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Abstract 

Estimating pollutant concentrations at a local and regional scale is essential for good ambient air 

quality information in environmental and health policy decision making. Here we present a land use 

regression (LUR) modelling methodology that exploits the high temporal resolution of fixed-site 

monitoring (FSM) to produce viable air quality maps. The methodology partitions concentration time 

series from a national FSM network into wind-dependent sectors or “wedges”. A LUR model is derived 

using predictor variables calculated within the directional wind sectors, and compared against the 

long-term average concentrations within each sector. This study demonstrates the value of 

incorporating the relative position of emission source and receptor into the empirical LUR model 

structure. In our specific application, a model based on 15 FSM training sites captured 78% of the 

spatial variability in NO2 across the Republic of Ireland. This compares favourably to traditional LUR 

models based on purpose-designed monitoring campaigns despite using approximately half the 

number of monitoring points in model development. We applied the LUR equation at a high-resolution 

across the Republic of Ireland to enable applications such as the study of environmental exposure and 

human health, assessing representativeness of air quality monitoring networks and informing 

environmental management and policy makers. 

1. Introduction 

Public exposure to poor ambient air quality can have a damaging effect on people’s health and 

development, contributing to a significant global burden of respiratory and allergic diseases and 

increased mortality rates (EEA, 2012; Guerreiro et al., 2014; Hettelingh et al., 2013; Kunzli et al., 2000). 

Epidemiological studies have demonstrated the increased risk of negative health effects and natural-
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cause mortality due to exposure to ambient pollutants such as nitrogen dioxide (NO2), ozone (O3) and 

fine particulate matter (PM) (Beelen et al., 2014; Laumbach and Kipen, 2012; Pascal et al., 2013; 

Raaschou-Nielsen et al., 2013). Pollutant emissions can also impact on sensitive ecosystems by 

contributing to acidification and eutrophication (Guerreiro et al., 2014), with  nitrogen oxides (NOx), 

sulphur dioxide (SO2) and ammonia (NH3) representing the main acidifying compounds causing excess 

nitrogen deposition. These pollutants also play a major role in the formation of ground-level O3, which 

can negatively affect human health, ecological status and agricultural productivity (Galloway et al., 

2004; Staelens et al., 2012). The critical need for good ambient air quality information in 

environmental and health policy decision making led to the introduction by the European Union (EU) 

of the Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive (2008/50/EC). In addition to 

requiring compliance with limit values for priority pollutants set out in the CAFE Directive, EU Member 

States are also obliged to provide current air quality information to the public and encouraged to 

interpret pollution levels in terms of geographical variation and collective population exposure.  

The field of deterministic modelling to predict local, regional and trans-boundary transport of air 

pollutants on a national and international scale is well established (Carmichael et al., 2008; Levitin et 

al., 2005; Savage et al., 2013; Solazzo et al., 2012). However, the technical and financial resources 

required to implement such models are often beyond the reach of many regulatory authorities, policy-

makers and health researchers and their effectiveness is based on the availability of suitable input 

data such as an emissions inventory. Instead, less resource-intensive stochastic models, geo-statistical 

interpolation and land use regression have been employed successfully in recent years for the 

production of high-resolution air quality maps and forecasts (Beelen et al., 2013; Briggs et al., 1997; 

Denby et al., 2010; Janssen et al., 2008; Stedman et al., 1997). These maps provide a valuable source 

of information for policy making, evaluating spatial representativeness of monitoring stations and 

providing accurate exposure assessments for epidemiological studies (Denby et al., 2010; Janssen et 

al., 2012; Jerrett et al., 2004).  

One modelling method, Land use regression (LUR), has grown in popularity in recent years (Beelen et 

al., 2013). LUR compares favourably with alternatives of geo-statistical interpolation and dispersion 

modelling, typically producing equivalent or better results in a relatively simple, cost-effective manner 

(Hoek et al., 2008; Vienneau et al., 2010). LUR uses spatial variables, such as traffic or land use, to 

predict pollutant concentrations at a given location (Hoek et al., 2008). Typically, variables used for 

calibrating LUR models are extracted using circular buffers drawn around measurement sites. 

However, this ignores the spatial orientation of source and receptor and the influence of meteorology; 

the pollutant concentration at a monitoring site can vary significantly depending on the prevailing 

wind direction and the relative position of local and regional emission sources (Donnelly et al., 2012; 

Donnelly et al., 2011).  

