D 5 B LIN Technological University Dub.lin
- ARROW@TU Dublin

Articles School of Computing

2013-9

Computing the Grounded Semantics in all the Subgraphs of an
Argumentation Framework: an Empirical Evaluation

Pierpaolo Dondio
Technological University Dublin, pierpaolo.dondio@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

b Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons

Recommended Citation

Pierpaolo D.: Computing the Grounded Semantics in all the Subgraphs of an Argumentation Framework:
an Empirical Evaluation. CLIMA, XIV Workshop on Computational Logic in Multi-Agent Systems, Lecture
Notes in Artificial Intelligence, Springer, 2013. doi:10.1007/978-3-642-40624-9_8

This Article is brought to you for free and open access by
the School of Computing at ARROW@TU Dublin. It has
been accepted for inclusion in Articles by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D u B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=arrow.tudublin.ie%2Fscschcomart%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=arrow.tudublin.ie%2Fscschcomart%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Computing the Grounded Semantics in all the Subgraps
of an Argumentation Framework: An Empirical
Evaluation

Pierpaolo Dondib

1 School of Computing, Dublin Institute of Technology
Kevin Street 2, Dublin, Ireland

pi er paol o. dondi o@lit.ie

Abstract. Given an argumentation framewoflf’ = (Ar, R) — with Ar a finite
set of arguments arRl € Ar x Ar the attack relation identifying the gragh-
we study how the grounded labelling of a geneririarenta € Ar varies in all
the subgraphs of. Since this is an intractable problem of abovespoinial
complexity, we present two non-naive algorithmdind the set of all the sub-
graphs where the grounded semantic assigns to arguma specific label
[€ {in, out,undec}. We report the results of a series of empiricatstever
graphs of increasing complexity. The value of red@ag the above problem is
two-fold. First, knowing how an argument behaveslinthe subgraphs repre-
sents strategic information for arguing agents.o8é¢c the algorithms can be
applied to the computation of the recently introeth@robabilistic argumenta-
tion frameworks.

Keywords: Argumentation Theory, Semantics, Algorithms

1 Introduction

An abstract argumentation framewodlk is a directed graph where nodes represent
arguments and arrows represent the attack relafién.were introduced by Dung [2]
to analyze properties of defeasible arguments.

The problem investigated in this paper is the feillg: given an argumentation
frameworkAF = (Ar,R) — with Ar a finite set of arguments ail € Ar x Ar the
attack relation identifying the graph — we study how the grounded labelling of a
generic argumerd € Ar varies in all the subgraphs 6f Since this is an intractable
problem of above-polynomial complexity, we presemb algorithms, one recursive
and one modelled as a decision-tree, to find theoBall the subgraphs where the
grounded semantic assigns to an argumemspecific label € {in, out, undec}.

The value of researching the above problem is mo-fFirst, knowing how an ar-
gument behaves in all the subgraphs of an arguti@migraph helps us to understand
the sensitivity of the argument label to the remhaxaother arguments via further

attacks. This represents strategic information &gents in pursuing a discussion,
since they can identify which arguments shouldttecked.

However, the main motivation is represented byréoently introduced probabilis-
tic argumentation frameworks. In such frameworks, tomputation of the probabil-
ity of acceptance of arguments requires the ideatibn of all the subgraphs where a
certain label for an argument holds (this is kn@srtheconstellation approacf6]).

This first work only presents algorithms and resédir grounded semantics. This is
mainly due to space limitations and the fact tiat versions of our algorithms for
other semantics have not been yet implementedrardfore an empirical evaluation
cannot be made. However, the idea behind the #tgoasi proposed is general enough
to be applied to other semantics. Our recursiverdlgn is based on constraints valid
for any complete semantics and we have alreadyepted a version for preferred
semantics in [11]. The core mechanism of our dexisiee algorithm, based on split-
ting subgraphs and removing irrelevant argumestsalid for any complete seman-
tics and it can be extended to specific semangianddifying the treatments of cyclic
subgraphs.

The paper is organized as follows: section 2 ptsséme required background of
abstract argumentation; section 3 sets the problémthe required definitions and
presents a brute-force algorithm; section 4 dessrihe recursive algorithm; section 5
describes our decision-tree algorithm; sectionp®res the results of our experimental
evaluation before the description of related wanksection 7 and conclusions.

2 Background Definitions

Definition 1 (Abstract Argumentation Framework) Let U be the universe of all
possible arguments. An argumentation framework i (Ar,R) where Ar is a
finite subset ofU andR < Ar x Ar is called attack relation. We define an argument
a initial if 2b € Ar | R(b, a), i.e. the argument is not attacked.

Let’s consideldF = (Ar,R) andArgs C Ar.

Definition 2 (defense) Args defends an argumenta < Ar iff
Vb € Ar such that R(b, a), 3 c € Args such that R(c,b). The set of arguments de-
fended byArgs is denoted” (Args).

Definition 3 (indirect attack/defense)Let a,b € Ar and the grapld defined by
(Ar,R). Then (1)a indirectly attacks if there is an odd-length path fromto b in
the attack graplé and (2)a indirectly defends if there is an even-length path (with
non-zero length) from to b in G.

Labelling A semantics identifies a set of arguments thatstamive the conflicts
encoded by the attack relatién In the labelling approach a semantics assigabel |
to each argument. Following [4], the choice for et of labels isin, out orundec.

