
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Food Science and Environmental 
Health 

2009-01-01 

The Antimicrobial Efficacy and Structure Activity Relationship of The Antimicrobial Efficacy and Structure Activity Relationship of 

Novel Carbohydrate Fatty Acid Derivatives Against Listera spp. Novel Carbohydrate Fatty Acid Derivatives Against Listera spp. 

and Food Spoilage Microorganisms and Food Spoilage Microorganisms 

Patricia Nobmann 
Technological University Dublin, Patricia.Nobmann@tudublin.ie 

Aoife Smith 
Technological University Dublin, Aoife.Smith@tudublin.ie 

Julie Dunne 
Technological University Dublin, Julie.Dunne@tudublin.ie 

Gary Henehan 
Technological University Dublin, gary.henehan@tudublin.ie 

Paula Bourke 
Technological University Dublin, paula.bourke@tudublin.ie Follow this and additional works at: https://arrow.tudublin.ie/schfsehart 

Recommended Citation Recommended Citation 
Nobmann, Patricia et al:The antimicrobial efficacy and structure activity relationship of novel 
carbohydrate fatty acid derivatives against Listera spp. and food spoilage microorganisms. International 
Journal of Food Microbiology, Vol. 128 (2009), pp. 440–445. 

This Article is brought to you for free and open access by 
the School of Food Science and Environmental Health at 
ARROW@TU Dublin. It has been accepted for inclusion in 
Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Arrow@dit

https://core.ac.uk/display/301304396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/schfsehart
https://arrow.tudublin.ie/schfseh
https://arrow.tudublin.ie/schfseh
https://arrow.tudublin.ie/schfsehart?utm_source=arrow.tudublin.ie%2Fschfsehart%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1 

Title: The antimicrobial efficacy and structure activity relationship of novel 1 

carbohydrate fatty acid derivatives against Listeria spp. and food spoilage 2 

microorganisms  3 

 4 

 5 

 6 

 7 

Patricia Nobmann, Aoife Smith, Julie Dunne, Gary Henehan and Paula Bourke* 8 

 9 

 10 

School of Food Science and Environmental Health, Dublin Institute of Technology,  11 

Cathal Brugha Street, Dublin 1, Ireland 12 

 13 

 14 

 15 

 16 

* Corresponding author. Tel: +353-14027594; Fax: +353-14024495; E-mail: paula.bourke@dit.ie 17 

 18 

 19 

 20 

 21 

 22 

 23 

Running Title: Antimicrobial efficacy of novel carbohydrate fatty acid derivatives 24 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 2 

Abstract 1 

Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated 2 

for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing 3 

on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable 4 

comparative studies on the structure/activity relationship for antimicrobial efficacy and 5 

mechanism of action. The antimicrobial efficacy of the synthesized compounds was 6 

compared with commercially available compounds such as monolaurin and monocaprylin, 7 

as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven 8 

antimicrobial activity. Compound efficacy was compared using an absorbance based broth 9 

microdilution assay to determine the minimum inhibitory concentration (MIC), increase in 10 

lag phase and decrease in maximum growth rate.  11 

Among the carbohydrate derivatives synthesized, lauric ether of methyl α-D-12 

glucopyranoside and lauric ester of methyl α-D-mannopyranoside showed the highest 13 

growth-inhibitory effect with MIC values of 0.04mM, comparable to monolaurin. CFA 14 

derivatives were generally more active against Gram positive bacteria than Gram negative 15 

bacteria. The analysis of both ester and ether fatty acid derivatives of the same 16 

carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety 17 

suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty 18 

acid derivatives and that the nature of the bond also has a significant effect on efficacy, 19 

which requires further investigation. This class of CFA derivatives has great potential for 20 

developing antibacterial agents relevant to the food industry, particularly for control of 21 

Listeria or other Gram-positive pathogens. 22 

 23 
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1. Introduction 1 

Consumer demand for fresh, minimally processed and "natural" foods, along with the 2 

requirement for maintenance and enhancement of safety, quality and shelf-life 3 

characteristics has fuelled research for alternative antimicrobials. Listeria monocytogenes 4 

has emerged as one of the most important food pathogens in ready-to-eat processed meals 5 

and dairy foods (EFSA, 2007), given that it can adapt to a wide range of food processes and 6 

storage conditions including refrigeration temperatures, and acidic or high salt foods. 7 

