodology used. 
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3 DESIGN AND METHODOLOGY 

This chapter presents the experimental design and methodology used. It describes the 

processes used, names some of the tools used for analysis and explains the main aim of 

each of the five steps. 

3.1  Data Exploration 

In Data exploration a data familiarisation exercise is completed and the data is searched 

for typical data quality issues such as date inconsistencies and categorical field 

inconsistencies. In this experiment, data exploration was done in two phases. The initial 

phase was done using Microsoft Excel and the second phase was performed using a data 

profiling tool called DataCleaner. The source files were in excel format and were opened 

in excel to undergo basic analysis such a visual check of the field names, the order of 

the features in the input files and the types of data in each field and the files were then 

converted into csv format. The main analysis was done in DataCleaner6 and it looked 

for typical data quality issues such as inconsistency in field values. 

3.2  Data Pre-processing  

Data pre-processing is used to clean and transform the data so it is suitable for data 

modelling. Data pre-processing was carried out in two steps.  Step one was completed 

in an open source extract, transform and load (ETL) tool called Kettle7. Here the 

categorical data was factorised and the source files were merged into one file. Company 

A advised that the data was inconsistent prior to 2010 so the data was analysed and all 

data that had a commencement date from 2010 was sent to the output file for modelling. 

The rest of the data was disregarded. The last thing that was done in Kettle was the 

creation of the two default features using data from a number of date features. 

                                                 
6 DataCleaner is available at https://datacleaner.org/get_datacleaner_ce 

 

7 Kettle is available at https://help.pentaho.com/Documentation/5.3/0F0/0J0/030 

https://datacleaner.org/get_datacleaner_ce
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The second part of the pre-processing was carried out using the CARET package in R 

Studio8. The data was checked for data quality issues such as null values and these were 

fixed. The data was broken up into training and validation datasets to enable parameter 

tuning using the training dataset and performance assessment using the validation 

dataset. The data was then centred and scaled to normalise it for the next stage which 

was principle component analysis (PCA). PCA was used to reduce the number of 

features to a more manageable form while still explaining most of the variance in the 

data. 

3.3  Data Modelling ANN 

The caret package in R studio was used for the data modelling element for ANN. 

Parameter tuning was used to tune the ANN model and the parameters tuned were the 

number of neurons in the hidden layer and the initialisation parameters. K folds cross 

validation was used in the training phase so part of the data for each the k folds was held 

out of the training fold and used for testing that fold. Sampling was used as the data was 

highly imbalanced and two different sampling techniques were used to determine the 

best one. Two separate models were created, one for each of the defaults. 

3.4  Data Modelling LR 

The caret package in R studio was also used for the data modelling element for logistic 

regression. The model was created using the most important components from the 

principle component analysis. Parameter tuning was used to tune the model and in this 

case the tuning done was on the number of iterations. Again two separate models were 

created, one for each of the defaults, a number of different sampling techniques were 

used and k folds cross validation was used. 

                                                 
8 R studio is available at https://www.rstudio.com/products/rstudio/download/ 

 

https://www.rstudio.com/products/rstudio/download/
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3.5  Evaluation of Models 

A number of statistical tests were run in R studio to determine the best model. The two 

key metrics were balanced accuracy and the AUC. The aim is to have balanced accuracy 

and AUC as high as possible. These tests were run on both the training and validation 

datasets but the comparisons were made on the results from the validation dataset. To 

determine if the differences between the models were statistically significant, a paired t 

test was run.  

 

This chapter presented the design methodology for the experiment. Data exploration was 

done first to become familiar with the data and find typical data quality issues. Then the 

data underwent a pre-processing step to merge the data files and factorise the data. The 

data was now ready for modelling. Lastly the results from both of the models were 

compared and differences in the models calculated. The next chapter outlines the 

experimental implementation and results.
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4 IMPLEMENTATION AND RESULTS 

This chapter describes the data and the data quality issues encountered and how they 

were resolved. It then describes the implementation including parameter tuning and 

algorithms used. The results are then presented using tables and charts. 

4.1  Data Overview 

The data used for this project was real world data provided by Company A and consisted 

of data from January 2004 up to December 2017 when the data was provided. The data 

was initially spread over 110 features in 13 excel files, 8 of these files were transaction 

level files and the rest were master data such as auction master and subscriber master. 

After consultation with Company A it was agreed to use transactional data with a 

commencement date of 2010 onwards as the data was incomplete prior to 2010. See 

table A.1 in appendix A for a description of the data in the 13 files.  

 

4.2  Data Quality issues encountered  

Microsoft excel was used to do the first checks on data quality, checking for inconsistent 

field values and missing values and no issues were found using this visual check.   

 

Then a data quality and data profiling tool called DataCleaner was used to do a more in 

depth check for issues. This tool ran five checks on the data. The first was a completeness 

analyser that checked for incomplete records and output them to a file. See figure 4.1 

for sample output that was run on 2500-111 to 2500-A.xlsx. This showed that there were 

14,606 incomplete records and this was due to a number of features such as RealDate 

and Remarks containing missing or blank values and these were removed from the final 

dataset. The next check was a string analyser that was run on the three string features 

and sample output from 2500-111 to 2500-A.xlsx showed useful information like the 

number of instances with null values, the number of instances with blank values and the 

max characters on nominated string features. See figure 4.2 for sample output. These 

results show that there were no instances of nulls for customer name, branch name or 

remarks but there were 28,071 instances were remarks were blank.  
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Figure 4.1 : DataCleaner Completeness Analyser output 

 

 

Figure 4.2: String Analyser sample output 
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The third check was a number analyser that checked things like the number of instances 

of nulls, the highest value, the lowest value and the median value on nominated number 

features.  See figure 4.3 for sample output that was run on 2500-111 to 2500-A.xlsx. 

This showed information such as there were no instances of nulls and the highest value 

for subamount was 94,725 and the lowest value was 0.   

 

 

Figure 4.3: Sample output from number analyser 

 

The fourth check was a Year distribution that was done on date features and this 

provided information on the amount of instances for each year and highlighted potential 

data quality issues with incorrectly input years. See figure 4.4 for an example of Year 

distribution output that was run on 3000-151 to 375-A.xlsx and showed that the earliest 

ChitTransDate was for 2009 and that there was one entry that had a RealDate of 2041. 

This was a data quality issue and the whole record was removed from the dataset. The 

last check was the date time analyser that was run on nominated date features and 

showed information like the highest and lowest date and the number of nulls. This shows 

that the lowest ChitTransDate was from 2009 and that there were no instances of nulls 

for ChitTransDate. See figure 4.5 for more information. 
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Figure 4.4: Year distribution sample output 

 

 

Figure 4.5: Date/time analyser sample output 
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4.3  Data Cleaning and Data Merge in Kettle  

Kettle was used to merge the 13 files into one, factorise the categorical features, check 

for key dates, clean some data and create the default features. Kettle is a graphical tool 

with drag and drop icons for data cleaning and data integration. Figure 4.6 is a high level 

design of the data flow, files involved and activities at each step. 

 

 

Figure 4.6: High level design for ETL process in Kettle 

 

The 8 transaction files had the same format so instead of merging the files on a key field 

they were just added to the one output file. A field called ComDate which was the 

commencement date of the first transaction was then checked to see was it 2010 or 

greater. Transactions that were before 2010 were dropped and this resulted in 74,502 

being dropped and 135,515 transactions were kept. The other files were added by 

merging on key features such as GroupID and InstNo. Company A were interested in 

the impact relatives had on default. They had a field called RelCode that was suitable 
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but its coverage was about 50% so a new ID field was created using the surname, age 

and relCode to identify the relative and this field replaced RelCode in the final output. 

After all the features were merged into one file there were 128 features. Some features 

such as SecuityMode and CPin had to be cleaned of data quality issues. These had 

characters such as “/, -“  that had to be removed and this was done using the Kettle 

Replace in a String feature. Many of the features such as Relation1 and Relation2 were 

categorical and had to be converted to numerical values and this was also done using the 

Replace in a String tool. An output file was then created with the 128 features and the 

file was checked in detail in excel by putting on the filter option and reviewing the filter 

values for each of the features. 56 of the 128 features were dropped at this first stage of 

pre-processing. The features were removed for reasons such as the field values only had 

one value besides null and so were not suitable for prediction and some features were 

duplicates created when merging the 13 files. See table A.2 in the appendix for further 

details on why these features were dropped. 

 

After consultation with Company A it was decided to predict two types of default, with 

Default1 been a late payment of 30 days or more and Default2 been a late payment of 

90 days or more. These two parameters were not readily available and so Kettle was 

used to deduce these parameters using the difference between the date of actual payment 

called ChitTransDate and date of expected payment called the AuctionDate. Once this 

useful information was gathered the 11 date features in table A.3 in the appendix were 

removed. The Kettle tools used for this data cleaning and integration task included Sort 

Rows, Merge Join, Data Validator, Filter Rows and Replace in a String. Figure 4.7 

shows some of the Kettle tools used. 
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Figure 4.7: Kettle tools used in data integration process 

4.4  Data pre-processing in R 

The data was then loaded into R Studio and each of the features were checked for 

missing values. This showed that 6 features had a high percentage of missing values and 

these were: 

Field Name 

Number of 

Nas 

As a 

% 

Relation2 131994 97% 

TenderID 121240 89% 

SNo 121240 89% 

PriceFlag 121240 89% 

CPin 113534 84% 

SecurityMode 96308 71% 

 

The choice now was to remove all six features or see which ones the caret pre-process 

function had an issue with and the latter option was chosen. The caret pre-process 

function was ran for centring, scaling, knnImput and PCA (principle component 

analysis) and this returned an error with 4 of the features (TenderID, SNo, PriceFlag and 

SecurityMode) so these were removed. The check for features with nulls showed a total 

of 8 features had one or more null and they had to be dealt with. All of these features 
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were categorical features so it was decided to set the nulls to 0 as 0 wasn’t used for any 

other categories.  Now the data was ready for training and testing.  

4.5  Model setup and Tuning for ANN 

As previously stated it was decided to tune and train separate models for each of the two 

defaults. The first model created was an ANN model and the following is a description 

of the parameters used. Kuhn et al. (2018) explain that are a number of different ANN 

algorithms available in the caret package such as multi-layer perceptron and Neural 

Networks with Feature Extraction. Neural Networks with Feature Extraction first runs 

principle component analysis on the data and then uses it in the neural network. For 

these experiment it was decided to use multi-layer perceptron however there are also a 

number of varieties of the multi-layer perceptron such as Monotone Multi-Layer 

Perceptron Neural Network and the basic multi-layer perceptron (Bergmeir et al., 2017).  

For these experiments it was decided to use the multi-layer perceptron algorithm which 

is the most popular and is a feed-forward network because it met the needs of the 

experiments.  

 

There are a number of different learning functions that can be used with it such as 

Std_Backpropagation which is the default and BackpropBatch (Bergmeir et al., 2017). 

Both of these work by taking two parameters which are the learning rate and the 

maximum output difference. The learning rate specifies the gradient descent step width 

and the maximum width specifies the difference between the output and the target value 

that is assumed to be zero error and is used to prevent overtraining. For this experiment 

Std_Backpropagation was used.  According to Bergmeir et al. (2017) the defaults used 

by the learning functions usually don’t have to be changed, however for these 

experiments it was decided to change these to determine did that lead to an improvement 

in performance. 

 

Kuhn (2008) describes how the trainControl feature can be used to hold a set of control 

parameters for the caret train model. For these experiments the trainControl used is 

shown in figure 4.8. Method of cv means cross validation, number is the number of cross 

validations which was 3 for all of the experiments as recommended by Tsai et al. (2009). 
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ClassProbs of TRUE means that class probabilities should be computed for 

classification models along with their predicted values for each resample. 

ctrl=trainControl(method = "cv",  

  number = cvnumber,  

                       classProbs = TRUE, 

                       preProcOptions = list(thresh = PCAThresh),  

                       verboseIter = TRUE,  

                       summaryFunction = twoClassSummary, 

                       sampling = samplingMethod, 

                       returnResamp='all') 

Figure 4.8: trainControl used for experiments 

 

VerboseIter of true means to print the training log, summaryFunction of 

twoClassSummary means the performance metrics for resamples are specific to 

measures suitable for two class summaries such as area under the ROC curve and 

sensitivity and specificity. Sampling is the sampling method used which for these 

experiments was SMOTE, down and none and returnResamp of all means return all the 

information on the resamples. Resamples are the data used for training taking into 

account the method used. 