Whilst previous LUR studies (Arain et al., 2007; Bertazzon et al., 2015; Chen et al., 2012; Kim and 

Guldmann, 2011; Li et al., 2015; Su et al., 2008) have demonstrated the value of incorporating the 

direction of emission sources into the empirical LUR model structure, this paper describes novel 

geospatial and statistical techniques used for the development of a national scale model for the key 

pollutant NO2. Two meteorological variables, wind speed and wind direction, were incorporated into 

the LUR modelling process. The LUR model has been spatially refined by calculating predictor variables 

within wind-dependent sectors or “wedges”, and comparing against long-term average pollutant 

concentrations from fixed-site monitoring stations (FSMs) within each sector. Wind speed within each 
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sector was also included as a temporally-variable predictor in the regression equation. Following 

model fitting, the LUR equation was applied at a high-resolution across the Republic of Ireland 

(hereafter referred to as Ireland). The model itself developed as part of this research is unique to 

Ireland but the methodology could easily be applied elsewhere to develop unique site-specific air 

quality maps once a national air quality monitoring network exists together with records of wind speed 

and direction.  

2. Materials and Methods 

The basis of LUR mapping is a multiple linear regression that uses summaries of spatial variables 

surrounding the monitoring point to predict air pollutant concentrations. Typically, spatial indicators 

are calculated within circular buffers of varying radii around the monitoring point and the most 

significant used as predictor variables in the regression equation. However, circular buffers effectively 

apply equal weights to emission sources around a receptor, irrespective of the prevailing 

meteorological conditions and the relative positions of receptor and source. This limitation may be 

minor when LUR is applied at a coarse spatial and temporal resolution, but when developed at finer 

resolution and on a national scale as in this study, varying regional wind patterns may lead to poor 

model performance.  

As regional prevailing wind conditions can vary substantially and thus impact the applicability of 

ordinary LUR techniques on a national scale, a novel LUR methodology was devised which 

incorporates wind effects using angular sectors or “wedges”. The 360° wind field is discretised into a 

set of eight 45° wind sectors; average pollutant concentrations and predictor variables are then 

calculated for each sector and used in the LUR process. The use of continuous data from fixed-site 

monitoring stations (FSMs), rather than short-term passive monitoring, allows the calculation of 

average concentrations within each wind sector. However, as prevailing wind directions vary 

geographically, seasonally and diurnally, a biased sectoral average may be obtained in some instances. 

For example, if a particular wind direction was more frequent during winter than summer months the 

raw sector average would be excessively high. Consequently, a non-parametric regression correction 

method has been applied to remove diurnal and seasonal bias from the data prior to sector averaging 

(Donnelly et al., 2016). There are four key steps involved in the wind sector land use regression (WS-

LUR) model development and mapping process:  

1. Calculate annual average pollutant concentrations within each wind sector at each monitoring 

site using a combination of hourly meteorological inputs and continuous monitoring data. 

2. Generate predictor variables from geospatial datasets for each directional sector within a GIS 

environment. 

3. Select predictor variables for LUR equation using a supervised stepwise approach. 

4. Apply regression equation on a national scale and weight using interpolated local wind 

frequency. 

2.1 Study Area 

This study was undertaken in Ireland (Fig. 1), a country covering an area of just over 70,000km2 and 

containing 4.6 million inhabitants. Pollutant levels of nitrogen dioxide (NO2) are of concern in the Irish 

context (O'Dwyer, 2016). Significant reductions in national NOx emissions have been achieved in 

recent decades due to improvements in the power generation sector as older peat- and coal-burning 
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plants were phased out or converted to cleaner fuel alternatives. However, an over-reliance on vehicle 

transport means that national NOx emissions from transport have remained high; 45% of national NOx 

emissions are derived from road transport (Duffy et al., 2015). This has resulted in a failure to achieve 

NEC emissions ceiling targets in 2010, as well as causing NO2 levels close to the specified EU limit 

values for air quality in traffic-impacted areas (Duffy et al., 2015). The lack of a suitably detailed 

national scale emissions inventory coupled with appropriate spatial estimates of background pollution 

concentrations in Ireland has seriously impeded air quality modelling applications, limited health 

exposure assessments and restricted evaluation of the abatement potential of air quality 

management plans.  

