
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computing

2013-9

Computing the Grounded Semantics in all the Subgraphs of an Computing the Grounded Semantics in all the Subgraphs of an

Argumentation Framework: an Empirical Evaluation Argumentation Framework: an Empirical Evaluation

Pierpaolo Dondio
Technological University Dublin, pierpaolo.dondio@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Pierpaolo D.: Computing the Grounded Semantics in all the Subgraphs of an Argumentation Framework:
an Empirical Evaluation. CLIMA, XIV Workshop on Computational Logic in Multi-Agent Systems, Lecture
Notes in Artificial Intelligence, Springer, 2013. doi:10.1007/978-3-642-40624-9_8

This Article is brought to you for free and open access by
the School of Computing at ARROW@TU Dublin. It has
been accepted for inclusion in Articles by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=arrow.tudublin.ie%2Fscschcomart%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=arrow.tudublin.ie%2Fscschcomart%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Computing the Grounded Semantics in all the Subgraphs
of an Argumentation Framework: An Empirical

Evaluation

Pierpaolo Dondio1

1 School of Computing, Dublin Institute of Technology,
Kevin Street 2, Dublin, Ireland

pierpaolo.dondio@dit.ie

Abstract. Given an argumentation framework �� = (��, �) – with �� a finite
set of arguments and �	 ⊆ 	�� × �� the attack relation identifying the graph � –
we study how the grounded labelling of a generic argument a	∈ �� varies in all
the subgraphs of �. Since this is an intractable problem of above-polynomial
complexity, we present two non-naïve algorithms to find the set of all the sub-
graphs where the grounded semantic assigns to argument � a specific label � ∈ {��, ���, �����}. We report the results of a series of empirical tests over
graphs of increasing complexity. The value of researching the above problem is
two-fold. First, knowing how an argument behaves in all the subgraphs repre-
sents strategic information for arguing agents. Second, the algorithms can be
applied to the computation of the recently introduced probabilistic argumenta-
tion frameworks.

Keywords: Argumentation Theory, Semantics, Algorithms

1 Introduction

An abstract argumentation framework �� is a directed graph where nodes represent
arguments and arrows represent the attack relation. 	��� were introduced by Dung [2]
to analyze properties of defeasible arguments.

The problem investigated in this paper is the following: given an argumentation
framework �� = (��, �) – with �� a finite set of arguments and �	 ⊆ 	�� × �� the
attack relation identifying the graph � – we study how the grounded labelling of a
generic argument a	∈ �� varies in all the subgraphs of �. Since this is an intractable
problem of above-polynomial complexity, we present two algorithms, one recursive
and one modelled as a decision-tree, to find the set of all the subgraphs where the
grounded semantic assigns to an argument � a specific label � ∈ {��, ���, �����}.

The value of researching the above problem is two-fold. First, knowing how an ar-
gument behaves in all the subgraphs of an argumentation graph helps us to understand
the sensitivity of the argument label to the removal of other arguments via further

attacks. This represents strategic information for agents in pursuing a discussion,
since they can identify which arguments should be attacked.

However, the main motivation is represented by the recently introduced probabilis-
tic argumentation frameworks. In such frameworks, the computation of the probabil-
ity of acceptance of arguments requires the identification of all the subgraphs where a
certain label for an argument holds (this is known as the constellation approach [6]).

This first work only presents algorithms and results for grounded semantics. This is
mainly due to space limitations and the fact that the versions of our algorithms for
other semantics have not been yet implemented and therefore an empirical evaluation
cannot be made. However, the idea behind the algorithms proposed is general enough
to be applied to other semantics. Our recursive algorithm is based on constraints valid
for any complete semantics and we have already presented a version for preferred
semantics in [11]. The core mechanism of our decision-tree algorithm, based on split-
ting subgraphs and removing irrelevant arguments, is valid for any complete seman-
tics and it can be extended to specific semantics by modifying the treatments of cyclic
subgraphs.

The paper is organized as follows: section 2 presents the required background of
abstract argumentation; section 3 sets the problem with the required definitions and
presents a brute-force algorithm; section 4 describes the recursive algorithm; section 5
describes our decision-tree algorithm; section 6 reports the results of our experimental
evaluation before the description of related works in section 7 and conclusions.

2 Background Definitions

Definition 1 (Abstract Argumentation Framework) Let � be the universe of all
possible arguments. An argumentation framework is a pair (��, �) where �� is a
finite subset of 	� and �	 ⊆ 	�� × �� is called attack relation. We define an argument � initial if ∄� ∈ ��	|	�(�, �), i.e. the argument is not attacked.

Let’s consider �� = (��, �) and ���� ⊆ ��.
Definition 2 (defense) ���� defends an argument �	 ⊆ 	�� iff ∀b	ϵ	��	such	that	�(�, �), ∃	�	*	����	such	that	�(�, �). The set of arguments de-

fended by ���� is denoted �(����).
Definition 3 (indirect attack/defense) Let 	�, �	 ∈ 	�r and the graph � defined by (��, �). Then (1) � indirectly attacks � if there is an odd-length path from � to � in

the attack graph � and (2) � indirectly defends � if there is an even-length path (with
non-zero length) from � to � in �.

Labelling A semantics identifies a set of arguments that can survive the conflicts
encoded by the attack relation �. In the labelling approach a semantics assigns a label
to each argument. Following [4], the choice for the set of labels is: ��, ��� or �����.

