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Abstract- This paper addresses the problem of pitch tracking and voiced/unvoiced
detection in noisy speech environments. An algorithm is presented which uses a number of
variable thresholds to track pitch contour with minimal error. This is achieved by modeling
the pitch tracking problem in such a way that allows the use of optimal estimation methods,
such MLSE. The performance of the algorithm is evaluated using the Keele pitch detection
database with realistic background noise. Results show best performance in comparison to
other state of the art pitch detector and successful pitch tracking is possible in low signal to
noise conditions.

Keywords - Pitch tracking, voiced/unvoiced detection, harmonic model.

I INTRODUCTION

Pitch (fundamental frequency) provides
information in speech that is vital in many areas,
including speaker identification [1] and emotion
detection. By definition, pitch is the perceived
fundamental frequency of speech. A candidate for
pitch estimation is the position of the maximum
autocorrelation function of a voiced frame [2]. This
is true in most cases, though in certain cases the
position of the maximum can lead to pitch halving,
doubling, or other less common errors.

Certain pitch detection algorithms, such as the
Modified Autocorrelation Method (AUTOC) [3],
Cepstrum Method (CEP) [4] and Average Magnitude
Difference Function (AMDF) [5], offer a straight­
forward algorithm that perform well on average, but
fail regularly a certain percentage of the time. Such
pitch detection algorithms are not sufficient if the
purpose of the application is to analyze the behavior
of the pitch contour. Some algorithms suggest
smoothing the pitch counter [6], however, smoothing
methods tend to distort the true contour in regions
that were detected correctly.

Other pitch detection algorithms, such as [2],
offer a tracking method that does consider the pitch
as a sequence, however such algorithms lack
simplicity as they have many variable thresholds. It
is arguable that for an optimal set of these threshold

parameters (for a specific signal), this pitch tracking
is optimal. However, finding a new set of parameters
for each signal is impractical.

Several dynamic programming (DP) methods
have been suggested to solve the problem described
above. Wang and Seneff [7] developed a spectral
domain score function (DLFT) using "template
frame" and "cross-frame" spectral correlation
functions. A DP search finds a pitch value for each
frame. A robust MAP Pitch Tracking was offered in
[8], however it requires long sections of voiced
speech. The main limitation with this algorithm is
that it does not perform the voiced/unvoiced
classification, which is a main cause of pitch
halving/doubling, a common problem with [4], [5],
[6] and other similar algorithms.

This paper provides a solution for the above
problems, offering an optimal voiced/unvoiced
classification and sub-optimal pitch tracking in some
cost sense. The objective is to make the
voiced/unvoiced classification, while tracking the
pitch as a sequential process. In addition, the
proposed algorithm requires that only two variable
thresholds be set.

The algorithm proposed in [7] is considered to
be state of the art. A comparison of performance
between this algorithm and the proposed method is
given in the experiment section. Results indicate that
both algorithms equally perform for clean speech,
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however the proposed method is significantly
superior in extreme noise conditions.

II PITCH TRACKING SYSTEM
The system in figure I is a complete block

diagram of the pitch tracker presented herein. The
remainder of this section describes the different
blocks.

a) Front End
This module's task is to perform initial

cleaning and framing of the audio signal, e.g. passing
the signal trough a DC removal filter, detecting
silence sections using energy based methods, and
performing low pass filtering since pitch frequencies
do not exceed 500Hz. The speech is segmented into
frames of 26.5ms, with adjacent frames being
separated by lOms. In this paper, t represents a frame
index.

__.&..---. s[n]

(PJt])

Isis4

(P;[t],1j[t])

lsi:$;4

j}[t]

Figure 1: Pitch tracking algorithm flow.

b) Auto-Correlation pitch estimation
This module task is to calculate M-best

candidates for pitch estimation in the current frame.
First, frames will be classified into voice or un­
voiced/silence frames using energy and zero crossing
measures. Unvoiced/silence frames will be marked
with zero pitch. In an additional process, applied
only to voiced frames, the auto-correlation method
finds the M-best pitch candidates in the current
frames. The M-best candidates are the period of the
first M peaks in the auto-correlation function.