2.2 Measured NO2 Concentration Data 

NO2 monitoring data were obtained from the national ambient air quality network operated by the 

Environmental Protection Agency (EPA), the designated Competent Authority for the monitoring of 

air quality in accordance with all Irish and EU ambient air quality legislation. The network comprises 

12 active fixed-site monitoring stations (FSMs) measuring contaminant concentrations on an hourly 

basis. Additional FSMs decommissioned from the network post-2012 were included in the analysis; 

these provided a further three NO2 sites bringing the total to 15 NO2 sites over the analysis period of 

2010 to 2012 inclusive. FSM locations are shown in Figure 1 (left). All sensors conformed to EU 

guidelines on background concentration monitoring and compliance with limit values (CEU, 2008). 

NO2 was measured on an hourly basis using chemiluminescence samplers (API M200 NOx analyser).  

Average concentrations at all monitoring sites were within the detection ranges of the respective 

instrumentation.  

Wind direction and speed are key parameters in the WS-LUR model development; the former is used 

to calculate average pollutant concentrations while the latter is included as a predictor variable within 

the regression analysis. Hourly wind speed and wind direction data for each site were obtained from 

the national network of synoptic stations operated by the Irish Meteorological Service (Met Eireann). 

While the synoptic stations and FSMs are not always co-located, spatial variations in wind speed and 

direction in Ireland tend to be low and each FSM and synoptic site pair were investigated for major 

changes in geographic topography to ensure sites were paired appropriately. Furthermore, national 

FSMs were intentionally positioned in areas that would be representative of background conditions; 

sites affected by major local emission sources (e.g. directly adjacent to a highly-trafficked road), or 

that experienced complex local wind effects (e.g. street canyons), were avoided.  

Continuous monitoring data were used to calculate wind sector means for each FSM. The division of 

a concentration time series at a point into eight sectors maximises the number of data points available 

for the LUR; however, it also reduces data points available for long-term mean value calculation. 

Diurnal and seasonal concentration variations may lead to a biased annual sector average estimate 

when calculated from sub-annual datasets. Concentrations tend to be higher in winter months than 

summer months (in Ireland) so, for example, if data within a sector were comprised 20% from winter 

and 80% from summer months, an unrealistically low value for the annual average would be obtained. 

Consequently, a non-parametric regression correction method was applied to remove bias from the 

concentration data prior to sector averaging. A brief overview of the correction method is provided 

here; a comprehensive explanation is provided in Donnelly et al. (2015). 
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The basis for the correction factors is a non-parametric kernel regression model which is applied to 

describe diurnal and seasonal variations in concentration levels. The outputs from the regression 

are a seasonal factor (𝑆𝑓) and a diurnal factor (𝐷𝑓). The normalised seasonal factors are defined as 

follows: 

𝑆𝑓 = (
�̃�(𝛼,ℎ)

�̅�
) 

where 𝐶̅ is the average concentration for the input data used in model development and �̃�(𝛼, ℎ) 

is the average concentrations of a pollutant for a given day of the year (𝛼) calculated as a 

weighted average of the data in a window (of width defined by smoothing parameter h) using 

weighted Gaussian kernel function 𝐾1(𝛼, ℎ) around (𝛼) and defined as follows: 

�̃�(𝛼, ℎ, ) =
∑ 𝐾1 (

(𝛼 − 𝑆𝑖)
ℎ

) 𝐶𝑖
𝑁
𝑖=1

∑ 𝐾1 (
(𝛼 − 𝑆𝑖)

ℎ
)𝑁

𝑖=1

 

where 𝐶𝑖  are de-trended concentrations, 𝑆𝑖 is the day of the year for the 𝑖𝑡ℎ observation in a 

time period starting at time 𝑡𝑖. For circular data the Gaussian kernel (𝐾) is the preferred method 

used to weight the observations (Henry et al., 2002) and is defined as follows: 

𝐾(𝑥) = (2𝜋)−1/2 exp(−0.5𝑥2)              − ∞ < 𝑥 < ∞ 

The bandwidth is calculated based on the number of days in a year.  As discussed in Silverman 

(1986) a bandwidth of 1/50.9 n   was employed, where 𝜎 is the standard deviation of the 

predictor variable data (in this instance day of the year) and 𝑛 is the number of data points.  

In developing the 𝐷𝑓 the data are first subdivided into four categories distinguishing between 

winter and summer, and between weekdays and weekends. The resulting factors are developed 

in exactly the same way as 𝑆𝑓 but in this instance hours are used in replacement of days (i.e. 𝑆𝑖 

is replaced by 𝐻𝑖 where 𝐻𝑖 is the hour of the day).  

