

Technological University Dublin ARROW@TU Dublin

Articles

School of Food Science and Environmental Health

2008

Transfer of Ampicillin resistance from S. Typhimurium DT104 to E. coli K12 in food

Ciara Walsh Technological University Dublin, ciara.walsh@tudublin.ie

Geraldine Duffy The Ashtown Food Research Centre, Teagasc, Ashtown, Dublin 15, Ireland.

R. O'Mahoney University College Dublin, Ireland

D. A. McDowell Food Microbiology Research Unit, NICHE, University of Ulster, Jordanstown, Newtownabbey, BT37 OQB, N. Ireland.

Seamus Fanning University College Dublin, Ireland, sfanning@ucd.ie Follow this and additional works at: https://arrow.tudublin.ie/schfsehart

Part of the Food Science Commons

Recommended Citation

Walsh, C. et al. (2008) Transfer of Ampicillin Resistance from S. Typhimurium DT104 to E. coli K12 in food. *Letters in applied microbiology, 46, 210-215, 2008*. DOI: 10.1111/j.1472-765X.2007.02288.x

This Article is brought to you for free and open access by the School of Food Science and Environmental Health at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

1	Transfer of Ampicillin resistance from S. Typhimurium DT104 to E. coli K12 in
2	food
3	
4	
5	*C. Walsh ^{1,2} , G. Duffy ¹ , R O'Mahony ² , D. A. McDowell ³ and S. Fanning ²
6	
7	¹ The Ashtown Food Research Centre, Teagasc, Ashtown, Dublin 15, Ireland. ² Centre
8	for Food Safety, School of Agriculture, Food Science and Veterinary Medicine,
9	University College Dublin, Belfield, Dublin 4, Ireland and ³ Food Microbiology
10	Research Unit, NICHE, University of Ulster, Jordanstown, Newtownabbey, BT37
11	OQB, N. Ireland.
12	
13	* Author for correspondence
14	Tel: 353 1 7166268
15	E mail: <u>ciara.walsh@ucd.ie</u>
16	Centre for Food Safety,
17	UCD Veterinary Sciences Centre,
18	University College Dublin,
19	Belfield, Dublin 4, Ireland.
20	
21	Running title: β-lactamase Transfer in Food
22	Key Words : Ampicillin Resistance, S. Typhimurium DT104, E. coli K12, β-
23	lactamase, bla_{TEM}
24	

26 Abstract

27 Aims: To investigate the transfer of antibiotic resistance from a donor *S*.

28 Typhimurium DT104 strain to a recipient E. coli K12 strain.

29 Methods and Results: Mating experiments were conducted in broth, milk and ground

30 meat (beef) at incubation temperatures of 4, 15, 25 and 37° C for 18 and 36 h.

31 Ampicillin resistance transfer was observed at similar frequencies in all transfer

32 media at 25 and 37°C (10^{-4} to $10^{-5} \log_{10} cfu/ml/g$, transconjugants per recipient) for 18

33 h. At 15° C, transfer was observed in ground meat in the recipient strain (10^{-6} , \log_{10}

- 34 cfu/g, transconjugants per recipient), but not in broth or milk. At 4°C, transfer did not
- 35 occur in any of the examined mediums. Further analysis of the *E. coli* K12 nal^R

36 transconjugant strain revealed the presence of a newly acquired β -lactamase gene

- 37 *bla*_{TEM}. Transconjugants isolated on the basis of resistance to ampicillin did not
- 38 acquire any other resistant markers.

39 Conclusion: This study demonstrates the transfer of antibiotic resistance in food
40 matrices at mid-range temperatures.

41 Significance and Impact of the Study: It highlights the involvement of food

42 matrices in the dissemination of antibiotic resistant genes and the evolution of

