
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computing

2011-09-15

Productivity Evaluation of Self-Adaptive Software Model Driven Productivity Evaluation of Self-Adaptive Software Model Driven

Architecture Architecture

Basel Magableh
Technological University Dublin, 453543@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Magableh, B., Barrett, S.: Productivity Evaluation of Self-Adaptive Software Model Driven Architecture,
International Journal of Information Technology and Web Engineering (IJETWE), 4(2), pages 172-180.
doi:10.4018/jitwe.2011100101

This Article is brought to you for free and open access by
the School of Computing at ARROW@TU Dublin. It has
been accepted for inclusion in Articles by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301304709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=arrow.tudublin.ie%2Fscschcomart%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

International Journal of Information Technology and Web Engineering

Productivity Evaluation of Self-adaptive Software Model
Driven Architecture

Basel Magableh, Stephen Barrett
Distributed Systems Group,

School of Computer Science and Statistics
Trinity College Dublin, Ireland

Emails: magablb@scss.tcd.ie, stephen.barrett@scss.tcd.ie

Abstract

Anticipating context changes using a model-based approach requires a formal
procedure for analysing and modelling their context-dependent functionality,
and a stable description of the architecture which supports dynamic decision-
making and architecture evolution. This article demonstrates the capabilities
of the context-oriented component-based application-model-driven architec-
ture (COCA-MDA) to support the development of self-adaptive applications;
we describe a state-of-the-art case study and evaluate the development ef-
fort involved in adopting the COCA-MDA in constructing the application.
An intensive analysis of the application requirements simplified the pro-
cess of modelling the application’s behavioural model; therefore, instead
of modelling several variation models, the developers modelled an extra-
functionality model. COCA-MDA reduces the development effort because
it maintains a clear separation of concerns and employs a decomposition
mechanism to produce a context-oriented component model which decouples
the applications’ core functionality from the context-dependent functional-
ity. Estimating the MDA approach’s productivity can help the software
developers to select the best MDA-based methodology from the available
solutions proposed in the literature. Thus, counting the source line of code
is not adequate for evaluating the development effort of the MDA-based
methodology. Quantifying the maintenance adjustment factor of the new,
adapted, and reused code is a better estimate of the development effort of
the MDA approaches.

Mobile computing environments are heterogeneous and dynamic. Everything from the
devices used and resources available to network bandwidths and user context can change
drastically at runtime (Belaramani, Wang, & Lau, 2003). This presents the software devel-
opers with the challenge of tailoring behavioural variations both to each specific user need
and to the context information. Context-dependent behavioural variations can be seen as
a collaboration of individual features expressed in requirements, design, and implementa-

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 2

tion. Before encapsulating the crosscutting context-dependent behaviours into a software
module, the developers must first identify them both in the requirements document and in
the software model. This is difficult to achieve because, by their nature, context-dependent
behaviours are entangled with other behaviours, and are likely to be included in multiple
parts (scattered) of the software modules. Using intuition or even domain knowledge is
not necessarily sufficient for identifying the behavioural variations; instead, it requires a
formal analysis procedure for the software requirements and a separation of their individual
concerns. Moreover, a formal procedure for modelling these variations is needed. This kind
of analysis and modelling procedure can reduce the complexity in modelling self-adaptive
applications and encapsulate the context-dependent part of the distinct architecture module
(component).

In this sense, a context oriented component model (COCA-component) (Magableh &
Barrett, 2009) is used to encapsulate behavioural variations and decouple them from the
application’s core functionality. In this way, dynamic component composition is achieved.
Additionally, from the software developer’s perspective, it is vital to know the productiv-
ity of the development paradigm which might be used in constructing the self-adaptive
application. Productivity evaluation of model-driven approaches can assist the develop-
ers in selecting among the proposed methodologies in the literature which approach dy-
namic behavioural variations of self-adaptive software. Context-oriented component-based
application-model-driven architecture (COCA-MDA) emerged as a development paradigm
which facilitates the development of self-adaptive context-oriented software (Magableh &
Barrett, 2011b, 2011c).

This article evaluates the development effort involved in adopting COCA-MDA when
constructing a self-adaptive application for an indoor wayfinding application (IWayfinder)
targeting individuals with cognitive impairments. The development effort of COCA-MDA
is compared to other model-driven approaches proposed in the literature.

The remainder of the article is structured as follows. Section provides a comparative
analysis of related studies. Section demonstrates a case study of a self-adaptive application.
The COCA-MDA phases are described in Section . Section provides a COCA-MDA eval-
uation using constructive cost model II (COCOMO II). Section summarizes the research
findings and describes directions for future work.

Related Work

In the literature, there are several MDA approaches which target the development of
self-adaptive applications for mobile computing environments which produce component-
based applications; this study borrows from the following methodologies: MUSIC, proposed
by (Wagner, Reichle, Khan, & Geihs, 2011); U-MUSIC (Khan, 2010); and Paspallis MDA
(Paspallis, 2009).

The MUSIC development methodology (Wagner et al., 2011) adopts a model-driven
approach to constructing the application variability model. The applications are built as
a component framework with component types as variation points. Middleware is used
to resolve the variation points, which involves the election of a concrete component as a
realization of the component type. Using this method, a number of application variants can
automatically be derived.

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 3

The U-MUSIC methodology, proposed by (Khan, 2010), adopts the model-driven
approach to constructing self-adaptive applications and enabling dynamic unanticipated
adaptation based on a component model. The U-MUSIC system enables the developers
to specify the application variability model, context elements, and data structure. The
developers are able to model the component functionalities and quality of service (QoS)
properties using an abstract, platform-independent model (PIM).

Paspallis (Paspallis, 2009) proposes another MDA-based methodology which considers
the context providers for the application. For each context provider, a plug-in is proposed
during the design phase. At runtime, a utility function is used to consider the context state
and perform decision-making. Once the plug-in is selected (to be load into the application),
middleware support performs dynamic runtime loading of the plug-in. However, it is im-
possible to consider all the context providers which might produce context information at
runtime.

