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Abstract 

Older IoT “smart sensors” create system alerts from threshold rules on reading values. These 

simple thresholds are not very flexible to changes in the network. Due to the large number of 

false positives generated, these alerts are often ignored by network operators. Current state-of-

the-art analytical models typically create alerts using raw sensor readings as the primary input. 

However, as greater numbers of sensors are being deployed, the growth in the number of 

readings that must be processed becomes problematic. The number of analytic models 

deployed to each of these systems is also increasing as analysis is broadened. This study aims 

to investigate if alerts created using threshold rules can be used to predict network faults. By 

using threshold-based alerts instead of raw continuous readings, the amount of data that the 

analytic models need to process is greatly reduced. The study was done using alert data from a 

European city’s District Heating network. The alerts were generated by “smart sensors” that 

used threshold rules. Analytic models were tested to find the most accurate prediction of a 

network fault. Work order (maintenance) records were used as the target variable indicating a 

fault had occurred at the same time and location as the alert was active. The target variable was 

highly imbalanced (96:4) with a minority class being when a Work Order was required. The 

decision tree model developed used misclassification costs to achieve a reasonable accuracy 

with a trade-off between precision (.63) and recall (.56). The sparse nature of the alert data may 

be to blame for this result. The results show promise that this method could work well on 

datasets with better sensor coverage. 
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District Heating The industry name for heating networks in cities 
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IoT Internet of Things 
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1 Introduction 

1.1 Background 

A paper by (Mattern & Floerkemeier, 2010) describes the Internet of Things (IoT) as how  

“the Internet extends into the real world embracing everyday objects. Physical items are no 

longer disconnected from the virtual world, but can be controlled remotely and can act as 

physical access points to Internet services” 

IoT sensors are embedding more and more in our city’s public infrastructure. Many energy, 

transport, waste, water and heating networks are getting IoT upgrades. Some of these sensors 

simply send reading data from the sensors at regular intervals. Other “smart” sensors have some 

situational intelligence built in. For example, a smart sensor might send an alert if the pressure 

in a pipe exceeds a certain value. Early predictions for the success of smarter cities projected 

huge adoption by cities however it has been noted that “business around smart cities is having 

difficulty taking off” (Vilajosana et al., 2013). There are still many challenges for the vendors 

of Smarter City products, but the potential benefits are still clear. 

IoT sensor data can be used by organisations that run city networks to simply monitor activity 

in real-time. The next level is to use the data to try better predict and respond to issues that 

happen such as pipe leaks and bursts. The data is also used to analyse trends and find insights 

that may lead to efficiencies and cost reductions on the network. 

When a significant issue occurs on a network, a network analyst may need to schedule a repair 

team to resolve that issue. This event is called a Work Order.  

This paper will focus on fault detection in a smarter city network. A fault in this case is defined 

as an issue that requires the creation of a Work Order. 

 

 How are Work Orders generated? 

An operator monitoring a network takes various sources of information into consideration 

when creating a Work Order. They receive complaints from call centres, feedback from 

maintenance crews and readings from IoT sensors. Using sensor readings allows for issues to 
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be resolved proactively rather than responding to complaints and feedback. As previously 

mentioned, sensor data comes in the form of continuous readings or as events and alerts.  

An accurate alerting system should detect or even predict faults. Early detection and 

prevention of faults leads to reduced time spent monitoring the network and in the 

deployment of maintenance teams. These are the primary cost factors for a network 

management company. 

Conversely when the alerts being generated include a high proportion of false positives, costs 

are actually increased. Operator time is wasted, and unnecessary work orders are generated. 

A loss of confidence in the accuracy of alerts inevitably leads to them being ignored 

altogether.  

1.2 Research Problem 

The idea for this study came while working on an IBM IOC District Heating project for a 

European city. Alerts in the system are generated when pipe pressures exceed high or low 

threshold values. The customer uses a geospatial dashboard to monitor the network. 

Surprisingly alert data was not configured to be displayed. When asked why this was the case, 

the customer said that it had previously being enabled but operators found that most alerts did 

not correspond to real faults. They made the decision to remove the alerts from the dashboard 

as they were just “introducing noise”. The reason why this type of alert is not useful in 

identifying real faults is that it is overly sensitive to localized spikes in pressure. 

While raw alert data was not useful for operators, this study aims to investigate if they can be 

used as inputs to an analytical model that predicts network faults. If this approach could be 

validated, it would provide an alternative to existing models that use continuous raw sensor 

readings as input. By using threshold-based alerts instead of continuous readings, the amount 

of data that the analytic models need to process would be greatly reduced. This pipeline-

based approach also allows this same threshold data to be used as input to multiple other 

models.  

The pipeline diagram in Figure 1 shows how reading data can be filtered using thresholding 

to extract interesting readings. These readings can then be passed forward in the pipeline to 

be consumed by one or more downstream models. 
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Figure 1 - Proposed analytical pipeline that filters sensor readings for interesting values from which to generate 

alerts. Source (author) 

 

Interestingly, in this study the data is already filtered to yield interesting readings. These are 

in the form of “smart sensor” alerts. Figure 2 shows a version of the pipeline diagram from 

Figure 1. In this version the initial stage of the pipeline has been replaced by smart sensors 

 
Figure 2 - Alert sensors form the first part of an analytics pipeline. Source (author) 
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that only send readings when thresholds are exceeded. The possibility of creating accurate 

fault prediction from threshold-based alerts is the question addressed in this study.  

 Research question 

Can the need for Work Orders in a District Heating network be determined from analysing 

simple threshold-based alerts? 

1.3 Research Objectives 

1. Export and clean the required alert and work-order data from an active database of an 

IBM IOC system. 

2. Do business and data understanding work 

3. Data preparation: Associate work-orders by type with each alert instance 

4. Create all smart features. 

5. Partition the dataset into training (70%) and validation (30%) 

6. Use different bimodal classification model types to investigate H0 

7. Compare how all the models perform against each other. 

8. Accept or reject H0 

 Hypotheses  

H0: There is no association between District Heating network simple threshold-based alerts 

and a need for Work Orders in the network.  

1.4 Research Methodologies 

The type of research is secondary research as the data used was already collected in the IBM 

IOC database. 

The research objective is Quantitative research as a systematic empirical investigation of the 

relationships between alert data and work-order data will be performed by confirming 

hypothesis in a close-ended, stable study. 

The research form is empirical research as the feasibility of predicting the need for a work-

order will be tested using empirical evidence and experiments. 

Deductive reasoning is used to generate a research question, develop hypothesis, gain 

observations from experiments and then confirm or reject the hypotheses. 
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The dataset used in the study was acquired from an IBM IOC customer. The customer 

manages a European cities District Heating network. The data was provided for use in 

building analytic models.  

The study will follow a consistent Data analytics Crisp DM approach (Business 

understanding, data understanding, data preparation, modelling, evaluation, deployment).  

This is an iterative feedback process. The dataset will be analysed for its quality. 

The first step will be business understanding. This step will aim to understand the problems 

and needs of the domain. This will be achieved by consulting with domain experts and by 

doing a comprehensive literature review. Insights from this step will inform the data 

understanding stage. 

Descriptive analysis tools will be done using R and SPSS to understand the data. Data values 

ranges, measures of centrality, missing data, outliers will all be examined. Lessons from this 

stage will lead to more business understanding questions to be asked. Scatter plots and 

correlation tests will investigate which variables might be useful or superfluous for creating 

models.  

This process will iterate for as long as necessary will be feedback between these first 2 stages 

before moving on to the next step – data preparation. 

A very large proportion of the work will be in the data preparation step. Data is extracted into 

a flat file from a copy of the production database. Temporal and spatial aggregation of data 

will be done to create “special features”. Any required data cleaning will be done. Certain 

input variable data types will have to be transformed so that in can be used in certain 

classification models. 

The modelling will then be done by following a set of clearly described experiments. The 

dataset will be partitioned into 3 splits using stratification: 

1. Training – 70% 

2. Validation – 10% 

3. Holdout Testing – 20% 

These experiments will have evaluation criteria defined for them and will be created in such 

a way to allow the studies hypothesis to be accepted or rejected based on statistically 

significant results.  
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In a typical Crisp DM cycle the developed model would then be deployed to a production 

environment to be tested in the field. This was not possible in the time frame of this study. 

1.5 Scope and Limitations 

 Single network, single city 

The dataset for this study is for a single European city. It would be preferable to have data for 

multiple cities to test if results were consistent across networks of varying size and 

complexity. By having multiple cities any findings would hold greater significance. 

 Domain limited to District Heating 

The District Heating domain is a very interesting one, but it is also much less prevalent than 

other networks such as water, wastewater and energy. For this reason, the impact of studies 

on the area are limited to this small domain. The domain also has certain characteristics 

(described in Section 2.8) that make it more challenging to make fault predictions. However, 

a new Work Order feature was only being used by a single customer that only managed a 

District Heating network.  

 No explicit target variable in the original dataset 

When supervised learning methods are used, a target variable is required. In the study’s 

dataset we have alerts and workorder records but there is no explicit link between them. This 

is a problem as we cannot proceed with a supervised learning approach until this association 

has been made. To devise a way to make this association between alerts and work orders, 

domain experts and system analysts were consulted to determine a sensible and informed way 

to estimate the relationship. The method devised is outlined fully in Section 4.3.3. This 

limitation means that there will always be a certain proportion of Work Orders that are not 

related to the alerts at all. 

 Dataset date range 

A multi-year dataset would have been preferred to try and capture seasonal and cultural 

patterns. However, this was not possible as the dataset was of a city where recording of both 

work orders and alerts began in November of 2017. Three months of data was subsequently 
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exported in January of 2018 for use in the creation of models and for this study. 

 

Figure 3 - Data for weeks of the year showing 3 winter months covered. Source (author) 

 No reading value sent with alert notification 

The alerts in this study are generated when a threshold is exceeded. An alert is either created 

or not. Alert creation does not depend on by how much the threshold has been breached. This 

is when the actual value of the reading that caused the alert might be useful input to an 

analytic model. Also, the value of the actual threshold level for that sensor in that location 

may be of use. Unfortunately, neither of these 2 this information points are contained in the 

alert notification message for the dataset. Attempts were made to link alert notifications and 

to get the reading of an asset at the same point in time but due to the co-location of certain 

assets the results of this attempt were inconsistent and had to be abandoned. 
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1.6 Document Outline 

This paper is organised as follows: 

The Chapter 2 - Literature review reviews papers to discover the current state of the art in 

alert detection. It will review methodologies and issues faced with generating effective alerts. 

It will also review how other domains handle the problem. It will then present how gaps in 

the literature lead to the research question. 

In Chapter 3 - Design and methodology the process of how the research is conducted is 

outlined in detail. The reasons for design decisions are given. A description of the how 

experiments are conducted is outlined. The methods for evaluation are also clearly described. 

Chapter 4 - Implementation and results follows the Crisp DM procedure for data analysis. This 

involves going through the stages of Business Understanding, Data Investigation, Data 

Preparation, Modelling (running experiments) and listing the results of these stages. As there 

will be 2 datasets used in the experiments. The results of a comparison between these will also 

be recorded here. 

The results of the previous chapter will then be analysed in Chapter 5 - Analysis, evaluation 

and discussion. In this chapter the results of the experiments are analysed. The methods of 

evaluation described in Chapter 3 will used to determine how well the models developed have 

performed. 

Finally, we discuss what all these results mean in Chapter 6 – Conclusion. This section of the 

paper puts the results in context and discusses the contribution and impact of the findings. It 

also points to future work that might be undertaken. 
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2 Literature review 

Keywords: fault detection, IoT sensors, water networks, maintenance, prediction, alert 

prioritisation, smart meters, temporal aggregation, spatial aggregation, district heating, 

2.1 Introduction 

A subdivision of the IoT world is the use of sensors to create “Smarter cities”. This 

encompasses various domains such as water, waste, heating, traffic and energy.  

This review will look at how IoT sensors are being used in the “Smarter Cities” domain and 

will try to identify opportunities to add value to the body of analysis methods. Research will 

focus on finding ways to assist network operators. The operator’s job is to monitor the health 

of the network and coordinate required actions. The goal is to improve the accuracy and 

timeliness of actions taken by the operator. Better operator decisions lead to a reduction in 

system costs. Examples could be earlier fault detection, limiting the impact of a fault or even 

fault prevention. 

2.2 Shared characteristics of IoT networks 

There are many papers which aim to investigate the current and future challenges of IoT 

networks (Fletcher, Andrieu, & Hamel, 2013; Niemczynowicz, 1999). These are useful to put 

in context all the challenges that city management agencies are facing.  

Various city IoT network types (energy, water, heating, waste) share certain characteristics. 

All networks types are monitored via sensors that record time-series measurement data. They 

share physical characteristics such as: 

• connectors (pipes, power lines), 

• connection points (valves) 

• terminals (sub-stations, tanks, treatment plants, etc) 

They also share operational characteristics. Each type of network must deal with challenges 

such as:  

• Load balancing 

• Fault monitoring 

• Minimizing energy consumption 
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• Maintenance and repair management 

Due to these shared characteristics, this study looks across all the smarter city domains for 

insights on common problems and solutions. There may be opportunities to gain insights 

from one domain that can be applied to another. 

2.3 Why IoT sensors? 

Many papers work backwards from the IoT sensors to find applications for them. Cost 

reduction is the most common application found. In (Arampatzis, Lygeros, & Manesis, 2005), 

they examine the possible applications of IoT sensors and make strong cases for how they can 

help in Water Management. They cite how a monitored system can be proactive rather than 

reactive. This is primarily how costs are reduced. These ideas are reinforced in  (Kanakoudis 

& Tolikas, 2001; Le Gat & Eisenbeis, 2000). 

Another common application of IoT sensors is in the domain of environmental protection and 

resource shortage (Fang et al., 2014). These issues will at some point become costs for the 

management agencies or citizens or government. Costs such as fines, loss of profit, losses from 

in-efficient processes, charges for use of a resource. Resource shortage and uncertain supply 

will also eventually become costs in the form of fines, loss of profit, losses from in-efficient 

processes and higher charges for use of a resource. The sole purpose of a paper by (Davis, 

Sullivan, Marlow, & Marney, 2013)  was to find out which if the available market solutions 

for monitoring water networks actually yielded a cost benefit. They looked for where solutions 

were “likely to reflect a rational economic decision”. 

This suggests that in order contribute to this field, further ways to reduce costs should be 

prioritised. Using sensors to predict and identify faults in a network can result in significant 

cost savings. 