To adjust the data, raw hourly or daily concentration values (𝑁𝑂2(𝑟𝑎𝑤)) are firstly divided by the 

relevant seasonal factor (𝑆𝑓)  to obtain a seasonally adjusted value (𝑁𝑂2(𝑠)):  

𝑁𝑂2(𝑠) =
𝑁𝑂2(𝑟𝑎𝑤)

𝑆𝑓
     (Eqn. 1) 

𝐷𝑓 values are determined for each season separately and do not therefore, account for the seasonal 

variation. To obtain the diurnally and seasonally adjusted concentration 𝑁𝑂2(𝑠,𝑑), therefore, the 

seasonally adjusted concentration can be divided by the normalised𝐷𝑓.  

𝑁𝑂2(𝑠,𝑑) =
𝑁𝑂2(𝑠)

𝐷𝑓
     (Eqn. 2) 

Applying the factors in this way does not change the mean of the total data set. The correction factors 

do, however, have the potential to change the mean values within a given sector and remove any bias 

which has arisen due to uneven distribution of data across sectors. Following seasonal and diurnal 
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adjustment the hourly data were divided and averaged to provide an annual mean concentration for 

each wind sector. 

 

Figure 1: (left) Fixed site monitoring station locations and (right) national map of average annual NO2 

concentrations for 2010 – 2012 (resolution 50m)  

2.3 Spatial Predictors 

Geospatial predictor variables (Table 1) were calculated within each sector from nationally available, 

spatially homogeneous datasets for all sites using the ArcGIS 10.0 software package (ESRI, 2011). Eight 

circular buffers of variable radii were defined around each monitoring site, ranging from 25 metres to 

5 kilometres, and further subdivided into eight 45° wind direction sectors (e.g. N, NE, E, etc.) (Figure 2 

(a)).  
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Table 1: Predictor variables with variable names, units, and sector size 

Category Units Sector Radius (m) Subcategory Variable 

Name 

No. of 

Variables 

Traffic Variables 

Road Length Km 25, 50, 100, 250, 500, 

1000, 2000, 5000 

All roads 

National road 

Regional road 

Local road 

Major road 

 

ALLRDLEN 

NRDLEN 

RPDLEN 

LRDLEN 

MRDLEN 

56 

Proximity to 

Road 

Km-1, Km-2 N/A Nearest road 

 

Nearest major road 

DistARdInv 

DistARinv2 

DistMRinv 

DistMRinv2 

 

8 

Traffic Flow Vehicle Km 25, 50, 100, 250, 500, 

1000, 2000, 5000 

 

N/A Vkm_(radius) 8 

Weighted 

Traffic Flow 

Vehicle Km N/A Inverse distance 

Gaussian 

Vkminvw 

Vkmgw 

2 

Background Variables 

Land Cover Hectares 25, 50, 100, 250, 500, 

1000, 2000, 5000 

High density 

residential 

Low density 

residential 

Industry 

Port 

Urban green 

Semi-natural and 

forested 

Natural 

Sea/Ocean 

HDRES 

LDRES 

INDUSTRY 

PORT 

URBGREEN 

SEMNATURAL 

NATURAL 

SEA 

 

64 

Population 

Density 

Persons/km2 25, 50, 100, 250, 500, 

1000, 2000, 5000 

 

N/A Pdens 8 

Property 

Density 

No. properties 25, 50, 100, 250, 500, 

1000, 2000, 5000 

 

Residential 

Commercial 

Geo_Res 

Geo_Com 

16 

Residential 

Heating 

Properties per 

heating type 

25, 50, 100, 250, 500, 

1000, 2000, 5000 

Solid 

Gas 

Electricity 

Oil 

CSO_SCH 

CSO_GCH 

CSO_ECH 

CSO_OCH 

 

32 

Household Cars Cars 25, 50, 100, 250, 500, 

1000, 2000, 5000 

 

N/A CSO_Cars 8 

Proximity to 

Coast 

Km N/A N/A Coast 1 

Point Source 

(PRTR) 

Kg 25, 50, 100, 250, 500, 

1000, 2000, 5000 

N/A PS_(radius) 8 

Elevation m N/A N/A ELEV 1 

Wind Speed m/s N/A N/A WS 1 
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Figure 2: (a) Wind direction sectors, (b) residential and commercial properties  

