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Abstract. Mental workload (MWL) measurement is a complex multi-
disciplinary research field. In the last 50 years of research endeavour,
MWL measurement has mainly produced theory-driven models. Some of
the reasons for justifying this trend includes the omnipresent uncertainty
about how to define the construct of MWL and the limited use of data-
driven research methodologies. This work presents novel research focused
on the investigation of the capability of a selection of supervised Machine
Learning (ML) classification techniques to produce data-driven compu-
tational models of MWL for the prediction of objective performance.
These are then compared to two state-of-the-art subjective techniques
for the assessment of MWL, namely the NASA Task Load Index and the
Workload Profile, through an analysis of their concurrent and conver-
gent validity. Findings show that the data-driven models generally tend
to outperform the two baseline selected techniques.

1 Introduction

Mental Workload (MWL) is a fundamental concept in human performance pre-
diction. It is a complex construct that is affected by several factors measurable
with various methods [38,43]. Different approaches have been proposed to ag-
gregate these factors towards an index of MWL. However, difficulties exist in
defining MWL, in understanding which factors best describe it and in build-
ing a robust model for predicting performance that have a general applicability
[25,28]. State-of-the-art computational models are rather ad-hoc and their ap-
plicability is confined to specific application fields [22,23,26]. Additionally, the
vast majority of these models are mainly theory-driven. This means from a set of
measurable factors, theoretically related to MWL, and a computational model to
aggregate these factors, an inference is made. This is usually an index of mental
workload that can be theoretically related to human performance [29,30]. Not
a lot has been done in the development of data-driven models of MWL, which
means computational models induced by learning from a set of data that are



capable of fitting human performance. One reason is that MWL is still an ill-
defined construct, justifying the application of deductive research methods [40].
Another reason is that MWL is a 50-year old construct, and at its origins, induc-
tive non-linear computational methodologies were not as popular and developed
as nowadays. Only in the last two decades, with the acceleration and spread of
Machine Learning (ML), researchers initiated to investigate MWL using induc-
tive data-driven research methodologies [3,12,52,44,20].

This paper is one of the few recent attempts to apply modern inductive data-
driven research methodologies, namely supervised Machine Learning, to induce
mental workload models from data acquired through subjective self-report mea-
sures. In particular, a unique comparison of the inferential capacity of two state-
of-the-art subjective MWL measurement techniques is performed, namely the
popular NASA Task Load Index and the Workload Profile instruments, against
the inferential capacity of novel inductive data-driven models of MWL, built
using Machine Learning.

The rest of the paper is organised as follows. Section 2 describes related
work in the specific field of MWL measurement, with an emphasis on subjective
self-reporting measurement methods, extracting relevant gaps and motivating
the need for data-driven methods for MWL. Section 3 focuses on the design
of an experiment and the description of the research methodology adopted for
the development of inductive data-driven MWL models. Section 4 presents the
results and critically evaluate these models through a rigorous comparison of
their concurrent and convergent validity against the ones of the two selected
baseline theory-driven MWL models. Finally, section 5 concludes this research
study highlighting the contribution to the body of knowledge and suggesting
future research paths.

2 Related Work

Mental workload (MWL) is a fundamental design concept in Human-Computer
Interaction (HCI) and Ergonomics (Human Factors) and it is sometimes referred
to as Cognitive Load (CL), specifically in Cognitive Psychology. It is intrinsi-
cally complex and multifaceted [39,25]. There is no widely accepted definition of
MWL, however, it can be intuitively described as the total cognitive load needed
to accomplish a specific task under a finite period of time [5].

