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ABSTRACT  

The economic liberalisation of Indian markets in early 90s boosted the economic 

growth of the nation in various sectors over the next two decades. One such sector that 

has seen a massive growth in this time is Information Technology (IT). The IT 

industry has played a very crucial role in transforming India from a slow moving 

economy to one of the largest exporters of IT services. This growth created a huge 

demand in the labour markets for skilled labour, which in turn made engineering one 

of the top choices of study after high school over the years. In addition, the earning 

potential and an opportunity to contribute to technology advancements after 

engineering, makes it a popular choice of study.  

These growth dynamics along with the diversified education and labour markets 

demands gives insight into the factors affecting the employment outcomes of 

engineering students. This research study focuses on studying the key salary 

determinants for entry-level engineering graduates in India Labour Markets. The 

research examined the impact of demographics, academic performance, personality 

traits and standardised test scores on the starting salary.  

The research findings indicated that the academic performance in school and college, 

college reputation, school affiliation and engineering major are key predictors for 

starting salary. The findings also revealed that Cognitive skills English and 

Quantitative ability along with a desire to do a task well are significant contributors to 

the starting salary of engineering graduates in Indian Labour Markets. 

 

 

Key words: Salary Predictors, Regression, Hypothesis Testing, Support Vector 

Machines, Feature Selection, Salary Prediction 
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1 INTRODUCTION  

Ov erview of Research Project 

The new economic policies introduced in the early 1990s enhanced foreign investment 

portfolios into the domestic Indian Market1. Since then, the increasing globalisation 

has integrated Indian labour markets to global markets. Indian labour markets have 

seen a tremendous growth in the last two decades in the private sector. This growth has 

manifested itself with a significant growth in employment opportunities in Labour 

Markets. 

India, with one of the fastest growing economies in the world, also has one of the 

largest Information Technology (IT) industries in the world, hence generating a huge 

demand for skilled labour. In order to cater this demand, several interventions were 

made to encourage the engineering curriculum in Indian education sectors. The figure2 

below shows the increasing trend in the All India Council for Technical Education 

(AICTE) sanctioned intake of engineering students. 

 

                                                 
1http://www.ilo.org/newdelhi/lang--en/index.htm 

 
2https://www.gedcouncil.org/sites/default/files/Engineering%2BEducation%2Bin%2BIndia%2BDec160

8-1.pdf 

 

http://www.ilo.org/newdelhi/lang--en/index.htm
https://www.gedcouncil.org/sites/default/files/Engineering%2BEducation%2Bin%2BIndia%2BDec1608-1.pdf
https://www.gedcouncil.org/sites/default/files/Engineering%2BEducation%2Bin%2BIndia%2BDec1608-1.pdf
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Figure 1.1 Engineering Student Intake since 1947 in India 

Every year a massive number of engineers are entering into Indian Markets. In recent 

times, the rapidly emerging economy and increasing technology sector have a 

significant impact on demand and supply for specific skills, practices, and 

employability of engineers. Even though this demand is diversified across industrial 

sectors, a large number of these engineers are employed within the IT sector. The 

major segments within the IT industry employing these engineers are IT services, IT 

product development, and various associated ITeS Operations. 

In recent years the supply of engineers has surpassed the demand in the Indian IT 

sectors. Recent survey studies have indicated that this quantity surge has also degraded 

the quality and employability of engineering graduates. According to National 

Employability Report 20113, the increase in the number of engineers has a significant 

impact on the quality of engineers. The survey also revealed that the there is a severe 

decline in the quality of education for engineers with increasing number of engineering 

colleges, which in turn lead to the low employability of engineering graduates. 

Another recent survey by Aspiring Minds in 20144, states that out of almost 600,000 

engineers graduating every year, less than 20% are employable within IT sector. One 

of the biggest challenges for the human resources policy makers, has been the 

employability of this massive workforce of engineers. Hence, the dynamics 

surrounding employability of engineering graduates have been a focus of research in 

recent times. 

In spite of the recent shift in supply and demand of engineering graduates, engineering 

is still one of the top choices of undergraduate course for students after high school in 

India. Among the variety of reasons for these choices, such as peer pressure, 

awareness, society dynamics etc. salary is considered one of the major reasons for 

pursuing engineering as college studies.  

The aim of this study is to determine the various factors that determine the starting 

salaries of engineering graduates in Indian Labour Markets.  

 

 

                                                 
3http://www.aspiringminds.in/docs 
 
4http://www.aspiringminds.in 
 

http://www.aspiringminds.in/docs
http://www.aspiringminds.in/
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1.1 Research Background 

The elements around employment outcomes after graduate studies have been an 

important focus of research studies over the years. The significance of employment 

prospects after obtaining an undergraduate degree is of critical importance. In a study 

by Bureau of Labour Statistics (2009)5 in the United States of America (USA), it was 

indicated that by 2018 more than half of the new jobs will require an undergraduate 

degree as a prerequisite. Not having an undergraduate degree will result in no access to 

the jobs within a number of designated employment sectors. In a social study by 

(Chengwen and Guiying, 2008), the authors observed that getting a job has been 

closely related to realising one’s self and social worth. The growing importance of 

undergraduate studies for securing employment makes it crucial to understand the 

dynamics of employment post studies. 

In spite of a huge amount research into the career development and graduate 

employment, there is still a lack of literature examining the factors determining the 

earning potential and starting salaries of undergraduate and graduate students (Sagen, 

Dallam, & Laverty, 1999). 

The earning prospects and future career status of an individual are significantly 

determined by their first job and starting salary after an undergraduate degree (Steffy, 

Shaw, and Noe, 1989). In addition, Rosenbaum (1979) measured the earning benefits 

indicating that the starting salaries of undergraduate students have a significant impact 

on one’s level of achievement and future wage increments.  

 

 “The starting salary of a fresh graduate is considered a potential indicator of career 

advancement” (Ge, Kankanhalli, and Huang, 2015). 

 

According to (Ge, Kankanhalli, and Huang, 2015) the striking importance of starting 

salary of a graduate makes it very important to explore its key determinants. 

Undergraduate students make numerous decision during their academic years which 

influence the course of their career. There are a number of factors which are in play 

                                                 
5 Bureau of Labor Statistics (2009).  Employment projections: 2008-2018 summary.  Economic News 
Release.  Retrieved from http://www.bls.gov/news.release/ecopro.nr0.htm.  
 

 

http://www.bls.gov/news.release/ecopro.nr0.htm
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such as choice of university, study majors, internships etc. and which may have a 

significant impact on the starting salaries and career options. 

This research study will focus on determining the impact of academic performance, 

cognitive skills, personality traits, standardised test scores and demographics on the 

starting salaries of undergraduate students specific to Indian Labour Markets.  

1 .1 .1 A br i ef overvi ew  of Indian Education Sys tem in context to  the  

research s tudy 

India has one of the most diverse education systems in developing economies. There 

are a number of aspects leading to this diversification. India has total 36 states and 

union territories6 with 22 different recognised languages7. The school education is 

divided into two primary sections after primary education as following: 

1) Secondary School - 10th Standard 

2) Senior School - 12th Standard 

There are more than 50 education boards in India including both Central (Government 

of India) and State Boards (State Government). All these schools are affiliated either to 

a Central Board or to one of the State Boards. The first language in central board 

schools is generally Hindi or English. For the State Boards, the first language can be 

any of the recognised languages. A student can opt to study a second and third 

language in school depending on the availability. The curriculum for each affiliation is 

not identical and varies accordingly. 

For engineering studies, the student generally joins an engineering college through an 

entrance exam or merit based criteria depending on the type of college, which then in 

turn has an affiliation to one of the Central, State or Deemed Universities. The 

curriculum and structure of study again differ depending on the universities. 

These diversities in education ecosystem make it difficult for the employer to evaluate 

students based on standard merit. So, in order to standardise the evaluation criteria 

more than 3500 organisation refers to AMCAT (Aspiring Minds) scores – A 

                                                 
6 Library of Congress Country Studies (5th ed.), Library of Congress Federal Research Division, 
December 2004, retrieved 30 September 2011 
 
7The Constitution Of India. Ministry of Law & Justice. Retrieved13 April 2011. 
http://lawmin.nic.in/coi/coiason29july08.pdf 
 

https://en.wikipedia.org/wiki/Library_of_Congress_Country_Studies
https://en.wikipedia.org/wiki/Library_of_Congress
https://en.wikipedia.org/wiki/Federal_Research_Division
http://lawmin.nic.in/coi/coiason29july08.pdf
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standardised test students take after the undergraduate course8. The dataset used for 

this study is released by Aspiring Minds, the organisation which facilitates this test. 

1.2 Research Project 

The main purpose of the research study is to examine the academic factors, cognitive 

skills and personality factors, which best predicts the salary of a recently graduated 

engineer in Indian Markets. The sample of study focuses on engineering graduates in 

India. Within this study, independent variables will include: Personal Information, Pre- 

University Information, Standardised Test Scores and Demographics Information of 

candidates. The dependent variables in the dataset are Starting Salary, Job location, 

and Job Title. Regression analysis will be performed to study the relationship between 

these variables. The study also performs a comparative analysis of various salary 

prediction models based on prediction accuracy to find an optimal salary predictor. 

The study aims to answer the following Research Question: 

 

RQ: What are the primary factors, in determining the starting salary of a recently 

graduated engineer in Indian Labour Markets? 

 

The results of the study would allow an engineering graduate to best navigate through 

various choices to achieve higher salaries. The results will also help the leaders in the 

education system to develop programs and resources to align with the requirements of 

higher wages into the Indian Labour Markets. The outcomes of the study can 

significantly inform the students and education administrators in terms of choices and 

focus on achieving a higher return for both parties. 

1.3 Research Objectives and Hypotheses  

In order to answer the research question, a quantitative study will be conducted using 

the AMEO dataset (Aggarwal, Srikant, and Nisar, 2016). 

The research objectives of the research study are: 

                                                 
8 https://www.myamcat.com/about-amcat 
 

https://www.myamcat.com/about-amcat
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 To explore the existing knowledge base by measuring or evaluating the 

employability and salary dynamics of undergraduate and graduate students. 

 To understand the impact of different factors such as cognitive skills, academic 

choices, academic performance, demographics, and personality traits on the 

salary of fresh engineering graduates. 

 To examine which of the cognitive skills is contributing the most to Salary. 

 To build and select the best prediction model evaluated on the basis of Root 

Mean Square Error (RMSE) as the performance measuring evaluation, in 

predicting the salary of recent engineering graduate. 

 

In addition, there are a few hypotheses which are established from the general 

understanding of the Indian education systems and Indian labour markets. These 

hypotheses will be tested under the research study. 

 

H1: Male candidates are paid higher starting salaries than their Female counterparts. 

H2: The engineering graduates from Tier A colleges are paid higher starting salaries 

than the graduates from Tier B college. 

H3: The computer science graduates are paid a higher salary than the other 

engineering domains.  

H4: English is the strongest predictor of salary compared to Logical and Quantitative 

ability. 

1.4 Research methodology 

An exploratory research method is used to address the research question using 

secondary data. A quantitative research approach is used to conduct an investigation 

into the data to understand the quantitative properties and underlying relationships 

within the data.  

The research objectives defined earlier will be achieved using the course of action 

outlined below: 

 An extensive literature review is conducted, which is used to summarise the 

existing research studies in the context to the research question. Additionally, 

the literature review will allow to objectively shape the course of the research 

project.  
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 Statistical test and Regression are used for hypothesis testing 

 The relationships between the various factors on determining the starting salary 

are explored using regression analysis. 

 Predictive regression modelling with various techniques is used to build an 

accurate salary predictor and the best performing model is selected using model 

accuracy based on Root Mean Squared Error. 