2.4 Fault prediction and prevention 

An interesting aspect that this research presented was the topic of maintenance cost for Water 

Management Agencies. Predicting what leak alerts require a Work Order is closely related to 

leak and burst detection, but it is not the same. Sometimes you may have a leak alert, but it 

does not warrant a callout. To efficiently deploy maintenance crews, it is crucial to identify the 

significant alerts that lead to problems requiring a Work Order.  
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To get a general insight on the problem of maintenance management, the topic was reviewed 

in other industries. It was found that different industries were struggling to move away from 

“equipment failure-driven and time-based maintenance” to “condition-based preventative 

maintenance” (Tse, 2002) 

This section shows where much of the cost savings could be gained. Prevention of faults is a 

big cost saver. Earlier detection is a key goal. The identification of what might delay a 

prediction is something that should be further investigated. 

2.5 Alerts 

Given the increasing number of sensors being deployed in city networks it is not feasible for 

an operator to continuously monitor sensor readings. Alerts are used to draw the operator’s 

attention to an issue in the network that may require her intervention. 

On reviewing the documentation, there are several approaches to generating alerts: 

• Measurement thresholding  

• Thresholding of predicted measurements 

• Rule based alerts 

• Anomaly detection  

• Measurement aggregation 

The types of data used is important to note. Many solutions use the network infrastructure 

data along with sensor reading data such as pressure to create their models (Martínez-

Codina, Castillo, Gonzalez-Zeas, & Garrote, 2015) whereas others use the infrastructure 

data which have “pipe-specific factors, e.g., diameter and length” paired with maintenance 

records. This is more usual when the models are simulated (Le Gat & Eisenbeis, 2000).  

 Measurement thresholding 

Creating an alert by measurement threshold is done simply by monitoring each reading value 

to see if it has exceeded predefined threshold levels. 

IBM’s product IOC (Intelligent Operations Center) is the source of data for this study. A 

company journal describes how the product generates alerts (Bhowmick et al., 2012). The 

out-of-the-box offerings are: 

1. Ingestion of externally generated alerts (3rd party services) 
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2. Generation of alert data based on the threshold set on reading values 

The 3rd party in the first instance could be using any method to create alerts. From asking 

domain experts it is understood that the most common method is through thresholding of 

predicted measurements and the use of classifiers (Section 2.5.3). The second method is a 

very simple method of creating an alert which is not sensitive to any other factor other than 

the reading level. 

 Rule based alerts 

Rule based alerts are often an extension of threshold-based alerts. IBM IOC has rule based 

alerts where an alert is only issued if the reading exceeds the threshold for a period of time. 

 Thresholding of predicted measurements and classifiers 

Well before the concept of Smarter Cities and IoT was mainstream, measurement data was 

analysed to try and predict future values so that related decisions could be made ahead of 

time. 

 A 1996 study which investigated how the salinity of river water in South Australia could be 

predicted using Neural Network models. Historically recorded sensor data was used to train a 

prediction model (Maier & Dandy, 1996). The goal was to predict salinity levels to optimise 

when water should be extracted from the river. It showed how the water company could make 

a large optimisation and save costs on damage that high water salinity caused. 

This same use case was further worked on by (Kingston, Lambert, & Maier, 2005). They had 

found that the use of Neural Networks had “not been adopted by water resources 

practitioners because of the difficulty in implementing them”. They proposed some 

optimisations whereby they changed the training approach to make the implementation of the 

neural network more straight-forward. Again, their model predicted salinity values. 

The various solutions for these problems are broadly to improve management processes and to 

prevent certain issues arising. The improved management processes center around being more 

context aware (Perera, Zaslavsky, Christen, & Georgakopoulos, 2014) and using network 

modelling (Gaddam, 2014) to manage a complex system in a joined up way. In these models 

there will need to be a direct association of the equipment that failed and the sensor readings. 

That way the model can have a have a target variable. Typically, this will be a traffic light 



13 

 

status values of Acceptable, Caution and Critical. The target variable for these models would 

be when the asset has a status of Critical. 

The literature strongly promotes prevention of network issues by using prediction models. 

There is a lot of focus on predicting when leaks and bursts will happen (Martínez-Codina et 

al., 2015; Mounce S. R., Boxall J. B., & Machell J., 2010). In the water domain there is a strong 

focus on Water Quality prediction to try and prevent serious events from occurring rather than 

just responding to them (Kingston et al., 2005; Maier & Dandy, 1996). 

This section examined “Smarter City” solutions that are based on monitoring or modelling of 

sensor reading data. This relies on the accuracy of the individual sensors and making sure that 

they are calibrated correctly. In a network that contains many sensors that are correctly 

calibrated this has been seen to be effective. However, a different approach is needed in a 

network with a sparse distribution of sensors or one that contains less accurate sensors. The 

next section investigates how data from multiple sensors is aggregated to gain insights. 

 Anomaly prediction 

A study of a network in Yorkshire England (Mounce, Mounce, Jackson, Austin, & Boxall, 

2014) used a system called AURA (Advanced Uncertain Reasoning Architecture). This 

system does not detect faults but detects anomalous patterns. These anomalies can then be 

investigated by a network analyst. It works by using historical sensor reading data the model 

can “learn and model the normal operating envelope for a system”. AURA consists of a 

binary neural network that is built on top of CMMs (Correlation Matrix Memories). This is 

like a library of system states that have been found during training. If the system comes 

across a state that it has not seen before it is flagged. At this point it is important to note that 

it has not detected a fault in the system but has merely detected strange behaviour. 

 Aggregated monitoring (hot spots) 

Alerts that are generated by smart sensors are useful but can vary in quality. Sometimes the 

thresholds configured are no longer relevant and this can lead to many alerts that are 

disregarded as false positives. However, DH system analysts have given feedback of how 

clusters of alerts can sometimes be indicative of a real fault in the network. The alerts are 

both spatially and temporally close. These can be called alert “hot spots”. 

Hot spot analysis is used in many domains such as crime and service demand (food delivery, 

taxi apps). When looking at crime hotspots the exact location of the crime varies and hotspots 
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are identified by some area (neighbourhood/district/postcode/precinct) and over long 

stretches of time (Sorensen, 1997). The crime hot spots allow law enforcement to see patterns 

that they would not notice by reviewing individual crimes in isolation. Hotspots were also 

used in a paper that looked at taxi demand (Chang, Tai, & Hsu, 2010). In this paper hot spot 

was generated using clustering methods. They tested 3 algorithms (k-means, Agglomerative 

hierarchical clustering and DBSCAN) and found that “different clustering methods have 

different performances on different kinds of data distributions” 

Advanced types of sensor aggregation use multiple sensors to determine the best value. This 

is a way of improving reading values by using cheaper sensors and aggregating their values. 

In (Ma, Guo, Tian, & Ghanem, 2011) relative error between sensors is used to determine a 

dominant value. This shows how aggregation can be a means to mitigate against inaccurate 

individual sensor data.  

The District Heating system analysed in this study has deployed IoT smart sensors that 

publish an alert notification if there is significantly high or low pressure at a point in the 

network. Most of these alerts (96% in our dataset) do not indicate the need to take any action. 

They are false positives. However, on consulting with domain experts it was noted that an 

analyst may use alert data to identify a fault if some combination of other circumstances 

exists: 

1. The alert has been active for a certain amount of time 

2. There is a clustering of alerts in time and space 

3. Reading values for certain assets are also anomalous. 

4. The alert is active at a crucial location in the network. 

These methods of detection effectively use the aggregation of alerts in time and space to 

identify problems. This work of aggregation could possibly be done using analytical models 

instead of tedious monitoring. 

 Alerts summary 

This section on how alerts are created shows that there are more nuanced means to define 

errors in the system that by just using blunt thresholds. They can be designed to be more 

sophisticated and can reduce the need for analysts to consistently monitor individual sensor 

reading values. However, in practice, many alert systems are quite unsophisticated and are 
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just based on thresholding. This can lead to many “false positive” alerts, which can in turn 

lead to analysts dismissing alert notifications. 

2.6 Large sensor data volumes 

The large volumes of data emitted from IoT sensors is a useful resource but can also be 

overwhelming. The greater the amount of data that must be processed, the more resources 

that are needed to process and store this data. Depending on how big a smarter city network is 

“the amount of data can be TB (terabytes), even PB (petabytes) and ZB (zettabyte)” (Chen et 

al., 2015).  

If all analytical modelling is being performed on the reading data that is being ingested, there 

can be duplication in work done between models. This is where the idea of having an 

analytical pipeline becomes a useful approach. 

2.7 Modelling pipelines 

With this large amount of streaming IoT data, it is very important to process it in the most 

efficient way possible. This is where analytical pipelines could help.  

In a scenario described in (Zehnder & Riemer, 2017), IoT cameras were being used to open a 

gate for vehicle drivers. The pipeline consists of multiple streams of data. One stream has the 

camera video data. An early stage of the pipeline detects the vehicle registration from this 

video data using a Number Plate Recognition model. This information can then be fed 

forward in the pipeline to be combined with other data such as registered users to determine 

whether the gate should be opened. By splitting up the process, data from one stage can be 

reused by another. This approach also simplifies each individual component. 

Another approach is to offset load on the central processing system by extending the 

analytical pipeline out into the IoT network. The modelling pipeline can begin in the IoT 

device itself by doing a certain amount of processing in the sensors. In another camera sensor 

example, the large transmission bandwidth required for video data poses a problem. A 

solution is to do the video “processing at the edge device in order to conserve visual 

communication bandwidth” (Chua et al., 2017). This strategy also takes the image processing 

load off the central system and distributes to the network. 
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From these examples it can be seen that using machine learning pipelines can be useful to 

simplify data modelling solutions. Models can be broken down into components that can give 

outputs that can then be consumed by several different processes or models.  

This could be applied in an IoT smarter cities network scenario. Instead of generating all 

models from the same data, a pipeline could be devised to create intermediate outputs that 

could be fed forward in the pipeline as input. This would reduce the load on the central 

system allowing it to scale further by handling larger networks with the same processing 

power. 

One such pipeline could be the thresholding of sensor readings to produce low level alerts 

which are then further processed by another model. By having the intermediate step, the load 

on the system is reduced. The more resource-expensive modelling is done on a smaller subset 

of the streaming data. 

2.8 District Heating challenges 

District heating (DH) networks have all the usual challenges of smart city IoT networks. 

These include load management, fault detection and energy consumption. 

However, there are problems that are somewhat unique to DH networks as described in 

(Gadd & Werner, 2015) . They describe how DH networks contain secondary customer 

heating systems (residential buildings) which have faults that affect the primary supply 

system (substations and pipes). The primary network has the IoT sensors, but the “secondary 

network” does not. This means that the buildings cannot be monitored directly for faults. 

Proposed solutions were to fit the buildings with sensors, but this would require a large 

investment. 

Another issue is that faults “have no occurrence pattern; thus, they are difficult to predict” 

(Gadd & Werner, 2015). There are many factors - including human and weather - which 

make it difficult to have good fault prediction on a DH network. 

These papers introduce the idea that parts of a DH network may not have IoT sensors 

embedded (secondary network) and yet they may have faults. It raises the question of how we 

can monitor parts of the system if they do not have sensors applied. Section 2.5.5 discussed 

how the use of aggregation can mitigate against poor individual sensor data. This approach 

could also help add some coverage to the secondary networks of a DH network. 
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2.9 Summary 

(Kanakoudis & Tolikas, 2001) notes that there is a “proven strong relationship between the 

leaks and breaks”. This can be generalised to say that there is a strong relationship between 

alerts and work orders.  

 This review demonstrated that most 

of the focus on creating alerts is 

based on the analysis of continuous 

measurement data from sensors and 

maintenance records. Alerts created 

using these models should have good 

fault prediction. The alerts are 

expected to indicate that there is 

indeed a problem in the network. 

However, it was also noted that other 

more basic means of creating alerts 

are still being used such as the 

thresholding of reading data and rule engines. Due to the basic design of these methods, they 

are less flexible than an analytic model and therefore much less accurate.  

 Two interesting topics that emerge in 

the review are those of Large Sensor 

Data Volumes and Modelling 

Pipelines. A connection can be made 

between the pair. In large networks 

with hundreds of thousands of sensors 

that emit measurement data every 1 – 

30 minutes there is a very large 

number of reading values to score. 

The problem of handling large data 

volumes might be handled by 

breaking down the work into separate 

pipeline stages. An example of the proposed pipeline can be seen in Figure 1. 

 
Figure 4 - Alerts clustering around a primary network fault. 

Source (author) 

 

 
Figure 5 - Alerts clustering around a secondary network fault. 

Source (author) 
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 As the dataset available to this study 

contains alerts generated from simple 

thresholds they generate many false 

positives. The majority of alerts when 

taken individually do not result in a 

Work Order being created. However, it 

would be interesting to test the 

viability of using thresholding as a 

method to filter reading data before it 

is further processed. The aim would be 

to make accurate predictions of system 

faults using these simple alerts as inputs to analytical models.  

 A final issue to consider is that the dataset being analysed is from a District Heating network. 

The review highlighted the unique challenges of this type of smarter city network. Often the 

maintenance records will show that the faulty asset was not part of the IoT monitored network. 

To solve this problem, it is proposed to use spatial aggregation to compensate for this lack of 

network coverage. As the system is a network, problems are not always localised. Faults in one 

part of the network will often affect connected areas. This form of aggregation should aid in 

the better detection of faults in the monitored part of a DH network as in Figure 4. 

More interestingly, if the number of alerts active in the same time and space is recorded, this 

should aid in the detection of alerts that happen on a secondary network. 

The gap found the literature is that modelling is typically done using continuous measurements 

emitted from sensors. If the same accuracy can be achieved by analysing a filtered subset of 

that data, it might be useful in reducing system load caused by processing every sensor reading. 

It is this link between alerts and Work Orders that I want to investigate and that leads to my 

research question.  

 
Figure 6 - A cluster of alerts that do not relate to a fault. Source 

(author) 
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3 Design and methodology 

The focus of the experiments in this study is to see if alert data can be used to predict the 

need for Work Orders (faults and accidents). This will be done using classification models. 

The models will be compared using the evaluation methods described in Section 3.6. The 

most performant model will be tested for the significance of its predictions so that the study’s 

null hypothesis can be rejected or fail to be rejected (Section 3.10).  