Definition 4 (Labelling/conflict free). Let �� = (��, �) be an argumentation
framework. A labelling is a total function L ∶ 	��	 → 	 {��, ���, �����}. We write ��(.) for {�*	��	|	.(�) = ��}, ���(.) for {�*	��	|	.(�) = ���}, and �����(.) for {�*	��	|	.(�) = �����}. We say that a labelling is conflict-free if no ��-labelled
argument attacks an (other or the same) ��-labelled argument

Definition 5 (complete labelling). Let �� = (��, �� be an argumentation frame-
work. A complete labelling is a labelling that for every �	 ∈ 	�r holds that:

1. if � is labelled �� then all attackers of � are labelled ���
2. if all attackers of � are labelled ��� then � is labelled ��
3. if � is labelled ��� then � has an attacker labelled ��
4. if � has an attacker labelled �� then � is labelled ���
5. if � is labelled ����� then it has at least one attacker labelled ����� and it does

not have an attacker labelled ��.

Theorem 1, Grounded Labelling. (proved in [4]) Let �� � ���, �� be an argu-
mentation framework. . is the grounded labelling iff . is a complete labelling where
	������.� is maximal (w.r.t. set inclusion) among all complete labellings of ��.

In figure 1 two argumentation graphs are depicted. The grounded semantics assigns
the status of ����� to all the arguments of ��� (always when there are no initial ar-
guments), while in �/� it assigns �� to � and �, and ��� to �. Note how	� reinstates �.

Figure 1. Two Argumentation Graphs (A) and (B)

3 Describing and Labelling Subgraphs

Given an argumentation framework �� � ���, �� with |��| � �, and the graph �
identified by �� and �, we consider the set 0 of all the subgraphs of �. We focus on
particular sets of subgraphs, i.e. elements of 23. Given �	 ∈ 	�r, we define:

� � �� ∈ 0	|� ∈ �� ; �̅ � �� ∈ 0	|� ∉ ��
that are respectively the set of subgraphs where argument � is present and the set of
subgraphs where � is not present (note how we use �̅ for the complementary set �6).
If �� � ��7, . . , �8�, a single subgraph � can be expressed by an intersection of � sets
�9 or �:; (0 = � > �) depending on whether the �?@ argument �9 is or is not contained
in �.

In general, we can express a set of subgraphs combining some of the sets
�7, . . , �8	, �7AAA, . . , �8AAAA. with the connectives �∪,∩�. We write �/ to denote � ∩ / and
� D / for � ∪ /. For instance, in figure 1 the single subgraph with only � and � pre-
sent is denoted with �̅/E, while the expression �/ denotes a set of two subgraphs
where arguments � and � are present and � can be either present or not.

We call a clause F a finite intersection (or conjunction) of sets �9 , �:; . We consider
expressions of sets of subgraphs in their disjunctive normal form, i.e. as a finite dis-
junction of clauses F7 D FGD. . DFH. An expression is said to be in standard form if
FI ∩ F9 � ∅, for each � > K, L > K, L M �. The standard form is made of disjoint sets
of subgraphs and it is of particular interest for its applications to probabilistic argu-
mentation. As an example, let’s consider the argumentation graph in fig.1 left. The
clause � D / is not in standard form. It identifies six out of eight possible subgraphs
(the two left out are the one where �, � and � are not present and the one with � and �
not present and � present). A standard form is for instance � D �̅/.

3.1 Grounded Labelling of Subgraphs

Given a subgraph � ∈ 0, the labelling of � simply follows the rules of the chosen
semantics. We therefore define a subgraph labelling N as a total function over the
Cartesian product of arguments in �� and subgraphs in 0, therefore N:�� � 0 →
���, ���, ������. When labelling a subgraph, we follow this choice: an argument � is
automatically labelled ��� in all the subgraphs where is not present (since it does
not promote any claim) or when it is present but it is labelled ��� by the semantics,
representing the effect on � of the other arguments.

In the case of grounded semantics there is only one labelling per subgraph �, that
we call N��� (we omit ��). We call ���N����, ����N����, 	������N���� the sets of
arguments labelled ��, ���, ����� in the labelling N���.	In order to study how an
argument behaves across subgraphs in 0, we define the following sets of subgraphs:

�PQ � �� ∈ 0: � ∈ ���N�����	; 	�STU � �� ∈ 0: � ∈ ����N�����
�T � �� ∈ 0: � ∈ ������N�����

which represent all the subgraphs where argument � is labelled ��, ��� or �����.
Example 1. Let’s compute �PQ for the graph of figure 1 left. There are 3 argu-

ments and 2V subgraphs; argument � is labelled �� in all the subgraphs where it is
present and � is not present (and � becomes irrelevant), i.e. the set of two subgraphs
�PQ � �/A . It is ����� when all the arguments are present, the single subgraph
�T � �/E, while it is labelled ��� when it is not present or when � is present and �
is not present, i.e. �STU � �̅ D �/E̅ (the set of the remaining five subgraphs).

The following definition is needed in the presentation of our algorithms.

Definition 6 (Exclusively connected arguments). Given an argument � and an
argumentation graph �, let’s define EW��� as the set of arguments connected to �, i.e.
the set of all arguments X for which there is at least a path from X to � in �.

Given two arguments � and �, we also define the set of arguments exclusively con-
nected to � via	�, called	�XEW,Y���. �XEW,Y��� is the set of arguments X for which
there is no path from X to � when � is removed from graph �. Therefore, if �’ is the
subgraph of � obtained by removing �, �XEW,Y��� � �X	|	X	*	EW��� 	⋀ X ∉ EW\����

3.2 The Brute Force Approach

A brute force algorithm to solve our problem simply computes the grounded seman-
tics in all the subgraphs of �� and it assigns each subgraph to �PQ, �STU or �T de-
pending on the label of argument � in that subgraph.