Definition 4 (Labelling/conflict free). Let AF = (Ar,R) be an argumentation
framework. A labelling is a total functioh : Ar — {in, out,undec}. We write
in(L) for {ae Ar | L(a) = in}, out(L) for {ae Ar | L(a) = out}, andundec(L) for
{ae Ar | L(a) = undec}. We say that a labelling is conflict-free if rin-labelled
argument attacks an (other or the saindpbelled argument

Definition 5 (complete labelling).Let AF = (Ar,R) be an argumentation frame-
work. A complete labelling is a labelling that feverya € Ar holds that:

.if a is labelledin then all attackers af are labelledbut

. if all attackers of1 are labelledut thena is labelledin

.if a is labelledout thena has an attacker labelléd

.if a has an attacker labelléd thena is labelledout

.if a is labelledundec then it has at least one attacker labelladec and it does
not have an attacker labelled

OO~ WNPEF

Theorem 1, Grounded Labelling.(proved in [4]) LetAF = (Ar,R) be an argu-
mentation frameworkL is the grounded labelling iff is a complete labelling where
undec(L) ismaximal(w.r.t. set inclusion) among all complete labejirofAF.

In figure 1 two argumentation graphs are depicldte grounded semantics assigns
the status ofindec to all the arguments qfd) (always when there are no initial ar-
guments), while i{B) it assignsn to a andc, andout to b. Note howa reinstateg.

Figure 1. Two Argumentation Graphs (A) and (B)

3 Describing and Labelling Subgraphs

Given an argumentation framewodA¢ = (Ar,R) with |Ar| = n, and the grapl&
identified byAr andR, we consider the sét of all the subgraphs @f. We focus on
particular sets of subgraphs, i.e. elementa”ofGivena € Ar, we define:

A={g€Hlaeg} ; A={g€H|a¢g}

that are respectively the set of subgraphs wheyenaenta is present and the set of
subgraphs where is not present (note how we uddor the complementary sdf).
If Ar ={a,..,a,}, a single subgrapy can be expressed by an intersection séts
A; or 4, (0 < i < n) depending on whether th& argumenta; is or is not contained
ing.

In general, we can express a set of subgraphs oomgbisome of the sets
A4, .., A, AL, .., A, with the connective§u,n}. We write AB to denoted n B and
A + B for A U B. For instance, in figure 1 the single subgraph witty b andc pre-
sent is denoted witdBC, while the expressiodB denotes a set of two subgraphs
where argumentg andb are present andcan be either present or not.

We call aclausegp a finite intersection (or conjunction) of sets, 4,. We consider
expressions of sets of subgraphs in tl&junctive normal formi.e. as a finite dis-
junction of clause®; + ¢@,+..+¢,,. An expression is said to bestandard formif
;N @; =0, for eachi < m,j <m,j # i. The standard form is made of disjoint sets
of subgraphs and it is of particular interest fsrapplications to probabilistic argu-
mentation. As an example, let's consider the arguat®n graph in fig.1 left. The
claused + B is not in standard form. It identifies six out@fht possible subgraphs
(the two left out are the one wheargh andc are not present and the one witlandb
not present and present). A standard form is for instante AB.

3.1 Grounded Labelling of Subgraphs

Given a subgraply € H, the labelling ofg simply follows the rules of the chosen
semantics. We therefore definesabgraph labellingl as a total function over the
Cartesian product of arguments 4w and subgraphs i, thereforel: Ar x H —
{in, out,undec}. When labelling a subgraph, we follow this choias:argument is
automatically labelledut in all the subgraphs whea2 is not present (sindees
not promote any claimyr when it is present but it is labelledt by the semantics,
representing the effect anof the other arguments.

In the case of grounded semantics there is onlylamaling per subgraph, that
we call£L(g) (we omitAr). We callin(L£(g)), out(L(g)), undec(L(g)) the sets of
arguments labelledn, out, undec in the labellingL(g). In order to study how an
argument behaves across subgraplis, iwe define the following sets of subgraphs:

Ay ={g € H:a € in(L(g))}; Aour = {9 € H:a € out(L(g))}
Ay ={g € H:a € undec(L(g))}
which represent all the subgraphs where arguméntabelledin, out orundec.

Example 1.Let's compute4,, for the graph of figure 1 left. There are 3 argu-
ments and23 subgraphs; argument is labelledin in all the subgraphs where it is
present and is not present (and becomes irrelevant), i.e. the set of two subgraphs
Ay = AB. It is undec when all the arguments are present, the single raphg
Ay = ABC, while it is labelledout when it is not present or whénis present and
is not present, i.ed,,r = A + ABC (the set of the remaining five subgraphs).

The following definition is needed in the preseistatf our algorithms.

Definition 6 (Exclusively connected arguments)Given an argument and an
argumentation grap@i, let's defineC;(a) as the set of arguments connected,toe.
the set of all argumentsfor which there is at least a path frantoa in G.

Given two argumentg andb, we also define the set of argumeexslusively con-
nectedto a viab, calledexC;;(a). exCsp(a) is the set of arguments for which
there is no path from to a whenb is removed from graplfi. Therefore, ifG’ is the
subgraph of; obtained by removing, exC; ,(a) = {x | x € C;(a) Ax & C;,(a)}

3.2 The Brute Force Approach

A brute force algorithm to solve our problem simplymputes the grounded seman-
tics in all the subgraphs efr and it assigns each subgraphdiq, Aoy or Ay de-
pending on the label of argumentn that subgraph.

Algorithm 1 — A brute force approach for computing Ay, Aour, Ay
for each subgraph g of G = (4r,R)
for each argument a in g
assign a label Il(a) to a in g using the chosen semantics
if l(a)=in add g to A
if l(a)=out add g to Agyr
if l(a) =undec add g to Ay

The complexity of the problem studied is above polyial. There ar@™ possible
subgraphs, and the computation of the grounded rezaan each subgraph requires
a polynomial time, while other semantics such aspheferred are intractable (see
[9]). The algorithms proposed in this paper aimiégduce the computational time by
reducing the number of times the grounded semah#issto be computed, by identi-
fying set of equivalent subgraphs in one step asste individually.