Moreover, Listeria has one of the highest case fatality rates of all the foodborne infections: 8 

20-30% (de Valk, et al., 2005). Therefore, there is a need for investigation of new 9 

approaches for the control or elimination of this pathogen in foods whilst also addressing 10 

food spoilage concerns. 11 

Fatty acids (FA) and their corresponding esters are one group of chemicals found in nature 12 

considered to have little or no toxicity, with proven antimicrobial activity. Kabara et al., 13 

(1972) showed that while fatty acids esterified with monohydric alcohols were inactive 14 

against microorganisms, those esterified with certain polyhydric alcohols yielded 15 

antimicrobial derivatives (Conley and Kabara, 1973). Monoglycerides (MG) are commonly 16 

employed in the food industry as flavoring and emulsifying agents and Monolaurin (ML), a 17 

food-grade glycerol monoester of lauric acid, is approved in the US as a food emulsifier (21 18 

CFR GRAS 182.4505). The anti-listerial activity of fatty acids and monoglycerides has 19 

been previously documented (Oh and Marshall, 1993; Wang and Johnson, 1997; Sprong et 20 

al., 2001). Their antimicrobial activity against spoilage microorganisms has also been 21 

reported (Ouattara et al., 1997; Blaszyk and Holley, 1998).  22 
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Sugar esters are biodegradable, nontoxic and nonionic surfactants, currently employed in 1 

the food, pharmaceutical, cosmetics and detergent industries (Hill and Rhode, 1999; 2 

Piccicuto et al., 2001). Furthermore, their antimicrobial activities have been reported 3 

(Monk et al., 1996; Devulapalle et al., 2004; Ferrer et al., 2005).   4 

Carbohydrate fatty acid (CFA) esters have been synthesized chemically and enzymatically 5 

by interesterification, transesterification and direct esterification. An issue regarding the 6 

synthesis of commercial sucrose esters is related to the high functionality of the 7 

carbohydrate molecule with many hydroxyl groups, which compete during the 8 

derivatization step, leading to product mixtures of mono-, di- and polyesters (Hill and 9 

Rhode, 1999). Enzymatic synthesis of novel sugar fatty acid esters has been widely 10 

employed and can be highly regioselective, although for some carbohydrates minor 11 

regiomeric isomers may be obtained.  12 

The exact mode of action of fatty acid esters has not yet been elucidated, but the 13 

cytoplasmic membrane is thought to be the primary site of action for fatty acid esters, 14 

affecting respiratory activity through inhibition of enzymes involved in oxygen uptake 15 

(Kabara, 1993). Ruzin and Novick, (2000) reported a monolaurin esterase activity in 16 

association with the S. aureus cell membrane and cytoplasm. It was shown that the half life 17 

of monolaurin in cultures of S. aureus was ca. 5 minutes due to its cleavage by cellular 18 

esterases. These studies raise the question as to whether the ester, or free fatty acid derived 19 

from hydrolysis of the ester, was responsible for antimicrobial activity.  20 

Recently, a number of novel fatty acid derivatives of carbohydrates have been synthesized 21 

and their antimicrobial activity assessed (Devulapalle et al., 2004; Ferrer et al., 2005). 22 

These workers have pointed out that a complication of some earlier studies was that they 23 
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were carried out using commercial preparations that contained a mixture of compounds. 1 

Thus, it was difficult to correlate antimicrobial activity with chemical structure. It is clear 2 

that future studies in this area will require the use of pure compounds. Moreover, there is a 3 

need to standardize antimicrobial activity of novel compounds by the use of reference 4 

compounds. Finally, quantification of antimicrobial activity is desirable to allow 5 

comparison between different studies.  6 

The objectives of this study were to compare the in vitro antimicrobial activity of a range of 7 

pure, novel, fatty acid esters with the corresponding fatty acid ethers and commercial fatty 8 

acids and monoglycerides to ascertain the role of the free fatty acid in the antimicrobial 9 

efficacy. These compounds were compared quantitatively to allow an estimation of the 10 

enhancement of the efficacy over the free fatty acids. This work has used a synthesis 11 

designed to allow the production of pure, novel regiochemically defined monosaccharide 12 

mono-fatty acid esters, and their corresponding ethers. The effect of different carbohydrate 13 