Algorithm 1 – A brute force approach for computing]^_,]`ab,]a

for each subgraph � of � � ���, ��
 for each argument � in �
 assign a label ���� to � in � using the chosen semantics
 if ���� � �� add � to �PQ

 if ���� � ��� add � to �STU
 if ���� � ����� add � to �T

The complexity of the problem studied is above polynomial. There are 28 possible
subgraphs, and the computation of the grounded semantics in each subgraph requires
a polynomial time, while other semantics such as the preferred are intractable (see
[9]). The algorithms proposed in this paper aim to reduce the computational time by
reducing the number of times the grounded semantics has to be computed, by identi-
fying set of equivalent subgraphs in one step instead of individually.

The brute approach is not efficient in the computation of �PQ and it is not efficient
in the way �PQ is expressed, that is a conjunction of single subgraphs. Let’s consider
the graph in figure 2 left. It can be computed that the expression of �PQ includes 56
subgraphs out of the potential 128 (in fact, there are 8 arguments and a total of 256
subgraphs, but we removed the 128 where is not present).

In [11] we describe an alternative algorithm, which we optimize in the next sec-
tion. The idea is that we do not need to consider all the subgraphs individually, but a
set of subgraphs can be assigned to �PQ, �STU or �T in a single step. For the graph of
figure 2 left, the optimized algorithm of the next section produces the expression in
standard form �PQ = �/Ac; D �/dc; D �/dA�c;, composed of only three clauses.

Figure 2. Three Argumentation Graphs

4 Computing]^_: A recursive algorithm

This section presents an algorithm to compute �PQ, �STU under grounded semantics.
Given a starting argument � and a label � ∈ ���, ����, we need to find the set of sub-
graphs where argument � is legally labelled . The idea is to traverse the transpose
graph (a graph with reversed arrows) from � down to its attackers, propagating the
constraints of the grounded labelling. While traversing the graph, the various paths
correspond to a set of subgraphs. The constraints needed are listed in definition 5 and
theorem 1. If argument � – attacked by n arguments X8 – is required to be labelled ��,
we impose the set �PQ to be:

�PQ � � ∩ ef7STU ∩ fGSTU ∩ …	∩ f8STUh					 condition (1)

i.e. argument � can be labelled in in the subgraphs where:

1. � is present - set � and
2. all the attacking arguments X9 are labelled ��� (sets f9STU�.

If � is required to be labelled ���, the set of subgraphs is:

�STU � �̅ ∪ � ∩ ef7PQ ∪ fGPQ ∪ …	∪ f8PQh						 condition (2)

i.e. � is labelled ��� in all the subgraphs where it is not present or at least one of
the attackers is labelled ��. Therefore we recursively traverse the graph, finding the

subgraphs that are compatible with the starting label of �. The sets f8STUand f8PQ
are found when terminal nodes are reached. When a terminal node XU is reached the
following conditions are applied:

1. if XU is required to be �� then fUPQ = fU

2. if node XU is required to be ��� then fUSTU = fUAAAA
The way the algorithm treats cycles guarantees that only grounded complete label-

lings are identified. If a cycle is detected, the recursion path terminates, returning an
empty set that also has the effect to discard all the sets of subgraphs linked with a
logical �ic (by condition 1) to the cyclic path. As described in [11], this treatment of
cycles guarantees to discard ����� arguments not contributing to �PQ or �STU and to
identify grounded complete labellings. We present the pseudo-code of the algorithm,
while Table 1 describes the steps for computing �PQ in the graph of figure 2 right.

Algorithm 2 - The Recursive FindSet(A,L,P) Algorith m

A is a node, L a label (IN or OUT), P is the list of parent nodes, Cset

holds the partial result of the computation of conditions (1) and (2).
FindSet (A,L,P):

if A in P:

 return empty_set // Cycle found

if L = IN:

 if A terminal:

 return a // Terminal condition for IN Label

 else :

 add A to P

 for each child C of A

 Cset = Cset AND FindSet (C,OUT,P)

return (a AND Cset) // condition 1

if L = OUT:

 if A terminal:

 return NOT(a) // Terminal condition for OUT Label

 else

 add A to P

 for each child C of A

 Cset = Cset OR FindSet (C,IN,P)

 return (NOT(a) OR (a AND Cset)) //condition 2

Table 1. Recursively applying Algorithm 2 on the graph of figure 2 right.

 Node,
label

Constraint Parent
List

Comment

1↓ �PQ �PQ = � ∩ /STU [] a must exist and b=OUT
2↓ /STU /STU = /A ∪ (/ ∩ (EPQ ∪ cPQ)) [�] b is out when b does not exist or b

exists and c = in or d = in
3= EPQ EPQ = E ∩ �STU [�, �] c=IN when c exists and a=OUT.

Cycle with a, EPQ = ∅
4= cPQ cPQ = c [�, �] d is initial
5↑ /STU /STU = /A ∪ (/ ∩ D)
6↑ �PQ Ano = A	 ∩ eB; ∪ (B ∩ D)h = �B; D �/c

4.1 Optimizations

Generating non-overlapping solutions. The �������q� algorithm generates solu-
tions not in standard form, composed by potentially overlapping clauses. If – as in the
probabilistic frameworks – sets of disjoint subgraphs are required, a costly Boolean
simplification is needed. This is an inclusion-exclusion problem of combinatorial
complexity. It is also inefficient in that the recursive steps need to carry expressions
longer than necessary.