 

Kuhn (2008) explains how the train function in caret is used to take a number of inputs 

and train the data using these. The train function used in these experiments is shown in 

figure 4.9. 

 

train(x=TrainNoPred,y=outcome,method = "mlp",preProcess = c("center", 

"scale","knnImpute","pca"),trControl=ctrl, 

  tuneGrid=tune_Grid1, learnFunc = "Std_Backpropagation",metric="ROC", 

initFuncParams = initFuncParams1) 

Figure 4.9: Train function parameters used 

 

In this example x is the data to train excluding the predictors, y is the response feature, 

method is mlp (multi-layer perceptron) and preProcess is set to center and scale the data 
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and perform knnImpute and pca on it before it’s trained. The pca threshold was set to 

95% which means that enough principle components were chosen to explain 95% of the 

variance in the response. There was very little guidance found in the literature on a 

suitable amount of threshold but Scribilia9 advised it depended on the application and to 

use at least 80% while Zekić-Sušac et al. (2016) used 99%. Here trControl is the 

trainControl measures mentioned previously, tuneGrid is the grid of tuning parameters 

that will be explained in detail in the next section, the learnFunc is set to 

Std_Backpropagation, the metric to pick the best fold for performance was ROC and 

initFuncParams are the parameters for the initialisation function that were also tuned 

which are the learning rate and the maximum output difference. 

 

Parallel processing was used to speed up the time it took to train the models. Caret is 

setup to handle parallel processing if it’s turned on. The modelling was run on a windows 

10 laptop with quad core processor and 8 GB of memory. As it was a windows laptop 

many of the normal parallel processing options were not available but the doParralell 

package created by Weston & Calaway (2017) was suitable so was used. This was used 

to register all 4 cores: registerDoParallel (cores=4). To ensure results were reproducible 

the seed was set to the same value in all models and was set to 107 which was just the 

random number used. 

 

For these experiments tuning was limited to the number of neurons in the hidden layer 

and the initialisation parameters. The number of hidden layers was set to one as 

recommended by Tsai et al., (2009). The configuration also used one output layer and 

tuned 1:30 neurons in the hidden layer as this was used by Zekić-Sušac et al. (2016). 

Tuning was also done on the initialisation parameters and Bardak et al., (2016) advised 

that it was best to find the optimum initialisation values using experimentation. However 

they didn’t recommend values to start with, so it was decided to start with (-0.2, 0.2) and 

                                                 
9 Scibilia, Bruno (2016, September 6). Creating Value from Your Data. Retrieved May 

7, 2018, from 

http://blog.minitab.com/blog/applying-statistics-in-quality-projects/creating-value-

from-your-data 
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move in increments of 0.1 up to (-0.5, 0.5) as the default for the algorithm was (-0.3, 

0.3).    

 

The last element that was tuned was the sampling method. Firstly the predictors were 

checked to see how imbalanced the classes were and this showed that the predictors were 

highly imbalanced. See figure 4.10 for imbalance details on one of the training datasets. 

As the datasets were broken up into training and testing using random sampling the 

percentage imbalance varied slightly between each experimental run. 

 

Field Value % 
Imbalance Ratio 
(IR) 

Default1 Not Defaulted 98.96% 95 

Default1 Defaulted 1.04%   

Default2 Not Defaulted 99.81% 532 

Default2 Defaulted 0.19%   
 

Figure 4.10: Class imbalance of response features 

 

To deal with the class imbalance it was decided to use sampling techniques. Initially 

experiments used no sampling techniques and returned very high accuracies but the class 

imbalance was so large for both response features that even if the classifier was not 

trained at all and always guessed not defaulted it would have an accuracy of 99.5%. The 

sampling techniques used were down and SMOTE as these were two popular methods 

in the studies reviewed.  6 more fields had to be dropped at this stage as when down 

sampling was used they reported the zero variance error. 

4.6  Model Setup and Tuning for Logistic Regression  

There are a number of different logistic regression algorithms available in the caret 

package such as boosted logistic regression (known as LogitBoost)  and logistic model 

trees (Kuhn et al., 2018). Sun, Zhang, & Zhou (2014) explain that LogitBoost is a form 

of gradient descent that uses logistic loss and boosting type optimisation and has been 

used successfully in web page ranking. Logistic model trees use logistic regression and 

decision tree learning for classification. In this experiment it was decided to use 

LogitBoost as it performed well for a previous study (Sun et al., 2014).  The same 
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trainControl parameters, sampling techniques, parallel processing and seed was used for 

LR as had previously been used for ANN. The call to the train model is in figure 4.11. 

 

 

train(x=TrainNoPred,y=outcome, method = "LogitBoost",preProcess = c("center", 

"scale","knnImpute","pca"),trControl=ctrl,metric = "ROC",tuneGrid=tune_Grid1)              

Figure 4.11: Train parameters for logistic regression 

 

The data was centred, scaled, and knnImpute and pca were used. The metric used to pick 

the best fold for performance was ROC and this time the tuning was called nIter which 

stands for number of iterations which Kuhn et al., (2018) explains is the number of 

boosting iterations.   

4.7  Process to evaluate the models  

It was decided to break the dataset into two parts, using a 70:30 split, with 70% used for 

training and 30% used for validation testing. Cross validation was used in the training 

dataset to help with tuning the algorithm parameters and the validation dataset was used 

for performance comparison. This method is recommended by Salzberg (1997) to avoid 

reporting incorrect statistical significance results as without it every single test run for 

tuning is a separate test and should be accounted for when determining the suitable 

statistical significance level. The main metrics used to compare the models were 

balanced accuracy and area under the curve (AUC). The class imbalance rate in table 2 

shows how imbalanced the data was so the balanced accuracy was the most appropriate 

accuracy measurement to use. AUC is another important metric often used to compare 

models as it results in an easily comparable figure. ROC and F1 measures are also used 

to compare models and so are also presented and discussed. As the hold out validation 

sample was done using previously unseen data it is a method to mimic real world 

conditions and verify the ability of the models to generalise (Gschwind, 2007). 

4.8  Correlation 

Correlation analysis was performed in R studio using the cor function and snowfall 

package for parallel processing to determine how correlated the features were to both 
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default features. The results of the top 30 Pearson correlations to Default1 are shown in 

figure 4.12. All the features would be considered to have a very weak correlations with 

default 1. The results for the top 30 correlations to Default 2 are shown in figure 4.3 and 

table A.7 in the appendix and again all features have a weak correlation to default2.  

Figure 4.12 shows that some features are positively correlated (have columns above the 

line) and some are negatively correlated (have columns below the line). The strongest 

correlations were for unexpected items such as InstNo which is the instalment number 

for which the payment was made and TransID which is transaction ID. It also contains 

some interesting finds such as Age and PRZPMTFlag (flag to indicate prize money paid 

to subscriber) are negatively associated with default. AuctionID and UnDivBF are 

positively associated with default1. Each auction held by the company has a unique ID 

so this suggests that a particular id is associated with default. UnDivBF is left over 

dividend from the previous cycle and this could suggest that chit fund members that 

have backup in the form of left over dividend are less likely to default.  

 

Figure 4.13 shows that the strongest correlation are InstNo and TransID. This is followed 

by SubAmount which is the subscription amount for a particular instalment. Again age 

and PRZPMTFlag are negatively correlated with Default2.  

 

 

Figure 4.12: Top 20 correlations with Default1 
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Figure 4.13: Top 20 correlations with Default2 

 

4.9  PCA Results  

Principle components analysis was used to reduce the number of features used as there 

were too many for modelling and the threshold was set at 95%. This meant that enough 

principle components were used to explain 95% of the variance in the data and the first 

30 principle components were needed to do this. As you can see in figure 4.14 the first 

component explains the most variance and the amount explained by each principle 

component decreases as the principle component number increases. The cumulative 

scree plot in figure 4.15 shows the first 30 components explaining 95% of the data. 

Prcomp is a built in R function and was used to do full principle component analysis as 

only limited analysis was available in caret. This function returns a number of values 

such as rotation, standard deviation and scale. The standard deviations, variances, % 

variances and cumulative variance % for the first 30 principle components are in table 

A.4 in the appendix.  
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Figure 4.14: Scree plot of the first 30 principle components 

 

Figure 4.15: Scree Plot showing cumulative variance explained 
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The contrib function in the factoextra R package was used to determine the contribution 

of each feature to each of the principle components. The corrplot package was used to 

plot the contribution of the top 20 features to the principle components.  Figure 4.16 

shows the contribution of the top 20 features to the first 30 principle components and 

shows that there is very little difference in the contribution of the top 20 features to the 

first 30 principle components. Feature RelCode is the highest at 3.33% and Age1 made 

the smallest contribution of 2.47%. 

 

Figure 4.16: Top 20 features that contribute to first 30 PCA 

 

Figure 4.17 shows the contribution of the bottom 20 features to the first 30 principal 

components. The lowest contribution was ChitAmount, AuctionAmount and 

commission. The contribution of each of the features will be discussed in detail in the 

next chapter. 
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Figure 4.17: Contribution of bottom 20 features to first 30 PCA 

 

4.10  Results  

The initial tests were run using no sampling techniques, cross validation of 3 and the 

reported accuracies were very high but the balanced accuracies were low. See table 4.1 

for details.  As balanced accuracy was so low it was decided to use two sampling 

techniques to correct for this and the techniques used were SMOTE and down.  

 

Sixteen tests were run, eight for default1 and eight for default2. The results for the 8 

tests in default1 are in table 4.2. Each of the tests included a run of both the multi-layer 

perceptron (MLP) and the boosted logistic regression (LR) models.  The same sampling 

technique was used for each test and the same cross validation of 3 and the same seed 

number so results could be compared. As stated previously the parameters that were 

tuned for MLP were the number of neurons in the hidden layer which was tuned on 1 to 

30 neurons and the parameters for the initialisation function which were tuned from 

 (-0.2, 0.2) to (-0.5, 0.5). The only parameter that was tuned for LR was the number of 

boosted iterations. As you can see the balanced accuracy results for the SMOTE 

sampling outperformed the down sampling results for all of the MLP train and test 

experiments except for initialisation parameters of (-0.5, 0.5). 
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MLP 

Train 

Accura

cy on 

MLP 

Test 

Accura

cy on 

LR 

Train 

Accura

cy on 

LR 

Test 

P 

value 

on 

Acc>N

IR 

MLP 

P 

value 

on 

Acc>N

IR LR 

1 

(-

0.4, 

0.4) 

size=

24 20 0.9927 0.9900 0.9901 0.9901 0.0000 0.5087 

2 

(-

0.3, 

0.3) 

size=

29 65 0.9986 0.9984 0.9980 0.9980 0.0000 0.3760 

                    

Defa

ult # 

Initi

al  

Best 

Tune 

MLP 

Bes

t 

Tu

ne 

LR 

Balanc

ed 

Accura

cy on 

MLP 

train 

Balanc

ed 

Accura

cy on 

MLP 

test 

Balanc

ed 

Accura

cy on 

LR 

train 

Balanc

ed 

Accura

cy on 

LR 

test 

NIR 

train  

NIR 

test 

1 

(-

0.4, 

0.4) 

size=

24 20 0.6491 0.5725 0.5000 0.5000 0.9901 0.9897 

2 

(-

0.3, 

0.3) 

size=

29 65 0.6631 0.6249 0.5263 0.5125 0.9980 0.9980 
 

Table 4.1 : Initial Accuracy and balanced accuracy 

Cells in blue indicate the best performing result for that specific category 

 