scaffolds as well as a non-carbohydrate (pentaerythritol) on antimicrobial efficacy was also 14 

examined. The effect of fatty acid chain length and anomeric configuration of the 15 

carbohydrate was also explored.  16 

The activity of eight CFA derivatives and three non-carbohydrate polyhydroxylated ester 17 

derivatives, together with their corresponding monosaccharide, fatty acids and 18 

monoglycerides as controls, were assessed against a range of Gram-positive and negative 19 

bacteria of interest to the food industry. Efficacy and structure-activity relationships were 20 

assessed by comparing MIC values, the increase in Lag phase and maximum specific 21 

growth rate. 22 

 23 
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2. Materials and methods 1 

2.1 Bacteria and growth conditions 2 

Bacterial strains used in this study are listed in Table 1. Stock cultures were maintained in 3 

tryptic soy broth (TSB, Sharlau Chemie, Spain) supplemented with 20% glycerol at -70°C. 4 

Cultures were routinely grown by subculturing one hundred microliters of stock culture into 5 

9 mL TSB and incubating at 35°C for 18 h, except for Pseudomonas spp. which were 6 

incubated at 30°C. All cultures were then maintained on tryptic soy agar (TSA, Sharlau 7 

Chemie, Spain) plates at 4°C.  Working cultures were prepared by inoculating a loop of 8 

pure culture into TSB and incubating at the optimum temperature for each strain for 18 h. A 9 

bacterial suspension was prepared in saline solution (NaCl 0.85%, BioMérieux, France) 10 

equivalent to a McFarland
 
standard of 0.5, using the Densimat photometer (BioMérieux, 11 

SA, France), to obtain a concentration of 1x10
8
 cfu/mL. This suspension was then serially 12 

diluted in TSB to obtain a working concentration of  1x10
6
 cfu/mL. 13 

2.2 Chemical synthesis 14 

Chemical synthesis was performed according to Smith et al., (2008). An overview of the 15 

test compounds synthesized and used in the antimicrobial assay is given in Figure 1. 16 

2.3 Test compounds preparation 17 

The saturated free fatty acids, lauric acid (LA - C12) and caprylic acid (CA - C8), as well as 18 

their corresponding monoglycerides, monolaurin (ML) and monocaprylin (MC) (Sigma-19 

Aldrich ~99% purity), were used as standards in this study.  20 

Stock solutions (100 mM) of test compounds and standards were prepared in sterile 21 

hydroalcoholic diluent (ethanol-distilled water, 1:1) and stored at -20°C. Stock solutions 22 

were diluted in TSB to obtain initial working concentrations (10 or 20mM).  23 
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2.4 Antimicrobial activity assay 1 

Solutions of the working test compounds and standards were serially diluted in sterile TSB 2 

to a final volume of 100 µL within the 96-well microtiter plate.  100 µL of freshly prepared 3 

inoculum of the organism under study was added to each appropriate well. The final 4 

concentration of each microorganism in each well was approximately 5x10
5
 cfu/mL and the 5 

concentration of chemical compounds ranged from 1:2 to 1:256. Each concentration was 6 

assayed in duplicate. The following controls were used in the microplate assay for each 7 

organism and test compound; blank: uninoculated media without test compound to account 8 

for changes in the media during the experiment; negative control: uninoculated media 9 

containing only the test compound; positive control 1: inoculated media without compound; 10 

positive control 2: inoculated media without compound but including the corresponding 11 

sugar to evaluate any effect of the sugar alone; and positive control 3: inoculated media 12 

without compound but with the equivalent concentration of ethanol used to dissolve the test 13 

compound thereby assessing any activity of the alcohol. The 96-well plates were incubated 14 

for 18 hours in a microtiterplate reader (PowerWave microplate Spectrophotometer, 15 

BioTek) at 35°C, except for Pseudomonas spp. which were incubated at 30°C, and effects 16 

were monitored by measuring the optical density (OD) at 600 nm for each well every 20 17 

minutes with 20 seconds agitation before each OD measurement. Each experiment was 18 

replicated three times. 19 

2.5 Data analysis 20 

2.5.1 Minimum inhibitory concentration (MIC) 21 

The MIC was defined as the lowest concentration of compound that showed no increase in 22 