In MUSIC, U-MUSIC, and Paspallis approaches, dynamic decision making is sup-
ported by a utility function. The utility function is defined as the weighted sum of the
different objectives based on user preferences and QoS. However, this approach suffers from
a number of drawbacks. First, it is well known that correct identification of the weight of
each goal is a major difficulty. Second, the approach hides conflicts among multiple goals
in a single, aggregate objective function, rather than exposing the conflicts and reasoning
about them. At runtime, a utility function is used to select the best application variant;
this is the so-called ’adaptation plan’. Potentially, it is impossible for the developer to
predict all possible variations of the application when unanticipated conditions arise. In
addition, mobile computing devices have limited resources for evaluating the many appli-
cation variations at runtime and can consume significant amounts of device resources. As
an outcome, the benefit gained from the adaptation is negated by the overhead required
to achieve the adaptation. Because of the above issue, it is impossible to use MUSIC to
provide unanticipated adaptation in a self-adaptive application. Moreover, modelling the
application using U-MUSIC, MUSIC, and Paspallis’s MDA produces an architecture with
a tight coupling between the architecture and the target platform.

Lewis et al. (Lewis & Wrage, 2005) have evaluated the impact of MDA on the develop-
ment effort and the learning curve of the MDA-based development tools based on their own
experiences. The authors concluded that the real potential behind MDA is not completely
supported either by current tools or by the proposed MDA approaches in the literature. In
addition, the developers have to modify the generated code such that it is suitable for the
target platform. The degree to which the generated code needs modification is affected by
the MDA tools used. In the same way, the developer’s understanding of the MDA tasks and
familiarity with the target platform have direct impacts on MDA productivity. Constructive
cost model II (COCOMO II) (Boehm et al., 2000) emerged as a software cost estimation
model which considers the development methodology productivity. The productivity eval-
uates the quality of benefits derived from using the development methodology, in terms of
its impact on the development time, complexity of implementation, code quality, and cost
effectiveness (Calic, Dascalu, & Egbert, 2008). COCOMO II allows estimation of the effort,
time, and cost required for software development. The main advantage of this model is that
COCOMO II is an open model with various parameters which affect the estimation of the
development effort. Moreover, the COCOMO II model allows estimation of the software

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 4

application development effort in both person-months (PM) and time to develop (TDEV).
A set of inputs such as software scale factors (SFs) and 17 effort multipliers is needed. A
full description of these parameters can be found in (Boehm et al., 2000). An example of
an evaluation of MDA approaches with (COCOMO II) can be found in (Achilleas, 2010).

Self-adaptive Indoor Wayfinding Application for Individuals with
Cognitive Impairments

IWayFinder provides distributed cognition support for indoor navigation to persons
with cognitive disabilities. RFID tags and QR-codes are placed at decision points such as
hallway intersections, exits, elevators, and entrances to stairways. After reading the en-
coded URL in the QR-codes, the Cisco engine provides the required navigation information
and instructs the user. The proposed self-adaptive application uses an augmented reality
browser (ARB) to display the navigation directions. The browser displays the directions
on the physical display of the tool’s camera. The application is able to provide the user
with time-based events such as the opening hours of the building, lunch time, closing hours
of the offices, location access rights which control the entrance of users to certain loca-
tions, and any real-time alarm events. Moreover, the infrastructure support allows several
persons to monitor and collaborate with the user en route. The IWayFinder application
and the COCA-MDA development methodology were fully described in our previous work
(Magableh & Barrett, 2011b, 2011c). This article focuses on describing an evaluation of
the cost effectiveness when adopting the COCA-MDA (among other MDA approaches) in
developing the IWayFinder application. Assuming that the context information is delivered
by the Cisco infrastructure, we propose the following anticipation scenarios:

A1: Self-tuning The application must track the user’s path inside the building.
When decision points (DPs) are reached, the application places a marker for each DP the
user passed. If the user is unable to locate a decision point in the building, the application
must be able to guide the user towards a safe exit. The route directions can be delivered to
the user in several output formats: video, still images, and voice commands. The application
should change the direction output while also considering the device resources and the level
of cognitive impairment of the individual.

A2: Self-recovering Assuming that the user is trapped in a lift with no GPRS
connection (or in the case of a fire), the fire alarm is raised, the application is notified,
and the application adopts the shortest path to the nearest fire exit. In both cases, the
application submits the user’s current coordinates and an emergency help message to the
emergency number, parents, career team, and security staff. The communication is achieved
using the available connection, regardless of the resource cost, to alert any nearby devices
to the emergent need for help. If no connection is made, the device emits an alarm sound
and increases the device volume to maximum. The security staff or fire fighters receive the
emergency message and can view the CCTV video to identify the floor on which the user
is trapped. When the CCTV system locates the user, full information about the user is
displayed, including a personal and health profile. At the same time, the application guides
the user to a safe exit using a preloaded path (in case the CCTV camera is disabled and
the services engine is off). Fire fighters can use the received message to locate the user in
the building.

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 5

Figure 1. : Context-Oriented Component-Based Application-Model-Driven Architecture
(COCA-MDA)

COCA-MDA Development Approach

The COCA-MDA follows the principles of the object management group (OMG)
model-driven architecture. The design of a context-aware application according to the
COCA-MDA approach generally involves the six phases shown in Figure 1. Modelling
IWayfinder using COCA-MDA can be summarised as shown in Figure 2. The figure sum-
marizes the modelling tasks using the associated UML diagrams. The developer can start
the analysis of an application scenario to capture the requirements.

Analysis: The requirements of the system are modelled in a computation-
independent model (CIM), thus describing the situation in which the application will be
used and predicting the exact behaviour of the application as a result of runtime context
changes. This phase is accomplished by performing the following three tasks.

*. Task 1. Requirement capturing by textual analysis: In this task, the developer
identifies the candidate requirements for the illustration scenario using a textual analysis
of the application scenario. It is recommended that the developer identify the candidate
actors, use-cases, classes, and activities. This can be achieved by creating a table which
lists the results of the analysis.

