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Fucoxanthin: Overview and Sources  

Fucoxanthin is a light‐harvesting carotenoid pigment that occurs in the 

chloroplasts of the eukaryotic Chromalveolata (phylum Heterokontophyta, class 

Ochrophyta), including brown macroalgae (Phaeophyceae), and in unicellular 

microalgae, such as diatoms (Bacillariophyceae) (Cavalier‐ Smith and Chao 



2006). Fucoxanthin is estimated to account for more than 10% of the total 

production of carotenoids in nature, and is responsible for the brown to yellow 

colour of brown macroalgae (seaweeds) and diatoms, where it masks green 

chlorophyll a and c (Hurd et al. 2014; Peng et al. 2011). Fucoxanthin was first 

isolated in Germany in 1914 from the brown seaweeds, Dictyota, Fucus, and 

Laminaria (Willstätter and Page 1914). Industrially, Japanese wakame (Undaria 

pinnatifida) is the seaweed most widely utilised for fucoxanthin extraction due to 

high concentrations of the pigment (≥10%) in the lipid extract (Billakanti et al. 

2013). Other marine macroalgae known to contain fucoxanthin include the 

genera Ascophyllum, Fucus, Laminaria, Pelvetia, Ecklonia, Eisenia, 

Himanthalia, Sargassum, Saccharina, Ectocarpus, Schytosiphon, Petalonia, 

Carpophyllum, Hizikia, Padina, Dictyota, Myagropsis, Turbinaria, Cladosiphon, 

and Cystophora (Dominguez 2013; Haugan and Liaaen‐ Jensen 1994; Heo et 

al. 2010; Jaswir et al. 2011; Kanazawa et al. 2008; Mikami and Hosokawa 

2013; Mise et al. 2011; Miyashita and Hosokawa 2007; Sangeetha et al. 2010; 

Shang et al. 2011; Yan et al. 1999).  

Notable fucoxanthin‐containing microalgae include the diatoms Odontella aurita, 

Phaeodactylum tricornutum, Chaetoceros gracilis, Thalassiosira weissflogii, and 

Cyclotella meneghiniana; the Prymnesiophyceae species Emiliania huxleyi, 

Pavlova lutheri, and Phaeocystis pouchetii; and the Chrysophyceae species 

Pelagococcus subviridis (di Valentin et al. 2013; Pyszniak and Gibbs 1992; 

United States Department of Agriculture 2015; Wright and Jeffrey 1987; Xia et 

al. 2013). These microscopic algae occur as marine plankton.  



Globally, Japan, Korea, and China have the greatest seaweed production, 

consumption, and most developed fucoxanthin extraction industry (Ryan 2014). 

Irish coastlines also support the growth of fucoxanthin‐containing brown 

seaweeds, such as bladderwrack (Fucus vesiculosus), channelled wrack 

(Pelvetia canaliculata), knotted wrack (Ascophyllum nodosum), oarweed 

(Laminaria digitata), sea rod (Laminaria hyperborea), sea spaghetti 

(Himanthalia elongata), serrated wrack (Fucus serratus), and sugar kelp 

(Saccharina latissima; formerly Laminaria saccharina) (Dominguez, 2013; 

Morrissey et al. 2001; Stengel and Dring 1998).  

Chemistry of Fucoxanthin  

Carotenoids are tetraterpene pigments which occur in plants, algae, and 

photosynthetic bacteria. Carotenoids composed entirely of hydrogen and 

carbon belong to the subclass of carotenes, while those that additionally contain 

oxygen are classed as xanthophylls. Fucoxanthin is a xanthophyll, similar to the 

plant xanthophylls violaxanthin, neoxanthin, and lutein (Kotake‐Nara and Nagao 

2011). Xanthophylls share some chemical and physical properties with 

carotenes, such as lipophilicity and antioxidant activity due to their ability to 

quench reactive oxygen and nitrogen species (Kim and Chojnacka 2015). 

However, the presence of oxygen in the hydroxyl and epoxide groups of 

xanthophylls makes them more polar than carotenes (Landrum 2009). 

Fucoxanthin’s systematic name is (3S,3′S,5R,5′R,6S,6′R,8′R)‐3,5′‐ dihydroxy‐8‐

oxo‐6′,7′‐didehydro‐5,5′,6,6′,7,8‐hexahydro‐5,6‐ epoxy‐β,β‐caroten‐3′‐yl acetate. 



It contains an allelic bond, an epoxy group, and six oxygen atoms, as shown in 

Figure 3.1 (Chemspider 2015).  

 
Figure 3.1 Fucoxanthin molecular structure (formula C42H58O6). 

 

In industry, it is most commonly extracted with solvents such as n‐hexane, 

methanol, DMSO, ethanol, petroleum ether, diethyl ether, dimethyl ether, 

acetone, or ethyl acetate, and dried to a powder (Kanda et al. 2014; Kim 

2011b).  

In algal cells, fucoxanthin is contained in the chloroplasts, within membrane‐

bound compartments called thylakoids. In the thylakoids, fucoxanthin binds with 

chlorophyll a, c, and apoproteins, forming complexes that absorb light in the 

blue‐green region of the spectrum and transfer energy to the alga. At depths of 

several meters, this is commonly the only spectral wavelength available to 

marine algae (Kita et al. 2015). Fucoxanthin captures a broader spectrum of 

light (449–540nm) than chlorophyll a and c alone, which increases the efficiency 

of photosynthesis (Kim et al. 2011; Pyszniak and Gibbs 1992). It also protects 

the algal cells from damage by reactive oxygen species caused by constant 

exposure to high levels of oxygen and light in the ocean. Fucoxanthin generally 



occurs more significantly in the blade of the seaweed thallus, which experiences 

the greatest light exposure, compared to the stipe and holdfast (Lobban and 

Wynne 1981).  