3.1 Data 

The data was taken from the database of an IBM IOC instance for a District Heating 

customer. The database is DB2. This will have to be investigated and exported into a flat file 

format so that it can be imported by the various software products that are used for 

modelling. 

3.2 Software used 

SPSS Statistics 25.0 will be used for data investigation. Initial exploratory tasks such as 

looking at frequency distributions and generating histograms will be done also.  

SPSS modeller 18.0 will be used for the training and validating the models. It will also be 

used to output confusion matrices, ROC graphs and ROC AUC values. 

R will be used for generating Precision-Recall graphs using prediction output from the 

modelling stage. 

3.3 Stratified partitioning 

Once data preparation steps are complete the dataset contains a total of 248,018 valid 

instances. For the purposes of creating models we must partition the data. The split 

proportions are outlined in Table 1. 

 

proportion instances 

Training 70.02% 173662 
Validation 9.91% 24577 
Testing (Hold out) 20.07% 49779 
Total   248018 

Table 1 – Partition proportions 

 

  
Figure 7 - Stratified partitioning of dataset. Source 

(author) 
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As there is a minority target class variable it is essential that the stratified partitioning is 

performed so that each split is in equal proportions as seen in Figure 7. 

3.4 Model selection 

The models used will be classification models. The models must also be able to handle both 

numeric and categorical data. Where a model can only handle numeric data, some pre-

processing is required. The use of dummy variables is used. 

The principle of Occam’s Razor will be used; “Given two models with the same 

generalization error, the simpler one should be preferred because simplicity is desirable in 

itself” (Domingos, 1999). If a model has the same ability to generalise as a more complicated 

model it is possible that the more complicated model has some overfitting. A preference will 

be made for the simple model so long as accuracy and performance are comparable with a 

more complicated (or larger) model. 

Models examined: 

1. Decision Tree – C5.0 

2. Random Tree 

3. Random Forest 

4. XG Boost 

5. Linear Regression 

3.5 Handling the imbalanced target variable 

As previously mentioned, the target variable has a minority class. This means that we have to 

make certain adjustments to handle this fact.  

1. Under sampling 

2. Boosting 

3. Synthetic Minority Over-sampling Technique 

4. Misclassification costs 

 Under sampling 

This is a method of handling imbalanced target variables by sampling out values for the 

majority class variable by a proportion until the classes are balanced. In (Liu, Wu, & Zhou, 
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2009) it was noted that while under-sampling is an effective method of handling imbalance,  

“potentially useful information contained in ignored examples is neglected”.  

 Boosting 

Boosting is a method to combine weak learners to create a strong learner. If a base classifier 

such as a decision tree is giving weak results for a certain class, this weak result can be 

combined with other weak results to give a better combined or “boosted” result. In (Guo & 

Viktor, 2004) it is found that certain boosting algorithms can yield “high predictions against 

both minority and majority classes”. 

 Synthetic Minority Over-sampling Technique (SMOTE) 

Synthetic minority over-sampling technique (SMOTE) is a method to balance the target class 

variables. The training partition of the dataset is passed to this process and it balances the 

target classes by “creating synthetic minority class examples” (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002). 

 Misclassification costs 

Misclassification costs are provided by certain algorithms and allow certain results to be 

penalised. This tells the model to work hard to get that classification right. 

 

Figure 8 - Misclassification cost of 3 placed on when the target class = 1 is predicted incorrectly. Source (author) 

3.6 Evaluation selection (minority class) 

 Accuracy 

Accuracy the ratio of correctly predicted instances to the total number of instances in a 

dataset. It is a single measurement value based on the formula: 

Accuracy = (TP+TN)/(P+N) = (TP+TNR)/(Total Data) 

  TP = true positive 

  TN = true negative 

   P = number of positive values 
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   N = number of negative values 

 TPR = true positive rate  

 

It is a measurement that is very clear when you have balanced class variables. However, 

when you have a target class imbalance it can be very misleading. For example, that dataset 

for this study has a target class with an occurrence ratio of 96:4. If a classifier simply 

predicted the majority class in all cases it would get an accuracy of 96%. Obviously, this is of 

no use and is potentially very misleading. For this reason, the metric of accuracy will be 

largely ignored during evaluation. 

 Confusion matrix 

A confusion matrix is used to investigate the results of a classifier model. It is a useful for 

investigating datasets with imbalanced target class variables. It shows a 2x2 matrix of the 

count of instances for each class and the count predicted by the model. The best scenario is to 

have no False Positives and no False Negatives.  

 Precision 

Precision measures the ratio of correctly predicted positive instances against the total 

predicted positive instances. In the case of this study, if a classifier scores an alert as 

isPresentWhenWorkOrderIsRequired then precision shows how well does that predict that a 

work order is required? 

Precision = TP / (TP + FP) 

 Recall 

Recall measures the ratio of correctly predicted positive instances to the all instances with a 

true value for the target class. For this study, it will give us the percentage of the class where  

Recall = TP / (TP + FN) 

 ROC AUC – (Area Under Curve) 

This study will use the Area Under the receiver operating characteristic (ROC) curve (AUC) 

as its performance measure, and to compare results from different experiments. The benefits 

of using this metric are discussed in (Bradley, 1997) and are particularly important when 

trying to take sensitivity and specificity into account. 
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However, AUC is a function of sensitivity and specificity, but is not sensitive to imbalance in 

target class proportions. A very comprehensive breakdown of this is provided in (Haibo He & 

Garcia, 2009). They note that in “highly skewed data sets, it is observed that the ROC curve 

may provide an overly optimistic view of an algorithm’s performance”. The paper 

experiments with an imbalanced dataset to show the preferable use of Precision-Recall 

curves. 

 Precision-Recall (PR) Curves 

(Saito & Rehmsmeier, 2015) is a paper that solely investigates the performance of Precision-

Recall curves versus ROC curves for imbalanced data.  It proves that the PR curve “is more 

informative than ROC, CROC, and CC plots when evaluating binary classifiers on 

imbalanced datasets”.  

For the evaluation of models in the study, AUC, sensitivity and precision values will be 

examined, but we will pay close attention to the PR curve to ensure that the imbalanced 

dataset has not skewed the perceived results. 

3.7 Modelling 

The modelling process will be done by at first using default model configurations. The results 

will be compared using the metrics that are outlined in Section 3.6 

3.8 Tuning 

Different modelling algorithms will have different tuning parameters. Following the initial 

results from the selected models, additional tuned models will be added. The experiments 

will be re-run and the evaluation metrics used to alter these parameters in such a way as to 

improve the performance of the models. 

There are many different approaches given for tuning SMOTE in (Zorić et al., 2016) which 

should be investigated for the tuning of this node. They involve using algorithms to find 

which tuning parameters might best suit a dataset. 

3.9 Comparing model performance 

The predictions of the classifiers will either be a 1 or a 0. This is binomial data and as such 

will not have distributed values. A non-parametric test is needed to examine binomial data as 
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it is not normally distributed. The McNemar test is suitable for this (Ciechalski, Pinkney, & 

Weaver, 2002). It will be used to compare the model results of the H0 models where the 

dependant variable is ALERT_WAS_PRESENT_BEFORE_WORK_ORDER. 

3.10 Hypothesis testing 

Firstly, for hypothesis testing a significance level, α, is chosen that will be used for all tests. 

5%, or α = 0.05, is selected as it is the commonly accepted level for this area of study.  

The performance measurements are set up so that all models use the same splits. This will give 

a paired test setup, which is more powerful than unpaired tests. 

The relevant test’s statistics will be computed; in this case the values of Recall, Precision and 

Accuracy will be used to see how well each model performs. 

Next, the test’s statistic (S) is compared to the relevant critical values (CV). The statistic used 

will be the McNemar test. 

Hypothesis H0 can be rejected or fail to be rejected if any of the models return a statistically 

significant result that predicts the likelihood of a Work Order being required. 

The decision rule is to reject H0 if S > CV and vice versa. Practically, if P ≤ α (0.05), we will 

reject the null hypothesis; otherwise we will fail to reject it.  

  



25 

 

4 Implementation and results 

4.1 Business understanding 

Data does not tell the full story of what is going on in a system. The Crisp DM process 

recommends a strong business understanding phase to make sure the meaning behind the data 

is understood before it can be properly analysed. The literature review (2) formed a large part 

of this, but consultation with domain experts was also very important. District heating 

networks have slightly different characteristics to other smarter city network domains, such 

as water and energy (see Section 2.8). A number of emails, calls and meetings were required 

to understand these differences. 

 Why is alert data ignored? 

During these discussions it was discovered that the alerts on the IBM IOC system were not 

being used to detect a need for work orders. The reason for this was that they were producing 

too many false positives. Just how the alerts were produced using threshold rules was also 

discovered. 

 Work order of type “Fault” and “Accident” 

It may seem strange, but when the question of what constitutes an “accident” was raised, the 

answer was that it was a type of fault. Operators like to use it to describe faults that needed 

some form of clean-up. As this study aims to detect faults, only Work Orders of type “Fault” 

and “Accident” will be used.  

It had initially been planned to try and predict the “type” of Work Order, in addition to 

simply the fact that one was required. This was abandoned when it was learned that there was 

effectively only 1 Work Order Type that was to be detected. 

 How work orders are created? 

It is important to understand the circumstances of how a Work Order is created. This 

understanding is needed for when Work Orders are being associated with Alerts (Section 

4.3.5). The typical flow is: 

1. On analysis of the network using the IBM IOC geospatial dashboard, analysts create a 

Work Order: 
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a. They set a TARGET_START and TARGET_END_TIME based on the priority 

of the issue and the resources available. 

b. They set a Work Order type 

i. Fault 

ii. Prevention 

iii. Modernization 

iv. Retrofitting 

v. Operation 

vi. Accident 

vii. Service 

viii. Investment 

ix. Liquidation 

c. The Analyst then assigns the Work Order to a piece of infrastructure (sub-

station or chamber) that is deemed to be the source of the problem. 

2. Next, the team responsible for monitoring that piece of infrastructure act: 

a. When they start work, the starting time is recorded in 

ACTUAL_START_TIME 

b. They assess and fix the problem. 

c. On completion the completion time is stored in ACTUAL_END_TIME. 

4.2 Data investigation 

 Sparse IoT reading sensor coverage 

On querying the database, it was found that there are 124,770 assets recorded on the system. 

This is normal for a mid-sized city. However, on further examination it was found that only 

69 of these have IoT sensors capable of publishing readings. This is indeed low sensor 

coverage. This could be described as very sparse IoT coverage of the network. 
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1.1.1 Data variable description 

Variable Data type Measure Levels Description 

SUBJECT string categorical 241 Event type 

concatenated with 

asset specific data 

EVENTTYPE string flag 2 High or low 

pressure event 

EXTEVENTID string flag 2 High or low 

pressure event 

STARTTS datetime continuous - Datetime the alert 

is created 

ENDTS datetime continuous - Datetime the alert 

expires 

LOCATION string categorical 69 The WKT 

location of the 

sensor 

WEEK_NUMBER numeric ordinal 52  

MONTH_NUMBER numeric ordinal 12  

DAY_OF_THE_WEEK numeric ordinal 7  

HOUR_OF_THE_DAY numeric ordinal 24  

DURATION_IN_MINUTES numeric continuous -  

ALERT_WAS_PRESENT_B

EFORE_WORK_ORDER 

numeric flag 2 Target variable 

Table 2 - Alert variable investigation and description 

1.1.2 Alerts 

Alerts – interesting stats 

Total number of alerts in the dataset 248021 

Average alert count per day 4509 

Average duration of an alert  1733 mins 

Number of pressure sensor locations 69 

Relevant types Low pressure, High pressure 

Alert subject count 243 
Table 3 - Alerts - Interesting statistics 

4.2.1.1 Time range of the alerts dataset 

A multi-year dataset would have been preferred to try and capture seasonal and cultural 

patterns. However, this was not possible as the dataset was from a city where recording of 

both work orders and alerts began in November of 2017. As Figure 3 shows, 3 months of data 

was subsequently exported in January of 2018 for use in the creation of models. These are all 

winter months which could have a very different profile to summer month alerts. This is a 

known limitation and is highlighted in the of the study. 
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This data was relatively consistent in 

volume (Figure 9), except for 3 outages 

which caused gaps in the streaming data. 

These gaps could influence our models. 

Intuitively, these gaps could have an impact 

on the predictive power of the 

DAY_OF_THE_WEEK input variable. 

4.2.1.2 Locations of Alerts 

One of the most important numbers 

affecting this study relates to the 

LOCATION variable. The first thing that 

was previously noted in Section 4.2.1 is the small number of locations relative to the number 

of assets in the city. There are only 69 sensors that can issue alerts. With these low numbers 

each location may prove to be an indicator of whether an alert is more important or not. 

Figure 10 shows how alerts have an almost normal distribution the across all locations. There 

are a few locations that generate the majority of alerts, and even one that is responsible for 

almost 14% of alerts (Figure 11) 

Sensor alert frequency by location 

 
Figure 10 - Frequency distribution of locations. Source 

(author) 

 

 
 

 

 

 
Figure 11 - The top 10 alert sensors by number of 

alerts issued. Source (author) 

 

4.2.1.3 Event type 

EVENTTYPE has 2 levels: 

• High pressure difference 

 

 
Figure 9 - Histogram of alert creation date with outages 

visible. Source (author) 
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• Low pressure difference 

Both states occur in almost equal proportions, 51.5% : 48.5% (Figure 12). EXTEVENTID is 

a duplicate of EVENTTYPE. 

Event type distribution 

 
Figure 12 - Event type distribution. Source (author) 

 

4.2.1.4 Subject 

The dataset contains 241 levels for the SUBJECT input field. Each value is prefixed by the 

event type, and then typically some asset identifiers. This is borne out by a strong Pearson 

correlation value of 0.4 between LOCATION and SUBJECT. However, the values at a 

Subject field frequency distribution 

 
Figure 13 - Frequency distribution of the SUBJECT field. Source (author) 



30 

 

location tend to change over time. When enquires were made about this, it was noted that the 

subject fields were changed multiple times during the dataset’s time period. The reason for 

the changes was due to reporting changes. These changes may render this variable of little 

predictive importance. 

 

4.2.1.5 Day of the week 

 The day of the week was investigated to see 

if there was a recognisable pattern or load at 

the level of a day. Figure 14 shows a 

noticeable dip in alerts occurring midweek, 

and that alerts peak at the weekend. This 

pattern might indicate that this variable will 

be useful in prediction.  