*. Task 2. Identifying the extra-functional requirements and relating them to the
middleware functionality: The requirement is classified in the requirements’ diagram, based
on its type and whether it comes from a context provider or a consumer. The next level of
requirements classification is to classify the requirements based on their anticipation level:
foreseeable, foreseen, or unforeseen. This classification allows the developer to model the
application behaviour as much as possible and to plan for the adaptation actions. However,
to facilitate this classification framework, a UML profile is designed to support the require-
ments analysis and to be used by the software designer, as shown in Figure 3. For example,
displaying the direction output in the camera browser is a functional requirement which
drives the extra-functional requirement number 4, ’utilise the resources’, which requires a

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 6

1. Requirements Capturing by
Textual Analysis

2. Capturing
Functional Requirements 3. Capturing Extra-functional

Requirements

5a. Core Functionality Use-cases 5b. Modelling Extended Use-cases

COCA-component
Model Design

7. Extra-functionality
COCA-Components Object

6. Core-structure
Objects Diagram

8. Behavioural View
Activity Diagram

9. Decision Policies
State Machine Diagram

Model-To-Model Transformation

COCA-ADL Architecture
Model (PSM)

4. Context &
Resources

 Meta-Model
Computational Independent Model

CIM Analysis phase

Modelling and design
Platform Independent Model

PIM

Platform Specific Model
PSM Model-to-Model

Code Generation

Figure 2. : Modelling Tasks

middleware functionality to manage the context changes and take the adaptation actions
which satisfy it. This requirement is classified as the foreseeable anticipation level.

Figure 3. : Requirements UML Profile

*. Task 3. Capturing user requirements: This task is combined with the previous
requirements diagram. This task focuses on capturing the user’s requirements as a subset
of the functional requirements, as shown in the UML profile in Figure 3. This task allows
the developers to analyse the main functions of the application which achieve specific goals

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 7

or objectives. Normally, this kind of requirement is expressed by ’The user must be able to
do ...’.

Figure 4. : Partial Requirements Diagram

Modelling and design: COCA-MDA has adopted the component collaboration ar-
chitecture (CCA) (ECA OMG, 2004) at the PIV phase by partitioning the software into two
views: the structure view and the behaviour view. The structure view focuses on the core
components of the self-adaptive application and hides the context-driven components. The
behaviour viewpoint focuses on modelling the context-driven behaviour of the component,
which may be invoked in the application execution at runtime. To achieve this function,
the following three tasks are performed.

*. Task 4. Resources and context entity model Resources and context model refers
to a generic overview of the underlying device’s resources, sensors, and logical context
providers. This diagram models the engagement between the resources and the application
under development. It facilitates the developer in understanding the relationship between
the context providers and their dependency.

*. Task 5. Use cases: In this phase, the requirements diagram is combined into a
use-case model. The use-cases describe the interactions between the software system and
the actor. The system-dependent and environment-dependent behaviours are modelled as
extensions of the functional use-cases. The functional use-cases are modelled in a class
diagram describing the application core functions. The extended use-cases are modelled as
another object diagram which describes the application’s behavioural view. For example,
the ’adapt the direction output’ use-case is a contextually driven use-case which extends
the application functionality to utilise the devices’ resources so as to provide a route to the
nearest fire exit.

*. Task 6. Modelling the application core structure: In this task, a classical class
diagram models the components which provide the application’s core functions. These
functions are identified in the use-case diagram in the previous task. However, the class
diagram is modelled independently of the variations in the context information. In this
scenario, some classes, such as ’Displaying POI’s’, ’Route-Planning UI, CameraUI, MapUI,
and User Interface’, are classified to be in the application core. These classes provide the
core functions for the user during his tour of Petra. Figure 5 shows the core-structure class
model without any interaction with the context environment or the middleware.

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 8

Figure 5. : IWayFinder Core-Classes Structure

Task 7. Identifying Application Variant Behaviour (Behaviour View):

The use-case diagram is split into two distinct object diagrams. The first diagram
describes the basic application components which are executed regardless of the execution
context. The core structure is integrated with the extra-functional class model in the final
architecture model. The extra-functionality class diagram provides a detailed view of the
application COCA-component and the COCA-middleware. In addition, these diagrams
model the desired behaviour, which can be used to anticipate context changes. Figure
6 shows a COCA-component modelled to anticipate the ’direction output’. The COCA-
component implements delegate objects and sub layers; each layer implements a specific
context-dependent function. The COCA-middleware (Magableh & Barrett, 2009, 2011a),
uses this delegate object to redirect the execution among the sub layers based on the context
condition.

Figure 6. : Direction Output Context Oriented Component

The application behavioural model is used to demonstrate the decision points in the
execution which might be reached whenever internal or external variables are found. This
decision point requires several parameter inputs to make the correct choice at this critical

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 9

time. Using the activity diagram, the developers can extract numerous decision polices.
Each policy must be modelled in a state diagram: textbfPolicy: Direction output. This
policy is attached to the ’direction output’ COCA-component in Figure 6. The policy
syntax can be described by the code shown in Listing 1.

Listing 1: Decision Policy 2

If (direction is Provided && Available memory >= 50
&& CPU throughput <= 89 && light level >= 50
&& BatteryLevel >= 50) then {PlayVideo(); displayImage(); VoiceCommand();}
Else If (BatteryLevel < 50 || memory level < 50 || CPU >92)
then {displayImage(); VoiceCommand();}
else If(BatteryLevel < 20)
then VoiceCommand();

The variant behaviour model is supported by a state-machine model which describes the
application decision polices. The three models of the application are used as input for the
next phase, model-to-model transformation.

Model-to-model transformation: The platform-independent model and be-
havioural model are translated into architecture description language (COCA-ADL). This
phase includes model-to-model transformation and model verification for the application’s
structure and behaviour views. The COCA-ADL is implemented by extending the xADL
schema (an extensible XML language). ArchStudio is an environment of integrated tools
for modelling, visualizing, analysing, and implementing software and systems architectures.
The ArchStudio provides Archipelago as the graphical editor used to model the architecture.
Archipelago was used to extend the xADL by implementing the COCA-ADL meta-model.
The ArchStudio editor enables the developer to model their application using three distinct
models: structure, state machine, and activity diagram (Dashofy et al., 2007).