A more efficient approach is to modify the algorithm so it produces solutions
in a non-overlapping form by simplifying expressions during the computation. Let’s
analyse the two algorithm conditions:

1. �PQ = � ∩ ef7STU ∩ fGSTU ∩ …	∩ f8STUh			 condition (1)

2. �STU � �̅ ∪ � ∩ ef7PQ ∪ fGPQ ∪ …	∪ f8PQh condition (2)

Condition 1 clearly generates disjoints sets if f8STU are expressed as disjoint sets.
Regarding condition 2, since an expression such as � D / D ED.. can be rewritten as
disjoint sets in the form � D �̅/ D �̅	/AED.., we modify condition 2 as follows:

�STU � �̅ ∪ � ∩ rf7PQ ∪ f7PQAAAAAAfGPQ ∪ f7PQAAAAAA		fGPQAAAAAA	fVPQ ∪ …	∪ ef7PQAAAAAA …	f8s7PQAAAAAAAAA	hf8PQt �2��
In order to generate shorter expressions, the algorithm first computes XvPQAAAAA for all the
attackers, then it sorts the expressions of the set XvPQAAAAA in ascending order by number of
clauses contained in each expression and then it applies condition 2�.

Optimizing condition 1: returning empty set. When the ��-set of an argument has
to be computed, all its attackers X9 must be labelled ��� (condition 1). Therefore, if a
recursion step returns f9STU � ∅, the algorithm immediately returns �PQ � ∅.

Exploiting Rebuttals. Argument � is a rebuttal of argument � iff ���, �� and
���, ��. Rebuttals can be used to terminate a recursion branch earlier. In fact, if � and

 are rebuttals, under grounded semantics neither of them can defeat the other (see
[14] pag. 8). Therefore it is �STU � �	; instead of �STU � �	; D �/PQ as condition 2
would suggest in the general case. Therefore in the presence of a rebuttal argument �
the set �STU results independent from /PQ (that increments �T by forming a cycle),
and the algorithm can spare itself the recursive computation of �/PQ. This implies a
new terminal condition: while we are visiting node �, if � has a rebutting attacker �
then the general condition �STU � �	; D �/PQ can be replaced by the condition
�STU � �	; , that terminates the recursion branch. Note how without this optimization
the algorithm would eventually return �/PQ � ∅ in a further (and unnecessary) recur-
sion step when the cycle with � is detected.

Re-using computations. Since an argumentation framework can be composed of an
intricate set of links, the same node could be visited from different paths, and there-
fore the same label for the same argument may be computed more than once during
the recursion. The idea is therefore to re-use the computed sets. However, this is not
straightforward, since the expressions of fPQ (or 	fSTU� might be different according
to which path the recursion took before visiting X.

Let’s presume we can reach node X with two computations 1 and 2, and we
have already computed f7PQ. We wonder when we can reuse the result sets f7PQ to
compute f7PQ. It is clearly f7PQ � fGPQ if E7�X� � EG�X�, and the current version of

the algorithm implements this simplification, by keeping a buffer of the previously
solved recursion. Note how the condition E7(X) = EG(X) is quite restrictive and it
does not cover all the cases where previous computations, or part of them, can be
reused. We leave further simplification for future research.

Example 2. We apply the recursive optimized algorithm to the graph of figure 2 left.
Table 2 shows the computation performed. We comment on some of the differences
with the baseline recursive algorithms of section 3. First, condition 1 splits the com-
putation into two recursive steps. In step 1.1, the new condition 2� is applied to gen-
erate disjoints sets. The condition is further simplified by applying the rebuttals sim-
plification that removes the term /dPQAAAAA	�PQAAAAAEPQ from the expression of /STU. Since �
rebuts �, EPQ is irrelevant in the computation of /STU (note that would be relevant to
the computation of /PQ or /T, but these sets are not required by any recursive step).

Table 2. Computing �PQ using the optimized recursive algorithm for the graph of fig 2 left

1 �PQ = �/STUcSTU	 Condtion 1

 1.1 /STU = /A D /dPQ D /dPQAAAA�PQ D /dPQAAAA�PQAAAAAEPQ Condition 2b (with reordering) /STU = /A D /dPQ D /dPQAAAA�PQ 2b after rebuttals detection. Since
c rebuts b, c cannot label b	���.

1.1.1 dPQ = d Terminal node
1.1.2 �PQ = � Terminal node
 1.1 /STU = /A D /d D /dA� Solution of the recursive step 1.1
 1.2 cSTU = c; D c�PQ Condition 2b cSTU = c; Rebuttals optimization applied, �

cannot defeat �
1 �PQ = �(/A D /d D /dA�)c; Final Solution

5]wb: Arguments Decision Tree algorithm

In many cases, the recursive algorithm reduces the computational effort required to
compute �PQ in comparison with the brute force approach, but it is still prone to com-
binatorial explosion. For instance, for the graph of figure 2 centre the algorithm pro-
duces �PQ = (/A D /�)(E̅ D E�)(c; D c�)	(dA D d�), an expression with an expo-
nential number of terms equal to , where � is the number of nodes.

In this section we describe a new algorithm modelled as a decision-tree,
where at each step a node X is selected and the computation of �PQ is split in two dis-
joint graphs, one containing the node and the other not containing it (�PQ = �PQ\ f D�PQ\\ fA).

