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Generating Estimates of Classification
Confidence for a Case-Based Spam Filter

Sarah Jane Delany1, Pádraig Cunningham2, Dónal Doyle2, and Anton
Zamolotskikh2

1 Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland
sarahjane.delany@comp.dit.ie

2 University of Dublin, Trinity College,
Dublin 2, Ireland

{padraig.cunningham, donal.doyle, zamolota}@cs.tcd.ie

Abstract. Producing estimates of classification confidence is surpris-
ingly difficult. One might expect that classifiers that can produce numeric
classification scores (e.g. k-Nearest Neighbour, Näıve Bayes or Support
Vector Machines) could readily produce confidence estimates based on
thresholds. In fact, this proves not to be the case, probably because these
are not probabilistic classifiers in the strict sense. The numeric scores
coming from k-Nearest Neighbour, Näıve Bayes and Support Vector Ma-
chine classifiers are not well correlated with classification confidence. In
this paper we describe a case-based spam filtering application that would
benefit significantly from an ability to attach confidence predictions to
positive classifications (i.e. messages classified as spam). We show that
‘obvious’ confidence metrics for a case-based classifier are not effective.
We propose an ensemble-like solution that aggregates a collection of con-
fidence metrics and show that this offers an effective solution in this spam
filtering domain.

1 Introduction

One might expect that classifiers that produce numeric scores for class mem-
bership would deliver effective estimations of prediction confidence based on
thresholds on these scores. Examples of classifiers that produce numeric scores
in this manner are; Näıve Bayes, k-Nearest Neighbour [1], Neural Networks [2],
Logistic Regression [3] and Support Vector Machines [4]. Our experience with
these classifiers suggests that the numeric scores from Logistic Regression are
predictive of confidence but those from Naive Bayes, Neural Networks, Support
Vector Machines (SVM) and k-Nearest Neighbour (k-NN) are not. We demon-
strate that this is the case for k-NN, Näıve Bayes and SVM in Section 3.

In this paper we are concerned with generating estimates of classification
confidence for a case-based spam filter called ECUE (Email Classification Using
Examples) [5]. ECUE has the advantage of being very effective at tracking con-
cept drift but this requires the user to identify False Positives (FPs) and False



Negatives (FNs) so that they can be used to update the case-base. Identifying
FNs is not a problem because they turn up in the Inbox (i.e. spam that has been
allowed through the filter). Identifying FPs involves monitoring a spam folder
to identify legitimate email that has been classified as spam. Our objective here
is to be able to partition this class so that the user need only monitor a subset
- the set for which the confidence is low.

A straightforward success criterion in this regard is the proportion of positives
for which prediction confidence is high and the prediction is correct (clearly there
cannot be any FPs in this set). A mechanism that could label more than 50% of
the positive class (i.e. classified as spam) as confident and have no FPs in this
set would be useful. The lower-confidence positives could be allowed into the
Inbox carrying a Maybe-Spam marker in the header or placed in a Maybe-Spam
folder that would be checked periodically.

In section 2 we provide a brief overview of research on estimating confidence.
The basic indicators for confidence that can be used with k-NN are described
in section 3 where we show that no single one of these measures is effective
in estimating confidence. In section 4 we present some simple techniques for
aggregating these basic indicators and present an evaluation on unseen data
that shows a simple voting technique to be very effective. The paper concludes
in section 5 with a summary.

2 Review

Cheetham and Price have recently emphasised the importance of being able to
attach confidence values to predictions in CBR [6, 7]. This has been a research
issue since the earliest days of expert systems research: it is part of the body of
research on meta-level knowledge [8, 9], the view being that it is important for
a system to ‘know what it knows’. TEIRESIAS is a system in this spirit, it was
designed to simply admit its ignorance instead of venturing risky advice [10].

More recently, the system SIROCCO from McLaren and Ashely [11] uses
meta-rules to determine the system’s confidence. Their system operates in an
engineering ethics domain, in which incorrect suggestions could be considered
sensitive and damaging. In this system, if any one of the meta-rules are fired then
the system considers itself inadequate for the task. Their evaluation of SIROCCO
shows that allowing the system to produce ‘don’t know’ results reduces the
number of incorrectly classified cases, with a small trade off whereby the number
of correctly classified cases is reduced.