- 43 antibiotic resistant bacteria.
- 44

46 Introduction

47	Salmonella Typhimurium DT104 is a major cause of enteric infections world-wide
48	(Beaudin et al. 2002). This serovar typically expresses resistance to ampicillin,
49	chloramphenicol/florfenicol, streptomycin/spectinomycin, sulfonamides and
50	tetracycline (ACSSuT) (Golding et al. 2007). Such multi-drug resistant (MDR) S.
51	Typhimurium DT104 are of concern especially in immuno-comprised patients, as it
52	restricts clinical options in the treatment of salmonellosis. In more general terms, it
53	has potential consequences in relation to transfer and dissemination of antibiotic
54	resistant material to other bacteria including pathogens.
55	
56	Class A β -lactamases are the most widespread enzymes in Gram-negative bacteria
57	(Chochani et al. 2006, Bonnet, 2004). These enzymes are widely distributed in
58	Salmonella spp. and are frequently associated with the above (ACSSuT) penta
59	resistance profile (Guerri <i>et al.</i> 2004). In <i>Salmonella</i> , β -lactamase resistance is often
60	conferred by the presence of the bla_{TEM} or bla_{PSE} gene (Randall <i>et al.</i> 2004). Of these,
61	the $bla_{\text{TEM-1}}$ gene which is generally plasmid-mediated (Larson and Ramphal, 2002) is
62	considered the most frequently expressed β -lactamase in Salmonella in Europe
63	(Guerri et al. 2004; Tzouvelekis et al. 2003).
64	
65	A number of studies have investigated the transfer of antibiotic resistance in food-
66	borne bacterial pathogens such as Salmonella, but few studies have examined gene
67	transfer between bacteria in-situ in food. Reports of gene transfer (by transformation)
60	of konomucin in Racillus subtilizin mills (Khorozmi et al. 2002) and the transfer of

68 of kanamycin in *Bacillus subtilis* in milk (Kharazmi *et al.*, 2002) and the transfer of

69 vancomycin resistant genes among enterococcal strains by conjugation during cheese

70	and sausage fermentation (Cocconelli et al., 2003) have been cited. However, the
71	majority of studies on the transfer of antibiotic resistance have been carried out in
72	liquid systems (McMahon et al. 2007; Wilcks et al., 2005; Chen et al., 2004; Allen
73	and Poppe, 2002) or on filters (Hummel et. al., 2007; Gevers et al., 2003; Pourshaban
74	et al., 2002) and thus do not reflect the in-situ dynamics of food matrices. This
75	balance of activity is unfortunate, as liquid or filter based systems have been reported
76	to underestimate the rates of genes transfer compared to more complex matrices
77	(Netherwood et al., 1999). Moreover, concern has been raised about food being an
78	important and under-estimated avenue for antibiotic resistance dissemination and
79	evolution (Wang et al. 2005).
80	
81	The objective of this study was to ascertain if antibiotic resistance gene transfer can
82	occur between a donor S. Typhimurium DT104 and E. coli K12, in broth, milk and

83 ground meat under different temperature and time conditions encountered in food

84 processing.

87 Material and Methods

88 Bacterial strains

A previously characterised *S.* Typhimurium DT104 strain resistant to ampicillin,
chloramphenicol, streptomycin, sulfonamides and tetracycline (R-type ACSSuT) was
obtained from the culture collection at Ashtown Food Research Centre, Dublin. An
antibiotic susceptible strain of *E. coli* K12 (NC10538:06) was obtained from the
Health Protection Agency (HPA), London. All strains were stored on cryoprotect
beads (Technical Consultant Services Ltd., Heywood, Lancashire, UK) at –20°C.

95

96 Preparation of nalidixic acid resistant mutants and antibiogram profiling

97 *E. coli* K12 were rendered chromosomally resistant to 50 μg/ml of nalidixic acid, by

98 the method of Blackburn and Davies (1994). In brief, this involved growing each

99 strain separately in nutrient broth (Oxoid) containing nalidixic acid 50 µg/ml and

100 plating directly onto nutrient agar plates containing the same drug concentration.

101 Resultant colonies were serially subcultured to confirm mutant stability. The above

102 procedures produced nalidixic acid resistant *E. coli* K12 recipient isolates, which

103 could be easily differentiated and recovered during subsequent studies. This strain is

104 referred to as *E. coli* nal^R in our study.

105

106 The antibiogram profiles of all donor and recipient strains were established by the

107 Bauer-Kirby Disc Diffusion method, following the Clinical and Laboratory Standards

108 Institute recommended method (Anon., 2004) as described by Walsh *et al.* (2001).

109 Donor and recipient strains were maintained on cryoprotect beads, as described

110 above.

