Metadata, citation and similar papers at core.ac.uk

Provided by Arrow@dit

D E BI_IN Technological University Dublin
e ARROW @TU Dublin

Conference papers School of Computing

2018-10

The Code Mini-Map Visualisation: Encoding Conceptual
Structures Within Source Code

Ivan Bacher
Technological University Dublin, ivan.bacher@tudublin.ie

Brian Mac Namee
University College Dublin, Ireland, brian.macnamee@ucd.ie

John D. Kelleher
Technological University Dublin, john.d.kelleher@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

b Part of the Computer Sciences Commons

Recommended Citation

Bacher, I., Mac Namee, B., & Kelleher, J. (2018). The code mini-map visualisation: encoding conceptual
structures within source code. VISSOFT 2018: 6th. IEEE Working Conference on Software
VisualizationMadrid, Spain, 24-25 September.

This Conference Paper is brought to you for free and
open access by the School of Computing at ARROW@TU
Dublin. It has been accepted for inclusion in Conference
papers by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D u B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN

https://core.ac.uk/display/301304771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

The Code Mini-Map Visualisation: Encoding
Conceptual Structures Within Source Code

Ivan Bacher
School of Computing
Dublin Institute of Technology
Dubin, Ireland
ivan.bacher@dit.ie

Abstract—Modern source code editors typically include a code
mini-map visualisation, which provides programmers with an
overview of the currently open source code document. This
paper proposes to add a layering mechanism to the code mini-
map visualisation in order to provide programmers with visual
answers to questions related to conceptual structures that are not
manifested directly in the code. Details regarding the design and
implementation of this scope information layer, which displays
additional encodings that correspond to the scope chain and
information related to the scope chain within a source code
document, is presented. The scope information layer can be
used by programmers to answer questions such as: to which
scope does a specific variable belong, and in which scope is the
cursor of the source code editor currently located in. Additionally,
this paper presents a study that evaluates the effectiveness
of adding the scope information layer to a code mini-map
visualisation in order to help programmers understand scope
relationships within source code. The results of the study show
that the incorporating additional layers of information onto the
code mini-map visualisation can have a positive effect on code
understanding.

Index Terms—Visualization, Code mini-map, Evaluation

I. INTRODUCTION

Source code editors are common tools that programmers
use when writing, reading, or modifying code. All of these
tasks involve understanding the microscopic and macroscopic
details within the code [1]. The microscopic details include
the mechanics of classes and methods which can be examined
in the text of the code, while the macroscopic details include
concrete high level concepts such as modules, system, and
conceptual structures that are not manifested directly in the
code. Many editors, including Atom' and Sublime Text?,
incorporate a visualisation which presents the viewer with a
bird’s eye view of the currently open source code document.
This visualisation is, frequently, called a code mini-map.

The code mini-map visualisation is based on the code-map
metaphor [2] and acts as an overview component mapping
source code to a zoomed out representation, either by the use
of pixels, pixel lines, or a scaled down representation of text,
presenting viewers with a zoomed out view of the currently
open source code document showing the layout of the code.
This is important due to the fact that the layout of the code,

Thttps://atom.io/
Zhttps://www.sublimetext.com/

Brian Mac Namee
School of Computer Science
University College Dublin
Dublin, Ireland
brian.macnamee @ucd.ie

John D. Kelleher
School of Computing
Dublin Institute of Technology
Dublin, Ireland
john.d.kelleher@dit.ie

PlugirManagement = require './mixins/plugin-management’

[Minimap], pinimapFlement, MinimapPluginGeneratorView, deprecate, semver] = []

/vendor/resizeend’

de mini-map —>

d conform to the following interface:

#
#
class Main

PluginManagement . includeInto(this)

Public

Fig. 1. Code mini-map integrated into Atom

as intended by the original developer, often conveys a great
deal of information (e.g. associations or relations by physical
proximity) [3]. Figure 1 shows an example of a code mini-map
being used in a code editor.