2.1 Mental workload measurement methods

Measuring MWL is essential in predicting human performance and in turn in-
forming the design of technologies, interfaces, information-based procedures and
instructions. There are different methods that have been proposed for measuring
MWL. These can be clustered in three main classes:



– Subjective measures - this class relies on the analysis of the subjective
feedback provided by humans interacting with an underlying task and sys-
tem. The feedback usually takes the form of a survey or questionnaire, of-
ten post-task. The most known methods are the NASA Task Load Index
(NASA − TLX) [15], the Workload profile (WP ) [48], and the Subjective
Workload Assessment Technique (SWAT) [38];

– Task performance measures - this class is often referred to as primary and
secondary tasks measures and it focuses on the objective performance mea-
surement related to an underlying task. The time to complete a task, the
reaction time to secondary tasks and the number of errors on the primary
task are examples of measures, as well as the tracking and analysing of the
different actions performed by a user during a primary task;

– Physiological measures - this class is based upon the analysis of physiolog-
ical indicators and responses of the human body. Examples include EEG
(electroencephalogram), eye tracking and heart rate measures.

2.2 Subjective measurements methods

This study is particularly focused on two subjective measures of MWL that have
been widely employed by several researchers in the last four decades: the NASA-
Task Load Index (NASA-TLX) [15] and the Workload Profile (WP) [48] based
on the Multiple Resource Theory [49]. The MWL instrument developed by the
NASA agency was originally conceived to support the measurement of the men-
tal workload of pilots during aviation tasks. Subsequently, the NASA-TLX was
adopted in many other fields and used as a benchmark in many research stud-
ies [41,40]. The NASA-TLX scale is built upon six factors and their individual
weights. The associated formula is shown in equation (1) where di represents the
rating provided by a person after the execution of an underlying task while wi is
the weight associated with that dimension and achieved by a pairwise procedure.
The questionnaire used by NASA can be found in [15].

NASA− TLXMWL =

(
6∑

i=1

di × wi

)
1

15
(1)

The Workload Profile (WP) is another subjective MWL assessment method
based upon the Multiple Resource Theory (MRT) proposed by Wickens [49]. The
WP index is built upon 8 dimensions: perceptual/central processing, response
processing, spatial processing, verbal processing, visual processing, auditory pro-
cessing, manual responses and speech responses. An operator is asked to rate the
proportion of attentional resources, in the range [0..1] ∈ <. The final MWL index
is a simple sum of the 8 factors as shown in equation 2.

WPMWL =

8∑
i=1

di (2)

For a further analysis of the questionnaires associated with the two aforemen-
tioned measurements methods, we refer the reader to [25].



2.3 Criteria for the development of MWL measurement methods

There are different criteria that have emerged in the last few decades in the
literature of mental workload for the evaluation of measurement methods and
for assessing their inferential capacity [35]. A method adhering to all the criteria
below is ideal, but unfortunately it is not always the case.

– Sensitivity: the method should be responsive to variations in task difficulties
and other factors believed to influence mental workload on the task level;

– Diagnosticity: the method should be diagnostic and be capable of identifying
the changes in workload variation and the causes of these changes;

– Intrusiveness: the method should not be intrusive or interfere with the pri-
mary task performance;

– Requirements: the method should demand minimum equipment to avoid
influencing the performance of humans during primary task execution;

– Acceptability: the method should achieve high acceptance from humans;
– Selectivity: the method should be highly sensitive to MWL factors and not

affected by other factors that are not related to MWL;
– Bandwidth and reliability: the method should be reliable during the tests

and should be able to detect changes in MWL;
– Validity: the capacity of the method to measure MWL (sometimes referred

to as reliability).

2.4 Gaps in measurement methods

The vast majority of the procedures for measuring MWL are theory-driven and
deductive in nature. Deductive inference of mental workload follows a top-down
approach. It starts with a hypothesis, or a set of hypotheses, based on existing
knowledge and theories, and then it moves towards the measurement and quan-
tification of those factors believed to influence mental workload, their aggregation
and a final inference, usually an index or score. However, as in other scientific
fields, inductive research methodologies can be applied to create models of mental
workload from data and produce alternative inferences. An inductive data-driven
inference of mental workload follows a bottom-up approach that starts with the
measurement and quantification of those factors believed to influence mental
workload. It then applies inductive learning classification techniques that can
learn from these quantities and produce computational models capable of fitting
human performance. Nowadays, one of the most popular research fields devoted
to the development of inductive models is Machine learning (ML), a sub-field of
Artificial Intelligence (AI). ML aims to develop algorithms and procedures that
can learn from data, extract trends, patterns and make predictions.