112 **Preparation of inoculum**

113 Protect beads coated with S. Typhimurium DT104 and E. coli K12 nal^R were

114 incubated in 30 ml volumes of LB Broth (Miller, Germany) at 37°C for 18 h, to form

- 115 stationary phase cultures containing approximately 10^9 cfu/ml. A 1.0 ml aliquot from
- each stationary phase culture was serially diluted in 9 ml volumes of Maximum

117 Recovery Diluent (MRD, Oxoid) to form inocula containing approximately 10^6 cfu/

- 118 ml^{-1} culture.
- 119

120 **Control experiments**

121 The donor and recipient strains were grown independently, inoculated and recovered 122 from each food matrix during each experiment, by plating on to TSA-ampicillin (50 123 μ g/ml) (to recover the no. of donor strains) and TSA-nalidixic acid (50 μ g/ml) (to 124 recover the no. of transconjugant strains). The number of colonies recovered from 125 these plates was then used to calculate the frequency of transfer of antibiotic 126 resistance.

127

128 Antibiotic resistance transfer experiment in broth or milk

129 Nine ml volumes of LB Broth (Miller) or retail pasteurised milk were inoculated with

- 130 1 ml volumes of the above inocula to form suspensions containing approx. 10^5 cfu/ml
- 131 of donor (S. Typhimurium DT104) or recipient (E. coli K12 nal^R) suspensions. Donor
- and recipient cell suspensions were mixed in 1:1 ratios, incubated for 18 h at 4, 15, 25
- 133 or 37°C and then plated directly on TSA containing 50 µg/ml of ampicillin and 50
- 134 μ g/ml of nalidixic acid and incubated at 37°C for 24 h, to recover potential
- 135 transconjugants. Single strain suspensions of each strain were incubated at the test

136 temperatures for 18 h in broth and milk (10^5 cfu/ml) and were used as controls in this 137 experiment.

138

139 Antibiotic resistance transfer experiment in ground meat

140 Beef trimmings (70% w/w visible lean), obtained from a beef abattoir in the Dublin

141 area were minced (Crypto Ltd., London) divided into 30 g portions, blast frozen at -

142 30° C for 2 h (Woods M3C₃, Avon Refrig. Co. Ltd. U.K.) and stored at -20° C.

143 Samples from each batch of ground meat were confirmed as Salmonella free (ISO

144 method 6579) and *E. coli* free (ISO method 6649-2). Prior to use, ground meat

145 samples were defrosted overnight at 4°C. Duplicate 25 ml volumes of the donor

146 strain inoculum (10^7 cfu/ml) (S. Typhimurium DT104) and 25 ml of the respective

147 recipient strain inocula (10^7 cfu/ml) (*E. coli* K12 nal^R), were added to 450 ml volumes

148 of MRD (1:10 dilution), to form combined inoculating suspensions containing 10^6

149 cfu/ml. Single strain inoculating suspensions were prepared by adding 50 ml of donor

150 or recipient inocula to 450 ml volumes of MRD to give a final suspension of 10^6

151 cfu/ml of donor or recipient cells. The single strain suspensions of the donor and

recipient cultures were also incubated at 37°C for 18 or 36 h and were used as controls

153 in this experiment.

154

Thirty gram ground meat samples (retained within a sterile sieve) were immersed in each of the above single or combined inoculating suspensions for 1 min and recovered by removal of the sieve from the inoculation suspensions, allowed to drain and then reminced (in a sterilise mincer). Preliminary studies established that this process resulted in ground meat samples with an inoculum of approximately $\log_{10} 10^5$ cfu/g (data not shown). Samples (25 g) of inoculated ground meat were placed in