Residential and commercial property variables were derived using geographical coordinates from 

GeoDirectory, the national property register maintained by An Post and Ordnance Survey Ireland (OSI) 

(figure 2(b)). Traffic network and flow data were obtained from the National Traffic Model (NTM) 

developed by Transport Infrastructure Ireland (TII). The NTM provides statistics on traffic volumes and 

composition for all motorways, and national primary, secondary and regional roads in Ireland. Road 

length variables were calculated within each sector for each road category, and the length of each 

major road link passing through the sector was multiplied by the link Annual Average Daily Traffic 

(AADT) to give annual Vehicle km (Vkm). Due to the high correlation between NO2 concentration and 

traffic parameters across the range of buffer radii, a weighted Vkm (Vkminvw) parameter was 

developed. The weighting applied to each sector is related to the inverse of the distance of the sector 

from the monitoring point, with the closest sector (i.e. 25 m) carrying the highest weighting. The 

inverse-distance weighted Vkm factor was calculated as: 

𝑉𝑘𝑚𝑖𝑛𝑣𝑤 =
1

𝑟0
× 𝑉𝑘𝑚0 + ∑

1

𝑟𝑖
× (𝑉𝑘𝑚𝑖 − 𝑉𝑘𝑚𝑖−1)𝑁

𝑖=1      (Eqn. 3) 

where 𝑖 = 0 to 𝑖 = 𝑁 represent each of the sectors considered, r is the distance from the monitoring 

point to the centre of a given sector, and 𝑑𝑖  is the road density in each sector. In this study eight sector 

sizes are considered, 25 m, 50 m, 100 m, 250 m, 500 m, 1 km, 2 km and 5 km. A Gaussian weighted 

road density factor (𝐺𝑖) was also developed for each monitoring site sector. The weighting applied to 

each sector is related to the distance of the sector from the monitoring point. The closest sector (i.e. 

25 m) carries the highest weighting.  

𝑉𝑘𝑚𝑔𝑤 = 𝐺0 × 𝑉𝑘𝑚0 + ∑ 𝐺𝑖 × (𝑉𝑘𝑚𝑖 − 𝑉𝑘𝑚𝑖−1)𝑁
𝑖=1    (Eqn. 4) 

where: 

𝐺𝑖 =
1

√2𝜋𝜎
× 𝑒−(𝑥−𝜇)2/2𝜎2

    (Eqn. 5) 



9 
 

Here, 𝜎 is the standard deviation or spread of the distribution (optimised to provide the highest 

correlation coefficient), and 𝑥 is the distance from the monitoring site to the centre of the sector under 

consideration.  

Population and residential combustion data were derived from Census data and spatially 

disaggregated based on residential property locations, whereby average household statistics were 

calculated within each Census Small Area (SA) using the total number of occupied residential 

properties within the SA. Sector variables were then calculated by summing the total of households 

contained within each sector. Large point source pollutant emissions were derived from the Pollutant 

Release and Transfer Register (PRTR), operated by the EPA. Point emission totals were assigned to 

each sector based on PRTR point locations and the annual emissions during the year (or years) for 

which monitoring data were available in the sector. Land cover variables were derived from CORINE 

(COoRdination of INformation on the Environment) land cover data for the year 2006 the European 

Environment Agency (EEA). Following the methods outlined in Vienneau et al. (2010) and Beelen et al. 

(2013) the 44 land cover classes in CORINE were regrouped into six (High density residential, low 

density residential, industry, port, urban green, and semi-natural and forested areas) as well as 

additional land use class representing areas of sea and open ocean. 

 

2.4 Model Calibration and Validation 

The LUR model is a multiple linear regression of the form: 

𝐶 = 𝐶0 + 𝛼1𝑋1 + 𝛼2𝑋2 … + 𝛼𝑛𝑋𝑛 + 𝜖    (Eqn. 6) 

where C = Average annual NO2 concentration; Xi = predictor variable i; αi = coefficient for predictor 

variable i and ϵ = error. Selection of the most appropriate explanatory variables within suitable sector 

sizes is important for defining final model performance. Variable selection was carried out using a 

supervised stepwise approach. Firstly, each predictor variable was assigned a plausible direction of 

effect and univariate regression analyses were carried out for all predictor variables. The model with 

the highest adjusted R2 having an appropriate slope as predefined by the direction of effect was 

considered as the start model.  Additional predictor variables were then added consecutively to the 

model and maintained if the following three conditions were met:  

1. The R2 value increased by at least 1%  

2. The direction of effect of the new variable was as a priori defined 

3. The direction of effect of previously included variables did not change 

The large number of predictor variables examined meant that many of them were correlated. The 

variance inflation factor (VIF) was used to assess how much the variance of an estimated regression 

coefficient increases if predictors are correlated; it is equal to 1 if no factors are correlated. Variables 

with high VIF were removed from the model ensuring that each variable removed was redundant in 

the explanation of concentration. The set of predictor variables giving the highest adjusted R2 value 

which conformed to a priori defined directions of effect were selected for inclusion in the final model. 