So while it is clear that it is useful to be able to produce estimates of con-
fidence, it is also clear that that generating reliable estimates is not straight-
forward. Cheetham and Price [7] describe 12 measures of confidence that can
be applicable for a k-NN classifier. Some of these indicators increase with con-
fidence and some decrease. Since no single indicator is capable of producing a
robust measure of confidence they explore the use of a decision tree, that is al-
lowed to use all the measures, as a mechanism for aggregating all the available
metrics. The authors show that, even using a decision tree to learn a good con-



fidence measure from historic data, it is difficult to avoid the situation where
predictions labelled as confident prove to be incorrect. They also emphasise that
the confidence estimation mechanism will need to be updated over time as the
nature of the problems being solved can change.

Because of this we choose to concentrate on simpler aggregation mechanisms.
We engineered all indicators so that they increased in value as confidence in-
creased. This allowed us to consider additive and multiplicative mechanisms as
well as various ‘voting’ alternatives.

2.1 Indirect Methods of Conveying Confidence

It is worth mentioning that there are other more indirect ways of conveying
confidence to the user. Rather than conveying confidence as a term or a nu-
meric score it can be conveyed by giving the user some insight into the problem
domain. Confidence can be conveyed by presenting explanation cases [12] or
by highlighting whether a feature has a negative or positive correlation with
respect to the classification [13] or by highlighting features that contribute pos-
itively and negatively to the classification [14] Confidence may also be conveyed
by using visualisation tools to highlight features that contribute to similarity
and to differences [15].

3 Confidence Measures

This section describes a number of confidence measures that could be used to
predict confidence in ECUE, a case-based spam filter. We concentrate on using
measures appropriate for a k-NN classifier. We evaluate these measures on a
number of spam datasets to assess their performance at predicting confidence.

The k-NN measures that we propose evaluating, which are described in Sec-
tion 3.1, perform some calculation on a ranked list of neighbours of a target
case. We do not use the basic classification score of the target case as ECUE
uses unanimous voting in the classification process to bias the classifier away
from FPs. Unanimous voting requires all the k nearest neighbours retrieved to
be of classification spam in order for the target case to be classified as spam.
Therefore there is no classification ‘score’, as such.

3.1 Proposed k-NN Confidence Measures

The objective of the k-NN measures is to identify those cases that are ‘close’
(i.e. with high similarity) to cases of the same class as the target case and are
‘far’ (i.e. low similarity) from cases of a different class. The closer a target case
is to cases of a different class, the higher the chance that the target case is lying
near or at the decision surface. Whereas the closer a case is to other cases of the
same class, the higher the likelihood that it is further from the decision surface.

Similarity is determined by comparing features including the words and let-
ters used in the body of the email and certain header fields including the subject,
the ‘from’ address and addresses in the ‘to’ and ‘cc’ header fields [5].



For each k-NN confidence measure discussed in this section the same process
occurs. Each target case is classified by ECUE as either spam or non-spam. For
those target cases predicted to be spam a ranked list of neighbours of the target
case is retrieved. This list of neighbours is a list of all the cases in the case-base
ordered by distance from the target case. Those cases with classification equal
to that of the target case (i.e. with classification spam) are considered to be
like cases, while those cases with classification of nonspam are considered to be
unlike cases. The measures can use

– the distance between a case and its nearest neighbours (let NNi(t) denote
the ith nearest neighbour of case t) or,

– the distance between the target case t and its nearest like neighbours (let
NLNi(t) denote the ith nearest like neighbour to case t) and/or

– the distance between a case and its nearest unlike neighbours (let NUNi(t)
denote the ith nearest unlike neighbour to case t).

The number of neighbours used in each measure is adjustable and is indepen-
dent of the number of neighbours used in the initial classification. All measures
are constructed to produce a high score to indicate high confidence and a low
score to indicate low confidence.

Avg NUN Index
The Average Nearest Unlike Neighbour Index (Avg NUN Index) is a measure

of how close the first k NUNs are to the target case t as given in Equation 1.

AvgNUNIndex(t, k) =
∑k

i=1 IndexOfNUNi(t)
k

(1)

where IndexOfNUNi(t) is the index of the ith nearest unlike neighbour of
target case t, the index being the ordinal ranking of the case in the list of NNs.

This is illustrated in Figure 1 where NLNs are represented by circles, NUNs
are represented by stars and target cases are represented by triangles. For k = 1,
the index of the first NUN to target case T1 is 5 whereas the index of the first
NUN to target case T2 is 2, indicating higher confidence in the classification of
T1 than T2.