Fucoxanthin can exist in a trans or cis configuration. The trans isomer is the 

more chemically stable and potent antioxidant of the two, and comprises ~90% 

of the fucoxanthin found in nature (Holdt and Kraan 2011; Nakazawa et al. 

2009). Fucoxanthin content varies widely amongst macro‐ and microalgae. For 

example, the brown seaweed Fucus serratus has been reported to contain 0.56 

mg/g (dry weight, DW) (Haugan and Liaaen‐Jensen 1994) compared to 2.67 

mg/g in Undaria pinnatifida (DW) (Mori et al. 2004). Most diatoms and other 

microalgae have a greater fucoxanthin content than brown seaweeds (Kawee‐ai 

et al. 2013), but are less commonly used commercially for extraction due to the 

necessity for photobioreactors and strict culturing conditions. Xia et al. (2013) 

reported the fucoxanthin content in eight species of diatoms, ranging from 2.24 

mg/g (DW) in Chaetoceros gracilis to 18.47 mg/g (DW) in Odontella aurita. 

Seasonal and geographic variations hugely affect content. For example, brown 

seaweeds harvested from September to March, during the mature phase of the 

sporophyte, commonly contain higher concentrations of fucoxanthin (Fung et al. 

2013; Terasaki et al. 2009). This has been attributed to the upregulation of the 

xanthophyll, or violaxanthin, cycle pathway in reduced levels of sunlight during 

the winter. Under environmental stressors such as reduced light exposure, the 

formation of fucoxanthin from zeaxanthin via the epoxidation of antheraxanthin, 

violaxanthin, and diadionoxanthin may be accelerated to regulate 



photosynthetic pathways (Campbell et al. 1999; Goss and Jacob 2010; Mikami 

and Hosokawa 2013; Ramus et al. 1977).  

Current Applications  

Despite its discovery and isolation in seaweed over one hundred years ago, 

fucoxanthin has remained somewhat underutilised in food and pharmaceutical 

applications. Initial studies focused on quantification and extraction methods, 

structural elucidation, and biosynthetic pathways. It was not until the late 1990s 

that scientific papers began to emerge on fucoxanthin’s potential as a functional 

food. This was most probably due to growing clinical evidence at the time of the 

role of antioxidants in the prevention of chronic diseases. Currently, fucoxanthin 

is available to retail consumers in the form of relatively expensive weight loss 

supplements, of varying purity and quality, from health stores and online. Unlike 

other carotenoids, such as β‐carotene, which are commonly used as food 

colourants, 100% pure fucoxanthin is not sold as a bulk food ingredient (Hurst 

2002). Its instability due to oxidation and high extraction costs have, to date, 

been prohibitive. Currently, fucoxanthin is available to food producers as a 

percentage of various seaweed extracts. Analytical grade fucoxanthin (≥ 95% 

pure) is produced for laboratories, but retails at €556 per 50 mg (Sigma‐Aldrich 

2015a).  

Food and Pharmaceutical Regulations  

In 2009, the European Food Safety Authority (EFSA) published its scientific 

opinion on fucoxanthin and the substantiation of health claims related to it and 



maintenance or achievement of a normal body weight, in the case of Undaria 

pinnatifida thallus extract, under Article 13(1) of Regulation (EC) No 1924/2006. 

It determined that the extract, as a food constituent, had been sufficiently 

characterised to be consumed in an amount equivalent to 15 mg pure 

fucoxanthin per day. However, to date, the EFSA has not accepted that a 

relationship has been established between its consumption and the 

maintenance or achievement of a normal body weight (European Food Safety 

Authority 2009). Other health claims, such as antidiabetic or anticancer effects, 

relating to fucoxanthin have not yet been evaluated by the EFSA. In the 

Republic of Ireland, the Health Products Regulatory Authority does not list 

fucoxanthin as a controlled substance, or include it in the List of Medicinal 

Herbs considered acceptable as THMPs, under the European Traditional 

Herbal Medicinal Products Directive (2004/24/EC) which came into effect in 

Ireland in 2007 (Health Products Regulatory Authority 2015).  

The clinical evidence supporting fucoxanthin’s health benefits has not yet been 

evaluated by the US Food and Drug Administration. However, fucoxanthin can 

be sold in the United States as a food supplement with the disclaimer “These 

statements have not been evaluated by the Food and Drug Administration. This 

product is not intended to diagnose, treat, cure, or prevent any disease” on the 

product label (US Food and Drug Administration 2014). In Japan, Food for 

Specified Health Uses (FOSHU) under the Ministry of Health, Labour and 

Welfare have not evaluated fucoxanthin as a functional food ingredient or 

pharmaceutical; however, it can be sold as a food supplement.  



Applications in Human Health  

Although fucoxanthin has not been evaluated by some food regulatory bodies, 

in recent years it has been studied clinically for its antioxidant properties, which 

inhibit free radical damage in cells, reducing the risk of many chronic diseases. 

