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Abstract

Past research in HCI has generated a number of procedures for assessing the usability of

interacting systems. In these procedures there is a tendency to omit characteristics of the

users, aspects of the context and peculiarities of the tasks. Building a cohesive model that

incorporates these features is not obvious. A construct greatly invoked in Human Factors is

human Mental Workload. Its assessment is fundamental for predicting human performance.

Despite the several uses of Usability and Mental Workload, not much has been done to

explore their relationship. This empirical research focused on I) the investigation of such a

relationship and II) the investigation of the impact of the two constructs on human perfor-

mance. A user study was carried out with participants executing a set of information-seeking

tasks over three popular web-sites. A deep correlation analysis of usability and mental work-

load, by task, by user and by classes of objective task performance was done (I). A number

of Supervised Machine Learning techniques based upon different learning strategy were

employed for building models aimed at predicting classes of task performance (II). Findings

strongly suggests that usability and mental workload are two non overlapping constructs

and they can be jointly employed to greatly improve the prediction of human performance.

Introduction

In recent years, with the advent of the Internet and the explosion of web-based system develop-

ment, the construct of usability has been invoked in many different ways. Research in the past

decades has generated a number of procedures for assessing the usability of interactive sys-

tems. It is believed it is a multi-dimensional construct, encompassing several features. Fre-

quently, for example, during usability inspection, there is a tendency to omit characteristics of

the users, aspects of the context and peculiarities of the tasks. This tendency is reasonable and

it justified by the complexity of usability as a construct and a lack of a model that unifies all of

these factors. Taking into account features of users is fundamental for the User Modeling com-

munity in order to build systems that fit the specific background, knowledge and objectives of

users [1–3]. Similarly, considering the context of use has a significant influence in the
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inference of meaningful assessments of usability [4–7]. Additionally, during the usability

inspection process, accounting for the demands of the underlying task is essential for predict-

ing user experience and informing the design of interactive systems [8, 9]. Building a cohesive

model that incorporate user, context and task-specific factors is not obvious. Usability inspec-

tion should be accompanied by the assessment of one of all of these factors when possible.

Beside Usability, another construct has a long research history in the field of Human Factors:

the construct of humanmental workload (MWL) [10, 11]. This is often referred to as cognitive

load and I believe this can significantly contribute to the goal of informing interaction and

web-design. MWL, with roots in Psychology, has been mainly adopted within the fields of

Ergonomics with several application in the transportation and nuclear industries [12]. Its

assessment is fundamental for predicting performance, which in turn is key for describing

user experience and engagement. The link usability and mental workload is nowadays under

explored. A few studies have attempted to apply the construct of MWL to explain usability

[13–18]. Despite this weak interest, not much has yet been done to explore their relationship

empirically. The aim of this research is to empirically investigate the relationship between sub-

jective perception of usability and mental workload with a particular focus on their impact on

objective user performance, this being assessed through observation of tangible facts. Fig 1

depicts the main constructs employed in this research study and their relationship.

The remainder of this paper is divided into the following sections. Firstly, noteworthy defi-

nitions of usability and mental workload are provided, followed by an overview of the assess-

ment techniques employed in Human-Computer Interaction (HCI). Related work at the

intersection of usability and mental workload is presented, describing how the two constructs

have been employed individually and conjointly. An empirical experiment is subsequently

defined in the context of human-web interaction. This is aimed at exploring the relationship

between the perception of usability of three popular web-sites (youtube, wikipedia and google)

and the mental workload experienced by human participants after engaging with them. Results

are presented and critically examined, demonstrating how these constructs are related and

how they influence objective user performance. Findings are strengthen by measures of the

reliability of the underlying instruments adopted. A summary concludes this paper suggesting

future research, highlighting the contribution to knowledge and implications to the field of

Human-Computer Interaction.

1 Materials and methods

Widely employed in the broader field of HCI, usability and mental workload are two con-

structs from the discipline of Human Factor, with no limpid and broad definitions. Since their

inception, there has been an intense debate about their assessment and measurement [19–21].

Although multidimensional and complex, their usefulness for describing the user experience

and informing interaction, interface and system design is beyond doubt.

1.1 Usability

The amount of literature covering definitions of usability, its frameworks and methodologies

is significant [22–26]. An early definition by Eason [27] was ‘the degree to which users are able

to use the system with the skills, knowledge, stereotypes and experience they can bring to

bear’. This definition is mainly connected to the ease-of-use, however, there are more factors

influencing usability. For example, a definition provided by the ISO (International Organisa-

tion for Standardisation), is ‘The extent to which a product can be used by specified users to

achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of

use [28]’ (ISO 9241 series, Section 8.1). It is not a single, one-dimensional property of a user

Experienced mental workload, perception of usability, their interaction and impact on task performance
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interface, rather it is often associated with the functionalities of a product rather than being

merely a feature of the user interface [29]. Usability, according to Nielsen [30], is a method for

improving ease-of-use in the design of interactive systems and technologies. It embraces other

concepts such as efficiency, learnability and satisfaction. Nielsen’s principles are frequently

employed to evaluate the usability of interfaces [30]. The evaluation is an iterative process in

which usability issues are systematically discovered through the application of his principles

[29]. The main limitation associated to these principles is that they are focused on the user

interface under examination, overlooking contextual factors, the cognitive and emotional state

of the users at the time of usability assessment as well as the complexity or time-pressure of the

underlying tasks.

Often when selecting an appropriate usability assessment instrument, it is desirable to con-

sider the effort and expense that will be incurred in collecting and analysing data, as in the con-

text of interaction and web-design. Designers are inclined to adopt subjective usability

assessment techniques for rapidly collecting feedback from users [25]. On one hand, these self-

reporting techniques can only be administered post-task, thus their reliability is under discus-

sion when done on long tasks. Meta-cognitive limitations can also mitigate the accuracy of

self-reporting and thus it is challenging to perform comparisons of different raters adopting an

absolute scale. On the other hand, these techniques have demonstrated their appeals because

of their sensitivity and their diagnostical capacity [25]. One of this technique is the System

Usability Scale [31], a questionnaire that consists of ten questions (Table A1 in S1 Appendix).

It is a highly cited usability assessment technique [32]. It is a very easy scale to administer, mas-

sively applied in different domaind, showing reliability to distinguishing usable and unusable

systems and interfaces both with small and large sample sizes [33–35]. Other self-reporting

usability assessment techniques include the Questionnaire for User Interface Satisfaction

(QUIS) [36], developed at the HCI lab at the University of Maryland, the Computer System

Usability Questionnaire (CSUQ) and the Perceived Usefulness and Ease of Use scale (PUEU),

both developed at IBM [37, 38]. The former was developed to assess the satisfaction of users

with aspects of a computer interface [36]. It includes a demographic questionnaire, a measure

of system satisfaction along six scales, as well as a hierarchy of measures of nine specific inter-

face factors. Each of these factors relates to a user’s satisfaction with that particular aspect of an

interface and to the factors that make up that facet, on a 9-point scale. The latters are a survey

that consists respectively of of 19 questions on a seven-point Likert scale of ‘strongly disagree’

to ‘strongly agree’ [37] and 12 questions, from ‘extremely likely’ to ‘extremely unlikely’ [38].

Fig 1. Schematic overview of the empirical study.

https://doi.org/10.1371/journal.pone.0199661.g001
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Although it is more complex than other instruments, QUIS has shown high reliability across

several interfaces [39]. Additional usability scales include the Purdue Usability Testing Ques-

tionnaire [40] containing 100 questions, the USE questionnaire [41], formed upon 30 ques-

tions [41]. Many other usability measures have been proposed and the reader is referred to

[25, 35]. Eventually, a recent study suggests that despite the intensive use of the construct of

usability in Human-Computer Interaction research, its usefulness to HCI theories as well as

our understanding has been meager [42].