The brute approach is not efficient in the compaiabdf 4;, and it is not efficient
in the wayA,y is expressed, that is a conjunction of single saigs. Let’s consider
the graph in figure 2 left. It can be computed tihet expression ad;y includes 56
subgraphs out of the potential 128 (in fact, theme 8 arguments and a total of 256
subgraphs, but we removed the 128 wlazre is neeptk

In [11] we describe an alternative algorithm, whigh optimize in the next sec-
tion. The idea is that we do not need to consitleha subgraphs individually, but a
set of subgraphs can be assigned,tg A,y Or Ay in a single step. For the graph of
figure 2 left, the optimized algorithm of the nesdction produces the expression in
standard formd,y = ABD + ABED + ABEGD, composed of only three clauses.

(®)
(&) ©

NSNS

Figure 2. Three Argumentation Graphs

4 Computing A;y: A recursive algorithm

This section presents an algorithm to compytg Aoyr under grounded semantics.
Given a starting argumentand a label € {in, out}, we need to find the set of sub-
graphs where argumentis legally labellel . The idea is to traverse ttanspose
graph (a graph with reversed arrows) frandown to its attackers, propagating the
constraints of the grounded labelling. While traieg the graph, the various paths
correspond to a set of subgraphs. The constrag®ded are listed in definition 5 and
theorem 1. If argument — attacked by arguments,, — is required to be labelled,

we impose the set, to be:

Ay = A0 (X1 pyr N Xopyr O e 0 Xnpyr) condition (1)
i.e. argument can be labelle¢h in the subgraphs where:
1. aispresent-set and

2. all the attacking arguments are labelledut (setsX; ,;.)-

If a is required to be labellaglit, the set of subgraphs is:
Agyr =AUAN (X1, UX,, V.. UXy,) condition (2)

i.e. a is labelledout in all the subgraphs where it is not present deast one of
the attackers is labelleih. Therefore we recursively traverse the graph,ifigdhe

subgraphs that are compatible with the startingllab a. The setsX,,, .and X,
are found when terminal nodes are reached. Whemairal nodex; is reached ﬁ1e
following conditions are applied:

1. if xr is required to bén thenXr , = Xr
2. if nodexy is required to beut thenXr .. = Xr

The way the algorithm treats cycles guaranteesatigtgrounded complete label-
lings are identified. If a cycle is detected, tkeursion path terminates, returning an
empty set that also has the effect to discardhalldets of subgraphs linked with a
logical AND (by condition 1) to the cyclic path. As describied11], this treatment of
cycles guarantees to discarddec arguments not contributing #y, or Ayyr and to
identify grounded complete labellings. We preséet pseudo-code of the algorithm,
while Table 1 describes the steps for compufipgin the graph of figure 2 right.

Algorithm 2 - The Recursive FindSet(A,L,P) Algorith m

Ais anode, L alabel (INor QUT), Pis the |ist of parent nodes, Cset
holds the partial result of the conputation of conditions (1) and (2).
FindSet (A L, P):

if Ain P
return enpty_set // Cycle found
if L=1IN

if Atermnal:
return a // Terminal condition for IN Label
else :
add Ato P
for each child C of A
Cset = Cset AND FindSet (C, QUT, P)
return (a AND Cset) /1 condition 1
if L = QUT:
if Atermnal:
return NOTa) // Terminal condition for OUT Label
else
add Ato P
for each child C of A
Cset = Cset ORFindSet (C/IN, P)
return (NOTa) OR(a ANDCset)) //condition 2

Table 1.Recursively applying Algorithm 2 on the graph gfuiie 2 right.

Node, | Constraint Parent Comment
label List
1] Ay Ay = AN Boyr [] a must exist and b=OUT
2 Bour | Bour = [a] b is out when b does not exist o b
BU(Bn(CyVDy) exists and c =inord=in
3= Cin Ciyn =CnApyr [a,b] | c=IN when c exists and a=OUT.
Cycle with al,y = 0
= Din Dy =D [a,b] | disinitial
2l Boyr Boyr =BU (BND)
61 Ay Aw=An(BU(BND))=A4B+ A4BD

4.1 Optimizations

Generating non-overlapping solutions.The Recursive algorithm generates solu-
tions not in standard form, composed by potentiallgrlapping clauses. If — as in the
probabilistic frameworks — sets of disjoint subdraare required, a costly Boolean
simplification is needed. This is an inclusion-esstbn problem of combinatorial
complexity. It is also inefficient in that the rasive steps need to carry expressions
longer than necessary.

A more efficient approach is to modify the algonmitiso it produces solutions
in a non-overlapping form by simplifying expressoduring the computation. Let's
analyse the two algorithm conditions:

1L An=A40 X 0 Xopyr O e 0 Xnour) condition (1)
2. Aour=AUAN (X, UXy U UX,) condition (2)
Condition 1 clearly generates disjoints setXjf, . are expressed as disjoint sets.

Regarding condition 2, since an expression such-as$ + C+.. can be rewritten as
disjoint sets in the form + AB + A BC+.., we modify condition 2 as follows:

Aour = AUAN (X1, UX X, UXLy Ko Xy U U (Ko o Ky Mgy) (20)

In order to generate shorter expressions, the ittigorfirst compute, , for all the
attackers, then it sorts the expressions of th& gein ascending order by number of

clauses contained in each expression and theplieagondition2b.