It has also been studied for its anticancer, anti-type 2 diabetes, antiobesity, 

anticholesterol, anti-inflammatory, antiangiogenic, antimalarial, and 

antihypertensive activities, and for the treatment of Alzheimer’s disease 

(Gammone and d’Orazio 2015; Hosokawa et al. 1999; Ikeda et al. 2003; 

Kawee‐ai et al. 2013; Kim 2011a; Kotake‐Nara et al. 2001; Maeda et al. 2007; 

Rodrigues et al. 2012; Shiratori et al. 2005; Sivagnanam et al. 2015).  

Antiobesity Effects  

Obesity, type 2 diabetes, metabolic syndrome, and chronic inflammatory 

diseases are global health epidemics. The World Health Organization estimates 

that, globally, 2.3 billion people will be overweight and 700 million obese by 

2015. To prevent and treat diseases such as these, natural, bioactive, functional 

compounds such as fucoxanthin are increasingly being studied as an alternative 

to, or as combination therapy with, orthodox medicines (Peng et al. 2011; 

Watson, 2014).  

In obesity treatment, fucoxanthin has been shown to mediate the induction of 

uncoupling protein‐1 (UCP‐1) in abdominal adipose tissue mitochondria in 

murine studies, leading to the oxidation of fatty acids and heat production, 

resulting in a reduction in white adipose tissue (d’Orazio et al. 2012; Maeda et 

al. 2005). Abidov et al. (2010) conducted a double‐blind placebo‐controlled 



study of 115 non‐ diabetic, obese, premenopausal women with a liver fat 

content above 11% at the Russian Academy of Medical Sciences. A daily 

supplement of 300 mg brown seaweed extract (species not specified) 

containing 2.4 mg fucoxanthin, combined with 300 mg pomegranate seed oil, 

was administered. An olive oil capsule was administered to the placebo group. 

The treatment group showed a significant increase in resting energy 

expenditure and mean weight loss of 4.9 kg after 16 weeks. In Japan, a kombu 

(Saccharina japonica) extract of fucoxanthin (3%) was evaluated for its 

antimetabolic syndrome effects in human clinical trials. A daily dosage of the 

extract, equivalent to 0.5–1.0 mg pure fucoxanthin/ day, was found to have a 

significant effect on blood serum parameters related to metabolic syndrome 

(Oryza 2015). However, no official RDA for fucoxanthin has been established by 

the World Health Organization.  

Topical preparations as vehicles for fucoxanthin in the treatment of obesity have 

also been reported. Dai et al. (2014) developed a stable microemulsion 

containing 0.25% pure fucoxanthin using medium chain triglyceride as the oil 

phase, Tween 80 as a surfactant, and polyethylene glycol 400 as a co‐

surfactant.  

Anticancer Effects  

Fucoxanthin’s anticancer activity is hypothesised to be due to its ability to 

induce apoptosis in tumour cells (Nakazawa et al. 2009). Hosokawa et al. 

(1999) found that fucoxanthin induced apoptosis in human promyelocytic 

leukaemia HL‐60 cells by cleaving procaspase‐3 and poly‐ADP‐ribose 



polymerase. Kim et al. (2010) showed that fucoxanthin induced reactive oxygen 

species generation, inactivated the Bcl‐xL signalling pathway, and induced 

caspase‐3, ‐7, and poly‐ADP‐ribose polymerase cleavage, triggering the 

apoptosis of HL‐60 cells, indicating that the generation of reactive oxygen 

species was a critical target in fucoxanthin‐ induced apoptosis of these cells. 

Wang et al. (2014) reported significant growth inhibition of cells in nine human 

cancer cell lines with extracts of Undaria pinnatifida containing fucoxanthin. 

Satomi and Nishino (2013) reported fucoxanthin extract to have a significant 

effect on the expression and enzymatic activity of the xenobiotic metabolising 

enzymes CYP1A1, CYP1A2 and CYP3A4, which are involved in the activation 

of pro‐carcinogens. The study found that the inhibitory effect of fucoxanthin (≤ 

45μM) on these enzymes in human hepatocellular carcinoma HepG2 cells and 

recombinant human CYPs could also attenuate the action of some anticancer 

drugs that are normally activated by CYP3A4.  

Antidiabetic Effects  

Fucoxanthin’s antidiabetic activity has been studied in mice with induced type 2 

diabetes. It has been found to improve insulin resistance and decrease blood 

glucose levels mainly via the regulation of cytokine secretions from white 

adipose tissue (Miyashita et al. 2011). Other studies found that a fucoxanthin‐

enriched diet promoted the recovery of blood glucose uptake to muscle by the 

upregulation of GLUT4 mRNA expression. Fucoxanthin has also been shown to 

affect the peroxisome proliferator‐activated receptor γ (PPARγ) and promote 

gene expression related to lipid metabolism in adipocytes. In cultivated cells, 

fucoxanthin prevented inflammation and insulin resistance by inhibiting nitric 



oxide and PGE2 production through the down-regulation of iNOS and COX‐2 

mRNA expression, as well as adipocytokine production in white adipose tissue 

(Hosokawa et al. 2010; Maeda et al. 2006; Miyashita et al. 2011).  

Dietary Antioxidant Effects  

The antioxidant capacity of seaweed s has been widely reported (Heffernan et 

al. 2014). As a dietary antioxidant, fucoxanthin has been shown to improve the 

antioxidant capacity of blood serum levels in mammals. Fucoxanthin is unusual 

in that it donates an electron to reactive oxygen species, instead of a proton 

(hydrogen), as most antioxidants such as ascorbic acid or β‐carotene do. 