1.2 Mental workload

Human Mental Workload (MWL) is a design concept fundamental for exploring the interac-

tion of people with technological devices, interfaces and systems [10, 43, 44]. This construct

has a long history in Psychology with several applications in Human Factors, in domains such

as transportation [9, 45, 46], safety-critical environments [47, 48], automation and

manufacturing [49, 50], medicine and health-care [51, 52]. The principal reason for assessing

mental workload is to quantify the cost associated to performing a cognitive task for predicting

operator and/or system performance [53, 54]. It has been extensively documented that mental

underload and overload can negatively influence performance [55]. On one hand, during

information processing, when MWL is at a low level, humans may feel frustrated or often

annoyed. On the other hand, when MWL is at a high level, high level of confusions can be

reached by individuals with a consequent decrement in their performance while processing

information and thus higher chances of making mistakes. Hence, designers who are involved

in assessing human or system performance require clues about operator workload at all stages

of system design and operation. These clues allow them to explore and evaluate additional

design options [9]. On one hand, the difficulty of typical tasks executed on early-stage interac-

tive systems might be initially high, due, for instance, to interface complexity. This is likely to

impose high level of mental workload upon operators and thus making them experience low

levels of performance [54]. This is translated in higher operator’s response time, more errors

and fewer tasks are completed per unit of time [56]. On the other hand, early-stage interactive

systems might be designed with simplicity in mind, initially shaping typical tasks that are likely

to impose low levels of mental workload upon humans. This situation should be avoided too

as it leads to difficulties in maintaining attention and promote increment in reaction time [54]

with consequences on user engagement and experience. In summary, at an early design phase,

a system/interface can be optimised taking mental workload into consideration, guiding

designers in making appropriate structural changes [55].

MWL is not a simple and linear concept. Intuitively, it can be described as as the total cog-

nitive work necessary for a human to accomplish a task over time [57]. It is believed that is is

not ‘an elementary property, rather it emerges from the interaction between the requirements

of a task, the circumstances under which it is performed and the skills, behaviours and percep-

tions of the operator’ [9]. This definition is merely practical, and many other factors play a role

in mental workload variation. Formalising mental workload as a clear, linear construct is far

from being trivial [11, 58–62] The area of MWL measurement is as extensive as its several defi-

nitions and formalisations. Several assessment techniques have been proposed in the last fifty

years. Researchers in applied domains have shaped a tendency towards the use of ad hoc,

domain-dependent measure or pool of measures. This trend is justified by the multi-dimen-

sional nature of mental workload. Several reviews attempted to organise the significant

amount of knowledge behind measurement procedures [10, 55, 63]. However, three main clus-

ters are believed, by the community of MWL, to represent the main measures [54, 64–67]:

• self-assessment or self-reporting measures;

Experienced mental workload, perception of usability, their interaction and impact on task performance
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• task measures or objective performance measures;

• physiological measures.

The class of self-assessment measures is often referred to as self-report measures. This cate-

gory relies upon the subject perceived experience of the interaction with an underlying interac-

tive system through a direct estimation of individual differences such as attitudes, emotional

state and level of stress of the operator, the effort devoted to the task and its demands [9, 46,

68–70]. It is strongly believed that only the human involved with a task can provide accurate

and precise judgements about the MWL experienced. For this reason, self-assessment mea-

sures have been always appealing to many practitioners. The class of task performance mea-
sures is based on the assumption that the mental workload of an individual, interacting with

an underlying system or interface, becomes relevant only if it impacts system performance.

Example of measures include reaction time to a secondary task, task completion time, error

rate, tapping regularity. In turn, this category appears as the most valuable options for design-

ers [71–73]. The category of physiological measures considers responses of the body gathered

from the individual interacting with an underlying task and system. These responses are

thought to be highly correlated to MWL. Their utility lies in the interpretation and analysis of

psychological processes and their effect on the state of the body. Example of these measures

include brain function measures, cardiac measures such as hear-rate, eye measures, such as

pupil dilation/movement and muscle measures. The advantage behind measures belonging to

this category is that they can be collected continuously over time, without demanding an

explicit response by the operator [74, 75]. So far they have required specific equipment and

trained operators to employ this equipment minimising their employability in real-world tasks

[76]. However, this tendency is assisting to a shift thanks to the advances in sensor-based tech-

nologies to monitor physiological signals.

1.2.1 A focus on self-assessment measures. Self-assessment measures of mental workload

have in general low implementation requirements, they are often not intrusive and possess

high degree of acceptability by end-users [69, 77]. These measures are usually multi-dimen-

sional. Examples include the NASA’s Task Load Index (NASATLX) [9], the Subjective Work-

load Assessment Technique [70] and the Workload Profile [77]. Uni-dimensional measures

also exist such as the the Rating Scale Mental Effort [78], the Copper-Harper scale [79], the

Bedford scale [80] and the Subjective Workload Dominance Technique [81]. Among this, the

NASATLX is probably the most popular self-reporting MWL technique [9]. This has been used

in many empirical studies as for instance, to evaluate user interfaces in health-care or in e-

commerce application and for the improvement of user satisfaction [82]. [83] investigated

how the design of query interfaces is related to performance and stress during information-

seeking tasks. Mental workload was assessed using the NASATLX and log data was used as

objective indicator of performance to characterise searching behaviour. The Workload Profile

[77], the NASATLX and the Subjective Workload Assessment Technique [70] have been com-

pared in a user study to evaluate different web-based interfaces [84]. In general, these tech-

niques have demonstrated a good internal reliability (Cronbach’s Alpha varying around.80)

and external validity [85]. In this research study, the Nasa Task Load Index and the Workload

profile techniques have been adopted. These self-reporting techniques are described in details

respectively in section 1.4.2 and section 1.4.3.

1.3 Research at the intersection of usability and mental workload

Not a lot of research exist at the intersection of mental workload and usability. O’Brien and

collaborators identified mental workload and usability as dimensions of the construct of user

Experienced mental workload, perception of usability, their interaction and impact on task performance
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engagement, showing these are weakly correlated to each other [15]. A similar view can be

found in the proposal presented in [86]. Lehmann et al. highlighted the usefulness of adopting

different metrics for assessing user engagement, such as usability and cognitive engagement

[14]. In a recent review, it was acknowledge that usability and performance are two key ele-

ments for describing user experience [16]. The above work clearly emphasises the usefulness

of adopting mental workload with traditional usability assessment methods for explaining user

experience and user engagement. The constructs of mental workload and usability have been

jointly mentioned in an article to better design e-learning artefacts in medical education [87].

Nonetheless, the above contributions are mainly theoretical with little empirical value. Tracy

and Albers attempted to use the construct of mental workload to test the usability of web-sites

[17] and allowing the identification of those high-workload sub-areas of the interface that

required attention. A similar study was aimed at investigating tapping as a measure of mental

workload and website usability [13]. Gahangir et al. attempted to understand the convergence

of usability and cognitive load in evaluating the performance of fully integrated assistive tech-

nology solutions [88] when adopted by blind people. Their study showed a high correlation of

a secondary task performance measure, and three types of load (intrinsic, germane and extra-

neous) treated as cognitive load indexed, to usability, measured with a modification of some of

the dimensions proposed in [89]. Similarly, another study employed an index of mental work-

load, namely the NASA-TLX, in conjunction with a measure of usability, namely the USE

questionnaire for evaluating an interface for social robotic telepresence [90]. Unfortunately,

the sample size of the data employed in the above empirical studies is not enough to draw any

credible conclusion about the interaction mental workload-usability.

Despite research at the intersection of mental workload and usability is sparse and limited,

a number of papers have been published discussing the relationship between usability and task

performance. In [91], preference, a parameter of usability, and human performance were posi-

tively associated. However, it pointed out the existence of cases where users would not prefer

an underlying interactive system whose design would seem more aligned to objective perfor-

mance measures. This line of thought also appeared in the meta-analysis conducted in [92]

over 73 usability studies. Here authors suggest that measures of users? perceptions of phenom-

ena, in general, are not correlated with objective measures of the phenomena.

1.4 Design of experiments

An empirical study with human participants has been designed and executed. Users had to

interact with 3 popular web-sites (youtube, google, wikipedia) and execute typical tasks over

them (Table A5 in S1 Appendix). The aim was to explore the relationship between the percep-

tion of usability, the subjective mental workload experience by users and the achieved objective

performance. One self-reporting procedure for measuring usability and two self-reporting

methods for mental workload assessment have been selected:

• the System Usability Scale (SUS) [31]

• the Nasa Task Load Index (NASATLX), developed at NASA [9]

• the Workload Profile (WP) [77], based on Multiple Resource Theory [93, 94].

No physiological procedures for mental workload measurement were included in the study.

This was not considered because the goal of this research is to investigate the relationship

between perception of usability, through a questionnaire, and assessment of mental workload

with self-reporting measures. Five classes of user objective performance on tasks have been set

(Table 1). These classes of objective performance are sometimes conditionally dependent

Experienced mental workload, perception of usability, their interaction and impact on task performance
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(Fig 2) and the associated number (1–5) is not an indication of their strength or rank but

merely a label. The detailed research hypotheses are defined in Table 2 and illustrated in Fig 3.