Optimizing condition 1: returning empty set. When thein-set of an argument has
to be computed, all its attackersmust be labelledut (condition 1) Therefore, if a
recursion step return), .. = @, the algorithm immediately returdsy = @.

Exploiting Rebuttals. Argumentb is a rebuttal of argument iff R(a,b) and
R(b, a). Rebuttals can be used to terminate a recursiamchrearlier. In fact, i& and

b are rebuttals, under grounded semantics neithénevh can defeat the other (see
[14] pag. 8). Therefore it id,yr = A instead ofd,,r = A + AB;y as condition 2
would suggest in the general case. Therefore iptesence of a rebuttal argument
the setd,yr results independent fronB;, (that incrementgl,;; by forming a cycle),
and the algorithm can spare itself the recursivemdation ofAB,y. This implies a
new terminal condition: while we are visiting nodgif a has a rebutting attackér
then the general conditiod,,r = A + AB;y can be replaced by the condition
Aoyr = 4, that terminates the recursion branch. Note hotliomt this optimization
the algorithm would eventually retudtB,y = @ in a further (and unnecessary) recur-
sion step when the cycle withis detected.

Re-using computations.Since an argumentation framework can be compoted o
intricate set of links, the same node could betedsfrom different paths, and there-
fore the same label for the same argument may bweted more than once during
the recursion. The idea is therefore to re-usectileputed sets. However, this is not
straightforward, since the expressionsXg§ (or X,,r) might be different according
to which path the recursion took before visiting

Let's presume we can reach naodavith two computations 1 and 2, and we
have already computeX, ,,. We wonder when we can reuse the result ¥gts to
computeX; . Itis clearlyX;,, = X,,, if C;(x) = C,(x), and the current version of

the algorithm implements this simplification, byelkéng a buffer of the previously
solved recursion. Note how the conditi@p(x) = C,(x) is quite restrictive and it
does not cover all the cases where previous cortipusa or part of them, can be
reused. We leave further simplification for futuesearch.

Example 2.We apply the recursive optimized algorithm to thapi of figure 2 left.
Table 2 shows the computation performed. We comraardome of the differences
with the baseline recursive algorithms of sectiori8st, condition 1 splits the com-
putation into two recursive steps. In step 1.1,rtee/ condition2b is applied to gen-
erate disjoints sets. The condition is further difigal by applying the rebuttals sim-
plification that removes the ter®E,y G,yC;y from the expression d#,,,. Sincec
rebutsh, C,y is irrelevant in the computation &, (note that would be relevant to
the computation oB,, or By, but these sets are not required by any recustem.

Table 2.Computing4,y using the optimized recursive algorithm for thapr of fig 2 left

1 Ay = ABoyrDoyr Condtion 1

1.1 | Byyr =B+ BE;y + BEjyGy + BEyGyCy | Condition 2b (with reordering)
Boyr = B+ BE;y + BE;xGy 2b after rebuttals detection. Since
c rebuts b, ¢ cannot labeblat.

1.1.1 Eny=E Terminal node
1.1.2 Gy =G Terminal node
1.1 Boyr = B+ BE + BEG Solution of the recursive step 1.1
1.2 Doyr =D + DGy Condition 2b
Doyr =D Rebuttals optimization applieg,
cannot defeat
Ay = A(B+BE + BEG)D Final Solution

5 ADT: Arguments Decision Tree algorithm

In many cases, the recursive algorithm reducestimeputational effort required to
computed,, in comparison with the brute force approach, big till prone to com-
binatorial explosion. For instance, for the grapliigure 2 centre the algorithm pro-
ducesA4,;y = (B + BF)(C + CF)(D + DF) (E + EF), an expression with an expo-
nential number of terms equal2®~* | wheris the number of nodes.

In this section we describe a new algorithm modebes a decision-tree,
where at each step a nadés selected and the computation4gf is split in two dis-
joint graphs, one containing the node and the atieércontaining it 4,y = AjyX +
ANX).

Our idea is to select a node that reduces the @xitplof the remaining
subgraphs. We select the nodéhat makes the most number of nodes indifferent fo
the computation ofi,y, because these nodes are either (1) defeatediythe sub-
graph containing or (2) disconnected from in the subgraph whereis not present.
As an example, referring again to figure 2 ceres select nodg for our tree split.
In the subgraphs where nodlds present, all the other nodes are defeatedaared
sults labelledin. When f does not exist, the only possible subgraph isote not

containing all the attackers af Therefored,y = F + FBCDE, which is a shorter
and more manageable standard form expression.

The algorithm we present, callddT, finds the setdl,y, Agyr, Ay in paral-
lel; it is guaranteed to find disjoint sets andavidrks better than algorithm 2. First of
all, we need to define the metric used to selextigument used for the split. We call
this metricdialectical strength

Definition 7. GivenG = (Ar, R) and an argument € Ar, the dialectical strength of
an argument € Ar w.r.t. a, calledDS,(x), is defined as follows:

If x is initial, DS, (x) is the number of arguments that are defeated pls
the arguments that result disconnected feownce the arguments defeatedxbgre
removed fron;. Therefore:

DS, (x) = [{x}UA(x)U U exC,(y)
YEA(X)

Where A(x) is the set of all arguments attacked Ayi.e. Vx € Ar, A(x) = {a €

Ar|R(x,a)}. Note that, ifx directly attacksz, thenDS,(x) = |Ar|. If X is not initial,
DS, (x) is the number of arguments that are disconnected 4 afterx is removed.
Therefore:

DS,(x) = |{x} U exCq(x)|

The argument with the highestS, is selected for the split. In the case of several
arguments with the sani¥s,, the node for the split is randomly selected.