The best MLP balanced accuracy result for 30 days past due was 0.9252 which was 

achieved using initialisation function parameters of (-0.4, 0.4) and SMOTE sampling 

and 29 hidden neurons. The best result on the hold out dataset was 0.8372 also with the 

same parameters. For the LR experiments down sampling often achieved better results 

than SMOTE. The best balanced accuracy for the train dataset was 0.7615 achieved 

using down sampling with a boosted iteration of 100. The best LR result on the test 

dataset was 0.7281 achieved again on down sampling using a boosted iteration of 60. 
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Samplin

g 

Initia

l  

Best 

Tune 

MLP 

Best 

Tun

e LR 

Balanced 

Accuracy on 

MLP train 

Balanced 

Accurac

y on 

MLP test 

Balanced 

Accurac

y on LR 

train 

Balanced 

Accurac

y on LR 

test 

down 

(-0.2, 

0.2) 

size=3

0 60 0.8860 0.7895 0.7608 0.7281 

SMOTE 

(-0.2, 

0.2) 

size=2

7 40 0.9225 0.8162 0.7248 0.6742 

down 

(-0.3, 

0.3) 

size=3

0 90 0.8723 0.7851 0.6589 0.5047 

SMOTE 

(-0.3, 

0.3) 

size=2

8 70 0.9197 0.7999 0.6995 0.6862 

down 

(-0.4, 

0.4) 

size=3

0 100 0.8861 0.8051 0.7615 0.6893 

SMOTE 

(-0.4, 

0.4) 

size=2

9 75 0.9252 0.8372 0.6491 0.6201 

down 

(-0.5, 

0.5) 

size=2

6 30 0.8840 0.8101 0.7490 0.6824 

SMOTE 

(-0.5, 

0.5) 

size=2

7 75 0.9202 0.8048 0.6491 0.6201 
 

Table 4.2: Balanced Accuracy results for default1 

Cells in blue indicate the best performing result for that specific category 

 

The ROC results for default1 are shown in table 4.3. For MLP most of the SMOTE 

results were better than the down sampling results and the same was seen for LR. The 

best ROC result is the highest result and was 0.8945. This was achieved using SMOTE 

sampling, 27 hidden neurons and initialisation parameters of (-0.2, 0.2). An ROC figure 

wasn’t determined using the validation dataset but an ROC curve was drawn using the 

validation dataset and is shown in figure 27. A related feature called area under the curve 

(AUC) was calculated for the test sample and will be discussed later. 

 

The best ROC result for LR was 0.7492 that was achieved using SMOTE sampling and 

using 70 boosted iterations. A t test was done on the MLP and LR results to determine 

was the difference between these resample results statistically significant and a cut-off 

of 0.05 was used to test for significance with all values 0.05 or less considered 

statistically significant. As you can see all results are below 0.05 so all differences 

between the MLP and LR models were statistically significant. The ROC versus the 

number of hidden neurons for experiment 2 is shown in figure 4.18 and shows that as 
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the number of hidden neurons increases the ROC also increases up to 20 hidden neurons, 

after which it varies. 

 

Run 

# Sampling Initial  

Best 

Tune 

MLP 

Best 

Tune 

LR 

ROC 

on 

MLP 

train 

ROC on 

LR 

train 

p value T 

test on 

differences 

1 down 

(-

0.2,0.2) size=30 60 0.8626 0.7088 0.01 

2 SMOTE 

(-

0.2,0.2) size=27 40 0.8945 0.6887 0.00 

3 down 

(-

0.3,0.3) size=30 90 0.8529 0.7077 0.02 

4 SMOTE 

(-

0.3,0.3) size=28 70 0.8679 0.7492 0.01 

5 down 

(-

0.4,0.4) size=30 100 0.8509 0.6904 0.00 

6 SMOTE 

(-

0.4,0.4) size=29 75 0.8637 0.7258 0.01 

7 down 

(-

0.5,0.5) size=26 30 0.8801 0.7182 0.01 

8 SMOTE 

(-

0.5,0.5) size=28 75 0.8678 0.7258 0.02 
 

Table 4.3: ROC results for default1 
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Figure 4.18: ROC versus number of hidden neurons for MLP  

 

Figure 4.19: ROC curve for MLP validation for default1 
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Figure 4.19 shows the ROC curve for MLP validation dataset for default1. The ROC 

curve contains the specificity and sensitivity values at the ROC threshold of 0.50. A 

comparison of the MLP and LR results on the training dataset is shown in figure 20. The 

results show that on the training dataset MLP performed better for specificity, sensitivity 

and ROC. 

 

 

Figure 4.20: Comparison of MLP and LR models for default1 

 

The F1 score is shown in table 4.4 and the highest result for MLP for train was 0.9426 

and for validation was 0.9399, which was achieved with SMOTE sampling, initialisation 

parameters of (0.2, 0.2) and 27 hidden neurons. The highest F1 score for LR train was 

lower at 0.847 and 0.845 for validation, which was achieved with down sampling and 

30 boosted iterations.  
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Ru

n # 

Samplin

g Initial  

Best 

Tune 

MLP 

Best 

Tun

e LR 

F1 on 

MLP 

train 

F1 on 

MLP 

test 

F1 on 

LR 

train 

F1 on 

LR 

test 

1 down 

(-

0.2,0.2

) 

size=3

0 60 0.8792 0.8761 0.8363 0.8336 

2 SMOTE 

(-

0.2,0.2

) 

size=2

7 40 0.9426 0.9399 0.8127 0.8093 

3 down 

(-

0.3,0.3

) 

size=3

0 90 0.8622 0.8600 0.5046 0.5093 

4 SMOTE 

(-

0.3,0.3

) 

size=2

8 70 0.9077 0.9011 0.7609 0.7620 

5 down 

(-

0.4,0.4

) 

size=3

0 100 0.8749 0.8733 0.7040 0.7055 

6 SMOTE 

(-

0.4,0.4

) 

size=2

9 75 0.9365 0.9320 0.8173 0.8158 

7 down 

(-

0.5,0.5

) 

size=2

6 30 0.7822 0.7828 0.8472 0.8452 

8 SMOTE 

(-

0.5,0.5

) 

size=2

7 75 0.9420 0.9396 0.8173 0.8158 
 

Table 4.4: Default 1 F1 measure 

 

Table 4.5 shows AUC results and the best AUC on the train dataset was 0.925 and 0.837 

on the validation dataset. For LR the best AUC on the train dataset was 0.762 and the 

best validation result was 0.728. 
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Ru

n # 

Samplin

g Initial  

Best 

Tune 

MLP 

Best 

Tun

e LR 

AUC 

on 

MLP 

train 

AUC 

on 

MLP 

test 

AUC 

on LR 

train 

AUC 

on LR 

test 

1 down 

(-

0.2,0.2

) 

size=3

0 60 0.8860 0.7895 0.7608 0.7281 

2 SMOTE 

(-

0.2,0.2

) 

size=2

7 40 0.9225 0.8162 0.7248 0.6742 

3 down 

(-

0.3,0.3

) 

size=3

0 90 0.8723 0.7851 0.6589 0.5047 

4 SMOTE 

(-

0.3,0.3

) 

size=2

8 70 0.9197 0.7999 0.6995 0.6862 

5 down 

(-

0.4,0.4

) 

size=3

0 100 0.8861 0.8051 0.7615 0.6893 

6 SMOTE 

(-

0.4,0.4

) 

size=2

9 75 0.9252 0.8372 0.6491 0.6201 

7 down 

(-

0.5,0.5

) 

size=2

6 30 0.8840 0.8101 0.7490 0.6824 

8 SMOTE 

(-

0.5,0.5

) 

size=2

7 75 0.9202 0.8048 0.6491 0.6201 
 

Table 4.5: Default 1 AUC values 

Cells in blue indicate the best performing result for that specific category 

 

The balanced accuracy results for default2 are shown in table 4.6. Again SMOTE 

sampling performed better for all MLP but not for LR. The highest balanced accuracy 

for MLP for the training dataset was 0.9564 and this was achieved with SMOTE 

sampling, 24 hidden neurons and initialisation parameters of (-0.3, 0.3). The highest 

balanced accuracy for MLP test was 0.8381 and this was achieved with SMOTE 

sampling, 21 hidden neurons and initialisation parameters of (-0.4, 0.4). Again LR didn’t 

achieve the same levels of accuracy as MLP, with the highest LR on train recorded as 

0.8762 using down sampling and 30 iterations. The highest balanced accuracy on LR 

using the validation dataset was 0.7734 and this was achieved on down sampling and 50 

boosted iterations.   
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Ru

n # 

Sampli

ng Initial  

Best 

Tune 

MLP 

Best 

Tun

e 

LR 

Balanced 

Accuracy on 

MLP train 

Balance

d 

Accura

cy on 

MLP 

test 

Balance

d 

Accura

cy on 

LR 

train 

Balance

d 

Accura

cy on 

LR test 

9 SMOTE 

(-

0.2,0.

2) 

size=3

0 50 0.9430 0.8379 0.8328 0.7369 

10 down 

(-

0.2,0.

2) 

size=2

6 30 0.8638 0.8093 0.8762 0.7678 

11 SMOTE 

(-

0.3,0.

3) 

size=2

4 25 0.9564 0.7780 0.8392 0.7077 

12 down 

(-

0.3,0.

3) 

size=2

3 90 0.8829 0.8163 0.8699 0.7135 

13 SMOTE 

(-

0.4,0.

4) 

size=2

1 35 0.9495 0.8381 0.8674 0.7537 

14 down 

(-

0.4,0.

4) 

size=2

8 75 0.8954 0.8194 0.8537 0.7445 

15 SMOTE 

(-

0.5,0.

5) 

size=2

5 100 0.9471 0.7870 0.8321 0.7096 

16 down 

(-

0.5,0.

5) 

size=2

6 50 0.8895 0.8040 0.8337 0.7734 
 

Table 4.6: Default2 Balanced Accuracy 

Cells in blue indicate the best performing result for that specific category 

 

The ROC results for default2 are in table 4.7 and again these were only calculated on 

the training dataset and the best results for both MLP and LR were achieved using 

SMOTE sampling. MLP achieved a better result than LR and the p value on the t test 

shows this difference was statistically significant. The best MLP result was on 24 

neurons and initialisation parameter of (-0.2, 0.2) and was 0.9284, while the best LR 

result was 0.8499 and was achieved on 25 iterations. However ROC was plotted for the 

test dataset and the resulting graph is in figure 4.21. This contains the specificity and 

sensitivity at 0.50 threshold of (0.919, 0.662).  
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Run 

# Sampling Initial  

Best 

Tune 

MLP 

Best 

Tune 

LR 

ROC 

on 

MLP 

train 

ROC 

on LR 

train 

p value T 

test on 

differences 

9 SMOTE 

(-

0.1,0.1) size=30 50 0.9047 0.7935 0.01 

10 down 

(-

0.2,0.2) size=27 75 0.8801 0.7182 0.01 

11 SMOTE 

(-

0.2,0.2) size=24 25 0.9284 0.8499 0.04 

12 down 

(-

0.3,0.3) size=23 90 0.8722 0.7488 0.15 

13 SMOTE 

(-

0.3,0.3) size=21 35 0.9085 0.7916 0.00 

14 down 

(-

0.4,0.4) size=28 75 0.8950 0.7883 0.01 

15 SMOTE 

(-

0.4,0.4) size=25 100 0.9015 0.7737 0.04 

16 down 

(-

0.5,0.5) size=26 50 0.8961 0.7552 0.02 
 

Table 4.7: Default2 ROC results 

Cells in blue indicate the best performing result for that specific category 
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Figure 4.21: ROC curve for MLP for test data for default2 

 

Figure 4.22 is a box plot comparing the train dataset results using MLP and LR. As can 

be seen MLP performed better than LR in all three measurements and these results were 

calculated on the resamples available only in the training dataset. 
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Figure 4.22: Comparison of MLR and LR for default2 

 

F1 measures are shown in table 4.8 and interestingly these are very similar for MLP and 

LR for both the training and validation datasets. The F1 measure is often used to compare 

models and the highest value was for MLP for validation was 0.958 and for LR was 

0.945. AUC values for default2 are shown in table 4.9 and these show a larger variation 

between the training and validation dataset with the best MLP for training at 0.956 and 

the largest for MLP test at 0.838. LR was lower and the largest AUC for LR train was 