1.5 Scope and limitations  

The scope of the research study is targeted on recently graduated engineers within 

Indian Labour Markets. There is a significant amount of research literature available 

that is focused on examining the various factors that predict job seeking behaviour and 

re-employment of experienced professionals (Wanberg, Watt, and Rumsey, 1996). 

This study will not focus on experienced professional but rather on newly graduated 

engineers. The study is concentrated around the first job placement of engineering 

students after graduation and not the successive job offers. 

Another important limitation might be the generalisability of few aspects of the study. 

The primary reason behind this would be the sample size, as there is not much 

information available on how the data was collected. Considering the diversification 

involved in the Indian population due to different education systems affiliation, 

language differences, demographics, etc. the sample size might be a relatively small to 

generalise some results of the study.  

1.6 Organisation of Research  

The dissertation report is organised in the following sections: 

Chapter 1: This chapter is a detailed introduction to the research project. It describes 

the background and the objectives of the study. Also, it provides a brief overview of 

the research methodology, along with the scope and limitations of the research. It also 

outlines the organisation of the research. 

 

Chapter 2: This chapter will address the review of the literature relating to the various 

labour market studies pertaining to employability factors and salary determinants. The 

literature will be the underlying guide for the experimental design for this research 
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project. The chapter will also include the detailed review of literature for the state of 

art techniques used for the research project. 

 

Chapter 3: This chapter contains the detailed experimental design and research 

methodology for the research project. A complete overview of the dataset used is 

outlined. The section also covers the data semantics for the research along with the 

technical approach and methods employed during the course of this research.  

 

Chapter 4: This chapter contains the implementation of the experiments, and their 

results. It examines and explores the dataset to address the research question. It 

presents the detailed experimentation and results. 

 

Chapter 5: This chapter discusses the results from the experiments in context to 

research question along with strengths and weaknesses of research. 

 

Chapter 6: This chapter provides an overview of the complete research study, briefs 

the contributions and limitation of the research study. It also outlines the future 

directions for research. 
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2 LITERATURE REVIEW 

2.1 Introduction  

This chapter reviews the existing body of literature in the context to employment 

outcomes for undergraduate and graduate students. The various regression techniques 

are assessed and discussed in detail. The literature review will provide a deep 

understanding of the existing work in the field, which will help to define the course of 

this research.  

2.2 Background and context of research 

Employability of undergraduate and graduate students has been a key area of research 

over the years.  Busse (1992) stated in one of his research study that highly skilled 

candidates are required to fill the necessities for the rapidly changing skilled job 

markets to increase value to organizations. 

In spite of the availability of a substantial amount of literature examining the various 

employability and career development aspects, the research area relevant to the 

prediction of salaries of graduates and the factors determining it, is fairly new (Sagen 

et.al (1999). 

The majority of the focus in older studies has been towards the recruiting aspects and 

career mobility of general population (Rosenbaum, 1979, Wanberg et al., 1996). 

Studies also concentrated on examining the individual differences in different pieces of 

training and their impact on employability and income (Rosenbaum, 1979, Wanberg et 

al., 1996). A variety of research studies by (Chengwen and Guiying, 2008; Sagen et 

al., 1999; Saks and Ashforth, 1999) all investigated the various factors which predict 

the employment outcome of students. 

Previous studies in this field have examined the effect of university scores and 

university status on the salary of university graduates. Boissiere, Knight and Sabot 

(1985) concluded that that university scores are used as a selection criteria to filter 

through the competition among job applicants. In addition, the students with good 

academic records are viewed as being better prepared for their first job (Jones and 

Jackson (1990). The relationship between academic performance and starting salary, 
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has been examined by a number of researchers in various experimental settings. Few 

of the earlier studies in context are (e.g. James et al., 1989; Weisbrod and Karpoff, 

1968; Wise, 1975; Murnane, Willett and Levy (1995).  

Tchibozo (2007) observed that the participation in various types of extra-curricular 

activities during graduation plays a significant role in the employability of an 

individual. The required grades in core subjects are highly associated across subjects 

and along with micro and macro grades are significant predictors of student job 

placement (Athey et al., (2007). Athey et al. (2007) also examined the contribution of 

academic results such as first-year grades, GRE scores, grades in core modules to the 

prediction of an employment conditional on Ph.D. completion. 

Similar to the employability factors, in context to the salaries of undergraduate and 

graduate students there have been studies investigating the impact of grades, graduate 

majors and extra- curricular activities on to the salaries.  

In an another seminal study by Hamermesh and Donald (2008), the authors determined 

that more than half of the variation in income is explained by factors such as ability, 

high school performance, parent’s economic status and student’s demographic 

characteristic. The salary difference also significantly differs for different study majors 

(Hamermesh and Donald, 2008; Rumberger and Thomas, 2003). 

Rumberger and Thomas (1993) stated that the three different types of qualitative 

factors labelled as individual and institutional factors namely college major, school 

quality and educational performance, have an impact on starting salaries. Furthermore, 

the impact of school quality and educational performance is not uniform across 

different majors (Rumberger and Thomas (1993). 

Jones and Jackson (1990) investigated the role of college GPA on the salary after the 

five years of graduation into the job and observed that there is an 8.9% increase in 

salary per unit change in GPA. However, these findings are within the limited scope of 

experimental design scenario. 

In another study conducted by Godofsky et al. (2011), authors examined the impact of 

internships and industrial training on the transition between the education and 

employment. The study showed that there was a significant difference between the 

starting salaries of the graduates who took up internships or industrial training against 

the students who did not participate in any internships during the course of their 

graduate program (Godofsky et al., 2011). Additionally, the graduates with  previous 
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work experience related to their choice of college major have a higher starting salary 

compared to the ones who don’t.  

The findings from the study by (Godofsky et al.,2011) support another research study 

by Gault, Leach and Duey (2010) which observed that even the student who performs 

averagely in their internships are compensated more than the ones who don’t 

participate in internships. Similarly, in another study carried out by Callanan and 

Benzing (2004) conducted at a mid-Atlantic university in the U.S.A, within the 

business degree students reflected upon the significance of completion of an internship 

assignment during the course of their graduate program.  

The researchers have also studied the impact of academic variables in the presence of 

other non-academic factors. In one of the earlier works by (Fuller and Schoenberger, 

1991) the academic variables were combined with the co-curricular factors to observe 

their impact on the starting salaries of graduate students. The study also observed a 

significant difference between the impact of these variables at the time of graduation to 

several years into the job after graduation for business students (Fuller and 

Schoenberger, 1991). Fuller and Schoenberger (1991) determined a significant 

difference between the starting salary depending on the co-curricular variables and 

academic performance. However the study dismissed any evidence of salary difference 

between students after few years into the job due to these factors.  

Factors such as choice of study majors and specialisation, are also examined by 

researchers in relation to salary outcomes. Arcidiacono, P. (2004) observed that there 

is a substantial difference in the salaries corresponding to the choice of college majors.  

One of the interesting aspects of the study conducted by Arcidiacono, P. (2004) is that 

the preference for particular majors causes most of the ability sorting which establishes 

that the selection of a major is not based on the income outcomes but based on the 

interest of the student. It creates a possibility of students choosing different majors if 

provided with the income outcomes attached to the college majors. Apart from this, 

there are numerous other studies documented showing that there is a substantial 

difference in the salaries pertaining to the selection of some of the majors (Daymont 

and Andrisani,1984; Grogger and Eide,1995; James, Alsalam, Conaty, and To, 1989; 

Loury ,1997; Loury and Garman, 1995). 

Another study examining the effects of study majors on salaries by (Scholz,1996) 

indicated that the most specialised fields of study fetch higher average wages and 

higher variance, and this is because of the theorised risk factor associated with the 
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majors. Scholz (1996) theorised this risk associated with the major using cobweb 

model of equilibrium with the argument that the demand for higher risk majors will 

cause higher changes in the respective income. 

In an another significant study by Chia and Miller (2008) using the data from 

University of Western Australia Graduate Destination Survey, the authors documented 

that the most important determinant of starting salary of graduates is the weighted 

average marks they achieve at the university. The study showed that the choice of 

major also has a significant impact but not as much as the overall academic 

performance at the university (Chia and Miller, 2008). Chia and Miller (2008) also 

observed that the difference of the salary due to the higher marks in Australia is 

relatively higher than the labour markets of the United States and the United Kingdom 

within the contextual scope of the study.  

In another study by Jagacinski et al. (1985), authors identified the difference in the 

factors influencing the choice of engineering as a career for students from different 

demographics. A comparative analysis of the factors for choosing engineering streams 

was reported in the study by (Jagacinski et al. (1985). 

Wise (1975) argued that other than the academic performance, soft skills such as 

leadership skills and interpersonal skills are not measured by the academic weight 

marks but play an important role in determining the employment outcomes and 

salaries.  

Boissiere, Knight, and Sabot (1985) reported the effect of natural ability (cognitive 

skill) on the income and employment outcome in underdeveloped economies based on 

the two micro datasets from Kenya and Tanzania. The study also stated that the 

students with higher math skills are paid more than the ones with their inferior 

counterparts in this context (Boissiere, Knight, and Sabot, 1985).  Another interesting 

aspect of the study (Boissiere, Knight, and Sabot, 1985), was that the development and 

economic factors are very similar which was reflected in the results and it allowed the 

assessment of the replication of study under similar external factors such as country’s 

literacy rates, economic factors, development index, low university enrolments etc. 

Research studies also reported that college reputation and ranking also have a 

significant impact on the earnings of graduate students. Studies conducted in U.S.A 

have indicated that students from high-ranking private institutions earn a higher salary 

than the students who attended mid-level ranking institutions (Brewer, Eide, and 

Ehrenberg, 1999). On the contrary, similar studies in the United Kingdom indicated 
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that the effect of institution’s ranking is relatively less important on the salaries of 

graduate students (Belfield and Fielding, 2001). 

Another key research topic which has been in focus over the years, is specific studies 

to inspect the impact of demographics factors on salaries. Studies targeted at 

examining the gender bias on salaries have presented mixed results. The literature 

shows that these mixed results seemed to be relatively more evident in IT industry. 

In one of the earlier works by (Becker,1985), the author documented that due to the 

prioritization and responsibilities of women towards child care and housework there is 

a significant impact on the salaries between men and women. Berts’s (1993) research 

work also observed similar results from a survey study of demographics, salary and job 

satisfaction for information system jobs. 

In an earlier research work by Gerhart, (1988), the author used data from the youth 

cohort (ages16-19 in 1979; 19-24 in 1982) of National Longitudinal Surveys of labour 

markets to study the impact of academic performance on the salary difference between 

the gender groups. The study showed that the majority of the difference between men 

and women is explained by the choice of study majors of the students (Gerhart, 1988). 

In another interesting work by (Fortin, 2008) based on two single group longitudinal 

surveys investigated the role of four non-cognitive traits – self-esteem, external locus 

of control (beliefs such as luck), the importance of money/work and the importance of 

people/family in the salary differences among men and women. The study determined 

that these non-cognitive traits have a reserved yet significant impact on wage 

difference (Fortin, 2008).  

Tan and Igbaria (1994) observed that there is a variation in salaries for the gender 

variable specific to the information technology industry in Singapore. A research study 

by (Truman and Baroudi,1994) indicated that in information systems job profiles 

specific to managerial positions, female candidates receive relatively lower 

compensation compared to their male counterparts. These results were consistent even 

if the experiment was controlled for variables such as job level, age, education and 

work experience (Truman and Baroudi, 1994). This gender bias in salaries is found to 

be consistent by another research study on the salary outcomes from 1991 through 

2008 for information system positions (Mikita, Dehondt, and Nezlek, 2012). 

On the contrary, another research based in Singapore, specific to local IT markets 

showed that there is no difference in salaries based on gender when controlled for 

other academic and demographic variables (Ang, Van Dyne, and Begley, 2003). Ang, 
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Van Dyne and Begley (2003) used a sample of archival salary data for 1,576 IT 

professionals across 39 institutions in Singapore for the study. 