4.2.1.6 Hour of the day 

It would be expected that the state of the 

network would vary throughout the day. 

From the distribution graph Figure 15 we can 

see that, for the most part, the value is steady. There is a noticeable peak for the midday hours 

of between 10am and 2pm. There is also a very large drop in alerts for the hour of 11pm. 

Alert distribution by hour of the day 

 
Figure 15 - The distribution of alerts by each hour of the day. Source (author) 

Alert by day of the week 

 
Figure 14 - Number of alerts per day of the week. 

Source (author) 
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4.2.1.7 Distances between alerts 

Knowing what kinds of distances there were between values is important when selecting 

distances for aggregation in Section 4.3.6. The histogram in Figure 16 shows a mean distance 

of over 6.5km. This data was calculated using the database function 

GET_DISTANCE_BETWEEN_ALL_ALERT_LOCATIONS in Appendix 8.7.5. 

Distances between alerts 

 
Figure 16 - Distances between all alerts. Source (author) 

 

4.2.1.8 Target variable proportions 

A key characteristic of this dataset is the distribution of values for the target variable. It is 

highly imbalanced at a ratio of 96:4. This can be seen in Figure 17. This has significant 

implications for the design of our experiments and how they are evaluated. This is discussed 

in Section 3.5 and Section 3.6. 

Target class distribution 

 
Figure 17 - Imbalanced target class with a ratio of 96:4. Source (author) 
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 Work orders 

It is important to look at what work order types exist. This study is only interested in work 

orders created in response to problems in the system. Work order types such as Retrofitting 

and Moderisation are excluded, as these are not work done to respond to a problem but work 

that is planned as part of a more long-term maintenance. Only work orders of types “Fault” 

and “accident” will be used for model training.  

Work Orders of type “fault” or “accident” are completed on the same day that they are raised. 

Table 4 outlines some of the headline statistics about the work orders on the dataset. 

Workorders – interesting stats 

Total number of Workorders 4531 

Correct creation date set 2701 

Number of locations 3076 

Relevant types Fault, accident 

Irrelevant types Prevention, modernisation, retro-fitting, 

investment 

Asset types associated Chamber, PipeSegment, Substation, Vehicle 

Number of Workorders with 

assets associated 

1873 

Table 4 - Work orders - interesting statistics 

 

4.2.2.1 Inconsistence creation times 

The most relevant discovery made while analysing the Work Order data was when reviewing 

their creation times. One would assume that faults would occur at random, which seems to be 

mostly the case for how alerts are distributed (See Figure 15). However, it can be seen in 

Figure 18 that the distribution is not random. In fact, it seems to demonstrate that the creation 

of work orders follows a very human pattern. There are hardly any Work Orders created in 

the small hours of the night and early morning. The numbers pick up as the working day 

starts. There is also a sharp drop in the number raised at 1pm, which is typically lunchtime 

for office staff. 

One assumption could be that customer load is reduced during night-time at that this reduces 

the number of faults. However, the drop at lunchtime suggests that the delay is related to 

operators going on lunch breaks. It seems very possible that the creation times of 

approximately 25% of Work Orders is affected by human factors. This would have a very big 
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impact on the accuracy of models create that depend quite a lot on the times that both alerts 

and Work Orders are created (see Section 4.3.5). 

 

Figure 18 - Number of Work Orders by hour of the day. Source (author) 

 

 Invalid data 

On examining the initial histograms of the data, the most interesting anomalous data was a 

small number of alert instances that occurred in July. The vast majority of the data occurred 

in November, December and January. On reviewing this data, it was found to be test data. It 

was subsequently removed from the dataset. 

4.2.3.1 Missing time value in CREATION_DATE field 

A large proportion of Work Orders did not have valid creation times set. This was due to a 

user interface bug. Fortunately, the TARGET_START_DATE is populated with the creation 

date and time also. This study is only interested in faults that need to be fixed straight away. 

For that reason, all Work Orders of type “fault” or accident had a TARGET_START_DATE 

which is equivalent to the CREATION_DATE. The script to fix this issue in detailed in 

Appendix 8.9.2.1. 
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4.3 Data preparation 

A large amount of the work done on this project was in the pre-processing of data. 

Characteristics and issues discovered in the data investigation phase need to be addressed so 

that a dataset can be passed to the modelling phase in the desired format. 

 Ignored variables  

There were many alert variables that were not populated for the dataset used in this study. 

These columns were included in the database export script, but then filtered out at the 

variable selection phase.  

Discarded variables due to null values: 

DESCRIPTION, CATEGORY, EXTWORKEQUIPMENTID, 

EXTWORKEQUIPMENTTYPE, ASSET_ID, MEASURE_VALUE, 

MEASURE_TYPE, MEASURE_UNIT, MEASURE_THRESHOLD_VALUE, 

MEASURE_THRESHOLD, ADDRESS, ZONE1, ZONE2, ZONE3, OWNER, 

EVENTSUBTYPE 

Discarded variables due to single values: 

DOMAIN, CREATIONTYPE, CREATEDBY, LASTUPDATEDTS, , MODELID, 

NETWORK, CONTRACTID, EVENT_DATE, ORIGIN_TYPE, ORIGIN_NAME, 

EVENT_DATA, REMARKS, COSTS, CONSEQUENCES 

Discarded as fields are updated after alert creation: 

STATUS, URGENCY, SEVERITY, CERTAINTY, ACK, CASE_DATE, 

CASE_REFERENCE 

 Missing data 

The columns in Table 5  that will be used in the raw dataset model and none of them have 

missing data: 

SUBJECT EVENTTYPE EVENTID STARTT ENDT LOC WEEK MON DAY HOUR DUR 

Valid 
248018 248018 248018 248018 248018 248018 248018 248018 248018 248018 248018 

Missing 
0 0 0 0 0 0 0 0 0 0 0 

Table 5 - No missing data for raw model input variables 

 



35 

 

 Duration of an alert 

Alerts are created to stay active for a fixed amount of time. In this dataset the alerts stay 

active for 1 hour. This is so that if there are displayed on a dashboard that they stay there for 

a period of 1 hour to ensure that an operator will be able to take note. If, after this hour-long 

period, the conditions that caused this alert are still occurring, another alert will be raised. 

The second alert can be thought of as a continuation of the first alert. The sum of concurrent 

alerts would seem reasonable as an indicator that might prove predictive in a model. The DB2 

function GET_ALERT_DURATION (Appendix 8.7.6) sums up these alert durations to get a 

cumulative duration value. 

 Time dimension variables 

It is very common practice in data analytics to convert the time variable into as many 

different time-based values as possible. The DB2 function GET_EVENT_WITH_TARGET 

(Appendix 8.6.1) also adds fields derived from the STARTTS field: 

• WEEK_NUMBER,  

• MONTH_NUMBER,  

• DAY_OF_THE_WEEK_NUMBER,  

• HOUR_OF_THE_DAY 

 Target variable association 

Before supervised learning methods can be applied, there must be a target variable. For this to 

be the case Alerts and Work Orders need to be linked in some way. In the dataset there is no 

explicit relation between an alert and a Work Order. At the time of this report, the system user 

could not create a Work Order from an alert.  

 This means that, to obtain a training 

dataset with a target variable, an explicit 

link must be engineered using domain 

expert knowledge about how elements 

in the system are related. Based on 

consultations with domain experts a 

method was agreed. 

 
 

Figure 19 - Linking workorders to alerts that preceded its 

creation. Source (author) 
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Association rule: 

An alert will be associated with a Work Order if it occurs within 120 minutes of the 

Work Order’s creation and within a distance of 1000m. 

This linking of the data creates a target variable: 

ALERT_WAS_PRESENT_BEFORE_WORK_ORDER 

This variable denotes whether a Work Order occurred in relation to an alert 

values: [0,1] 

A value of 1 for the target variable means that an alert was present before the work order was 

created. 

 Raw dataset 

The basic dataset will be the one without any special features. It will contain all of the 

variables outlined in Section 0. It will also have DURATION_IN_MINUTES which is a 

derived field. It will have a target variable populated for each instance.  

This dataset will be compared with the special features dataset to see if the extra variables 

help to improve predictions. The creation of this dataset is described next. 

 

 Special feature creation (Spatial and temporal aggregation) 

Individual alerts may offer much 

information in themselves as to whether a 

Work Order will be required or not. 

However, as they are part of an inter-

connected network, the alerts that are 

active around the same time and space 

could also provide useful information. 

This aggregation is particularly useful for 

sparse sensor data such as what is 

contained in the dataset of this study. 

 In Figure 20 it is shown how related 

alerts are grouped by distance. The alert in the centre is the “alert of interest”. The inside 

circle denotes a radius of 10 metres while the outside circle has a radius of 20 metres. 

 
Figure 20 - Visualisation of related alerts grouped by 

spatial distance. Source (author) 
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Therefore, for the alert of interest, the related alerts within a radius of 10m is 2. The related 

alerts in a radius of 20m is 5. 

Related alerts are not only counted in relation to their distance from the alert of interest. They 

also need to be within a certain time also. This is also varied. When the combinations are 

done the new variables are: 

1. NUM_RELATED_ALERTS_10_500; 

2. NUM_RELATED_ALERTS_30_500; 

3. NUM_RELATED_ALERTS_60_500; 

4. NUM_RELATED_ALERTS_120_500; 

 

5. NUM_RELATED_ALERTS_10_1000; 

6. NUM_RELATED_ALERTS_30_1000; 

7. NUM_RELATED_ALERTS_60_1000; 

8. NUM_RELATED_ALERTS_120_1000 

It is a fair assumption to think that many of these new fields will be highly correlated. From 

the correlation matrix in Table 6 we can see that the value would indicate that they are but it 

must be remembered that this dataset is imbalanced at a ratio of 96:4. As can be seen in the 

correlation matrix, many of the values are hovering on mid 90s and there is variance in those 

correlation values. The predictive importance of these new variables will need to be 

determined by testing them with models. 

 10_500 30_500 60_500 120_500 30_1000 60_1000 120_1000 

10_500 0.97 0.95 0.95 0.66 0.64 0.61 0.6 

30_500 1 0.95 0.96 0.64 0.66 0.61 0.6 

60_500 0.95 1 0.96 0.62 0.62 0.65 0.6 

120_500 0.96 0.96 1 0.62 0.62 0.61 0.63 

10_1000 0.64 0.62 0.62 1 0.97 0.93 0.93 

30_1000 0.66 0.62 0.62 0.97 1 0.94 0.95 

60_1000 0.61 0.65 0.61 0.93 0.94 1 0.94 

120_1000 0.6 0.6 0.63 0.93 0.95 0.94 1 

Table 6 - Correlation matrix of all special features 

 Dummy variables for categorical input 

 Some of the input variables in the dataset such as LOCATION, EVENTTYPE and 

SUBJECT are categorical. For some models such as a logistic regression one, categorical 

variables are not acceptable. To get around this issue dummy variables are created. The 
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number of new dummy variables per variable would normally be n-1, where n is the number 

of levels of the variable. 

EVENTTYPE has only levels so I will be transformed to a single dummy variable. However, 

LOCATION has 69 levels and subject has 241. For these variables the top 10 most frequent 

values are given dummy variables and the rest are ignored.  

 Outliers and extremes 

The frequency distributions of 

each input variable were 

examined. This was to visually 

check for interesting data 

instances and outliers. An outlier 

test was also run for each input 

variable. When outliers are 

found they are reviewed to see 

what way they should be 

handled. If they are thought to 

be a flawed instance variable 

they will be deleted. As the  

dataset has an imbalanced class variable it was 

interesting to check if there was any correlation 

between outliers and the minority class. This 

would strengthen the case to retain outlier 

values. 

 NUM_RELATED_ALERTS_10_500 

This field has top 4 outliers with values of 139. 

When the histogram for the same feature (Figure 

21) is reviewed it can be seen that a value of 139 

is indeed and extreme outlier. The boxplot 

Figure 22 shows the outliers more clearly. 

Having examined these 4 instances no 

correlation was found between outliers and 

NUM_RELATED_ALERTS_10_500 value 

distribution 

 
Figure 21 - Histogram of NUM_RELATED_ALERTS_10_500. Source 

(author) 

Outliers for 

NUM_RELATED_ALERTS_10_500 

 
Figure 22 - A boxplot and whiskers shows the 

outliers more clearly. Source (author) 
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minority class. A test with and without these instances on a C5.0 Decision Tree and Random 

Tree showed no evaluation differences. It was decided to not to delete the outliers. The other 

special feature variables also had similar outliers. The full outlier report can be seen in the 

appendix in Section 8.4. 

 Other pre-processing tasks 

Some of the other miscellaneous data tasks were: 

• Filter out non-fault data such as modernization Work Orders. 

• Adding indices to tables 

• Creating temporary tables to make certain queries more performant 

4.4 Modelling 

2 separate experiments will be run. The first will be on the raw dataset where no related alert 

counts are available. The second experiment will contain these new “special features” the 

results will be analysed according to Section 3.6 and Section 3.9 and finally the hypothesis 

will be rejected or fail to be rejected according to Section 3.10.  

 It is very important that the results 

from both experiments are evaluated 

from the same split of the dataset. 

This is the case for this study were 

both training, validation and testing 

partitions are the same for both 

experiments. 

 

The lessons learned in the “No Free Lunch Theorems for Optimization” (Wolpert & Macready, 

1997) are also noted and as such a range of models will be tested.  