161	individual sterile bags, incubated at temperatures 4, 15, 25 and 37°C for 18 h (and also
162	36 h for ground meat). At these time intervals, bags for each different temperature
163	were retrieved and microbiologically examined. Following incubation the contents of
164	each bag were stomached for 2 min with 225 ml Maximum Recovery Diluent (MRD,
165	Oxoid) in a stomacher bag fitted with an integral filter (Seward Ltd., London). The
166	resultant filtrate was serially-diluted in 9 ml aliquots of MRD, plated onto TSA
167	containing ampicillin (50 $\mu\text{g/ml})$ and nalidixic acid (50 $\mu\text{g/ml})$ and incubated at 37 ^{o}C
168	for 24 h. Plates from samples co-inoculated or singly inoculated with E. coli K12
169	nal ^R (as potential recipient), were overlayed with Mac Conkey No. 3 (Oxoid). All
170	plates were then incubated at 37°C for 24 h and the numbers of colonies per plate was
171	counted.
172	
172 173	The antibiotic resistance profiles of all recovered recipient, donor and presumptive
	The antibiotic resistance profiles of all recovered recipient, donor and presumptive transconjugant strains of <i>S</i> . Typhimurium DT104 and <i>E</i> . <i>coli</i> K12 nal ^R were
173	
173 174	transconjugant strains of <i>S</i> . Typhimurium DT104 and <i>E</i> . <i>coli</i> K12 nal ^R were
173 174 175	transconjugant strains of <i>S</i> . Typhimurium DT104 and <i>E</i> . <i>coli</i> K12 nal ^R were
173 174 175 176	transconjugant strains of <i>S</i> . Typhimurium DT104 and <i>E. coli</i> K12 nal ^R were confirmed using the Bauer-Kirby disc diffusion method as described above.
173 174 175 176 177	transconjugant strains of <i>S</i> . Typhimurium DT104 and <i>E. coli</i> K12 nal ^R were confirmed using the Bauer-Kirby disc diffusion method as described above. This experiment was replicated on three different occasions using separate batches of
173 174 175 176 177 178	transconjugant strains of <i>S</i> . Typhimurium DT104 and <i>E. coli</i> K12 nal ^R were confirmed using the Bauer-Kirby disc diffusion method as described above. This experiment was replicated on three different occasions using separate batches of broth, milk and ground meat, fresh inocula and all of the antibiotic resistance profiles
173 174 175 176 177 178 179	 transconjugant strains of <i>S</i>. Typhimurium DT104 and <i>E. coli</i> K12 nal^R were confirmed using the Bauer-Kirby disc diffusion method as described above. This experiment was replicated on three different occasions using separate batches of broth, milk and ground meat, fresh inocula and all of the antibiotic resistance profiles were rechecked (by disc diffusion) on each occasions. The average of these three

183 **Stability of transconjugants**

- 184 The stability of the *E. coli* K12 nal^R transconjugant was assessed by daily sequential
- subculture on TSA containing ampicillin (50 µg/ml) and nalidixic acid (50 µg/ml) for
- 186 14 days.
- 187

188 Molecular detection of ß-lactamase genes

189 **DNA isolation**

- 190 DNA was purified from donor, recipient and transconjugant strains using the Wizard
- 191 Genomic DNA purification kit (Promega, Madison, WI), according to the
- 192 manufacturers recommendations. In each case, the amount of recovered (template)
- 193 DNA was spectrophotometrically determined (O'Mahony et al., 2005). The integrity
- 194 of each DNA sample was assessed by conventional agarose gel [1.5%, (w/v)]
- 195 electrophoresis in 1 X tris-EDTA-acetic acid (TEA) buffer containing 0.5 μg/ ml
- 196 ethidium bromide (EtBr). DNA preparations were stored at 4°C.
- 197

198 Amplification of β-lactamase-encoding *bla*_{TEM} gene by PCR

- 199 DNA samples were examined for the presence of the bla_{TEM} encoding β -lactamase
- 200 genes, using the PCR primers and cycle conditions, previously reported by Arlet and
- 201 Philippon (1991) as shown in Table 1.
- 202

203	
204	Calculation of frequency of antibiotic resistance transfer
205	The frequency of antibiotic resistance transfer was calculated as follows;
	No. of transconjugants log_{10} cfu per ml/ g
	No. of recipient cells \log_{10} cfu per ml/g
206	
207	(McMahon et al. 2007; Ohlsen et al. 2003; Netherwood et al. 1999).
208	
209	Results
210	Ampicillin resistance transfer experiment in broth, milk and ground meat.
211	The frequencies of transfer of ampicillin resistance from the donor strain (S.
212	Typhimurium DT104) into the recipient strain (E. coli K12 nal ^R) in each of the
213	matrices (broth, milk or ground meat), at a range of incubation temperatures (4, 15,
214	25, or 37°C) and times (18 or 36 h) are presented in Table 2. When transfer was
215	found to occur under defined conditions, it was reproducible for each of three
216	independent replicate experiments. Newly acquired antibiotic resistance profiles in
217	the transconjugant strains (as detected by disc diffusion analysis), were found to be
218	consistent for each independent replicate experiment.
219	
220	At 25 and 37°C, ampicillin resistance transfer was observed in all matrices at a rate of
221	between 10^{-2} to 10^{-4} cfu/ml/g transconjugants per recipient at 37° C and 10^{-4} to 10^{-5}
222	cfu/ml/g transconjugants per recipient at 25°C (Table 2). The highest frequency of
223	transfer observed in this study was observed at 37°C, from S. Typhimurium DT104 to
224	<i>E. coli</i> K12 nal ^R (10^{-2} cfu/g ⁻¹ transconjugants per recipient) in ground meat stored for
225	36 h.