The three measurement techniques are detailed below, followed by the definition of the

research hypotheses.

1.4.1 The system usability scale. The System Usability Scale is a subjective usability

assessment instrument that include a Likert scale, bounded in the range 1 to 5 [31]. Questions

can be found in Table A1 in S1 Appendix. Individual scores are not meaningful on their own.

For odd questions (SUSi with i = {1|3|5|7|9}), the score contribution is the scale position (SUSi)
minus 1. For even questions (SUSi with i = {2|4|6|8|10}), the contribution is 5 minus the scale

position. For comparison purposes, the SUS value is converted in the range [1..100] 2 < with

Table 1. Description of objective performance classes.

Class Description

1 the task was not completed as the user gave up

2 the execution of the task was terminated because available time elapsed

3 the task was completed and no answer was required by the user

4 the task was completed, the user provided an answer, but it was wrong

5 the task was completed and the user provided the correct answer

https://doi.org/10.1371/journal.pone.0199661.t001

Fig 2. Partial dependencies of objective performance classes.

https://doi.org/10.1371/journal.pone.0199661.g002

Table 2. Description of research hypotheses.

label description

H1 Usability and Mental workload are two uncorrelated constructs capturing difference variance (as measured

with self-reporting techniques—SUS, NASATLX, WP).

H2 A unified model incorporating a usability and a mental workload measure can significantly enhance the

accuracy of the prediction of objective performance than the individual usability and MWL models.

H3 A hybrid model incorporating features of a measure of usability and features of a measure of mental

workload can significantly enhance the prediction of objective performance than models incorporating only

usability or MWL features.

https://doi.org/10.1371/journal.pone.0199661.t002
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i1 = {1, 3, 5, 7, 9}, i2 = {2, 4, 6, 8, 10}:

SUS : ½0::100� 2 < SUS ¼
1

10
�
X

i1

ðSUSiÞ þ
X

i2

ð100 � SUSiÞ

" #

1.4.2 The NASA task load index. The Nasa Task Load Index [9] belongs to the category

of self-assessment measures. It has been validated in the aviation industry and other contexts

in Ergonomics [9, 71] with several applications in many socio-technical domains. It is a combi-

nation of six factors believed to influence MWL (questions of Table A2 in S1 Appendix). Each

factors is quantified with a subjective judgement coupled with a weight computed via a paired

comparison procedure. Subjects are required to decide, for each possible pair (binomial coeffi-

cient, 6

2

� �
¼ 15) of the 6 factors, ‘which of the two contributed the most to mental workload dur-

ing the task’, such as ‘Mental or Temporal Demand?’, and so forth. The weights w are the

number of times each dimension was selected. In this case, the range is from 0 (not relevant)

to 5 (more important than any other attribute). The final MWL score is computed as a weighed

average, considering the subjective rating of each attribute di and the correspondent

weights wi:

NASATLX : ½0::100� 2 < NASATLX ¼
X6

i¼1

di � wi

 !
1

15

1.4.3 The workload profile. The Workload Profile assessment procedure [77] is built

upon the Multiple Resource Theory proposed in [93, 94]. In this theory, individuals are seen as

having different capacities or ‘resources’ related to:

• stage of information processing—perceptual/central processing and response selection/

execution;

Fig 3. Illustration of research hypotheses.

https://doi.org/10.1371/journal.pone.0199661.g003
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• code of information processing—spatial/verbal;

• input—visual and auditory processing;

• output—manual and speech output.

Each dimension is quantified through subjective rates (questions of Table A3 in

S1 Appendix) and subjects, after task completion, are required to rate the proportion of atten-

tional resources used for performing a given task with a value in the range 0..1 2 <. A rating of

0 means that the task placed no demand while 1 indicates that it required maximum attention.

The aggregation strategy is a simple sum of the 8 rates d (averaged here, and scaled in [1..100]

2 < for comparison purposes):

WP : ½0::100� 2 < WP ¼
1

8

X8

i¼1

di � 100

 !

1.4.4 Research hypotheses. Three research hypotheses have been defined in this empirical

research (Table 2). The first hypothesis is a non-directional statement, anticipating that usabil-

ity, as measured by SUS, captures a different variance than MWL, as measured by NASATLX

or WP. It is anticipated that there is a relatively random relationship between usability and

mental workload, indicating two uncorrelated constructs.

The second and third hypotheses are directional predictive statements. In detail, the second

hypothesis anticipates that the usability and mental workload measures can be successfully

combined together to predict objective performance better than the individual measures.

The third hypothesis assumes that the dimensions used to form a usability or a mental

workload index cannot be combined together to predict the objective performance better than

the individual model-specific dimensions. In other words, a hybrid model incorporating both

attributes of usability and mental workload will form a new, unknown construct that does not

contribute to enhance the prediction of objective performance when predicted with the attrib-

uted of the individual models. For clarification purposes, the above hypotheses are stated in

formal terms in Table 3.

1.4.5 Participants and procedure. Due to the fact that this research involved human par-

ticipants, the study has been approved by the ethics committee of the University of Dublin,

Trinity College where the experiment has been carried out. The study has been conducted

according to the principles expressed in the Declaration of Helsinki. Participants have been

Table 3. Formal description of research hypotheses (corr a correlation coefficient and acc the accuracy of a

prediction).

label formal description

H1 a)corr(SUS, NASATLX) = 0

b)corr(SUS,WP) = 0

H2: a) acc(SUS! OP) < acc(SUS, NASATLX! OP)

b) acc(SUS! OP) < acc(SUS,WP! OP)

c) acc(NASATLX! OP) < acc(SUS, NASATLX ! OP)

d) acc(WP! OP) < acc(SUS,WP! OP)

H3: a) acc(SUS1,..,10! OP) < acc(SUS1,..,10, NASA1,..,6! OP)

b) acc(SUS1,..,10! OP) < acc(SUS1,..,10,WP1,..,8! OP)

c) acc(NASA1,..,6! OP) < acc(SUS1,..,10, NASA1,..,6! OP)

d) acc(WP1,..,8! OP) < acc(SUS1,..,10,WP1,..,8! OP)

https://doi.org/10.1371/journal.pone.0199661.t003
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properly instructed and have indicated that they consent to participate by signing the appro-

priate informed consent paperwork. All efforts have been made by the author to protect the

privacy and anonymity of participants. Participants were recruited initially through the use of

internal mailing list in the School of Computer Science and Statistics at Trinity College Dublin.

However, since the response was not as expected, with a drop out rate of 80%, probably due to

the length of the experiment itself, the recruitment process was extended to personal contacts

of the first participants through word-of-mouth.

A sample of 46 human volunteers, fluent in English, eventually participated in the research

after signing the consent form. Participants were divided into 2 groups of 23 each: those in

group A were different to those in group B. Volunteers could not engage with instructors dur-

ing the execution of the tasks and their trained was not required. Ages ranges from 20 to 35

years; 24 females and 22 males evenly distributed across the 2 groups (Total—Avg.: 28.6, Std.

3.98; g.A—Avg. 28.35, Std.: 4.22; g.B—Avg: 28.85, Std.: 3.70) all with a daily Internet usage of

at least 2 hours. Volunteers were asked to execute a set of 9 information-seeking web-based

tasks (Table A5 in S1 Appendix) in the most natural way, over 2 or 3 sessions of approximately

45/70 minutes each, on different non-consecutive days on three popular web-sites. The num-

ber of sessions were established according to their availability to participate in the research.

Designed information-seeking tasks differed in terms of intrinsic complexity, time-pressure,

time-limits, human interference and interruptions as well as demands on different modalities

(visual, auditory, information-processing). Also, three popular web-sites were selected with

the assumption that participants had previously interacted with them at least once. The ratio-

nale behind this is the expectation to observe situations of underload for more assiduous Inter-

net users, given their familiarity with the underlying interface. Two groups were formed

because designed tasks were going to be executed on original and run-time altered web-inter-

faces (through a CSS/HTML manipulation, as in Table A4 in S1 Appendix). The rationale

behind this manipulation was to allow the formation of scenarios in which even assiduous

Internet users were expected to perceive an higher mental workload. If non-popular web-sites

would have been selected, the chances to spot scenarios of underload were minimal. This is

because of the unfamiliarity of the users with the new web-sites and the higher effort that

would have been required for the execution of the experimental tasks. Additionally, partici-

pants had to interact with those web-sites multiple times, executing different tasks one after

each other. This means that, even with the same interface, complexity of tasks could have been

perceived differently, given the increasing level of fatigue of participants, boredom or annoy-

ance task after task. The run-time manipulation of web-sites was also planned as part of a

larger research study [95–97], to enable A/B testing of web-interfaces (not included here).

