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1 Overview and Introduction

Linear prediction is a signal processing technique that is used extensively in the

analysis of speech signals and, as it is so heavily referred to in speech processing

literature, a certain level of familiarity with the topic is typically required by

all speech processing engineers. This paper aims to provide a well-rounded

introduction to linear prediction, and so doing, facilitate the understanding

of the technique. Linear prediction and its mathematical derivation will be

described, with a specific focus on applying the technique to speech signals. It

is noted, however, that although progress in linear prediction has been driven

primarily by speech research, it involves concepts that prove useful to digital

signal processing in general.

First to be discussed within the paper are general linear time-invariant sys-

tems, along with its theory and mathematics, before moving into a general

description of linear prediction models. The equations that yield one variant of

linear prediction coefficients are derived and the methods involved to solve these

equations are then briefly discussed. Different interpretations of the equations

yield slightly different results, and these differences will be explained.

A section focussing specifically on the linear prediction of speech then be-

gins. The anatomical process of speech production is described, followed by

an introduction to a theoretical linear model of the process. The limitations

of applying the linear prediction model to speech are described, and comments

are also given concerning certain practicalities that are specific to the linear

prediction of speech.

The paper concludes with an implementation of linear prediction using two

different types of signal. It is hoped that the balance between theory and prac-

tical will allow the reader for easy assimilation of this technique.

2 Linear Systems: Models and Prediction

Linear prediction [11, 7, 9] is a technique of time series analysis, that emerges

from the examination of linear systems. Using linear prediction, the parameters

of a such a system can be determined by analysing the systems inputs and

outputs. Makhoul [7] says that the method first appeared in a 1927 paper

2



on sun-spot analysis, but has since been applied to problems in neuro-physics,

seismology as well as speech communication.

This section will review linear systems and, elaborating upon them, derives

the mathematics of linear prediction.

2.1 Linear System Theory

A linear system is such that produces its output as a linear combination of its

current and previous inputs and its previous outputs [13]. It can be described

as time-invariant if the system parameters do not change with time. Mathemat-

ically, linear time-invariant (LTI) systems can be represented by the following

equation:

y(n) =
q∑

j=0

bjx(n− j)−
p∑

k=1

aky(n− k) (1)

This is the general difference equation for any linear system, with output signal

y and input signal x, and scalars bj and ak, for j = 1 . . . q and k = 1 . . . p where

the maximum of p and q is the order of the system. The system is represented

graphically in figure 1.

Figure 1: A graphical representation of the general difference equation for an

LTI system.

By re-arranging equation (1) and transforming into the Z-domain, we can
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reveal the transfer function H(z) of such a system:

y(n) +
p∑

k=1

aky(n− k) =
q∑

j=0

bjx(n− j)

p∑
k=0

aky(n− k) =
q∑

j=0

bjx(n− j) where a0 = 1

p∑
k=0

akz−kY (z) =
q∑

j=0

bjz
−jX(z)

⇒ H(z) =
Y (z)
X(z)

=

q∑
j=0

bjz
−j

p∑
k=0

akz−k

(2)

The coefficients of the input and output signal samples in equation (1) reveal

the poles and zeros of the transfer function.

Linear prediction follows naturally from the general mathematics of linear

systems. As the system output is defined as a linear combination of past samples,

the system’s future output can be predicted if the scaling coefficients bj and ak

are known. These scalars are thus also known as the predictor coefficients of

the system [9].

The general linear system transfer function gives rise to three different types

of linear model, dependent on the form of the transfer function H(z) given in

equation (2) [9, 7].

• When the numerator of the transfer function is constant, an all-pole or

autoregressive (AR) model is defined.

• The all-zero or moving average model assumes that the denominator of

the transfer function is a constant.

• The third and most general case is the mixed pole/zero model, also called

the autoregressive moving-average (ARMA) model, where nothing is as-

sumed about the transfer function.

The all-pole model for linear prediction is the most widely studied and im-

plemented of the three approaches, for a number of reasons. Firstly, the in-

put signal, which is required for ARMA and all-zero modelling, is oftentimes
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an unknown sequence. As such, they are unavailable for use in our deriva-

tions. Secondly, the equations derived from the all-pole model approach are

relatively straight-forward to solve, contrasting sharply with the nonlinear equa-

tions dervied from ARMA or all-zero modelling. Finally, and perhaps the most

important reason why all-pole modelling is the preferred choice of engineers,

many real world applications, including most types of speech production, can

be faithfully modeled using the approach.