OD values for all the replicates compared to the negative control after 18 hours. The 23 
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absorbance readings obtained from the kinetic data were plotted against time to obtain the 1 

growth curves of the test organisms. Subtraction of the absorbance of the negative control 2 

eliminated interferences due to possible variations in the media.  3 

2.5.2 Lag time increase (λ) 4 

The increase in Lag time was calculated using the Gen5
TM

 software. The increase in lag 5 

time was defined as the time required for the culture with test compound to record an 6 

increase in OD600 of 0.10 minus the time that the positive control 1 without test compound 7 

required to record the same increase in OD600. 8 

2.5.2 Maximum specific growth rate (µmax) 9 

The maximum growth rate was also calculated using the Gen5
TM

 software. The µmax was 10 

determined from the slope of the regression equation from the linear portion of the log plot 11 

during early exponential phase. 12 

2.5.3 Statistical analysis 13 

All experiments were performed in duplicate and replicated at least three times. Statistical 14 

differences between compound efficacies were determined using ANOVA followed by 15 

LSD testing at p < 0.05 level using SPSS software, Version 15. 16 

 17 

3. Results  18 

3.1 Antimicrobial activity of carbohydrate fatty acid derivatives 19 

3.1.1 Minimum inhibitory concentrations 20 

The MIC results are summarized in Table 2.  The monoglycerides, ML and MC, had 21 

greater activity (p<0.05) against the Gram positive Listeria spp. compared to their 22 

corresponding free fatty acids (LA, CA), and comparable activity at the concentrations 23 
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tested against the Gram negative microorganisms. Of the monoglycerides and free fatty 1 

acids tested, ML had the lowest MIC values (p<0.05) and was particularly effective for 2 

inhibition of Listeria strains with MIC values of 0.04mM, by comparison with the range 3 

observed for LA with MIC values between 0.63mM to 1.25mM.  A similar trend was 4 

observed for MC (MIC = 2.5mM, 5.0mM) compared to the free fatty acid CA (MIC 5 

≥5mM).  6 

When tested against the Gram negative bacteria, LA and ML had no activity at 7 

concentrations up to 20mM (Table 2). An exception to this was recorded for E. coli 8 

NCTC12900 with a MIC value of 12.5mM for LA and ML. P. fluorescens was susceptible 9 

to CA and MC at a concentration of 5 mM for both compounds, whereas for E. coli strains, 10 

MIC values were 10 mM and 5 mM respectively. Minimum inhibitory concentrations of 11 

CA were ≥ 20 mM for the other Gram negative bacteria (Table 2). 12 

All CFA derivatives showed greater antimicrobial activity against Gram positive 13 

microorganisms than Gram negative (p<0.05). For Listeria spp., compounds 2 and 6 were 14 

the most active derivatives with MIC values of 0.04 mM, comparable to ML (Table 2). The 15 

next in order of overall efficacy was compound 3 with MIC values between 0.08 mM and 16 

0.16 mM for Listeria spp. Compound 1 recorded an MIC range of 0.08 mM to 0.31 mM. 17 

The antimicrobial activity of compound 4 was significantly lower than that observed with 18 

the corresponding α-ether (Table 2). Compound 9 (a non-carbohydrate mono-ester) was 19 

evaluated, but its antimicrobial activity was negligible (results not shown). Compounds 7, 20 

8, 10 and 11 could not be accurately tested for antimicrobial efficacy due to poor solubility 21 

in water. Compound 5 had a greater activity (p<0.05) compared with MC against all 22 

Listeria strains (Table 2). Compound 5 was more active than the lauric acid derivatives 23 
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against E. coli ATCC 25922 and P. fluorescens, with MIC values of 12.5 mM and 5 mM 1 

respectively (Table 2).  2 

In each antimicrobial efficacy assay, the corresponding carbohydrates for the fatty acid 3 

derivatives were included as a control, but had no antimicrobial or growth promoting effect 4 

on the microorganisms under investigation. Although the concentrations of ethanol 5 

corresponding to that within the wells with the highest concentrations of compound used 6 

(10mM for the Gram positive and 20mM for the Gram negative bacteria) had a minor effect 7 

on bacteria viability, there was no anti-microbial effect observed at the concentrations used 8 

when incorporated with the compounds at MIC levels. 9 

3.1.2 Increase in Lag time and decrease of maximum specific growth rate 10 

The increase in lag time and decrease in maximum specific growth rate was estimated for 11 