The code mini-map provides viewers with an overview
of the currently open source code document. The source
code editor provides the viewer with a view of the tex-
tual representation of the code, which corresponds to the
microscopic details programmers need to understand when
working with code. However, an open question remains on
how to present programmers with information corresponding
to the macroscopic details within the code (e.g conceptual
structures that are not manifested directly in the code). In
this work we introduce a layering concept to the code mini-
map visualisation. This layering concept can be described
as a mechanism for providing additional information to the
viewer, while using the same underlying visualisation (the
code mini-map). This approach is similar to the way a user
is able to add additional information to an online map,
for example traffic layers, street name layers, or elevation
layers. The contributions of this work are the design and
implementation of a visualisation approach which augments a
code mini-map visualisation to include additional information
corresponding to the macroscopic details within source code,
as well as, a study that evaluates the augmented code mini-map

visualisation and provides empirical data on the usefulness of
this approach in the context of source code understanding

The remainder of this paper is structured as follows. Section
II presents related work in the context of visualisations similar
to the code mini-map. Section III presents details regarding
code understanding issues. Section IV presents a description
of the code mini-map as well as a description of the scope
information layer that this work evaluates. Section V presents
details corresponding to the evaluation study. Section VI
presents the results of the controlled experiment and discusses
their implications. Finally, Section VII summarises our find-
ings and proposes directions for future work.

II. RELATED WORK

To the best of our knowledge, there are a limited number
of visualisations similar to the code mini-map that are aimed
at helping programmers understand the macroscopic details
within a source code document. Bacher et al. [2] conducted a
review of 21 software development tools, all of which employ
a visualisation that is based on the code-map metaphor, which
can be defined as the mapping of source code to a zoomed out
representation to allow programmers to comprehend various
statistics collected at the level of detail of individual lines of
code.

Bacher et al. state that in general, the main motivation for
producing visualisations based on the code-map metaphor is
the need for a direct mapping from a visual representation
to the source code and back. This direct mapping is needed
in order to support the encoding of specific properties and
relationships, to make programmers aware of promising loca-
tions within the code to motivate further exploration. The main
goal of using visualisations based on the code-map metaphor
is to provide programmers with a “big picture” view of a
code base or a code file, while still being able to understand
information collected at the source code level of detail. This
information can include execution traces, search query results,
code ownership, and code age. A main finding of the review
was that although the literature indicates that visualisations
based on the code-map metaphor are perceived by the research
community to be helpful across all aspects of the software
development process, there is a lack of quantitative evidence
to support this perception. Therefore, the effectiveness of
visualisations incorporating the code-map metaphor are still
unclear, especially in the context of facilitating source code
understanding.

DeLine et al. [4] present the Code Thumbnail Scrollbar,
which supplements a code document’s vertical scrollbar with a
thumbnail image of the entire document. The Code Thumbnail
Scrollbar is intended to allow programmers to form spatial
memory of the code and provides a stable, one-dimensional
space per document, with visual landmarks to help the viewer
distinguish different parts at a glance (e.g. the code shape).
The authors provide quantitative evidence that if present, the
visualisation will be used by programmers for the tasks of code
exploration, navigation, and selection. This is an interesting
and important finding as it provides initial evidence that a

visualisation similar to the code mini-map can be useful for
exploring and navigating a source code document. Further-
more, the authors present possible feature suggestions that
were obtained from participant feedback. A relevant feature
suggestion for this current paper was the use of colour high-
lighting to show specific details which correspond to method
definitions (callers, callees, and field uses). In the context
of the code mini-map layering approach introduced in this
paper, it is possible to add the method definition highlighting
feature to the code mini-map as an additional layer, allowing
programmers to activate this layer when attempting to answer
questions related to specific methods within a source code
document.