Quan et al. (2007) documented in his research, that there was no significant difference 

between the salaries of male and female professionals while controlling for IT 

certification. In a survey study of 213 management information system (MIS) 

graduates by Fang (2004), the author observed no salary difference based on gender, 

though the results were not controlled for on any other variable. 

Blau and DeVaro (2007) also reported that women have lower chances of getting 

promoted compared to men but there is no significant difference between the salary 

growth with or without promotion.  

Another study by (Lyness and Heilman, 2006) investigating the relationship between 

position types and gender by evaluating 448 upper-level managers using individual 

performance metrics, stated that the organisations set a higher standard for promotions 

for females compared to their male counterparts and also, in general, women received 

lower performance ratings.  

In an influential research by (Sandvig, Tyran, and Ross, 2005), the authors closely 

examined the effects of internship experience, grade point average (GPA) and job 

market on starting salaries of management information systems students from Western 

Washington University. Sandvig, Tyran, and Ross (2005), used demographic variables 

such as age, gender, and country economic factor as control variables for the analysis. 

The study reported internship as one of the strongest predictors of salary in the 

experimental model (Sandvig, Tyran, and Ross, 2005,) 

In one of the most recent research studies in the field conducted by (Ge, Kankanhalli 

and Huang 2015), the authors theorised that the impact of demographic determinants 

such as foreigner status and gender have direct effects on the starting salary for entry 

level IT graduates in Singapore job markets. Ge, Kankanhalli, and Huang (2015) 

observed that females are less likely to land up into an IT job after a degree in IT 

compared to men. Researchers also outlined that foreign IT graduates are more likely 

to join an IT job as compared to local graduates but are offered lower starting salaries 

than the local graduates (Ge, Kankanhalli, and Huang, 2015). 

The majority of the influential research literature available in context to the education, 

employability factor, and salary prediction is geographically centred to the studies 

within developed countries such as United States of America, Australia, Singapore etc. 

Relatively, there is less research to study the similar dynamics in underdeveloped and 



 

 15 

developing economies. Some interesting studies from such socio-economic status 

nations are (Boissiere, M., Knight, & Sabot, 1985), where the authors studied the 

dataset from Tanzania and Kenya, (Tripney et al.,2013) documented a system review 

outlining the various employability factor and interventions to improve for basic 

technical and vocational education in low and middle-income countries. Other similar 

significant studies concentrating on the Chinese labour markets are (Bai, L. 2006); 

Xiangquan,2009). 

That said, there has been a paradigm shift in the focus of such research groups majorly 

towards the fastest growing economies such as China and India. According to 

Organisation for Economic Co-operation and Development (OECD)9 report for 

education indicators in focus, the massive growth in higher education in fastest 

growing G20 economies has led a decrease in the share of Japan, Europe, and U.S.A in 

the global talent pool. With this continuous growth rate, OECD projections state that 

China and India alone will account for 40% of the total personal with tertiary 

graduates. 

 

 

                                                 
9 https://www.oecd.org/edu/50495363.pdf 
 

https://www.oecd.org/edu/50495363.pdf
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10 Figure 2.1 OECD Projections on tertiary degree holders 

These growth projections are believed to influence the research focus towards 

developing economies and to understand the underlying factors in context. One of the 

most important research areas for the socio-economic growth has been the education, 

employability factors and their impact on salaries. 

In a recent study by (Gokuladas, 2011), the author studied the various factors which 

decide on the employability of undergraduate engineers in India based on a sample of 

559 engineering graduates from a reputed engineering college in Southern India. Ge, 

Kankanhalli and Huang (2015) used linear modelling to understand the effects of 

demographics factors on the starting salary of IT graduates. 

The authors (Ge, Kankanhalli, and Huang, 2015) suggested for future work to utilise a 

sample from multiple universities combined with academic data, to study the effects of 

salary. The data of the study in line was limited to demographic variables in their 

study, which could be extended to academic and other external factors. 

In order to bring transparency to the one of most diversified educational ecosystem 

towards the employability outcome, it is very critical to understand the underlying 

factors that determine the starting salaries of graduates. The AMEO-2015 (Aggarwal, 

Srikant, and Nisar, 2016) dataset provides a unique opportunity to study the effects of 

demographic variables, along with academic performance with standardized test scores 

for cognitive and personality scores. This study will focus on understanding the 

various salary determinants for entry-level engineering graduates in Indian Labour 

Markets. 

It is evident from earlier research in the field that academic factors, demographic 

variables, and natural ability have a great influence on the salaries of graduate and 

undergraduate students. There are various research techniques used by the researchers 

to study these effects. The next section provides a review of literature relating to the 

techniques used by researchers in the past.  

2.3 Correlation and Regression Analys is  

The most common way to investigate the relationship between two variables is 

correlation and regression. A correlational research is used to identify and quantify 

                                                 
10 https://www.oecd.org/edu/50495363.pdf 
 

https://www.oecd.org/edu/50495363.pdf
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relationships between two or more variables within a population (Leedy and Ormrod, 

2010; Curtis, Comiskey, and Dempsey, 2016). The initial usage of correlation and 

linear regression techniques for research purposes can be traced back to the work of Sir 

Francis Galton (Miller and Millar 1996; Curtis, Comiskey, and Dempsey,2016). In his 

work, Galton primarily concentrated on studying inheritance, which eventually 

resulted in the development of regression.  

Correlation can be defined as the degree of linear relationship between two variables. 

It is one of the most widely used tools to establish the strength and direction of the 

relationship between two variables. For example, a researcher might be interested in 

identifying the relationship between the intake of nutrients (N) with the growth in 

height (H) for children over a period of 10 years. It would be expected that the children 

with higher intake of nutrients would grow more compared to those who have a lower 

intake of nutrients. 

Correlation defines how the rate of increase or decrease in one variable corresponds to 

increase and decrease in another variable. That said, this relationship is not causal in 

nature i.e correlation doesn’t infer that the change in one variable is causing the change 

in another. In general, a causation effect cannot be inferred from a correlation study. 

Regression, in general, can be defined as a family of techniques for estimating 

relationships. The simplest, yet most powerful form of regression is called Linear 

Regression.  

Linear regression assumes the relationship between the target or dependent variable ‘y’ 

and features or independent variables ‘x1, x2, x3 …. xn’ is linear in nature. Linear 

regression takes the relationship between dependent and independent variables and fits 

a line to the distribution, which can be used to predict the target or dependent variable 

using the feature or independent variables (Han, Kamber, and Pei, 2011). For example, 

a simple linear regression with one feature variable can be represented as a simple 

equation of a line as: 

 

y = w0 + w1 x + e             

Equation 2.1 Simple Linear Regression 

Where; 

w0  Intercept 

y   Response/Target/Dependent Variable 
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x   Input/Feature/Independent Variable 

w1  slope  

e  Error Term or ‘noise’ term that represents the other variables to have  an influence 

on target variable.  

In real application scenarios there is typically more than one independent or 

explanatory variable, so in order to handle the problem of omitted bias, multiple 

regressions ares applied in which there are ‘n’ independent variables. A multiple linear 

regression is represented as below: 

y = w0 + w1 x1 + w2 x2 + w2 x2+ w3 x3 + ……. + wn xn + e 

Equation 2.2 Multiple Linear Regression 

The value of wi indicates the measure of a relationship, a value closer to 0 indicates a 

weak relationship and a value farther from 0 represents a strong relation (positive or 

negative).The noise term ‘e’ states that our model will not fit the model perfectly. Here 

the model is created for ‘e’ being Gaussian. The target value yp  for a given point can 

be predicted using the equation : 

yp = w0 + w1 x1 + e              

Equation 2.3 Estimating Target variable in Regression 

The difference between y and yp is called residuals which are equal to y − (w0 + w1x1) 

(Myers et al., 2012). The residual sum of squares(RSS) is the total error over all the 

data points. 
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Figure 2.2 Fitted Line for Simple Linear Regression 

The figure (above) shows the fitted line of regression for a single input variable x. This 

line/model can be used to predict the value of ‘y’ if the value of x is known. But as the 

figure below represent there can be multiple fitted lines on the given data point.  

 

Figure 2.3 Multiple Lines fitted to Simple Linear Regression 

To find the best line of fit for the observed data, we solve the optimization condition 

for the line where the probability of data is highest (James et al.,2013). 

min w0, w1: ∑ (y − (w0 + w1x1))2      

 Equation 2.4 Least Squares Equation 

where min w0, w1 means “minimize over w0, w1”. This is also called a Least square 

linear regression problem (James et al.,2013). Also, the assumption here of Gaussian 

Noise provided the need for the squared error to be the minimization criteria. There 

could be other assumptions for the cost function for a different distribution.  

The significance and validity of the model  is evaluated by p-value and R-Squared 

value for the model11. 

Howell (1969) used regression analysis for the very first time in one of the early 

research works in the field where the weighted factor is used to best describe the 

relations for the factors affecting the average wages (Howell, Gorfinkel, and 

                                                 
11 https://onlinecourses.science.psu.edu/stat501/node/311 
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Bent,1966). In (Jagacinski et al., 1985), the authors used statistical test to describe the 

factors in influencing the career choice for engineers.   

In another seminal study by Ge, Kankanhalli and Huang (2015) considering the 

advantage of its fewer distribution requirement to covariance-based structural analysis 

to a test multistage stage deterministic model (Gefen, Straub, and Rigdon, 2011) used 

Partial Least Squares to investigate the determinants of starting salary (Götz, Liehr-

Gobbers and Krafft, 2010).  

Some of the other methodological studies to understand the relationship among 

variables by (Guyon and Elisseeff, 2003) and (Karagiannopoulos et al., 2007), 

provides an overview of multivariate feature selection criteria’s and methods for 

different regression models.   

2.4 Predictive Modelling for Salary 

“The increasing awareness and concern with equity issues in higher education, along 

with the escalating litigation, has prompted institutions to undertake salary prediction 

studies” (Johnson, Riggs, and Downey (1987). 

Johnson, Riggs, and Downey (1987) performed a comparative salary predictive 

modelling study using predicted rank, tenure and objective variables for equity studies. 

The research outcome helped institutions to derive appropriate analytical strategies for 

predictive modelling for salaries. Carter et al. (1984) proposed alternative techniques 

using canonical analysis and multiple discriminant analysis to identify and define the 

new evaluations of magnitudes for the salary decisions. Ramsay (1979) used 

generalized linear regression models to predict the salaries of college faculties.  

Prediction of salaries has been a very active field of research in the field of sports. In 

one of the most recent studies by (Magel and Hoffman, 2015), the authors used a 

number of stepwise multivariate linear regression models to predict the average 

salaries of baseball players. 

In a unique study in terms of the dataset, in Finland, researchers build a penal data 

model to predict individual income with a third degree polynomial of age, duration of 

employment and GDP as independent variables (Koskinen, Nummi, and Salonen, 

2005). 
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According to researchers, the salary prediction is a very old problem in pension 

insurance and a numerous number of models have been proposed over the years for the 

same (Koskinen, Nummi, & Salonen, 2005). 

Carriere and Shand (1998) defined salary as an accumulation function based on 

inflation and merit and built a parametric model to determine the salaries with a 

comparative modelling of age and service based modelling. 

 In another interesting salary prediction application, recently a Kaggle competition was 

targeted at predicted the salaries based on the job advertisements on job portals.  

The participants employed a number of machine learning algorithms to build 

predictive models. Among others, the popularly applied models were Lasso and Ridge 

regression12. 

As part of this study, a salary predictive model will be built and the best performing 

model will be selected using various model selection techniques based on the 

minimised error function. The following section provides a review of techniques used 

for this study. 