Our idea is to select a node that reduces the complexity of the remaining
subgraphs. We select the node X that makes the most number of nodes indifferent for
the computation of �PQ, because these nodes are either (1) defeated by X in the sub-
graph containing X or (2) disconnected from � in the subgraph where X is not present.
As an example, referring again to figure 2 centre, let’s select node x for our tree split.
In the subgraphs where node x is present, all the other nodes are defeated and � re-
sults labelled ��. When x does not exist, the only possible subgraph is the one not

containing all the attackers of �. Therefore �PQ = � D �A/AE̅c;dA, which is a shorter
and more manageable standard form expression.

The algorithm we present, called �cy, finds the sets �PQ , �STU , �T in paral-
lel; it is guaranteed to find disjoint sets and it works better than algorithm 2. First of
all, we need to define the metric used to select the argument used for the split. We call
this metric dialectical strength.

Definition 7. Given � = (��, �) and an argument � ∈ ��, the dialectical strength of
an argument X ∈ �� w.r.t. �, called cz{(X), is defined as follows:

If X is initial, cz{(X) is the number of arguments that are defeated by X plus
the arguments that result disconnected from � once the arguments defeated by X are
removed from �. Therefore:

cz{(X) = |{X} ∪ �(X) ∪ } �XE{(~)�∈�(�)
|

Where �(X) is the set of all arguments attacked by X, i.e. ∀X ∈ ��, �(X) = {� ∈��|�(X, �)}. Note that, if X directly attacks �, then cz{(X) = |��|. If x is not initial, cz{(X) is the number of arguments that are disconnected from � after X is removed.
Therefore: cz{(X) = |{X} ∪ �XE{(X)|
The argument with the highest cz{ is selected for the split. In the case of several
arguments with the same cz{, the node for the split is randomly selected.

In figure 2 centre, all the nodes have cz{ = 1, except argument x that has cz{(x) = 4 (of course it is always cz{(�) = |��|).
Once argument X is selected, the original graph � is split into �7 = �f and �G = �fA. For each subgraph the algorithm keeps a list of the nodes already used for

the split and the constraint over each split node (i.e. if in the subgraph the argument is
present or not present). At each step the algorithm removes the nodes defeated by
argument X in �7 and the nodes disconnected from � in �G. Note how a chain effect
can happen: by removing arguments, new initial nodes might be created that might
defeat other arguments. Note how the number of nodes removed is equal to the dialec-
tical strength cz Therefore, at each split �cy actually computes a set of 2��s7 sub-
graphs that, as proven at the end of this section, are all equivalent for the labelling of
�. Moreover, the computational complexity of �cy will strongly depend on the aver-
age value of the dialectical strength.

Regarding terminal conditions, �cy stops when one of the following terminal
conditions is met:

1. If argument � is defeated, the branch of the tree will contribute to �STU

2. If argument � is isolated, the branch of the tree will contribute to �PQ, since
� has no attackers.

3. If there are no more arguments for the split and neither of the above two are
verified, the branch contributes to �T since a cycle is detected.

Figure 3 proposes an illustrative example of the �cy algorithm applied to the graph
of figure 2 right, followed by the pseudo-code of the algorithm.

Figure 3. Visual Representation of the �cy Algorithm

At the beginning (not shown), the set �̅ is trivially assigned to �STU, and we start
from the situation where � is present (set of subgraphs �), depicted in subgraph 1 of
figure 3. First, the cz{ of each argument is computed. Arguments � and � have both cz{ = 3 while � has cz{(�) = 1. Therefore � is chosen.

In the subgraph (3), obtained by set � to present, � is defeated, � becomes in-
itial and defeats �. Therefore � is isolated, the terminal condition for �PQ is reached
and the path �c is added to �PQ. In the subgraph with � non-existent (2), no other
node is disconnected. Since no terminal condition is reached, a new split is needed.
Now � is selected. In the subgraph with � not present (4), argument � becomes isolat-
ed, and therefore the path �c;/A is added to �PQ, while in the graph with � present (5)
no arguments are disconnected. Only � is left for the split.

When � is present (subgraph 7), the terminal condition 3 is reached so �c;/E
contributes to �T. Subgraph 6, with � not present in the subgraph, contributes to �STU
(set of subgraphs �c;/E̅) since � becomes initial and defeats �.

Algorithm 3 – ADT (Arguments Decision Tree Algorith m).

Inputs: Graph �, argument � Output: (�PQ,�STU , �T)
Initialize C to ∅. //C is the list of constraints on the split
arguments
ADT(�, �, �)

If C is ∅ then C = �
remove from G all the nodes disconnected from node �
compute �W, the list of initial nodes of G
while (∃	X	in �W with f is in E)

for each X in �W with f in E
remove form G all the arguments attacked by X
update the initial list �W

remove form G all the arguments not connected to �
If ∄	� so that R(b,a) then add E to �PQ and return

If � ∉ � then add E to �STU and return

If no more nodes to split then add E to �T and return

for each X in � and not in E Compute the cz{(X)
select node X with highest cz{(X)
split the subgraph: �7 = � ∪ f and �G = � ∪ fA
call ADT (�7,�,E ∪ f)
call ADT (�G,	�,	E ∪ fA)