0.869 for 23 iterations and for LR test it was 0.773 achieved with 50 boosted iterations. 
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Run 

# Sampling Initial  

Best 

Tune 

MLP 

Best 

Tune 

LR 

F1 on 

MLP 

train 

F1 on 

MLP 

test 

F1 on 

LR 

train 

F1 on 

LR test 

9 SMOTE 

(-

0.1,0.1) size=30 50 0.9517 0.9502 0.9455 0.9446 

10 down 

(-

0.2,0.2) size=26 30 0.7822 0.7828 0.8472 0.8452 

11 SMOTE 

(-

0.2,0.2) size=24 25 0.9599 0.9584 0.9017 0.9013 

12 down 

(-

0.3,0.3) size=23 90 0.8707 0.8711 0.8542 0.8536 

13 SMOTE 

(-

0.3,0.3) size=21 35 0.9528 0.9519 0.8407 0.8407 

14 down 

(-

0.4,0.4) size=28 75 0.8923 0.8906 0.8287 0.8272 

15 SMOTE 

(-

0.4,0.4) size=25 100 0.9441 0.9430 0.9113 0.9107 

16 down 

(-

0.5,0.5) size=26 50 0.8789 0.8743 0.7147 0.7104 
 

Table 4.8: F1 measure for default2 

 

Run 

# Sampling Initial  

Best 

Tune 

MLP 

Best 

Tune 

LR 

AUC 

on 

MLP 

train 

AUC on 

MLP 

test 

AUC on 

LR 

train 

AUC 

on LR 

test 

9 SMOTE 

(-

0.2,0.2) size=30 50 0.9430 0.8379 0.8328 0.7369 

10 down 

(-

0.2,0.2) size=26 30 0.8840 0.8101 0.7490 0.6824 

11 SMOTE 

(-

0.3,0.3) size=24 25 0.9564 0.7780 0.8392 0.7077 

12 down 

(-

0.3,0.3) size=23 90 0.8829 0.8163 0.8699 0.7135 

13 SMOTE 

(-

0.4,0.4) size=21 35 0.9495 0.8381 0.8674 0.7537 

14 down 

(-

0.4,0.4) size=28 75 0.8954 0.8194 0.8537 0.7445 

15 SMOTE 

(-

0.5,0.5) size=25 100 0.9471 0.7870 0.8321 0.7096 

16 down 

(-

0.5,0.5) size=26 50 0.8895 0.8040 0.8337 0.7734 
 

Table 4.9: AUC results for default2 
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4.11  Comparison of Model Results  

A paired t test was performed on the differences in validation results for balanced 

accuracy, AUC and F1 score to determine were the differences between the ANN and 

LR models statistically significant. The statistical significance was initially set at 0.05 

but after making the Bonferroni adjustment to take into account the 16 experiments it 

was reduced to 0.003. The t test results in table 4.10 show a p value less than 0.003 for 

the one tailed test that checked were the ANN results greater than LR so the null 

hypothesis can be rejected which means that for AUC the mean of ANN results are 

statistically significantly greater than the mean of LR results. This test was performed 

on all 16 AUC results, 8 of which were for default1 and 8 for default2.  

 

Type 

of test Test details p value 

t 

statistic df 95% CI 

Alternative 

Hypothesis 

two 

tailed 

test 

on 

AUC 

Mean of ANN 

AUC results are 

significantly 

different to mean 

of LR AUC 

results 0.000001627 7.5935 15 

(0.08600206, 

0.15312294) 

true 

difference 

in means is 

not equal to 

0 

one 

tailed 

test 

on 

AUC 

Mean of ANN 

results are 

significantly  less 

than mean of LR 

results 1.0000000000 7.5935 15 

-Inf 

0.1471649 

true 

difference 

in means is 

less than 0 

one 

tailed 

test 

on 

AUC 

Mean of ANN 

results are 

significantly  

greater than 

mean of LR AUC 

results 0.0000008134 7.5935 15 

0.09196009        

Inf 

true 

difference 

in means is 

greater than 

0 
 

Table 4.10: t Test results of differences for AUC 

Cells in blue indicate the best performing result for that specific category 

 

The t test results for balanced accuracy are shown in table 4.11 and show a p value less 

than 0.003 for the one tailed test checking if the ANN results were greater than the LR 

results so again the null hypothesis can be rejected, which means that for balanced 

accuracy the mean of ANN results are statistically significantly greater than the mean of 

LR results. Again this test was performed on all 16 balanced accuracy results. 
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Type 

of test Test details p value 

t 

statistic df 95% CI 

Alternative 

Hypothesis 

two 

tailed 

test 

Mean of ANN 

BA results are 

significantly 

different to mean 

of LR results 0.0000048780 6.9219 15 

(0.07896988 

, 

0.14924262) 

true 

difference 

in means is 

not equal to 

0 

one 

tailed 

test  

Mean of ANN 

BA results are 

significantly  less 

than mean of LR 

results 1.0000000000 6.9219 15 

-Inf 

0.1430048 

true 

difference 

in means is 

less than 0 

one 

tailed 

test  

Mean of ANN 

BA results are 

significantly  

greater than mean 

of LR results 0.0000024390 6.9219 15 

0.08520769        

Inf 

true 

difference 

in means is 

greater than 

0 
 

Table 4.11: t Test results of differences for balanced accuracy 

Cells in blue indicate the best performing result for that specific category 

 

Type 

of test Test details p value 

t 

statistic df 95% CI 

Alternative 

Hypothesis 

two 

tailed 

test 

Mean of ANN F1 

results are 

significantly 

different to mean 

of LR results 0.0034260000 3.4703 15 

(0.03368243, 

0.14093007) 

true 

difference 

in means is 

not equal to 

0 

one 

tailed 

test  

Mean of ANN F1 

results are 

significantly  less 

than mean of LR 

results 0.9983000000 3.4703 15 

-Inf 

0.1314102 

true 

difference 

in means is 

less than 0 

one 

tailed 

test  

Mean of ANN F1 

results are 

significantly  

greater than mean 

of LR results 0.0017130000 3.4703 15 

 0.04320234        

Inf 

true 

difference 

in means is 

greater than 

0 
 

Table 4.12: t Test results of differences for F1 score 

Cells in blue indicate the best performing result for that specific category 
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The t test results for F1 score are shown in table 4.12 and again show a p value less than 

0.003 so the null hypothesis can be rejected, which in this case means that for F1 score 

the mean of ANN results are statistically significantly greater than the mean of LR 

results. Again this test was performed on all 16 results. 

 

This chapter described the data and explained how it was profiled using data cleaner that 

flushed out some data quality issues. It then shows how the data was cleaned, merged 

and transformed using an integration tool called Kettle. The main part of pre-processing 

such as dealing with null values, centring and scaling the data was done in R studio.  The 

configuration and implementation of the modelling was also done in R studio. The 

results achieved were shown in both tabular and graphical form and key performance 

metrics such as balanced accuracy, ROC, F1 measure and AUC were presented for both 

the MLP and LR models. It ended with the presentation of the t test results on the 

differences in results for balanced accuracy, AUC and F1 score. The next chapter 

analyses these results and compares them to other studies. 
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5. ANALYSIS, EVALUATION AND DISCUSSION 

This chapter compares the results seen in the last chapter to other published studies and 

then discusses the features that contributed to the first 30 principle components. 

 5.1 Comparing modelling results to other studies  

ANN scored well in accuracy in previous experiments and the aim is to have the highest 

accuracy possible. Tsai et al. (2009) achieved a training accuracy of 97.8% and a 

validation accuracy rate of 98.5% when predicting consumer loan default with data from 

a financial institution in Taiwan. Another study achieved a classification accuracy rate 

of 71% for validation testing when predicting company growth using Croatian company 

data (Zekić-Sušac et al. 2016). Yu, Wang, & Lai (2008) achieved an accuracy of 80% 

when predicting credit risk using a multistage neural network and ensemble learning 

approach. None of these studies mentioned data imbalance or the use of sampling 

techniques to deal with imbalanced data. 

 

This study presented balanced accuracy which tends to be lower than regular accuracy. 

No previous results on balanced accuracy for ANN models were found but Gorzałczany 

& Rudziński (2016) achieved a balanced accuracy of 89% for a fuzzy rule based model 

for predicting credit scores using financial data. For this experiment the highest balanced 

accuracy for default1 for the ANN model was 92.5% for training and 83.7% for 

validation and the average was 90.2% for training and 80.6% for validation. The highest 

balanced accuracy was achieved using SMOTE sampling, 29 hidden neurons and 

initialisation parameters of (-0.4, 0.4) which give a learning rate of -0.4 and maximum 

output difference of 0.4. The best balanced accuracy for default2 which measures 90 day 

default achieved in this study was 95.6% for training and 83.8% for validation. Again 

the best result for validation was achieved using SMOTE sampling and initialisation 

parameters of (-0.4, 0.4) and for default2 the optimum number of hidden neurons was 

21. Although the validation results are in the range of results seen in other studies they 

would not be considered in the top of the range. This may be because this is balanced 

accuracy which is usually less than regular accuracy. To get results at the top of the 

range tuning on a wider range of parameters may be required such as tuning on 1:60 

hidden neurons and using initialisation parameters of (-0.1,0.1) to (-0.9, 0.9). 
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Tsai et al. (2009) study ran tests using logistic regression models for loan default using 

Taiwanese data and achieved an accuracy of 94% for training and 92% for validation 

while Peng, Wang, Kou, & Shi (2011) achieved 86% accuracy for financial risk 

prediction using data from six different countries. Another study reported lower 

accuracy on the validation dataset without sampling of 73% and even lower again with 

oversampling of 63% (Bapna et al. 2011). However no studies were found reporting 

balanced accuracy using LR. 

 

The LR results for the experiments in this study showed the best balanced accuracy for 

default1 was 76.1% for training and 72.8% for validation and the average was 70.7% 

for train and 65.1% for validation. For default2 the best result achieved was 87.6% for 

training and 77.3% for validation and the average was 85.1% for train and 73.8% for 

validation. It should be noted that the highest validation results for both default1 and 

default2 were achieved using down sampling and 60 boosted iterations for default1 and 

50 iterations for default2. Again the key results are the validation results which were in 

the lower range of reported results. This may because balanced accuracy is reported and 

to achieve an improvement in balanced accuracy a wider range of tuning parameters 

may be required or a different logistic regression algorithm may be needed. 

 

Another popular metric used to measure performance is AUC and the aim is to have the 

highest AUC value as possible. Zekić-Sušac et al. (2016) measured this in their study on 

company growth and reported 0.684 for a model without factors and 0.675 for a model 

with factors. In Ząbkowski & Szczesny's (2012) study on insolvency in a 

telecommunications firm, they reported a AUC of 0.886 for ANN train and 0.883 for 

ANN test. Wray et al. (2010) used AUC for medical diagnosis when predicting different 

types of diseases using a classifier with a genetic predictor and achieved a wide range 

of AUC values, the highest was 0.95 and the lowest was 0.15.  

 

For this particular study, the highest AUC for ANN default1 was 0.925 for train and 

0.837 for validation and for default2 was 0.956 for train and 0.838 for the validation 

dataset. The average seen for ANN default1 for train was 0.902 and 0.806 for test and 

the average seen for default2 for train was 0.918 and 0.811 for test. Again the results for 

validation are the results to compare with other models and these compare favourably to 
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previous studies. In terms of optimum tuning parameters the best results were achieved 

using the same tuning parameters as for balanced accuracy which were SMOTE, 

initialisation parameters of (-0.4,0.4) and 29 hidden neurons for default1 and 21 for 

default2. The results from this particular study had a much greater difference between 

training and validation than Ząbkowski & Szczesny (2012). Differences in results 

between train and validation are normally seen as validation is performed on unseen data 

and it’s unusual to see such similar results for train and validation as in Ząbkowski & 

Szczesny's (2012) study.  

