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Abstract: An omnidirectional microstrip patch antenna, capable of reconfiguring  

both polarisation and radiation pattern is proposed. It operates with two orthogonal 

±45° slanted linear polarisations and can produce two dipole-like radiation patterns, 

providing 360° coverage in either the horizontal or elevation plane. With appropriate 

steering, this enables a single antenna to provide full spherical coverage for any 

polarisation. The reconfiguration is realised by phase shifting, thus does not require 

switching elements, such as MEMS or pin diodes embedded into antenna. The basic 

principles of operation are discussed and validated by numerical and measured data.  

  

1. Introduction 

 The capability of an antenna to receive or transmit signals for any arbitrary angle over  

a full sphere is highly desirable for many radio applications, such as point to multipoint 

transmission, RFID detection or sensing. Isotropic antennas, as proved by Mathis [1] are 

impossible to realise due to the mathematical properties of a continuous vector field 

tangential to a sphere (as seen in far field radiation pattern). To overcome this difficulty, 
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some antennas offer  full spherical coverage using reconfigurable antennas [2-5] or integrated 

multi-port antennas with different radiation patterns [5-8].  

 In the first category, Zhang et al. [2] proposed a reconfigurable antenna consisting of 

two symmetrical elements, which can swap the role of radiator and reflector. The resultant 

antenna offers two oppositely directed modes. The antenna operates over a large bandwidth, 

however the impact of the switches and its steering on antenna performance is not reported. 

Reconfigurable antennas employing pin diodes to switch the beam either in elevation and 

azimuth [3] or sweeping it over 360°in the azimuth plane [4] are reported. Both approaches 

focused on selective beams, and do not provide full spherical coverage. In [5] a pattern and 

frequency reconfigurable antenna offers two different radiation patterns, steered by two 

switching elements.  

 The multiport antenna approach can provide better spherical coverage, however at the 

price of expensive additional transceivers needed to process the signal. In [6] a compact 

antenna is proposed, which integrates a dual-polarised patch, a monopole and a quasi-loop 

antenna. This approach allows coverage of most signals within a full sphere (with the 

exception of direction obstructed by the ground plane) and with two orthogonal polarisations. 

Another approach by Martens and Manteuffel [7] uses characteristic modes on a ground 

plane to provide a two port MIMO antenna covering all angles around a sphere. Since the 

ground plane acts here as a radiator, the antenna covers a very wide range of angles around a 

full sphere, however the polarisation issues are not investigated. In [8] a four-feed antenna is 

proposed, capable of producing either a linearly-polarised conical beam or a circularly-

polarised beam on boresight. Finally [9] proposes a circularly polarised antenna with a 

dipole-like radiation pattern that can be rotated. The solution also offers full spherical 

coverage, however covers only a single polarisation (RHCP).   
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 In this paper we propose an antenna, capable of radiating two orthogonal linear ±45° 

slanted polarisations, each with two dipole-like patterns: one covering 360° in horizontal 

plane, and the other in the elevation. This, when combined with proper steering, allows 

coverage of any polarisation from any arbitrary angle in a sphere. The switching between 

antenna configurations is realized by different phase excitation at the four antenna ports. 

There are no switching components integrated into antenna. To steer the antenna beam and 

polarisation, any state of the art method providing a sufficient phase shift can be used, such as 

tunable capacitors, reconfigurable couplers [10], liquid crystal delay line etc. For 

measurements conducted in this paper the reconfigurable element was emulated by a rat-race 

coupler, which provided 0° and 180° phase shifts. Also, with this coupler, multiple antenna 

modes can be used at the same time. This is an important advantage for many point-to-

multiport radio systems. 

 This paper is organized as follows: section 2 provides a description of the proposed 

antenna; section 3 explains the principles of operation; section 4 investigates the proposed 

antenna with idealized feeds; section 5 presents simulated and measured results; finally 

conclusions are provided in section 6. 