Testing and validating: Tests the model and verifies its fitness for the application
goals and objectives.

Platform-specific model: The platform-specific model produced by the transfor-
mation is a model of the same system specified by the PIM (it also specifies how that system
makes use of the chosen platform). A PSM may provide more or fewer details, depending
on its purpose. A PSM will be an implementation if it provides all the information needed
to construct a system and to put it into operation. Alternatively, it may act as a PIM used
to further refine the PSM so that it can be directly implemented.

Code generation: Model-to-text includes model-to-text transformation deployment
and execution verification. The COCA-ADL XMI code is transformed into the implemen-
tation language.

Evaluating COCA-MDA with COCOMO II

The IWayFinder application has been selected to determine the development effort
using COCA-MDA compared with that using three MDA approaches proposed in the lit-
erature: U-MUSIC-MDA proposed by Khan (Khan, 2010), Paspallis’s MDA proposed by
Paspallis (Paspallis, 2009), and MUSIC-MDA proposed by Wagner et al. (Wagner et al.,
2011). The enterprise architecture tool (EA) (SPARX Enterprise Architecture, 2010) was
used to develop the IWayFinder application using the four MDAs (COCA, MUSIC, U-
MUSIC, and Paspallis’s). Each MDA phase was carried out separately. COCOMO II

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 10

(Boehm et al., 2000) was used to find the development effort in person-months for each
MDA. There are two COCOMO II models, i.e. the post-architecture and early design
models. The post-architecture model is a detailed model used once the project is ready to
develop and sustain a fielded system. The early design model is a high-level model which is
used to explore alternative architectures or incremental development strategies (Boehm et
al., 2000). Based on the above, the post-architecture model has been selected to evaluate
the four MDAs: COCA, MUSIC, U-MUSIC, and Paspallis’s.

Based on the COCOMO II model, the sizing of new and reused code can be estimated
via three major methods, as described in Boehm et al. (Boehm et al., 2000). These methods
are counting SLOC; counting UFP; and aggregating new, adapted, and reused code, i.e.
ASLOC. This type of reused code is estimated using the automatically translated code
factor; this is considered to be a separate activity from development.

With regard to counting SLOC. The code generated from the MDA tool (EA) is ex-
cluded from the estimation. The effort for modelling the architecture can be captured using
UFP. In such cases, COCOMO II is capable of relating UFP to SLOC in the implementa-
tion language. Starting from the fact that a UML is used to draw the model, the UML is
classified on the same scale as a fourth-generation language. The relating process provides
greater accuracy during the estimation than is obtained by estimating the generated lines
of code using the MDA tool. Based on the above, the final SLOC for a module = the
final application SLOC - the generated SLOC. This increases the accuracy of estimating
the development effort.

COCOMO II is not only capable of estimating the cost and schedule for a development
starting from ‘scratch’, it is also able to estimate the cost and schedule for products which
are built upon already existing code, i.e. reused code. However, the third sizing measure,
which aggregates new, adapted, and reused code, is suitable for MDA-based approaches.
Starting from this fact, code taken from another source used in another product under
development also contributes to the product’s effective size. Pre-existing code which is
treated as a white-box and is modified for use with a product is called adapted code. The
effective size of reused and adapted code is adjusted to be its equivalent in new code. The
adjustment on the additional effort it takes to modify the code for inclusion in the product.
This method allows us to estimate the development effort during the transformation and
deployment phases, phases which all MDA approaches have. When the developer transforms
the application from a PIM into a PSM, specific configurations are needed and this can be
captured by the percentage of code modified and the percentage of integration modified.

The following equations describe the effort PM and the TDEV, taking into considera-
tion the aforementioned inputs, as shown in Equation 1. The primary equation in 1 denotes
the effort in person-months derived from the software size defined in thousands of lines of
code (KLOC). The exponent E defines the sum of the scale factors (SF), i.e. the Cartesian
product of the effort multipliers (EM) and the constant value A, A value was calibrated
from several software projects surveyed in Boehm et al. (Boehm et al., 2000). The second
equation in Equation 2 depicts the time required to develop a software, derived from the
nominal effort (PM), the sum of SFs, and the constant values calibrated from several soft-
ware projects evaluated in COCOMO II. The rating scale factors and the effort multipliers
used in this work to derive the effort and the time required to develop the IWayFinder
application using COCA-MDA.

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 11

PM = A× (Size)E ×
17∏
i=1

EMi, (1)

whereE = B + (0.01 ×
17∑
i=1

SFi),

A = 2.95, B = 0.91

TDEV = C × (PM)F , (2)

whereF = D + 0.2 × (E −B),

C = 3.67, D = 0.28 (COCOMOII.2000)

Thus, counting the SLOC is not adequate for evaluating the development effort in
MDA-based methodology. Sizing software maintenance is better for MDA because, after
the code is generated, the developer has to maintain the code and add the target platform
configuration. This is required in the PSM phase and in the deployment and transformation
phases. So, Equation 3 is used to calculate the sizing of code maintenance (Boehm et al.,
2000). The initial maintenance size estimate is adjusted with a maintenance adjustment
factor (MAF). This relationship can estimate the level of effort, using the Full Time Equiv-
alent Software Personnel FSPM , given TM as in annual maintenance estimates, as shown
in Equation 4, where TM = 12 months, or, given a fixed maintenance staff level, FSPM ,
determine the necessary time, TM , to complete the effort (Boehm et al., 2000). To estimate
the adapted code, the COCOMO II model uses an additional set of equations to calculate
the final count for source instructions and related costs and schedule. The equations in 3,
4, and 5 use the following values as parameters.

• ASLOC. The number of source lines of code adapted from existing software used
in developing the new product.

• Percentage of design modification (DM). The percentage of the adapted software’s
design which received modifications to fulfil the objectives and environment of the new
product.

• Percentage of code modification (CM). The percentage of the adapted software’s
code which receives modifications to fulfil the objectives and environment of the new prod-
uct.

• Percentage of integration required for modified software (IM). The percentage of
effort needed for integrating and testing of the adapted software in order to combine it into
the new product.