2 .4.1 Mul tivar i a te  Linear  Regress ion w i th Stepw ise  Sel ection  

Multivariate Linear Regression is one of the most widely used predictive tools to 

estimate a continuous target using multiple predictors. 

Stepwise methods are often used in education and psychological research to find a 

subset of predictor variables based on their relative importance (Huberty, 1989; 

Thompson, 1995). Stepwise Regression builds a number of linear models sequentially, 

by entering one best predictor at a time Snyder (1991). Stepwise Selection has three 

different variations called – 1) Forward 2) Backward and 3) Stepwise. 

A forward stepwise selection starts from a NULL model and then adds one predictor 

on every step which best improves the error for the model. A backward stepwise 

selection, on the other hand, starts from a FULL model with all predictors as input and 

then on every step removes one predictor which adds maximum error to model. A 

stepwise variation is a hybrid of forward and backward which adds a predictor at each 

step and also considers the removal of predictors which no longer contribute to the 

                                                 
12 http://www.cs.ubc.ca/~nando/540-2013/projects/p58.pdf 
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prediction power when considered in combination with the newly added predictors 

(Thompson,1989). 

 

 

2 .4 .2 Ridge regress ion  

Ridge Regression is a technique to estimate the coefficients of regression by adding a 

bias to the regression estimates (Hoerl and Kennard, 1970). In the ordinary least 

squares regression technique, the regression coefficients are estimated using the sum of 

squares error. 

From earlier Equation (2.1) 

yp = w0 + w1 x1 + e 

 

Where ‘e’ is the associated error. 

The error is the difference between the Observed and Predicted values. In a linear 

equation, this error can be divided into two components, namely the ‘error due to bias’ 

and ‘error due to variance’. The regression parameters such as w1 are estimated by 

minimizing the error term. 

From Equation (2.4) 

min w0, w1: ∑ (y − (w0 + w1x1))2 

 

Ridge regression uses an additional term to the above equation in proportion to the 

weighted sum of the squared parameter to penalize the very large values of parameters 

and to control the variance (Hoerl and Kennard, 1970). This is also known as 

regularizing the coefficients(L2). 

min w0, w1: ∑ (y − (w0 + w1x1))2 + λ ∑ (wi)2 

Equation 2.5 Equation for Ridge Regression Coefficients 

λ  Shrinkage parameter. 

Ridge regression reduces the model complexity and reduces variance by introducing a 

penalty to regression coefficients. The penalty is called shrinkage penalty as it 

encourages the coefficients to shrink toward zero. The shrinkage parameter lambda 

decides the amount by which they are encouraged. So if lambda is zero then the 

regression is equivalent to simple least squares. So, Ridge regression creates a number 
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of  models with a range of values of lambda. The figure13 below shows a ridge 

regression, where the coefficients values are plotted against a range of lambda (Ridge 

Parameter) values. 

 

Figure 2.4 Coefficients Vs Lambda - Ridge 

The optimal value of lambda is chosen by considering the overall model performance. 

In general, cross-validation is used to determine the value of lambda14. Ridge 

regression shrinks the value of coefficients towards zero but never actually replaces 

them with zero. 

2 .4.3 Lasso Regress ion  

In contrast to Ridge, Lasso minimizes or puts a penalty (L1 Regularization) on the 

coefficients with the absolute values of the coefficients.  

So the equation can be represented as: 

min w0, w1: ∑ (y − (w0 + w1x1))2 + λ ∑ |wi| 

Equation 2.6 Equation for Ridge Regression Coefficients 

 

                                                 
13 https://sites.google.com/site/bantimeena/software-link/regression-and-optimization   

  

14https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/courseware/8878f

b6f600042fe98d774e0db26f87a/b91ee2b82a6d49eb91e1dc6641cf5efe/ 

 

https://sites.google.com/site/bantimeena/software-link/regression-and-optimization
https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/courseware/8878fb6f600042fe98d774e0db26f87a/b91ee2b82a6d49eb91e1dc6641cf5efe/
https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/courseware/8878fb6f600042fe98d774e0db26f87a/b91ee2b82a6d49eb91e1dc6641cf5efe/
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λ  Shrinkage Parameter 

 

Along with shrinkage, Lasso also performs subset selection on a variable by pushing 

the value of the coefficient to zero. Lasso regression has been of great interest in recent 

years due to its ability to shrink the coefficients to exactly zero to provide a sparser 

solution (Tibshirani,1996). The general approach of Lasso towards bias-variance is15: 

 

 The bias increases as λ (amount of shrinkage) increase  

  The variance decreases as λ (amount of shrinkage) increases 

 

Similar to ridge regression, lasso also provides a range of models with a corresponding 

value of shrinkage parameter lambda. The optimal value lambda can be chosen by any 

optimisation technique. The figure below gives an example of lasso for a path of 

coefficient created, with a corresponding value of lambda16. 

 

Figure 2.5 Coefficients Vs Shrinkage parameter – Lasso 

 

                                                 
15 http://www.stat.cmu.edu/~ryantibs/datamining/lectures/17-modr2.pdf 
 
16http://andrewgelman.com/2013/03/18/tibshirani-announces-new-research-result-a-significance-test-
for-the-lasso/ 
 

http://www.stat.cmu.edu/~ryantibs/datamining/lectures/17-modr2.pdf
http://andrewgelman.com/2013/03/18/tibshirani-announces-new-research-result-a-significance-test-for-the-lasso/
http://andrewgelman.com/2013/03/18/tibshirani-announces-new-research-result-a-significance-test-for-the-lasso/
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2.4.4 Suppor t Vector  Regress ion 

Although the origin of Support Vectors algorithm goes back to sixties (Vapnik and 

Lerner,1963; Vapnik and Chervonenkis, 1964;), Support Vector Regression (SVR) 

technique was proposed by (Vapnik, Steven Golowich, and Alex Smola, 1997). 

Support vector regression is a widely used application of the Support Vector Machine 

family. 

The basic idea behind the SVR technique is to establish an input pattern mapped into a 

feature space. A dot product of input vectors is calculated to evaluate a kernel function 

k( xi,xj) under a mapping Ф. These dot products of input vectors are then added by 

introducing a weight criterion (α). The input patterns are then used to predict a target ( 

yi.). The goal here is to find a function F(x) that has at most a deviation of ( є ) for the 

predicted value. Deviations below the value ( є ) are ignored and the values exceeding 

it are not accepted (Smola and Schölkopf, 2004). 

So, the function for the output will be: 

yi =  ∑α (xi , xj) + b with x ∈ Ф 

Equation 2.7 Equation for Support Vector Machines 

Where (xi , xj) is dot product in Ф. 

b  constant 

 

 

Figure 2.6 Support Vector Regression – General Architecture (Smola and Schölkopf, 

2004) 
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In contrast to general regression techniques, instead of minimising the training error, 

Support Vector Regression aims to minimise the generalised bound error ( є )  to 

achieve robust generalised performance . This generalised error bound is calculated 

using a combination of training error and a regularization term which controls the 

complexity of hypothesis space (Basak, Pal, and Patranabis, 2007). In order to 

minimise the generalised bound error, the estimated kernel function used can be both 

linear and non-linear in nature. The two popular types of kernel used are: (Durgesh and 

Lekha, 2010): 

1) Linear Kernel 

A linear kernel function maps the data into a linearly separable feature space and is 

represented in the below form: 

K (xi , xj) = xi T xj 

Equation 2.8 Representation of Linear kernel 

2) Radial Basis Kernel 

Radial Basis Kernel function is of non-linear class. The radial basis kernel samples 

a high dimensional feature space with fewer hyper-parameters and less numerical 

difficulties (Durgesh and Lekha, 2010). These characteristics make radial basis one 

of the most widely used non-linear kernel function and is represented as below. 

K (xi , xj) = exp(-γ ║xi - xj║2 ) , γ > 0 

Equation 2.9 Representation of Radial Basis Kernel 

Where γ is kernel parameter. 

2 .4 .5 Conclus ion 

This chapter has summarized a complete review of the existing literature in the context 

of the research study. The review comprised of the domain-specific material along 

with a detailed assessment of the techniques along with the research gaps and the 

significance of the study are coherently described. Finally, techniques which were 

employed in the existing research have been reviewed   
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3 DESIGN AND M ETHODOLOGY 

3.1 Introduction  

The research design is one of the most critical tasks in order to objectively carry out a 

successful research project. A design methodology lays out an objective platform that 

guides a research project. This chapter will provide a detailed overview of the 

complete experimental design about the research study. It provides an overview of the 

data being used for the research study. It outlines the methods and tools taken for 

implementation of the research study. Finally, it discussed the techniques used to 

address the research question in this context and the various methods to evaluate those 

techniques. 

3.2 Research Design 

The majority of the research studies can be categorised into three types: Explanatory, 

Descriptive, and Exploratory (Saunders, Lewis, and Thornhill, 2000).  

An explanatory research is one where the researcher attempts to connect different ideas 

to study causation and effects17. A descriptive research is one where the researcher 

attempts to examine and explain a rather more complex idea or phenomenon. An 

exploratory research is one where the researcher seeks to understand and explore a 

theoretical idea. An exploratory research determines whether what is observed can be 

explained by a theory. Considering the nature of this study is to explore and 

understand the underlying theoretical ideas, it would be exploratory research. 

For the course of this study, quantitative research methods will be employed. The idea 

of quantitative research is to estimate if a predictive theory holds true or not. 

Quantitative research, in general, is used to explore the quantitative properties and 

underlying relationships within data.  

This research study can also be categorised as correlation research design. A 

correlation research study is used as a research design strategy in order to examine the 

relationships in data (Fraenkel and Wallen, 2009). The correlation analysis will be 

                                                 
17http://study.com/academy/lesson/purposes-of-research-exploratory-descriptive-explanatory.html 

 

http://study.com/academy/lesson/purposes-of-research-exploratory-descriptive-explanatory.html


 

 28 

performed based on the experimental design using a deductive (top-down) approach 

where a pre-established hypothesis will be tested. According to (Saunders, Lewis, and 

Thornhill, 2000), deductive research is one in which the hypothesis is tested based on 

the existing theory.  

There are two types of data that can be obtained for use in any research study: Primary 

and Secondary. Primary data is one where the data collection or data generation is part 

of the research study and the researcher creates the data himself/herself. On the 

contrary, in secondary data, the data used for the research is already available for use.  

Since the data collection is not part of this research study and existing data will be used 

for the purpose of the study, the research is secondary data analysis. The data was 

acquired as per AMEO-2015(Aggarwal, Srikant, and Nisar, 2016).  

The further sections will discuss the details of data semantics and methodology used 

for the research study in detail. 

3.3 Data 

The dataset was downloaded through the ACM dataset released as per (Aggarwal, 

Srikant, and Nisar 2016). The dataset was released by Aspiring Minds from the 

Aspiring Mind Employment Outcome 2015 (AMEO).  The study is primarily limited 

only to students with engineering disciplines. The dataset contains the employment 

outcomes of engineering graduates as dependent variables (Salary, Job Titles, and Job 

Locations) along with the standardized scores from three different areas – cognitive 

skills, technical skills and personality skills (Aggarwal, Srikant, and Nisar 2016). The 

dataset also contains demographic features. The dataset contains around 40 

independent variables and 4000 data points. The independent variables are both 

continuous and categorical in nature. The dataset contains a unique identifier for each 

candidate. Table 3.2.1. contains the details for the original dataset. The next section 

will outline the detailed data preparation and data refining steps carried out for the 

research work. 