In MWL measurement, the need to use Machine Learning arises because of
the multifaceted characteristics of MWL itself, the ambiguity and uncertainty
associated with the many non-linear factors shaping this construct and the diffi-
culties associated with their aggregation and the development of computational
models. Not a lot has been done in the application of ML techniques to the
automatic construction of MWL models that consider subjective measures.



2.5 Machine Learning and Inductive data-driven methods for MWL

Generally speaking, an inductive data-driven research approach is driven by an
observation and analysis of available data toward the extraction of meaning,
patterns, relationship and eventually the development of theories. From its in-
ception, Machine Learning (ML) has gone far beyond the pattern recognition
capabilities. Nowadays, ML algorithms are able to adapt, encode, decode and
induce models from heterogeneous data not linearly related, with different char-
acteristics, types, ranges and scales.

Recent studies revealed that most of the applications of Machine Learning in
the field of Mental Workload focused on the processing of signals of physiological
measures and as a form of benchmark for other measurement techniques [42].
For instance, [33,10,45] focused on the analysis of eye-gaze patterns of humans,
while interacting with computer screens, and with other devices. Other stud-
ies focused on behavioural measures for assessing mental workload [9,13] and
on modelling techniques for representing this construct [19]. Some researchers
applied linguistic and keyboard dynamics for mental workload detection [34] or
functional near-infrared spectroscopy for mental workload classification [36,16].
Yet, others tackled the problem of mental workload modelling through simula-
tion, in multitask contexts [11], or in driving situations [51] employing Machine
Learning.

3 Design and Methodology

This section is devoted to the design of a comparative study that consider mod-
els of mental workload, existing in the literature, and novel data-driven models
developed using Machine Learning classification techniques. An existing dataset
is employed for such purposes and the CRISP-DM methodology (the Cross In-
dustry Standard Process for Data Mining)[7] is followed.

3.1 Comparative research design

As described in figure 1, the main aim of the experiment is to compare the in-
ferential capacity of two state-of-the-art models of MWL, used as a baseline,
against novel inductive models built upon an existing dataset [25]. On one hand,
the baselines are the MWL subjective assessment techniques described in the
previous sections: the NASA task load index (NASA-TLX) [15] (equation 1)
and the Workload profile (WP) [48] (equation 2). On the other hand, the in-
ductive data-driven models are developed employing different Machine Learning
classification techniques, as described in section 3.3. Baselines models and data-
driven models will generate different inferences, in the form of indexes of mental
workload, given the same input set, and these will be subsequently compared
through an analysis of their validity.



Fig. 1: Experiment Design Diagram.

3.2 Dataset

An existing dataset containing self-reporting measures, provided by users who
executed a set of typical tasks over three popular web-sites, has been used [27].
The dataset contains data from more than 40 volunteers performing 9 web-
based tasks of varying difficulty and contexts, and requiring different human
modalities for processing information. A description of the tasks as well as the
self-reporting measures collected during the experiment can be found in [25]. The
participants, after each task, were asked to fill in the NASA-TLX questionnaire,
the Workload Profile questionnaire and another set of questions believed to be
useful for modelling mental workload. This last set of questions is not accounted
for in this research study. At the end of each task, a final objective performance
class was assigned to each volunteer:

– 0: the task was not completed as the user gave up;
– 1: the execution of the task was terminated because available time was over;
– 2: the task was completed and no answer was required by the user;
– 3: the task was completed, the user provided an answer, but it was wrong;
– 4: the task was completed and the user provided the correct.

3.3 Implementation of Machine Learning MWL models

In order to build inductive MWL models from the chosen dataset, the Cross In-
dustry Standard Process for Data Mining (CRISP-DM) approach was followed
[7]. This process is built upon six stages; business goals, data understanding,
data preparation, modelling, and eventually model evaluation and deployment.