Robbes et al. present Microprints [5], [6] which is a visu-
alisation technique used to show information to programmers
when faced with the task of reading object-oriented code. The
authors state that the main information that programmers are
looking for can be classified into three categories: 1) state
changes and accesses, 2) method control flow, and 3) method
invocations or object interactions. Encoding all of this infor-
mation into a single visualisation would lead to an unreadable
picture, as far too much information would be displayed.
Hence, the authors propose three variations of Microprints,
where each variation is specialised on one of the above men-
tioned categories. Each variation also uses a different colour
mapping to encode the corresponding information. The main
difference between the visualisations presented by Robbes et
al. [5] and the code mini-map visualisation is that the code
mini-map shows the viewer a zoomed out representation of a
source code document, whereas Microprints show the viewer
a zoomed out representation of an individual method from
three different perspectives. It would be possible to incorporate
additional layers to the code mini-map which also show the
same information as the Microprints.

III. SOURCE CODE UNDERSTANDING

Source code has several distinctive properties [7]. For
example, it is written in programming languages that have
strictly defined grammars with non-ambiguous semantics and
it contains many types of relations and hierarchies. Cherubini
et al. [1] state that programmers need to understand both the
microscopic and macroscopic details within the code, where
the microscopic details include the mechanics of classes and
methods which can be examined in the text of the code and
the macroscopic details include concrete high level concepts
such as module, system, and conceptual structures that are not
manifested directly in the code. An example of a macroscopic
detail within source code is the scope chain hierarchy.

The scope chain hierarchy is a fundamental conceptual
structure implemented by almost every programming lan-
guage, and can be seen as a set of rules that control the
visibility and lifetime of variables, functions, and parameters
[8], [9]. This hierarchy is important to the programmer because
it can be used to reduce identifier naming collisions and also
provides automatic memory management [8]. Two aspects of
the scope chain hierarchy can be a cause of confusion for

programmers. First, each programming language has a slightly
different implementation of scope. Second, because the scope
chain can be seen as a type of hierarchy, it supports nesting.
Therefore, scopes can be nested within each other, meaning
that if an identifier (variable, function, or parameter) cannot be
found in the immediate scope, the corresponding scope chain
is traversed, starting at the parent scope-level and continuing
until the identifier is found, or until the outermost (global)
scope has been reached.

In order to come up with real world tasks which can be used
as a proxy to measure code understanding, the information
needs of programmers should be taken into consideration.
LaToza and Myers [10] surveyed 179 professional developers
about hard-to-answer questions they asked during the process
of creating, debugging, and understanding code. Interesting
questions in the context of scope issues include where (in
which scope) was a specific variable defined and where in
the code can a global variable be changed. Bacher et al.
[11] conducted an analysis of the 50 most popular stack
overflow questions in the context of scope understanding
issues within source code. The authors found that programmers
have difficultly understanding issues regarding the declaration,
accessibility, and state of an identifier (variable, function, or
parameter).

As many source code maintenance and comprehension
issues are due to the poor understanding of scope [11], we
believe that adding a layer to the code mini-map visualisation
which encodes information related to the scope chain hierarchy
within a source code document can facilitate source code
understanding. Hence, we will be focusing on tasks that
evaluate a programmer’s ability to answer questions such as
in which scope is an identifier declared, and can an identifier
be accessed from a specific line of code? We believe that
these questions relate to real world code understanding and
debugging issues that programmers face on a daily basis.

IV. CODE MINI-MAP SCOPE LAYER

This work proposes to add additional encodings to the
existing code mini-map visualisation present in many modern
source code editors and integrated development environments.
The mechanism for providing additional information to the
viewer can be described as a layering approach, where ad-
ditional encodings are superimposed onto the code mini-map
to help programmers answer specific questions related to the
source code.

Figure 1 shows an example of a code mini-map. The code
mini-map reduces each line of code to one pixel line, keeping
the same line layout. This is an important aspect of the
code mini-map as the layout of the code often conveys a
great deal of information, such as associations or relations by
physical proximity [3]. Additionally, a grey highlighted area
is also added to the code mini-map which shows the current
dimension of the source code editors viewport so viewers can
see which section of the code document is currently visible
on screen. The syntax highlighting present on the textual

/*
Maps the items in arr and concatenates the resulting arrays.