Table 3.1 Summary Table for dataset 

VARIABLES TYPE Description 

ID UID A unique ID to identify a candidate 

Salary Continuous  Annual CTC offered to the candidate (in INR) 

DOJ Date Date of joining the company  
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DOL Date Date of leaving the company 

Designation Categorical Designation offered in the job  

JobCity Categorical Location of the job (city) 

Gender Categorical Candidate’s gender  

DOB Date Date of birth of candidate 

10percentage Continuous  
Overall marks obtained in grade 10 

examinations 

10board Continuous  
The school board whose curriculum the 

candidate followed in grade 10 

12graduation Date Year of graduation - senior year high school 

12percentage Continuous  
Overall marks obtained in grade 12 

examinations 

12board Date 
The school board whose curriculum the 

candidate followed in grade 12 

CollegeID NA/ID 
Unique ID identifying the college which the 

candidate attended 

CollegeTier Categorical  Tier of college 

Degree Categorical  Degree obtained/pursued by the candidate 

Specialization Categorical  Specialization pursued by the candidate 

CollegeGPA Continuous  Aggregate GPA at graduation 

CollegeCityID NA/ID 
A unique ID to identify the city in which the 

college is located in 

CollegeCityTier Categorical  
The tier of the city in which the college is 

located 

CollegeState Categorical  Name of States 

GraduationYear Date Year of graduation (Bachelor’s degree)  

English Continuous  Scores in AMCAT English section 

Logical Continuous  Scores in AMCAT Logical section 

Quant Continuous  Scores in AMCAT Quantitative section 

Domain 
Continuous/ 

Standardized  
Scores in AMCAT’s domain module 

ComputerProgr

amming 
Continuous  

Score in AMCAT’s Computer programming 

section 

ElectronicsAnd

Semicon 
Continuous  

Score in AMCAT’s Electronics & 

Semiconductor Engineering section 

ComputerScien

ce 
Continuous  

 

Score in AMCAT’s Computer Science section 

MechanicalEng

g 
Continuous  

Score in AMCAT’s Mechanical Engineering 

section 

ElectricalEngg Continuous  
Score in AMCAT’s Electrical Engineering 

section 

TelecomEngg Continuous  
Score in AMCAT’s Telecommunication 

Engineering section 

CivilEngg Continuous  Score in AMCAT’s Civil Engineering section 

conscientiousne

ss 

Continuous/ 

Standardized  

Scores in one of the sections of AMCAT’s 

personality test 
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agreeableness 
Continuous/ 

Standardized  

Scores in one of the sections of AMCAT’s 

personality test 

extraversion 
Continuous/ 

Standardized  

Scores in one of the sections of AMCAT’s 

personality test 

neuroticism 
Continuous/ 

Standardized  

Scores in one of the sections of AMCAT’s 

personality test 

openess_to_exp

erience 

Continuous/ 

Standardized  

Scores in one of the sections of AMCAT’s 

personality test 

3.4 Data Preparation  

After a detailed and careful examination of the original dataset, a number of data 

manipulation steps were carried out to prepare the data for investigation and predictive 

modelling. Each of the dependent and independent variables is analysed. Non-relevant 

variables were discarded and removed from the dataset. The probability distributions 

for the features were examined using histograms and density curves to understand the 

variance and outliers. Data transformations are performed if the distributions are 

highly skewed from normal to meet the underlying statistical assumptions. Scatter 

plots are used to visualize the relationship between feature variables and response 

variables. The significance and strength of the relationships are determined using the 

correlation coefficients and p values. Similarly, the relationships between features are 

also examined. 

After a detailed investigation into the semantics of Indian Education System and 

existential diversities, a number of data manipulation tasks were performed to prepare 

the data for this research. For regression modelling, the categorical features are re-

coded to continuous features and new features were created. The data was partitioned 

into train and test sets for predictive modelling.  

3.5 Assumptions 

The research study is expected to make a contribution to the existing body of research 

in this field, therefore it is of utmost importance that the underlying assumptions for a 

research study must be true. As the data used is of secondary type, one of the 

assumptions held true would be the consistency during the data collection. Also, it is 

assumed that the features were collected through a random survey where the 

participants answered the questionnaire honestly and truthfully. Another assumption 

about the data is that the dataset is free from selection bias. 
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3.6 Data Inv estigation and Empirical Model  

The data investigation is performed using SPSS18 and R (R Studio Team, 2015). Initial 

exploratory data analysis is performed using Tableau and SPSS. Tableau19 is used for 

data visualisation. Statistical tests (Pearson correlation) are used to test the correlation 

between the feature variables in the dataset for the study.  

A regression analysis is a powerful statistical tool that allows for establishing 

relationships and characterisation within data. In brief, a regression analysis is used 

for: 

 A statistical description of variables. 

 Estimation of a response variable provided a given set of input variables. 

 To determine the risk factors which can influence the response variable 

The empirical model will be of multivariate linear regression: 

Salary = w0 + w1(Feature1) + w2(Feature2) + w3(Feature3) + … + wn(Featuren) + e 

Linear regression will allow us to estimate the effect of each variable on salary. The 

coefficient of variables will provide us respective impact on the response variable. 

Linear models are by far the most widely used technique on the subject and have 

provided successful results (Gerhart, 1988; Rumberger, 1993; Scholz, 1996). 

The predictive regression models are build using R. Multiple regression models are 

built using various techniques. All the models are compared based on their accuracy 

using Root mean squared Error. 

3.7 Ev aluation and Diagnostics 

In order to establish relationships, it is very important to critically evaluate a regression 

model structure. The aptness of a regression model is critical to derive effective 

inference from the model. A regression model is susceptible to misguided inference if 

the underlying assumptions are not met. There a number of methods available to 

perform diagnostics and evaluation of regression models - in one of the studies by 

(Alff,1984; Lommele and Sturgis, 1974), the author discusses a few standard criteria to 

                                                 
18 IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM 

Corp. 

19 http://www.tableau.com/products/desktop 

 

http://www.tableau.com/products/desktop
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evaluate and diagnose regression models. The various evaluation and diagnostics 

measures used for the purpose of this study are discussed below. 

3.7.1 Residual  Analys i s  

Residual analysis is by far one of the most common methods employed in research to 

advocate the aptness of a regression model. The following statistical assumptions have 

been tested using residual analyses: 

 Regression function is a linear function in terms of parameters. 

 The associated error/noise has a constant variance term 

 The residuals are normally distributed. 

Residual plots from the fit have been used to perform the analysis. 

3 .7 .2 Evaluate  homoscedas ti c i ty 

One of the assumptions for regression models is homoscedasticity of the data. This can 

be evaluated using studentized Breusch-Pagan test or by examining the residual plots 

(Koenker, 1981). The distribution of residual terms is also examined to check for 

homoscedasticity. 

3 .7.3 Outl i er  /  High Leverage points  

An outlier is a data point whose response variable doesn’t follow the standard 

distribution of the data. In contrast to the outlier, a point is a high leverage point if the 

data point has extreme values for the feature or input variable. Outlier and high 

leverage data points have a tendency to influence the regression model. Outlier tests 

and Leverage plots are used to examine such data points within the model. 

3 .7.4 Box-Cox Transform  

In a seminal study by (Box and Cox,1964), the authors proposed box-cox 

transformation methods to ensure the usual hold for linear model assumptions. The 

proposed box-cox transformation holds the below form (Box and Cox,1964): (20) 

                                                 
20 http://www.ime.usp.br/~abe/lista/pdfm9cJKUmFZp.pdf 
 

http://www.ime.usp.br/~abe/lista/pdfm9cJKUmFZp.pdf
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Equation 3.1 Box-Cox Transformation 

 

The box-cox transformation tests are employed to handle the distribution assumptions. 

3 .7.5 Goodness -of- fit 

A goodness-of-fit determines how well the selected model fits the underlying data. 

One of the widely adopted measures for determining the goodness-of-fit is the R-

squared coefficient of determination. The coefficient is calculated as the square of the 

correlation between observed response values and predicted response values. 

(21) 

 

Equation 3.2 Formula to calculate R- squared measure 

The R2 (R-squared) value has been used to analyse the variance explained towards the 

response variable (Salary of a candidate) by the input features within a model. Also, a 

p-value for the model fit is used to determine the significance of the model. A p-value 

lower than (<0.05) implied that the coefficients are statistically significant.  

3 .7 .6 Root Mean Square  Er ror  (RMSE)  

There are multiple measures to model performance for the prediction of outcome 

variable values to the actual values in regression. One  such commonly used 

performance measure for the prediction performance of regression models is Root 

Mean Square Error (RMSE) (Willmott, 1981). RMSE can be calculated by taking the 

square root of the Mean squared error. Mean Squared error is computed using the 

below formula: 

                                                 
21 https://www.otexts.org/fpp/4/4 
 

https://www.otexts.org/fpp/4/4
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MSE = 1/n ∑ (yp – yo)2 

Equation 3.3 Formula to calculate Mean Squared Error 

Where n  Number of data points 

yp  Predicted Value 

yo  Observed Value 

3.7.7 Data  Spl i t  

In data mining applications, the source dataset is generally split into two or three parts 

for multiple purposes. The train set is used to train a predictive model and then a test 

set is used to measure performance on unseen data. The test is used to measure the 

accuracy of the model. Sometimes a third set, a validation set, is used for the 

optimisation of models (Dobbin, and Simon, 2011). A 70/30 (70% for Training and 

30% hold out the sample as Test set) split will be used for this study. 

3.8 Conclusion 

This chapter discussed the overall design methodology for the research study. The 

section also provided the overview of the data and the variables used for the research. 

Furthermore, the chapter also outlined the assumptions and evaluation techniques 

employed in the study. The next chapter will provide a detailed implementation of the 

research experiment and the results from the experiment. 
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4 IM P LEMENTATION AND R ESULTS  

4.1 Introduction 

This chapter provides a detailed description of all the experiments and tasks performed 

during this research study. The implementation of each experiment is discussed in 

detail along with the results. 

4.2 Data Pre-Processing 

The initial data analysis indicated that the dataset is fairly clean. The data manipulation 

is done using Excel and R. There are a few data manipulation steps carried out to make 

the data feasible for the research.  

 There were a few extreme outliers in the data based on target variable Salary. 

Even though the number of these outliers was very low, they were causing a 

heavy skew into the distribution. These data points with outliers were removed 

from the data based on an outlier test in R. Furthermore, any high leverage 

points were evaluated and removed later based on residual analysis for 

regression models. 

 The two variables ‘10board’ and ‘12board’ which represent the affiliation of 

school which the candidate attended, had more than 50 different levels. These 

variables were transformed to just two levels with values – ‘centre board’ and 

‘state board’. 

 The engineering domains such as aerospace engineering, biotechnology etc. 

with less than 20 observations were combined together as ‘Other Engineering 

domains’. 

  There were less than 5% missing values in the dataset with no values missing 

for target variable Salary. The missing continuous variables were imputed 

using the mean value and categorical variables were labelled as Unknown. 
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4.3 Data Exploration and Visualisation 

After data preparation, the dataset for the project contains 27 variables, both 

continuous and categorical. 

All the dependent and independent variables in the dataset were examined individually 

and with respect to target variables in order to establish a better understanding of the 

data. Some of the key observation from the data exploration are described below. 

 

Salary - Salary is the target variable for the research experiment. The unit of Salary is 

INR (Indian Rupee). The histogram below shows the distribution of Salary. The data is 

slightly skewed on the right.  

  

 

Figure 4.1 Distribution of Salary 

 

In order to deal with skewness a box-cox transformation test is done, taking Salary as a 

target. The output of the box-cox suggested a transformation with a λ value of 0.5 

(Figure below) for linear modelling. 
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The descriptive Statistics for Salary are summarised in the below table. 

Table 4.1 Descriptive Statics Summary for Salary 

Variable  Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Salary 35000 180000 300000 283237 360000 705000 

 

Salary and Academic Variables: 

Scatter plots between the Salary and academic variables are examined. The Pearson 

correlation coefficients show a weak positive correlation between the Salary and 

academic variables: 10percentage,12percentage, and collegeGPA.  
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Figure 4.2 Scatter plots, Density plots and Correlation Coefficients for Salary and 

Academic Performance Variables 

 

The below tables provides the summary statistics for academic variables. 