Goals: the aim is to induce models of mental workload, from data, capable
of predicting as best as possible the previously described objective performance
class (dependent feature, section 3.2) through a set of independent features.
These are exactly the same features employed in the selected baseline models
(NASA-TLX, WP). Induced models are expected to perform better than the
baseline models in the prediction of the objective performance class.

Data Understanding: the data involved in the creation of inductive MWL
models includes the information associated with the original NASA-TLX and
WP instruments. Data exploration is the first part in which an Analytic Base
Table (ABT) is built for discovering the nature of data and investigating its
characteristics, such as the type of features, their values and ranges. Likewise, it
highlights the quality of data, missing values and outliers (table 1). It is possible
to observe that the target feature follows an imbalanced distribution (figure 2a).

Independent feature type miss n mean sd median min max range skew kurtosis se

Feature set 1: questions of NASA-TLX
NASA Mental R 0 405 50.76 26.82 59 1 100 99 -0.25 -1.06 1.33
NASA Temporal R 0 405 39.54 29.8 33 1 100 99 0.34 -1.13 1.48
NASA Stress R 0 405 37.17 29 30 1 100 99 0.51 -0.91 1.44
NASA Effort R 0 405 56.38 25.75 63 1 100 99 -0.52 -0.73 1.28
NASA Performance R 0 405 67.95 29.41 76 1 100 99 -0.94 -0.15 1.46

Feature set 2: original pairwise comparisons of NASA-TLX
NASA MenTem C 0 405 0.37 0.48 0 0 1 1 0.56 -1.69 0.02
NASA MenPsy C 0 405 0.3 0.46 0 0 1 1 0.89 -1.21 0.02
NASA MenEff C 0 405 0.63 0.48 1 0 1 1 -0.52 -1.73 0.02
NASA MenPer C 0 405 0.51 0.5 1 0 1 1 -0.02 -2 0.02
NASA TemPsy C 0 405 0.42 0.49 0 0 1 1 0.33 -1.89 0.02
NASA TemEff C 0 405 0.63 0.48 1 0 1 1 -0.52 -1.73 0.02
NASA TemPer C 0 405 0.62 0.48 1 0 1 1 -0.51 -1.74 0.02
NASA PsyEff C 0 405 0.73 0.45 1 0 1 1 -1.02 -0.96 0.02
NASA PsyPer C 0 405 0.71 0.46 1 0 1 1 -0.9 -1.19 0.02
NASA EffPer C 0 405 0.52 0.5 1 0 1 1 -0.07 -2 0.02

Feature set 3: total preferences of pairwise comparison (weight) for NASA-TLX
NASA menTotPref R 0 405 3.2 1.13 3 1 5 4 -0.23 -0.72 0.06
NASA TemTotPref R 0 405 2.7 1.37 2 1 5 4 0.36 -1.12 0.07
NASA PsychTotPref R 0 405 2.28 1.34 2 1 5 4 0.7 -0.74 0.07
NASA EffTotPref R 0 405 3.46 1.1 4 1 5 4 -0.35 -0.64 0.05
NASA PerTotPref R 0 405 3.36 1.31 3 1 5 4 -0.27 -1.07 0.07

Feature set 4: original Workload Profile
WP CentralProcessing R 0 405 53.02 27.36 60 0 100 100 -0.35 -0.97 1.36
WP ResponseProcessing R 0 405 33.92 27.14 27 0 100 100 0.48 -0.97 1.35
WP SpatialProcessing R 0 405 23.97 24.34 18 0 100 100 1.05 0.23 1.21
WP VerbalProcessing R 0 405 51.59 34.43 60 0 100 100 -0.22 -1.43 1.71
WP VisualInput R 0 405 62.24 27.58 68 0 100 100 -0.66 -0.5 1.37
WP AuditoryInput R 0 405 33.25 37.78 13 0 100 100 0.67 -1.24 1.88
WP ManualResponse R 0 405 30.18 26 23 0 100 100 0.62 -0.7 1.29
WP SpeechResponse R 0 405 12.06 18.28 3 0 100 100 1.96 3.76 0.91