 Experiment #1 - Raw dataset 

The models tested in this dataset are configured as follows: 

 

 
 

Figure 23 - Modelling with multiple techniques. Source (author) 
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 Model type Algorithm settings Minority class 

mitigation 

C5.0 Cost x 3 C5.0 

Decision 

Tree 

Favour: accuracy FP = cost x3 

Random Forest 
SMOTE 

Random 

Forest 

Num of Trees:10 

Max depth: 10 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

Random Tree 
handle 
imbalanced 
SMOTE 

Random 

Tree 

Num models: 100 

Handle imbal: true 

Max nodes: 10000 

Max depth: 10 

Min child node: 5 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

Random Tree 
handle 
imbalanced 
Costx2 

Random 

Tree 

Num models: 100 

Handle imbal: true 

Max nodes: 10000 

Max depth: 10 

Min child node: 5 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

 

FP = cost x3 

XGBoost 
SMOTE 

XGBoost Tree method: auto  

Boost round: 10 

Max depth: 10 

Min child weight: 1 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

Table 7 - Configuration of models for the raw dataset 
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 Experiment 2 # - Special features dataset 

 Model type Algorithm settings Minority class 

mitigation 

C5.0 Boosting 
C5.0 

Decision 

Tree 

Favour: accuracy 

 

Use boosting: true 

C5.0 SMOTE 
C5.0 

Decision 

Tree 

Favour: accuracy 

 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

C5.0 COST x3 
C5.0 

Decision 

Tree 

Favour: accuracy FP = cost x3 

XGBoost 
SMOTE 

XGBoost Tree method: auto 

Boost round: 10 

Max depth: 10 

Min child weight: 1 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

Random Tree 
handle Imbal 

Random Tree Num models: 100 

Max nodes: 10000 

Max depth: 10 

Min child node: 5 

Handle imbal: true 

 

XGBoost 
SMOTE 

XGBoost Tree method: auto  

Boost round: 10 

Max depth: 10 

Min child weight: 1 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

Reduced 
Random Forest 

Random 
Forest 

Num of Trees:10 

Max depth: 10 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

Random Forest 
SMOTE 

Random 
Forest 

Num of Trees:10 

Max depth: 10 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

Logistic 
regression 
SMOTE 

Logistic 
regression 

Method: Enter 

Procedure: Binomial 

SMOTE 

Algorithm: Regular 

K neighbours: 30 

Table 8 - Configuration of models for the special features dataset 

4.5 Results 

 Experiment #1 - Raw dataset 

The first dataset was used to create 5 models. They all used various methods to guard against 

the imbalanced target class problem. From observing the confusion matrices (Table 10), ROC 
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curves (Figure 24) and Precision-Recall curves (Figure 25) it can be seen that it is close 

between the C5.0 Cost x 3 model and XGBoost SMOTE . They both have high values for True 

Positives and True Negatives on opposite sides of the confusion matrix. The C5.0 Cost x 3 

model has more balanced Precision and Recall values. 

 C5.0 Cost x 3 XGBoost SMOTE 

Accuracy 0.9427 0.7301 

Precision 0.4517 0.7597 

Recall 0.4101 0.1232 

Specificity 0.9723 0.7286 
Table 9 - Compare evaluation metrics of top models on the raw dataset 

The complete set of evaluation metrics are outlined in Appendix 8.1.1. 

4.5.1.1 Confusion Matrix 

 

C5.0 Cost x 3 

 0 1 

0 45,853 1,546 

1 1,305 1,075 

   

XGBoost SMOTE 

 0 1 

0 34,534 12,865 

1 572 1,808 

   
Table 10 - Confusion matrix for the raw dataset 

The rest of the matrix results are in Appendix 8.1.3 

4.5.1.2 Curves and AUC 

Figure 24 shows the ROC curve and how the C5.0 Cost x 3 model and XGBoost SMOTE do 

better on opposite sides of the curve. The C5.0 Cost x 3 model has the higher ROC AUC value 

(Table 11). It also has the more balance Precision-Recall ratio (Figure 25). 
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Figure 24 - Raw dataset ROC curve. Source (author) 

AUC Gini 

C5.0 Cost x3 0.834 0.669 

XGBoost SMOTE 0.811 0.623 

Random Tree handle Imbal SMOTE 0.75 0.5 

Random Forest SMOTE 0.739 0.478 

Random Tree handle Imbal Cost x2 SMOTE 0.701 0.402 
Table 11 - ROC Curve AUC values for the raw dataset 

 

 

Figure 25 - Precision-Recall curves for raw dataset. Source (author) 
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4.5.1.3 Predictive importance 

HOUR_OF_THE_DAY leads the predictive importance table for the C5.0 Cost x 3 model. 

The other input variables are making decent contributions also. The rest of the predictor 

importance graphs are in Appendix 8.1.4. 

 

Figure 26 - Predictive importance of the input variables for the Raw C5.0 cost x3 model. Source (author) 

4.5.1.4 Tuning 

Based in the initial results of the experiments, tuning was performed to improve results. The 

most effective tuning was achieved using misclassification cost values. A cost of 3 for 

misclassifying the positive case was found to give the best results for the C5.0 model.  

For tree-based models tree depth and pruning settings were varied. The tree depth was set to a 

maximum of 10. Deeper trees gave results that seemed to be overfitting the data. 

 Experiment 2 # - Special features dataset 

The SMOTE algorithm works much better on this dataset for the C5.0 SMOTE. The C5.0 

Cost x 3 is performing on the top end of the trialled models also. The ROC curves are very 

close (Figure 25) to each other and the ROC AUC value (Table 14) is very close. However, 

in the PR curve (Figure 28) it can be seen that C5.0 Cost x 3 has the best ratio value. 
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 C5.0 Cost x 3 C5.0 SMOTE 

Accuracy 0.9590 0.9371 

Precision 0.5630 0.3966 

Recall 0.6349 0.6038 

Specificity 0.9753 0.9539 
Table 12 - Compare evaluation metrics of top models on the special features dataset 

The complete set of evaluation metrics are outlined in Appendix 8.2.1. 

4.5.2.1 Confusion Matrix 

C5.0 Cost x 3 

  0 1 

 0 46,226 1,173 

 1 869 1,511 

    

 C5.0 SMOTE 

  0 1 

 0 45,213 2,186 

 1 943 1,437 
Table 13 - Confusion matrix for the top model 

 

4.5.2.2 Curves and AUC 

 

 

Figure 27 - ROC curves for special features dataset with C5.0 SMOTE and C5.0 Cost x3 showing the best AUC 

values. Source (author) 
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AUC Gini 

C5.0 SMOTE 0.919 0.837 

C5.0 COST x3 0.917 0.833 

C5.0 0.856 0.712 

XGBoost 0.837 0.674 

*Raw C5.0 Cost x3 0.834 0.669 

XGBoost SMOTE 0.828 0.656 

Random Tree handle Imbal 0.819 0.637 

XGBoost SMOTE 0.811 0.623 

Reduced Random Forest 0.81 0.62 

Random Tree handle Imbal Cost x2 0.796 0.592 

*Raw Random Tree handle Imbal SMOTE 0.75 0.5 

*Raw Random Forest SMOTE 0.739 0.478 

Random Forest SMOTE 0.729 0.457 

*Raw Random Tree handle Imbal Cost x2 SMOTE 0.701 0.402 

Logistic regression 0.679 0.159 
Table 14 - ROC Curve AUC values, special features dataset 

 

 

Figure 28 - Precision-Recall curve shows most performant model is C5.0 with misclassification costs. Source (author) 
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4.5.2.3 Predictive importance 

 

Figure 29 - Predictive power of input variables for the C5.0 Costx3 model. Source (author) 

4.5.2.4 Tuning 

The tuning on the second dataset was done in a similar way to that of the first dataset. 

4.6 Comparing Raw versus Special Features datasets 

For the “C5.0 Cost x 3” model there was a noticeable lift (Figure 30) and both the ROC and 

PR curves when using the dataset with the special features. This was not the case for all 

models however. For example, for  XGBoost in Figure 45 and Random Forest SMOTE in 

Figure 47 the improvement was minimal to non-existent. 

 

Figure 30 - Comparative ROC curve between raw and special feature datasets for the C5.0 Cost x 3 model. Source 

(author) 
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4.7 Hypothesis testing 

The McNemar test is used to test the null hypothesis. It is setup against a “zombie” classifier 

(Appendix 8.5) that guesses false 96% of the time and true 4% of the time. This is the same 

proportion as the class imbalance. 

The McNemar test (Table 16) was performed on the C5.0 Cost x3 model against the baseline 

classifier. This was to see if the results of the C5.0 Cost x3 are statistically significant. 

The significance level α = 0.05. A paired McNemar test is done. 

The McNemar test’s statistic (S) is compared to the relevant critical values (CV). As P = .000 

and P ≤ α (0.05), the Hypothesis H0 can be rejected. 

 

 

 

C5.0 COSTx3 

Total 0 1 

Baseline 

Model 

0 45240 2589 47829 

1 1855 95 1950 

Total 47095 2684 49779 
 

Table 15 - Matrix of baseline model predictions versus C5.0 COSTx3 model predictions in the raw dataset 

 
Chi-Square Tests 

McNemar Test  .000a 

N of Valid Cases 49779  

a. Binomial distribution used. 

 

Table 16 - McNemar test of the baseline model versus the C5.0 COSTx3 model 
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5 Analysis, evaluation and discussion 

 

 Handling the imbalanced target variable  

In the very early tests using algorithms with no allowance for the minority class, there were 

some very imbalanced results where the negative class has predicted almost 100% of the 

time. Once the various methods were applied, the best methods to work with this dataset 

emerged as SMOTE and misclassification costs. 

Neither the under-sampling or boosting seemed to have much of a helpful effect on results. 

 Experiment #1 - Raw dataset 

As previously mentioned accuracy values are ignored as they are not a reliable measure when 

dealing with an imbalanced target variable. The best way to get a quick comparative 

overview is by looking at the ROC and Precision-Recall curves.  

As can be seen in the ROC curve (Figure 24) both the C5.0_Costx3 (C5.0 Decision Tree with 

misclassification cost of 3) and the XGBoost SMOTE performed the best with ROC AUC 

values of 0.83 and 0.81. These AUC values are quite different, and this is even more 

pronounced when comparing them on the Precision-Recall (PR) graph (Figure 25). It is clear 

that the C5.0_Costx3 is the best model developed from the raw dataset from these 2 graphs. 

Once the C5.0_Costx3 is identified as the best model the confusion matrix can be examined. 

As can be seen in Table 10, the model has a little over half a chance of predicting the need for 

a Work Order when one is required. 

It is interesting that the decision tree out performs the other more advanced algorithms. It 

seems that configuring misclassification costs works well for this imbalanced dataset. 

SMOTE and algorithms with an option to handle imbalance did not yield results that were 

nearly as good. However, it was also noted that as the misclassification cost was increased 

the number of true positives and the number of false negatives traded places. This is 

acceptable as the main use case is most interested in true positives.  

Another surprising finding was the order of predictive importance (Figure 26). Intuitively it 

was expected that DURATION_MINUTES would have the highest value. However, 

HOUR_OF_THE_DAY, EVENTTYPE and DAY_OF_THE_WEEK were almost 4 times as 
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predictive. This would suggest that time that an alert happens is quite important for prediction 

but the length of time that the alert stays active is much less so.  

Next it is examined if the special features added through aggregation yielded much of a 

performance improvement.  

 Experiment 2 # - Special features dataset 

For the most part the models with the special features performed better except for Random 

Forest SMOTE which had a lower ROC AUC value (Table 14). AUC values for all other 

models that were run in both had improvements. Doing a McNemar test between the 

C5.0_Costx3 model for both the raw and special features will confirm whether the 

improvement is significant. 

With a value P = 0.63, therefore P > α (0.05). This means that any improvement is not 

statistically significant. 

BL_C5.0_COST3 * C5.0 COSTx3 Crosstabulation 

Count   

 

C5.0 COSTx3 

Total 0 1 

Raw_C5.0_COST3 0 46140 1018 47158 

1 955 1666 2621 

Total 47095 2684 49779 
 

Table 17 - Matrix of the raw dataset C5.0 COSTx3 model predictions versus C5.0 COSTx3 model predictions 

 

Chi-Square Tests 

 Value Exact Sig. (2-sided) 

McNemar Test  .163a 

N of Valid Cases 49779  

a. Binomial distribution used. 

 

Table 18 - Results of the McNemar test performed on the 2x2 matrix of raw dataset C5.0 COSTx3 and special 

features C5.0 COSTx3 model predictions 
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6 Conclusion 

This study proved that there is a relationship between alerts (created from thresholding 

reading values) and work orders. Even in a sparse IoT network the link was statistically 

significant. However, it would not be advisable to launch this approach in any widespread 

manner until further investigations are made. 

The possible reasons for poor accuracy achieved in this study are many. As mentioned the 

network contained a small number (69) of IoT sensors. The faults were often occurring in 

locations were there were no sensor nearby. This makes it very hard to detect issues. Also, as 

this was a District heating network, the issue was further exasperated by “Secondary 

networks” which also did not have IoT sensors. 

Other possible causes for the low performance of the models could be: 

1. Poorly configured thresholds 

2. External influences that are not monitored by the system (weather) 

3. A human factor causing delays to Work order creation times (Section 4.2.2.1)  

4. A small dataset spanning 3 months that was not enough especially when dealing with 

a minority target class. 

5. Outages in the alert streaming service leaving gaps in the dataset 

Much of the work involved in this project was around pre-processing of the data and ensuring 

that the issue of the minority target class variable considered in both training and evaluating 

the models. It was noted that misclassification costs are a powerful way to handle this 

imbalance. 

There were many limitations on the scope of this project which leave ample room for future 

work and new methodologies to be employed. 

6.1 Future work & recommendations 

The most important next step in this process is to test the findings on new datasets. It is 

particularly difficult to make alert predictions in the District Heating domain. This same 

process should be tested on water, waste water and energy domains to see how it performs 

there. Testing the methodology on different city networks would also prove that the solution 

is not specific to a single network setup. 
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It would be preferable to have a dataset that is more fully populated with alert input fields 

(ORIGIN, READING _VALUE) to gain better insight into the true relationship between 

system alerts and work orders. In the dataset for this study many of the available alert fields 

were not populated by the customer. If more of the fields available in the alert model are 

populated it should lead to better predictive results.  

Improvements in aggregation methods could also be made. For this study the alert data was 

aggregated by counting the number of alerts around each individual alert that is active at 

point in time using database geospatial queries. An improvement on this method would be to 

use a clustering approach such as K-means described in Section 2.5.5. 

Another tweak to the aggregation method would be to create a model that is based on the 

number of links between sensors instead using distance between alerting sensor. This would 

be a model that is based on relational distance instead of geospatial distance.  

The use of additional external sources such as weather data to augment the alert data would 

also be an intuitive next step. Weather is particularly interesting in relation to District Heating 

network as it has a direct impact on customer demand. 

The idea of having an intermediate step to processing raw reading data is an interesting one. 

This study looked at threshold values that were configured to find actual alerts. Another idea 

would be to broaden these threshold ranges to let more data through as “interesting readings” 

and then apply modelling techniques to these. 