Similarity Ratio
The Similarity Ratio measure calculates the ratio of the similarity between the

target case t and its k NLNs to the similarity between the target case and its k
NUNs, as given in Equation 2.

SimRatio(t, k) =
∑k

i=1 Sim(t, NLNi(t))∑k
i=1 Sim(t, NUNi(t))

(2)

where Sim(a, b) is the calculated similarity between cases a and b.
This is illustrated in Figure 2 where, for k = 1, the similarity between the

target case T1 and its NLN is much higher than the similarity between T1 and



Fig. 1. Average NUN Index Confidence Measure

its NUN. Whereas the similarity between target case T2 and its NLN is only
marginally higher than the similarity between T2 and its NUN. The ratio of
these similarites for T1 will give a higher result than that for T2 indicating
higher confidence in the classification of T1 than T2.

Fig. 2. Similarity Ratio Confidence Measure

Similarity Ratio Within K
The Similarity Ratio Within K is similar to the Similarity Ratio as described

above except that, rather than consider the first k NLNs and the first k NUNs
of a target case t, it only uses the NLNs and NUNs from the first k neighbours.
It is defined in Equation 3.

SimRatio(t, k) =
∑k

i=1 Sim(t, NNi(t))1(t, NNi(t))

1 +
∑k

i=1 Sim(t,NNi(t))(1− 1(t, NNi(t)))
(3)

where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b)
returns one if the class of a is the same as the class of b or zero otherwise.

This measure will attempt to reward cases that have no NUNs within the first
k neighbours, i.e. are in a cluster of k cases of the same class. This is illustrated



in Figure 3 where, considering k = 3, the target case T1 has no NUNs within the
first three neighbours whereas target case T2 has two NUNs and one NLN. The
Similarity Ratio Within K will be much larger for T1 than that for T2 indicating
higher confidence in the classification of T1 than T2.

Fig. 3. Similarity Ratio Within K Confidence Measure

If a target case t has no NUNs then Equation 3 is effectively Equation 2 with
the denominator set to one.

Sum of NN Similarites
The Sum of NN Similarities measure is the total similarity of the NLNs in the

first k neighbours of the target case t, see Equation 4.

SumNNSim(t, k) =
k∑

i=1

1(t, NNi(t))Sim(t, NNi(t)) (4)

where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b)
returns one if the class of a is the same as the class of b or zero otherwise.

For target cases in a cluster of cases of similar class this number will be
large. For cases which are closer to the decision surface and have NUNs within
the first k neighbours, this measure will be smaller. In fact for target cases with
no NUNs within the first k neighbours this measure will be equal to the value
of the Similarity Ratio Within K. Although this measure does not reward such
cases as strongly as the Similarity Ratio Within K does as the resulting measure
for the sum of the NLNs is not reduced by the influence of the NUNs.

Average NN Similarity
The Average NN Similarity measure is the average similarity of the NLNs in

the first k neighbours of the target case t, see Equation 5.

SumNNSim(t, k) =
∑k

i=1 1(t, NNi(t))Sim(t, NNi(t))∑k
i=1 1(t, NNi(t))

(5)



where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b)
returns one if the class of a is the same as the class of b or zero otherwise.

3.2 Assessing k-NN Confidence Measure Performance

In order to assess the performance of these confidence measures we evaluated
each of them on a number of spam datasets. Five datasets were used. Each con-
sisted of legitimate and spam emails received by a single individual over a period
of time. Each dataset represents a different period of time for a single individual.
Two different individual’s mail were used over all datasets. The legitimate emails
in the datasets include a mixture of business, personal and mailing list emails.
Case-bases were built from each of the five original datasets. Case representation
details are available in [5, 16].

ECUE’s case-base maintenance procedure to handle concept drift in spam
filtering [17] has two components; an initial case-base editing stage and a case-
base update protocol. In order for the evaluation to closely reflect the operation
of ECUE, the case-base from each dataset was edited using the case editing
procedure [18]. After editing the datasets averaged 700 emails in size with an
average of 45% spam and 55% legitimate emails.

The evaluation involved performing a leave-one-out validation on each dataset
for each measure. We evaluated each measure using k neighbours from k = 1
upto k = 15 and identified the confidence threshold, over all the k values, that
gave us the highest proportion of correctly predicted spam emails when there
were no incorrect predictions (i.e. FPs). This is illustrated in Figure 4.