2.2 All-Pole Linear Prediction Model

Following from the linear system equation (1), one can formulate the equations

necessary to determine the parameters of an all-pole linear system, the so-called

linear prediction normal equations. First, following on from the all-pole model

(see Figure 2), a linear prediction estimate ŷ at sample number n for the output

signal y by a pth order prediction filter can be given by:

ŷ(n) = −
p∑

k=1

aky(n− k) (3)

The error or residue between the output signal and its estimate at sample n

Figure 2: A graphical representation of an all pole linear system, where the

output is a linear function of scaled previous outputs and the input.

can then be expressed as the difference between the two signals.

e(n) = y(n)− ŷ(n) (4)
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The total squared error for an as-of-yet unspecified range of signal samples is

given by the following equation:

E =
∑

n

[e(n)]2

=
∑

n

[y(n)− ŷ(n)]2

=
∑

n

[y(n)]2 − 2 · y(n) · ŷ(n) + [ŷ(n)]2

(5)

Equation (5) gives a value indicative of the energy in the error signal. Ob-

viously, it is desirous to choose the predictor coefficients so that the value of E

is minimised over the unspecified interval. The optimal minimising values can

be determined through differential calculus, i.e. by obtaining the derivative of

equation 5 with respect to each predictor coefficient and setting that value equal

to zero.

∂E

∂ak
= 0 for 1 ≤ k ≤ p

⇒ ∂

∂ak
(
∑

n

([y(n)]2 − 2 · y(n) · ŷ(n) + [ŷ(n)]2)) = 0

− 2
∑

n

y(n) · ∂

∂ak
ŷ(n) + 2

∑
n

ŷ(n) · ∂

∂ak
ŷ(n) = 0

∑
n

y(n) · ∂

∂ak
ŷ(n) =

∑
n

ŷ(n) · ∂

∂ak
ŷ(n)

∂

∂ak
ŷ(n) = −y(n− k) . . . from equation (3)

⇒
∑

n

y(n) · −y(n− k) =
∑

n

ŷ(n) · −y(n− k)

−
∑

n

y(n) · y(n− k) =
∑

n

(−
p∑

i=1

aiy(n− i)) · −y(n− k)

−
∑

n

y(n) · y(n− k) =
p∑

i=1

ai

∑
n

y(n− i) · y(n− k) (6)

For the sake of brevity and future utility, a correlation function φ is defined.

The expansion of this summation describes what will be called the correlation

matrix.

φ(i, k) =
∑

n

y(n− i) · y(n− k) (7)

Substituting the correlation function into equation (6) allows it to be written
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more compactly:

−φ(0, k) =
p∑

i=1

aiφ(i, k) (8)

The derived set of equations are called the normal equations of linear prediction.

2.3 Solutions to the Normal Equations

The limits on the summation of the total squared energy were omitted from

equation (5) so as to give their selection special attention. The section will

show that two different but logical summation intervals lead to a two different

sets of normal equations and result in different predictor coefficients.

Given sufficient data points and appropriate limits, the normal equations

define p equations with p unknowns which can be solved by any general simul-

taneous linear equation solving algorithms, e.g. Gaussian elimination, Crout

decomposition, etc. However, certain limits lead to matrix redundancies and al-

low for efficient solutions that can significantly reduce the computational load.

2.3.1 The Autocorrelation Method

The autocorrelation method of linear prediction minimises the error signal over

all time, from −∞ to +∞. When dealing with finite digital signals, the signal is

windowed such that all samples outside the interval of interest are taken to be 0

(see Figure 3). If the signal is non-zero from 0 to N −1, then the resulting error

Figure 3: Windowing a signal by multiplication with an appropriate function,

in this case a Hanning window.

signal will be non-zero from 0 to N − 1 + p. Thus, summing the total energy
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over this interval is mathematically equivalent to summing over all time.

E =
∞∑

n=−∞
[e(n)]2

=
N−1+p∑

n=0

[e(n)]2
(9)

When these limits are applied to equation (7), a useful property emerges.

Because the error signal is zero outside the analysis interval, the correlation

function of the normal equations can be identically expressed in a more conve-

nient form.