Interface manipulation was not extreme, like making things very hard to read. Rather the goal

was to manipulate the original interface to alter usability and task difficulty independently.

The order of the tasks administered was the same for all the volunteers. Computerised versions

of the SUS (Table A1 in S1 Appendix), the NASATLX (Table A2 in S1 Appendix) and theWP
(Table A3 in S1 Appendix) instruments were administered shortly after task completion. Note

that the question of the NASA − TLX related to the ‘physical load’ dimension was set to 0 as

well as its weight as no physical effort was required. As a consequence, the resulting pairwise

comparison procedure became shorter. Some participant did not execute all the tasks and the

final dataset contains 390 cases.

2 Results

Table 4 and Fig 4 show the means and the standard deviations of the usability and the mental

workload scores for each information-seeking task (Table A5 in S1 Appendix).
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Table 4. Mental workload & usability—Groups A, B (G.A/G.B).

G. A NASATLX WP SUS
Task avg std avg std avg std

1 46.03 24.30 39.34 11.54 50.38 21.31

2 41.38 15.71 27.23 9.51 81.98 14.06

3 41.08 14.47 36.50 13.10 73.77 19.71

4 35.36 17.92 34.43 13.61 85.41 8.96

5 45.47 15.74 37.49 13.78 69.22 19.84

6 46.35 14.13 43.09 12.20 86.36 09.26

7 56.20 23.97 37.11 14.92 68.87 16.38

8 49.76 19.96 41.09 13.31 82.16 10.93

9 64.61 12.92 46.65 10.46 81.85 09.81

G. B NASATLX WP SUS
Task avg std avg std avg std

1 23.66 13.93 26.57 14.85 77.00 19.49

2 40.97 16.62 28.27 14.73 73.24 16.92

3 42.63 14.21 35.60 15.81 82.33 14.58

4 42.70 14.09 34.87 15.25 46.61 17.90

5 51.15 13.78 33.54 13.88 84.64 12.77

6 39.31 14.57 44.61 13.50 82.68 14.12

7 47.86 19.97 37.84 18.02 59.62 17.97

8 55.34 14.75 42.97 16.98 81.41 13.73

9 70.75 16.29 50.51 14.06 75.39 18.02

https://doi.org/10.1371/journal.pone.0199661.t004

Fig 4. Summary statistics by task.

https://doi.org/10.1371/journal.pone.0199661.g004
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2.1 Testing hypothesis 1

To test hypothesis 1, a correlation analysis of the usability versus the mental workload scores

has been performed. From an initial analysis of the data depicted in Fig 5, it seems intuitive to

assess a random relationship between the usability scores (SUS) and the mental workload

scores (NASATLX, WP). This is statistically confirmed in Table 5 by the Pearson and Spear-

man correlation coefficients computed over the full dataset (Groups A, B). The Pearson coeffi-

cient was chosen for exploring a linear correlation between the two constructs while the

Spearman correlation for investigating the existence of a monotonic relationship, not necessar-

ily linear.

Although the perception of usability does not seem to correlate at all with the subjective

mental workload experienced by participants, a further investigation of their relationship was

performed on a task-basis. Fig 6 depicts the density plots of the correlations achieved between

the usability and mental workload scores, while Table 6 formally list their magnitude. Note

Fig 5. Scatterplots of NASATLX, WP vs SUS.

https://doi.org/10.1371/journal.pone.0199661.g005

Table 5. Pearson and Spearman correlation coefficients of the usability and the mental workload scores.

Pearson Spearman

WP(p-val) SUS(p-val) WP(p-val) SUS(p-val)

NASA 0.55(<.001) -0.13(.007) 0.53(<.001) -0.1(.03)

WP -0.05(.35) -0.08(.11)

https://doi.org/10.1371/journal.pone.0199661.t005
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that each density function contains 9 values, one for each task. Additionally, although the

description of the tasks was identical across groups, participants executed them over two dif-

ference interfaces, therefore tasks in group A where considered different than tasks in group B.

Commonly, in behavioural and social sciences, there may be a greater contribution from com-

plicating factors, as in the case of subjective, self-reported ratings. Therefore, correlations

above 0.5 are regarded as very high, within [0.3 − 0.5] as medium/moderate and within

Fig 6. Density plots of the correlations by task—Group A, B.

https://doi.org/10.1371/journal.pone.0199661.g006

Table 6. Correlations MWL vs usability. Groups A and B.

G. A Pearson Spearman

Task Nasa/SUS WP/SUS Nasa/SUS WP/SUS

1 -0.21 -0.39 -0.24 -0.42

2 -0.22 0.18 -0.1 0.01

3 -0.25 -0.13 -0.23 -0.08

4 -0.05 -0.11 -0.10 -0.09

5 0.14 -0.26 0.10 -0.27

6 -0.17 -0.01 0.04 0.06

7 -0.11 0.03 -0.10 0.03

8 -0.28 0.02 -0.13 -0.13

9 0.48 -0.15 0.57 -0.15

G. B Pearson Spearman

Task Nasa/SUS WP/SUS Nasa/SUS WP/SUS

1 -0.69 -0.06 -0.6 -0.11

2 -0.12 -0.15 -0.15 -0.23

3 -0.07 0.13 -0.05 0.11

4 -0.64 -0.34 -0.60 -0.34

5 -0.34 -0.08 -0.31 -0.08

6 -0.08 -0.14 -0.07 -0.12

7 -0.32 -0.2 -0.37 -0.30

8 -0.08 -0.29 -0.04 -0.24

9 0.36 0.14 0.44 0.14

https://doi.org/10.1371/journal.pone.0199661.t006
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[0.1 − 0.3] small (symmetrically to negative values) [98](page 82). In this analysis, only

medium and high correlation coefficients are taken into account (highlighted in Table 6), dis-

carding those demonstrating random relationship.

Yet, a clearer picture does not emerge and just for a few tasks some form of relationship

exists between perception of usability and the mental workload experienced by participants.

Fig 7 is aimed at visually help with the explanation of these cases, extract further information

and possible interpretations on why the usability scores were moderately or highly correlated

with the workload scores.

• tasks 1/A and 4/B:WP scores seem to be moderately negatively correlated with the SUS
scores. This might suggest that when the proportion of attentional resources being taxed by a
task is moderated and decreases, the perception of good usability increases. In other words,

when web-interfaces and the tasks executed over them require a moderate use of different

stages, codes of information processing and input, output modalities (section 1.4.3), the

usability of those interfaces is increasingly perceived as positive.

• tasks 9/A and 9/B: the NASATLX scores are highly and positively correlated with the SUS
scores. This might suggests that, even when time pressure is imposed upon tasks (description

of task 9 in Table A5 in S1 Appendix) causing an increment in the workload experienced,

and the perception of performance decreases because the answer of the task is not found,

than the perception of usability is not affected if the task is pleasant and amusing (like task

9). In other words, even if the experienced mental workload increases but not excessively, and
even if an interface is slightly altered (task 9 group B), the perception of positive usability is
strengthened if tasks are enjoyable.

• tasks 1/B, 4/B, 5/B, 7/B: the NASATLX scores are highly negatively correlated with the SUS
scores. This might suggests that when the mental workload experienced by users increases, per-
haps because tasks are not straightforward, the perception of usability can be negatively influ-
enced even with a slight alteration of the interface.

The above interpretations do not aim to be exhaustive. Rather they are possible interpreta-

tions and are only confined to this study. Further empirical investigations are required prior to

generalising these findings. To further strengthening the data analysis, an investigation of the

correlation between the usability and the mental workload scores has been performed on a

participant-basis (Table 7 and Fig 8).

As in the previous analysis (by task), just medium and high correlation coefficients (>0.3)

are taken into account for a deeper exploration. Additionally, because the correlations listed in

Table 6 were not able to systematically demonstrate common trends, the analysis on the indi-

vidual-basis was more strict. In details, only those scores of participants for which a medium

or high linear relationship (Pearson) and a monotonic relationship (Spearman) was found

between both the two MWL indexes (NASA,WP) and the usability scores (SUS) was taken

into consideration. The goal was to look for the presence of any peculiar pattern of user’s

behaviour or a more complex deterministic structure. These participants are highlighted in

Table 7 (1, 5, 11, 12, 16, 27, 31, 42, 44). The densities of their correlations are depicted in Fig 9.