Fucoxanthin can also quench reactive oxygen species under hypoxic 

physiological conditions, unlike the majority of food‐derived antioxidants 

(Nomura et al. 1997; Yan et al. 1999). A high‐fat diet has been associated with 

obesity in humans and other mammals, and has been shown to cause 

overproduction of reactive oxygen species (Dandona et al. 2005). Reactive 

oxygen species are known to cause cellular damage, which is implicated in the 

pathogenesis of diseases such as type 2 diabetes, cardiovascular disease, 

cancer, and infectious illnesses (Uzun et al. 2004). Ha et al. (2013) reported 

that fucoxanthin supplementation improved the antioxidant capacity of blood 

serum levels in obese rats via activation of the nuclear erythroid factor like‐2 

pathway and its downstream target gene NQO1. A study by Zaragozá et al. 

(2008) on the antioxidant effect of fucoxanthin extract from Fucus vesiculosus 

found that the extract exhibited increased antioxidant activity in ex vivo assays 

of erythrocytes and plasma, after 4 weeks of daily oral administration in rats. 

Significant antioxidant activity was also observed in non‐cellular systems and in 



activated RAW 264.7 mouse leukemic monocyte macrophage cell lines. 

Therefore, supplementation of fucoxanthin may also reduce the risk of oxidative 

stress in humans.  

Fucoxanthin has also been successfully used topically to protect against UV‐B‐

induced cell damage in hairless mice, and in human fibroblast cell lines as an 

antioxidant against skin aging caused by free radical damage (Heo and Jeon 

2009; Urikura et al. 2011).  

Toxicity Studies  

No toxicity of fucoxanthin extracts has been reported to date, making it a good 

candidate for functional food use. A number of clinical trials in animal models 

have shown no significant toxicity with short‐ or long‐term dosage. For example, 

in Japan, a recently developed functional food ingredient, containing up to 5% 

fucoxanthin from kombu (Saccharina japonica) extract, was evaluated on rats. 

Toxicity and micronucleus tests were conducted. No toxicity or abnormalities 

were found after 14 or 90 days. The LD50 of the extract (3.0% fucoxanthin) was 

calculated to be 2000 mg/kg body mass for rats (Oryza 2015). Maeda et al. 

(2005) supplemented a murine diet with 0.27% fucoxanthin, equivalent to ~0.25 

mg/kg body mass per day for 4 weeks, and found no side effects or 

abnormalities. Kadekaru et al. (2008) conducted a toxicity study on the repeated 

oral dosing of fucoxanthin (95% purity) to rats for 28 days, and found that it 

showed no apparent toxicity. Zaragozá et al. (2008) found no ill effects following 

a 4‐week, acute toxicity test in rats, where a daily treatment of 0.0012% pure 

fucoxanthin extract from Fucus vesiculosus was administered. A single dose 



toxicity study (Beppu et al. 2009) was conducted with doses of 1000 and 2000 

mg/kg body mass and a repeated oral dose toxicity study with doses of 500 and 

1000 mg/kg for 30 days on purified fucoxanthin (93% purity) in ICR mice. No 

mortality, abnormalities, abnormal changes in liver, kidney, spleen, or gonadal 

tissues were found in either study.  

Human toxicity studies are required to assess both the toxicity levels and daily 

dosage for efficacy against any of the disorders discussed above.  

Fucoxanthin as a Functional Food: Challenges and 

Opportunities 

Fucoxanthin faces chemical, organoleptic, and bioavailability challenges as a 

functional food ingredient. Due to its chemical structure, fucoxanthin in its pure 

form is easily oxidised by high temperatures, low or high pH, UV light, and long 

storage periods (Kawee‐ai et al. 2013; Mise et al. 2011). This may lead to 

chemical or enzymatic interactions with other ingredients over time. 

Organoleptic attributes, such as texture, taste, appearance, or smell, may 

deteriorate as a result of these interactions. Sensitivity to heat poses a problem 

for bakery products or sauces that require boiling, and foods that contain fruit or 

probiotic cultures may be too acidic. The natural brown colour, savoury flavour, 

and powdery texture of fucoxanthin itself may also make it unsuitable for some 

food products. The idea of eating seaweed derivatives may be unpalatable to 

some consumers, even at undetectable levels. This may be encountered in 

Western cultures where seaweed is rarely part of the diet, and misconceptions 

of a potential “fishy” or “sea” taste could arise.  



Like other non‐polar pigments, such as chlorophyll and lycopene, fucoxanthin is 

insoluble in water. Incorporation into water‐based beverages or sauces would 

require emulsification or dispersion in appropriate colloids (Socaciu 2007). The 

lipid‐soluble nature of fucoxanthin also affects its bioavailability in mammals 

(Sangeetha et al. 2010). Fucoxanthin is metabolised in the intestine into 

fucoxanthinol by cholesterol esterase and lipase, then converted to 

amarouciaxanthin A in the liver (Bagchi and Preuss 2012; Dominguez, 2013). 

The presence of some form of dietary lipid is required when fucoxanthin is 

consumed for solubility and absorption (Peng et al. 2011). Another 

consideration for fucoxanthin as a functional food is the high cost, due to the 

energy required for the extraction and freeze‐drying process (Billakanti et al. 

2013) and the lack of an artificial synthesis method for fucoxanthin. Seasonal 

variations in fucoxanthin nutritional content (Fung et al. 2013) could also affect 

health claims and nutritional efficacy.  