In general, speech involves three elementary
types of excitations - silenced, unvoiced and voiced.
Silenced excitations are generally detected easily and
are categorized by a constant DC component, usually
zero. These excitations are not relevant within this
scheme and are not considered further. Unvoiced
speech excitations include phonemes such as lsi, IfI,
lvi, ITI, etc. These excitations are usually modeled by

a noisy source that is filtered by the human vocal
tract. They, therefore, do not contain much
periodicity and have little information regarding
pitch. Voiced speech excitations include phonemes
such as lei, lEI, la!, 10/, etc. These excitations are
usually modeled by a periodic pulse train source that
is filtered by the human vocal tract. These excitations
contain periodicity characterized by the period of the
source. This period is usually referred to as the pitch
period.

Current studies show [9] that all speech
contains mixtures of unvoiced and voiced
excitations. For simplicity, the proposed algorithm
treats frames with strong periodicity as voiced and
weak periodicity as unvoiced. Furthermore, it groups
silenced and unvoiced speech together, marking
them as zero pitch.

The autocorrelation method was used to
calculate the M-best pitch-candidates in each voiced
frame.
The autocorrelation for a frame is defined as:

N N-m-l

r[m] =--. Ls[n]s[n + m]
N - n n=O (I)

OsmsN-l

where N is the length of the speech frame and s[n]is

a speech sample. This function has a global
maximum at m=O and local maximums at lags
equivalent to its fundamental period and its
multiples, as seen in figure 2.

These autocorrelation peaks are found by
differentiating the biased periodogram in the range
2ms to 20ms, which correspond to pitch range in
speech. The M-best period and value of each peak
are recorded in a decreasing order of value. The
resulting pairs are defined as the voiced-candidates.
Each candidate pair consists of a pitch estimate and
its corresponding value.

In order to simplify the algorithm, a
maximum of four (M=4) voiced candidates for each
frame was used. It was validated in experiment that
the true pitch, if it exists, is almost always within the
first four candidates.

VoicedSpeechFl'8IIle
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A~oc:orrellltionFunction

Authorized licensed use limited to: DUBLIN INSTITUTE OF TECHNOLOGY. Downloaded on March 31, 2009 at 10:22 from IEEE Xplore.  Restrictions apply.



where N is the number ofpitch multiples taken, Ak is

the gain of the k'th multiple, 10 is the estimated pitch

value and lfJk is the phase of the k'th multiple.

The energy measure is the highest sampled
value of the filter's output. For a speech signal
obeying the harmonic model the matched filter
highest sampled value (with the true pitch candidate)
is given by:

where Ak is the gain of the k'th multiple,lo is the

estimated pitch value and lfJk is the phase of the k'th

multiple.
According to detection theory [10] the highest

value sampling point of matched filter will gain
maximum if the signal present. For a given pitch
candidate it is expected that a filter output
parameterised with the true pitch-candidate will gain
maximum energy in the optimal sampling point. For
other pitch candidates the energy value in the best
sampling point will be small. This is the rationale for
choosing those scores as the likelihood for each pitch
candidate to be the true pitch in the current frame.
Those likelihood scores will be further used in the
Viterbi algorithm.

The following, is a mathematical
formalization of the above explanation. The exact

match filter with the candidate pitch 10 (true value)

is given by:

Figure 2 : A strongly periodic speech frame
produces distinctive peaks (circled), at pitch multiples. The

frame is 26.5ms of voiced speech sampled at 20kHz.
e) Scoring calculation
In this module a normalize score is calculated

corresponds for each Pi [t] (the ith pitch candidate in

frame t). This score represent the periodicity energy
of the pitch candidate.

A robust measure of the periodicity in a
speech frame can be calculated when given a good
estimation of the pitch in that frame. This measure
for periodicity is the amount of energy present at the
pitch period and its multiples. If a signal has a strong
period, most of its energy would exist in that period
and its multiples, whereas a non-periodic signal's
energy would be distributed otherwise.