 

2. Antenna design  

 

 The antenna comprises two back-to-back coupled patches [11], which share a 

common ground plane as seen in Fig. 1. It has three metallization layers, milled on a Taconic 

RF-35 substrate. Each substrate layer is 1.5 mm high, with a relative permittivity εr = 3.47. In 

the prototyping process the two layers are milled separately, each with its own ground plane. 

Next four SMA connectors are soldered, two to each layer. The layers are then joined 
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together, providing good electrical contact between both ground planes and effectively 

merging them into single metallization layer. 

 The patches are rectangular and are fed from microstrip lines connected to the two 

lower corners. They operate at a basic resonance frequency of 2.56 GHz. Since the antenna is 

based on a simple rectangular patch resonator, it can be easily tuned in frequency by varying 

parameters Lp and Lq. Two feeds for each patch are required in order to achieve dual linear 

±45° slanted polarisation. For pattern reconfigurability, the electric field must be excited 

along all four edges of each patch. To achieve this, each patch is fed at a corner. Although 

this technique is usually applied for circularly polarised antennas, here it realises a linear 

slanted polarisation as both the length and width of the patch are equal. A significant problem 

is very high input impedance at the corner. Considering this, two measures were undertaken 

to provide a good match: the corners, at which each patch is fed, were truncated by ∆s = 

5 mm to decrease the input impedance; also quarter-wavelength transformers (which are 0.3 

mm wide and have impedance Z = 142Ω) were implemented. The 50Ω microstrip lines were 

traced into the edge of the PCB, where SMA connectors were soldered. The antenna 

dimensions are: Ws = 42 mm; Ls = 5 mm; Wg = 5.5 mm; Lg = 5.5 mm; Lp = 31 mm; 

Lq = 16 mm; ∆s = 5 mm. 
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Fig.  1 Geometry of the proposed antenna: side view (left) and front view with important 

dimensions (right). 

 The antenna has four input ports (two for each of the back-to-back coupled patches). 

The pattern reconfigurability is implemented by a phase difference between the ports and 

polarisation is determined by port selection. The investigated configurations are listed in 

Table 1. It can be seen, that each configuration excites only two of four ports. The change of 

the excited ports determines the polarisation, i.e. if ports 1 and 3 are excited, the antenna 

produces +45° slanted polarisation, whereas for ports 2 and 4 it is -45 slanted polarisation. 

The excited ports are either in-phase (i.e. 0° phase difference) or out-of-phase (i.e. 180° phase 

difference). This enables rotation of the dipole-like pattern by 90° around z-axis. Fig. 2 shows 

a photo of the prototyped antenna, with the rat-race coupler [12] attached to achieve proper 

configuration. 
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Fig.  2 Photograph of the prototyped antenna with the rat-race coupler used in measurement and 

simulation. The coupler as seen here realizes configurations A and B. Unused ports are terminated with a 

50Ω match. 

 

3. Principles of operation 

 In order to explain the principles of operation, the electric field for each edge is 

investigated. Fig. 3 depicts the electric fields in the top and bottom patch for the four 

configurations mentioned in Table 1. The method relies on the superposition of the electric 

fields, produced by four edges of each patch. This requires two orthogonal modes of the 

patch (TM100 and TM010) to be excited, hence the use of a corner feed. Configurations A and 

B excite feeds located in the left lower corner (i.e. ports 1 and 3), therefore the superposition 

of the four edges produce +45° slanted polarisation (please note, that bottom patch is shown 

from +z direction, however it produces main radiation in -z direction). Similarly, the 

configurations C and D excite feeds located in the right lower corner (i.e. ports 2 and 4), 

producing -45° slanted polarisation. In order to demonstrate how to switch the plane in 

which the radiation is produced, the phase difference between the corresponding edges of the 

top and bottom patch are investigated. Generally, since the patches are in a back-to-back 

orientation, a phase difference of 0° means the electric field vectors are oriented in the 
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opposing directions, therefore producing a null in the radiation pattern. However a phase 

difference of 180° means the electric field vectors are aligned in the same direction and 

radiation is produced.  