226 At 15°C, ampicillin resistance transfer was observed in ground meat, but was not

observed in milk or broth mating experiments. At 4°C, ampicillin resistance transfer
 was not observed in any the examined matrices.

229

230 Antibiotic Resistance transfer and stability of transconjugants

231 Disc diffusion analysis confimed that the transconjugant isolates of *E. coli* K12 nal^R

232 possessed (newly acquired) resistance to ampicillin. Transconjugants isolated on the

233 basis of resistance to ampicillin did not acquire any other resistance markers

234 (resistance to chloramphenicol, streptomycin, sulphonamides and tetracycline) present

- 235 in the donor strain. The *E. coli* K12 nal^R transconjugant isolates continued to express
- ampicillin resistance (as determined by continuous culture in the presence of

ampicillin and nalidixic acid) for 14 consecutive days.

238

239 Molecular detection of ß-lactamase genes.

240 PCR analysis demonstrated the presence of the β -lactamase gene *bla*_{TEM} in the donor

strain/S. Typhimurium DT104, but not in original recipient strain of *E. coli* K12 nal^R.

- 242 After mating, PCR analysis revealed the newly acquired *bla*_{TEM} gene in the *E. coli*
- 243 K12 nal^R transconjugant.
- 244

245 **Discussion**

246 This study found that ampicillin resistance could be transferred among bacterial 247 species in meat systems, at temperatures which occur within the food processing and 248 the distribution chain. The current study detected ampicillin resistance gene transfer 249 at temperatures as low as 15°C, suggesting that conditions/components of the meat 250 matrix are favourable for gene transfer at low temperatures. It is not yet clear, which 251 aspects of the meat matrix are important to facilitate gene transfer. However, ground 252 meat provides a large (non-motile) area for bacterial attachment in contrast to mating 253 experiments in liquids. The advantages of solid matrix for mating experiments have 254 been previously reported (Lagido et al. 2003; Molin and Tolker-Nielsen, 2003). Hirt 255 et al. (2002), also reported that the presence of plasma increased tetracycline 256 resistance transfer in *Enterococcus faecalis* in a rabbit endocarditis model, suggesting 257 that the composition of the meat matrix may present a favourable environment for 258 gene transfer. All of these factors may have contributed to ground meat being the 259 most suitable matrix for ampicillin resistance gene transfer in this study. 260 261 Resistance to ampicillin was found to be transferable from S. Typhimurium DT104 to *E. coli* K12 nal^R in broth, milk and ground meat, at 25 and 37°C. At these 262 temperatures, similar rates of transfer (10^{-4} to 10^{-5} cfu/ml/g transconjugants per 263 264 recipient) were observed in all three matrices after 18 h. These results suggest that at 265 non-stress (optimal 37°C and sub-optimal 25°C) temperatures, the transfer frequency 266 of the organisms studied were not significantly affected by the nature of the transfer 267 environment (broth, milk or ground meat). This is agreement with a study by 268 Cocconelli et al. (2003), who found similar frequencies of transfer during sausages and cheese fermentation $(10^{-7} \text{ to } 10^{-8} \text{ cfu/ml/g}, \text{ transconjugants per recipient})$ at 30°C, 269

again suggesting that the nature of the transfer environment may not significantly
impact on the frequency of antibiotic resistance transfer at non-stress temperatures.