Despite these potential hurdles, fucoxanthin has several intrinsic, beneficial 

properties. Fucoxanthin, along with other carotenoids such as astaxanthin, is a 

more powerful antioxidant than many other natural and synthetic antioxidants 

(Miyashita and Hosokawa 2007). Using chemiluminescence detection, Nishida 

et al. (2007) reported that fucoxanthin had stronger singlet oxygen‐quenching 

activities than ascorbic acid, α‐tocopherol, quercetin, resveratrol, (‐)‐

epigallocatechingallate, lutein, lycopene, gallic acid, pyrocatechol, α‐lipoic acid, 

and the synthetic antioxidant butylated hydroxytoluene. Consumer awareness 

and interest in naturally antioxidant‐rich foods have grown in recent years (Kim 

2013; Rodrigues et al. 2012). Seaweed extracts such as carrageenan, alginate, 



and other hydrocolloids are already accepted by consumers as widely used 

ingredients in the food, pharmaceutical, and cosmetic industries (Venugopal 

2011). Marine‐derived functional foods such as fucoxanthin have the potential 

to be marketed as a more potent and sustainable alternative to many natural 

and synthetic antioxidants, particularly in countries such as Japan, China, and 

Korea, where seaweed is a common part of the diet. Fucoxanthin is also 

Kosher, Halal, and suitable for vegetarians and vegans.  

As discussed later in this chapter, little has been reported in peer‐ reviewed 

journals regarding the use of fucoxanthin as a functional ingredient. Most 

fucoxanthin research has focused on medical rather than functional food 

applications. However, a study conducted by Prabhasankar et al. (2009) at the 

Central Food Technological Research Institute, Mysore, in India reported the 

successful addition of fucoxanthin and fucosterol as a constituent of wakame 

(Undaria pinnatifida) powder extract into semolina (wheat)‐based pasta. 

Fucosterol is a structural component of algal lipid membranes which has been 

shown to have antioxidant, anticancer, antidiabetic, and hepatoprotective 

properties in animal trials (Alasalvar et al. 2011; Jung et al. 2013; Lee et al. 

2003). Prabhasankar et al. (2009) investigated the effect of different percentage 

additions of wakame powder on the sensory, cooking, nutritional, and 

biofunctional quality of pasta. Blends of semolina and seaweed were combined 

by replacement method in ratios of (semolina/wakame, w/w) 100:0, 95:5.0, 

90:10, 80:20, and 70:30. In sensory analysis of taste, mouth‐feel, appearance, 

and strand quality, 15 semi‐trained panellists, who were regular consumers of 

wakame, found no significant (P>0.05) or discernible organoleptic differences 



between the control and the wakame pasta up to 10% total ingredient mass, 

with acceptance decreasing after 10% up to 20% wakame content. Above 20%, 

panellists reported saltiness and a seaweed taste. Since wakame is composed 

of other components such as polysaccharides, proteins, lipids, and minerals, 

10% wakame, in this study, equated to 0.04 mg/g (DW) of fucoxanthin and 1.25 

mg/g (DW) of fucosterol of the dry ingredient portion. HPLC analysis of the 

pasta after processing/ kneading, and after cooking (25g of raw pasta in 250mL 

boiling water for 8 min) showed a loss of less than 10% for both fucoxanthin and 

fucosterol. The authors hypothesised that this remarkable preservation occurred 

due to stability of fucoxanthin/fucosterol in the protein matrix of gluten. To the 

authors’ knowledge, the stability of fucoxanthin in a food system has not been 

reported in any other studies. To date, these lab‐scale pilots have not been 

reported as developed to commercial scale.  

A recent Irish study reported the successful incorporation of ethanol and water 

extracts of Fucus vesiculosus and Ascophyllum nodosum, at 0.25% and 0.50%, 

into yoghurt and fluid milk (O’Sullivan 2013). The fucoxanthin content of the 

seaweed extracts was not reported. However, it is probable that both contained 

fucoxanthin, due to its presence being widely reported in both species and their 

extracts (Stengel and Dring 1998; Zaragozá et al. 2008). Sensory analysis 

found that overall acceptability of the yoghurts was governed by appearance 

and flavour, with the 100% water extract of A. nodosum having the greatest 

panel preference and least yellowness. Overall acceptability of the milk was 

governed by perception of a fishy flavour. Again, the 100% water extract of A. 

nodosum (0.50% addition) was found to be the most acceptable in terms of 



taste, and the least green/yellow. In vitro antioxidant analysis found no 

deterioration of antioxidant activity, shelf‐life, or pH in the seaweed‐

supplemented milk and yoghurt formulations.  

Fucoxanthin, like many natural food extracts, is widely available wholesale 

online from many companies, primarily based in China. It is sold in the form of 

dried seaweed extract, generally from wakame or kombu, with stated 

percentages of fucoxanthin purity ranging from 10% to 98%. Price ranges 

widely, from less than $1 to $2000 per gram, as do claims of purity and 

certification (Alibaba 2015; Kyndt and d’Silva 2013).  

However, in Japan, a government‐certified functional food ingredient has 

recently been commercially developed from kombu (Saccharina japonica) 

containing 1–5% fucoxanthin. The powder and oil products contain only 

cyclodextrin, or triglyceride, in addition to the kombu extract, and natural 

tocopherol. Stability testing of the products found the fucoxanthin fraction to be 

thermostable up to 80 °C for 1 hour, and stable in solution from pH 3.0 to 10.0, 

with the greatest loss being 6% after 1 week at pH 3.0. The addition of the 

antioxidant preservative tocopherol to the products is most likely the stabilising 

factor in this case. The triglyceride and cyclodextrin may also offer a protective 

matrix for the fucoxanthin, combined with photo‐protective, vacuum packaging. 