6.2 Conflict of Interests 

I wish to acknowledge that while writing this report I was employed by IBM working on the 

IOC smarter cities product. IBM also provided the funding to complete this research. 
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8 Appendix 

8.1 Raw dataset results 

 Evaluation metrics 

Model Accuracy Recall Specificity Precision 

C5.0 Cost x 3 

 0.9427 0.4101 0.9723 0.4517 
Random Forest SMOTE 

 0.6118 0.0853 0.9783 0.7319 
Random Tree handle imbalanced SMOTE 

 0.6671 0.7571 0.6626 0.1013 
Random Tree handle imbalanced Costx2 

 0.8410 0.4592 0.8601 0.1415 
XGBoost SMOTE 

 0.7301 0.7597 0.7286 0.1232 
Table 19 - Raw dataset evaluation metrics for each model 

 Curves 

 

Table 20 - raw dataset ROC curves of all models. Source (author) 
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Figure 31 - Precision-Recall curves for raw dataset. Source (author) 

 Confusion matrices 

  

C5.0 Cost x 3 

 0 1 

0 45,853 1,546 

1 1,305 1,075 

   

Random Forest SMOTE 

 0 1 

0 28,714 18,685 

1 638 1,742 

   

Random Tree handle imbalanced SMOTE 

 0 1 

0 31,406 15,993 

1 578 1,802 

   

Random Tree handle imbalanced Costx2 

 0 1 

0 40,770 6,629 

1 1,287 1,093 

   

XGBoost SMOTE 

 0 1 

0 34,534 12,865 

1 572 1,808 
Table 21 - Confusion matrices for all raw dataset models. Source (author) 
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 Predictive importance 

 

Figure 32 - Predictive importance of input variables for Raw 5.0 Cost x3. Source (author) 

 

Figure 33 - Predictive importance for Random Forest SMOTE. Source (author) 

 

Figure 34 - predictive importance for Random Tree (handling imbalanced) . Source (author) 
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Figure 35 - Predictor importance for Random Tree (handling imbalanced, cost x2) SMOTE. Source (author) 

 

Figure 36 - Predictor importance for XGBoost tree SMOTE. Source (author) 
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8.2 Special features dataset results 

 Evaluation metrics 

Model Accuracy Recall Specificity Precision 

Random Tree handle imbal cost x2 

 0.8123 0.3442 0.8259 0.0544 

Random Tree handle imbal 

 0.7082 0.8298 0.7020 0.1227 

XGBoost SMOTE 

 0.7653 0.7277 0.7672 0.1357 

Logistic Regression SMOTE 

 0.5085 0.6357 0.5021 0.0603 

XGBoost  

 0.9522 0.0017 1.0000 0.8000 

C5.0 CV 10 

 0.9660 0.3517 0.9969 0.8489 

C5.0 Boosting 

 0.9646 0.3807 0.9939 0.7594 

C5.0 SMOTE 

 0.9371 0.6038 0.9539 0.3966 

C5.0 Cost x 3 

 0.9590 0.6349 0.9753 0.5630 
Table 22 – Special feature dataset evaluation metrics for each model 

 Curves 

 

Figure 37 - ROC curves for special feature dataset. Source (author) 
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 Confusion matrices 

Random Tree handle imbal cost x2 

 0 1 

0 39,149 8,250 

1 905 1,475 

   

Random Tree handle imbal 

 0 1 

0 33,276 14,123 

1 405 1,975 

   

XGBoost SMOTE 

 0 1 

0 36,366 11,033 

1 648 1,732 

   

Logistic Regression SMOTE 

 0 1 

0 23,801 23,598 

1 867 1,513 

   

XGBoost  

 0 1 

0 47,398 1 

1 2,376 4 

   

C5.0 CV 10 

 0 1 

0 47,250 149 

1 1,543 837 

   

C5.0 Boosting 

 0 1 

0 47,112 287 

1 1,474 906 

   

C5.0 SMOTE 

 0 1 

0 45,213 2,186 

1 943 1,437 

   

C5.0 Cost x 3 

 0 1 

0 46,226 1,173 

1 869 1,511 
Table 23 - Special features dataset confusion matrix 
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 Predictive importance 

 

Figure 38 - Predictor importance Random Forest SMOTE. Source (author) 

 

Figure 39 - Predictor importance for Random Trees (handling imbalance, cost x2) . Source (author) 

 

Figure 40 - Predictive importance for Random Trees (handle imbalanced) . Source (author) 
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Figure 41 - Predictor importance for XGBoost Tree SMOTE. Source (author) 

 

Figure 42 - Predictive importance for Logistic Regression SMOTE. Source (author) 
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Figure 43 - Predictive importance for Random Trees. Source (author) 

8.3 Comparing Raw dataset with Special features 

 

 ROC Curves 

 

 

Figure 44 - Raw and Special features ROC curves for C5.0 with a cost x3. Source (author) 
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Figure 45 - Raw and Special features ROC curves for XGBoost with SMOTE applied. Source (author) 

 

 

Figure 46 - Raw and Special features ROC curves for Random Tree (handling imbalance) . Source (author) 
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Figure 47 - Raw and Special features ROC curves for Random Forest SMOTE. Source (author) 

8.4 Outlier data 

 

Extreme Values 

 Case Number Value 

NUM_RELATED_ALERTS_10_500 Highest 1 931 139 

2 932 139 

3 933 139 

4 934 139 

5 833 120a 

Lowest 1 248018 0 

2 248017 0 

3 248016 0 

4 248015 0 

5 248014 0b 

NUM_RELATED_ALERTS_30_500 Highest 1 931 139 

2 932 139 

3 933 139 

4 934 139 

5 833 120a 

Lowest 1 248018 0 

2 248017 0 

3 248016 0 

4 248015 0 
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5 248014 0b 

NUM_RELATED_ALERTS_60_500 Highest 1 931 139 

2 932 139 

3 933 139 

4 934 139 

5 833 120a 

Lowest 1 248018 0 

2 248017 0 

3 248016 0 

4 248015 0 

5 248014 0b 

NUM_RELATED_ALERTS_120_500 Highest 1 1138 171 

2 1139 171 

3 1140 171 

4 1141 171 

5 1041 152c 

Lowest 1 248018 0 

2 248017 0 

3 248016 0 

4 248015 0 

5 248014 0b 

NUM_RELATED_ALERTS_10_1000 Highest 1 931 211 

2 932 211 

3 933 211 

4 934 211 

5 833 192d 

Lowest 1 248018 0 

2 248017 0 

3 248011 0 

4 248010 0 

5 248008 0b 

NUM_RELATED_ALERTS_30_1000 Highest 1 931 211 

2 932 211 

3 933 211 

4 934 211 

5 833 192d 

Lowest 1 248018 0 

2 248017 0 

3 248011 0 

4 248010 0 

5 248008 0b 
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NUM_RELATED_ALERTS_60_1000 Highest 1 931 211 

2 932 211 

3 933 211 

4 934 211 

5 833 192d 

Lowest 1 248018 0 

2 248017 0 

3 248011 0 

4 248010 0 

5 248003 0b 

NUM_RELATED_ALERTS_120_100

0 

Highest 1 1138 260 

2 1139 260 

3 1140 260 

4 1141 260 

5 1043 240e 

Lowest 1 248018 0 

2 248011 0 

3 248010 0 

4 248003 0 

5 247997 0b 

a. Only a partial list of cases with the value 120 are shown in the table of upper extremes. 

b. Only a partial list of cases with the value 0 are shown in the table of lower extremes. 

c. Only a partial list of cases with the value 152 are shown in the table of upper extremes. 

d. Only a partial list of cases with the value 192 are shown in the table of upper extremes. 

e. Only a partial list of cases with the value 240 are shown in the table of upper extremes. 

Table 24 - Extreme values table 

 

8.5 Zombie classifier with minority class 

Code to generate random values that are proportional to the binomial target class. 

package com.thesis; 

 

import org.apache.commons.csv.CSVFormat; 

import org.apache.commons.csv.CSVPrinter; 

 

import java.io.BufferedWriter; 

import java.nio.file.Files; 
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import java.nio.file.Paths; 

import java.util.Random; 

import java.util.stream.IntStream; 

 

public class ZombieClassifier { 

 

    public static void main(String[] args) throws Exception { 

 

        final int SAMPLE_SIZE = 49779; 

        final double MINORITY_CLASS_PROPORTION = 0.04; 

        final int numOfOnes = new Double(SAMPLE_SIZE * 

MINORITY_CLASS_PROPORTION).intValue(); 

 

        int[] nums = new int[SAMPLE_SIZE]; 

        Random randomGenerator = new Random(); 

        IntStream.range(0, numOfOnes) 

                .forEach(num -> { 

                    int rand = randomGenerator.nextInt(49779); 

                    //set a random array value to '1' 

                    nums[rand] = 1; 

                }); 

        try ( 

                BufferedWriter writer = 

Files.newBufferedWriter(Paths.get("export.csv")); 

                CSVPrinter csvPrinter = new CSVPrinter(writer, 

CSVFormat.DEFAULT); 

        ) { 

            for (int no : nums) { 

                csvPrinter.printRecord(no); 

            } 

            csvPrinter.flush(); 

        } 

    } 

}



72 

 

8.6 Top level SQL queries 

 GET_EVENT_WITH_TARGET 

CREATE OR REPLACE FUNCTION VDS.GET_EVENT_WITH_TARGET ( 

               v_number_minutes INTEGER,  

               v_distance_in_meters INTEGER 

) 

 RETURNS TABLE ( 

 

ID INTEGER, 

SUBJECT VARCHAR(200),  

DOMAIN VARCHAR(10),  

DESCRIPTION VARCHAR(500), 

CATEGORY VARCHAR(100), 

EVENTTYPE VARCHAR(100), 

EXTEVENTID VARCHAR(200),    

EXTWORKEQUIPMENTID VARCHAR(200), 

EXTWORKEQUIPMENTTYPE VARCHAR(200), 

ASSET_ID INTEGER, 

MEASURE_VALUE VARCHAR(200), 

MEASURE_TYPE VARCHAR(200), 

MEASURE_UNIT VARCHAR(200), 

MEASURE_THRESHOLD_VALUE VARCHAR(200), 

MEASURE_THRESHOLD INTEGER,  

CREATIONTYPE VARCHAR(100), 

STATUS VARCHAR(100), 

OWNER VARCHAR(100), 

CREATEDBY VARCHAR(100), 

STARTTS TIMESTAMP, 

ENDTS TIMESTAMP, 

LASTUPDATEDTS TIMESTAMP, 

URGENCY VARCHAR(100), 

SEVERITY VARCHAR(100), 

CERTAINTY VARCHAR(100), 

ACK VARCHAR(3), 

MODELID INTEGER, 

NETWORK VARCHAR(50),  

ADDRESS VARCHAR(500), 

ZONE1 VARCHAR(100), 

ZONE2 VARCHAR(100), 

ZONE3 VARCHAR(100), 

CONTRACTID VARCHAR(256), 

EVENTSUBTYPE VARCHAR(200), 

EVENT_DATE TIMESTAMP, 

CASE_DATE TIMESTAMP, 

CASE_REFERENCE VARCHAR(100), 

ORIGIN_TYPE VARCHAR(100), 

ORIGIN_NAME VARCHAR(100), 

EVENT_DATA VARCHAR(100), 

REMARKS VARCHAR(500), 

COSTS VARCHAR(100), 

CONSEQUENCES VARCHAR(100), 

 

LOCATION VARCHAR(50), 
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WEEK_NUMBER INTEGER, 

MONTH_NUMBER INTEGER,  

DAY_OF_THE_WEEK_NUMBER INTEGER,  

HOUR_OF_THE_DAY INTEGER, 

 

DURATION_IN_MINUTES INTEGER, 

 

WORK_ORDER_ID INTEGER, 

ALERT_WAS_PRESENT_BEFORE_WORK_ORDER INTEGER, 

WORK_TYPE VARCHAR(128) 

 

) 

NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

 

 RETURN  

 SELECT E.ID,  E.SUBJECT,   E.DOMAIN,   E.DESCRIPTION,   E.CATEGORY,   E.EVENTTYPE,   E.EXTEVENTID,    

        E.EXTWORKEQUIPMENTID,   E.EXTWORKEQUIPMENTTYPE,  E.ASSET_ID,  E.MEASURE_VALUE,   

        E.MEASURE_TYPE, E.MEASURE_UNIT, E.MEASURE_THRESHOLD_VALUE, E.MEASURE_THRESHOLD,  

        E.CREATIONTYPE, E.STATUS,  E.OWNER,  E.CREATEDBY,  E.STARTTS,  E.ENDTS,  E.LASTUPDATEDTS,  

        E.URGENCY, E.SEVERITY, E.CERTAINTY, E.ACK, E.MODELID, E.NETWORK,  

                      E.ADDRESS, E.ZONE1, E.ZONE2, E.ZONE3, E.CONTRACTID, E.EVENTSUBTYPE, E.EVENT_DATE, 

                      E.CASE_DATE, E.CASE_REFERENCE, E.ORIGIN_TYPE, E.ORIGIN_NAME, E.EVENT_DATA, E.REMARKS, 

        E.COSTS, E.CONSEQUENCES, 

   

                     VARCHAR(db2gse.ST_AsText(db2gse.ST_Centroid(E.LOCATION)), 50) AS LOCATION, 

    

                    WEEK(E.STARTTS) WEEK_NUMBER,  

                    MONTH(E.STARTTS) MONTH_NUMBER,  

                    DAYOFWEEK(E.STARTTS) DAY_OF_THE_WEEK_NUMBER,  

                    HOUR(E.STARTTS) HOUR_OF_THE_DAY, 

    

    

                    CASE WHEN  

                             DUR_E.DURATION_IN_MINUTES IS NOT NULL  

                    THEN DUR_E.DURATION_IN_MINUTES  

                             ELSE 0 END AS DURATION_IN_MINUTES, 

     

                    WO_E.WO_ID, 

  

                    CASE WHEN  

                            WO_E.WO_ID IS NOT NULL  

                    THEN 1  

                    ELSE 0  

                    END AS ALERT_WAS_PRESENT_BEFORE_WORK_ORDER, 

   

    

                    WO_E.WORK_TYPE 

  

 FROM VDS.SRC_EVENTS_MT E 

  

 LEFT JOIN TABLE(VDS.GET_WORK_ORDER_ALERTS(v_number_minutes, v_distance_in_meters) 

      ) AS WO_E 

 ON    

       WO_E.EVENT_ID = E.ID 

  

 LEFT JOIN TABLE(VDS.GET_ALERT_DURATION()) AS DUR_E 

 ON    
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      DUR_E.ID = E.ID 

  

  

 WHERE STARTTS > '2017-10-01 00:00:00'         -- exclude some test data 

    AND EVENTTYPE != 'Pressure Diff'    -- more test data (3 records) 