From Fig 8 (bottom), a multimodal distribution of the correlations of the usability and

mental workload scores emerges, with a big cluster of users close to −0.5 and a smaller one

close to 0.5. Fig 10 show the linear scatterplots associated to these participants with a linear

straight regression line and a local smoothing regression line (Lowess algorithm [99]). The for-

mer type of linear regression is parametric and assumes normal distribution of data, while the

latter is non-parametric, it does not necessarily assumes normality of data and it aids the iden-

tification of patterns, increasing the ability to see a line of best fit over data. Outliers from

Experienced mental workload, perception of usability, their interaction and impact on task performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0199661 August 1, 2018 14 / 36

https://doi.org/10.1371/journal.pone.0199661


Fig 7. Details of tasks with moderate/high correlation.

https://doi.org/10.1371/journal.pone.0199661.g007
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Table 7. Correlation MWL-usability by user.

Pearson Spearman

User Nasa/SUS WP/SUS Nasa/SUS WP/SUS

1 -0.5 -0.43 -0.45 -0.32

2 0.41 -0.11 0.57 -0.23

3 -0.4 0.18 -0.27 0.45

4 0.38 0.37 0.15 0.17

5 -0.66 -0.57 -0.7 -0.63

6 -0.15 -0.34 -0.06 -0.14

7 -0.17 -0.2 -0.17 -0.4

8 -0.23 0.13 -0.54 0.01

9 -0.16 -0.4 -0.25 -0.08

10 0 0.26 -0.05 0.33

11 -0.47 -0.74 -0.52 -0.78

12 0.64 -0.3 0.61 -0.34

13 -0.17 0.18 -0.23 0.18

14 0.24 0.39 -0.22 0.16

15 0.06 0.17 0.21 0.47

16 0.46 0.34 0.57 0.55

17 0.27 0.02 0.15 0.23

18 -0.14 0.16 -0.15 -0.2

19 -0.76 0.05 -0.55 -0.03

20 0.05 -0.21 0.27 0.18

21 0.43 -0.06 0 0.1

22 -0.99 0.05 -1 0.4

23 0.18 -0.2 0.4 -0.33

24 0.19 0.32 -0.25 0.19

25 -0.62 -0.07 -0.38 -0.4

26 -0.69 0.29 -0.62 0.38

27 -0.38 -0.36 -0.55 -0.58

28 -0.13 -0.43 -0.2 -0.48

29 -0.11 0.28 -0.03 0.15

30 0.17 -0.22 0.22 -0.38

31 -0.6 -0.42 -0.78 -0.48

32 -0.7 -0.4 -0.2 -0.22

33 0.06 -0.67 0 -0.32

34 -0.41 -0.45 -0.32 -0.27

35 0.19 -0.08 0 0.08

36 -0.34 -0.15 -0.58 -0.48

37 -0.47 -0.08 -0.17 0.38

38 0.21 0.43 0.32 0.51

39 -0.17 -0.07 0.2 0.12

40 -0.34 0.93 0.1 0.87

41 0.25 -0.23 0.37 -0.35

42 -0.67 -0.6 -0.65 -0.38

43 0.02 0.18 -0.07 -0.04

44 -1 -0.79 -1 -1

45 -0.59 -0.36 -0.4 -0.23

46 0.27 0.53 0.21 0.34

https://doi.org/10.1371/journal.pone.0199661.t007
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Fig 8. Density plots of the correlations by user.

https://doi.org/10.1371/journal.pone.0199661.g008

Fig 9. Density plots of the correlations of selected users by task (top, groups A, B) and by users (bottom).

https://doi.org/10.1371/journal.pone.0199661.g009
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Fig 10. Relationship between usability and mental workload scores for participants with moderate or high Pearson and

Spearman correlation coefficients.

https://doi.org/10.1371/journal.pone.0199661.g010
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scatterplots have not been removed due to the limited available points—9 points which are the

maximum tasks executed by each participant.

Yet, no relational pattern between perception of usability and subjective mental workload

clearly emerges. Nonetheless, by reviewing the mental workload scores (NASATLX andWP),

it appears that the nine selected participants have all experienced, except a few outliers, optimal

mental workload (on average between 20 and 72). These users did not perceive situations of

underload or overload while executing the underlying tasks. Similarly, taking a closer look at

the usability scores, these users did not perceive an extremely negative usability, with scores

higher than 40. Except users 12 and 16, all the others seem to share a property: the lower the

experienced mental workload is when between optimal ranges, the lower their perception of

usability.

A final attempt to investigate the relationship between experienced workload and perceived

usability has been performed by grouping scores by the objective performance class. Table 8

lists the correlations of the workload and usability scores by performance class.

Unfortunately, no trend emerges from Table 8 and Fig 11 with the correlations between

experienced mental workload and perceived usability all close to zero, suggesting a random

relationship between the two constructs.

2.2 Testing hypothesis 2

In order to test hypothesis two, an investigation of the impact of the perception of usability

and the experienced mental workload on the objective performance achieved by user has been

conducted. In this context, objective performance refers to objective indicators of the perfor-

mance reached by each volunteers who participated in the user study, categorised in 5 classes

(section 1.4). During the experimental study, the measurement of the objective performance of

some user was faulty. These cases were discarded and a new dataset with 390 valid cases was

formed. The investigation of the impact of the perception of usability and the mental workload

experienced by users on the 5 classes of objective performance was treated as a classification

problem, employing supervised machine learning. The distribution of these five classes are

depicted in Fig 12 and Table 9.

Clearly, the original class frequencies are unbalanced and this is likely to have a negative

influence on the classification of the performance classes. To mitigate this risk, a new dataset

has been built through oversampling, a technique to adjust class distributions and to correct

for a bias in the original dataset. This techniques aims to reduce the negative impact of class

unbalance on model fitting. The minority classes were randomly sampled (with replacement)

in a way to achieve the same size of the majority class (Table 9). The two mental workload

indexes (NASA andWP) and the usability index (SUS) were treated as independent variables

(features) and they were both employed individually and in combination to induce models

Table 8. Correlations of the mental workload scores with the usability scores by performance class.

Pearson Spearman

Class NASA vs SUS WP vs SUS NASA vs SUS WP vs SUS

1 -0.09 -0.14 -0.14 -0.26

2 0.08 -0.32 0.16 -0.24

3 -0.13 0.06 -0.04 -0.10

4 0.15 0.09 0.09 -0.02

5 -0.17 -0.02 -0.14 -0.03

https://doi.org/10.1371/journal.pone.0199661.t008
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Fig 12. Original distribution of the objective performance classes.

https://doi.org/10.1371/journal.pone.0199661.g012

Fig 11. Correlations of the mental workload scores and the usability scores by performance class.

https://doi.org/10.1371/journal.pone.0199661.g011

Table 9. Frequencies of classes.

Class Original Oversampled

1 11 224

2 30 224

3 47 224

4 78 224

5 224 224

total 390 1120

https://doi.org/10.1371/journal.pone.0199661.t009
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aimed at predicting the five classes of objective performance (Fig 13). Four different families of

learning classification techniques were adopted to predict the objective performance:

• information-based learning: decision trees (Recursive Partitioning) [100, 101]

– with the Gini impurity index

– with the information gain entropy measure

• similarity-based learning: k-Nearest Neighbors (euclidean distance)

• probability-based learning: Naive Bayes

• error-based learning: Support Vector Machine [102, 103].

– with a radial basis function kernel

– with a polynomial function kernel

The independent features were normalised with unity-based normalisation (min/max algo-

rithm) in the range [0..1] 2 < to facilitate the training of models. 10-fold stratified cross valida-

tion has been used in the training phase therefore the oversampled dataset was divided in 10

folds and in each fold, the original ratio of the distribution of the objective performance classes

(Fig 12, Table 9) was preserved. 9 folds were used for training a model and the remaining fold

for testing it against accuracy. This was repeated 10 times shifting the testing fold. Through

this approach, 10 models were induced each with an associated classification accuracy. Thus

10 accuracy values were generated for each machine learning technique and for each combina-

tion of independent features (Fig 14). Table 10 lists these values, for the individual models

(containing only the mental workload or usability feature) against the combined models (con-

taining both the mental workload and the usability features), grouped by classification tech-

nique and ordered by mean. Importantly, training sets (a combination of 9 folds) and test sets

(the remaining holdout set) were kept the same across the classification techniques and the dif-

ferent combination of independent features (paired 10-fold CV). This was essential to perform

a fair comparison of the different trained models using the same data of training and test sets.