The powder and oil products were reported to have been successfully 

incorporated into beverages, cakes, shortbread, puffed rice biscuits, spreads, 

and potato snacks. However, the percentage of fucoxanthin extract used was 

not specified, nor have any sensory evaluation results been published to date 

(Oryza 2015).  



Outside Asia, in the USA, a project was initiated in 2010 by the Research, 

Education, and Economics Information System of the Department of Agriculture 

and the National Institute of Food and Agriculture, Auburn University, Alabama, 

to optimise large‐scale fucoxanthin extraction from the diatom Chaetoceros 

gracilis. The effects of the extracts on energy balance in an animal model of 

obesity are being used to develop a functional food for the public health 

treatment of obesity to reduce the risk of developing cardiovascular disease, 

type 2 diabetes, and some forms of cancer. The project intends the functional 

food industry to be the immediate beneficiary of the study, but also aims to 

target the wider food industry, nutritionists, scientists, and engineers (United 

States Department of Agriculture 2015). There have been no publications from 

the project to date.  

This significant project, in the country with the highest global rates of obesity, 

along with the success of the pasta study and Japan’s government‐sponsored 

development of stable oil‐ and water‐soluble fucoxanthin products, is very 

encouraging for further exploration of fucoxanthin as a functional food ingredient 

on a large commercial scale.  

Approaches to Overcome Adverse Reactions 

in Functional Food Models 

Micro and Nanoencapsulation  

The principal obstacles to the incorporation of fucoxanthin in a food or beverage 

matrix are water insolubility, pH instability, sensitivity to oxidation, and impaired 



bioavailability. These properties are an issue with existing food ingredients, 

such as other carotenoids and polyphenolic compounds, but can be overcome 

with various technologies and approaches. Microemulsions composed of a 

water phase, lipid phase, and an amphiphilic compound are widely used to 

combine lipid solutes, such as carotenoids, into a hydrophilic matrix for food and 

pharmaceutical purposes (de Campos et al. 2012).  

Indrawati et al. (2015) encapsulated an acetone extract (primarily trans 

fucoxanthin) of Indonesian Sargassum species in maltodextrin and Tween 80 

(~70:1). The Sargassum extract was combined with canola oil and 

homogenised in the water‐based maltodextrin/Tween 80 emulsion. After freeze 

drying, the fucoxanthin was found to be stable within the microencapsulates for 

63 days at 28°C under inert atmosphere. Encapsulating fucoxanthin in this 

manner increases its suitability for incorporation into dried food products. 

Suhendra et al. (2012) succeeded in formulating a clear, stable, oil‐in‐water 

microemulsion for fucoxanthin, capable of delivering this hydrophobic 

antioxidant in aqueous food systems. Virgin coconut oil was used as the lipid 

phase with a combination of Tween 20, Tween 80, and Span 80 as non‐ionic 

surfactants. The ratios were oil:surfactants (3:17); oil + surfactants:water 

(35:65); Tween 80:Tween 20:Span 80 (92.0:2.5:5.5). The microemulsion 

remained stable after exposure to pH 3.5–6.5, 105 °C for 5 hours, and 

centrifugation at 4500rpm for 30 minutes. Quan et al. (2013) reported a water‐

soluble fucoxanthin food application using fucoxanthin‐loaded microspheres, 

composed of a gum arabic/fish gelatin coacervate shell cross‐linked by tannic 

acid, with a solid lipid core of acetyl palmitate and canola oil. Wet and freeze‐



dried forms of the solid lipid core microspheres were developed successfully. 

Stability of encapsulated fucoxanthin during long‐term storage was significantly 

increased, as was sustained release in a simulated gastrointestinal 

environment.  

Nanogels have been used extensively in the pharmaceutical industry to protect 

acid‐labile bioactive compounds from the acidic stomach environment before 

reaching the intestinal tract (Liechty et al. 2010; McClements et al. 2009a). This 

technology easily translates to functional food delivery. For example, the 

biological availability and stability of fucoxanthin were reported to have 

significantly increased after encapsulation with chitosan‐sodium‐

tripolyphosphate‐glycolipid nanogels, prepared by ionic gelation (Ravi and 

Baskaran 2015). The authors were inspired by a study (Gorusupudi and 

Baskaran 2013) reporting the improved bioavailability of a similar compound, 

lutein, in mice, by solubilising the extract first in the glycolipid fraction of wheat 

germ oil. Apart from protecting the core material (fucoxanthin) against 

degradation, encapsulation prevents reactions with other ingredients 

(McClements et al. 2009b), and any seaweed flavour or brown colour is 

prevented from leaching into the food.  

Current Trends in Fucoxanthin Research  

Most extraction methods currently practiced are based on the utilisation of 

organic acids and solvents to break down the cell walls of seaweed 

or microalgae. Current trends are leaning towards greener chemical or physical 

extraction methods.  



Green Extraction Technologies  

Pressurised Liquid Extraction  

Shang et al. (2011) utilised pressurised liquid extraction with ethanol to optimise 

fucoxanthin yields from the seaweed Eisenia bicyclis. A yield of 0.39 mg/g was 

achieved with 90% ethanol, 110°C, 1500 psi, for 5 minutes of extraction static 

time. This was close to the predicted statistical experimental yield of 0.42 mg/g. 