In figure 2 centre, all the nodes hab§, = 1, except argumenf that has
DS, (f) = 4 (of course it is alwayp S, (a) = |Ar]).

Once argument is selected, the original graghis split intoG, = GX and
G, = GX. For each subgraph the algorithm keeps a lishefnibdes already used for
the split and the constraint over each split node if in the subgraph the argument is
present or not present). At each step the algoritamoves the nodes defeated by
argumentx in G; and the nodes disconnected franin G,. Note how a chain effect
can happen: by removing arguments, new initial sotéght be created that might
defeat other arguments. Note how the number of xoel@oved is equal to the dialec-
tical strengthDS Therefore, at each sp@DT actually computes a set 2P5~1 sub-
graphs that, as proven at the end of this secticnall equivalent for the labelling of
a. Moreover, the computational complexity DT will strongly depend on the aver-
age value of the dialectical strength.

Regarding terminal conditiond DT stops when one of the following terminal

conditions is met:

1. If argumenta is defeated, the branch of the tree will conteoiatA

2. If argumenta is isolated, the branch of the tree will contribt 4,,, since
a has no attackers.

3. If there are no more arguments for the split arithaeof the above two are
verified, the branch contributes 4g, since a cycle is detected.

Figure 3 proposes an illustrative example of A" algorithm applied to the graph
of figure 2 right, followed by the pseudo-code loé algorithm.

| Nodes to split | o Q |I|

Defeated or non-existing ‘ I Initial split of A |
D Splitti ingD
5 » =

EI ('?

Splitting using B B El I

] Terminalfor Any = 4D |
| Terminal for Ajy = ADB | C c
o &

| Terminal for Agyr = ADBC I | Terminal for Ay = ADBC |

Figure 3. Visual Representation of tt&DT Algorithm

At the beginning (not shown), the sétis trivially assigned to,,r, and we start
from the situation where is present (set of subgrapA¥ depicted in subgraph 1 of
figure 3. First, theDS, of each argument is computed. Argumehtandb have both
DS, = 3 while ¢ hasDS,(c) = 1. Therefored is chosen.

In the subgraph (3), obtained by deb presentb is defeatedg becomes in-
itial and defeatg. Thereforea is isolated, the terminal condition fdg, is reached
and the pathD is added ta4,,. In the subgraph witld non-existent (2), no other
node is disconnected. Since no terminal condit®oreached, a new split is needed.
Now b is selected. In the subgraph witmot present (4), argumeatbecomes isolat-
ed, and therefore the paflDB is added ta4,,, while in the graph witth present (5)
no arguments are disconnected. Qnly left for the split.

Whenc is present (subgraph 7), the terminal conditios i@ached sdDBC
contributes tod ;. Subgraph 6, witle not present in the subgraph, contributed §g,
(set of subgraphdaDBC) sinceb becomes initial and defeats

Algorithm 3 — ADT (Arguments Decision Tree Algorith m).
I nputs: Graph G, argument a Qutput: (A4, dour Avy)
Initialize Cto @. //Cis the list of constraints on the split
argunent s
ADT(G, a, C)
If Cis @thenC=4
remove from G all the nodes di sconnected from node a
conpute I;, the list of initial nodes of G
while (3Ixin I; with X isin C)
foreach x in I; with X in C
renove form G all the arguments attacked by x
update the initial list I;
renmove form G all the arguments not connected to a
If Ab so that R(b,a) then add C to A;y and return
If a€¢G then add C to Apyr and return
If no nmore nodes to split then add C to Ay and return
foreach x in G and not in C Conmpute the DS,(x)
sel ect node x with highest DS,(x)
split the subgraph: G;=GUX and G,=GUX
call ADT (G, a, CUX)
call ADT (G,, a, CUX)

Optimization. We optimized thel DT algorithm by keeping a buffer of the subgraphs
that have already been computed. When, after § spk of the remaining subgraph
has been already encountered in the computat®gplttion can be reused and joint
with the constraints of the current branch. Thisragion is theoretically simpler than
in the case of th&ecursive algorithm. For instance, considering the grapfigfre

2 left, after we split using nodg the subgraph wherg is present is reduced to the
nodes{a, c}, but the same subgraph is obtained in the brar@rey is not present
by further splitting, using node and selecting the branch where nedis present.
The first branch has constrairts(g is present in all the subgraphs) while the second
has constraint§E (g is not present and is present). A solutiod for the subgraph
{a, c} is computed only the first time the subgraph isoemtered (brancls in our
example), generating the claugg that is added to théDT output. When the same
subgraph is encountered in the braddéh the solutionS is reused and joint with the
constraints of the branch, obtaining the new sotutiES that is also added to the
ADT output. For instance, referring to the computatiém,,, the solution for the
subgraph{a, c} is AC, and this set is used to add the two clauss + GEAC to the
output of ADT for the set4,.

ADT g, . We implemented a version of the abo¥BT algorithm, calledAD Ty,
where at each step the node used for the splitasen randomly. The algorithm will
be used to compare the impact of using the diak@lcsirength in the computation.
Soundness and Completeness. We end this section by proving tls®undnessand
completenessf theADT algorithm. Each of the clauses composing the output of
the ADT algorithm identifies a set of subgraphs. We pritna all the subgraphs iden-

tified by a clause assign the same label to argtimmeand this label is correctly as-
signed under grounded semantics. The set of subgragsociated with a clauge
have in common a subset of the argumentrinthe arguments present in the expres-
sion of ;. For instance, ifir = {a, b, ¢, d, e}, the clausedBC identifies all the sub-
graphs having in common the presence of nagésand the absence of node
Nodesd ande are not specified, therefore their presence oemtssis irrelevant and
they identify a set of 4 different subgraphs assted withg;. We prove that these
irrelevant arguments are actually irrelevant to the compaomatif the label otz and
therefore all the subgraphs¢n assign the same label 40 ADT uses two conditions
to identify irrelevant arguments. First, when thgument used for the split is re-
moved, all the arguments resulting disconnectenh fzcare irrelevant to the labelling
of a. Second, in the subgraphs where an initial argtimén constrained to be pre-
sent, all the arguments attackedibgre labellecbut, and therefore they become ir-
relevant (as proven by [8], removing amt argument does not change the grounded
extension). Therefore all the arguments markedratevant do not alter the label of
and therefore we prove that all the subgraphg;iassign the same labeldo