Table 4.2 Summary Statistics for Academic Performance Variables 

Variable  Minimum 1st 

Quartile 

Median Mean 3rd 

Quartile 

Maximum 

10percentage 43.00 71.60 79.00 77.88 85.60 97.12 

12percentage 43.42 66.00 74.14 74.41 82.40 98.20 

collegeGPA 4.907 6.665 7.172   7.166 7.627 9.993 

 

Salary and Cognitive Skills 

Scatter plots between the Salary and academic variables are examined (Below Figure). 

The Pearson correlation coefficients show a positive correlation between the Salary 

and Cognitive Skill variables: English, Logical, and Quant. It is also evident that there 

is a correlation between the cognitive variables. 
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Table 4.3 Scatter plots, Density plots and Correlation Coefficients for Salary and 

Cognitive Skill Variables 

Summary statistics for the Cognitive skill scores are provided in the below table: 

Table 4.4 Summary Statistics for Cognitive Skills 

Variable  Minimum 1st 

Quartile 

Median Mean 3rd 

Quartile 

Maximum 

English 43.00 71.60 79.00 77.88 85.60 97.12 

Logical 43.42 66.00 74.14 74.41 82.40 98.20 

Quant 4.907 6.665 7.172   7.166 7.627 9.993 

 

Salary and Standardized Test Scores 

The standardised test scores from the AMCAT test scores are examined against salary 

using scatter plots and Pearson correlation coefficient. Interestingly, the engineering 

domain scores have a weak positive correlation with Salary. The personality scores 

also seem to have a very low positive correlation with Salary. In addition, a few of the 

personality scores are correlated to each other such as ‘openness_to_experiance’, 
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which has a moderate correlation with agreeableness, extraversion, and 

conscientiousness. Conscientiousness has a moderate correlation with agreeableness. 

 

Figure 4.3 Scatter plots, Density plots and Correlation Coefficients for Salary and 

Standardised AMCAT scores. 

 

Salary and Job Location 

A bar plot of Salary distribution with respect to the city of job location shows that  the 

top job destinations Mumbai, Bangalore and Pune, have a higher mean Salary than 

others do. Another key observation here is Kolkata, despite being one of the four 

Metro cities in India it has the lowest average Salary. 
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Figure 4.4 Salary Distribution by Job Location 

 

Salary and Graduation Year 

On examining the year of graduation with the Salary there are some interesting trends 

in data. The data shows that there is a continuous increase in the salary for the students 

graduating from the year 2007 until 2010. Then there is a decrease in the salary up to 

2014 and an increase towards the year 2015. On a breakdown of Salary by 

specialization, the trend is approximately the same. 

 

Figure 4.5 Salary Trend based on Year of Graduation 
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4.4 Comparison and Regress ion Analys is  

4.4.1 Mean Salary Compar i son Based on Gender  

The salary variable is examined with respect to the gender variable. 

The below table shows the average salaries and the respective standard deviations.  

Table 4.5 Mean and Standard Deviation of salaries for both groups 

Salary (INR)  Male  Female 

Mean 290548.12 281439.15 

Standard Deviation  133020.597 122613.199 

 

A t-test for equality of means holds the null hypothesis with a p-value of 0.052 (> 

0.01). Hence, the data shows no statistical evidence of gender bias in the salaries of 

entry level engineering graduate’s salaries.  

 

Figure 4.6 Box plot for Salaries for Male and Female groups 
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Conversely, the starting salary for engineering graduates did not differ by gender. 

There is the only small insignificant difference from a mean value of INR 281439 to 

INR 290548. 

4 .4.2 Mean Salary Compar i son Based on Engineer ing Specia l iza tion  

The choice of engineering major is generally considered to be one of the important 

factors for the employability of a graduate. The table below shows the individuals 

mean and standard deviation for salary each of the specialization. 

 

 

 

 

Table 4.6  Mean Salaries by choice of engineering Specialization 

Specialization Mean 

(Salary INR) 

Standard Deviation 

(Salary INR) 

civil engineering 339038.5 

 

25591.64 

 

computer science 290128 

 

3300.694 

 

electrical engineering 270809.4 

 

7826.406 

 

Electronics and communication 285562.7 

 
3963.42 

 

information science 294284.7 

 
5011.525 

 

mechanical engineering 279198.1 

 
9069.84 

 

Others 309012.3 

 
14499.14 

 

 

The majority of engineering graduates join the huge IT (Information Technology) 

markets after graduating due to the huge demand in the sector. As such, it is expected 

that the graduates majoring from computer science and information science will be 

paid relatively more than those from other majors. That said, a pairwise comparison of 
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all specialization groups does not show any significant difference between the average 

salaries with a p-value greater than 0.01. 

Even though there is no statistically significant difference between the average salaries 

between different engineering groups, it can be observed in the box plot (Figure 4) 

comparison below that civil engineering graduates have a high lower quartile range 

compared to other groups.  

 

 

Figure 4.7 Box plot for Salaries by Engineering Specialization 

4.4.3 Mean Salary Compar i son Based on Col l ege  Tier  

The table below shows the average salaries of a student based on the college tier they 

graduated from. Also, a t-test for equality of means supported the evidence to reject the 

null hypothesis with a p-value of .000 (< 0.01) with t-statistic of 12.113 with a degree 

of freedom of 3915. 

 

Table 4.7 Summary for Mean Salary and Standard Deviation based on College Tier. 
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College Tier  Mean Salary (INR)  Standard Deviation 

A 379227.94 129248.293 

B 281569.00 128190.135 

 

The statistical test supports the general notion that the students graduating from Tier A 

college are paid more than the student’s graduating from Tier B (Appendix B). 

 

4 .4 .4 Regress ion Analys i s  for  Cogni ti ve  Ski l l s  and Salary 

A multiple regression was conducted to examine the relationship between the cognitive 

skill test scores towards the Starting Salary. The cognitive skill scores consist of three 

variables – English, Logical, and Quant. 

The correlation tests (Pearson – Heat Map Below) between Salary and cognitive test 

scores showed a weak but statistically significant correlation. 

 

Table 4.8 Correlation heat map for Cognitive skills and Salary 

 A multivariate regression model was built and the residual plots were examined to 

verify the validity of the model. The figure below shows all the residual plots for the 

regression model. 
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Figure 4.8 Residual plots of the Regression Model for Cognitive skills and Salary 

Residual Plot Analysis: 

 

 The top-left (Figure 5) plot for the ‘Residual Vs Fitted’ values shows an even 

distribution around the zero mean following the regression assumptions.  

 The top-right (Figure 5) QQ plot follows the normal distribution assumption 

for residuals for the model. There are data points on both ends which reflect a 

little deviation from normal which is because of the infrequent width of the 

salary data points on both ends.  

 The bottom-left (Figure 5) plot is another plot of ‘Fitted Vs Residual’, except 

that the residuals have been standardized here. The plot shows that the model 

follows the assumption of homoscedasticity. 

 The bottom-right (Figure 5) plot shows that there are three high leverage points 

in the model. The model was re-created without these data points and the same 

results were produced, so in the final model these data points were not 

removed. 
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A regression model with three predictors indicated that Cognitive Skill scores are 

statistically significant (p-value < 0.001) predictors of Salary. The table below shows 

the regression results supporting the same (Appendix B).  

 

Table 4.9: Regression Summary for Cognitive Skill and Salary 

Adjusted R-Squared (R2) F - statistic p-value 

0.1389 211.6 2.2e-16 

 

The adjusted R-squared value states the total variance explained by the independent 

variable towards Salary. The absolute t-statistic (|t|) value indicates that Quant is a 

stronger predictor of Salary in comparison to English and Logical ability scores. The 

table below summarizes the Regression coefficients summary for the model.  

 

Table 4.10 Regression Coefficients for Cognitive Skill and Salary Model 

Variable Name  Regression Coefficient Std. Error  T - statistic p- value 

English 159.94 21.01 7.614 3.31e-14 *** 

 

Logical 91.56    27.26 3.358 0.000791***  

 

Quant 286.65 18.75 15.285 < 2e-16*** 

 

* Indicates Significance at the .05 level 

** Indicates Significance at the .01 level 

*** Indicates Significance at the 0.001 level 

 

The regression models with the interaction terms within cognitive variables are also 

evaluated to examine the interaction effects. The residual plots for each of the 

regression models are evaluated for model validation (APPENDIX A). The results 

from the regression models with interaction terms are summarised in the below table. 
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Table 4.11 Regression Summary for Cognitive Model with Interaction Terms 

Variable  Adjusted R-Squared Regression Coefficients p- value 

Model -1 

English  

 

0.1493 

1.673e+02 6.94e-15 *** 

Logical 4.897e+01 0.6066 

Quant 2.362e+02 0.0117 * 

Logical:Quant 9.525e-02 0.5993 

Model -2 

English  

 

0.1496 

48.4490    0.667 

Logical -17.6822 0.872 

Quant 284.3922 <2e-16 *** 

English:Logical 0.2329 0.283 

Model -3 

English  

 

0.1493 

 

1.959e+02 0.015518 * 

Logical 9.621e+01 0.000634 *** 

Quant 3.119e+02 5.84e-05 *** 

English:Quant -5.475e-02 0.714051 

* Indicates Significance at the .05 level 

** Indicates Significance at the .01 level 

*** Indicates Significance at the 0.001 level 

 

In each of the individual regression models with interaction terms, none of the 

interaction terms were found to be statistically significant. 

4 .4 .5 Regress ion Analys i s  for  Cogni ti ve  Ski l l s ,  G ender  and Academic  

Features  

The cognitive skills are also analysed using regression with Gender as a control 

variable. The regression model is significant with a p-value of < 2.2e-16 (< 0.001) with 

an Adjusted R-squared value of 0.1494. The coefficients of from the regression are 

summarised in the below table. 
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Table 4.12 Regression Coefficients of Cognitive Skills controlling for Gender 

Variable Name Regression Coefficient Std. Error T - statistic p- value 

English 167.68 21.40 7.835 6.15e-15 *** 

Logical 97.16 28.12 3.456 0.000556 *** 

Quant 283.26 19.03 14.884 < 2e-16 *** 

GenderM 2564.45     4689.54    0.547 0.584519 

* Indicates Significance at the .05 level 

** Indicates Significance at the .01 level 

*** Indicates Significance at the 0.001 level 

 

The results from the regression indicate that the control variable Gender is statistically 

insignificant in the model with cognitive skill features. 

Another regression model is built for cognitive skills including the academic variables. 

The regression results are significant with a p-value of < 2.2e-16 (<0.001) with an 

Adjusted R-Squared value of 0.1922. The regression coefficients from the model are 

summarised in the below table. 

Table 4.13 Regression Coefficients for Cognitive skills and Academic variables model 

Variable Name Regression 

Coefficient 

Std. 

Error 

T - 

statistic 

p- value 

English 112.62 22.24 5.064 4.33e-07 

*** 

Logical 45.39 27.73 1.637 0.1017 

Quant 212.71 19.20 11.081 < 2e-16 *** 

X10boardstate 

board 

-10277.58 4190.45 -2.453 0.0142 * 

X12boardstate 

board 

19738.18 23732.47 0.832 0.4056 

X10percentage 925.52 269.47 3.435 0.0006 *** 

X12percentage 1302.69 243.14 5.358 8.96e-08 

*** 

collegeGPA 1151.83 263.66 4.369 1.29e-05 

*** 
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CollegeTierB -46981.59 7753.08 -6.060 1.51e-09 

*** 

* Indicates Significance at the .05 level 

** Indicates Significance at the .01 level 

*** Indicates Significance at the 0.001 level 

 

The results from the regression indicated that the Logical ability and ‘X12 Board’ are 

insignificant when the cognitive skills and academic variables are combined. The 

cognitive skills ‘English’ and ‘Quant’ are still significant in the model towards 

predicting Salary. The academic variables ‘X10board’, ‘X10percentage’ , 

‘X12Percentage’, ‘collegeGPA’ and ‘CollegeTier’ are significant contributors in 

predicting Salary. In addition, the students from state board affiliation (X10board) and 

Tier B (CollegeTier) colleges have a negative contribution in predicting the Salary. 