Our study observed lower frequencies of ampicillin resistance transfer ($10^6 \log_{10} cfu/g$ 273 274 tranconjugants per recipient) at stressed temperatures such as 15°C in ground meat 275 and no transfer in broth or milk. Lower rates of antibiotic resistant transfer at non-276 optimal temperatures have been previously reported (McMahon et al. 2007). At 277 15°C, the nature of the transfer environment was found to influence the frequency of 278 ampicillin resistance from the donor to the recipient strains. However, while reduced 279 rates of transfer were expected, it is interesting that ampicillin resistance transfer 280 occurred at 15°C in ground meat, but not in broth or milk. Cocconcelli et al. (2003) 281 reported the transfer of antibiotic resistance by conjugation at 10°C in sausage and 282 cheese. However, unlike the current study, Cocconcelli et al. (2003) did not try to 283 transfer antibiotic resistance within a liquid system at this temperature (10° C) making 284 it difficult to compare these data. A knowledge gap exists in area of transfer of 285 antibiotic resistance in food making comparison with other studies difficult. 286 287 No ampicillin resistance transfer was found to occur in any matrices examined at 4°C. 288 This appears to be due to the overall reduction in the metabolic rates of the

289 (mesophilic) donor and recipient strains used. However, McMahon *et al.* (2007)

290 reported antibiotic resistance transfer in broth between *E. coli* at 5°C, suggesting that

the occurrence or absence of such transfer may be related to the characteristics of the

- donor and/or recipient organisms (and possible mating criteria), rather than simple
- 293 thermodynamic (Q_{10}) factors. This is underpinned by Frischer *et al* (1993) who
- reported transfer at temperatures between 4 and 33°C while working with a marine

Vibro spp., but significantly reduced rates of gene transfer at 37°C. It would therefore
be unwise to assume that effective maintenance of correct chill-chain conditions
during food production will prevent gene transfer among all bacterial species in food
and the food chain.

299

300 PCR analysis confirmed the transfer of the β -lactamase gene bla_{TEM} (conferring ampicillin resistance) from S. Typhimurium DT104 to E. coli K12 nal^R. It also 301 302 confirmed that the acquired resistance persisted in the transconjugants for some 303 considerable time. This observation significantly increases the potential importance 304 of such transfers, in terms of the general persistence and dissemination of antibiotic 305 resistance in food and food environments and in more specific terms, confirming the 306 exchange of clinically significant antibiotic resistance within the food chain. Such 307 processes mean that antibiotic resistance genes entering the human food chain may be 308 spread among other bacteria, allowing the persistence and dissemination of antibiotic 309 resistance to other more directly significant pathogens in food production and the 310 processing chain.

311

312 Examination of the wider antibiotic resistant profile of the *E. coli* K12 nal^R

313 transconjugants revealed that the recipient bacteria had acquired stable resistance to

314 ampicillin *via* (the generally plasmid mediated) *bla*_{TEM} gene. Transconjugants isolated

315 on the basis of resistance to ampicillin did not acquire any other resistant markers

316 (chloramphenicol, streptomycin, sulphonamides and tetracycline) of the donor strain,

317 suggesting no movement of the Salmonella Genomic Island 1 (SGI-1) from the donor

318 S. Typhimurium DT104 strain. Similarly a study by Guerri et al. (2004),

319 demonstrated the transfer of ampicillin resistance (only) *via* the *bla*_{TEM} gene from *S*.

320 Typhimurium DT104 (SGI-1 containing) to *E. coli* during conjugation. However,

321 Doublet *et al.* (2005) and Mulvey *et al.* (2006) report that the SGI-1 can be mobilized

322 from S. Typhimurium DT104 to non-SGI-1 containing Salmonella and E. coli via a

323 helper IncC plasmid R55, highlighting the possibility of such transfer in food.

324

325 In conclusion, this study has established that antibiotic resistance genes can be 326 transferred between bacteria in common food systems, suggesting that food matrices 327 can play a role in gene transfer, dissemination and persistence. Antibiotic resistance transfer was not observed at 4°C, suggesting that effective chill chain conditions 328 329 would reduce the rate and significance of gene transfer in refrigerated foods for the 330 bacteria examined in this study. However, gene transfer can occur at relatively low 331 temperatures i.e. 15°C in some food matrices (ground meat) and more rapidly in a 332 wider range of food matrices at/or above room temperature. The transfer of antibiotic 333 resistance among Gram-negative bacteria including commensals and clinically 334 significant pathogens is a matter of public health concern. Such transfers, the factors 335 governing their rates, stability and the linkages between virulence and antibiotic 336 resistance, deserve greater research attention in terms of reducing clinical risks and as 337 an emerging element in the wider dissemination and persistence of antibiotic resistant 338 genes in the human environment.