Dependent feature
Objective performance C 15 390 3.22 1.1 4 0 4 4 -1.28 0.63 0.06

Table 1: ABT table and features (R=Range, C=Categorical)



Data Preparation: the main aim of this stage is to construct the final
dataset for subsequent modelling. Here, the dataset is divided into two segments:
independent features and target (dependent) feature. The independent continu-
ous features and answers of the experimental questionnaires ([1..100] ∈ N), have
been normalised into a scale of unit norm [0..1] in < [17]. The following sets of
independent features were extracted:

– Raw-NASA - it contains the original NASA-TLX factors excluding the phys-
ical factor as it was not part of task activities (feature set 1 of table 1);

– Original-NASA - it contains all the NASA-TLX factors in addition to the
binary preferences among the factors, which emerged from the pairwise com-
parison of the original NASA-TLX (feature sets 1+2 of table 1);

– Weighted-NASA - it contains the NASA-TLX factors and the calculated
weight for each factor – number of times a factor has been preferred over the
others, in the original NASA-TLX pairwise comparison procedure (feature
sets 1+3 of table 1).

– WP - it includes the eight WP features (feature set 3 of table 1).

Often, in Machine Learning, the imbalance of the target class can likely affect the
creation of robust models, which will tend to be better in predicting the majority
classes but not the minority classes. In order to solve this issue, an over-sampling
technique has been selected and applied to restore the target class balance. In
simple words, the concept of over-sampling is to reproduce relative samples for
only one minority class. However, in this specific case, four minority classes
exist (figure 2a) and hence the oversampling algorithm has been executed for all
the 4 minority classes. The Density-Based SMOTE (DBSMOTE) algorithm was
selected [4] among others tested in the preparation phase because of its higher
capacity to avoid overfitting of data [6]. Figure 2b shows a distribution obtained
using the oversampling method over the full dataset.

(a) Original distribution. (b) Illustrative over-sampled distribution.

Fig. 2: Original and oversampled distribution of target using the DB-SMOTE

Data Modelling: this stage is aimed at inducing computational models by
learning from data. This is a non-trivial task not only because the modelling
algorithm(s) must be selected from a large number of Machine Learning algo-
rithms, but also because an optimal configuration of these algorithms have to



Fig. 3: Detailed design schema: model construction, validation and testing

be found. The selection of supervised learning techniques is done by type. The
rationale behind selecting different types is to tackle the MWL modeling prob-
lem from different perspectives to allow subsequent triangulation of results and
achieve robust findings. Four Machine Learning classification techniques have
been chosen:

– Probability based: Naive Bayes
– Similarity based: K-nearest Neighbors
– Information based: Random Forest (based on Decision Trees)
– Error Based: Support Vector Machines (with Radial Basis Function Kernel)

In order to induce robust models with a higher degree of generalisability, a com-
mon way of training models is to split the original data into training and test
sets (figure 3). Because of the limited dataset size (|dataset| = 405 instances),
the split ratio selected is 90% instances for training and 10% for testing. Addi-
tionally, because the original distribution of the independent feature is highly
imbalanced, random stratified sampling [46] is used to perform the split. This
technique allows to representatively sample even the smallest and most inacces-
sible subgroups both in training and test sets. Once the training set has been
formed, oversampling is applied to it. Subsequently, the K-folds cross validation
technique is used as the training method [18,1,37], always justified by the limited
size of available data. This technique divides the dataset into k subsets and, for
k iterations, one of the k subsets is used as the validation set and the other k−1
subsets are textcolorredcombined to form the training set. Usually, the average
error across all k trials is computed. In this research, k is set to 10 and the best
model emerged out of 10, in term of accuracy, is selected as the final representa-
tive model. Eventually, this final model is tested against generalisability with the
10% of instances held-out originally. The overall process is eventually repeated
again 10 times, shifting the test set, thus producing 10 accuracies for a given
selected learning algorithm X.