4 .4.6 Regress ion Analys i s  us ing ful l  se t of var i ables 

 

A complete multiple linear regression was examined to understand the salary 

predictors using demographic variables, cognitive skills scores, academic performance 

and personality scores. The categorical variables were re-coded by creating additional 

(k-1) variables for k levels of each variable. Such variables are: Gender, Specialization, 

10board, 12board and CollegeTier. 

The regression results were statistically significant with a p-value of 2.2e-16 (<0.001) 

and an adjusted R-squared value of 0.243. The F-statistic value for the model is 35.71. 

Many of the variables were highly significant and as were many control variables. This 

suggests that there are several aspects for students that significantly affect the starting 

salary of engineering graduates. The below table shows the regression coefficients and 

t-statistics summary from the regression model (Only significant variables). 
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Table 4.14 Regression Coefficients from the complete model (Absolute Values) 

Variables Coefficients T- Statistics 

GenderM 

 

20436.84 

 

4.364*** 

 

X10percentage 

 

1183.05 

 

4.415*** 

 

X10boardstate board                            

 

10234.41 2.448* 

 

X12percentage 1358.13 

 

5.528*** 

 

CollegeTierB 

 

42058.37 

 

5.475*** 

 

Specializationcomputer science 

 

121408.21 

 

2.823** 

 

Specializationelectrical engineering 

 

100701.34 

 

2.241* 

 

Specializationelectronics and communication 

 

110726.42 

 

2.428* 

 

Specializationinformation science 122268.05 

 

2.547*  

 

Specializationothers 

 

120799.73 

 

2.620** 

 

collegeGPA 

 

1382.69 

 

5.195*** 

 

English 

 

123.34 

 

5.611*** 

 

Quant 

 

175.50 

 

9.137*** 

 

Domain 12180.60 

 

2.310* 

 

ComputerProgramming 

 

33.69 

 

2.659** 

 

ComputerScience 

 

122.50 

 

10.784*** 

 

ElectricalEngg 

 

94.15 

 

3.250** 

 

CivilEngg 

 

336.67 

 

3.297*** 

 

conscientiousness 

 

7672.51 

 

3.381*** 

 

* Indicates Significance at the .05 level; ** Indicates Significance at the .01 level 

*** Indicates Significance at the 0.001 level 
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Cognitive Skill Scores variables (English, Logical, and Quant): 

The results of regression found that English and Quant's scores are significant 

predictors for the starting salary for engineering graduates. The model also revealed 

that the variable ‘Logical’ is not significant anymore in the complete model when 

controlled for with other variables. Also, the t-statistic values state that the Quant 

Score is still relatively a strong predictor compared to English score. 

Academic Variables: 

The regression results indicated that the academic performance variables such as 

10percentage, 12percentage and collegeGPA have a significant impact on the salary of 

an engineering graduate. In addition, the choice of 10board, CollegeTier and 

Engineering Specialisations also presented to have a significant contribution towards 

the Salary. 

Standardised Test scores for Domain and Personality:  

The results from the regression indicated that even the scores in domain specific tests 

for Computer programming, Computer Science, Electrical Engineering and Civil 

Engineering contributed significantly towards Salary. On the other hand, the only 

personality score (of BIG5 Personality Test) which had a significant effect on Salary is 

conscientiousness. The rest of the Personality Test scores are insignificant in the 

model. 

4.5 Predictive Modelling 

In order to build an accurate salary prediction model, multiple regression models are 

created using feature selection and regularization techniques.  The regression models 

are built using R Statistical Package. All the models are compared based on the Root 

Mean Square Error (RMSE) on the test set. The dataset was split into (70:30) as 

training and test set.  In this study, the below steps are used to build models. 

Table 4.15 Steps to build Regression Models 

Steps  Description 

1.  Import Data and split (70:30) as Training and Test Set. 

2.  Train the model on the training set. 

3.  Select Best Model using Feature Selection/ Regularization 

4.  Apply parameter engineering to improve performance 
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5.  Validate Model and Calculate RMSE 

4.5.1 Basel ine  Mul tipl e  Linear  Regress ion Model  

A baseline model is build using all of the predictor variables. The model is trained on 

the training split. The residual plots are then examined to validate the model 

assumptions. The Figure below contains the residual plot of the baseline regression 

model.  

 

Figure 4.9 Residual plots for the Baseline Regression Model 

The ‘Standardized Residual Vs Fitted’ plot holds the regression model  assumption of 

constant variance. 

The trained baseline model is then used to make predictions on the test set and Root 

Mean Square Error is calculated. The RMSE of the baseline model on the test set by 

70/30 method is 144194.3. 
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Figure 4.10 Predicted Vs Actual Salary on Test Set 

  

4 .5 .2 Model  Sel ection us ing Forw ard Stepw ise Sel ection 

A Forward Stepwise Subset feature selection is employed to improve on the baseline 

model. Forward Stepwise selection in each iteration includes the next best variable for 

the model. It creates a nested sequence of models by including the variable that 

improves the model most at each step. 

A stepwise selection method is used to train a total of 32 models on the training data 

using 70/30 method. The best model is selected with the minimum value of Cp-statistic 

value. Mallow’s Cp-statistic is one of the most commonly used measures to compare 

all possible regressions and select the best model among them (Gilmour,1996). 
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Figure 4.11 Models trained by Stepwise Method against the Cp- Statistics. 

A final model with 19 variables is selected with the lowest Cp-statistic (Figure Above) 

from stepwise forward selection method. The below figure shows the list of variables 

included in the final model. 

 



 

 56 

Figure 4.12 Variable selection in the selected model 

 

The model is then used to make predictions on the test set (From 70/30 split method) 

and RMSE is calculated for the same. The final RMSE from the Stepwise Regression 

Model on the test set is 126320.9. The RMSE for training and test is plotted in the 

below figure.  

 

Figure 4.13 RMSE for Training and Test Set 

4.5.3 Model  Sel ection us ing L1 Regular i za tion ( Lasso Regress ion)  

In order to perform least absolute shrinkage and variable selection, a Lasso Regression 

Model is fitted using ‘glment’ package (Friedman, Hastie, and Tibshirani, 2010) of R. 

Lasso Regression performs L1 regularization. It adds the absolute value of coefficients 

to the optimisation function for the model.  

As the package does not use formal language for R, so an input matrix of predictors 

and a response vector is created in order to build the model. Lasso Regression Model is 

fitted using ‘glmnet’ function with α=0. The below plot shows the variable coefficients 

and associated value of lambda. 
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Figure 4.14 Variable Path created by Lasso Regression 

Also, the deviance plot (figure below) indicates that coefficients grow very large with 

a small increase of 0.23 to 0.26 of the total deviance explained (similar to R-squared in 

Linear Regression). 

 

 

Figure 4.15 Deviance plot for Lasso Regression 

Lasso will generate a wide range of possible values of coefficients indexed by different 

values of lambda. The best set of coefficients will be selected by choosing the 

corresponding lambda value. 
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The best value for lambda is selected using a 10-fold cross validation with a minimum 

mean squared error. In the below plot (Mean Squared Error Vs Log (Lambda)), it can 

be observed that Mean Squared Error is high in the starting (Left) and then it gradually 

decreases and levels off. It can be observed that after a while there are no significant 

decreases in the error even if the coefficients keep increasing. 

 

Figure 4.16 Mean – Squared Error Vs Log(Lambda) 

The lambda value is selected based on the minimum value of Mean Squared Error and 

the simplest model. The selected model is then used to make a prediction on the test 

set and Root Mean Square is calculated for the same. The final RMSE from the best 

selected Lasso regression model on the test set is 114492.5. The final model selected 

had 11 variables. 

4 .5.4 Model  Sel ection us ing L2 Regular i za tion ( Ridge  Regress ion)  

Similar to Lasso, a ridge regression model is fitted using the ‘glment’ package. The 

function for ridge regression is residual sum of squares plus lambda times the sum of 

squares of coefficients. The ridge-regression is fitted by calling the ‘glmnet’ function 

with α=0. ‘Glmnet’ package sprays over a range of values of lambda and creates a path 

of variables (Figure below).  
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Figure 4.17 Variable Path created by Ridge Regression 

The best value of the lambda is chosen using a 10-fold cross-validation on the training 

set. The selection of Lambda is done based on the minimum value of mean squared 

error. The complete set of lambda is plotted with the associated mean squared error 

(figure below). 

 

 

Figure 4.18 Mean-squared Error for all Lambda values for Ridge Regression 
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The selected model is used to make predictions on the test set (From 70/30 split 

method) and RMSE is calculated for the same. The final RMSE from the best selected 

Ridge regression model on the test set is 114459.1. 

4 .5.5 Suppor t Vector  Regress ion w i th Linear  Kernel  

As a part of the initial experimental design, a support vector regression model was also 

proposed to predict salary. A support vector regression model is built using ‘e1071’ R 

package (Dimitriadou et al.,2009). 

 

The baseline SVR model is built with a linear kernel with the following parameter 

values: 

 

Figure 4.19 Parameters for Support Vector Regression Model with Linear Kernel 

The model is used to make predictions on the test set and RMSE is calculated: 115709. 

The model is then optimised for performance using a grid search hyper-parameter 

optimisation. The method uses a 10-fold cross-validation to tune a number of models 

by adjusting the values of epsilon and the cost parameters. The figure below shows the 

improved error with the darker shaded region. 
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Figure 4.20 SVR – Linear Kernel Hyper-Parameter Optimisation 

The model with the below parameters is selected after the grid search for the optimal 

parameter values. 

 

Figure 4.21 Parameters for Final SVR Model with Linear Kernel after optimisation 

The model is used to make predictions on the test set and RMSE is calculated: 114107. 

The RMSE of the model has shown improvement from 115709 to 114107. 

4 .5.6 Suppor t Vector  Regress ion w i th Non-Linear  Kernel  

Another Support Vector Regression model is built using a non-linear kernel. Radial 

Basis kernel is used to train the model. The initial SVR Model with Radial kernel has 

the same RMSE as initial SVR with a linear kernel of 115709. 

The model is then optimized using a grid search (Figure below) to find the optimal 

parameter values. The darker shades reflect the parameter values with minimum error.  
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The final optimized model is selected with the below parameter values: 

 

Figure 4.22 Parameters for final SVR Model with Radial Basis Kernel after optimisation 

The selected model is then used for prediction on the test set and RMSE is calculated 

as 117435. The RMSE results show that the SVM with Linear kernel is performing 

better than the SVR with Radial basis kernel.  

4 .5 .7 Model  Compar i son Based on RMSE Value  

 

The below table shows the Root Mean Squared error from all the regression models. 

 

 

Figure 4.23 RMSE Summary for Predictive Modelling 

 

The Support Vector Regression with a linear kernel after parameter engineering has 

the minimum RMSE value on the test data in comparison to the other regression 

models. It is evident from the results that Support Vector Regression outperforms the 

Multiple Linear Regression Model based on RMSE. Also, interestingly, the SVR 

144194.3

126320.9

114492.5

114459.1

115709

114107

117435

0 40000 80000 120000 160000

BASELINE LINEAR REGRESSION

LINEAR REGRESSION WITH STEPWISE SELECTION

LASSO REGRESSION

RIDGE REGRESSION 

SVR BASELINE

SVR WITH LINEAR KERNEL

SVR WITH RADIAL KERNEL

Root Mean Squared Error (RMSE)



 

 63 

model with linear kernel has a lower value of RMSE as compared to the SVR with 

Radial basis kernel. 