Configuration Polarisation 
Plane of 

radiation 

Phase at port: 

1 2 3 4 

A +45° xz 0° X 0° X 

B +45° yz 0° X 180° X 

C -45° xz X 0° X 0° 

D -45° yz X 0° X 180° 

Table 1: The four antenna configurations and the corresponding port phases, polarisation and plane in 

which the omnidirectional radiation pattern is produced. X means there is no excitation at the given 

port. 

 Feeding the antenna ports with different phase shifts results in a change of the phase 

shift between the edges of the patch (i.e. between the corresponding edges of top and bottom 

patch). This relationship is demonstrated in Fig. 3. For instance, in configuration A the two 

patches are fed in phase. This causes the edges in ±y directions to be also in phase, resulting 

in a null for this direction. However the edges in the ±x directions are out of phase, 

interfering constructively and producing radiation. As a consequence configuration A will 

produce a +45° polarisation with an omnidirectional radiation pattern in the horizontal plane 

(i.e. xz-plane) and nulls in ±y directions. Configuration C will produce the same radiation 

pattern with -45° polarisation.  

 If the top and bottom patches are fed out-of-phase (as in configurations B and D), the 

edges in the ±x directions are in phase, producing nulls, and the edges in ±y directions are 

out of phase, radiating in the yz-plane. It should be noted that this mode is much more 

challenging as the radiation is produced in the plane where the feeds are located. This causes 
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ripples in the radiation pattern and degraded the polarisation purity in the -y directions 

(θ = 90°) where the feeds and steering circuitry are located. 

 

Fig.  3 The electric field for each patch, shown for the four configurations described in Table 1. Non-

excited ports are removed for clarity and the bottom patch is viewed from the top through the substrates. 

 

4. Idealized model 

 The antenna was first simulated with idealized excitations, i.e. the signals with desired 

phase shift were applied directly at the antenna ports (ignoring the impact of feed network). 

For this purpose a time-domain solver of CST Microwave Studio was used [13]. Fig. 4 

presents simulated realized gains for configurations A and B. It can be seen, that the plots 

exhibit good dipole-like radiation pattern with one plane being omnidirectional (i.e. plane xz 

for configuration A and plane yz for configuration B) and the other being figure-of-eight 

shape (i.e. plane yz for configuration A and plane xz for configuration B) with two distinctive 

nulls. The squint visible in yz-plane for configuration A is most likely due to the microstrip 
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lines and quarter wavelength transformers. The results for configurations C and D are similar 

(with the change of dominant polarisation) and hence not shown for brevity. 

 

a)  

 

b)  

Fig.  4 Simulated realized gains for antenna with idealised rat-race coupler. a) xz-plane; b) yz-plane. 

 This configuration is in fact similar to the intended commercial application, where the 

antenna will be fed from an integrated transceiver. However for the laboratory measurements  

an external steering network was required to switch the antenna configuration. For this a rat-

race coupler (as seen on Fig. 2) was used both in measurement and simulation. Also a feed 



10 
 

cable was attached to connect the antenna under test with measurement equipment. The cable 

is attached in yz-plane at θ = 90°, i.e. at a location where a radiation is produced in 

configurations B and D. This perturbs the radiation pattern measurement [14] and is visible as 

ripples in the radiation patterns, as well as decreased polarisation purity (in comparison to 

simulated results) for some angles in configurations B and D.  

 

5. Results 

 Fig. 5 depicts simulated and measured reflection coefficients Snn for each of the four 

antenna ports. It can be seen, that the results are in a reasonable agreement, but with a minor 

shift towards higher frequencies for the prototyped antenna. Also in the simulated results, a 

very small shift can also be seen between the ports located on top layer (i.e. ports 1 and 4) 

and bottom layer (i.e. ports 2 and 3). This is not seen in the measured data, as prototyping 

inaccuracies have a greater dominating effect. The isolation between ports is greater than 

15 dB and hence is not shown for clarity. The radiation patterns for various configurations are 

shown in the following sections. All measured data is shown for 2.56 GHz and simulated for 

2.55 GHz. 

 