From Table 10, most of the combined models (highlighted in blue), achieved almost always

a higher accuracy than the individual models. However, to formally test hypothesis 2, the

10-fold cross-validated paired Wilcoxon statistical test has been chosen for comparing two

matched accuracy distributions and to assess whether their population mean ranks differ

Fig 13. Independent features and classification techniques.

https://doi.org/10.1371/journal.pone.0199661.g013
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[104]. This is a paired difference test which is a non-parametric alternative to the paired Stu-

dent’s t-test. This has been selected because the population of accuracies (obtained testing each

holdout set) was assumed to be not normal. Table 11 lists the accuracies achieved by each

induced model, ordered by mean and grouped by classification learning technique.

In most of the cases, the combined models always yielded statistically higher classification

accuracies than the individual models. In particular, perception of usability alone, as measured

by SUS was nearly always the worst in predicting objective performance. The addition of a

mental workload index to it (either NASA orWP) significantly enhanced the prediction of

objective performance. The experienced mental workload, according to the NASA − TLXmea-

sure was half of the times sufficient to predict objective performance alone. In the other cases,

the perceived usability, measured by the SUS index, was able to add predictive capacity to the

individual models. A similar behaviour occurred with the other measure of mental workload,

namely theWP index, which was able to predict objective performance individually half of the

times. This empirical evidence suggests that indexes of experienced mental workload and per-

ceived usability can be jointly employed to explain objective performance better than when

employed individually. In particular, experience mental workload seems to explain larger vari-

ance than perception of usability, when both taken into account, as independent variables, to

predict classes of objective performance.

Fig 14. Distribution of the accuracies of individual and combined induced models ordered by mean.

https://doi.org/10.1371/journal.pone.0199661.g014
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2.3 Testing hypothesis 3

In order to test hypothesis 3, an investigation of the impact of the attributes used to assess

usability (by the SUSmeasure) and the attributes used to assess mental workload (by the NASA
and theWPmeasures) on the objective performance achieved by user has been conducted.

This is a similar experiment as the one conducted for testing hypothesis 2 (section 2.2), but

instead of using overall usability and mental workload indexes, as independent features, their

dimensions were used. In other words, the questions of Tables A1, A2, A3 in S1 Appendix,

were used as independent features. The same classification techniques used in the experiment

set for testing hypothesis 2 were employed.

Fig 15 depicts the distributions of the accuracies produced by the models induced by using

the selected supervised machine learning classification techniques ordered by means, which

are on average higher than the distributions of accuracies obtained in Fig 14. Analytics

Table 10. Ordered distributions of accuracies of trained models grouped by learning technique (combined highlighted).

Model Ind. Features Min. 1 Q. Median Mean 3 Q. Max.

svmRadial (NASATLX+SUS) 0.71 0.73 0.74 0.74 0.75 0.79

svmRadial (WP+SUS) 0.67 0.71 0.74 0.74 0.75 0.82

svmRadial (WP) 0.52 0.55 0.56 0.56 0.58 0.59

svmRadial (SUS) 0.46 0.53 0.58 0.56 0.59 0.61

svmRadial (NASATLX) 0.45 0.52 0.58 0.56 0.60 0.61

knn (WP+SUS) 0.67 0.69 0.71 0.71 0.72 0.75

knn (NASATLX) 0.67 0.68 0.69 0.69 0.70 0.73

knn (NASATLX+SUS) 0.65 0.67 0.68 0.69 0.70 0.73

knn (SUS) 0.59 0.62 0.63 0.64 0.66 0.73

knn (WP) 0.59 0.62 0.65 0.64 0.66 0.66

rpartInfo (NASATLX+SUS) 0.62 0.69 0.71 0.70 0.72 0.74

rpartInfo (WP+SUS) 0.62 0.69 0.70 0.69 0.71 0.74

rpartInfo (NASATLX) 0.62 0.65 0.67 0.68 0.71 0.73

rpartInfo (SUS) 0.58 0.60 0.62 0.62 0.65 0.69

rpartInfo (WP) 0.54 0.58 0.63 0.62 0.64 0.72

rpartGini (NASATLX+SUS) 0.62 0.68 0.69 0.69 0.71 0.77

rpartGini (NASATLX) 0.63 0.65 0.68 0.69 0.73 0.75

rpartGini (WP+SUS) 0.57 0.66 0.69 0.68 0.71 0.74

rpartGini (SUS) 0.58 0.60 0.63 0.63 0.65 0.71

rpartGini (WP) 0.56 0.58 0.62 0.62 0.65 0.70

nb (NASATLX+SUS) 0.42 0.46 0.48 0.48 0.50 0.56

nb (WP+SUS) 0.40 0.42 0.44 0.44 0.46 0.50

nb (NASATLX) 0.32 0.35 0.37 0.37 0.38 0.41

nb (SUS) 0.30 0.33 0.36 0.36 0.39 0.42

nb (WP) 0.28 0.31 0.35 0.34 0.37 0.39

svmPoly (NASATLX+SUS) 0.43 0.45 0.48 0.48 0.50 0.54

svmPoly (WP+SUS) 0.36 0.43 0.47 0.45 0.48 0.50

svmPoly (NASATLX) 0.32 0.35 0.36 0.36 0.39 0.40

svmPoly (SUS) 0.31 0.32 0.33 0.34 0.36 0.39

svmPoly (WP) 0.27 0.30 0.33 0.32 0.35 0.37

https://doi.org/10.1371/journal.pone.0199661.t010
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presented in Table 12 follow the same trend as the findings presented in Table 10 but, on aver-

age with higher accuracies. As in the experiment conducted for testing hypothesis 2, the

10-fold cross-validated paired Wilcoxon statistical test has been chosen for comparing two

matched accuracy distributions and to assess whether their population mean ranks differ

[104]. Table 13 lists these tests comparing models incorporating all the features of the original

usability and mental workload instruments, individually and combined. Findings suggest that

the incorporation of the factors used within the SUS usability assessment technique to the fac-

tors used within the NASA scale, in a joint model, in most of the cases did not significantly

enhance the prediction of objective performance. However, when the factors belonging to SUS
were added to the factors belonging toWP in a joint model, half of the times these did contrib-

ute to enhance the prediction of objective performance. Eventually, when mental workload

factors, either belonging to theNASA orWP scales, were added in a joint model to the SUS fac-

tors, this almost always enhanced the prediction of objective performance.

2.4 Internal reliability of measurement scales

In order to enhance the reliability of the findings obtained in this empirical research, the Cron-

bach’s alpha measure was computed to test the internal consistency of the psychometric

Table 11. Wilcoxon test of distributions of accuracies ordered by independent features with 95% confidence intervals (statistically significant different models

highlighted).

Indipendent Features Accuracy (mean)

Classifier Model 1 Model 2 Model 1 Model 2 p-value Impact

nb (NASA) (NASA+SUS) 0.39 0.51 0.0020 yes

knn (NASA) (NASA+SUS) 0.70 0.71 0.7263 no

svmRadial (NASA) (NASA+SUS) 0.60 0.74 0.0020 yes

svmPoly (NASA) (NASA+SUS) 0.36 0.49 0.0059 yes

rpartGini (NASA) (NASA+SUS) 0.65 0.68 0.0840 no

rpartInfo (NASA) (NASA+SUS) 0.66 0.71 0.0645 no

nb (WP) (WP+SUS) 0.34 0.42 0.0039 yes

knn (WP) (WP+SUS) 0.66 0.71 0.0526 no

svmRadial (WP) (WP+SUS) 0.55 0.71 0.0020 yes

svmPoly (WP) (WP+SUS) 0.35 0.47 0.0059 yes

rpartGini (WP) (WP+SUS) 0.65 0.64 0.6462 no

rpartInfo (WP) (WP+SUS) 0.66 0.64 0.6953 no

nb (SUS) (NASA+SUS) 0.36 0.51 0.0039 yes

knn (SUS) (NASA+SUS) 0.66 0.71 0.0144 yes

svmRadial (SUS) (NASA+SUS) 0.55 0.74 0.0020 yes

svmPoly (SUS) (NASA+SUS) 0.33 0.49 0.0020 yes

rpartGini (SUS) (NASA+SUS) 0.60 0.68 0.0059 yes

rpartInfo (SUS) (NASA+SUS) 0.60 0.71 0.0020 yes

nb (SUS) (WP+SUS) 0.36 0.42 0.0129 yes

knn (SUS) (WP+SUS) 0.66 0.71 0.0092 yes

svmRadial (SUS) (WP+SUS) 0.55 0.71 0.0020 yes

svmPoly (SUS) (WP+SUS) 0.33 0.47 0.0020 yes

rpartGini (SUS) (WP+SUS) 0.60 0.64 0.0059 yes

rpartInfo (SUS) (WP+SUS) 0.60 0.64 0.1934 no

https://doi.org/10.1371/journal.pone.0199661.t011
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instruments used, namely the System Usability Scale (SUS) and the mental workload assess-

ment instruments, namely the Nasa Task Load Index (NASA − TLX) and the Workload Profile

scale (WP). The Cronbach’s alpha is aimed at assessing how well these scales consistently mea-

sures what they are supposed to measure. Fig 16 depicts the inter-item correlations of the

above scales, while Table 14 lists the Cronbach’s Alpha coefficient for each scale.