• Percentage of reuse effort resulting from software understanding (SU). Percentage
of reuse effort resulting from assessment and assimilation (AA); programmer unfamiliarity
with software domain (UNFM). Boehm et al. (Boehm et al., 2000) provides a rating scale
for programmer unfamiliarity (UNFM) as shown in Table 7, .

MAF = 1 +

(
SU

100
× UNFM

)
, (3)

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 12

mentation missing,
obscure or obsolete

mentary and
headers; some
useful documen-
tation.

code commentary,
headers, docu-
mentations.

mentary and
headers; useful
documentation;
some weak areas.

code; documenta-
tion up-to-date,
well-organized,
with design ratio-
nale.

SU Increment to
ESLOC

50 40 30 20 10

I
The other nonlinear reuse increment deals with the degree of Assessment and Assimilation (AA) needed to determine whether
a fully-reused software module is appropriate to the application, and to integrate its description into the overall product
description. Table II-6 provides the rating scale and values for the assessment and assimilation increment. AA is a percentage.

Table II-6 : Rating Scale for Assessment and Assimilation Increment (AA)

AA Increment Level of AA Effort
0 None
2 Basic module search and documentation
4 Some module Test and Evaluation (T&E), documentation
6 Considerable module T&E, documentation
8 Extensive module T&E, documentation

The amount of effort required to modify existing software is a function not only of the amount of modification (AAF)
and understandability of the existing software (SU), but also of the programmer’s relative unfamiliarity with the software
(UNFM). The UNFM parameter is applied multiplicatively to the software understanding effort increment. If the programmer
works with the software every day, the 0.0 multiplier for UNFM will add no software understanding increment. If the
programmer has never seen the software before, the 1.0 multiplier will add the full software understanding effort increment.
The rating of UNFM is in Table II-7.

Table II-7: Rating Scale for Programmer Unfamiliarity (UNFM)

UNFM Increment Level of Unfamiliarity
0.0 Completely familiar
0.2 Mostly familiar
0.4 Somewhat familiar
0.6 Considerably familiar
0.8 Mostly unfamiliar
1.0 Completely unfamiliar

(EQ II-1)

Equation II-1 is used to determine an equivalent number of new instructions, equivalent source lines of code (ESLOC).
ESLOC is divided by one thousand to derive KESLOC which is used as the COCOMO size parameter. The calculation of

Figure 7. : Rating Scale for Programmer Unfamiliarity (UNFM)

SU: Software Understanding (zero if DM = 0 and CM = 0),

DM: percentage of design modified,

CM: percentage of code modified,

UNFM = 0.4

PMM = TM − FSPM , (4)

where T = 12 months

PM = AX(Size)B +

⌈
ASLOC(AT

100)

ATPROD

⌉
(5)

Phase Sizing Method Results

CIM

PIM

PSM

Transformation

Final code

Deployment
 integration

Counting Unadjusted
Function Points (UFP)

Relating UFP into SLOC

UFP UFP into SLOC

Quantifying the Maintenance
 Adjustment Factor (MAF)

(Size) PM

Quantifying the Maintenance
Change Factor (MCF)

(Size) PM

Source Line of Code SLOC = Final SLOC - Generated SLOC

Quantifying the Maintenance
Change Factor (MCF)

SLOC

Table 1:: MDA phases and Size factors

In general, MDA-based approaches must apply CIM, PIM, PSM, transformation,
deployment, and code generation. For each phase in the MDA a sizing method was adapted
for estimating the development effort as shown in Table 1. However, the code which is
directly generated from the MDA tool (EA) is excluded from the development effort, but is
used as an input to measure the software maintenance effort. In addition, the middleware
code has to be adapted and maintained, or even configured, to suit the new application
platform.

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 13

COCOMO II Evaluation Results

The COCOMO II tool was used to estimate COCOA-MDA, U-MUSIC, MUSIC, and
Paspallis’s MDA. The evaluations produced the following results for COCA-MDA and the
alternative methodologies.

Figure 8 provides the estimated efforts for the four MDAs. It also shows the total size
(SLOC) for the IWayFinder application after it has been developed in each MDA. The figure
shows that COCA-MDA requires less effort in PM, despite the fact that the total SLOC
is greater than for Paspallis’s MDA. In Paspallis’s MDA, each context provider requires a
separate plug-in architecture, which requires new software engineering to build the plug-in.
The MDA tool does not generate the required code for the plug-in, but leaves the required
code to be composed and configured in the deployment stage. This requires more effort
to configure and maintain the plug-in architecture. This effort is captured using the UFP
analysis, so the total effort for Paspallis’s MDA is one of the highest because the ratio
of the maintenance adjustment factor is very high. Such facts demonstrate the accuracy
obtained using COCOMO II in estimating self-adaptive software development methodology.
In addition, the figure shows that the effort in MUSIC is the greatest; the reason for this
is a lower ratio of adaptive and reused code in MUSIC compared to that in its extensions
U-MUSIC and Paspallis’s MDA.

Project
Name

MUSIC U_MUISC Paspallis-
MDA

COCO-MDA

Total Effort
(PM)

Total Size
(SLOC)

8.4 3.3 3.5 2.5

170272 37711 42334 107125

1

100

10,000

1,000,000

MUSIC U_MUISC Paspallis-MDA COCO-MDA

107125
4233437711

170272

2.53.53.3
8.4

Effort & SLOC

P
M

 &
 K

S
LO

C

Total Effort (Person-Month) Total Size (SLOC)

0

2.5

5.0

7.5

10.0

MUSIC U_MUISC Paspallis-MDA COCO-MDA

2.53.53.3

8.4

Estimated Effort

P
er

so
n-

M
o

nt
h

(P
M

)

Total Effort (PM)

0

50000

100000

150000

200000

MUSIC U_MUISC Paspallis-MDA COCO-MDA

107125

4233437711

170272

Total Source Lines Of Code

S
LO

C

Total Size (SLOC)

(a) Total Effort for each MDA approach

Project
Name

MUSIC U_MUISC Paspallis-
MDA

COCO-MDA

Total Effort
(PM)