Fig. 4. Criteria used to identify the best confidence threshold level

This was achieved by recording the confidence measure results for each target
case ci, i = 1 . . . N , that was classified by ECUE as spam. The results recorded
included the number of neighbours k used in the measure, whether the target
case was classified correctly or not and the measure calculated, mik. Setting
the threshold tk equal to the minimum value of mik for a given k and varying
the threshold in small units (tk = tk + .01) up to the maximum value of mik,
the number classified correctly with confidence (CCk) and the number classified



incorrectly with confidence (CIk) were calculated, where confidence exists for
case ci when mik > tk.

The selected threshold value was the threshold tk that maximised CCk, the
number of spam correctly predicted with high confidence when the number of
incorrect predictions with high confidence was zero (i.e. CIk = 0).

The results of this evaluation are presented in rows 1 to 5 of Table 1 (the
other measures in rows 6 to 8 are described later). It details for each measure
the highest percentage confidence that can be achieved on each dataset. This
is the proportion of spam predictions that are made with high confidence. In
all situations no highly confident incorrect predictions were made so no FPs are
included in this proportion. In effect, this proportion of the spam can be ignored
by the user, whereas the remaining percentage would have to be checked by the
user.

Table 1. Best percentage confidence achievable for each dataset using different confi-
dence measures

Confidence Measure Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Avg

Avg NUN Index 23% 76% 75% 41% 44% 51.8%

Sim Ratio 46% 84% 50% 49% 16% 49.0%

Sim Ratio Within k 21% 29% 71% 91% 57% 54.8%

Sum NN Sim 21% 29% 68% 91% 58% 53.4%

Avg NN Sim 20% 29% 49% 91% 60% 49.8%

Naive Bayes 0% 94% 0% 83% 56% 46.4%

SVM 29% 100% 77% 81% 33% 63.8%

ACM 55.4% 85.4% 83.8% 93.7% 77.3% 79.1%

Looking at the proportion of spam predictions for which confidence is high
across all datasets it is evident that no single measure achieves good percentage
confidence across all datasets. If we define “good” performance as having con-
fidence in at least 50% of the spam predictions, none of the measures achieve
“good” performance on more than three of the five datasets. The best performing
measure is the Similarity Ratio Within K which has good performance on three
of the five datasets with an average performance across all datasets of 54.8% but
with minimum performance of 21%.

3.3 Näıve Bayes and SVM Confidence Measures

Näıve Bayes is currently the machine learning technique of choice for spam filter-
ing [19–23] although there has been a lot of interest recently in applying SVMs
to the problem [23–27]. Näıve Bayes and SVM classifers produce numeric scores;
Näıve Bayes produces a ‘probability’ of spam whereas an SVM produces a ‘dis-
tance’ from the hyperplane separating the spam and non spam classes. These
scores can be used to predict confidence in the classifiers’ prediction.



We examined confidence measures produced by Näıve Bayes on the five
datasets. The implementation used is that described by Delany et al. [5]. The
confidence threshold was identified as the highest numeric score returned by the
classifier for a FP prediction. This ensured that no incorrectly classified spam
emails were considered confident predictions. The 6th row of Table 1 gives the
confidence predictions for the five datasets using the Näıve Bayes classifier. It
is clear from the results that the Näıve Bayes numeric score cannot be used as
a predictor of confidence. In two of the five datasets there are zero confident
predictions as there are FPs with the maximum score.

We also evaluated using a SVM on the five datasets. The implementation
used is a 2-norm soft-margin SVM as described in [4] with a dot product kernel
function. The confidence threshold was identified as the highest postive result
returned for nonspam email. This will ensure that no legitimate email will be
confidently considered as spam. The 7th row of the Table 1 gives the confidence
predictions for the five datasets using an SVM for classification. Although the
average score across all datasets of 63.8% is higher than the best of the k-NN
measures the SVM confidence measure does not realistically achieve any better
overall performance as it also only achieves “good” performance on three of the
five datasets but with slightly higher minimum performance of 29%. It is worth
noting that the performance of dataset 2 is actually 99.7% but is reported as
100% due to rounding.

3.4 Implications for Predicting Confidence in Spam Filtering

To summarise, it appears that the confidence measures for k-NN, Näıve Bayes
and SVMs presented here cannot consistently produce estimates of prediction
confidence for spam. The average performance of the k-NN and the SVM mea-
sures shows promise however the lack of consistency across all datasets is an
issue. The thresholds achieved for each k-NN measure across the five datasets
also varies considerably. For example, considering the Similarity Ratio Within K
measure which has the best of the k-NN measures performance, Table 2 shows
the variation in the threshold across the five datasets.