L. monocytogenes ATCC 7644 to allow further comparison between compound efficacies. 12 

Results were found to be concentration and compound dependent (Table 3) (p < 0.05). 13 

Generally, the increase in lag time between concentrations of a compound was observed to 14 

be more marked than the decrease in growth rate which was more gradual. For example, at 15 

sub-MIC concentrations, compound 3 had an increase in lag time from 0.5h to 5.3h 16 

associated with a small increase in concentration from 0.02mM to 0.04mM. This trend was 17 

also true for LA, CA, MC and compound 4 (Table 3). With respect to µ-max, different 18 

patterns were observed, there was a gradual decrease noted with LA, CA, MC and 19 

compound 4, associated with the higher MIC values for these compounds. Whereas, for ML 20 

and compound 3, there was a non-linear association of µ-max reduction with concentration, 21 

associated with the very low MIC values determined for these compounds.  22 

 23 
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4. Discussion 1 

The antimicrobial potential of carbohydrate fatty acid derivatives has received less attention 2 

than their other functional properties as emulsifiers or non-ionic surfactants. In contrast to 3 

the extensive literature for the antimicrobial properties of monoglycerides, there is limited 4 

information about the use of CFA derivatives as food preservatives. Previous studies on 5 

antimicrobial properties of sugar esters mainly involved sucrose or other disaccharides 6 

esters (Hathcox and Beuchat, 1996; Devulapalle et al., 2004). Many of the studies were not 7 

carried out using regiochemically pure compounds, were not quantitative and did not 8 

include controls to compare activity of free fatty acids with fatty acid derivatives. As a 9 

result correlation of chemical structure with efficacy and/or mechanism of action has been 10 

difficult.  11 

The current study evaluated the antimicrobial properties of pure fatty acid esters and their 12 

corresponding ethers to provide insights into structure/activity relationships for these 13 

compounds. The CFA derivatives synthesized in this study were shown to be more 14 

effective against Gram positive than Gram negative bacteria (p<0.05). This trend was also 15 

observed for the fatty acid and monoglyceride controls, in accordance with previous studies 16 

(Conley and Kabara 1973; Ruzicka et al., 2003). We obtained similar MIC values of 10 17 

µg/ml for monolaurin against L. monocytogenes as those reported by Wang and Johnson 18 

(1992), and Oh and Marshall (1993). The activity of lauric derivatives 2 and 6 against 19 

Listeria monocytogenes was found to be equivalent to that of monolaurin and in excess of 20 

that reported by Monk et al., (1996), for a lauroyl-sucrose ester. 21 

With respect to the effect of chain length on antimicrobial efficacy of the CFA’s, there was 22 

a difference in efficacy between Gram positive and Gram negative bacteria. Lauric acid and 23 
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derivatives had higher activity against Gram positive bacteria, whereas caprylic acid and its 1 

derivative 5 were more active than lauric acid derivatives against E. coli ATCC 25922 and 2 

P. fluorescens. Our data are similar to that of Nair et al. (2004a), where populations of L. 3 

monocytogenes and E. coli O157:H7 were shown to decrease below detection levels using 4 

50mM of MC or CA in bovine milk. The same authors, Nair et al. (2005), described 5 

antimicrobial activity for both CA and MC and found that Streptococcus spp. were the most 6 

sensitive, and E. coli the most tolerant. Whilst both lauric and caprylic fatty acid derivatives 7 

retained good activity against Gram positive bacteria, only the caprylic acid derivative 8 

displayed useful efficacy against Gram negative bacteria. These trends were also observed 9 

with the free FAs and MGs. The enhanced efficacy of the shorter chain fatty acid over the 10 

medium chain fatty acid could be attributed to the differences in the outer membrane 11 

structure and permeability between Gram-negative and Gram-positive bacteria.  12 

This study also looked at fatty acids conjugated to sugars by ether bonds. Such bonds are 13 

not as readily hydrolyzed in biological systems as their ester equivalents. It was interesting 14 

to note that these compounds still retained antimicrobial activity indicating that hydrolysis 15 

of the ester bond is not necessary for antimicrobial activity. Compound 4 (β ether) was less 16 

inhibitory than the free fatty acid (LA) and monoglyceride (ML) against Listeria spp. In 17 

some cases, compound 2 (α ether) had an enhanced activity by comparison with compound 18 