Total Size
(SLOC)

8.4 3.3 3.5 2.5

170272 37711 42334 107125

1

100

10,000

1,000,000

MUSIC U_MUISC Paspallis-MDA COCO-MDA

107125
4233437711

170272

2.53.53.3
8.4

Effort & SLOC

P
M

 &
 K

S
LO

C

Total Effort (Person-Month) Total Size (SLOC)

0

2.5

5.0

7.5

10.0

MUSIC U_MUISC Paspallis-MDA COCO-MDA

2.53.53.3

8.4

Estimated Effort

P
er

so
n-

M
o

nt
h

(P
M

)

Total Effort (PM)

0

50000

100000

150000

200000

MUSIC U_MUISC Paspallis-MDA COCO-MDA

107125

4233437711

170272

Total Source Lines Of Code

S
LO

C

Total Size (SLOC)

(b) Total Source Lines Of Code

Figure 8. : Total Effort for each MDA approach

Figure 9a provides more information for each MDA in terms of the estimated cost

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 14

MDA-Approach CIM PIM PSM Transformation and
Validation (T&V)

U-MUISC

COCA-MDA

MUSIC

Paspallis-MDA

3.436466 4.451148 8.158099 4.47147

3.525611 4.378595 7.33562 4.634469

6.839481 8.389988 13.657399 9.016659

4.190891 5.412451 9.861753 5.457084

0

2

4

6

9

11

13

15

CIM PIM PSM (T&V)

5.457

9.862

5.412
4.191

9.017

13.657

8.39

6.839

4.634

7.336

4.379
3.526

4.471

8.158

4.451
3.436

U-MUISC COCA-MDA MUSIC Paspallis-MDA

M
o
n
th
s

(a) Estimated cost per phase

Phase U-MUSIC COCA MUSIC Paspallis’s
CIM

PIM

PSM
Validation and Testing

8.906863 8.454595 58.960685 16.746164

21.630952 23.532589 143.190235 40.669255

73.572633 12.598925 463.043279 137.981363
32.037309 4.648419 236.061986 60.580294

1

10

100

1000

CIM PIM PSM (T&V)

60.58
137.981

40.669
16.746

236.062
463.043

143.19
58.961

4.648

12.599
23.533

8.455

32.037
73.573

21.631
8.907

U-MUSIC COCA MUSIC Paspallis’s

P
er

so
n-

M
o

nt
hs

 (P
M

)

(b) MDA Cumulative effort in person-months

Figure 9. : Cumulative Effort per model/MDA in person-months

per MDA phase. As shown in the figure, the cost of performing the PIM was large for
all MDAs. The reason for this is that all MDAs focus more on modelling the application
variation model through the PIM. The cost of adapting the PIM in MUSIC is the largest
because of the complexity of adapting the MUSIC PIM tasks; this requires the developer
to produce more UML models than in the others. For the same stage, Paspallis’s MDA
comes with less cost. In Paspallis’s MDA, the time spent by the developers in building
the context-provider plug-ins is greater than the effort required to build the architecture
itself. This is why Paspallis’s MDA comes second, after U-MUSIC, when evaluating the
PSM phase.

Figure 9b provides the cummulative cost in PM for each MDA phase. As shown in
the figure, the cost of performing the PIM was large for all MDAs. COCA-MDA reduced
the effort required to generate the PSM during deployment, as shown in Figure 9b. On the
other hand, Paspallis’s MDA increased the effort required for software maintenance in the
transformation and deployment phases. Specifically, COCA-MDA and U-MUSIC reduce
the effort needed to implement new or reused context provider i.e integrating a new sensor
in the platform. This result reflects the benefits gained from employing the COCA-ADL for
architecture deployment in several platforms. It is worth mentioning here that the ‘labour
rate per month’ has been given the same value for all the MDAs throughout the evaluation.

In order to provides more information about each MDA approach, we have analysed
the effort per phase for each MDA. Figure 10a shows the estimated effort for each phase

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 15

0

5

11

16

CIM PIM PSM (T&V)

5.457

9.862

5.412
4.191

9.017

13.657

8.39
6.839

4.634

7.336

4.379
3.526

4.471

8.158

4.451
3.436

U-MUISC COCA-MDA MUSIC Paspallis-MDA

1

10

100

Analysis Variability Model Context Model Transformation Validation

80.391

31.781

2.548

102.065

19.278

MUSIC Effort per Phase and Module

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

1

100

Analysis Domain Model Variability Model Transformation Deployment Testing Validation

18.44219.15818.712

70.564

30.866
17.452

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

1

10

100

Requirements
Analysis

Identifying
context
requirements

Development
 Context provider Binding Testing Deployment Maintenance

2.184

9.525

1.459

4.855

40.407

6.426
11.289P

e
rs

o
n

-M
o

n
th

s
 (

P
M

)

1

10

100

Requirements analysis PIM Transformation PSM Deployment Validation

5.6335.8525.716

16.99721.647

5.331V
a

lu
e

 P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)
(a) MUSIC Effort (PM) per Phase

0

5

11

16

CIM PIM PSM (T&V)

5.457

9.862

5.412
4.191

9.017

13.657

8.39
6.839

4.634

7.336

4.379
3.526

4.471

8.158

4.451
3.436

U-MUISC COCA-MDA MUSIC Paspallis-MDA

1

10

100

Analysis Variability Model Context Model Transformation Validation

80.391

31.781

2.548

102.065

19.278

MUSIC Effort per Phase and Module

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

1

100

Analysis Domain Model Variability Model Transformation Deployment Testing Validation

18.44219.15818.712

70.564

30.866
17.452

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

1

10

100

Requirements
Analysis

Identifying
context
requirements

Development
 Context provider Binding Testing Deployment Maintenance

2.184

9.525

1.459

4.855

40.407

6.426
11.289P

e
rs

o
n

-M
o

n
th

s
 (

P
M

)