Optimization. We optimized the �cy algorithm by keeping a buffer of the subgraphs
that have already been computed. When, after a split, one of the remaining subgraph
has been already encountered in the computation, its solution can be reused and joint
with the constraints of the current branch. This operation is theoretically simpler than
in the case of the �������q� algorithm. For instance, considering the graph of figure
2 left, after we split using node	�, the subgraph where � is present is reduced to the
nodes {�, �}, but the same subgraph is obtained in the branch where � is not present
by further splitting, using node � and selecting the branch where node � is present.
The first branch has constraints � (� is present in all the subgraphs) while the second
has constraints �̅d (� is not present and � is present). A solution z for the subgraph {�, �} is computed only the first time the subgraph is encountered (branch � in our
example), generating the clause �z that is added to the �cy output. When the same
subgraph is encountered in the branch �̅d, the solution 	z is reused and joint with the
constraints of the branch, obtaining the new solution �dAz that is also added to the �cy output. For instance, referring to the computation of �PQ, the solution for the
subgraph {�, �} is �E̅, and this set is used to add the two clauses ��E̅ D �̅d�E̅ to the
output of �cy for the set �PQ.]wb����. We implemented a version of the above �cy algorithm, called �cy�{�?,
where at each step the node used for the split is chosen randomly. The algorithm will
be used to compare the impact of using the dialectical strength in the computation.

Soundness and Completeness. We end this section by proving the soundness and
completeness of the	�cy algorithm. Each of the clauses FI composing the output of
the �cy algorithm identifies a set of subgraphs. We prove that all the subgraphs iden-

tified by a clause assign the same label to argument � and this label is correctly as-
signed under grounded semantics. The set of subgraphs associated with a clause FI
have in common a subset of the arguments in ��, the arguments present in the expres-
sion of FI. For instance, if �� = {�, �, �, �, �}, the clause �/E̅ identifies all the sub-
graphs having in common the presence of nodes �, � and the absence of node �.
Nodes � and � are not specified, therefore their presence or absence is irrelevant and
they identify a set of 4 different subgraphs associated with FI. We prove that these
irrelevant arguments are actually irrelevant to the computation of the label of � and
therefore all the subgraphs in FI assign the same label to �. �cy uses two conditions
to identify irrelevant arguments. First, when the argument used for the split is re-
moved, all the arguments resulting disconnected from � are irrelevant to the labelling
of �. Second, in the subgraphs where an initial argument � is constrained to be pre-
sent, all the arguments attacked by � are labelled ���, and therefore they become ir-
relevant (as proven by [8], removing an ��� argument does not change the grounded
extension). Therefore all the arguments marked as irrelevant do not alter the label of �
and therefore we prove that all the subgraphs in FI assign the same label to �. �cy also assigns the correct label under grounded semantics, since its se-
cond condition and the three terminal conditions described above actually implement
the basic step of the algorithm for grounded labelling described by Modgil and
Caminada in [14, page 8] and therefore �cy generates correct grounded labellings.

In order to prove �cy completeness, we observe that the �cy algorithm con-
siders the entire problem space, since all the arguments that are not found irrelevant to
the labelling of � are split. Therefore in all the 28 subgraphs of � argument � is la-
belled by the �cy algorithm.

6 Evaluation

We implemented our algorithms in Python 2.7, and we performed a set of initial ex-
periments on a Windows 7 machine with 3Gb RAM and Core I3 Intel processor. We
implemented the following algorithms:

1. ����� – the brute force approach.

2.]wb – the decision-tree based algorithm using the dialectical strength as
splitting criterion.

3.]wb���� – the �cy algorithm where splitting nodes are selected randomly.

4. RecRecRecRec (�������q�) – the optimized recursive algorithm. All the optimization
of section 4 were implemented.

Our first evaluation tests two aspects of the computation of �PQ: computational time
and length of the output expression. The evaluation described in this paper does not
claim to be exhaustive. It focuses on the generic case of random graphs; it does not
study particular class of graphs nor does it test hybrid approaches.
Random Graphs Generation. We generate different acyclic and cyclic graphs of in-
creasing complexity both in terms of number of nodes and density. Graph instances
have been generated as follows. Given � arguments, we assign an incremental index �
to each argument and we generate a tree with node � as root, to guarantee that for
each argument there is at least a path to �. Then, in the case of acyclic graphs, random

links are added until the required density is reached. In order to generate only acyclic
graphs, the links are added only if they go from a node with a higher index to a node
with a lower index. In the case of cyclic graph, links are added randomly with no
restrictions. However, we require each random graph to at least contain a cycle. Note

that the density for an acyclic graph is computed over �(� − 1) (instead of
8(8s7)G

used for the acyclic case) to take into consideration the presence of symmetric attacks.

6.1 Experimenting with the length of]^_

This set of experiments tests the ability of each algorithm to express a standard-form
solution for �no in the most compact way. We use as a metric the length � of the ex-
pression of �PQ, defined as the number of clauses contained in its standard-form ex-
pression. Results reported are the average of a set of 1000 executions of each algo-
rithm using graphs differentiated by number of nodes, density and type (cyclic or
acyclic).

In the brute force approach, the length of the solution equates to the number
of subgraphs in �no. Table 3 shows results for the brute force approach. No data for
graphs with more than 15 nodes are available due to the long computational time
needed by this algorithm (a single 15-node with a 0.3 density takes about 12 minutes).

Table 3. Length of AIN, brute force approach

Nodes 6 7 8 9 10 11 12 13 14 15

Length of �PQ 12 23 44 85 158 335 618 1421 2219 4853

Graphs 1-4 show the behaviour of the other algorithms. We divide the analysis into
cyclic and acyclic graphs. Overall, the �cy algorithm shows the best performance,
even if its performance is not consistent with the type of graph (cyclic or acyclic).
Graph 3 shows how the �cy algorithm is extremely efficient for acyclic graphs, and
the gap with the other algorithm increases rapidly. For a 20-node graph, 	�cy output
is on average 42.1 clauses against the 659.4 of the �������q� algorithm.