Model Evaluation: this is the last stage aimed at evaluating the induced
models from the previous phase and their inferential capacity and performance.
Overall, 16 final models have been built (4 classifiers for 4 feature sets) each
having 10 associated accuracies. The metrics selected for evaluating these final
models are: prediction accuracy (observed accuracy) and the Kappa coefficient.

Accuracy is required for the overall interpretation of an induced model while
the Kappa coefficient provided a more in-depth interpretation, as it is sensitive
to imbalanced data. Several studies relied on the Kappa coefficient for evaluating
inductive multi-class models [2,14,8]. As shown in equation 3 and 4, the P0 is
the probability of overall agreement for a specific label across all classes, the
PC
e represents the sum of the proportion of the number of samples assigned to a

class, times the proportion of true labels of that class. Ni: and N:i are the sums of
number in the i-th column and the i-th row of the confusion matrix, respectively.
The Kappa statistic is a metric that compares an observed accuracy with an
expected accuracy (random chance). It accounts for random chance (agreement
with a random classifier), which generally means it is less misleading than simply
using accuracy as a metric. An observed accuracy of 90% is less impressive with
an expected accuracy of 70% versus an expected accuracy of 50%.

κ =
(P0 − PC

e )

(1− PC
e )

(3)

PC
e =

∑I
i=1Ni:N:i

(N2
Total)

(4)

The criteria selected for the comparison of the inferential capacity of the base-
line models (NASA-TLX, WP) and the inductive data-driven models (emerged
from the previous modeling phase) are as follows.

– concurrent validity : the extent to which a technique can explain objective
performance measures, as in this case, the objective performance class [25];

– convergent validity : aims at determining whether different MWL assessment
techniques relate to each other [40].

4 Results and Evaluation

4.1 Concurrent validity of baseline MWL models

To measure the concurrent validity of the selected baseline models (NASA-TLX,
WP), the Spearman’s correlation coefficient has been selected as it evaluates
the monotonic relationship between the two continuous MWL indexes with the
objective performance class. Table 2 depicts the correlations highlighting a weak
statistically significant correlation (P < 0.01) between the NASA-TLX and the
objective performance class and a non-significant correlation (P = 0.72) between
the WP and the objective performance class.



*significant at the 0.01 level (2-tailed) WP NASA-TLX

OBJECTIVE PERFORMANCE -.019 -.246*

Sig. (2-tailed) .720 <0.0001

Table 2: Concurrent validity: correlation of NASA-TLX, WP vs performance

4.2 Concurrent validity of data-driven MWL models

The concurrent validity of the Machine Learning data-driven models is computed
by analysing the distribution of the accuracies and the Kappa scores obtained
with the 10-fold cross-validation technique used in the training phase, as high-
lighted in figure 3 (Model construction phase), across the different features sets
(1, 2, 3, 4 of table 1) and the different learning techniques (Naive Bayes, K-
nearest Neighbours, Random Forest, Support Vector Machines).

Fig. 4: Training accuracies, kappa scores grouped by Machine Learning classifier

From the boxplots of the accuracies and the kappa-scores of figure 4, it is
possible to assess that the classification methods Random Forest and Support
Vector Machines (using a radial kernel) are the most robust methods emerged
from the training phase (model construction phase of figure 3). In details, ac-
cording to the distribution of accuracies, the Random Forest method is capable
of producing more accurate models of mental workload, for all the feature sets,
and the distributions of the kappa scores confirm that these models are more
reliable and not in agreement with a random classifier (section 3.2).



Fig. 5: Training accuracies, kappa scores grouped by independent feature set

From the boxplots of figure 5, a clear picture does not emerge, and it is
not possible to clearly assess which feature sets are more useful in allowing the
construction of inductive MWL models from data with higher accuracy. As a
consequence, the models built with the Random Forest and the Support Vector
Machine methods have been extracted, as depicted in figure 6.