Harmonic model for the voiced speech signal
is defined as [8]:

sJn] =f Ak sin( 21m + ({Jk ) + noise (2)
k=l lifo

(4)

(6)

(5)
hk[n] = -A. sin(21m)

lifo

k = 1,2,.. ,N

where Lk is the optimal sampling point for the k'th

multiple and Ak is the gain of the k'th multiple. The

sum of these filters' outputs is then divided by the
number of multiples to yield the desired result.

where A is the maximum value in the frame, N is the

number of pitch multiples taken and 10 is the

estimated pitch value.
The signal is passed through each filter

individually, and the highest output value of each
filter is sampled. For speech signal obeying the
harmonic model:

j) Viterbi decision (Optimal sequence
estimation)

In this module a Viterbi framework is used to
find the best sequence of states (pitch candidates).
Each state is represented by a likelihood score, as
explained in the previous section.

The transmitted pitch is modeled as a finite­
state Markov chain. The states are the set of the
discrete values of periods in the continuous range
2ms to 20ms, and the special state zero. In order to
minimize calculations, the time index is limited to a
smaller number of states of the voiced and unvoiced
candidates. The special state zero, that is, the
unvoiced candidate, is always considered. The other
states considered, that is, the voiced candidates, are
those states whose probabilities are highest. These
probabilities correspond to the scores of the
candidates, as discussed in previous sections.

The last stage of our algorithm is to estimate
the best route through this trellis of states. A sub­
optimal Viterbi algorithm was used to estimate this
route.

As mentioned above, each state is described
by an ordered pair:

where L is the sampling point, N is the number of

pitch multiples taken and Ak is the gain of the k'th

multiple.

Since the gains Ak and the phases lfJk are

unknown, an approximation of this energy is
calculated using a breakdown of the above filter. A
sequence of filters is used:

(3)
1 -f . 21r(-n)

h[n] =- LJAk sIne + (Ok)
N k=l lifo
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where Pi is the pitch candidate, 'i its normalized

score and t is the time index.

(Pi[t],1j[t])

1~ i ~ 4
(7)

VUR - Percentage of found unvoiced frames
that were marked voiced from all frames.

GER - Percentage of gross pitch errors (more
than or equal to Ims) from all frames.

Mean - Mean of all fine pitch errors (less
than Ims) presented in samples and ms.

Std - Standard deviation of all fine pitch
errors, presented in samples and ms.

t+l t+2 t+3 t+4

Figure 3 : A section of the trellis. Each time
index has one unvoiced state and a few voiced states. The

branches show the prosodic routes through the trellis. Each
branch has a cost related to it.

A trellis diagram is constructed, example showed in
figure 3, and a cost function calculated over its
branches:

(8)

C(t,t -1) =
(1 - C1) • rd [t] - c1 ·Ipd [t] - Ps [t - 1]1 VV

(l-cl )· rd[t] - C1C2 • P vuv

(1- c1)· rd[t] uuv

where s, d are state indices corresponding to source

and destination. c1 is a normalized constant that

distributes the weight between the score and the

penalty for a branch, C2 is a normalized constant that

sets the voiced to unvoiced cost and P is a rough

estimation of the pitch expectation. Following the
trellis construction, the sequence that maximizes the
overall cost are recursively identified [11]. As an
example see figure 3, the bold path has the maximum
score and the respective sequence is given by

u ~VI ~VI ~VI ~VI·

III EXPERIMENTS AND RESULTS
Testing was preformed over the Keele Pitch

Referenced database [12]. This database consists of
ten files from ten speakers (five males and five
females). The files are of pitch-referenced speech
recordings sampled at 20 kHz.

Statistical measures suggested in [13] used to
evaluate the performance. These statistical measures
are described briefly:

UVR - Percentage of found voiced frames
that were marked unvoiced from all frames.

Testing was undertaken for the case of no
additional noise and white additional noise.

a) No additive noise
The algorithm was tested over the database

using several values of(c1,C2). The parameters

were chosen empirically close to their optimal
values, for this database. The results of these
simulations are presented in Table 1 and Figure 4.