1 (α ester) and 3 (β ester), particularly for the Listeria spp. This may be due to the greater 19 

stability of ether bonds over esters (Ved et al., 1984), since ether bonds are not subject to 20 

cleavage by cellular esterases. Reporting on the antimicrobial efficacy of ether and ester 21 

glyceride compounds, Isaacs et al., (1995), suggested that ether lipids should remain 22 

antimicrobial for a longer period of time than monoglycerides with ester linkages, which 23 
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assumes that the fatty acid component does not require release, for example, by esterases 1 

for activity. Ruzin and Novik, (2000) showed that monolaurin was rapidly hydrolyzed (t1/2 2 

of ~5 min) by esterases in S. aureus suggesting that inhibitory activity could be due to free 3 

fatty acid liberated from monolaurin by hydrolysis. The differences observed in this study 4 

between the ester and ether bonds of the same carbohydrate fatty acid (compounds 1 and 2 5 

and compounds 3 and 4) show that the nature of the bond between the fatty acid and the 6 

sugar has an influence on antimicrobial activity. 7 

The focus of many studies on the mechanism of action of monoglycerides is on cellular 8 

membranes. Ruzin and Novik, (2000) reported a monolaurin esterase activity in association 9 

with the cell membrane and also in the cytoplasm and the Geh lipase was responsible for 10 

approximately 80% of the monolaurin hydrolysing activity. The same authors reported 11 

increased lipolytic activity in membrane fractions of S. aureus and concluded that S. aureus 12 

had a membrane bound esterase that participated in the hydrolysis of monolaurin and 13 

release of lauric acid. However, the current work suggests that while membrane bound or 14 

free esterases may cleave ester bonds of a glycerol or a carbohydrate fatty acid derivative, 15 

the ether carbohydrate fatty acid derivatives retained higher activity than the ester 16 

derivatives and that the release of a free fatty acid may not be required for potent 17 

antimicrobial activity.   18 

In an effort to probe the importance of the carbohydrate moiety, ester and ether fatty acid 19 

derivatives based on the following carbohydrates were synthesized and tested: α-glucose, β-20 

glucose, α-mannose and α-galactose. Of these, differences in efficacy were measured for 21 

compounds which have the same glycoconjugate bond and alkyl chain length (see entries in 22 

Table 2 for compounds 1, 3, 6, 7). Therefore we conclude that the sugar itself can be a 23 
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determining factor on efficacy. This is in accordance with the findings of Watanabe et al., 1 

(2000) who also concluded that the configuration of the carbohydrate moiety in similar 2 

compounds markedly affected antibacterial activity. In addition, we found that a minor 3 

structural change in the carbohydrate can have a major influence on the solubility of the 4 

compound. For example, compounds 1, 3, and 6 are soluble, whereas the structurally 5 

similar compound 7 is insoluble. This further highlights the importance of the choice of 6 

carbohydrate.  7 

We found that not only were free single or multiple hydrophilic groups necessary for 8 

biological activity, as observed by Conley and Kabara (1973), but that the nature of the 9 

hydrophilic group per se is also important for the antibacterial activity, as antimicrobial 10 

activity associated with the lauroyl pentaerythritol monoester 9 with three free hydroxyl 11 

groups was negligible compared to compounds 1, 3 and 6 which also had the same number 12 

of free hydroxyl groups.  13 

Results for compound 8 demonstrates that there is a limit to the number of fatty acids which 14 

can be esterified to a monosaccharide and this appears to be one, whereas for the sucrose it 15 

has been demonstrated that it is two (Kato and Shibasaki, 1975). Due to the poor solubility 16 

in water of compounds 7, 8, 10 and 11, their potential for application in food systems is 17 

limited.  18 

The data obtained from the increase in λ and decrease in µ-max studies showed that sub-19 

MIC concentrations can modify bacterial growth significantly. Nair et al., (2004b) also 20 

observed this behaviour using MC (50 mM) which reduced Enterobacter sakazakii in 21 

reconstituted infant formula by >5 log CFU/ml at 37°C, whereas approximately 1.5 log 22 