Supercritical Carbon Dioxide Extraction Supercritical carbon dioxide extraction 

is another green chemical method with potential for commercial seaweed 

applications. Sivagnanam et al. (2015) extracted fucoxanthin from the brown 

seaweeds Sargassum horneri and Saccharina japonica using supercritical CO2 

with ethanol as a co‐solvent (SC‐CO2E) for 2 hours at 45 °C in a semi‐batch 

flow extraction process. SC‐CO2E extraction yield of fucoxanthin from S. horneri 

was 0.77 mg/g, compared to only 0.71 mg/g from traditional acetone‐ methanol 

extraction. SC‐CO2E extraction fucoxanthin yield from S. japonica was 0.41 

mg/g, close to the acetone‐methanol extraction yield of 0.48 mg/g. An in vitro 

hydrogen peroxide scavenging antioxidant activity assay showed the SC‐CO2E 

fucoxanthin extracts from S. horneri and S. japonica had significantly greater 

activity, or maximal inhibitory concentration (IC50 value), than acetone‐

methanol, hexane, or ethanol extracts. The IC50 values of the SC‐CO2E 

extracted S. horneri fucoxanthin (686 µg/mL) and S. japonica (600 µg/mL) were 

significantly greater  than that of an ascorbic acid standard (448 µg/mL). SC‐

CO2E fucoxanthin extracts from both species were also found to exert 



angiotensin I‐converting enzyme inhibitory effects in vitro comparable with those 

of the acetone‐methanol extract. 

 Quitain et al. (2013) used supercritical carbon dioxide extraction with Undaria 

pinnatifida, combined with a microwave pre-treatment, to disrupt the cell 

membrane. Yields equivalent to 80% of those obtained with traditional solvent‐

based methods were reported using 40MPa, for 180 minutes, at 40 °C, without 

producing any chemical waste. Roh et al. (2008) extracted fucoxanthin and 

polyphenols from Undaria pinnatifida using supercritical carbon dioxide, with 

ethanol as a co‐solvent. However, fucoxanthin yields were significantly lower 

than those obtained with solvent extracts, ranging from 0.00048 to 0.00753 

µg/g. Optimum supercritical extraction was achieved after 50 minutes with a 

flow rate of 28.17 g CO2/min, 2 mL/min ethanol, at a pressure of 200 bar, and a 

temperature of 323 K (49.85°C). Subramanian et al. (2013) optimised a novel, 

ultrasound‐assisted extraction method, using Sargassum muticum. Fucoxanthin 

yields of 0.613 mg/g were reported with optimum parameters of 70% ethanol, at 

80 °C, for 10 minutes, at an amplitude of 78 W, with a solid to solvent ratio of 

1:5 w/v g/mL.  

Microwave-Assisted Extraction  

Xiao et al. (2012) developed a rapid (75 minute) microwave‐assisted extraction 

method combined with high‐speed counter‐current chromatography, with a two‐

phase solvent system of hexane‐ethyl acetate‐ethanol‐water (5:5:6:4, v/v/v/v). 

Fucoxanthin yields close to those of traditional methods were obtained from 

Saccharina japonica (0.83 mg/g), Undaria pinnatifida (1.09 mg), and Sargassum 



fusiforme (0.20 mg/g). HPLC showed the extracts to have a minimum purity of 

90%.  

Enzymatic Extraction  

Fucoxanthin extraction through the application of targeted enzymes, such as 

cellulases, has the potential to increase yield and safety. The presence of 

branched, sulphated, or complex polysaccharides, such as alginate and 

laminarin, in algal cell walls limits the efficiency of classic extraction methods 

(Kim 2011c; Kim and Chojnacka 2015). Enzymolysis, i.e., the hydrolysis (of cell 

wall polysaccharides) with enzymes, should, in theory, aid in degradation of the 

wall and release of the pigment‐containing chloroplasts within. Enzyme‐assisted 

extraction has already been used successfully to increase carotenoid yields 

from terrestrial plants, such as lycopene from tomatoes. Zuorroa et al. (2011) 

reported an 8 to18‐fold increase in lycopene yield from tomato processing 

waste (skins) in pectinase and cellulase pre-treated samples, compared to 

hexane extraction alone. Barzana et al. (2002) reported a similar result for the 

extraction of carotenoids (primarily lutein) from marigold flowers. Typically, as 

much as 50% of total carotenoid yield is lost in the traditional drying and hexane 

extraction of marigold flowers. A pre-treatment of Pectinex, Viscozyme, 

Neutrase, Corolase, and HT‐Proteolytic commercial enzymes was used to 

significantly reduce the volume of hexane required, and completely eliminate 

the drying and silage steps that cause degradation of the carotenoids. 

Carotenoid yields of ≥85% were recovered from the marigold flowers in simple 

stirring vessels. Barzana et al. (2002) hypothesised that if cost were no barrier, 



the hexane could be omitted entirely, and enzymes alone, with the correct 

parameters, would achieve the same yield.  

In the extraction of algal bioactives such as antioxidants, polysaccharides, 

carotenoids, and polyphenols, the use of enzymes has shown significant 

potential as a viable alternative, or addition, to pure solvent methods (Je et al. 