ADT also assigns the correct label under grounded rareasince its se-
cond condition and the three terminal conditionscdbed above actually implement
the basic step of the algorithm for grounded lahglldescribed by Modgil and
Caminada in [14, page 8] and therefdi@T generates correct grounded labellings.

In order to provedDT completenesave observe that théDT algorithm con-
siders the entire problem space, since all theraegis that are not found irrelevant to
the labelling ofa are split. Therefore in all th2"* subgraphs ofi argumenta is la-
belled by theADT algorithm.

6 Evaluation

We implemented our algorithms in Python 2.7, andpedormed a set of initial ex-
periments on &indows7 machine with 3Gb RAM an@ore I3 Intelprocessor. We
implemented the following algorithms:

1. Brute — the brute force approach.

2. ADT - the decision-tree based algorithm using the dial@ strength as
splitting criterion.
3. ADTy4 —theADT algorithm where splitting nodes are selected rarigo

4. Rec (Recursive) — the optimized recursive algorithm. All the opization
of section 4 were implemented.

Our first evaluation tests two aspects of the campn of 4;,: computational time
and length of the output expression. The evaluadiescribed in this paper does not
claim to be exhaustive. It focuses on the genagemf random graphs; it does not
study particular class of graphs nor does it tgbtid approaches.

Random Graphs GeneratiolVe generate different acyclic and cyclic graphsnef
creasing complexity both in terms of number of reodad density. Graph instances
have been generated as follows. Givearguments, we assign an incremental index
to each argument and we generate a tree with noae root, to guarantee that for
each argument there is at least a path tbhen, in the case of acyclic graphs, random

links are added until the required density is reachn order to generate only acyclic
graphs, the links are added only if they go fromode with a higher index to a node
with a lower index. In the case of cyclic grapmks are added randomly with no
restrictions. However, we require each random gtapdt least contain a cycle. Note

that the density for an acyclic graph is computedra(n — 1) (instead of "(nz_l)

used for the acyclic case) to take into considendtie presence of symmetric attacks.

6.1 Experimenting with the length of A,y

This set of experiments tests the ability of eddorithm to express a standard-form
solution forA;y in the most compact way. We use as a metric thgthd of the ex-
pression of4,,, defined as the number of clauses contained istéisdard-form ex-
pression. Results reported are the average of af K100 executions of each algo-
rithm using graphs differentiated by number of mdeensity and type (cyclic or
acyclic).

In the brute force approach, the length of the tsmtuequates to the number
of subgraphs iM;y. Table 3 shows results for the brute force apgrodlo data for
graphs with more than 15 nodes are available dugaeéodong computational time
needed by this algorithm (a single 15-node with3ad&nsity takes about 12 minutes).

Table 3. Length of Ay, brute force approach

Nodes 6| 7| 8/ 9 10 11 12 13 14 16
Length of4;y | 12| 23| 44| 85 158 335 618 1421 2219 4853

Graphs 1-4 show the behaviour of the other algmsthwWe divide the analysis into
cyclic and acyclic graphs. Overall, t#T algorithm shows the best performance,
even if its performance is not consistent with thige of graph (cyclic or acyclic).
Graph 3 shows how th&DT algorithm is extremely efficient for acyclic graprand
the gap with the other algorithm increases rapiBbyr. a 20-node graphdDT output

is on average 42.1 clauses against the 659.4 dfdhersive algorithm.

Again, Graphs 1 and 2 (left) show the ratio (bygiignand by number of
nodes) between the length of the solution exprebsethe ADT algorithm and the
second best algorithm, tilRecursive algorithm, for acyclic graphs.

Graph 1 left shows how the ratio by density incesaalmost linearly, show-
ing how theADT algorithm becomes more efficient with high densityclic graphs.
This could be explained by the fact that, when nhenber of links increases, each
node is likely to attack a larger set of nodes, #radefore nodes’ dialectical strength
DS increases and the split subgraphs that resuliraadler and easier to compute.
The introduction of the dialectical strength iscalroved to be efficient, since the
ADTy,, algorithm (i.e. that in which nodes for the spiie randomly selected) pro-
duces much longer expressions, already 22 timegetdior a 20-node graph.

However, the situation is different for cyclic ghap TheRecursive algo-
rithm shows similar or better performance teIT, as shown in Graph 4 and Graphs
1 and 2 right. Graphs 1 and 2 right now show arrise ratio Recursive algorithm
over ADT). The presence of cycles and rebuttals increasdikhlihood that some

recursive branches quickly generate an empty redetnand consequently the length
of the solution decreases. Moreover, when the numbeycles increases, the dialec-
tical strength is no longer effective, since thenber of initial arguments diminishes
and the number of arguments disconnected from dbé modea after the generic
nodex is removed — i.dexC(x)| — diminishes as well or it could likely be empty.