As a final step, variables with a p-value of greater than 0.05 were removed from the model.  
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Standard diagnostic tests for ordinary least squares regression were carried out. These included 

assessing residuals for heteroscedasticity and normality. Residuals were also analysed for influential 

or controlling observations or outlying data points. In a small number of instances this lead to removal 

of certain data points after detailed investigations of the baseline data. The full regression procedure 

as described above was repeated until residual analysis was satisfactory.  

The limited number of FSMs available made it unfeasible to hold aside sufficient sites for model 

validation. Instead, following the approach taken by Beelen et al. (2013) a leave one out cross 

validation method was used. The final model was fitted to N-1 sites and the predicted concentration 

compared to the actual concentration at the omitted site. This was repeated for all N sites and the 

overall level of fit between the predicted and measured concentration was assessed. The correlation 

coefficient for the cross validated data is known as the CV R2.  

 

2.5 Regression Mapping 

The LUR equation was applied on a gridded basis for the entire land area of Ireland. All grid calculations 

were carried out within the ArcGIS 10.1 environment (ESRI, 2011). At each grid point eight raster layers 

representing the eight wind sectors were derived for each regression variable. A schematic diagram 

of the gridded wedge calculation for the north and north-west sectors is shown in Figure 3, where R 

is the critical sector radius as identified during the model fitting process. Each predictor variable raster 

was multiplied by the relevant regression coefficient and summed to give eight wind-dependent 

background concentrations for each grid point. The overall background concentration at each point 

was then calculated as the weighted sum of sector averages, weighted by the wind frequency in each 

sector. Thus, the ambient wind-dependent background concentration is given by: 

𝐶 = 𝛼0 +  ∑ ∑ 𝑊𝑓𝑖𝛼𝑗
𝑀
𝑗=1 𝑃𝑗

8
𝑖=0      (Eqn. 7) 

where  𝑖 = 0 to 𝑖 = 8 represent each of the eight wind-directional sectors, 𝛼0 is the regression 

constant, 𝑗 = 1 to 𝑗 = 𝑀 represent each of the terms in the regression equation, 𝑊𝑓𝑖 is the fraction 

of the reference period where the prevailing wind is within wind sector 𝑖, 𝛼𝑗 is the regression 

coefficient and 𝑃 is the predictor variable value in direction 𝑖. If the regression equation produced 

negative concentrations, cells were set to zero.  

 

Figure 3: Schematic diagram of sector road length calculation for (a) north and (b) north-east sectors 
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The gridding of predictor variables within wind directional wedges was implemented at a 50 m spatial 

resolution using the Neighbourhood analysis tools in ArcGIS 10.1. The Focal Statistics and Point 

Statistics tools allow the calculation of spatial statistics within wedge-shaped neighbourhoods, 

wherein the start and end angles of each wedge are defined by the limits of each 45° wind direction 

bin and the search radius is determined by the predictor variable sector radius.  Line and area predictor 

variables were gridded using the Focal Statistics tool while point-based features were gridded using 

the Point Statistics tool. Predictor variables derived from line vectors, such as road density, required 

the transformation of the vector layers into high resolution raster layers first, where after the Focal 

Statistics tool was used. Road length and Vkm were initially rasterised at a 5 m resolution to retain 

maximum detail from the road network, before being aggregated to 25 m resolution to reduce 

processing time and file storage requirements. 

As wind speed and direction are monitored at a limited number of locations nationally, it was 

necessary to derive these variables from a high-resolution historical simulation of the Irish climate. 