=/ . .
anesin <o SCOPE N which the cursor
is currently located

var resi

Highlighted variable

var i = -1
var len = grr.length;

while (++if< len) {
var valuel = callback(arr(i], i, arr);

Scope to which
highlighted variable
belongs

if (value| 1= null) {
append (results, value);

}
v Cursor

return results;

Fig. 2. Example of code mini-map with additional of encodings superimposed

representation of the code can also be transferred to the code
mini-map.

Figure 2 shows a code editor combined with a code mini-
map which includes the scope information layer. The yellow
highlighted area on the code mini-map encodes the extent
of the scope in which the cursor is currently located. The
red border on the code mini-map shows to which scope a
highlighted variable belongs. Each time the cursor changes
location within the code editor the code mini-map is updated.
If a programmer is interested in seeing to which scope a
specific variable belongs, then the programmer must highlight
that specific variable within the code editor. Figure 2 shows an
example of this behaviour. In the example, the variable value is
highlighted within the code editor. The red border on the code
mini-map now shows the scope to which the variable value
belongs. By looking at the code mini-map we can see that the
variable value does not belong to the scope in which the cursor
is currently located. Additionally, by placing the mouse pointer
either in the yellow highlighted area or within the red border,
the corresponding lines of code are highlighted within the code
editor. Thus, the viewer can see which lines of code belong to
either the scope in which the cursor is located in or the scope
to which a specific variable belongs to. An interactive demo
of the code map can be found here: http://tiny.cc/cmm-scope.

V. EXPERIMENT DETAILS

The purpose of the experiment presented in this work is
to evaluate the effectiveness of using the code mini-map to
encode additional information corresponding to the macro-
scopic details within a source code document. In this case
the macroscopic details align with facilitating a programmers
understanding of the scope chain and information related to the
scope chain within a source code document. Previous research
[12]-[14] was used to guide the design, implementation, and
organisation of the experiment.

The main research questions we aim to answer is: Does
adding a scope information layer to a code mini-map visual-
isation increase the ability of programmers to understand the
impact of scope on the correctness of their code?

To measure the effectiveness of adding additional layers of
information to a code mini-map visualisation, 60 participants
were randomly split into two groups where Group A was
presented with a standard code mini-map visualisation and
Group B was presented with a code mini-map visualisation
that included additional encodings (the scope information
layer). All participants were shown the same source code®
and given a set of questions® that corresponded to scope
understanding issues. The questions given to the participants
were used as a proxy to measure the effect of both versions of
the code mini-map on source code understanding (if a question
is answered correctly).

The programming language used in this experiment is
JavaScript, due to the fact that it is the most popular pro-
gramming language according to the stack-overflow developer
survey results 2016*, 2017°, and 2018°. Hence, the main factor
that could influence a participant’s performance during the
experiment is their JavaScript programming experience level.
To control for this confounding factor, each participant was
randomly placed into one of two groups (Group A or Group
B). Additionally, each participant was also asked to fill out a
short questionnaire at the beginning of the experiment and the
results of this questionnaire were used in a post-hoc analysis
of the experiment to ensure that the randomisation process
worked correctly. The goal of this questionnaire was to gather
information corresponding to each participant’s programming
experience level. Participants were asked to enter their self
estimated experience level using a 5 point Likert scale where
each number within the scale was replaced with a level of
Dreyfus’ model of skill acquisition [15, p.162]: 1) Novice, 2)
Advanced beginner, 3) Competent, 4) Proficient, and 5) Expert.