φauto(i, k) =
N−1+p∑

n=0

y(n− i) · y(n− k) 1 ≤ i ≤ p 1 ≤ k ≤ p

=
N−1+(i−k)∑

n=0

y(n) · y(n + (i− k)) 1 ≤ i ≤ p 1 ≤ k ≤ p

This form of the correlation function is simply the short-time autocorrelation

function of the signal, evaluated with a lag of (i − k) samples. This fact gives

this method of solving the normal equations its name.

The implications of this convenience is such that the correlation matrix de-

fined by the normal equations exhibits a double-symmetry that can exploited by

a computer algorithm. Given that ai,j is the member of the correlation matrix

on the ith row and jth column, the correlation matrix demonstrates:

• standard symmetry, where ai,j = aj,i,

a1,1 a2,1 a3,1 · · · am,1

a2,1 a2,2 a3,2 · · · am,2

a3,1 a3,2 a3,3 · · · am,3

...
...

...
. . .

...

am,1 am,2 am,3 · · · am,n


• Toeplitz symmetry, where ai,j = ai−1,j−1.

a1,1 a1,2 a1,3 · · · a1,m

a2,1 a1,1 a1,2 · · · am,2

a3,1 a2,1 a1,1 · · · am,3

...
...

...
. . .

...

am,1 am,2 am,3 · · · a1,1


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These redundancies mean that the normal equations can be solved using

the Levinson-Durbin method, an recursive procedure that greatly reduces the

computational load.

2.3.2 The Covariance Method

In contrast with the autocorrelation method, the covariance method of linear

prediction minimises the total squared energy only over the interval of interest.

E =
N−1∑
n=0

[e(n)]2 (10)

Using these limits, an examination of the equation (7) reveals that the signal val-

ues required for the calculation extend beyond the analysis interval (see Figure

4).

Figure 4: The covariance method require −p samples (shown here in red) beyond

the analysis interval from 0 to N − 1 (shown in blue).

φcovar(i, k) =
N−1∑
n=0

y(n− i) · y(n− k) 1 ≤ i ≤ p 1 ≤ k ≤ p (11)

Samples are required from −p to N − 1. The resulting correlation matrix ex-

hibits standard symmetry, but unlike the matrix defined by the autocorrelation

mehthod, the matrix does not demonstrate Toeplitz symmetry. This means

that a different method must be used to solve the normal equations, such as

Cholesky decomposition or the square-root method.

2.3.3 Comparison of the Two Methods

Each of these solutions to the linear prediction normal equations has its own

strengths and weaknesses; determining which is more advantageous to use is

greatly determined by the signal being analysed. When analysis signals are long,
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the two different solutions are virtually identical. Because of the greater redun-

dancies in the matrix defined by the autocorrelation method, it is slightly easier

to compute [9]. Experimental evidence indicates that the covariance method is

more accurate for periodic speech sounds [1], while the autocorrelation method

performs better for fricative sounds [9].

3 Linear Prediction of Speech

In order for linear prediction to apply to speech signals, the speech production

process must closely adhere to the theoretical framework established in the

previous sections. This section reviews the actual physical process of speech

production and discusses the linear model utilised by speech engineers.

3.1 Human Speech Production: Anatomy and Function

Following Figure 5, the vast majority of human speech sounds are produced in

the following manner [3]. The lungs initiate the speech process by acting as

the bellows that expels air up into the other regions of the system. The air

pressure is maintained by the intercostal and abdominal muscles, allowing for

the smooth function of the speech mechanisms. The air that leaves the lungs

then enters into the remaining regions of the speech production system via the

trachea. This organ system, consisting of the lungs, trachea and interconnecting

channels, is known as the pulmonary tract. The turbulent air stream is driven

up the trachea into the larynx. The larynx is a box-like apparatus that consists

of muscles and cartilage. Two membranes, known as the vocal folds, span the

structure, supported at the front by the thyroid cartilage and at the back by the

arytenoid cartilages. The arytenoids are attached to muscles which enable them

to approximate and separate the vocal folds. Indeed, the principal function of

the larynx, unrelated to the speech process, is to seal the trachea by maintaining

the vocal folds closed. This has the dual benefit of being able to protect the

pulmonary tract and permit the build up of pressure within the chest cavity

necessary for certain exertions and coughing [9].