Fig.  5 Measured and simulated reflection coefficients of the proposed antenna 

 



11 
 

 Configuration A 

 Fig. 6 presents the realized gains for the proposed antenna in configuration A. It can 

be seen, that the omnidirectional coverage was produced in xz-plane. Unlike in Fig. 4, the 

ripples can be seen in yz-plane, which are the effect of feed cable and rat-race coupler. The 

simulation in CST Microwave Studio incorporated the coupler and a good agreement is 

achieved between measurement and simulation. The measured gain for +45° polarisation in 

xz-plane varies between 2.7 dBi and -0.7 dBi. In this plane the cross polarisation level  

(i.e. -45°) is better than 11 dB.  

 

a)  

 

b)  

Fig.  6 Realized gains for the proposed antenna in configuration A. a) xz-plane; b) yz-plane. 
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  Configuration B 

 Fig. 7 presents the realized gains for the proposed antenna in configuration B. It can 

be seen, that the 180° phase difference between ports 1 and 3 produced omnidirectional 

radiation in yz-plane and a shape-of-eight pattern with two distinctive nulls. This is similar 

radiation pattern, as expected from a dipole antenna. The figure-of-eight is more apparent  for 

this configuration, as the xz-plane is more resilient to distortion caused by reflection from the 

feed cables and coupler. A deterioration of the measured polarisation purity can however be 

seen in yz-plane for angles θ = 90° and θ = 270°, compared to the simulated results. This is 

caused by reflection from the feed cable, which is mounted in this plane at θ = 90°. The 

maximum measured realized gain is 3.2 dBi and degrades to -5.7 dBi at θ = 90°, i.e. location 

where the feed cable is mounted. The simulated results, which include the effect of the 

coupler but not the feed cable, are 2.2 dBi and -3.5 dBi respectively. The measured cross 

polarisation level in the yz-plane is better than 10 dB for angles θ from 125° to 255° and from 

295° to 60°.  

 

a)  
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b)  

Fig.  7 Realized gains for the proposed antenna in configuration B. a) xz-plane; b) yz-plane. 

 

 Configuration C 

 Fig. 8 presents the realized gains for the proposed antenna in configuration C. Similar 

to configuration A, the omnidirectional radiation pattern is produced in xz-plane, however the 

dominant polarisation is -45°. The measured realized gain in xz-plane varies between 2.1 dBi 

and -2.4 dBi. The measured cross polarisation level in the whole xz-plane is better than 

9.5 dB. 

 

 

a)  
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b)  

Fig.  8 Realized gains for the proposed antenna in configuration C. a) xz-plane; b) yz-plane. 

 

 Configuration D 

 Fig. 9 presents the realized gains for the proposed antenna in configuration D. The 

dominant polarisation is -45° and the omnidirectional pattern is produced in the yz-plane, 

with the two distinctive nulls and a figure-of-eight shape in xz-plane. Also here, the effect of 

the feed cable reflection is visible in the yz-plane as decreased polarisation purity for θ = 90° 

and θ = 270°. Measured realized gain in the yz-plane varies between 3.4 dBi and -4 dBi, with 

simulated gain of 2.1 dBi and 4.3 dBi. The measured cross polarisation level in yz-plane is 

better than 10 dB for angles θ from 115° to 255° and from 300° to 55°. 
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a) 

 

b) 

Fig.  9 Realized gains for the proposed antenna in configuration D. a) xz-plane; b) yz-plane. 

 

6. Conclusions 

 The proposed antenna offers a high degree of pattern and polarisation 

reconfigurability. Two slanted linear polarisation of ±45° are provided, each with two dipole-

like radiation patterns. Using proper steering, allows reception or transmission of signals of 

any polarisation, from any arbitrary spherical angle. The antenna does not incorporate any 

switching components, avoiding inter-modulation issues and simplifying the design. It also 

allows two configurations to be used at the same time, which is beneficial for MIMO 
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applications. The basic principles of operation were successfully validated. The antenna is 

proposed for combating multipath fading for indoor wireless propagation scenarios.  
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