06~
0.4-
0.2- | | I—I
0.0-] 0] 0 0
Movice Adv. Beginner Competent Proficient Expert
Group A
0.6~
0.4-
oo | |I—I|—|
0.0- y " ' v "
Movice Adv. Beginner Competent Proficient Expert
Group B

Fig. 3. Participant JavaScript programming experience

Figure 3 shows the participants’ self estimated experience
level with the JavaScript programming language. The images
show that the both groups have a similar distribution of novice
to expert programmers. The results of a Kruskal-Wallis test
[16] show that there is a no statistically significant difference
between the groups when comparing JavaScript programming
experience (p-value >0.834).

3http://tiny.cc/cmm-scope-data

“https://insights.stackoverflow.com/survey/2016
Shttps://insights.stackoverflow.com/survey/2017
Shttps://insights.stackoverflow.com/survey/2018

VI. RESULTS AND DISCUSSION

All participants answered 20 code understanding questions
related to scope understanding issues. Group A (code mini-
map) consisted of 30 participants and Group B (code mini-
map + scope info layer) consisted of 30 participants. In order
to measure potential differences between the groups on an
aggregated level, the number of correct answers given by each
participant was counted.

Participants in Group A answered a total of 600 questions,
where 356 (59.3%) were answered correctly and 244 (40.7%)
incorrectly. Participants in Group B also answered a total of
600 questions, where 421 (71.2%) were answered correctly
and 244 (29.8%) incorrectly. A Pearson’s Chi-squared test [17]
shows that there is a statistically significant difference between
the groups when comparing the percent of correctly answered
questions (p-value = <0.001).

Wettel et al. [14] suggest also reporting results on individual
tasks/questions as this allows for a more precise and in-depth
analysis of the strengths and weaknesses of an approach.
Hence, to get a more precise and in-depth understanding of
the number of correctly answered questions per group, results
corresponding to each individual question were also analysed.
Specifically, the number of correct answers for each individual
question. Figure 4 displays a grouped bar chart, where each
group of bars corresponds to an individual question and the
length of each bar indicates the percentage of correct answers
for that question. The colour of each bar represents to which
group that bar corresponds.

By examining Figure 4, we notice two interesting things.
The first is that for most of the questions (16/20), participants
from Group B answered a greater number of questions cor-
rectly compared to participants from Group A. The second
is that for 5 questions (Q3, Q5, Q11, Q12, Q14, Q15) the
percent of correct answers is below 50% for both groups.
This is interesting, as upon closer inspection, these questions
were the only questions which corresponded to a specific, and
tricky, feature of scope within JavaScript. This feature can
be described as variable hoisting, e.g. variables declared in a
block scope (if, while, for, and switch statements) are hoisted
to the upper function scope rather than belonging to the block
scope. Hence, the textual representation of the code no longer
corresponds to the actual behaviour of the code

These results confirm that a specific feature of a program-
ming language, such as variable hoisting, can be difficult to
understand for programmers. Using a visualisation to encode
this behaviour, in order to facilitate code understanding, has
provided initial positive results. Therefore, we believe that
visualisations can be particularly useful when the textual
representation of the code no longer corresponds to the actual
behaviour of the code (as is the case, for example, in languages
such as JavaScript that implement variable hoisting) and that
these visualisations in turn, can be used to facilitate code
understanding.

In summary, our current findings indicate that adding an
additional layer of information to the code mini-map visual-

Group A

11 12 13 14 15 16 17 18 1
Questions

20

o™

Group B

Fig. 4. Percent of correct answers for each individual question

isation can have a positive effect on code understanding. We
have shown that this is the case for scope understanding issues
in the context of JavaScript source code. However, we also
believe that these results can be generalised in terms of using
the code mini-map visualisation to encode other macroscopic
details within a source code document.

VII. CONCLUSION

This work introduces a layering concept to the code mini-
map visualisation, which can be described as a mechanism for
providing additional information to the viewer, while using the
same underlying visualisation. The layering concept is similar
to the way a user is able to add additional information to an
online map.