Clearly, the System Usability Scale is the most reliable, with a Cronbach’s Alpha coefficient

of 0.93, in line with findings present in the literature [33, 105]. The Nasa Task Load index fol-

lows, with a lower reliability of 0.65 (using only the close ended questions) and 0.54 (using also

the binary pair-wise comparisons) that indicates a questionable internal consistency of the

scale. However, this is also in line with studies in the literature [106]. An important point is

that theNASA − TLX scale as predominantly used in the field of transportation and safety criti-

cal systems [9] with little application in Human-Computer Interaction and within the arena of

modern daily digital systems. The reliability of the Workload Profile (0.64) was aligned to the

reliability of the NASA − TLX and these two scales had a fair concurrent validity (Correlation

of 0.55 from Table 14).

Fig 15. Ordered distributions of accuracies of trained models by mean using full feature sets of original mental workload and usability assessment instruments.

https://doi.org/10.1371/journal.pone.0199661.g015
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3 Discussion

The results obtained in the previous sections are summarised and they are aligned to the

research hypotheses previously set in Tables 2 and 3. Findings are critically discussed, includ-

ing information about their statistical significance. Eventually, their implication to the broader

field of Human-Computer Interaction is described.

•H1: Usability and Mental workload are two uncorrelated constructs capturing difference vari-
ance (measured by self-reporting techniques—SUS, NASA-TLX, WP).

This has been tested by an in depth correlation analysis, both parametric and nonparamet-

ric, which confirmed that the two constructs are not correlated. The obtained correlation coef-

ficients of Table 7 suggest that there is no linear correlation between the perception of usability

and the experienced mental workload by users, with Pearson coefficients close to zero. Simi-

larly, data suggests there is no tendency for usability to either monotonically increase or

Table 12. Ordered distributions of accuracies of trained models using full feature sets of original mental workload and usability instruments (combined models

highlighted).

Model Independent Features (� = all) Min. 1 Q. Median Mean 3 Q. Max.

svmRadial (WP�+SUS�) 0.88 0.90 0.92 0.92 0.93 0.96

svmRadial (NASA�+SUS�) 0.86 0.89 0.91 0.91 0.94 0.98

svmRadial (NASA�) 0.87 0.89 0.91 0.91 0.92 0.94

svmRadial (WP�) 0.85 0.89 0.90 0.89 0.91 0.93

svmRadial (SUS�) 0.85 0.87 0.90 0.89 0.92 0.93

svmPoly (NASA�+SUS�) 0.86 0.89 0.91 0.91 0.93 0.95

svmPoly (NASA�) 0.88 0.89 0.90 0.90 0.91 0.93

svmPoly (WP�+SUS�) 0.86 0.89 0.89 0.90 0.92 0.96

svmPoly (WP�) 0.84 0.87 0.88 0.88 0.89 0.90

svmPoly (SUS�) 0.83 0.85 0.86 0.86 0.87 0.89

rpartInfo (WP�) 0.69 0.75 0.78 0.77 0.79 0.84

rpartInfo (NASA�+SUS�) 0.71 0.74 0.77 0.76 0.78 0.81

rpartInfo (WP�+SUS�) 0.69 0.74 0.76 0.76 0.79 0.81

rpartInfo (NASA�) 0.61 0.66 0.71 0.70 0.73 0.81

rpartInfo (SUS�) 0.57 0.59 0.62 0.62 0.64 0.69

rpartGini (NASA�+SUS�) 0.69 0.75 0.76 0.76 0.78 0.81

rpartGini (WP�) 0.70 0.73 0.76 0.75 0.78 0.79

rpartGini (WP�+SUS�) 0.71 0.73 0.75 0.74 0.75 0.77

rpartGini (NASA�) 0.62 0.65 0.68 0.69 0.71 0.76

rpartGini (SUS�) 0.58 0.62 0.65 0.65 0.68 0.73

knn (WP�+SUS�) 0.66 0.71 0.74 0.74 0.77 0.82

knn (WP�) 0.70 0.73 0.74 0.74 0.76 0.77

knn (NASA�+SUS�) 0.65 0.70 0.74 0.72 0.75 0.78

knn (NASA�) 0.67 0.69 0.71 0.71 0.73 0.78

knn (SUS�) 0.64 0.65 0.67 0.68 0.72 0.76

nb (WP�+SUS�) 0.63 0.64 0.66 0.67 0.70 0.73

nb (NASA�+SUS�) 0.55 0.60 0.63 0.63 0.66 0.70

nb (WP�) 0.52 0.56 0.61 0.60 0.63 0.67

nb (NASA�) 0.50 0.54 0.59 0.58 0.61 0.64

nb (SUS�) 0.39 0.48 0.51 0.49 0.52 0.55

https://doi.org/10.1371/journal.pone.0199661.t012
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decrease when mental workload increases, with Spearman coefficients close to zero. The sig-

nificance levels obtained for these correlations confirm that SUS and the NASA are signifi-

cantly uncorrelated, fully accepting hypothesisH1(a). However, the absent correlation

obtained between SUS andWP cannot be confirmed by statistical significance, thus the accep-

tance of sub-hypothesis H1(b) is with reservation. The correlation analysis has been strength-

ened by computing sub-correlations of data respectively by experimental task, users and

objective performance class (Tables 6–8). Once more, no consistent pattern on the relationship

between perception of usability and mental workload emerged, enforcing the belief that the

two constructs are uncorrelated and capture difference variance.

•H2: A unified model incorporating a usability and a MWLmeasure can significantly enhance
the accuracy of the prediction of objective performance than the individual usability and MWL
models.

This has been tested by inducing unified and individual models, using four supervised

machine learning classification techniques, to predict the objective performance achieved by

users (five classes of performance of Table 1). These models were trained with 10-fold cross

validation, a well known model validation approach aimed at assessing how the results of a sta-

tistical analysis will generalise to an independent data set. For each classification technique, 10

accuracies were computed forming a distribution. Distributions of accuracies were

Table 13. Wilcoxon test of distributions of accuracies ordered by independent features with 95% confidence intervals using mental workload and usability attributes

(statistically significant different models highlighted).