1

10

100

Requirements analysis PIM Transformation PSM Deployment Validation

5.6335.8525.716

16.99721.647

5.331V
a

lu
e

 P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

(b) U-MUSIC Effort (PM) per Phase

Figure 10. : MUSIC-MDA and U-MUSIC-MDA estimated efforts

0

5

11

16

CIM PIM PSM (T&V)

5.457

9.862

5.412
4.191

9.017

13.657

8.39
6.839

4.634

7.336

4.379
3.526

4.471

8.158

4.451
3.436

U-MUISC COCA-MDA MUSIC Paspallis-MDA

1

10

100

Analysis Variability Model Context Model Transformation Validation

80.391

31.781

2.548

102.065

19.278

MUSIC Effort per Phase and Module

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

1

100

Analysis Domain Model Variability Model Transformation Deployment Testing Validation

18.44219.15818.712

70.564

30.866
17.452

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

1

10

100

Requirements
Analysis

Identifying
context
requirements

Development
 Context provider Binding Testing Deployment Maintenance

2.184

9.525

1.459

4.855

40.407

6.426
11.289P

e
rs

o
n

-M
o

n
th

s
 (

P
M

)

1

10

100

Requirements analysis PIM Transformation PSM Deployment Validation

5.6335.8525.716

16.99721.647

5.331

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

(a) COCA Effort (PM) per Phase

0

5

11

16

CIM PIM PSM (T&V)

5.457

9.862

5.412
4.191

9.017

13.657

8.39
6.839

4.634

7.336

4.379
3.526

4.471

8.158

4.451
3.436

U-MUISC COCA-MDA MUSIC Paspallis-MDA

1

10

100

Analysis Variability Model Context Model Transformation Validation

80.391

31.781

2.548

102.065

19.278

MUSIC Effort per Phase and Module

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

1

100

Analysis Domain Model Variability Model Transformation Deployment Testing Validation

18.44219.15818.712

70.564

30.866
17.452

P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

1

10

100

Requirements
Analysis

Identifying
context
requirements

Development
 Context provider Binding Testing Deployment Maintenance

2.184

9.525

1.459

4.855

40.407

6.426
11.289P

e
rs

o
n

-M
o

n
th

s
 (

P
M

)

1

10

100

Requirements analysis PIM Transformation PSM Deployment Validation

5.6335.8525.716

16.99721.647

5.331V
a

lu
e

 P
e

rs
o

n
-M

o
n

th
s
 (

P
M

)

(b) Paspallis’s MDA Effort (PM) per phase

Figure 11. : COCA-MDA and Paspallis’s MDA estimated efforts

for the MUSIC methodology. In tis case, the design of variability models and validation
require more effort than in the others, but modelling the context model require less effort.
This figure demonstrate that MUSIC requires more effort and provides no cost effectiveness

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 16

in developing the IWayFinder application.

In the same way, the U-MUSIC evaluation is illustrated in Figure 10b. The domain
model propsoed by U-MUSIC MDA requires more effort than the variability model does.
In U-MUSIC, the domain model requires the developer to split the context model into four
models: functionality ontology, service ontology, context and resource model, and context
provider. These models require more effort than building a simple context model like
MUSIC. These models are collaborated into architecture constraints in the variability model,
which uses them as inputs for the utility functions. Such an effort in domain modelling can
increase the developers’ understanding of the application domain, but it does not really
enable them to enhance the architecture design. In our experience, the results from the
domain model are not reflected in the architecture variability model; the domain model is
only used to obtain information on the architecture constraints which are used as input for
the utility function.

Figure 11a shows the estimated effort for each phase in Paspallis’s MDA methodology.
The development of context providers and analysis are the phases which require most effort
by the developers. The effort in the deployment and maintenance phases are very high
compared to those in the others. Thus, a planning-based adaptation requires more effort
in the requirements and the proposed methodology requires more effort in developing the
required plug-ins which fit the planned adaptation. Although this methodology does not
suit self-adaptive applications when unanticipated conditions are in place, it does increase
the development and maintenance efforts.

Figure 11a shows the estimated effort for each phase for the COCA-MDA methodol-
ogy. The figure illustrates that less effort is required to construct the application through
the COCA-MDA phases. For example, to model the PIM of the architecture, 21 PM are
required in COCA-MDA, but MUSIC requires 102 PM, U-MUSIC requires 70.5 PM, and
Paspallis’s MDA requires 40.4 PM, assuming that the context providers are not changed at
runtime with respect to Paspallis’s MDA. The intensive analysis of the application require-
ments in COCA-MDA simplified the process of modelling the variability model. Instead of
modelling several variation models, as in MUSIC and U-MUSIC, the developers model one
extra-functionality model and another core structure model. In addition, the methodology
modularizes each context-dependent functionality in a separate component model instead
of designing a new plug-in from scratch and then configuring it, as in Paspallis’s MDA.

PASPA COCA U-MUSIC MUSIC
CIM
PIM
PSM
Transformation and
Validation

3.995849 4.159616 6.591867 8.620638
7.514017 8.134053 9.859635 17.066799

13.991565 15.894385 16.018355 33.904206
11.10122 12.36276 11.164827 26.180648

0

10

20

30

40

PASPA COCA U-MUSIC MUSIC

26.181

11.165
12.363

11.101

33.904

16.01815.894
13.992

17.067

9.86
8.1347.514

8.621
6.592

4.163.996

Project Personnel per Phase per MDA-approches

Fu
ll

Ti
m

e
S

of
tw

ar
e

P
er

so
nn

el
 (

FS
W

P
)

CIM PIM PSM Transformation and Validation

Figure 12. : Project personnel for each phase for each MDA approach

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 17

Finally, Figure 12 shows the required staff per phase in each methodology. The
MUSIC methodology requires the most staff to develop the IWayFinder application, and
COCA-MDA requires the least. Next to MUSIC comes Paspallis’s MDA and then U-
MUSIC. This analysis reflects the effort required in 12 months with respect to the ratio of
code maintenance and deployment plus the required effort to model the architecture.

Lessons Learned

COCA-MDA provides the following benefits.

• Intensive analysis of the application requirements simplified the process of mod-
elling the application’s behavioural model, so, instead of modelling several variation models
as in MUSIC and U-MUSIC, the developer models one behavioural model.