Lenght of A,y - Rec/ADT Lenght of Ay - ADT/Rec
(acyclic graph by density) is (cyclicgraph by density)
30 '3
pd
2 J/ 2.5 ~
0%) S 2 /
£ 15 B < P
& 10 / « /
/ 1
5
- 0.5
0 T T T T T T T 1 0 T T T T T T T 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Density Density
Graphl. Length of the solution by density
Lenght of A ratio (Recursive Length of A, ratio (ADT over
over ADT) - Acyclic Graphs Recursive) - Cyclic Graphs
20 2.5
171'2 / 2.0 -
/ s ;
12.5
= L5
£ 10 / E . /
£ 75 1.0
s "3 J -
25 -/ 0.5
[0 o e LA B s s s e s 00 © + +
16 18 20 22 24 26 28 30 1617 1819202122 2324252627 282930
Nodes Nodes
Graph 2. Length of the solutions by nodes
Length of Ay - Acyclic Graphs
250
200 —
-a 150 —ADT
£ ADTf
9 100
——Rec
50
0 -
7 8 9 10 11 12 13 14 15 16 17 18 19
Nodes

Graph 3. Length of the solutions — Acyclic Graphs

Length of Ay - Cyclic Graphs

40

30
&
2 207 ——ADT
LY
—

10 + = Rec

0 -+

7 8 9 10 11 12 13 14 15 16 17 18
Nodes

Graph 4. Length of the solutions — Cyclic Graphs

6.2 Computational Time

This second set of experiments tests the efficiefichie above algorithms in terms of
computational time. Again, the brute force approachby far the slowest. In a 14-
node graph with 0.3 density, the average compuiimg is about 45 times longer
than theRecursive algorithm, while it increases to 650 times forsarbde graph.

The ADT;,, algorithm is also considerably slower than theecthFor a 25-
node acyclic graph it is on average 15 times slawan theADT, while it is more
than 200 times slower for a cyclic graph compacethéRecursive algorithm.

ADT fast over ADT Computational Time
18
16 -
14 -
12
2 10 -
< 8- —— Acyclic
6 - .
s Cyclic
2
12 13 14 15 16 17 18 19 20 21 22 23 24 25
Nodes

Graph 5. ADT versus ADT fast computational Time

It is interesting to compare the performancel D" versusADTy,, in order to under-
stand the impact of the dialectical strength agtsp criterion. Following a similar
pattern encountered in the length-based experinthit,gap betweemDT and
ADTy, is highly significant for both the acyclic graphdathe cyclic graph with low
density.ADT is already 10 times faster with a 23-node acygtaph, while for a cy-
clic graph the computational time is comparable mrdbes not show a clear trend.
The reason for this is mainly because in an acyolicquasi-acyclic) graph, the dia-
lectical strengtlDS of the arguments is high and this effectively i@hithe complex-

ity of the split subgraphs. In a cyclic graph, s&exC is small or empty and few
nodes are removed during a split. Therefore thécehof a splitting node is less im-
portant and the overhead of computing the dialatsizength is not justified.

ADT vs Recursive. For acyclic graphs, thanks to the high dialettica
strength of the arguments, tlDT algorithm is fasterADT is already 100 times
faster for a 20-node graph. On our machine settimg,average computational time
needed to compute an acyclic graph goes above &thde between 50-55 nodes.
Graph 6 shows the computational time in terms ohlmer of nodes. The computa-
tional time grows with a quite constant slope adteout 25 nodes.

For cyclic graphs, th&ecursive algorithm takes advantage of the presence
of rebuttals and cycles, which reduce some of #winsive steps. ThRecursive
algorithm is already 25 times faster for a 15-nadd 60 times faster for a 25-node
graph. TheADT algorithm remains better up to a density of 0.1.

ADT computational Time by nodes (cyclic graph)
6000 -
5000 -
3 4000 -
5 3000 -
o
@ 2000 4
= 1000 -
£
0 4
15 16 17 18 19 20 21 22 23 24 25 36 27 28 29 30 31 32 33 34 35 36
Nodes
Graph 6. ADT Computational Time by number of nodes
Recursive Algorithm - Computational Time by nodes
15000
2 12500
£ 10000
o
@ 7500
2
% 5000 -
2500 -
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Nodes

Graph 7. Recursive Algorithm computational time

The Recursive algorithm goes above the 60-second threshold atrg8ments.
Graph 7 shows the computational time of Rerursive algorithm by number of
nodes. We notice how the algorithm has a rapiceese after 25 nodes, much faster
than theADT increase for acyclic graphs. An explanation cooédthat, since the
Recursive algorithm is based on paths visited on the grépls sensitive to the
number of links rather than to the number of nodes| the number of links grows
like n? rather tham. However, the experimental analysis calls foreothtical com-
plexity analysis that is at the top of our reseaghnda.

Overall, our results suggest defining a hybrid apph exploiting both the
ADT (good for acyclic or quasi-acyclic graphs) and Beeursive algorithms (good
for cyclic graphs), depending on the charactesstitthe graph. Another observation
is about the computation of the dialectical strpgthich could be optimized and
made more effective in the presence of cyclic gsafibr instance by considering the
effect of removing a couple of nodes instead ahgle node).

7 Related Works

The research presented in this paper is inspireithidyecently introduced Probabilis-
tic Argumentation Framework. The original paperLby3] introduces the formalism
but it does not present any computational algorib@yond the brute force approach.
The author proposes an approximate method usimdoatecarlo simulation for
grounded semantic. Other papers in the field (Hyefe Trimm [7], Dung [2]) do not
investigate computational aspects. This paper ©oes our research in [11], where
we presented the baseline non-optimized recursgarithm.