Table 2. Demonstrating the variation in thresholds for the Similarity Within K Ratio
confidence measure across the five datasets

Threshold Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

k - num neighbours used 11 7 14 1 3

Value 991.07 574.08 717.04 58 214.1

It is important to note that the figures in Table 1 are very optimistic as the
test data was used to set the threshold.



4 The Aggregated Confidence Measure

Since none of the individual measures discussed in Section 3 was consistently ef-
fective at predicting confidence we evaluated a number of aggregation approaches
which involved combining the results from the individual measures. The aggre-
gation approaches we considered included:

(i) Summing the results from each of the 5 individual measures evaluated at the
same value of k and comparing the sum against a threshold;

(ii) Using the best threshold for each individual measure and indicating confi-
dence if a certain number of the measures indicate confidence;

(iii) Using a fixed k across all measures and indicating confidence if a certain
number of the measures indicate confidence.

We found that the simplest and most effective method of aggregating the
results is to assign confidence to a prediction if any of the individual measures
indicated that the prediction was confident as in (ii) above. We call this measure
the Aggregated Confidence Measure (ACM). The algorithm for the ACM has
two stages:

(i) calculation of the constituent measure threshold values in a pre-classification
stage,

(ii) determination of the ACM during classification.

The pre-classification stage involves pre-processing of the case-base to iden-
tify the best threshold for each individual constituent measure. This is performed
in the manner described in Section 3.2. A threshold consists of two values; the
k value indicating the number of neighbours to use in the calculation and the
actual threshold value above which the prediction is considered confident. These
constituent measure thresholds are stored.

The ACM is then determined during classification for each target case that
is classified as spam by ECUE. Using the appropriate threshold value of k, the
actual score for each individual constituent measure is calcuated for the target
case. The ACM specifies that if at least one of the calculated scores for the
individual measures is equal to or greater than the stored threshold value for
that measure, confidence is expressed in the prediction.

4.1 Assessment of ACM’s Performance

We evaluated the ACM on the five datasets already used in Section 3. The re-
sults are presented in row 8 of Table 1. It is evident that the ACM is effective
across all datasets with an average of 79% of the spam predictions being pre-
dicted with high confidence. The ACM also results in more than 50% of each
dataset being predicted with high confidence. It is worth noting that the level of
high confidence predictions for the ACM is also higher than the best individual
measure’s performance on each dataset (rows 1 to 5 of Table 1).



4.2 Evaluation on Unseen Data

One limitation of the evaluation performed in Section 4.1 is that the assessment
was performed on the datasets which themselves were used to derive the con-
fidence thresholds for the constituent confidence measures. In order to validate
the ACM it is necessary to evaluate its performance on unseen data.

To do this we used ECUE along with two further datasets that have been
used in concept drift evaluations of ECUE [17]. Each dataset is derived from
an individual’s email received over the period of approximately one year. The
first 1000 emails (consisting of 500 spam and 500 legitimate emails) in each
dataset were used as training data to build the initial case-base classifier and
the remaining emails were left for testing. These datasets, 6 and 7, include eight
and six months of test emails repectively. The monthly class distribution of the
test emails is evident in rows 2 and 3 of Tables 3 and 4.

To evaluate the ACM on unseen data involved building confidence thresholds
for the ACM constituent measures on the initial case-base and then classifying
the remaining emails using the ACM to determine how confident the spam pre-
dictions are. In this way, the test emails were not used in the determination of
the confidence thresholds in any way.

The test emails were presented in date order for classification. Since this email
data is subject to concept drift, ECUE’s case-base update policy was applied
to allow the classifier to learn from the new types of spam and legitimate email
presented. The update policy has a number of components; an immediate update
of the case-base with any misclassified emails when a FP occurred, a daily update
of the case-base with any other misclassifieds emails that occurred that day, and
a monthly feature reselection process to allow the case representation to take any
new predictive features into account. In order to keep the confidence thresholds
in line with the updates to the case-base an update policy for the confidence
thresholds was also applied. This policy had two components; the confidence
thresholds were updated whenever a confident FP email occurred and also after
a monthly feature reselect.