The space between the vocal folds is called the glottis. A speech sound is

classified as voiced or voiceless depending on the glottal behaviour as air passes
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Figure 5: The human speech production system. Image taken from

http://cobweb.ecn.purdue.edu/˜ee649/notes/physiology.html.

through it. According to the myeloelastic-aerodynamic theory of phonation [2],

the vibration of the vocal folds results from the interaction between two opposing

forces. Approximated folds are forced apart by rising subglottal air pressure. As

air rushes through the glottis, the suction phenomenon known as the Bernoulli

effect is observed. This effect due to decreased pressure across the constriction

aperture adducts the folds back together. The interplay between these forces

results in vocal fold vibration, producing a voiced sound. This phonation has

a fundamental frequency directly related to the frequency of vibration of the

folds. During a voiceless speech sound, the glottis is kept open and the stream

of air continues through the larynx without hindrance. The resulting glottal

excitation waveform exhibits a flat frequency spectrum.

The phonation from the larynx then enters the various chambers of vocal

tract: the pharynx, the nasal cavity and the oral cavity. The pharynx is the

chamber stemming the length of the throat from the larynx to the oral cavity.

Access to the nasal cavity is dependent on the position of the velum, a piece of

soft tissue that makes up the back of the roof of the mouth. For the production

of certain phonemes, the velum descends, coupling the nasal cavity with the
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other chambers of the vocal tract.

The fully realised phone is radiated out of the body via either the lips or

the nose or both. This is a continuous process, during which the state and

configuration of the system’s constituents alter and change dynamically with

the thoughts of the speaker.

3.2 Speech Production as a Linear System

The acoustic theory of speech production assumes the speech production process

to be a linear system, consisting of a source and filter [11]. This model captures

the fundamentals of the speech production process described in the previous

section: a source phonation modulated in the frequency domain by a dynami-

cally changing vocal tract filter, Figure 6. According to the source-filter theory,

Figure 6: The simplified speech model proposed by the acoustic theory of speech

production.

short-time frames of speech can be characterised by identifying the parameters

of the source and filter.

Glottal source. The source signal is one of two states: a pulse train of a

certain fundamental frequency for voiced sounds and white noise for un-

voiced sounds. This two-state source fits reasonably well with true glottal

behaviour, though moments of mixed excitation cannot be represented

well.

12



Vocal tract filter. The vocal tract is parameterised by its resonances, which

are called formants1. All acoustic tubes have natural resonances, the

parameters of which are a function of its shape.

Though the vocal tract changes its shape, and thus its resonances, continuously

with running speech, it is not unreasonable to assume it static over short-time

intervals of the order of 20 milliseconds. Thus, speech production can be viewed

as a LTI system and linear prediction can be applied to it.

3.2.1 Model Limitations

In truth, the speech production system is known to have some nonlinearity ef-

fects and the glottal source and vocal tract filter are not completely de-coupled.

In other words, the acoustic effects of the vocal tract has been noticed to modu-

late depending on the behaviour of the source in ways that linear systems cannot

fully describe. Additionally the vocal tract deviates from the behaviour of an

all-pole filter during the production of certain vocal sounds.

System linearity. Linear systems by definition assume that inputs to the sys-

tem have no effect on the system’s parameters [13]. In the case of the

speech production process, this means that the vibratory behaviour of the

glottis has no bearing on the formant frequencies and bandwidths - an

assumption which is sometimes violated [2]. Especially in the situation

where the pitch of the voice is high and the centre frequency first formant

low, an excitation pulse can influence the decay of the previous pulse.

All pole model. The described method of linear prediction works on the as-

sumption that the frequency response of the vocal tract consists of poles

only. This supposition is acceptable for most voiced speech sounds, but is

not appropriate for nasal and fricative sounds. During the production of

these types of utterances, zeros are produced in the spectrum due to the

trapping of certain frequencies within the tract. The use of a model lack-

ing representation of zeros in addition to poles should not cause too much

concern, as if p is of high enough order, the all pole model is sufficient for

almost all speech sounds [11].

1The word formant comes from the Latin verb formāre meaning “to shape”.
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Despite these limitations, all-pole linear prediction remains a highly useful

technique for speech analysis.

3.3 Practical Considerations

Analysing speech signals using linear prediction requires a couple of provisos to

achieve the optimal results. These considerations are discussed in this section.