 ; 

END F1 

 GET_SPECIAL_FEATURES_DATASET_WITH_TARGET 

CREATE OR REPLACE FUNCTION VDS.GET_SPECIAL_FEATURES_DATASET_WITH_TARGET ( 

v_number_minutes INTEGER,  

v_distance_in_meters INTEGER 

) 

 RETURNS TABLE ( 

 

ID INTEGER, 

SUBJECT VARCHAR(200),  

DOMAIN VARCHAR(10),  

DESCRIPTION VARCHAR(500), 

CATEGORY VARCHAR(100), 

EVENTTYPE VARCHAR(100), 

EXTEVENTID VARCHAR(200),    

EXTWORKEQUIPMENTID VARCHAR(200), 

EXTWORKEQUIPMENTTYPE VARCHAR(200), 

ASSET_ID INTEGER, 

MEASURE_VALUE VARCHAR(200), 

MEASURE_TYPE VARCHAR(200), 

MEASURE_UNIT VARCHAR(200), 

MEASURE_THRESHOLD_VALUE VARCHAR(200), 

MEASURE_THRESHOLD INTEGER,  

CREATIONTYPE VARCHAR(100), 

STATUS VARCHAR(100), 

OWNER VARCHAR(100), 

CREATEDBY VARCHAR(100), 

STARTTS TIMESTAMP, 

ENDTS TIMESTAMP, 

LASTUPDATEDTS TIMESTAMP, 

URGENCY VARCHAR(100), 

SEVERITY VARCHAR(100), 

CERTAINTY VARCHAR(100), 

ACK VARCHAR(3), 

MODELID INTEGER, 

NETWORK VARCHAR(50),  

ADDRESS VARCHAR(500), 

ZONE1 VARCHAR(100), 

ZONE2 VARCHAR(100), 

ZONE3 VARCHAR(100), 

CONTRACTID VARCHAR(256), 

EVENTSUBTYPE VARCHAR(200), 

EVENT_DATE TIMESTAMP, 

CASE_DATE TIMESTAMP, 

CASE_REFERENCE VARCHAR(100), 

ORIGIN_TYPE VARCHAR(100), 

ORIGIN_NAME VARCHAR(100), 

EVENT_DATA VARCHAR(100), 

REMARKS VARCHAR(500), 

COSTS VARCHAR(100), 
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CONSEQUENCES VARCHAR(100), 

 

LOCATION VARCHAR(50), 

 

WEEK_NUMBER INTEGER, 

MONTH_NUMBER INTEGER,  

DAY_OF_THE_WEEK_NUMBER INTEGER,  

HOUR_OF_THE_DAY INTEGER, 

 

DURATION_IN_MINUTES INTEGER, 

 

WORK_ORDER_ID INTEGER, 

ALERT_WAS_PRESENT_BEFORE_WORK_ORDER INTEGER, 

WORK_TYPE VARCHAR(128), 

 

NUM_RELATED_ALERTS_10_500 INTEGER 

,  

NUM_RELATED_ALERTS_30_500 INTEGER,  

NUM_RELATED_ALERTS_60_500 INTEGER,  

NUM_RELATED_ALERTS_120_500 INTEGER,  

NUM_RELATED_ALERTS_10_1000 INTEGER,  

NUM_RELATED_ALERTS_30_1000 INTEGER,  

NUM_RELATED_ALERTS_60_1000 INTEGER,  

NUM_RELATED_ALERTS_120_1000 INTEGER 

 

 

 

) 

NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

 

 RETURN  

 

 SELECT B.*,  

   SF1.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_10_500,  

   SF2.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_30_500,  

   SF3.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_60_500,  

   SF4.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_120_500,  

   SF5.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_10_1000,  

   SF6.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_30_1000,  

   SF7.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_60_1000,  

   SF8.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_120_1000 

  

 FROM TABLE(VDS.GET_EVENT_WITH_TARGET (v_number_minutes, v_distance_in_meters)) B 

  

 LEFT JOIN  

   TABLE(VDS.GET_NUM_RELATED_ALERTS (10, 500)) SF1 

 ON B.ID = SF1.ID  

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (30, 500)) SF2 

 ON B.ID = SF2.ID 

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (60, 500)) SF3 

 ON B.ID = SF3.ID 

  

 LEFT JOIN  
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      TABLE(VDS.GET_NUM_RELATED_ALERTS (120, 500)) SF4 

 ON B.ID = SF4.ID 

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (10, 1000)) SF5 

 ON B.ID = SF5.ID  

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (30, 1000)) SF6 

 ON B.ID = SF6.ID  

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (60, 1000)) SF7 

 ON B.ID = SF7.ID  

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (120, 1000)) SF8 

 ON B.ID = SF8.ID ; 

 

END F1 

 GET_SPECIAL_FEATURES_DATASET_WITH_TARGET 

CREATE OR REPLACE FUNCTION VDS. GET_SPECIAL_FEATURES_DATASET_WITH_TARGET ( 

v_event_id INTEGER 

) 

  

 RETURNS TABLE ( 

 

ID INTEGER, 

SUBJECT VARCHAR(200),  

DOMAIN VARCHAR(10),  

DESCRIPTION VARCHAR(500), 

CATEGORY VARCHAR(100), 

EVENTTYPE VARCHAR(100), 

EXTEVENTID VARCHAR(200),    

EXTWORKEQUIPMENTID VARCHAR(200), 

EXTWORKEQUIPMENTTYPE VARCHAR(200), 

ASSET_ID INTEGER, 

MEASURE_VALUE VARCHAR(200), 

MEASURE_TYPE VARCHAR(200), 

MEASURE_UNIT VARCHAR(200), 

MEASURE_THRESHOLD_VALUE VARCHAR(200), 

MEASURE_THRESHOLD INTEGER,  

CREATIONTYPE VARCHAR(100), 

STATUS VARCHAR(100), 

OWNER VARCHAR(100), 

CREATEDBY VARCHAR(100), 

STARTTS TIMESTAMP, 

ENDTS TIMESTAMP, 

LASTUPDATEDTS TIMESTAMP, 

URGENCY VARCHAR(100), 

SEVERITY VARCHAR(100), 

CERTAINTY VARCHAR(100), 

ACK VARCHAR(3), 

MODELID INTEGER, 

NETWORK VARCHAR(50),  

ADDRESS VARCHAR(500), 



77 

 

ZONE1 VARCHAR(100), 

ZONE2 VARCHAR(100), 

ZONE3 VARCHAR(100), 

CONTRACTID VARCHAR(256), 

EVENTSUBTYPE VARCHAR(200), 

EVENT_DATE TIMESTAMP, 

CASE_DATE TIMESTAMP, 

CASE_REFERENCE VARCHAR(100), 

ORIGIN_TYPE VARCHAR(100), 

ORIGIN_NAME VARCHAR(100), 

EVENT_DATA VARCHAR(100), 

REMARKS VARCHAR(500), 

COSTS VARCHAR(100), 

CONSEQUENCES VARCHAR(100), 

 

LOCATION VARCHAR(50), 

 

WEEK_NUMBER INTEGER, 

MONTH_NUMBER INTEGER,  

DAY_OF_THE_WEEK_NUMBER INTEGER,  

HOUR_OF_THE_DAY INTEGER, 

 

DURATION_IN_MINUTES INTEGER, 

 

NUM_RELATED_ALERTS_10_500 INTEGER,  

NUM_RELATED_ALERTS_30_500 INTEGER,  

NUM_RELATED_ALERTS_60_500 INTEGER,  

NUM_RELATED_ALERTS_120_500 INTEGER,  

NUM_RELATED_ALERTS_10_1000 INTEGER,  

NUM_RELATED_ALERTS_30_1000 INTEGER,  

NUM_RELATED_ALERTS_60_1000 INTEGER,  

NUM_RELATED_ALERTS_120_1000 INTEGER 

 

 

 

) 

 NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

 

 RETURN  

 

 SELECT E.*,  

  SF1.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_10_500,  

  SF2.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_30_500,  

  SF3.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_60_500,  

  SF4.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_120_500,  

  SF5.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_10_1000,  

  SF6.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_30_1000,  

  SF7.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_60_1000,  

  SF8.NUM_RELATED_ALERTS NUM_RELATED_ALERTS_120_1000 

  

 FROM VDS.SRC_EVENTS_MT E 

  

 LEFT JOIN  

   TABLE(VDS.GET_NUM_RELATED_ALERTS (v_event_id, 10, 500)) SF1 

 ON B.ID = SF1.ID  

  

 LEFT JOIN  
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      TABLE(VDS.GET_NUM_RELATED_ALERTS (v_event_id, 30, 500)) SF2 

 ON B.ID = SF2.ID 

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (v_event_id, 60, 500)) SF3 

 ON B.ID = SF3.ID 

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (v_event_id, 120, 500)) SF4 

 ON B.ID = SF4.ID 

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (v_event_id, 10, 1000)) SF5 

 ON B.ID = SF5.ID  

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (v_event_id, 30, 1000)) SF6 

 ON B.ID = SF6.ID  

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (v_event_id, 60, 1000)) SF7 

 ON B.ID = SF7.ID  

  

 LEFT JOIN  

      TABLE(VDS.GET_NUM_RELATED_ALERTS (v_event_id, 120, 1000)) SF8 

 ON B.ID = SF8.ID  

 

WHERE E.ID = v_event_id; 

 

END 

8.7 Lower level functions 

 GET_WORK_ORDER_ALERTS 

CREATE OR REPLACE FUNCTION VDS.GET_WORK_ORDER_ALERTS ( 

v_number_minutes INTEGER,  

v_distance_in_meters INTEGER 

) 

    RETURNS TABLE ( 

WO_ID INTEGER,  

EVENT_ID INTEGER,  

WORK_TYPE VARCHAR(128) 

    ) 

NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

     

    RETURN  

 

SELECT E_WO.WO_ID, E_WO.ID, UPPER(WO2.WORK_TYPE) 

FROM 

    ( 

        SELECT MAX(WO.WO_ID) WO_ID, E.ID 

     

        FROM  

        EAM.WORK_ORDER WO, 
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        VDS.SRC_EVENTS_MT E, 

        TABLE( 

            SELECT db2gse.ST_GeomFromText(LOCATION, 1003) LOCATION 

            FROM  

                TABLE( 

                    SELECT VARCHAR(db2gse.ST_AsText(db2gse.ST_Centroid(LOCATION)), 50)  LOCATION 

                    FROM VDS.SRC_EVENTS_MT 

                    GROUP BY VARCHAR(db2gse.ST_AsText(db2gse.ST_Centroid(LOCATION)), 50) 

                ) 

            ) AS E_LOC 

         

    WHERE  

        WO.CREATION_DATETIME IS NOT NULL AND 

         

        db2gse.ST_Equals(E.LOCATION, E_LOC.LOCATION) = 1  AND 

         

        WO.CREATION_DATETIME > E.STARTTS AND 

         

        TIMESTAMPDIFF(4, CHAR                    -- minutes 

               (WO.CREATION_DATETIME - E.STARTTS) 

        ) < v_number_minutes AND 

     

        db2gse.ST_Intersects(WO.LOCATION, 

                        db2gse.ST_Buffer(E_LOC.LOCATION, v_distance_in_meters, 'METER')) = 1 

                      SELECTIVITY 0.00001 AND 

         

        WO.WORK_TYPE IN ('USTERKA', 'AWARIA', 'awaria') 

         

    GROUP BY E.ID 

    ) 

    E_WO, 

    EAM.WORK_ORDER WO2 

     

WHERE 

    E_WO.WO_ID = WO2.WO_ID; 

 

END F1 

 

 

 GET_WORK_ORDER_ALERTS 

CREATE OR REPLACE FUNCTION VDS.GET_WORK_ORDER_ALERTS ( 

               v_number_minutes INTEGER,  

               v_distance_in_meters INTEGER 

) 

 RETURNS TABLE (WO_ID INTEGER, EVENT_ID INTEGER, WORK_TYPE VARCHAR(128)) 

 NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

  

 RETURN  

 

SELECT E_WO.WO_ID, E_WO.ID, UPPER(WO2.WORK_TYPE) 

FROM 

     ( 

    SELECT MAX(WO.WO_ID) WO_ID, E.ID 

     

    FROM  
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        EAM.WORK_ORDER WO, 

        VDS.SRC_EVENTS_MT E, 

         

        TABLE( 

            SELECT db2gse.ST_GeomFromText(LOCATION, 1003) LOCATION 

            FROM  

                TABLE( 

                    SELECT VARCHAR(db2gse.ST_AsText(db2gse.ST_Centroid(LOCATION)), 50)  LOCATION 

                    FROM VDS.SRC_EVENTS_MT 

                    GROUP BY VARCHAR(db2gse.ST_AsText(db2gse.ST_Centroid(LOCATION)), 50) 

                ) 

            ) AS E_LOC 

         

    WHERE  

        WO.CREATION_DATETIME IS NOT NULL AND 

         

        db2gse.ST_Equals(E.LOCATION, E_LOC.LOCATION) = 1  AND 

         

        WO.CREATION_DATETIME > E.STARTTS AND 

         

        TIMESTAMPDIFF(4, CHAR                    -- minutes 

               (WO.CREATION_DATETIME - E.STARTTS) 

        ) < v_number_minutes AND 

     

        db2gse.ST_Intersects(WO.LOCATION, 

                        db2gse.ST_Buffer(E_LOC.LOCATION, v_distance_in_meters, 'METER')) = 1 

                      SELECTIVITY 0.00001 AND 

         

        WO.WORK_TYPE IN ('USTERKA', 'AWARIA', 'awaria') 

         

    GROUP BY E.ID 

    ) 

    E_WO, 

    EAM.WORK_ORDER WO2 

     

WHERE 

    E_WO.WO_ID = WO2.WO_ID 

; 

 

END F1 

 

 GET_NUM_RELATED_ALERTS 

CREATE OR REPLACE FUNCTION VDS.GET_NUM_RELATED_ALERTS ( 

               v_number_minutes INTEGER,  

               v_distance_in_meters INTEGER 

) 

 RETURNS TABLE ( 

  ID INTEGER, 

  NUM_RELATED_ALERTS VARCHAR(128) 

  ) 

 NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

  

RETURN  
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    SELECT  

        E.ID,  

        COALESCE(HIT.NUM_RELATED_ALERTS, 0) NUM_RELATED_ALERTS 

 