Tables 3 and 4 show the results of testing the performance of the ACM on
unseen data using the two datasets 6 and 7. The tables present the accumulated
monthly results for each dataset listing the total number and types of emails
that were classified, the percentage of incorrect spam predictions (i.e. FPs) made
(labeled %FP classified) and the percentage of incorrect spam predictions made
with high confidence (labeled %Confident FPs). The table also gives the total
percentage of spam predictions with high confidence (labeled %Confidence).

In both datasets predictions of confidence are high, averaging 85% in both
cases with a lowest monthly level of 64%. This is the percentage of spam pre-
dictions that can be ignored by the user, the remaining spam predictions can
either be flagged in the Inbox as Maybe Spam or placed in a separate Maybe
Spam folder for the user to check.

However in some of the months the ACM has resulted in confident incorrect
predictions. Although the actual numbers of emails are low (four emails for
Dataset 6 and six emails for Dataset 7) the ideal situation is one where all



incorrect predictions have low confidence and will be flagged for the user to
check. FPs flagged as confident will end up in the spam folder and may be
missed by the user. Examining the confident FPs, three are emails from mailing
lists and two are responses to Web registrations which users may not be too
concerned with missing. The remaining five are important, some work related
and one even a quotation in response to a online car hire request.

It is clear that we are approaching the limits of the accuracy of machine learn-
ing techniques in this domain. We see two possibilities for addressing these FPs.
Close examination of such emails may identify domain specific characteristics
that could be used as a feature or number of features in the case representation.
Secondly, most deployed spam filtering solutions do not rely on one approach for
filtering spam, they combine a number of techniques including white and black
listing, rules, collaborative and learning approaches. Incorporating additional
techniques into ECUE to add to its case-based approach could help in catching
these outlier FPs.

Table 3. Performance of ACM on unseen data using Dataset 6

Month 1 2 3 4 5 6 7 8 Overall

Total emails classified 772 542 318 1014 967 1136 1370 1313 7382

Number of Spam 629 314 216 925 917 1065 1225 1205 6496

Number of Non Spam 93 228 102 89 50 71 145 108 886

%FPs classified 4.3% 2.6% 1.0% 1.1% 6.0% 1.4% 0.0% 1.9% 2.0%

%Confident FPs 0.0% 0.9% 0.0% 1.1% 0.0% 0.0% 0.0% 0.9% 0.5%

%Confidence 70% 87% 76% 94% 89% 73% 77% 99% 85%

Table 4. Performance of ACM on unseen data using Dataset 7

Month 1 2 3 4 5 6 Overall

Total emails classified 293 447 549 693 534 495 3011

Number of Spam 142 391 405 459 406 476 2279

Number of Non Spam 151 56 144 234 128 19 732

%FPs classified 0.7% 3.6% 3.5% 2.6% 1.6% 0.0% 2.2%

%Confident FPs 0.0% 3.6% 0.7% 0.4% 1.6% 0.0% 0.8%

%Confidence 95% 95% 87% 64% 89% 88% 85%



5 Conclusions

We have shown that confidence measures based on the numeric scores from
Näıve Bayes, SVM or measures based on the k nearest neighbours for a case-
based classifier are not consistent at predicting confidence in the spam filtering
domain.

We have described an aggregation-based approach to combining individual
k-NN confidence measures that shows great promise in confidently predicting
spam. We evaluated this aggregated confidence measure by incorporating it into
the classification process of a case-based spam filter and showed that it could
successfully separate the spam predictions into two sets, those with high confi-
dence of spam which can be ignored by the user and those with low confidence
which should be periodically checked for False Positives. The high-confidence set
included 85% of the predicted spam reducing the number of spam that the user
needs to check.
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system. In Funk, P., P.González-Calero, eds.: 7th European Conference on Case-
Based Reasoning (ECCBR 2004). Volume 3155 of LNAI., Springer (2004) 128–141

19. P.Pantel, Lin, D.: Spamcop: A spam classification and organisation program. In:
Procs of Workshop for Text Categorisation, AAAI-98. (1998) 95–98

20. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach to
filtering junk email. In: Procs of Workshop for Text Categorisation, AAAI-98.
(1998) 55–62

21. Androutsopoulos, I., J.Koutsias, Chandrinos, G., Paliouras, G., Spyropoulos, C.:
An evaluation of naive bayesian anti-spam filtering. In Potamias, G., Moustakis,
V., van Someren, M., eds.: Procs of Workshop on Machine Learning in the New
Information Age, ECML 2000. (2000) 9–17

22. Schneider, K.: A comparison of event models for näive bayes anti-spam e-mail
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