The climate of Ireland was simulated by dynamically downscaling the ECMWF ERAInterim reanalysis 

dataset (Dee et al., 2011) for the period 1981-Present using the COSMO-CLM5 model with maximum 

grid-spacing of 1.5 km (Nolan and Baehler, 2016). COSMO-CLM5 is a non-hydrostatic and fully 

compressible regional climate model, based on the numerical weather prediction model COSMO 

(Baldauf et al., 2011). A more detailed description of the model and its parameterization schemes can 

be found in Rockel et al. (2008), Vautard et al. (2013) and Kotlarski et al. (2014). The data were 

archived at one-hour intervals. The benefit of such datasets is that they provide the best estimate of 

the four-dimensional atmospheric state and parameters, which are not routinely provided on a 

homogeneous grid (e.g., wind speed and direction). 

Local estimates of mean wind speed and frequency of occurrence were downscaled using bilinear 

interpolation from a 1.5km grid of each of the eight 45° wind direction bins over the 3-year period 

from 2010 to 2012. Mean wind speed was used as a predictor variable in each of the eight wind 

direction LUR equations. Wind frequency was then used to weight these eight direction values to 

calculate overall mean NO2 concentrations across the country. 

 

3. Results 

3.1 Impact of wind direction on NO2 

The impact of wind direction on NO2 concentrations was first explored to validate the underlying 

approach. Overall mean (St. Dev.) concentrations were 11.7 (3.2) ppb, 6.4 (2.4) ppb and 3.0 (1.6) ppb 

for urban, suburban and rural sites respectively (Table 2). The range of NO2 concentrations, as 

represented by the ratio of (maximum – minimum) / mean, was 187% which shows the relatively high 

variability between monitoring sites. Pollutant concentrations showed significant asymmetry 

depending on wind conditions across all location types (Figure 4), with differences between the 

highest and lowest sector NO2 concentrations ranging from 1.4 to 9.5 ppb. An ANOVA test was used 

to test sector concentrations for consistency across the FSM network, to ensure sites were not overly 

influenced by winds of one direction or a large-scale systematic variation due to other external factors 

(e.g. transboundary pollution). No statistically significant trend was found, supporting the hypothesis 

that local land use characteristics were causing the spatial variations in NO2. 
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Table 2: Summary statistics of observed sectoral NO2 values  

   Sector NO2 Concentration (ppb) 

ID Site Name Coverage Max Min Range StDev Mean 

U1 Coleraine Street Urban 18.2 10.6 7.6 2.7 13.4 

U2 Dun Laoghaire Urban 12.9 7.6 5.3 2.0 8.5 

U3 Knocklyon Urban 13.4 6.8 6.6 2.3 12.9 

U4 Ringsend Urban 13.3 7.4 5.9 1.9 8.6 

U5 Winetavern Street Urban 19.8 13.6 6.1 2.0 15.9 

SU6 Balbriggan Suburban 9.1 4.4 4.7 1.4 6.0 

SU7 Castlebar Suburban 6.2 3.5 2.7 0.9 4.4 

SU8 Limerick (Park Road) Suburban 15.1 7.6 7.5 2.6 7.1 

SU9 Rathmines Suburban 16.7 7.5 9.3 3.4 10.4 

SU10 Kilkenny (Seville Lodge) Suburban 4.1 2.0 2.1 0.9 2.7 

SU11 Shannon Town Suburban 7.6 6.0 1.7 0.6 6.7 

SU12 Swords Suburban 11.4 5.2 6.2 2.3 7.6 

R13 Emo Court Rural 3.0 1.6 1.4 0.5 1.8 

R14 Glashaboy Rural 6.7 3.9 2.8 1.1 4.8 

R15 Kilkitt Rural 3.7 1.7 2.0 0.7 2.5 

 

Figure 4: Polar plots of NO2 concentration at an urban site (Coleraine St., left) and a rural background 

site (Kilkitt, right) 
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3.2 Regression Model 

Parameters and relevant statistical metrics for the final LUR model are shown in Table 1. The final 

model explained over 78% of the spatial variability in NO2 (Figure 5), while the cross validation R2 was 

found to be slightly lower at 77.4%. NO2 validation reveals a good explanation of variation by the 

model at all sites. The spread of data is well captured and the relationship between modelled and 

measured values is close to linear.  
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Figure 5: Comparison of modelled versus measured NO2 for all wind sectors 