2009; Rhein‐Knudsen et al. 2015; Wijesinghe and Jeon 2012). Heo et al. (2005) 

extracted water‐soluble antioxidant compounds from Sargassum, Ecklonia, 

Ishige, and Schytosiphon genera using proteases (Neutrase, Protamex, 

Alcalase, Flavourzyme, and Kojizyme) and carbohydrate‐ degrading enzymes 

(Celluclast, Viscozyme, AMG, Ultraflo, and Termamyl). In vitro hydrogen 

peroxide scavenging activity assays showed the majority of the enzyme extracts 

had significantly greater activity than the commercial synthetic antioxidants α‐

tocopherol, butylated hydroxyanisole (BHA), and butylated hydroxytoluene 

(BHT). For example, the hydrogen peroxide scavenging activity of Ultraflo‐

extracted Sargassum horneri was 92.69%, and Kojizyme‐extracted Ishige 

okamurae 96.27%, compared to only 50.32% for BHT, 67.37% for BHA, and 

64.11% for α‐tocopherol.  

Ko et al. (2010) significantly increased the antioxidant activity of Sargassum 

coreanum extracts using Celluclast and Neutrase commercial enzymes. 

Celluclast is a cellulase derived from the fungus Trichoderma reesei which 

hydrolyses (1,4)‐β‐D‐glucosidic linkages in cellulose and other β‐D‐glucans, 

forming cellobiose glucose and other glucose polymers (Sigma‐Aldrich 2015b). 

Neutrase is a metalloprotease derived from Bacillus amyloliquefaciens. Similar 



to thermolysin, it hydrolyses proteins into peptides (Nagodawithana and Reed 

2013). The S. coreanum Neutrase and Celluclast extracts had significantly 

greater DPPH and hydrogen peroxide radical scavenging activities compared to 

eight other proteases and cellulases studied. The S. coreanum extracts were 

screened for cancer cell inhibition and found to suppress the growth of HL‐60 

cells through apoptosis (Ko et al. 2012). Ahn et al. (2012) reported obtaining 

antioxidant‐rich extracts from the chlorophyte (green alga) Enteromorpha 

prolifera using the protease Protamex and the carbohydrase mix Viscozyme. 

The extracts contained up to 8.4 mg/g total flavonoids and 4.5 mg/g total 

polyphenols. Other E. prolifera extracts were produced using Flavourzyme, an 

exopeptidase that hydrolyses N‐terminal peptide bonds, and Promozyme, a 

pullulanase (α‐dextrin endo‐1,6‐α‐glucosidase) derived from Bacillus 

acidopullulyticus (Mehta et al. 2012). The Flavourzyme and Promozyme 

extracts were found to have a significant angiotensin‐converting enzyme 

inhibitory effect at concentrations of 1.0 mg/mL. No toxicity was exerted by any 

of the enzyme‐assisted extracts in RAW264.7 cell cytotoxicity tests.  

Little has been published on the use of enzymes for fucoxanthin extraction 

specifically. Billakanti et al. (2013) reported a significant increase (9.3%) in 

fucoxanthin extraction yields from wakame (Undaria pinnatifida) using alginate 

lyase derived from Flavobacterium multivorum as a pre-processing step, 

followed by dimethyl ether and ethanol extraction, compared to untreated pre-

processing. Optimum enzyme pre-treatment parameters were found to be 37 

°C, for 2 hours, at pH 6.2, 5% (w/v) solids, with 0.05 wt% enzyme using 

continuous mixing. Centrifugation was used to separate hydrophilic hydrolysis 



products from the residual seaweed biomass. Alginate lyase, also known as 

mannuronate lyase, may have succeeded here where other enzymes have little 

effect due to its ability to catalyse the hydrolysis of alginate in the cell wall into 

smaller oligosaccharides, aiding extraction of fucoxanthin from the chloroplasts. 

Alginate lyase cleaves β‐(1‐4)‐D‐mannuronic bonds to yield oligosaccharides 

with 4‐deoxy‐α‐L‐erythro‐hex‐4‐enopyranuronosyl groups at the non‐reducing 

terminus (Sigma‐Aldrich 2015b). Enzymes such as cellulose, protease or 

pectinase cannot break the glycosidic bonds specific to the β‐D‐mannuronate in 

alginate polysaccharides that occur in macroalgae (Sho et al. 2010).  

Currently, this research institute (Dublin Institute of Technology, Ireland) is 

screening a number of commercially available Irish seaweed species for their 

fucoxanthin content, using novel extraction technologies. The species under 

investigation include wild Atlantic wakame (Alaria esculenta), bladderwrack 

(Fucus vesiculosus), channelled wrack (Pelvetia canaliculata), knotted wrack 

(Ascophyllum nodosum), oarweed (Laminaria digitata), sea rod (Laminaria 

hyperborea), sea spaghetti (Himanthalia elongata), serrated wrack (Fucus 

serratus), furbellows (Saccorhiza polyschides), and sugar kelp (Saccharina 

latissima).  

Conclusion  

Fucoxanthin is a bioactive compound found in one of the most prolific and 

sustainable organisms on the planet, alga (Mohamed et al. 2012; Werner et al. 

2004). Its efficacy and potential in terms of health applications have been widely 

reported in clinical studies. However, further human clinical trials are necessary 



to determine the safety and required daily dosage of fucoxanthin. Technical 

modifications, such as encapsulation, and sensory trials must be undertaken 

before fucoxanthin can be successfully utilised as a functional food ingredient. 

Factors to consider include solubility in the food matrix, organoleptic effects, 

stability, preservation against oxidation, consumer acceptability, bioavailability, 

and toxicity risk. The current, prohibitive cost of fucoxanthin must also be 

addressed. Possible solutions may include the development of more efficient 

and greener extraction technologies, which require shorter extraction times and 

less solvent, and have a more specific and higher extraction yield. The 

sustainability of potential seaweed cultivars must be assessed before large‐

scale harvesting, to ensure the preservation of this precious marine resource.  

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.  
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