Fig. 6: Training accuracies and kappa scores grouped by independent feature set
for the best models induced by Random Forest and Support Vector Machines



The boxplots of figure 6 suggest that the features set 4 (Workload profile
of the ABT table 1) and the feature set 3 (Weighted Nasa of the ABT table
1) are slightly better than the others, although a statistical significance is not
present. These results refer to the model construction phase of the diagram of
figure 3. In this phase, 10% of the dataset instances was held out at each itera-
tion, for 10 times, and this 10% was used to test the accuracies of the best model
emerged from each iteration, as depicted in the model validation phase (figure 3).

Models validation results: figure 7 depicts the distributions of the accu-
racies achieved by the best models (out of 10), both grouped by the Machine
Learning methods used (a), and by the features sets (b).

(a) grouped by learning method (b) grouped by feature set

Fig. 7: Accuracies obtained by the best final models, emerged from the model
construction phase, using the held out validation sets

The accuracies obtained (figure 7 a) with the test sets, are on average lower
than those which emerged in the model construction phase. This is reasonable
given that each held out validation set contains instances of the original dataset
never used in the model construction phase. However, the results show the same



trends emerged during the model construction phase, confirming how Random
Forest and Support Vector machines are the most robust learning methods to
build MWL models with the underlying dataset. This can be further grasped
from figure 8 (a) which plots the density distributions of all the best final mod-
els, obtained across all the features sets (4 sets x 10 iterations=40 points per
method). From figure 7 (b), it seems that the feature set 3 (the weighted-NASA
as described in section 3.3) is the richest in terms of the information it carries
for building MWL models when compared to the other features sets. This is also
confirmed from the density plots of accuracies of figure 8 (b) with the ‘weighted
NASA’ feature set showing a more compact and taller curve, meaning on av-
erage superior than the other features sets. It is important to note that, even
considering the best modelling methods (Random Forest and Support Vector
Machines), the testing accuracies varies from 0.4 to 0.6 (40% to 60%) indicating
that either more data is needed to build better MWL models or more descriptive
(independent) features, carrying other information, are needed to increase their
accuracies. These results are in line with current research on mental workload
and the well known difficulties in predicting human performance.

(a) grouped by earning method (b) grouped by feature set

Fig. 8: Accuracy densities, emerged from the model construction phase, using
the held out validation sets

Finally, to summarise the findings related to the concurrent validity of the
inductive data-driven models produced in this study, and the baseline state-of-
the-art models – namely the NASA-TLX and the Workload profile – an investi-
gation of the correlation of their assessments against objective performance has
been carried out, as depicted in figure 9.



Fig. 9: Concurrent validity: distributions of the spearman correlations of the
MWL inductive and deductive models against objective performance

In details, the following correlations were computed:

– the objective performance class (section 3.2) predicted by the induced learn-
ing models against the objective real performance class assigned to a volun-
teer executing an underlying task (the ground truth, section 3.2);

– the MWL scores, produced by the baseline models (NASA-TLX, WP, in the
range [0..100] ∈ N) against the objective real performance class assigned to
a volunteer executing an underlying task (the ground truth, section 3.2).

Due to the fact that at least one of the two variables, in each correlation
analysis, is always a categorical variable, the Spearman correlation method has
been adopted instead of the Pearson correlation method, as the former does not
require the variables being normally distributed, and the latter requires both
continuous variables. From figure 9, it is possible to note that, on one hand,
the box plots associated with the baseline models are closer to 0, suggesting
that there is no real correlation between their assessment and the objective
performance experienced by the volunteer in the experimental task. A similar
result is achieved by the data-driven models produced using the features set
4 (containing the attributes of the original Workload Profile instrument). On
the other hand, this situation is improved by the data-driven models of MWL
built using the feature sets 1,2,3 (section 3.3, containing the attributes of the
original NASA-TLX). Correlations are more far away from 0, indicating that
a clearer and better relationship between the predicted objective performance
class, and the observed objective real performance experience by the volunteer
in the experimental task can be obtained.



4.3 Convergent validity of baseline and data-driven MWL models

The convergent validity of the Machine Learning-based induced models is com-
puted by analysing their correlation with the original NASA Task Load Index
and the Workload Profile instruments, baseline models. Figures 10 and 11 de-
pict the correlations and, as before, the Spearman correlation coefficient has
been preferred over the Pearson correlation coefficient because of the presence of
categorical data and a relaxation of the assumptions of normality of variables.