 

For tests on an LR model Zekić-Sušac et al. (2016) achieved an AUC of 0.735 for a 

model with no factors and 0.573 for a model with factors. For this particular experiment, 

the maximum AUC achieved for LR for default 1 was 0.762 for train and 0.728 for 

validation and for default2 was 0.870 for train and 0.773 for validation. For default1 the 

average seen was 0.701 for train and 0.651 for validation and for default2 the average 

seen was 0.835 for train and 0.728 for validation. It’s worth noting that again the highest 

validation results for both default1 and default2 were achieved using down sampling 

with 60 boost iterations for default1 and 50 for default2. Again when comparing the 

validation results in this experiment against what other studies have reported the results 

are about average and a wider range of tuning on boosted iterations or different 

algorithms may have been required to achieve better results. 

 

Another popular measure to compare classifier performance is the F1 score and again 

the aim is to have the highest F1 score possible. Page et al. (2015) used this to assess the 

performance of a number of different classifiers such as k nearest neighbour, logistic 

regression and support vector machines. They found that logistic regression had the 

highest average F1 score of 0.912 when predicting medical seizures in patients although 

their sample size of 10 was very small. Another study reported F1 scores in the range of 

0.207 to 0.850 when predicting text classification with support vector machines and 

Naïve Bayes (Zhang et al., 2015).   

 

This experiment achieved a max F1 score for ANN default1 of 0.943 for training and 

0.940 for validation and an average of 0.891 for training and 0.888 for validation. The 

results for LR were lower at 0.847 for training and 0.845 for validation and an average 
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of 0.763 for train and 0.762 for validation. For default2 the results were similar to 

default1 at 0.960 for ANN training and 0.958 for ANN validation and an average of 

0.904 for training and 0.903 for validation. In terms of tuning, SMOTE sampling 

produced the best F1 score but this time the initialisation parameters were (-0.2, 0.2) 

with 27 hidden neurons for default1 and 24 for default2. This time the results for LR 

were still lower but much closer to the ANN results at 0.945 for train and 0.945 for 

validation with an average of 0.855 for train and 0.854 for test. Again down sampling 

gave the best result for default1 with 30 boosted iterations but for default2 the best result 

was achieved using SMOTE sampling and 50 boosted iterations. The F1 score 

performance results for this experiment compare favourably to the results for other 

studies.   

 

There are a number of studies which compared the performance of the LR and ANN 

models. Zekić-Sušac et al. (2016) ran a statistical test of difference on the best ANN to 

the best LR when predicting company growth and their study found that the results were 

not statistically different. They also ran another test called McNemar’s test which is 

suitable for testing differences in nonparametric data and found that there was no 

statistically significant difference in how the ANN and LR models classified company 

growth. Gschwind (2007) compared a number of models including the ANN and LR 

models to determine which model performed best when predicting late payment of 

tenants renting properties. A performance measurement called lift was used to compare 

the models which in this case was the proportion of tenants in the top X deciles predicted 

to have a late payment, divided by the proportion in the general population. A good 

classifier should have a higher proportion in the top X deciles than the general population 

and in this study the ANN model gave the highest lift. However this study did not report 

any statistical tests of differences between the ANN and LR results so it’s not known if 

the differences reported were statistically significant. They also did not report using 

cross validation but they did run their performance measurements on the validation 

dataset using the best configuration found during training. Hsiao & Whang (2009) 

configured a number of prediction models including ANN and LR to predict financial 

insolvency for life insurers and reported that ANN achieved a higher accuracy than LR 

at 95%. However again this study did not report performing any statistical tests on the 
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differences in results between the models to determine were the differences statistically 

significant.  

 

For this particular study three metrics underwent a paired t test on the differences in 

validation results to determine where they statistically significantly and the results for 

all three tests show that the mean of the ANN results were statistically significantly 

different to the mean for LR the metrics tested. This is different to what Zekić-Sušac et 

al. (2016) reported although a review of their study showed they only ran the difference 

on the best accuracy for ANN and LR while this study ran the difference on all 16 

experiments for 3 metrics including accuracy. Overall these results show that for this 

data ANN outperformed logistic regression in the 3 key metrics that were measured. 

These findings are context specific and in this case the context is chit funds from a digital 

chit fund operator in India.   

 

Lastly it’s worth noting the factor analysis played a key role in this analysis to reduce 

the number of features to an amount that was suitable for modelling. Zekić-Sušac et al. 

(2016) study used factor analysis as well to explain 99% of the variance in their data but 

they found that results for all variables were better when not using factors because the t 

test on difference in proportions was used and was significantly more accurate. This 

particular study didn’t run tests without factors so no specific comparisons to their study 

can be made for this. 

 

5.2 Main Contributors to Principle Components  

In the last chapter it was seen that there is very little difference in the contribution of the 

top 20 features to the first 30 principal components that are used to predict default. The 

top ten contributors are RelCode, NPay, PPin, CPin, Status, AucDay, SubNo, 

TransType, RcptMode and SecurityMode. It’s interesting that RelCode is the highest 

contributor as Company A were very interested in the contribution of this feature. They 

wanted to know was this an important feature in predicting default and the results show 

it is the highest contributor to the principle components that are used to predict default. 

This feature is an id for each family name and it originally had 50% coverage. The 

remaining 50% was derived using the parent name and age to make them unique, 
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bringing the coverage up to 100%. The contribution of this feature shows that family 

name is a key contributor to default.   

 

NPay is the next highest contributor and this represents monthly net income. It makes 

sense that monthly net income is a key contributor to both types of default and this shows 

that it is. PPin and CPin are zip codes of the permanent address provided by the parent 

and the customer and came in third and fourth overall which shows that the address of 

the parent and customer is a key determinant of whether a customer will default. 

RcptMode is the mode of payment such as cheque or cash and SecurityMode is the form 

of collateral taken from the subscriber at the time of disbursing the prize money. These 

results show that mode of payment and collateral taken are important contributors to the 

principle components that are used to predict default. AucDay is the day of the month 

that the auction is held and while this may lead to a few days default if a customer is 

paid at the end of the month and the auction day is before this, this doesn’t explain why 

a customer would be 90 days in default. 

 

There are a few surprising results such as SubNo and TransType are main contributors 

to the principal components for default. SubNo is the unique id of the customer in the 

chit group who wins the auction and TransType is the type of transaction. Neither of 

these feature seem like good predictors of default but they have scored well in their 

contributions. Company A indicated that TransType should always have a value of sub 

for subscription but in fact a little over 10% of cases have a value of SBR and transtype 

is a high contributor to the principle components that are used to predict default. 

 

There are some interesting results in contributors 11 to 21, many of these are related to 

income. For example DesigID is job type and this ranks 18 out of 52 in terms of 

importance for predicting default. Another related feature is BNatureID which explains 

where customers get their income such as husband Income and rental income or from 

their own job such as gold jewel manufacturer. This scores 12 out of 52 so it’s more 

important than job type. This could be because it contains a bit more useful information 

such as if they have other sources of income such as rental income. IncomeSrc is another 

feature and that specifies whether it’s the customers own income or guardian income 

and that came 19th so one places less then job type. BPay is monthly basic income and 
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came 11th and AIncome is annual income and also 15th overall. It makes sense that 

income is an important contributor to the principle components used to predict default 

and this confirms that it is.   

 

There are other interesting results such as the actual chit group is an important 

contributor and comes 13th. This suggests that certain chit groups are more likely to 

default than others. This may be because certain chit groups are in more economically 

disadvantages areas or they put pressure on potential defaulters to pay on time or there 

is someone who will pay for the chit group members when they can’t. BranchCode is 

another related feature that indicates which branch the chit group is in and that came 

16th. This shows that like the chit group the actual branch is important and this may be 

because there are different policies or staff in place in the branches that spot potential 

defaults or coach the chit fund members in how to avoid default.   

 

Age of the customer and age of the first nominee and age of the second nominee are 

important contributors coming 20th, 21st and 25th respectively. This is an interesting 

finding and suggests that age is a reasonably important contributor for default. This may 

be because they have access to more income at certain ages such as middle age than 

other ages such as old age. Surprisingly the actual customer is not an important 

contributor to predicting default, coming 29th overall and the ID of a customer in a group 

which is measured by subscriberNo positioned better at 28th. This is unexpected and it 

shows that there are more important predictors than the actual customer such as income, 

relations and age. 

 

Features that had little or no contribution to the principle components include features 

such as Commission, AuctionAmount, ChitAmount, Prize and PRZPMTFlag which 

came 52th, 51st, 50th, 48th and 37th respectively. Commission is the amount of 

commission the chit fund organiser gets paid per auction, prize is the prize paid to the 

winner at each auction, PRZPMTFlag is a flag to indicate if a customer won the chit 

prize, AuctionAmount is the total chit value available at each auction and it’s the same 

as the chit value and ChitAmount. It will be useful to Company A to know that these 

features which are all an integral part of the chit business process make no contribution 

to the principle components that are used to predict default. There are other interesting 
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findings such as ParentType has little or no impact on the principle components as it 

came 36th overall. ParentType has values such as son of, wife of or daughter of and from 

the results it sounds like this is more like a type of relation that is sponsoring the 

customer being in the chit group. 

 

This chapter compared the results seen in the last chapter to other published studies and 

found the results were favourable for some metrics and average for others. The top ten 

contributors to the first 30 principle were presented along with other key contributors 

such as job type and income source. The next chapter is the concluding chapter and will 

discuss the research overview as well as the contribution and impact of the research.
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6. CONCLUSIONS 

This chapter presents an overview of the research and explains how the research solves 

the research problem. The experimental design and results are then presented. The next 

section discusses the contributions and impact of the research and the last section is 

suggested future work. 

6.1 Research Overview 

The four main objectives of this research were 1)Perform a detailed literature review of 

chit funds, default, prediction models and suitable configurations for prediction models; 

2)Statistically analyse the factors that can predict default in chit funds; 3)Evaluate the 

performance of an ANN and LR model for predicting default using chit fund data from 

an Indian digital chit fund operator; 4)Provide empirical evidence to accept or reject the 

null hypothesis based on the statistically significance difference in results for the two 

models using a 95% confidence level. 

 

The literature review revealed that chit funds are unique to India and are a type of 

ROSCA, formed when a group of people come together and agree to pay a specified 

amount into a fund on a monthly basis for an agreed number of months and this fund is 

won by one chit fund member each month. Default in chit funds occurs when a chit fund 

member is late with their monthly payment and the two defaults measured in this study 

were 30 days late payment and 90 days late payment.  

 

The data was provided by a chit fund operator and was spread over thirteen spreadsheet 

files that included transaction files covering the previous 9 years. Initially the data was 

profiled using a tool called DataCleaner which showed that some features in the files 

were mostly blank and highlighted a few data quality issues. Then a data integration 

graphical tool called Kettle was used to do a number of tasks including merging and 

cleaning the data. The values in the final file were then reviewed and features that only 

had one value, or were duplicates of other features created when merging files or had no 

useful information, were discarded at this stage.   
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R studio was used to pre-process and model the data. Pre-processing included replacing 

the missing values with a specified value, centring and scaling the data which normalised 

it for the next step. The next step was principle component analysis which was used to 

reduce the feature set down to enough principle components to explain 95% of the data. 

It was found through scree plot analysis and analysis of the cumulative variance that the 

first 30 principle components were required for this. 

 

The literature review showed that two of the most popular and accurate methods for 

predicting default are ANN and LR. Experiments were ran for each of the on both the 

ANN and LR modes. Results were captured and graphs were drawn for each experiment 

and these results will be summarised in section three in this chapter. This research 

focused on tuning the number of hidden neurons and the initialisation weights in the 

ANN model and the number of boosted iterations in the LR model. 

 

6.2 Problem Definition 

Company A use domain knowledge of chit fund employees to determine the risk of a 

loan default or late payment of a chit fund subscriber. The problem is that this domain 

knowledge can take years to develop and is lost with employee turnover. To overcome 

this issue Company A needed an automated solution that determines the factors that 

contribute most to default so they can use this knowledge to screen potential chit fund 

customers more accurately. This research helped solve that problem by statistically 

analysing the feature set provided to determine key contributors to default. 