The best set of predictor variables included terms for distance-weighted vehicle kilometres from 25m 

to 5km, commercial properties within 1km, percentage agricultural land within 1km, road density 

within 250 m and average wind speed. In a recent trans-European study, LUR models were developed 

in 36 study areas across Europe as part of the ESCAPE project (Beelen et al., 2013). The ESCAPE study 

model R2 ranged from 55% to 92% (median 82%) for NO2; model results using the wind sector LUR in 

the present Irish study are thus comparable, despite using only half the number of monitoring points 

in model development.  
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 Table 1 NO2 regression R2=78.7% 

Predictor 
Sector 

Radius 
Coefficient 

SE 

Coefficient 
T P VIF 

Constant   8.9535 0.74 12.1 0  

Inverse distance weighted 

Vehicle km travelled 
 2.88E-05 2.5E-06 11.51 0 1.80 

Commercial buildings 1 km 0.002753 0.000833 3.3 0.001 1.56 

Natural/agricultural land 

use 
1 km -9.1E-06 1.28E-06 -7.11 0 1.56 

Average wind speed  -0.8304 0.1511 -5.49 0 1.13 

Road density 250 m 0.002664 0.000886 3.01 0.003 1.38 

 

4. Discussion and Conclusions 

An important aspect of air quality modelling is determining which technique offers the best use of the 

resources and data that are available. The best model is not necessarily the most detailed or 

technically advanced; moreover, fundamental to the success of a given model, is the availability at 

sufficient resolution of the necessary data to drive it. In this context, the study described here used 

data available from routine FSMs rather than purpose-designed monitoring campaigns. In common 

with many countries, Ireland operates a FSM network primarily to assess compliance with limit values 

and to provide public information on the current state of air quality. This study expands the use of 

data from routine FSMs beyond compliance, or as a means of adjusting and limiting bias in passive 

sampling campaigns (Beelen et al., 2013; Henderson et al., 2007). The greater temporal coverage and 

short averaging period of FSM data (Cordioli et al., 2017) allowed us to divide the data wind sectors 

that, in addition to allowing the isolation of relevant source effects, also reduced site biases and 

allowed the introduction of a time variant aspect into the model. Furthermore, the reliability of the 

FSM measurements is typically higher than would be the case for many low-cost passive sampling 

techniques. By using FSM data, the method presented here thus minimises additional resources 

required to produce a viable background air quality map. 

A necessity for quantifying personal exposure in epidemiological studies is the estimation of pollutant 

concentration at unmonitored locations. A significant benefit of the modelling process presented here 

is that a greater understanding of the effects of natural and anthropogenic effects on air quality is 

obtained. A model which maps air quality across the country provides a useful tool for knowing which 

areas to target or areas which require improvement. Maps are also a useful way to increase public 

awareness and alter behaviours. In this way, the air quality model can be considered to supplement 

the air quality monitoring network. Figure 1 (right) shows the spatial variability in NO2 across Ireland. 

The NO2 map illustrates the dominant influence of traffic emissions on national (and urban) NO2 

concentrations. Focussing in on the main urban centre in Ireland, Dublin, elevated NO2 values are 

evident along the major traffic routes into and around the city. This reflects the role of road transport 

as the principal source of NOX emissions in Ireland, contributing 45% of the national total in 2013 

(Duffy et al., 2015).  
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A further use of the proposed approach is in assessing the spatial representativeness of the FSM 

network itself. Due to the high operational costs FSM networks often have limited spatial coverage 

and are heavily weighted to urban and suburban sites where pollutant concentrations and population 

exposure are higher. When using such networks to assess air quality at a regional or national level it 

is imperative to know how spatially representative the existing network is (Janssen et al., 2012). LUR 

models derive relationships between annual averaged concentrations and key land use 

characteristics; by mapping the range of land use variables across the region of interest and comparing 

to that surrounding the FSM, a quantitative measure of network representativeness can be provided. 

Furthermore, the inclusion of source-receptor orientation in the model using wind direction allows us 

to identify areas locally that may be strongly influenced by pollution derived from a single 

source/direction.  

LUR is a statistical modelling methodology that relies on changes (correlations) in historical data and 

there are no implicit physical or chemical changes included in the model structure. While the LUR 

methodology described here includes elements that change over time (wind speed, direction, traffic 

volumes), the model still needs periodic updates to ensure validity. For example, changes over time in 

the composition national vehicle fleet, e.g. a gradual transition towards electric vehicles, would 

significantly change the relationship between traffic levels and consequent pollutant concentrations. 

This periodic recalibration, if carried out in conjunction with FSM network management, can form an 

integral part of an iterative design and improvement process to ensure future sustainability. 
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