3.3.1 Prediction Order

The choice of prediction order is an important one as it determines the charac-

teristics of the vocal tract filter. Should the prediction be too low, key areas of

resonance will be missed as there are insufficient poles to model them - if the

prediction order is too high, source specific characteristics, e.g. harmonics, are

determined (see Figure 7). Formants require two complex conjugate poles to

Figure 7: The spectral envelopes of a trumpet sound, as determined by linear

prediction analyses, each successively increased prediction orders.

characterise correctly. Thus, the prediction order should be twice the number

of formants present in the signal bandwidth. For a vocal tract of 17 centimetres
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long, there is an average of one formant per kilohertz of bandwidth.

Where p represents the prediction order and fs the signal’s sampling fre-

quency, the following formula is used as a general rule of thumb [9]:

p =
fs

1000
+ γ (12)

The value of γ, described in the literature as a “fudge factor”, necessary to

compensate for glottal roll-off and predictor flexibility, is normally given as 2 or

3.

3.3.2 Closed Glottal Analysis

The general consensus of the speech processing community is that linear predic-

tive analysis of voiced speech should be confined to the closed glottal condition

[5]. Indeed, it has been shown that closed phase covariance method linear predic-

tion yields better formant tracking and inverse filtering results that than other

pitch synchronous and asynchronous methods [1]. During the glottal closed

phase the the signal represents a freely decaying oscillation, theoretically en-

suring the absence of source-filter interaction and thus better adhering to the

assumptions of linear prediction [15].

Some voice types are unsuited to this type of analysis [10]. In order to obtain

a unique solution to the normal equations, a critical minimum of signal samples

must exist related to the signal’s bandwidth. High-pitched voices are known

to have closed phases that are too short for analysis purposes. Other voices,

particularly breathy voices, are known to exhibit continuous glottal leakage.

There are numerous methods used to determine the closed glottal interval.

The first attempts to do so typically used special laboratory techniques, such as

electroglottography [4], recorded simultaneously with the digital audio. More

recently, efforts have focused on ascertaining the closed glottal interval through

the analysis of the recorded speech signal [14, 6]. Some of these techniques has

met significant success, particularly the DYPSA algorithm of Naylor et al. [8]

that successfully identifies the closed glottal instant in more than 90% of cases

(Figure 8).
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Figure 8: A speech waveform with the closed glottal interval highlighted in red

and delimited by circles. These regions represent the instants of glottal closing

and opening respectively, as identified by the DYPSA algorithm.

4 Examples

Within this section, some implementations of linear prediction are given, along

with all the practical considerations taken for the analysis.

4.1 Human Speech: Voiced Vowel

A voice sample of a male voice, recorded at a sampling rate of 44.1 kHz, was

analysed. The signal is the voiced vowel sound /a/. As it is periodic, covariance

method linear prediction during the closed glottal phase yield the most accurate

formant values.

The signal was first processed by the DYPSA algorithm to determine the

closed glottal interval, which underwent covariance analysis. The order of the

prediction filter, calculated according to formula (12), was determined to be 46,

see figure 9.

4.2 Human Speech: Unvoiced Fricative

An unvoiced vocal sample was also analysed. This segment, sampled at a rate

of 9 kHz, is taken from the TIMIT speech database and is of the fricative sound

/
∫

/, the sh found in both “shack” and “cash”, as pronounced by an American

female.

As autocorrelation linear prediction analysis performs better with unvoiced

sounds, that method was implemented with a filter of prediction order of 11,
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Figure 9: Top: time-domain representation of /a/ sound. Below: The sound’s

spectrum and spectral envelope as determined by covariance method linear pre-

diction analysis.

see figure 10.

Figure 10: Top: time-domain representation of /
∫

/ sound. Below: The

sound’s spectrum and spectral envelope as determined by autocorrelation

method linear prediction analysis.

4.3 Trumpet

Though this report has primarily concerned itself with the linear prediction of

speech, linear prediction also has applications for musical signal processing [12].

Certain instrumental sounds, such as brass instruments, exhibit strong formant

structure that lend themselves well to modelling through linear prediction.

In this example, given in figure 11, a B[ trumpet sample was analysed, play-

ing the E[5. Trumpets are known to exhibit 3 formants, indicating a prediction
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order of 6 is required to determine all the resonances. As the signal is periodic,

covariance method linear prediction analysis is performed.

Figure 11: Top: time-domain representation of a trumpet playing the note

E[5. Below: The sound’s spectrum and spectral envelope as determined by

covariance method linear prediction analysis.
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