6.3 Design/Experimentation, Evaluation & Results  

In this study the performance of an ANN multi-layer perceptron model and a LR 

(logitboost) model was evaluated to determine which had the best performance for 

predicting default in chit funds. Two types of default were used in this study, the first 

was late payment of 30 days and the second was late payment of 90 days. The target 

classes were highly imbalanced and only 1% of instances were defaulted for at least 30 

days and 0.2% were defaulted for at least 90 days. Two sampling methods were used to 

overcome the class imbalance and these were SMOTE sampling and down sampling. 
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Random sampling was used to break the dataset up into 70% for training and the 

remaining 30% for validation. K fold cross validation was used on the training dataset 

to assess performance of the tuning parameters. The validation dataset was used to assess 

performance of both algorithms. PCA was used to reduce the feature set and still explain 

95% of the variance in the data. In this study 16 experiments were ran, 8 for each of the 

two defaults. The three key metrics that were measured for these experiments were 

balanced accuracy, AUC and F1 score. After adjusting the p value for Bonferroni’s 

adjustment statistical significance was set to 0.003 when comparing results from 

multiple experiments. 

 

The results of these experiments revealed that the best balanced accuracy was better for 

ANN than LR (83% vs 77%), the best AUC was also higher and better for ANN than 

LR (0.84 vs 0.77) as was the best F1 score (0.958 vs 0.945). The averages for each of 

the results were also higher for ANN than LR. Statistical analysis using a paired t test 

between results of ANN and LR for AUC, balanced accuracy and F1 score showed that 

there was a statistically significant difference in the results and the one tailed test results 

showed that the mean of ANN results was greater than the mean of the LR results for all 

3 metrics. 

 

These results will be useful to Company A as previously they were relying on employee 

experience to know the important contributors to default and now they will have 

quantifiable statistical results. Previously when employees left the business their 

valuable knowledge was lost so this will help overcome that. The first thing these results 

show is that there is little difference in the top twenty contributors to default. Expected 

features such as family id, net monthly income and permanent address are important 

features when determining default. So too are the mode of payment and the collateral 

taken. There are unexpected results such as unique id of the customer in the chit group 

and the type of transaction are both important contributors. 

  

As expected, income and income sources are important contributors and a number of 

these related features score well for contribution to principle components. Certain chit 

groups and certain chit branches are more likely to default than others. Company A could 

use this information to determine are there differences in how chit groups or branches 
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are run or are the only differences due to experience of staff. This could be used to drive 

an update of policies or increase staff training in areas of poor performance. Key features 

in the business such as chit amount, auction amount and prize make very little 

contribution to predicting default while age did make a good contribution. The 

correlation results show a weak positive association of certain features with both types 

of default. Age and the prize money flag are negatively associated with both types of 

default. This suggests that as a chit fund member gets older they are less likely to default 

and when a chit fund member wins the prize they are less likely to default.   

 

6.4 Contributions and impact  

The main contribution this study has are the one tailed t test experimental results 

indicating that there was a statistical significant difference in means between ANN and 

LR for balanced accuracy, AUC and F1 score and that the true difference in means is 

greater than 0. This means that ANN was shown to perform better than LR for all three 

metrics. Previous published studies compared the performance of these two machine 

learning algorithms and either found the difference in performance not to be statistically 

significant or did not run a statistical test on the difference. To the best of my knowledge, 

this is the first study to find a difference in the results for ANN and LR that was 

statistically significant.  

 

Statistical significance was initially set at 0.05 but after Bonferroni’s adjustment for the 

16 experiments this was reduced to 0.003 and all the p values for the two tailed test and 

one tailed test (testing mean of ANN was greater than LR), were less than 0.003. These 

results show that for this study the null hypothesis can be rejected and the alternative 

hypothesis can be accepted. The alternative hypothesis is: 

𝐻𝑎: considering demographic, transactional, referral history and family connection 

factors, an artificial neural network model will statistically enhance (using 95% CI), the 

prediction of risk of default and late payments as compared to considering the same 

factors with a logistic regression model using area under the curve and balanced 

accuracy. 
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The next contribution this study has is in analysing chit fund data. Of the journal articles 

reviewed for this study, there were no studies found that analysed reasons for late 

payment or default for chit funds. However there were some studies on reasons for late 

payment in group lending which are similar to chit funds. The results of these 

experiments showed that there was very little difference in the contribution of the top 20 

features to the first 30 principal components, which were used to predict default.  

 

The actual experimental results achieved only average results for balanced accuracy and 

AUC when compared to previous studies and this suggests that more tuning of 

parameters or different algorithms are required. Interestingly the F1 score results were 

higher than two previous studies, although these studies were not measuring default or 

late payment.   

 

6.5 Future Work & recommendations  

There are a number of items that could be considered for future work. Company A have 

indicated they would like a risk score for each individual customer. This risk score will 

be similar to a credit score used to make decisions about whether to grant a loan or not, 

but it will vary over time even when all other attributes remain constant. An automated 

method of computing the risk score will enable chit funds to scale up faster and ensure 

that domain knowledge stays within the company. For each feature, specific data ranges 

and categories will be provided and for each specific category a score will be provided. 

For each potential chit fund member, the scores can be added over all the features and 

categories and based on the total risk score a decision can be made on whether or not to 

approve a new chit fund member. 

 

Future work could also focus on correcting the limitations of this study which are its 

focus on 2 types of default only and not investigating any interactions between the 

features. Interesting interactions to study include a) how does the impact of having a 

number of family members in the same group affect default rates; b) how does screening 

affecting rates of default (could be measured by if there is a nominee); c) how does 

screening by a relative affects default. It would be interesting to determine the features 
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that contribute to other types of late payment such as late payment of 1 day and late 

payment of 10 days and the features that contribute to early payment. 
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APPENDIX  

File 

# 
Name of File 

Num of 

rows  
Brief description of data in file 

1 
2500-111 to 2500-

A.xlsx 
31719 

Transaction file containing details like 

date of transaction, customer number, 

customer name and branch name. 

2 
3000-151 to 375-

A.xlsx 
24721 same as 2500-111 to 2500-A.xlsx 

3 
4000-109 to 5000-

176.xlsx 
24699 same as 2500-111 to 2500-A.xlsx 

4 
5000-204 to 50000-

CCD.xlsx 
43324 same as 2500-111 to 2500-A.xlsx 

5 
6000-301 to 7500-

317.xlsx 
39218 same as 2500-111 to 2500-A.xlsx 

6 
20000-A to 20000-

U.xlsx 
36621 same as 2500-111 to 2500-A.xlsx 

7 
100000-AAA to 

12000-624.xlsx 
40809 same as 2500-111 to 2500-A.xlsx 

8 
125000-A to 20000-

511.xlsx 
14733 same as 2500-111 to 2500-A.xlsx 

9 Auction Master.xlsx 6215 

Contains auction related data and one 

entry per auction date per group. 

Example of data is auction date, tender 

price, commission and instalment 

number 

10 
Customer 

Master.xlsx 
6112 

Contains customer specific info and 

entry per customer. Example of data is 

customer name, customer address, 

customer city and customer mobile. 

11 GroupMast.xlsx 537 

Contains info on each chit fund and one 

line per group. Example of data is group 

number, chit start date, first auction date 

and the number of instalments in the chit 

group. 

12 
Subscriber 

master.xlsx 
12652 

Similar to customer master but as a a 

subscriber is a chit fund member more 

fund specific such as date when 

subscriber entered into chit fund, 

nominee and relation to the nominee. 

13 TenderReceived.xlsx 24139 

Chit tender specific info such as the 

tender id, auction id, subscriber id and 

group id. 
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Table A.1: Details of the 13 input files 

 

 

 

 

Field Name Why dropped 

age3 only 38 out of 140,000 values populated 

Age_1 duplicate field so not needed 

AuctionID_1 duplicate field so not needed 

BNature used id field for these instead 

BNatureName used id field for these instead 

BranchCode_1 duplicate field so not needed 

BranchName used id field for these instead 

CCity used Cpin instead 

Cdist usinc Cpin instead 

CMobile1 unique identifiers not needed 

CMobile2 unique identifiers not needed 

CPhone unique identifiers not needed 

CanCode2 duplicate field so not needed 

CompComm same value for all instances  

CustomerName unique identifiers not needed 

CustomerName_1 unique identifiers not needed 

Dept used id field for these instead 

Desig used id field for these instead 

DesigName used id field for these instead 

Discount_1 duplicate field so not needed 

EMailID unique identifiers not needed 

Expr1 same value for all instances  

FirmCode same value for all instances  

FirmName unique identifiers not needed 

GroupID used GroupNoID instead 

GroupNo used GroupNoID instead 

GroupNo_1 used GroupNoID instead 

GroupNo_1_1 used GroupNoID instead 

GroupNo_2 used GroupNoID instead 

GroupNo_3 used GroupNoID instead 

IDCard same value for all instances  

InstNo_1 duplicate field so not needed 

JVNo Not a useful id 

JVNo_1 duplicate field so not needed 

LandMark all nulls 

MCustCode not needed as custid instead which is better 
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Nominee1 unique identifiers not needed 

Nominee2 unique identifiers not needed 

Nominee3 unique identifiers not needed 

OpenBal same value for all instances  

PANNo same value for all instances  

PCity used Ppin instead 

Pdist used Ppin instead 

PMobile1 unique identifiers not needed 

PMobile2 unique identifiers not needed 

PPhone unique identifiers not needed 

ParentName unique identifiers not needed 

ParentName_1 unique identifiers not needed 

RelCode_1 duplicate field so not needed 

relation3 only 38 out of 140,000 values populated 

Remarks no useful info 

RepBy all instances null 

RptAmt same value for all instances  

Status_1 duplicate field so not needed 

SubNo_1 duplicate field so not needed 

SubscriberNo_1 duplicate field so not needed 
 

Table A.2 List of features dropped in the early stages of pre-processing 

 

 

Field Name Reason Removed 

AuctionDate Date field not needed 

ChitTransDate Date field not needed 

ComDate Date field not needed 

EnrlDate Date field not needed 

FADate Date field not needed 

NextAucDate Date field not needed 

PRZDate Date field not needed 

PayDate Date field not needed 

RealDate Date field not needed 

RtrmDate Date field not needed 

TermDate Date field not needed 
 

Table A.3 List of date features removed  
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  st Dev eigenvalue 

variance in 

% 

cumulative Variance as a 

% 

PCA 1 3.158482 9.9760 19.1846 19.1846 

PCA 2 2.240128 5.0182 9.6503 28.8350 

PCA 3 1.854082 3.4376 6.6108 35.4458 

PCA 4 1.652303 2.7301 5.2502 40.6960 

PCA 5 1.532695 2.3492 4.5176 45.2136 

PCA 6 1.432581 2.0523 3.9467 49.1603 

PCA 7 1.379011 1.9017 3.6571 52.8173 

PCA 8 1.3362 1.7854 3.4335 56.2509 

PCA 9 1.258606 1.5841 3.0463 59.2972 

PCA 10 1.168924 1.3664 2.6277 61.9248 

PCA 11 1.093395 1.1955 2.2991 64.2239 

PCA 12 1.073395 1.1522 2.2157 66.4396 

PCA 13 1.034119 1.0694 2.0565 68.4962 

PCA 14 1.023649 1.0479 2.0151 70.5113 

PCA 15 1.02151 1.0435 2.0067 72.5180 

PCA 16 1.007098 1.0142 1.9505 74.4685 

PCA 17 0.991571 0.9832 1.8908 76.3593 

PCA 18 0.981963 0.9643 1.8543 78.2136 

PCA 19 0.976621 0.9538 1.8342 80.0478 

PCA 20 0.954983 0.9120 1.7538 81.8016 

PCA 21 0.932808 0.8701 1.6733 83.4750 

PCA 22 0.924514 0.8547 1.6437 85.1187 

PCA 23 0.905202 0.8194 1.5758 86.6944 

PCA 24 0.89897 0.8081 1.5541 88.2485 

PCA 25 0.829149 0.6875 1.3221 89.5706 

PCA 26 0.824162 0.6792 1.3062 90.8769 

PCA 27 0.78351 0.6139 1.1806 92.0574 

PCA 28 0.772123 0.5962 1.1465 93.2039 

PCA 29 0.731276 0.5348 1.0284 94.2323 

PCA 30 0.717846 0.5153 0.9910 95.2233 
 

Table A.4 Statistics for first 30 PCAs 
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  Feature % Cont 