• It enables the architecture to anticipate several behavioural variations, based on
the context and the specific needs of individuals with cognitive impairments.

• It enables the application to proactively anticipate or reactively address unforeseen
changes through the support of a dynamic decision-making and policy framework. The
policy framework is based on a stable description of software models and proprieties.

• It can decompose the application into several architectural units to allow developers
to decide which part of the architecture should be notified when a specific context condition
occurs.

• Counting the SLOC is not adequate for evaluating the development effort in MDA-
based methodology. Sizing software maintenance is better for MDA because, after the
code is generated, the developer has to maintain the code and add the target platform
configuration.

• Clearly, COCA-MDA has reduced the development effort and increased the archi-
tecture’s ability to adapt to context changes.

• COCA-MDA decreases the development effort because it uses a clear separation of
concerns and employs a decomposition mechanism to produce a context-oriented component
model. Using these technique reduces the modelling tasks and combines the MDA phases
in a simple way.

Conclusions and Future Work

Self-adaptability requirement, modelling, architecture, implementation, and assur-
ance approaches require a systematic solution which inter-relates all aspects on a single
platform. Requirements analysis can provide a great deal of information about the extra-
functionalities of the self-adaptive system. In the same way, requirements analysis can facil-
itate and simplify architecture reflection by providing the information required by the soft-
ware to manage itself. Moreover, COCA-MDA can reduce the complexity of self-adaptive
engineering through mapping requirements to actor-, system-, and environment-dependent
behaviours. This study shows how COCA-MDA reduces the required development effort
compared to other MDAs. It also demonstrates how COCA-MDA reduces the software
maintenance ratio through the architecture deployment and transformation.

The COCA-MDA requires improvement before it can support requirements reflection
and modelling requirements as runtime entities. The requirements reflection mechanism

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 18

requires support at the modelling level and architecture level. Requirements reflection can
be used to anticipate the evolution of both functional and non-functional requirements.

References

Achilleas. (2010). Model-driven petri net based framework for pervasive service creation. Unpublished
doctoral dissertation, University of Essex.

Belaramani, N. M., Wang, C.-L., & Lau, F. C. M. (2003, May). Dynamic component composition
for functionality adaptation in pervasive environments. In Proceedings of the the ninth ieee
workshop on future trends of distributed computing systems (pp. 226–232). San Juan, Puerto
Rico.

Boehm, B. W., Clark, Horowitz, Brown, Reifer, Chulani, et al. (2000). Software cost estimation
with cocomo ii (1st ed.). Upper Saddle River, NJ, USA: Prentice Hall PTR.

Calic, T., Dascalu, S., & Egbert, D. (2008). Tools for mda software development: Evaluation
criteria and set of desirable features. In Proceedings of the fifth international conference on
information technology (pp. 44–50). Istanbul, Turkey.

Dashofy, E., Asuncion, H., Hendrickson, S., Suryanarayana, G., Georgas, J., & Taylor, R. (2007).
Archstudio 4: An architecture-based meta-modeling environment. In Proceedings of the 29th
international conference on software engineering (pp. 67–68).

Enterprise architect 8. (2010, December). http://www.sparxsystems.com.au/. ([Online; accessed
1-December-2010])

Enterprise collaboration architecture (eca) specification. (2004, Feb). http://www.omg.org/.
Khan, M. U. (2010). Unanticipated dynamic adaptation of mobile applications. Unpublished doctoral

dissertation, University of Kassel, Distributed Systems Group, Kassel, Germany.
Lewis, G., & Wrage, L. (2005). Model problems in technologies for interoperability: Model-driven

architecture (Tech. Rep.). Software Engineering Institute. url=http://www.sei.cmu.edu/.
Magableh, B., & Barrett, S. (2009). Pcoms: A component model for building context-dependent

applications. In Proceedings of the first international conference on adaptive and self-adaptive
systems and applications (pp. 44–48). Athens, Greece.

Magableh, B., & Barrett, S. (2011a, September). Adaptive context oriented component-based
application middleware (coca-middleware). In Proceedings of the 8th international conference
of ubiquitous intelligence and computing, (uic 2011) (Vol. 6905, p. 137-151). Banff, Canada.

Magableh, B., & Barrett, S. (2011b, May). Objective-cop: Objective context oriented programming.
In Proceedings of the first international conference on information and communication systems
(pp. 45–49). Irbid, Jordan.

Magableh, B., & Barrett, S. (2011c, june). Self-adaptive application for indoor wayfinding for
individuals with cognitive impairments. In Proceedings of the 24th international symposium
on computer-based medical systems (p. 1 -6). Bristol, United Kingdom.

Paspallis, N. (2009). Middleware-based development of context-aware applications with reusable com-
ponents. Unpublished doctoral dissertation, University of Cyprus, Department of Computer
Science.

Wagner, M., Reichle, R., Khan, M. U., & Geihs, K. (2011, Mar). Software development method
for adaptive applications in ubiquitous computing environments (Tech. Rep.). IST-MUSIC.
http://www.ist-music.eu/MUSIC/results/music-deliverables/. ([Online; accessed 1-
March-2011])

Basel Magableh received his Ph.D degree in computer science from Trinity College Dublin,

Ireland, in 2011. His research focuses in integrating Model Driven Architecture with a component-
based system to construct self-adaptive and context-aware software systems. He is a full-time post-

SELF-ADAPTIVE SOFTWARE MDA PRODUCTIVITY EVALUATION 19

doctorate in University College Dublin, Ireland. He is a part time lecturer in Grafton College of
Management Science, Dublin, Ireland. He was member of staff in the National Digital Research
Center of Ireland from 2008- 2011.

Stephen Barrett is currently a lecturer at Distributed Systems Group, Trinity College Dublin,
Ireland. His research centers on middleware support for adaptive computing. (with particular focus
on model driven paradigms) and on large scale applications research (particularly in the context of
web search, trust computation and peer and cloud computing) .

	Productivity Evaluation of Self-Adaptive Software Model Driven Architecture
	Recommended Citation

	tmp.1547473642.pdf.9H0Gg