Again, Graphs 1 and 2 (left) show the ratio (by density and by number of
nodes) between the length of the solution expressed by the �cy algorithm and the
second best algorithm, the �������q� algorithm, for acyclic graphs.

Graph 1 left shows how the ratio by density increases almost linearly, show-
ing how the �cy algorithm becomes more efficient with high density acyclic graphs.
This could be explained by the fact that, when the number of links increases, each
node is likely to attack a larger set of nodes, and therefore nodes’ dialectical strength cz increases and the split subgraphs that result are smaller and easier to compute.
The introduction of the dialectical strength is also proved to be efficient, since the �cy�{�? algorithm (i.e. that in which nodes for the split are randomly selected) pro-
duces much longer expressions, already 22 times longer for a 20-node graph.

However, the situation is different for cyclic graphs. The �������q� algo-
rithm shows similar or better performance than �cy, as shown in Graph 4 and Graphs
1 and 2 right. Graphs 1 and 2 right now show an inverse ratio (�������q� algorithm
over �cy). The presence of cycles and rebuttals increase the likelihood that some

recursive branches quickly generate an empty return set, and consequently the length
of the solution decreases. Moreover, when the number of cycles increases, the dialec-
tical strength is no longer effective, since the number of initial arguments diminishes
and the number of arguments disconnected from the root node � after the generic
node X is removed – i.e. |�XE(X)| – diminishes as well or it could likely be empty.

Graph1. Length of the solution by density

Graph 2. Length of the solutions by nodes

Graph 3. Length of the solutions – Acyclic Graphs

Graph 4. Length of the solutions – Cyclic Graphs

6.2 Computational Time

This second set of experiments tests the efficiency of the above algorithms in terms of
computational time. Again, the brute force approach is by far the slowest. In a 14-
node graph with 0.3 density, the average computing time is about 45 times longer
than the �������q� algorithm, while it increases to 650 times for a 15-node graph.

The �cy�{�? algorithm is also considerably slower than the others. For a 25-
node acyclic graph it is on average 15 times slower than the �cy, while it is more
than 200 times slower for a cyclic graph compared to the �������q� algorithm.

Graph 5. ADT versus ADT fast computational Time

It is interesting to compare the performance of �cy versus �cy�{�? in order to under-
stand the impact of the dialectical strength as splitting criterion. Following a similar
pattern encountered in the length-based experiment, the gap between �cy and
�cy�{�? is highly significant for both the acyclic graph and the cyclic graph with low
density. �cy is already 10 times faster with a 23-node acyclic graph, while for a cy-
clic graph the computational time is comparable and it does not show a clear trend.
The reason for this is mainly because in an acyclic (or quasi-acyclic) graph, the dia-
lectical strength cz of the arguments is high and this effectively reduces the complex-

ity of the split subgraphs. In a cyclic graph, the set �XE is small or empty and few
nodes are removed during a split. Therefore the choice of a splitting node is less im-
portant and the overhead of computing the dialectical strength is not justified. �cy	q�	�������q�. For acyclic graphs, thanks to the high dialectical
strength of the arguments, the �cy algorithm is faster. �cy is already 100 times
faster for a 20-node graph. On our machine setting, the average computational time
needed to compute an acyclic graph goes above 60 seconds between 50-55 nodes.
Graph 6 shows the computational time in terms of number of nodes. The computa-
tional time grows with a quite constant slope after about 25 nodes.

For cyclic graphs, the �������q� algorithm takes advantage of the presence
of rebuttals and cycles, which reduce some of the recursive steps. The �������q�
algorithm is already 25 times faster for a 15-node and 60 times faster for a 25-node
graph. The �cy algorithm remains better up to a density of 0.1.

Graph 6. ADT Computational Time by number of nodes

Graph 7. Recursive Algorithm computational time

The �������q� algorithm goes above the 60-second threshold at 38 arguments.
Graph 7 shows the computational time of the �������q� algorithm by number of
nodes. We notice how the algorithm has a rapid increase after 25 nodes, much faster
than the �cy increase for acyclic graphs. An explanation could be that, since the �������q� algorithm is based on paths visited on the graph, it is sensitive to the
number of links rather than to the number of nodes, and the number of links grows
like �G rather than �. However, the experimental analysis calls for a theoretical com-
plexity analysis that is at the top of our research agenda.

Overall, our results suggest defining a hybrid approach exploiting both the �cy (good for acyclic or quasi-acyclic graphs) and the �������q� algorithms (good
for cyclic graphs), depending on the characteristics of the graph. Another observation
is about the computation of the dialectical strength, which could be optimized and
made more effective in the presence of cyclic graphs (for instance by considering the
effect of removing a couple of nodes instead of a single node).

7 Related Works

The research presented in this paper is inspired by the recently introduced Probabilis-
tic Argumentation Framework. The original paper by Li [3] introduces the formalism
but it does not present any computational algorithm beyond the brute force approach.
The author proposes an approximate method using a Montecarlo simulation for
grounded semantic. Other papers in the field (Hunter [6], Trimm [7], Dung [2]) do not
investigate computational aspects. This paper continues our research in [11], where
we presented the baseline non-optimized recursive algorithm.