To the author’'s best knowledge, there is no othedysthat directly ap-
proaches the problem of subgraph-based computatitime context of probabilistic
argumentation. Even for abstract argumentationeimegal, experimental evaluations
of algorithms represents a small corpora. The vibgrkofal at al. [13] represents one
such work. As the author noteglthoughexperimental analysis of algorithms is a
well-established in other domains, such methodolsgyiven a little attention in the
context of AFs'T13]. We mention also the experimental thesis bpi@at [10] based
on tree-decomposition ofFs. Therefore, our paper contributes to the experinienta
analysis of abstract argumentation algorithms.

However, the algorithms proposed in this paper dgmse the computation
of the grounded semantic, and they can be descabedstudy on how an argument
label behaves when arguments are added (or reméregd)an argumentation graph.
In particular we refer to the work by Boella [}at studied how the grounded exten-
sion changes with the addition of a new argumertteéd our algorithm — especially
the ADT algorithm — relies on similar mechanisms and tegoal foundations. The
work in [8] is extended by Cayrol [12] to the cadepreferred semantics and the re-
moving of arguments or attacking links.

In abstract argumentation there are works that eynpimilar techniques to
ours. The work by Baumann [9] et al. provides apeginental evaluation of compu-
ting extensions semantics by splitting the argumai@n graph into subparts that are
then combined to obtain a final solution. Theirtsysatic empirical evaluation shows
that the performance of algorithms may drasticiatigrove when splitting is applied.

8 Conclusions and Future Works

In this paper we initiated an investigation of hthe label assignment of an argument
varies in all the subgraphs of an argumentatiomén&ork. We presented a recursive
algorithm and a tree-based computation. We staaedaluate the algorithms exper-
imentally, showing how they drastically improve feemance compared to a brute-
force approach. We claim to have provided enoudgieeee to justify further investi-

gations. In particular, th@DT algorithm is proven to be efficient in expressstju-
tions using the minimal number of clauses, andctffe in computing acyclic and
quasi-acyclic graphs. ThRecursive algorithm shows the best computational effi-
ciency for cyclic graphs, and on average it canmab cyclic graphs of up to 35/40
nodes. However, this last result might not fittakk applications, and the number of
nodes could be small in some contexts. Interedtinge research trajectories include
the theoretical complexity analysis of the algarith which has not been addressed in
this work. Regarding extensions to other semanties,have already described an
extension to preferred semantics for the recuralgerithms, while defining the pre-
ferred version of thedDT should not present difficulties. Moreover, we ndeto
focus on the definition of a hybrid approach thagsitheADT and theRecursive
algorithms together. Specific classes of graphshago to be studied. It appears
reasonable to the author that natural argumentaiaphs could show specific pat-
terns in terms of density and type of cycles — tgastuttal cycles — that could differ
from randomly-generated graphs. Finally, attentioight also be devoted to the ap-
plication of the above algorithms to probabilisigumentation frameworks.

References

1. P. Dung, “On the acceptability of arguments andfutsdamental role in nonmonotonic
reasoning, logic programming and n-person gamestifidal Intelligence, vol. 77, pp.
321-357, 1995

2. P. Dung, P. Thang. Towards (Probabilistic) Arguragnt for Jury-based Dispute Resolu-
tion. COMMA 2010. IOS Press, Amsterdam, 171-182

3. Hengfei Li, Nir Oren, Timothy J. Norman. ProbalilisArgumentation Frameworks. 1st
TAFA, JICAI 2011, Barcellona, Spain

4. P. Baroni, M. Caminada, M. Giacomin: An introductida argumentation seman-
tics. Knowledge Eng. Review 26(4): 365-410 (2011)

5. Dunne, Paul E., and Michael Wooldridge. "Complexitf abstract argumenta-
tion." Argumentation in Artificial Intelligence. $imger US, 2009. 85-104.

6. A. Hunter. A probabilistic approach to modeling artain logical arguments, International
Journal of Approximate Reasoning, 54(1):47-81, 2013.

7. Thimm M. Probabilistic Semantics for Abstract Argemtation, Proceedings. of 20th Eu-
ropean Conference of Artificial Intelligence, IO&Bs, 2012, pp. 750-755

8. Boella, Guido, Souhila Kaci, and Leendert van derr§.0"Dynamics in argumentation
with single extensions: Abstraction principles dhd grounded extension." Symbolic and
Quantitative Approaches to Reasoning with UncernyaiBpringer, 2009. 107-118.

9. Baumann, Ringo. "Splitting an argumentation framewdrkgic Programming and Non-
monotonic Reasoning. Springer Berlin Heidelberg, 2@0153.

10. Charwat, Giinther. "Tree-Decomposition based Algorihfor Abstract Argumentation
Frameworks.", Thesis, Vienna University of TechgyloFebruary 2012

11. Dondio, P, Probabilistic Argumentation FrameworBasic Properties and Computation,
Highlights on Practical Applications of Multi-AgeBystems, 263-279, 2013, Springer

12. Cayrol, C, F. Dupin, M. Lagasquie-Schiex. "Change listact argumentation frame-
works: adding an argument.” Journal of Artificiatdllgence Research 38.1 (2010): 49-84.

13. Samer Nofal, Paul E. Dunne, Katie Atkinson: TowaEdgerimental Algorithms for Ab-
stract Argumentation. COMMA 2012: 217-228

14. Modgil, Sanjay, and M. Caminada. "Proof theories algdrithms for abstract argumenta-
tion frameworks." Argumentation in artificial intiglence. Springer US, 2009. 105-129.

	Computing the Grounded Semantics in all the Subgraphs of an Argumentation Framework: an Empirical Evaluation
	Recommended Citation

	/var/tmp/StampPDF/bDhElU6yXP/tmp.1373276171.pdf.yqUHv