Independent Features (� = all) Accuracy (mean)

Classifier Model 1 Model 2 Model 1 Model 2 p-value Impact

nb (NASA�) (NASA�+SUS�) 0.58 0.63 0.0273 yes

knn (NASA�) (NASA�+SUS�) 0.72 0.74 0.1934 no

svmRadial (NASA�) (NASA�+SUS�) 0.90 0.91 0.7695 no

svmPoly (NASA�) (NASA�+SUS�) 0.90 0.90 0.8457 no

rpartGini (NASA�) (NASA�+SUS�) 0.71 0.73 0.1309 no

rpartInfo (NASA�) (NASA�+SUS�) 0.75 0.74 0.6250 no

nb (WP�) (WP�+SUS�) 0.58 0.64 0.0059 yes

knn (WP�) (WP�+SUS�) 0.73 0.72 0.3627 no

svmRadial (WP�) (WP�+SUS�) 0.89 0.91 0.0273 yes

svmPoly (WP�) (WP�+SUS�) 0.87 0.90 0.0225 yes

rpartGini (WP�) (WP�+SUS�) 0.71 0.72 0.4316 no

rpartInfo (WP�) (WP�+SUS�) 0.74 0.74 0.6101 no

nb (SUS�) (NASA�+SUS�) 0.49 0.63 0.0020 yes

knn (SUS�) (NASA�+SUS�) 0.69 0.74 0.0137 yes

svmRadial (SUS�) (NASA�+SUS�) 0.89 0.91 0.0756 no

svmPoly (SUS�) (NASA�+SUS�) 0.85 0.90 0.0059 yes

rpartGini (SUS�) (NASA�+SUS�) 0.65 0.73 0.0020 yes

rpartInfo (SUS�) (NASA�+SUS�) 0.67 0.74 0.0020 yes

nb (SUS�) (WP�+SUS�) 0.49 0.64 0.0020 yes

knn (SUS�) (WP�+SUS�) 0.69 0.72 0.0225 yes

svmRadial (SUS�) (WP�+SUS�) 0.89 0.91 0.0129 yes

svmPoly (SUS�) (WP�+SUS�) 0.85 0.90 0.0092 yes

rpartGini (SUS�) (WP�+SUS�) 0.65 0.72 0.0020 yes

rpartInfo (SUS�) (WP�+SUS�) 0.67 0.74 0.0195 yes

https://doi.org/10.1371/journal.pone.0199661.t013
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Fig 16. Intra-correlations of mental workload and usability questionnaire items.

https://doi.org/10.1371/journal.pone.0199661.g016
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subsequently compared using the 10-fold cross-validated paired Wilcoxon statistical test to

assess whether their population mean ranks differ, with a significance level of 0.05. The unified

models, including the measure of usability and one measure of mental workload, as indepen-

dent features, were most of the times able to predict objective user performance, as dependent

feature, statistically significantly better than the individual models (containing only one inde-

pendent features, either usability or MWL). In details, on one hand, when the NASAmeasure

was added to the SUSmeasure, it was always effective in significantly enhance the accuracy of

the predictions, therefore sub-hypotheses H2(a, b) can be fully accepted. On the other hand,

when SUS was added to a measure of mental workload, it enhanced the prediction of objective

performance only half of the times. As a consequence, sub-hypotheses H2(c, d) cannot be fully

accepted. This suggests that the NASA-TLX, as a measure of mental workload, has a higher

capacity to explain objective performance than SUS, a measure of usability.

•H3: A hybrid model incorporating features of a usability measure and features of a mental
workload measure can significantly enhance the prediction of objective performance than models
incorporating only usability or mental workload features.

This has been tested by inducing models containing the features of the System Usability

Scale and the features of a measure of mental workload (either NASA orWP), firstly individu-

ally and then combined (hybrid model). The same four supervised machine learning classifica-

tion techniques have been employed to train models to predict the objective performance

achieved by users (five classes of performance of Table 1). These models were trained again

with 10-fold cross validation in order to assess how the results will generalise to independent

data. For each classification technique, 10 accuracies were computed forming a distribution.

Distributions of accuracies were again compared using the 10-fold cross-validated paired Wil-

coxon statistical test to assess whether their population mean ranks differ, with a significance

level of 0.05. The hybrid models achieved, half of the times, a significantly higher classification

accuracy than the individual models. In details, features of mental workload, when added to

features of usability, nearly always statistically significantly enhanced the prediction of objec-

tive performance, therefore in favour of the acceptance of sub-hypotheses H3(a, b). However,

on one hand, when features of mental workload belonging to theWPmeasure were added to

features belonging to the SUSmeasure, only half of the times these significantly increased the

classification of objective performance. On the other hand, when features of mental workload

belonging to the NASAmeasure were added to features belonging to the SUSmeasure, nearly

always did not enhance the prediction of objective performance. These results suggest that

sub-hypothesis H3(d) cannot be fully accepted and sub-hypothesis H3(c) has to be rejected. It

turns out that the features used within the NASA Task Load Index measure are powerful in

predicting objective performance alone strengthening the fact that usability and mental work-

load measure two different aspects of user experience.

Table 15 summarises the acceptance status of the sub-hypotheses, whether they can be

accepted, rejected or are subject to uncertainty.

In summary, empirical evidence from this study suggests that there is no relationship

between the perception of usability and the mental workload experienced by users on a set of

web-based tasks executed on selected interfaces. Findings suggests that the two constructs

Table 14. Cronbach’s Alpha of the mental workload and usability questionnaire items.

NASA NASA+pairwise WP SUS

0.65 0.54 0.64 0.93

https://doi.org/10.1371/journal.pone.0199661.t014
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seem to describe two not overlapping phenomena, sharing very little variance. The implication

of this is that perception of usability and levels of experienced mental workload could be

jointly employed to enhance the description of user experience. This is particularly relevant,

for instance, in those scenarios in which humans, interacting with technologies, are people

with cognitive disabilities or elderly, or when a graphical interface is presented on a desktop

screen or a mobile device. Here, perception of usability can be high, but underlying tasks

might impose non optimal levels of mental workload on users. Similarly, users can experience

optimal mental load while executing underlying tasks, but might not perceive underlying

interactive systems usable. In turn, the consideration of usability and mental workload as two

distinct constructs can aid designers to build interactive technologies better aligned to the

human mental limited capacities and that can maximise human performance. For example,

during design phases, a designer can perform A/B testing of an interactive system by assessing

mental workload and usability. In turn, this will generate a richer spectrum of feedback that

can be taken into account to improve system design and optimise the performance of its users.

The contributions of this research are to offer a new perspective on the application of mental

workload to traditional usability inspection methods, and a richer approach to explain the

human-system interaction and support its design.

4 Conclusion

This study attempted to investigate the correlation between the perception of usability and the

mental workload imposed by typical tasks executed over three popular web-sites: Youtube,

Wikipedia and Google. A literature review on prominent definitions of usability and mental

workload was presented, with a particular focus on the latter construct. A well known subjec-

tive instrument for assessing usability —the System Usability Scale —and two subjective men-

tal workload assessment procedures —the NASA Task Load Index, and the Workload

Profile —have been employed in a primary research study involving 46 subjects. The percep-

tion of the usability of the interfaces these subjected interacted upon and the mental workload

they have experienced while executing a selection of tasks, over selected interfaces, does not

seem to correlate. The obtained empirical evidence strongly supports that usability and mental

workload are two non overlapping constructs. Findings suggest that these two constructs can

be jointly employed to improve the prediction of human performance, thus enhancing the

Table 15. Formal description of research hypotheses and their acceptance status (corr a correlation coefficient and

acc the accuracy of the model’s prediction).

formal description status

H1 a) corr(SUS, NASATLX) = 0 ✓

b) corr(SUS,WP) = 0 ✓

H2 a) acc(SUS! OP) < acc(SUS, NASATLX ! OP) ✓

b) acc(SUS! OP) < acc(SUS,WP! OP) ✓

c) acc(NASATLX! OP) < acc(SUS, NASATLX ! OP) ?

d) acc(WP! OP) < acc(SUS,WP! OP) ?

H3 a) acc(SUS1,..,10! OP) < acc(SUS1,..,10, NASA1,..,6! OP) ✓

b) acc(SUS1,..,10! OP) < acc(SUS1,..,10,WP1,..,8! OP) ✓

c) acc(NASA1,..,6! OP) < acc(SUS1,..,10, NASA1,..,6! OP) X

d) acc(WP1,..,8! OP) < acc(SUS1,..,10,WP1,..,8! OP) ?

https://doi.org/10.1371/journal.pone.0199661.t015

Experienced mental workload, perception of usability, their interaction and impact on task performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0199661 August 1, 2018 30 / 36

https://doi.org/10.1371/journal.pone.0199661.t015
https://doi.org/10.1371/journal.pone.0199661


description of user experience. The implications to the broader field of Human-Computer

Interaction include the provision of mental workload as an important concept relevant for the

design of interactive technologies better aligned to the human mental limited capacities and

that can maximise human performance.

Future work will be devoted to the replication of this primary research on different inter-

faces and interactive systems. Experiment will be conducted by considering a wider selection

of cognitive tasks in terms of temporal length, context (controlled and real-world tasks), com-

plexity and mental resources demand. Similarly, a wider range of subjects is planned, including

people affected by motor or cognitive impairments as well elderlies. Eventually, a new hybrid

construct for explaining human performance over interactive technologies is envisaged. This

new construct will incorporate factors concerned usability as well as human mental workload

into a novel unified metric expected to have a higher validity, sensitivity and precision than

current ad-hoc measures of user experience.
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