To the author’s best knowledge, there is no other study that directly ap-
proaches the problem of subgraph-based computation in the context of probabilistic
argumentation. Even for abstract argumentation in general, experimental evaluations
of algorithms represents a small corpora. The work by Nofal at al. [13] represents one
such work. As the author notes, “although experimental analysis of algorithms is a
well-established in other domains, such methodology is given a little attention in the
context of AFs” [13]. We mention also the experimental thesis by Charwat [10] based
on tree-decomposition of ���. Therefore, our paper contributes to the experimental
analysis of abstract argumentation algorithms.

However, the algorithms proposed in this paper decompose the computation
of the grounded semantic, and they can be described as a study on how an argument
label behaves when arguments are added (or removed) from an argumentation graph.
In particular we refer to the work by Boella [8], that studied how the grounded exten-
sion changes with the addition of a new argument. Indeed our algorithm – especially
the �cy algorithm – relies on similar mechanisms and theoretical foundations. The
work in [8] is extended by Cayrol [12] to the case of preferred semantics and the re-
moving of arguments or attacking links.

In abstract argumentation there are works that employ similar techniques to
ours. The work by Baumann [9] et al. provides an experimental evaluation of compu-
ting extensions semantics by splitting the argumentation graph into subparts that are
then combined to obtain a final solution. Their systematic empirical evaluation shows
that the performance of algorithms may drastically improve when splitting is applied.

8 Conclusions and Future Works

In this paper we initiated an investigation of how the label assignment of an argument
varies in all the subgraphs of an argumentation framework. We presented a recursive
algorithm and a tree-based computation. We started to evaluate the algorithms exper-
imentally, showing how they drastically improve performance compared to a brute-
force approach. We claim to have provided enough evidence to justify further investi-

gations. In particular, the �cy algorithm is proven to be efficient in expressing solu-
tions using the minimal number of clauses, and effective in computing acyclic and
quasi-acyclic graphs. The �������q� algorithm shows the best computational effi-
ciency for cyclic graphs, and on average it can compute cyclic graphs of up to 35/40
nodes. However, this last result might not fit all the applications, and the number of
nodes could be small in some contexts. Interesting future research trajectories include
the theoretical complexity analysis of the algorithms, which has not been addressed in
this work. Regarding extensions to other semantics, we have already described an
extension to preferred semantics for the recursive algorithms, while defining the pre-
ferred version of the �cy should not present difficulties. Moreover, we intend to
focus on the definition of a hybrid approach that uses the �cy and the �������q�
algorithms together. Specific classes of graphs have also to be studied. It appears
reasonable to the author that natural argumentation graphs could show specific pat-
terns in terms of density and type of cycles – mostly rebuttal cycles – that could differ
from randomly-generated graphs. Finally, attention might also be devoted to the ap-
plication of the above algorithms to probabilistic argumentation frameworks.

References

1. P. Dung, “On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games,” Artificial Intelligence, vol. 77, pp.
321–357, 1995

2. P. Dung, P. Thang. Towards (Probabilistic) Argumentation for Jury-based Dispute Resolu-
tion. COMMA 2010. IOS Press, Amsterdam, 171-182

3. Hengfei Li, Nir Oren, Timothy J. Norman. Probabilistic Argumentation Frameworks. 1st
TAFA, JICAI 2011, Barcellona, Spain

4. P. Baroni, M. Caminada, M. Giacomin: An introduction to argumentation seman-
tics. Knowledge Eng. Review 26(4): 365-410 (2011)

5. Dunne, Paul E., and Michael Wooldridge. "Complexity of abstract argumenta-
tion." Argumentation in Artificial Intelligence. Springer US, 2009. 85-104.

6. A. Hunter. A probabilistic approach to modeling uncertain logical arguments, International
Journal of Approximate Reasoning, 54(1):47-81, 2013.

7. Thimm M. Probabilistic Semantics for Abstract Argumentation, Proceedings. of 20th Eu-
ropean Conference of Artificial Intelligence, IOS Press, 2012, pp. 750-755

8. Boella, Guido, Souhila Kaci, and Leendert van der Torre. "Dynamics in argumentation
with single extensions: Abstraction principles and the grounded extension." Symbolic and
Quantitative Approaches to Reasoning with Uncertainty. Springer, 2009. 107-118.

9. Baumann, Ringo. "Splitting an argumentation framework." Logic Programming and Non-
monotonic Reasoning. Springer Berlin Heidelberg, 2011. 40-53.

10. Charwat, Günther. "Tree-Decomposition based Algorithms for Abstract Argumentation
Frameworks.", Thesis, Vienna University of Technology, February 2012

11. Dondio, P , Probabilistic Argumentation Frameworks: Basic Properties and Computation,
Highlights on Practical Applications of Multi-Agent Systems, 263-279, 2013, Springer

12. Cayrol, C, F. Dupin, M. Lagasquie-Schiex. "Change in abstract argumentation frame-
works: adding an argument." Journal of Artificial Intellgence Research 38.1 (2010): 49-84.

13. Samer Nofal, Paul E. Dunne, Katie Atkinson: Towards Experimental Algorithms for Ab-
stract Argumentation. COMMA 2012: 217-228

14. Modgil, Sanjay, and M. Caminada. "Proof theories and algorithms for abstract argumenta-
tion frameworks." Argumentation in artificial intelligence. Springer US, 2009. 105-129.

	Computing the Grounded Semantics in all the Subgraphs of an Argumentation Framework: an Empirical Evaluation
	Recommended Citation

	/var/tmp/StampPDF/bDhElU6yXP/tmp.1373276171.pdf.yqUHv