Another key observation in the predictive modelling is that Ridge Regression and 

Lasso Regression have a very small difference in RMSE, but due to the variable 

selection capability of Lasso, it provided a more interpretable model compared to 

Ridge Regression. 

4.6 Conclusion 

This chapter has outlined the detailed experiments conducted for the study. A 

quantitative approach based on the research framework was used to determine the 

impact of all the factors under study. The underlying assumptions for the models were 

validated and the corresponding results were reported. The results of the study will be 

discussed in detail in the next chapter. 
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5 DISCUSSION AND ANALYSIS  

5.1 Introduction  

This chapter discusses the experiment results from exploratory data, Hypothesis 

testing, Regression Analysis and Predictive modelling in the context to the research 

objectives. The key strengths and weaknesses of the study are also discussed. 

5.2 Exploratory Data Analys is  

Exploratory data analysis led to some key insights into the data. The Salary difference 

by Job Location revealed that Mumbai, Bangalore, and Pune are top-paying cities. This 

trend is expected as these are the fastest growing information technology hubs in India, 

which may attribute to the higher salaries in these cities. Another interesting 

observation in location context is, in spite of being third largest metropolitan city in 

India, the entry level salaries are the lowest in Kolkata. The exploratory analysis also 

showed differences in the salary based on the choice of specialisation in engineering. It 

indicated that civil engineers have a high lower quartile for salaries. Another key trend 

which was indicated by the data, is the increase in salaries by graduation year from 

2007 until 2010 which is a little unexpected since the world economy was recovering 

from the 2008 economic crisis. 

5.3 Hypothes is Testing 

The results from hypothesis testing are outlined below in relation to the initial 

hypotheses. 

 

H1: Male candidates are paid higher starting salaries than their female counterparts. 

 Statistical Tests showed no evidence to reject the null hypothesis. There was no 

statistical evidence found to support that there is a gender bias in the starting 

salaries of engineering graduates. 
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H2: The engineering graduates from Tier A colleges are paid higher starting salaries 

than the graduates from Tier B college. 

 A t-test for equality rejected the null hypothesis. Statistical tests supported the 

initial hypothesis stating that engineering graduates from Tier A college receive 

a higher salary than students from Tier B. The initial hypothesis was supported. 

 

H3: The computer science graduates are paid a higher salary than the other engineering 

domains.  

 A pairwise t-test provided no evidence to reject the null hypothesis. There was 

no statistical evidence found to support the claim that computer science 

graduates are paid more than those from other engineering specialisations. The 

initial hypothesis was not supported. 

H4: English is the strongest predictor of salary compared to Logical and Quantitative 

ability. 

 Regression Analysis revealed that Quantitative skills are a relatively stronger 

salary predictor than English. Individual regression on cognitive scores 

revealed that ‘Quant’ scores explain twice the variance in Salary as compared 

to English. The initial hypothesis proved to be wrong in this case. 

5.4 Regress ion Analys is  

The regression analysis indicated that the cognitive skills ‘English’ and ‘Quant’ are 

both significant determinants of Salary in all of the regression models. The variable 

‘Logical ability’ is a significant predictor when only cognitive skills were included in 

the regression but, in the presence of other features, it was found to be statistically 

insignificant.  

The results from this study supported the general notion of earlier research by 

(Hamermesh and Donald, 2008; Jones and Jackson, 1990; Chia and Miller, 2008), that 

academic performance from school to college is a significant contributor to the salary 

of engineering graduates, even though these earlier studies were not specifically 

targeted at engineering graduates. The regression results illustrated that 

‘X10percentage’,’X12percentage’ and ‘collegeGPA’ are major predictors of Salary.  

The choice of engineering major is also found to be a significant contributor in 

determining the salary which is in sync with the results from existing research focused 
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on the impact of choice of study major on salary by (Hamermesh and Donald, 2008; 

Rumberger and Thomas, 2003; Arcidiacono, 2004).  

The unique properties of the dataset also provided an opportunity to study the 

relationship of personality traits with salary, and the regression analysis reflected that 

conscientiousness (i.e. a desire to do a task well) is a significant predictor of salary in 

the presence of all the other feature variables under study.  

5.5 Predictive Modelling 

A comparative analysis of Salary prediction models indicated that a Support Vector 

Regression (SVR) model with a linear kernel after parameter optimisation 

outperformed other models based on RMSE. 

Moreover, the performance results from Ridge and Lasso regression showed the very 

close performance of these models to the SVR model. Between Ridge and Lasso, the 

difference of RMSE was extremely low, but Lasso, due to its ability to shrink the 

coefficients to exactly zero, provides a more interpretable model. The final selected 

regression model from Lasso had only 11 variables whereas the Ridge Regression had 

all 33 variables. 

5.6 Awareness of Strengths  and Weaknesses  

The strengths of the research study are: 

1) The combination of academic variables, along with demographics, cognitive 

skills and personality traits provided the study more robustness in terms of 

controlling effects.  

2) Even though the initial hypothesis of English scores being a relatively stronger 

predictor of Salary compared to Logical and Quant scores was rejected,the 

English language is still a statistically significant predictor of Salary in all the 

models which is very critical in Indian Markets.  

3) The findings of the results hold true to one of the hypotheses that students from 

Tier A college are paid more than those from Tier B colleges. These results are 

significant as the data was collected from 1350 different colleges after 

elimination of the elite government colleges. 

4) The educational parameters in Indian Markets are referenced for data 

preparation which further strengthen the research outcomes. 
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The weaknesses of the research study are: 

1) Even though the dataset is unique, the sample could be biased for 

generalisation of some results considering the various diversities in Indian 

Education system and Indian Labour Markets. For example, the data contains 

more candidates from computer science background compared to mechanical 

and civil engineering. 

2) The examination of gender bias from the data might not be very reliable 

considering the fact that the data does not have an equally distributed sample of 

male and female candidates. 

3) The recruitment process in itself is a very subjective process and in some cases 

private companies conduct their own written test to score students in campus 

placement drives. There is no information regarding whether the candidate 

score for AMCAT test has been used for recruitment or not. 

4) There is no statistical evidence to support that salaries differ by specialisation 

but there can be other factors in effect that the majority of candidates in the 

study might be getting recruited only by Information Technology companies.  

5.7 Conclusion 

This chapter discussed the results from the experiments in details. The results were 

used to evaluate the initial hypotheses and to contextualise them with earlier studies. 

The chapter also outlined the key strengths and weaknesses of the study. In the next 

chapter, we will summarise the major findings in terms of contribution and 

recommendations for future work.  
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6 CONCLUSION  

6.1 Introduction 

This chapter will provide a brief summary of the research study. It provides an 

overview of the course of action carried out for the research.  It also reflects on the 

contribution made to the existing literature body for the research area in question. 

Finally, the future directions and options for research are discussed.  

6.2 Research Definition & Research Ov erview 

The project is aimed at understanding the primary salary determinants of entry level 

engineering graduates in Indian Labour Markets. The primary factors under 

examination against the salary were: academic features, cognitive skills, standardised 

test scores, and personality traits. In addition, another objective of the study was to 

select a best performing salary prediction model. The research study allowed us to 

achieve the following objectives: 

 

 To perform an extensive literature review on the employability factors and 

salary determinants of graduate students in diverse geographies and study 

majors, hence enabling a profound platform for the research study. 

 To explore the salary differences and salary trends with various underlying 

factors for engineering graduates in Indian Labour Markets. 

 To identify the primary factors determining the starting salary of engineering 

graduates using regression analysis. 

 To build and compare accurate salary prediction models based on Root Mean 

Squared Error. 

6.3 Contributions to the Body of K nowledge  

The research study examined two aspects in the context of Indian Labour markets: To 

determine the best salary predictors and to select a most accurate salary predictor  based 

on an accuracy comparison. The idea was to explore the semantics of employment 
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outcome for engineering graduates in Indian Markets and add value to the existing 

body of knowledge. The findings of this thesis can bring valuable insights to 

researchers in the field. The novelty of research is driven by the data and its 

demographics. The study looked at a number of factors such as cognitive skills, 

academic variables, demographics and personality traits, as salary determinants for 

recent engineering graduates. Even though this is an ongoing research area, this 

combination of factors is considered for the first time for a developing socio-economic 

nation like India. 

Researchers can use this research in further examining these factors within other fields 

of study and in addition to other external factors. The predictive modelling results can 

be used as a benchmark model for further research in applications of predictive salary 

modelling with a wider range of other techniques and ensemble models.  

The findings of regression analysis could be fruitful for students to tailor their choices 

for the maximum financial return on jobs. This is because few of the factors such as 

academic grades and choice of major are under the student’s control. In addition, the 

data indicated that the choice of school from an affiliation perspective is also a 

significant determinant of starting salary. The results from the study can well inform 

these choices with respect to maximise the salary outcomes. The findings can be 

helpful for education administrators to bring interventions to improve certain skills, for 

example, English language. With India being a multilingual country, this can be a 

critical factor. 

6.4 Experimentation, Ev aluation, and Limitation 

The research project used a dataset released by Aspiring Minds (Aggarwal, Srikant, 

and Nisar, 2016). The study followed a general course of secondary research with the 

below experiment steps: 

 In-depth examination of the existing research works in the context of 

employability factors and salary determinants of graduate and undergraduate 

students. 

 Exploratory data Analysis to develop a deeper understanding of the data. 

 Data preparation steps based on the research of external factors of education 

systems in India. 
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 Hypothesis testing examining the salary inequalities among entry-level 

engineering graduates.  

 Regression Analysis of the factors under study towards the target variable - 

Salary of an engineering graduate. 

 Linear and Non – Linear Predictive Modelling to find the best salary prediction 

model based on an Error function (RMSE). 

 

The scope of the study was only limited to engineering graduates and the dataset did 

not include student data from other study domains. In addition, the generalisation of 

results might be a little subjective to the effect of external environmental factors such 

as National economic factors, inflation rates, policy changes etc. Considering these 

limitations of the study, the future research directions and options are discussed in the 

next section.  

6.5 Future  Work & Research 

The study examined a larger number of factors in combination, affecting the salaries 

for engineering graduates in India Labour Markets, than existing literature. Although 

many of these factors are examined in existing literature, the unique combination of 

cognitive skills, standardised test score along with academic and demographic factors 

perceived to add to the body of research.  

There are several aspects of the research which could be perused to contribute to the 

research body. Based on the literature review, it was observed that internship or 

industrial training is a key factor for starting salaries and employability. Although this 

study examined a varied combination of variables, it is recommended to adjust the data 

collection/survey instrument to possibly capture that information. In addition, 

information such as exchange programs, experience studying abroad, part-time work 

experience and volunteering experience could be examined, provided the data is 

captured for these factors. 

This thesis has presented an inductive, data-driven approach for the prediction of 

salaries in the Indian job market for entry level engineering graduates. Because of the 

dynamism of the features involved in such a prediction, this study could be tackled 

from a different perspective by, for instance, employing deductive reasoning 

techniques for inference including (Longo, 2012; Longo, 2013; Longo, 2014; 
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Longo,2015; Rizzo,2016). Additionally, the feature set could be extended by mining 

social data from the cloud or online social networks (Dondio, 2011), and extract 

relevant determinants for predicting salaries (Longo, 2009; Longo 2010). 

Another area for future research in this context would be to try to employ other 

predictive modelling techniques to improve the salary prediction performance.  

External factors such as a country’s economic growth metrics, inflation rates, and other 

environmental changes might have an impact on salaries. The data for these could be 

factored into the study to delve deeper into the subject area. In addition to this, the 

scope of the research study could be extended to graduates from other study domains 

such as business, arts etc. 
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