As an example of this approach, this work presents a scope
information layer, which is a layer of encodings that are
superimposed into the code mini-map visualisation, in order
to facilitate a programmer’s understanding of the scope chain
and information related to the scope chain within a source
code document. The scope information layer can be used
to show a viewer in which scope the cursor of a source
code editor is currently located and to which scope a specific
variable belongs. Additionally, this work presents a study that
evaluates the scope information layer superimposed onto the
code mini-map visualisation. The results of the study show
that superimposing an additional layer of encodings onto a
code mini-map has a positive effect on code understanding,
in the context of scope understanding issues in source code
written in JavaScript.

This experiment is a step towards providing quantitative data
on the effectiveness of the code mini-map visualisation in the
context of facilitating source code understanding. For future
work, we believe that it would be interesting to conduct similar
experiments using a series of debugging tasks, rather than
code understanding questions. Another direction for future
work entails the design, implementation, and evaluation of
additional layers that can be added to the code mini-map
visualisation. These layers can encode either the microscopic
details within the code, the macroscopic details within the
code, or a combination of the two. For example, code execu-
tion hotspots, code ownership, search query results, function
call hierarchies, or control structure hierarchies.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to
the whiteboard: how and why software developers use drawings,” in
Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM, 2007, pp. 557-566.

I. Bacher, B. Mac Namee, and J. D. Kelleher, “The code-map metaphor-
a review of its use within software visualisations.” in VISIGRAPP (3:
IVAPP), 2017, pp. 17-28.

J. 1. Maletic, M. L. Collard, and A. Marcus, “Source code files as
structured documents,” in Program comprehension, 2002. proceedings.
10th international workshop on. 1EEE, 2002, pp. 289-292.

R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and
G. Robertson, “Code thumbnails: Using spatial memory to navigate
source code,” in Visual Languages and Human-Centric Computing,
2006. VL/HCC 2006. IEEE Symposium on. 1EEE, 2006, pp. 11-18.
R. Robbes, S. Ducasse, and M. Lanza, “Microprints: A pixel-based
semantically rich visualization of methods,” in Proceedings of 13th
International Smalltalk Conference, ISC, vol. 5, 2005, pp. 131-157.

S. Ducasse, M. Lanza, and R. Robbes, “Multi-level method understand-
ing using microprints,” in VISSOFT 2005. IEEE, 2005, pp. 1-6.

A. C. Telea, Data visualization: principles and practice. CRC Press,
2014.

D. Crockford, JavaScript: The Good Parts, 2013, vol. 53, no. 9.

K. Simpson, You Don’t Know JS: Scope & Closures. O’Reilly Media,
2014.

T. D. LaToza and B. a. Myers, “Hard-to-answer questions about
code,” Evaluation and Usability of Programming Languages and
Tools on - PLATEAU ’10, pp. 1-6, 2010. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1937117.1937125

I. Bacher, B. Mac Namee, and J. D. Kelleher, “Scoped : Visualising
the scope chain within source code,” in Proceedings of EG/VGTC
Conference on Visualization (EuroVis 2017), 2017.

H. Lam, E. Bertini, P. Isenberg, C. Plaisant, H. Lam, E. Bertini,
P. Isenberg, C. Plaisant, S. C. Empirical, and H. Lam, “Empirical Studies
in Information Visualization : Seven Scenarios,” IEEE Transactions on
Visualization and Computer Graphics (2012), 2012.

A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide
to controlled experiments of software engineering tools with human
participants,” Empirical Software Engineering, vol. 20, no. 1, pp. 110—
141, 2015.

R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: a
controlled experiment,” 2011 33rd International Conference on Software
Engineering (ICSE), pp. 551-560, 2011.

G. Cheetham and G. E. Chivers, Professions, competence and informal
learning. Edward Elgar Publishing, 2005.

W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no.
260, pp. 583-621, 1952.

R. L. Plackett, “Karl pearson and the chi-squared test,” International
Statistical Review/Revue Internationale de Statistique, pp. 59-72, 1983.

	The Code Mini-Map Visualisation: Encoding Conceptual Structures Within Source Code
	Recommended Citation

	tmp.1533890242.pdf.GvN_m