Fig. 10: Convergent validity: distributions of the spearman correlations of the
MWL data-driven models against the NASA-TLX model

Fig. 11: Convergent validity: distributions of the Spearman correlations of the
MWL data-driven models against the WP model



The box-plots of figure 10 and 11 show a weak correlation between the base-
line and inductive data-driven MWL models. In detail, the Machine-Learning
based induced models correlate better to the assessments produced by the orig-
inal NASA-TLX and have nearly null correlation with those produced by the
Workload Profile instrument. This suggests that incorporating the features of the
original NASA-TLX (or their manipulation) in a data-driven model is more use-
ful than using the features of the original Workload Profile instrument. In other
words, induced models, built using Machine Learning classification techniques
are closer to the NASA-TLX assessment instrument rather than the Workload
Profile instrument.

4.4 Summary of Findings

The findings achieved in this empirical research showed that:

– the concurrent validity achieved by the inductive data-driven models of
MWL, built using Machine Learning classification techniques, outperform
the concurrent validity of two state-of-the-art baseline models of MWL,
namely the NASA-TLX and the Workload Profile. In detail, figure 9 high-
lights the capacity of the inductive data-driven models to correlate to human
performance better than the selected baseline models.

– the convergent validity of the inductive data-driven models, built using Ma-
chine Learning classification techniques, and the baseline models of MWL,
namely the NASA-TLX and the Workload Profile assessment techniques, is
rather weak.

The weak convergent validity of the inductive data-driven models and the
baseline MWL models would suggest that, if the NASA-TLX and the WP in-
struments are taken as benchmarking, then the assessments produced by the
inductive models is poorly assessing mental workload as a construct. However,
the concurrent validity of the induced models better explain human performance
than the NASA-TLX and WP instruments. Thus, because the main reason of
assessing MWL is to predict human performance, then the inferential capacity
of the inductive models is argued to be superior than the baseline models, high-
lighting the potential of Machine Learning as a method for modelling MWL and
increasing its understanding as construct.

5 Conclusion

This unique research study, the first of its kind to the best of our knowledge,
was aimed at comparing the inferential capacity of two baseline mental workload
(MWL) assessment techniques using self-reporting data – namely the NASA
Task Load Index and the Workload Profile instruments – against inductive
data-driven models of mental workload built using Machine Learning classifi-
cation techniques. The Cross Industry Standard Process for Data Mining was
followed for building inductive models using four Machine Learning classification



techniques of different types: Naive Bayes, based on probability measures; the K-
nearest Neighbors classifier, based on similarity measures; Random Forest, based
on Decision Trees and information measures; and Support Vector Machines,
based on error measures. The underlying dataset [27], used for the comparison,
is part of a bigger study [24] and already used in literature [32,25,31,40]. This
includes self-reporting data, obtained from human volunteers, after executing
typical web-based tasks upon three popular websites. The findings confirm the
original hypothesis in which MWL models, built using classification techniques,
were expected to outperform baseline theory-driven models in the prediction of
human performance (concurrent validity). In this context, concurrent validity
was the capacity of a MWL assessment technique to predict an objective per-
formance class (categorical variable) which was a real behavioural indicator of
the performance achieved by humans on experimental tasks. Findings, although
promising, cannot be generalised as only one dataset of small size has been
used. Further investigations and empirical research needs to be carried out to
strengthen this contribution and confirm the potential of Machine Learning as
a novel methodology for building data-driven models of mental workload and
increasing our understanding of this fascinating complex construct.

Future work will be devoted to collect novel data, not using only self-reporting
assessment techniques, but also primary and secondary task measures as well as
physiological measures. Different contexts of application will be explored, in-
cluding for example virtual reality applications [21], simulation in safety critical
environments [47], in educational settings [50] and clinical environments [28].
Additional Machine Learning classification techniques will be selected and fur-
ther existing theory-driven models of mental workload will be considered for
additional comparison.
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