CFU/ml of the pathogen survived after 24 h of incubation using half the concentration of 23 
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antimicrobial. This is important towards possible combinations with other antimicrobials or 1 

alternative preservation strategies for optimization of practical application of CFA 2 

derivatives to microbiological issues within the food and other industries. Combinations of 3 

sub-MIC preservatives with other minimal ‘hurdles’ may contribute to the control of 4 

microbiological issues in food systems while minimizing sensory and quality impacts on a 5 

food. Combinations of LA or a derivative and other antimicrobials have shown additive or 6 

synergistic effects against pathogenic or spoilage bacteria in several matrices (Bell and De 7 

Lacy, 1987, Wang and Johnson, 1997; Blaszyck and Holley, 1998; Yamazaki et al., 2004).  8 

Lauric esters of methyl glucopyranoside (1 and 3) had comparable activity (p>0.05) against 9 

all Gram positive bacteria tested, regardless of the anomeric configuration of the sugar. 10 

With regard to the lauric ethers, compound 2 showed lower MIC values (0.04 mM) against 11 

the Gram positive microorganisms compared to compound 4 (2.5 mM to 5 mM, p<0.05). 12 

This suggests that the alpha or beta configuration of the ether derivative has a considerable 13 

effect on the anti-microbial efficacy. In general, the alpha configuration of the carbohydrate 14 

moiety of the synthesized compounds was more effective than the beta, for both ester and 15 

ether derivatives of the same carbohydrate. This further supports the observation that the 16 

carbohydrate moiety has a role in the antimicrobial efficacy of the carbohydrate fatty acid 17 

derivative. This finding suggests that there is potential to develop carbohydrate fatty acid 18 

derivatives with an efficacy comparable to that of glycerol fatty acid derivatives such as 19 

monolaurin.  20 

 21 

 22 

 23 
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5. Conclusions 1 

A series of pure, regiochemically defined monosaccharide mono-fatty acid esters and their 2 

corresponding ethers were evaluated for antimicrobial activity. The CFA derivatives were 3 

found to be significantly more active against Gram positive bacteria than Gram negative 4 

bacteria, and lauric esters of methyl glucopyranoside and mannopyranoside as well as the 5 

lauric ether of methyl glucopyranoside were comparable to Monolaurin for antimicrobial 6 

efficacy.  The analysis of both  ester and ether fatty acid derivatives of the same 7 

carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety 8 

suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty 9 

acid derivatives and that the nature of the bond also has a significant effect on efficacy, 10 

which requires further investigation.  No significant variability in the efficacy of the 11 

compounds was observed between Listeria strains. The use of a synthetic route to control 12 

production of regiochemically defined compounds allows the optimization of the 13 

carbohydrate moiety configuration and bond with regard to anti-microbial efficacy, 14 

highlighting compounds suitable for regioselective enzymatic synthesis. Carbohydrate fatty 15 

acid derivatives have potential as effective antimicrobial compounds for use as 16 

preservatives to address a range of microbiological stability and safety issues. Additional 17 

knowledge on the mode of action of such compounds in combination with data on their 18 

MICs would allow for effective applications. 19 

 20 
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Figure Captions 1 

 2 

Fig 1. Structures of the novel carbohydrate fatty acid derivatives and non-carbohydrate 3 

polyhydroxylated esters synthesized and investigated. 4 
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Table 1. Microorganisms used in this study 

Strain Reference
 a

 Source 

Gram-positive bacteria   

    Listeria innocua NCTC 11288 Cow brain, serotype 6a 

    Listeria monocytogenes ATCC 7644 Human 

    Listeria monocytogenes NCTC 11994 Cheese, serotype 4b 

    Listeria monocytogenes NCTC 7973 Pig mesenteric lymph node 

   

Gram-negative bacteria   

    Escherichia coli ATCC 25922 Clinical isolate 

    Escherichia coli NCTC 12900 Human, serotype O157:H7 nontoxigenic 

    Salmonella enterica 

    (serovar   Typhimurium) 

ATCC 14028 Animal tissue 

    Enterobacter aerogenes ATCC 13048 Sputum 

    Pseudomonas fluorescens * Lettuce 
a
 Strains indicated with an asterisk were provided by the Department of Life Sciences, University of 1 

Limerick, Ireland 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
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Table 2. Minimum Inhibitory Concentration (MIC; mM) values of Carbohydrate Fatty Acid derivatives and Standards in tryptic soy broth at 

37°C after 18 hours. 