1 RelCode 3.3317 

2 NPay 3.3304 

3 PPin 3.3264 

4 CPin 3.3241 

5 Status 3.3180 

6 AucDay 3.3163 

7 SubNo 3.3019 

8 TransType 3.3004 

9 RcptMode 3.2900 

10 SecurityMode 3.2751 

11 BPay 3.2664 

12 BNatureID 3.2333 

13 GroupNoID 3.0985 

14 CanCode 3.0801 

15 AIncome 3.0165 

16 BranchCode 3.0076 

17 Capital 2.9996 

18 DesigID 2.7509 

19 IncomeSrc 2.5908 

20 Age1 2.4674 

21 Age 2.2515 

22 ACClosed 2.1869 

23 UnDivCO 1.6844 

24 Relation2 1.6724 

25 Age2 1.6661 

26 CustCode 1.6622 

27 ChitNo 1.6615 

28 SubscriberNo 1.6615 

29 CustomerCode 1.6549 

30 UnDivBF 1.6336 

31 Relation1 1.6240 

32 InstNo 1.5530 

33 NOJ 1.4358 

34 NoofInst 1.3535 

35 CompTicketNo 1.3535 

36 ParentType 1.2109 

37 PRZPMTFlag 1.1638 

38 SubID 0.8940 

39 ChitTransID 0.8621 

40 AuctionID 0.8584 

41 TransID 0.8354 

42 DivDistribute 0.8026 

43 Dividend 0.8026 
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44 DivSubscriber 0.7896 

45 NextSubAmount 0.6264 

46 Discount 0.6126 

47 SubAmount 0.5991 

48 Prize 0.5358 

49 InstAmount 0.4892 

50 ChitAmount 0.4125 

51 AuctionAmount 0.4125 

52 Commision 0.4125 
 

Table A.5: Contribution of each feature to top 30 PCA 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

89 

 

 

Main 

variable Other feature Correlation Pvalue 

Default1 InstNo 0.0716 0.0000 

Default1 TransID 0.0501 0.0000 

Default1 ChitTransID 0.0412 0.0000 

Default1 AuctionID 0.0339 0.0000 

Default1 UnDivBF 0.0310 0.0000 

Default1 UnDivCO 0.0289 0.0000 

Default1 PRZPMTFlag -0.0267 0.0000 

Default1 Dividend -0.0262 0.0000 

Default1 DivDistribute -0.0262 0.0000 

Default1 TransType 0.0260 0.0000 

Default1 DivSubscriber -0.0239 0.0000 

Default1 Age -0.0231 0.0000 

Default1 Prize 0.0206 0.0000 

Default1 Discount -0.0190 0.0000 

Default1 CustCode 0.0189 0.0000 

Default1 CustomerCode 0.0189 0.0000 

Default1 Status 0.0188 0.0000 

Default1 NextSubAmount 0.0186 0.0000 

Default1 SubAmount 0.0177 0.0000 

Default1 CanCode 0.0171 0.0000 

Default1 ParentType -0.0152 0.0000 

Default1 NOJ 0.0138 0.0000 

Default1 Age1 -0.0133 0.0000 

Default1 SecurityMode 0.0127 0.0000 

Default1 Commision 0.0126 0.0000 

Default1 AuctionAmount 0.0126 0.0000 

Default1 ChitAmount 0.0126 0.0000 

Default1 InstAmount 0.0121 0.0000 

Default1 RcptMode -0.0097 0.0004 
 

Table A.6: Top 30 correlated features to Default1 
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name1 name2 estimate p.value 

Default2 TransID 0.0329 0.0000 

Default2 InstNo 0.0309 0.0000 

Default2 SubAmount 0.0230 0.0000 

Default2 ChitTransID 0.0228 0.0000 

Default2 Prize 0.0205 0.0000 

Default2 NextSubAmount 0.0197 0.0000 

Default2 AuctionID 0.0171 0.0000 

Default2 InstAmount 0.0164 0.0000 

Default2 Commision 0.0163 0.0000 

Default2 AuctionAmount 0.0163 0.0000 

Default2 ChitAmount 0.0163 0.0000 

Default2 UnDivCO 0.0159 0.0000 

Default2 SecurityMode 0.0147 0.0000 

Default2 UnDivBF 0.0146 0.0000 

Default2 Age -0.0127 0.0000 

Default2 PPin -0.0116 0.0000 

Default2 AIncome 0.0108 0.0001 

Default2 CustCode 0.0101 0.0002 

Default2 CustomerCode 0.0100 0.0002 

Default2 PRZPMTFlag -0.0096 0.0004 

Default2 SubscriberNo 0.0091 0.0008 

Default2 ChitNo 0.0091 0.0008 

Default2 CanCode 0.0080 0.0031 

Default2 Age1 -0.0078 0.0039 

Default2 IncomeSrc -0.0078 0.0041 

Default2 Dividend -0.0073 0.0073 

Default2 DivDistribute -0.0073 0.0073 

Default2 GroupNoID 0.0072 0.0082 

Default2 BranchCode 0.0065 0.0159 

Default2 ParentType -0.0064 0.0193 
 

Table A.7: Top 30 correlated features to Default2 
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#Code file to deal with default1 

wd="C:/CK/College/Masters_DataAnalytics/Masters_Semester6/Dissertation/Analysis

/FactorReduction" 

setwd(wd) 

library(caret) 

rm(list=ls()) 

chitLoans=read.csv("FinalOutput.csv",header=T,sep=",") 

attach(chitLoans) 

data1 <- data.frame(chitLoans) 

#throws a warning message as some variables have large number of NAs in them 

TestA=preProcess(data1,method= c("center", "scale","knnImpute")) 

result1A=sapply(data1, function(x) sum(is.na(x))) 

result1A 

 

#removing some variables as huge number of NAs in them 

#warning Std. deviations could not be computed for: SecurityMode, TenderID, SNo, 

PriceFlag 

#removed as zero variance when 

sampling=PRZFlag,OpenInstNo,ITPayee,DPD,ClosedGroup,Intimation 

data2 <- subset(data1, select = -

c(TenderID,SNo,PriceFlag,PRZFlag,OpenInstNo,ITPayee,DPD,ClosedGroup,Intimati

on)) 

#checks for NAs only 

result1A=sapply(data2, function(x) sum(is.na(x))) 

result1A 

#round all the data to 4 decimal places 

data2=round(data2,4) 

#now set nas to 0 

data2$RcptMode[is.na(data2$RcptMode)] <- 0 

data2$Status[is.na(data2$Status)] <- 0 

data2$Relation1[is.na(data2$Relation1)] <- 0 

data2$Relation2[is.na(data2$Relation2)] <- 0 

data2$RelCode[is.na(data2$RelCode)] <- 0 
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data2$PPin[is.na(data2$PPin)] <- 0 

data2$CPin[is.na(data2$CPin)] <- 0 

data2$SecurityMode[is.na(data2$SecurityMode)] <- 0 

 

#setting up the date time for all the output files 

dateTime=as.character(Sys.time()) 

dateTime=gsub(pattern=":",replacement="_",x=dateTime) 

dateTime=gsub(pattern=" ",replacement="_",x=dateTime) 

dateTime=gsub(pattern="-",replacement="_",x=dateTime) 

ModelRunDetailsFile=paste(dateTime,"ModelRunDetails",sep="_") 

ModelRunDetailsFile=paste(ModelRunDetailsFile,".csv",sep="") 

TraningFile=paste(dateTime,"trainingData",sep="_") 

TraningFile=paste(TraningFile,".csv",sep="") 

 

inTrain=createDataPartition(y=data2$Default1,times=1,p=7/10,list=FALSE) 

training=data2[inTrain,] 

write.csv(training,TraningFile) 

testing=data2[-inTrain,] 

nrow(training) 

nrow(testing) 

TrainNoPred= subset(training, select = -c(Default1,Default2)) 

TestNoPred=subset(testing, select = -c(Default1, Default2)) 

 

#setting some useful parameters 

samplingMethod="smote" 

cvnumber=3 

PCAThresh = 0.95 

 

TrainANN=function(x) 

{ 

   

  StartDetails=paste("start of MLP process",Sys.time()) 

  write.csv(StartDetails,ModelRunDetailsFile) 
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  SamplingDetails=paste("Sampling used is ",samplingMethod) 

  write.table(SamplingDetails,ModelRunDetailsFile,append=TRUE) 

  SamplingDetails=paste("Cross validation used is",samplingMethod) 

  write.table(cvnumber,ModelRunDetailsFile,append=TRUE) 

  ctrl <- trainControl(method = "cv",  

                       number = cvnumber,  

                       classProbs = TRUE, 

                       preProcOptions = list(thresh = PCAThresh), #or list(pcaComp = 30) 

                       verboseIter = TRUE, #keeps track of progress 

                       summaryFunction = twoClassSummary, 

                       sampling = samplingMethod) 

  set.seed(107) 

  tune_Grid1 = expand.grid(size = 1:30) 

  Tune_Details=paste("Tune Grid is",tune_Grid1) 

  write.table(Tune_Details,ModelRunDetailsFile,append=TRUE,sep=",") 

  initFuncParams1 = c(-0.2, 0.2) 

  initFuncParamsDetails=paste("Initialisation Function",initFuncParams1) 

  write.table(initFuncParamsDetails,ModelRunDetailsFile,append=TRUE,sep=",") 

  registerDoParallel(cores=4) # Registrer a parallel backend for train 

  getDoParWorkers() 

  TrainANN=train(x=TrainNoPred,y=outcome,method = "mlp",preProcess = 

c("center", "scale","knnImpute","pca"),trControl=ctrl, 

  tuneGrid=tune_Grid1, learnFunc = "Std_Backpropagation",metric="ROC", 

initFuncParams = initFuncParams1) 

}  

 

 

 

TrainLR=function(x) 

{ 

  StartDetails=paste("start of Log Regression process",Sys.time()) 

  write.table(StartDetails,ModelRunDetailsFile,append=TRUE) 

  SamplingDetails=paste("Sampling used is ",samplingMethod) 
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  write.table(SamplingDetails,ModelRunDetailsFile,append=TRUE) 

  ctrl <- trainControl(method = "cv", #cross validation 

                       number = cvnumber, #number of folds in the k folds cross validation 

                       classProbs = TRUE, #determines whether class probabilities should be 

computed for held-out samples during resample. 

                       preProcOptions = list(thresh = PCAThresh), #list(thresh = 0.85), #setting 

the max num of principle components to use to 30  

                       summaryFunction = twoClassSummary, 

                      sampling = samplingMethod) #will compute the sensitivity, specificity 

and area under the ROC curve: 

  set.seed(107) 

  tune_Grid1 = expand.grid(nIter = 

c(10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100)) 

  Tune_Details=tune_Grid1 

  write.table(Tune_Details,ModelRunDetailsFile,append=TRUE,sep=",") 

  registerDoParallel(cores=4) 

  getDoParWorkers() 

  TrainLR=train(x=TrainNoPred,y=outcome,method = "LogitBoost",preProcess = 

c("center", "scale","knnImpute","pca"),trControl=ctrl,metric = 

"ROC",tuneGrid=tune_Grid1)              

 }  

 

 #install.packages("doParallel") 

library(doParallel) 

outcome=as.factor(training$Default1) 

levels(outcome) <- c("NotDefaulted", "Defaulted") 

 

#Call MLP Model 

modelMLP=TrainANN(1) 

EndDetails=paste("End of MLP process",Sys.time()) 

write.table(EndDetails,ModelRunDetailsFile,append=TRUE,sep=",") 

out=prop.table(table(outcome)) 
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write.table("Ratio in training data for 