Table I : No additive noise. c1 = 0.01, c2 = 0.1

File UVR[%] VUR[%] GER[%] Mean[smp] Mean[ms] Std[smp] Std[ms]

f1 0.00% 13.98% 0.06% 0.993 0.050 4.674 0.234

f2 0.00% 18.91% 0.03% 0.983 0.049 2.941 0.147

f3 0.00% 14.33% 0.00% 1.335 0.067 1.743 0.087

f4 0.00% 26.72% 0.32% 0.484 0.024 6.646 0.332

f5 0.00% 12.98% 0.05% 1.089 0.054 1.317 0.066

m1 0.03% 24.22% 0.32% 0.531 0.027 19.135 0.957

m2 0.00% 18.27% 0.35% 0.119 0.006 12.317 0.616

m3 0.00% 21.28% 0.07% 1.146 0.057 1.709 0.085

m4 0.03% 21.58% 0.12% 2.179 0.109 3.704 0.185

m5 0.00% 25.52% 0.25% 1.619 0.081 2.434 0.122

Average 0.01% 19.71JOh 0.16% 1.048 0.052 5.662 0.283

File:'"

24
VUR[%]

Figure 4: A graph of Std. vs. VUR for different
values. Notice the trade-off.

b) With Additive White Gaussian Noise
The algorithm was also tested over the first

file while adding white Gaussian noise at different
signal-to-noise ratios. This test was repeated several
times (Monte Carlo), to average out the results. The
results are presented in Table 2 and Figures 5-7. In
addition, the proposed method have been compared
to the DLFT [6] pitch tracking algorithm with the
same test condition. The average mean for the DLFT
experiment is added in Figure 6.
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Table 2 : Additive White Gaussian Noise at

different SNR. c1 =0.01, c2 =0.1
SNR[dB] UVR[%] VUR[%] GER[°4] Mean[smp] Mean[ms] Std[smp] Std[ms]

-15 0.18% 32.01% 0.11% 1.090 0.055 4.820 0.241

-12.5 0.18% 26.30% 0.20% 0.962 0.048 5.094 0.255

-10 0.00% 23.63% 0.20% 1.125 0.056 3.246 0.162

-7.5 0.01% 22.40% 0.11% 1.122 0.056 2.420 0.121

-5 0.00% 20.56% 0.07% 1.084 0.054 3.148 0.157

-2.5 0.00% 18.05% 0.09% 1.181 0.059 2.077 0.104

0.00% 16.45% 0.07% 1.149 0.057 2.306 0.115

2.5 0.00% 15.34% 0.10% 1.074 0.054 3.429 0.171

0.00% 14.52% 0.09% 1.121 0.056 2.775 0.139

50

1

45

40

35

O'---__-----J. -----'- --L.. --'

-15 -10

S~<BJ

Figure 5 : Average VUR as a function of the SNR
for file fl.

10,-------------.---

OC------------'--------'-----
-15

Figure 6 : Average Mean as a function of the SNR
for file fl.

I 10

~

O'----------J.------'---------'------'
.15

S~dBJ

Figure 7 : Average Std as a function of the SNR for
file fl.

IV DISCUSSION AND CONCLUSIONS
The key to this algorithm is the sequence

estimation. The algorithm calculates a number of
possible results for each frame, allowing it to later
determine the most appropriate sequence. As a result,
the average Mean, as seen in Figure 6, exhibit high
robustness for extreme low SNR conditions. Most of
the miss-detects occur at the edges of voiced
sections, where the energies are low resulting in less
reliable scores. This result is desirable, and miss­
detect levels could be reduced further by a better
choice of threshold parameter

Two factors must be considered when
determining the threshold parameters. The first
consideration is that the parameters are estimated
over a representative sample of the data that the
application will need to process. The second
consideration is that the optimal choice is dependant
on the application's needs. There is a clear trade-off
between VUR and Std, as can be seen in Figure 4.
This should be taken into account when a working
point is set to for an application.

The mean of the pitch tracking is very small,
whereas the Std is slightly higher. This difference is
mainly due to the sampling error. A good
reconstruction of the signal would minimize this
affect.

Experiment III(b) shows the affect of additive
noise. One can see that as the SNR decreases the
VUR increases, since more voiced frames become
questionable and classified as unvoiced. This
explains why the mean and Std are uncorrelated with
SNR differences for this algorithm. It is shown that
the proposed method outperforms other state of the
art pitch detection algorithm for extreme noise
conditions.
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