FA
 

MG
 

 Carbohydrate fatty acid derivatives 
Microorganism 

LA CA ML MC  1 2 3 4 5 6 

Listeria innocua NCTC 11288 0.63 5 0.04 2.5  0.08 0.04 0.08 5 0.63 0.04 

Listeria monocytogenes ATCC 7644 0.63 > 5 0.04 5  0.08 0.04 0.08 2.5 2.5 0.04 

Listeria monocytogenes NCTC 11994 1.25 > 5 0.04 2.5  0.31 0.04 0.16 > 2.5 1.25 0.04 

Listeria monocytogenes NCTC 7973 1.25 5 0.04 2.5  0.08 0.04 0.16 > 2.5 0.31 0.04 

            

Escherichia coli ATCC 25922 > 20 10 20 5  20 20 20 20 12.5 ≥ 20 

Escherichia coli NCTC 12900 12.5 10 12.5 5  12.5 10 12.5 10 12.5 N.D 

Salmonella Typhimurium ATCC 14028 > 20 > 20 20 > 20  20 > 20 > 20 20 > 20 N.D 

Enterobacter aerogenes ATCC 13048 > 20 20 20 10  20 > 20 > 20 > 20 > 20 N.D 

Pseudomonas fluorescens  > 20 5 20 5  > 20 > 20 > 20 > 20 5 N.D 

For each analysis the MIC was recorded as the concentration (mM) that resulted in total inhibition of all replicates. N.D: Not determined 

1. Methyl 6-O-lauroyl-α-D-glucopyranoside; 2. Methyl 6-O-dodecanyl-α-D-glucopyranoside; 3. Methyl 6-O-lauroyl-β-D-glucopyranoside;  

4. Methyl 6-O-dodecanyl-β-D-glucopyranoside; 5. Methyl 6-O-octanoyl-α-D-glucopyranoside; 6. Methyl 6-O-lauroyl-α-D-mannopyranoside 
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Table 3. Effect of FA, MG and CFA derivatives on the Lag time (λ) and Maximum specific 

growth rate (µmax) of L. monocytogenes ATCC 7644 

Compound (mM) λ (h) St.Dev. µmax (h
-1

) St.Dev. 

LA 0 -  0.30 ± 0.034 

 0.04 0.0 ± 0.06 0.22 ± 0.049 

 0.08 0.2 ± 0.26 0.17 ± 0.041 

 0.16 2.0 ± 1.00 0.10 ± 0.017 

 0.31 4.8 ± 1.73 0.07 ± 0.037 

 0.63 no growth  0  

ML 0 -  0.30 ± 0.034 

 0.02 2.3 ± 1.09 0.25 ± 0.040 

 0.04 no growth  0  

1 0.08 no growth  0  

2 0.04 no growth  0  

3 0 -  0.30 ± 0.034 

 0.02 0.5 ± 0.07 0.31 ± 0.003 

 0.04 5.3 ± 0.67 0.27 ± 0.006 

 0.08 no growth  0  

4 0 -  0.30 ± 0.034 

 0.16 0.2 ± 0.18 0.30 ± 0.013 

 0.31 0.5 ± 0.25 0.27 ± 0.009 

 0.63 5.0 ± 0.55 0.12 ± 0.059 

 1.25 no growth  0  

CA 0 -  0.30 ± 0.034 

 0.31 0  0.26 ± 0.027 

 0.63 0 ± 0.04 0.24 ± 0.037 

 1.25 0.1 ± 0.17 0.26 ± 0.044 

 2.5 0.8 ± 0.19 0.21 ± 0.034 

 5 3.1 ± 1.62 0.18 ± 0.097 

 10 no growth  0  

MC 0 -  0.30 ± 0.034 

 0.31 0.2 ± 0.29 0.26 ± 0.029 

 0.63 0.3 ± 0.40 0.25 ± 0.043 

 1.25 1.1 ± 0.41 0.19 ± 0.046 

 2.5 5.6 ± 1.35 0.01 ± 0.034 

 5 no growth  0  

5 0 -  0.30 ± 0.034 

 0.31 0.4 ± 0.47 0.24 ± 0.035 

 0.63 1.6 ± 0.94 0.22 ± 0.008 

 1.25 1.0 ± 0.27 0.12 ± 0.008 

 2.5 1.9 ± 0.34 0.08 ± 0.001 

  5 no growth   0   
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