    FROM VDS.SRC_EVENTS_MT E 

         

    LEFT JOIN  

        ( 

             

            SELECT E1_ID, COUNT(E2_ID) NUM_RELATED_ALERTS 

            FROM 

                ( 

                SELECT E1.ID E1_ID,  

                       E2.ID E2_ID,  

                       E1.STARTTS E1_STARTTS,  

                       E1.ENDTS E1_ENDTS,  

                       E2.STARTTS E2_STARTTS,  

                       E2.ENDTS E2_ENDTS,  

                       E2.SUBJECT E2_SUBJECT, 

                       E1.LOCATION_WKT E1_LOCATION_WKT,  

                       E2.LOCATION_WKT E2_LOCATION_WKT, 

                       LOC_MAP.METERS_BETWEEN 

                                 

                FROM ( 

                         SELECT *  

                         FROM VDS.SRC_EVENTS_MT  

                         WHERE STARTTS > '2017-10-01 00:00:00' AND  

                              EVENTTYPE != 'Presure Diff' 

                        --FETCH FIRST 150 ROWS ONLY 

                      ) E1,  

                     ( 

                         SELECT *  

                         FROM VDS.SRC_EVENTS_MT  

                         WHERE STARTTS > '2017-10-01 00:00:00' AND  

                              EVENTTYPE != 'Presure Diff' 

                        --FETCH FIRST 150 ROWS ONLY 

                     ) E2, 

                VDS.EVENT_LOCATION_DISTANCES LOC_MAP 

                 

                 

                WHERE  

                 

                    E1.ID != E2.ID AND 

                     

                    E1.LOCATION_WKT != E2.LOCATION_WKT AND 

                     

                    E1.STARTTS > E2.STARTTS AND 

                    E1.STARTTS < E2.ENDTS + 1 DAYS AND 

                    E1.STARTTS < E2.ENDTS + v_number_minutes MINUTES AND 

                     

                    E1.LOCATION_WKT = LOC_MAP.LOC_1_WKT AND 

                    E2.LOCATION_WKT = LOC_MAP.LOC_2_WKT AND 

     

                    LOC_MAP.METERS_BETWEEN  <= v_distance_in_meters 

                    ) 

                     

                    GROUP BY E1_ID         

        ) HIT 
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    ON E.ID = HIT.E1_ID 

     

    WHERE STARTTS > '2017-10-01 00:00:00'  -- exclude some test data 

          AND EVENTTYPE != 'Pressure Diff'    -- more test data (3 records) 

          ; 

 

END F1 

 GET_NUM_RELATED_ALERTS (single alert) 

CREATE OR REPLACE FUNCTION VDS.GET_NUM_RELATED_ALERTS ( 

               v_event_id INTEGER,  

               v_number_minutes INTEGER,  

               v_distance_in_meters INTEGER 

) 

 RETURNS TABLE ( 

  ID INTEGER, 

  NUM_RELATED_ALERTS VARCHAR(128) 

  ) 

 NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

  

RETURN  

   

    SELECT  

        E.ID,  

        COALESCE(HIT.NUM_RELATED_ALERTS, 0) NUM_RELATED_ALERTS 

 

    FROM VDS.SRC_EVENTS_MT E 

         

    LEFT JOIN  

        ( 

             

            SELECT E1_ID, COUNT(E2_ID) NUM_RELATED_ALERTS 

            FROM 

                ( 

                SELECT E1.ID E1_ID,  

                       E2.ID E2_ID,  

                       E1.STARTTS E1_STARTTS,  

                       E1.ENDTS E1_ENDTS,  

                       E2.STARTTS E2_STARTTS,  

                       E2.ENDTS E2_ENDTS,  

                       E2.SUBJECT E2_SUBJECT, 

                       E1.LOCATION_WKT E1_LOCATION_WKT,  

                       E2.LOCATION_WKT E2_LOCATION_WKT, 

                       LOC_MAP.METERS_BETWEEN 

                                 

                FROM ( 

                         SELECT *  

                         FROM VDS.SRC_EVENTS_MT  

                         WHERE ID = v_event_id 

                      ) E1,  

                     ( 

                         SELECT *  

                         FROM VDS.SRC_EVENTS_MT  

                         WHERE STARTTS > '2017-10-01 00:00:00' AND  

                              EVENTTYPE != 'Presure Diff' 
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                        --FETCH FIRST 150 ROWS ONLY 

                     ) E2, 

                VDS.EVENT_LOCATION_DISTANCES LOC_MAP 

                 

                 

                WHERE  

                 

                    E1.ID != E2.ID AND 

                     

                    E1.LOCATION_WKT != E2.LOCATION_WKT AND 

                     

                    E1.STARTTS > E2.STARTTS AND 

                    E1.STARTTS < E2.ENDTS + 1 DAYS AND 

                    E1.STARTTS < E2.ENDTS + v_number_minutes MINUTES AND 

                     

                    E1.LOCATION_WKT = LOC_MAP.LOC_1_WKT AND 

                    E2.LOCATION_WKT = LOC_MAP.LOC_2_WKT AND 

     

                    LOC_MAP.METERS_BETWEEN  <= v_distance_in_meters 

                    ) 

                     

                    GROUP BY E1_ID         

        ) HIT 

         

    ON E.ID = HIT.E1_ID 

     

    WHERE ID = v_event_id; 

 

END F1 

 GET_DISTANCE_BETWEEN_ALL_ALERT_LOCATIONS 

CREATE OR REPLACE FUNCTION VDS.GET_DISTANCE_BETWEEN_ALL_ALERT_LOCATIONS () 

     RETURNS TABLE ( 

METERS_BETWEEN DOUBLE,  

LOCATION_1 db2gse.ST_GEOMETRY,  

LOCATION_2 db2gse.ST_GEOMETRY,  

LOC_1_WKT VARCHAR(50),  

LOC_2_WKT VARCHAR(50) 

     ) 

NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

 

 

 RETURN  

 SELECT  

        db2gse.ST_Distance(LOC_1.LOCATION, LOC_2.LOCATION, 'METER') AS METERS_BETWEEN,  

        LOC_1.LOCATION LOCATION_1,  

        LOC_2.LOCATION LOCATION_2,  

        LOC_1.LOCATION_WKT LOC_1_WKT,  

        LOC_2.LOCATION_WKT LOC_2_WKT 

  

 FROM  

        VDS.EVENT_LOCATION LOC_1, 

        VDS.EVENT_LOCATION LOC_2; 

   

END 
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 GET_ALERT_DURATION 

 

CREATE OR REPLACE FUNCTION VDS.GET_ALERT_DURATION () 

 RETURNS TABLE ( 

   ID INTEGER, 

   DURATION_IN_MINUTES INTEGER) 

 NO EXTERNAL ACTION 

F1: BEGIN ATOMIC 

  

  

 RETURN  

  

 SELECT E1_ID, SUM(BD.DURATION_IN_MINUTES) 

 

 

 FROM 

  ( 

   

  SELECT  

   E1.ID E1_ID, 

   TIMESTAMPDIFF(4, CHAR(E2.ENDTS - E2.STARTTS)) "DURATION_IN_MINUTES" 

         

  FROM ( 

    SELECT *  

    FROM VDS.SRC_EVENTS_MT  

    WHERE STARTTS > '2017-10-01 00:00:00' AND  

       EVENTTYPE != 'Presure Diff' 

    ) E1,  

       ( 

        SELECT *  

        FROM VDS.SRC_EVENTS_MT  

        WHERE STARTTS > '2017-10-01 00:00:00' AND  

       EVENTTYPE != 'Presure Diff' 

    ) E2 

   

   

  WHERE  

   E1.ID != E2.ID AND 

    

   E1.STARTTS > E2.STARTTS AND 

   E1.STARTTS < E2.ENDTS + 1 DAY AND 

   E1.STARTTS < E2.ENDTS + 120 MINUTES AND 

    

   E1.LOCATION_WKT = E2.LOCATION_WKT 

   

    

  ) BD 

  

 GROUP BY E1_ID; 

END F1 
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8.8 Tables to cache recurrent calculations 

 EVENT_LOCATION_DISTANCES 

CREATE TABLE VDS.EVENT_LOCATION_DISTANCES AS ( 
    SELECT * 
    FROM TABLE(VDS.GET_DISTANCE_BETWEEN_ALL_ALERT_LOCATIONS()) 
) WITH NO DATA; 
 
INSERT INTO VDS.EVENT_LOCATION_DISTANCES (SELECT * 
    FROM TABLE(VDS.GET_DISTANCE_BETWEEN_ALL_ALERT_LOCATIONS ())); 
 
-- Add spatial index to increase spatial query times 
-- Using a spatial clusters that are tuned to point geometries 
CREATE INDEX  
VDS.EVENT_LOCATION_1_DISTANCES_IDX  
ON VDS.EVENT_LOCATION_DISTANCES(LOCATION_1)  
EXTEND USING DB2GSE.SPATIAL_INDEX(0.0021, 0.011, 0.044) ; 
CREATE INDEX  
VDS.EVENT_LOCATION_2_DISTANCES_IDX  
ON VDS.EVENT_LOCATION_DISTANCES(LOCATION_2)  
EXTEND USING DB2GSE.SPATIAL_INDEX(0.0021, 0.011, 0.044) ; 
 
-- Add indices to the location distances table to improve query performance 
CREATE INDEX VDS.EVENT_LOCATION_DISTANCES_LOC_1_WKT_X  
ON VDS.EVENT_LOCATION_DISTANCES ( LOC_1_WKT )  
ALLOW REVERSE SCANS PAGE SPLIT SYMMETRIC COLLECT SAMPLED DETAILED STATISTICS 
COMPRESS NO INCLUDE NULL KEYS; 
 
CREATE INDEX VDS.EVENT_LOCATION_DISTANCES_LOC_2_WKT_X  
ON VDS.EVENT_LOCATION_DISTANCES ( LOC_2_WKT )  
ALLOW REVERSE SCANS PAGE SPLIT SYMMETRIC COLLECT SAMPLED DETAILED STATISTICS 
COMPRESS NO INCLUDE NULL KEYS; 
 
CREATE INDEX VDS.EVENT_LOCATION_DISTANCES_MB_IDX  
ON VDS.EVENT_LOCATION_DISTANCES ( METERS_BETWEEN )  
ALLOW REVERSE SCANS PAGE SPLIT SYMMETRIC COLLECT SAMPLED DETAILED STATISTICS 
COMPRESS NO INCLUDE NULL KEYS; 

 EVENT_LOCATION 

CREATE TABLE VDS.EVENT_LOCATION AS ( 
    SELECT * 
    FROM TABLE(VDS.GET_ALL_ALERT_LOCATIONS ()) 
) WITH NO DATA; 
 
INSERT INTO VDS.EVENT_LOCATION ( 

SELECT * 
     FROM TABLE(VDS.GET_ALL_ALERT_LOCATIONS ()) 

); 

CREATE INDEX  
VDS.EVENT_LOCATION_IDX  

ON VDS.EVENT_LOCATION(LOCATION)  

EXTEND USING DB2GSE.SPATIAL_INDEX(0.0021, 0.011, 0.044) ; 
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8.9 Modifications to existing system DB tables 

 SRC_EVENTS_MT 

-- Add a Well-Known-Text (WKT) version of the LOCATION field for certain GROUP BY 
operations 
ALTER TABLE VDS.SRC_EVENTS_MT ADD COLUMN LOCATION_WKT VARCHAR(50 OCTETS); 
UPDATE VDS.SRC_EVENTS_MT SET LOCATION_WKT = db2gse.ST_AsText(LOCATION); 
 
CREATE INDEX VDS.SRC_EVENTS_MT_LOC_WKT_X ON VDS.SRC_EVENTS_MT ( LOCATION_WKT )  
ALLOW REVERSE SCANS PAGE SPLIT SYMMETRIC COLLECT SAMPLED DETAILED STATISTICS 

COMPRESS NO INCLUDE NULL KEYS; 

 WORK_ORDER 

-- Spatial index optimised for point geometries 
CREATE INDEX  
EAM.WORK_ORDER_LOCATION_IDX  
ON EAM.WORK_ORDER(LOCATION)  
EXTEND USING DB2GSE.SPATIAL_INDEX(0.0021, 0.011, 0.044); 

8.9.2.1 Fix for missing CREATION_DATE time value 

-- add the new column to be the definitive datetime value 
 
ALTER TABLE EAM.WORK_ORDER ADD COLUMN CREATION_DATETIME TIMESTAMP; 
 
CREATE INDEX EAM.WORK_ORDER_CDT_IDX  
 ON EAM.WORK_ORDER ( CREATION_DATETIME )  
 ALLOW REVERSE SCANS PAGE SPLIT SYMMETRIC  
 COLLECT SAMPLED DETAILED STATISTICS  
 COMPRESS NO  
 INCLUDE NULL KEYS;  
 
-- update the new column 
 
UPDATE EAM.WORK_ORDER WO 
 
SET CREATION_DATETIME =  
 
CASE WHEN ( 
  TIME(CREATION_DATE) != '00:00:00' AND  
  ACTUAL_START_DATE IS NOT NULL AND  
  ACTUAL_START_DATE < CREATION_DATE 
  )  
  THEN  ACTUAL_START_DATE -- actual_start is before creation date 
 WHEN TIME(CREATION_DATE) != '00:00:00' 
  THEN CREATION_DATE  -- creation date is complete 
 WHEN ( 
   ACTUAL_START_DATE IS NOT NULL AND  
   DATE(CREATION_DATE) =  DATE(ACTUAL_START_DATE) AND  
     TIME(ACTUAL_START_DATE) != '00:00:00' 
    )  
  THEN ACTUAL_START_DATE -- use actual start date as creation date 

-- is missing  
      -- the time and date is the same for both 
 ELSE  
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  UPDATEDATE  -- if updated date is the same as the creation date use 
-- it 

END 
WHERE  
 CREATION_DATE IS NOT NULL AND  
 UPPER(WO.WORK_TYPE) IN ('USTERKA', 'AWARIA') AND 
 (  
  (UPDATEDATE IS NOT NULL AND DATE(UPDATEDATE) = DATE(CREATION_DATE)) 
OR 
  ( 
  ACTUAL_START_DATE IS NOT NULL AND DATE(CREATION_DATE) =  
  DATE(ACTUAL_START_DATE) AND TIME(ACTUAL_START_DATE) != '00:00:00') 
OR 
  TIME(CREATION_DATE) != '00:00:00' 
 )  
; 
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