Default1",ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(out,ModelRunDetailsFile,append=TRUE,sep=",") 

trainDetils=paste("Number of rows in train is",nrow(training)) 

write.table(trainDetils,ModelRunDetailsFile,append=TRUE,sep=",") 

PCAresults=modelMLP$preProcess$rotation 

PCAresults 

write.table("PCA Results for MLP",ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(PCAresults,ModelRunDetailsFile,append=TRUE,sep=",") 

summary(modelMLP) 

modelMLP 

names(modelMLP) 

 

SizeFold1=NROW(modelMLP$control$index$Fold1) 

FoldDetails=paste("Size of Fold1 is =",SizeFold1,sep="") 

write.table(FoldDetails,ModelRunDetailsFile,append=TRUE,sep=",") 

SizeFold2=NROW(modelMLP$control$index$Fold1) 

FoldDetails=paste("Size of Fold2 is =",SizeFold2,sep="") 

write.table(FoldDetails,ModelRunDetailsFile,append=TRUE,sep=",") 

SizeFold3=NROW(modelMLP$control$index$Fold3) 

FoldDetails=paste("Size of Fold3 is =",SizeFold3,sep="") 

write.table(FoldDetails,ModelRunDetailsFile,append=TRUE,sep=",") 

bestTune=modelMLP$bestTune 

write.table("Best tune is ",ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(bestTune,ModelRunDetailsFile,append=TRUE,sep=",") 

 

result1=modelMLP$results 

result1 

write.table("Results are",ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(result1,ModelRunDetailsFile,append=TRUE,sep=",") 

 

result1=modelMLP$resample 

result1 
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write.table("Resample Results are",ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(result1,ModelRunDetailsFile,append=TRUE,sep=",") 

 

AnnMLP_File1=paste(dateTime,"ANN_MLP_HiddenUnitsModel",sep="_") 

AnnMLP_File1=paste(AnnMLP_File1,".jpg",sep="") 

jpeg(AnnMLP_File1) 

plot(modelMLP,main="ROC values verus Number of hidden units",col.main="blue", 

col.lab="blue") 

dev.off() 

 

#predict using trained data 

testMLP1=predict(modelMLP) 

out2=prop.table(table(testMLP1)) 

out3=prop.table(table(testing$Default1)) 

write.table("Ratio of Default1 in test",ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(out3,ModelRunDetailsFile,append=TRUE,sep=",") 

MLP1_outcome=paste(dateTime,"MLP1_PredictResults",sep="_") 

MLP1_outcome=paste(MLP1_outcome,".csv",sep="") 

write.csv(testMLP1,MLP1_outcome) 

 

#convert actuals and predicted back to 1 and 0 for results 

predicted=ifelse(testMLP1=="Defaulted",1,0) 

actuals=training$Default1 

 

library(pROC) 

curve1 = roc(response = actuals,  

            predictor = predicted) 

AnnMLP_ROC=paste(dateTime,"ANN_MLP_ROC_Curve",sep="_") 

AnnMLP_ROC=paste(AnnMLP_ROC,".jpg",sep="") 

jpeg(AnnMLP_ROC) 

plot(curve1,main="ROC Curve of Sensitivity verus Specificity for MLP for training 

set",col.main="blue", col.lab="blue",print.thres="best", 

print.thres.best.method="closest.topleft") 
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dev.off() 

write.table("AUC MLP Training 

Sample",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(curve1$auc,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

#output confusion matrix results to file 

cv=confusionMatrix(predicted,actuals,mode="everything") 

cv 

write.table("Confusion Matrix 

table",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(cv$table,file=ModelRunDetailsFile,append=TRUE,sep=",") 

tocsv <- data.frame(cbind(t(cv$overall),t(cv$byClass))) 

write.table("Confusion Matrix 

Results",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tocsv,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

#predict using hold out test sample 

testMLP2=predict(modelMLP,TestNoPred) 

out4=prop.table(table(testMLP2)) 

MLP1_outcomeTest=paste(dateTime,"MLP1_PredictResultsTest",sep="_") 

MLP1_outcomeTest=paste(MLP1_outcomeTest,".csv",sep="") 

write.csv(testMLP2,MLP1_outcomeTest) 

 

#convert actuals and predicted back to 1 and 0 for results 

predictedMlpTest=ifelse(testMLP2=="Defaulted",1,0) 

actualsMlpTest=testing$Default1 

 

#library(pROC) 

curve1 = roc(response = actualsMlpTest,  

             predictor = predictedMlpTest) 

AnnMLP_ROC=paste(dateTime,"ANN_MLP_ROC_CurveTestSample",sep="_") 

AnnMLP_ROC=paste(AnnMLP_ROC,".jpg",sep="") 

jpeg(AnnMLP_ROC) 
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plot(curve1,main="ROC Curve of Sensitivity against Specificity for MLP for test 

set",col.main="blue", col.lab="blue",print.thres="best", 

print.thres.best.method="closest.topleft") 

dev.off() 

 

write.table("AUC MLP Test 

Sample",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(curve1$auc,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

#output confusion matrix results to file 

cv2=confusionMatrix(predictedMlpTest,actualsMlpTest,mode="everything") 

cv2 

write.table("Confusion Matrix table Test 

Sample",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(cv$table,file=ModelRunDetailsFile,append=TRUE,sep=",") 

tocsv2 <- data.frame(cbind(t(cv2$overall),t(cv2$byClass))) 

write.table("Confusion Matrix Results Test 

Sample",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tocsv2,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

#####################################################################

### 

#Logistic Regression 

#####################################################################

### 

modelLR=TrainLR(1) 

summary(modelLR) 

modelLR 

 

EndDetails=paste("End of LR process",Sys.time()) 

write.table(EndDetails,ModelRunDetailsFile,append=TRUE,sep=",") 

bestTuneLR=modelLR$bestTune 

write.table("Best tune is ",ModelRunDetailsFile,append=TRUE,sep=",") 
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write.table(bestTuneLR,ModelRunDetailsFile,append=TRUE,sep=",") 

 

resultLR=modelLR$results 

write.table("results LR",ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(resultLR,ModelRunDetailsFile,append=TRUE,sep=",") 

 

resampleLR=modelLR$resample 

resampleLR 

write.table("resample Restults LR",ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(resampleLR,ModelRunDetailsFile,append=TRUE,sep=",") 

 

testLR1=predict(modelLR) 

prop.table(table(testLR1)) 

LR1_outcome=paste(dateTime,"LR1_PredictResults",sep="_") 

LR1_outcome=paste(LR1_outcome,".csv",sep="") 

write.csv(testLR1,LR1_outcome) 

 

#convert actuals and predicted back to 1 and 0 for results 

predictedLR=ifelse(testLR1=="Defaulted",1,0) 

actuals=training$Default1 

 

curveLR1= roc(response = actuals,  

            predictor = predictedLR) 

ROC_CurveLR=paste(dateTime,"ROC_Curve_LR",sep="_") 

ROC_CurveLR=paste(ROC_CurveLR,".jpg",sep="") 

jpeg(ROC_CurveLR) 

plot(curveLR1,main="ROC Curve of Sensitivity against Specificity for LR training 

data",col.main="blue", col.lab="blue",print.thres="best", 

print.thres.best.method="closest.topleft") 

dev.off() 

 

write.table("AUC LR Training 

Sample",file=ModelRunDetailsFile,append=TRUE,sep=",") 
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write.table(curveLR1$auc,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

cvLR=confusionMatrix(predictedLR,actuals,mode="everything") 

#cv 

write.table("Confusion Matrix 

table",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(cvLR$table,file=ModelRunDetailsFile,append=TRUE,sep=",") 

tocsvLR <- data.frame(cbind(t(cvLR$overall),t(cvLR$byClass))) 

write.table("Confusion Matrix 

results",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tocsvLR,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

#Check predictions using test sample 

testLR1_test=predict(modelLR,TestNoPred) 

prop.table(table(testLR1_test)) 

table(testLR1_test) 

 

LR1_outcome=paste(dateTime,"LR1_PredictResults",sep="_") 

LR1_outcome=paste(LR1_outcome,".csv",sep="") 

write.csv(testLR1_test,LR1_outcome) 

#convert actuals and predicted back to 1 and 0 for results 

predictedLR=ifelse(testLR1_test=="Defaulted",1,0) 

#actuals=testing$Default2 

     

curveLR1= roc(response = actualsMlpTest,  

              predictor = predictedLR) 

ROC_CurveLR=paste(dateTime,"ROC_Curve_LR_Test",sep="_") 

ROC_CurveLR=paste(ROC_CurveLR,".jpg",sep="") 

jpeg(ROC_CurveLR) 

plot(curveLR1,main="ROC Curve of Sensitivity against Specificity for LR test 

data",col.main="blue", col.lab="blue",print.thres="best", 

print.thres.best.method="closest.topleft") 

dev.off() 



 

101 

 

write.table("AUC LR Test Sample",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(curveLR1$auc,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

cvLR=confusionMatrix(predictedLR,actualsMlpTest,mode="everything") 

write.table("Confusion Matrix table Test 

Sample",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(cvLR$table,file=ModelRunDetailsFile,append=TRUE,sep=",") 

tocsvLR <- data.frame(cbind(t(cvLR$overall),t(cvLR$byClass))) 

write.table("Confusion Matrix results Test 

Sample",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tocsvLR,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

######################################################### 

#Compare Models 

######################################################## 

 

Comparison=resamples(list(NN_MLP=modelMLP,LR_LogitBoost=modelLR)) 

summary(Comparison) 

 

write.table("Comparison of model run 

values",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(Comparison$values,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table("Comparison of model run 

timings",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(Comparison$timings,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table("Comparison of model run 

methods",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(Comparison$methods,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

Comparison1=paste(dateTime,"Comparison1",sep="_") 

Comparison1=paste(Comparison1,".jpg",sep="") 

jpeg(Comparison1) 

bwplot(Comparison,main="Comparison of models",col.main="blue", col.lab="blue") 
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dev.off() 

 

#################################### 

#Compare residuals between train and predict 

################################### 

 

tTest=t.test(predictedMlpTest - actualsMlpTest, predictedLR - actualsMlpTest, paired = 

TRUE) 

tTest1=as.data.frame(tTest$p.value) 

tTest2=as.data.frame(tTest$estimate) 

tTest3=as.data.frame(tTest$conf.int) 

tTest4=as.data.frame(tTest$statistic) 

tTest5=as.data.frame(tTest$parameter) 

tTest6=as.data.frame(tTest$method) 

 

write.table("T test of differences between the models using predicted and actual 

outcomes",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tTest1,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tTest2,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tTest3,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tTest4,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tTest5,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(tTest6,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

################################# 

#t test on differences 

################################ 

modelDifferences=diff(Comparison) 

modelDifferences1=as.data.frame(modelDifferences$statistics$ROC$NN_MLP.diff.L

R_LogitBoost$p.value) 

modelDifferences2=as.data.frame(modelDifferences$statistics$ROC$NN_MLP.diff.L

R_LogitBoost$estimate) 
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modelDifferences3=as.data.frame(modelDifferences$statistics$ROC$NN_MLP.diff.L

R_LogitBoost$conf.int) 

modelDifferences4=as.data.frame(modelDifferences$statistics$ROC$NN_MLP.diff.L

R_LogitBoost$statistic) 

modelDifferences5=as.data.frame(modelDifferences$difs) 

modelDifferences6=as.data.frame(modelDifferences$confLevel) 

 

write.table("T test of differences using 

resamples",file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(modelDifferences1,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(modelDifferences2,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(modelDifferences3,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(modelDifferences4,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(modelDifferences5,file=ModelRunDetailsFile,append=TRUE,sep=",") 

write.table(modelDifferences6,file=ModelRunDetailsFile,append=TRUE,sep=",") 

 

summary(modelDifferences) 

Comparison1=paste(dateTime,"bwPlotOfTtstDifferences",sep="_") 

Comparison1=paste(Comparison1,".jpg",sep="") 

jpeg(Comparison1) 

bwplot(modelDifferences, layout = c(2, 1), 

       scales = list(x = list(relation="free")),col.main="blue", col.lab="blue") 

dev.off() 
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