339

References

343	Anon. (2004) Performance standards for antimicrobial disk susceptibility tests. 6th
344	edition. Approved Standard. NCCLS document M2-A6. NCCLS: 940 West
345	Valley Road Suite 1400. Wayne, PA.
346	
347	Allen, K.J. and Poppe, C. (2002) Occurrence and characterization of resistance to
348	extended-spectrum cephalosporins mediated by β -lactamase CMY-2 in
349	Salmonella isolated from food-producing from food-producing animals in
350	Canada. Can J Vet Res 66, 137-144.
351	
352	Arlet, G. and Philippon, A. (1991) Construction by polymerase chain reaction and
353	intragenic DNA probes for three main types of transferable β -lactamases
354	(TEM. SHV, CARB). FEMS Microbiol Lett. 82, 19-26.
355	
356	Beaudin, B.A., Brosnikoff, C.A., Grimsrud, K.M., Heffner, T.M., Renniw, R.P. and
357	Talbot, J.A. (2002) Susceptibility of human isolates of Salmonella
358	Typhimurium DT 104 to antimicrobial agents used in human and veterinary
359	medicine. Diagn Microbiol Infect Dis 42, 17-20.
360	
361	Blackburn, C de W. and Davies, A.R. (1994) Development of antibiotic-resistant
362	strains for the enumeration of foodborne pathogenic bacteria in stored food.
363	Int J Food Microbiol 24, 125-136.
364	

365	Bonnet, R. (2004) Growing Group of Extended-Spectrum β -lactamases: CTX-M
366	Enzymes. Antimicrob Agents Chemother 48, 1-14.
367	
368	Chen, S., Zhao, S., White, D.G., Schroeder, C.M., Lu, R., Yang, H., McDermott, P.F.,
369	Ayers, S. and Meng, J. (2004) Characterization of Multiple-Antimicrobial-
370	Resistant Salmonella Serovars isolated from retail meats. Appl Environ
371	<i>Microbiol</i> 40 , 1-7.
372	
373	Chouchani, C., Berlemont, R., Masmoudi, A., Galleni, M., Frere, J-M, Belhadj O. and
374	Ben-Mahrez, K. (2006) A Novel Extended-Spectrum TEM-Type ß-
375	Lactamase, TEM-138, from Salmonella enterica Serovar Infantis. Antimicrob
376	Agents Chemother 50, 3183-3185.
377	
378	Cocconelli, P.S., Cattivelli, D. and Gazzola, S (2003) Gene transfer of vancomycin
379	and tetracycline resistance among Enterococcus faecalis during cheese and
380	sausage fermentation's. Int J Food Microbiol 88, 315-323.
381	
382	Doublet, B., Boyd, D., Mulvey, M.R. and Cloeckaert, A. (2005) The Salmonella
383	genomic island is an integrative mobilizable element. Mol Microbiol 55,
384	1911-1924.
385	
386	Frischer, M. E., Thurmond, J. M. and Paul, J. H. (1993) Factors affecting
387	competence in a high frequency of transformation marine vibrio. J Gen Micro
388	139 , 753-761
389	

390	Gevers, D., Huys, G. and Swings, J. (2003) In vitro conjugal transfer of tetracycline
391	resistance from <i>lactobacillus</i> isolates to other gram-positive bacteria. FEMS
392	Micro Letts 225, 125-130.
393	
394	Golding, G.R., Olson, A.B., Doublet, B., Cloeckhaert, A., Christianson, S., Graham,
395	M.R. and Mulvey, M.R. (2007) The effect of the Salmonella genomic island
396	1 on in vitro global gene expression in Salmonella enterica serovar
397	Typhimurium LT2. Microbes Infect 9, 21-27.
398	
399	Guerri, M.L., Aladuena, A., Echeita, A and Rotger, R. (2004) Detection of integrons
400	and antibiotic-resistance genes in Salmonella enterica serovar Typhimurium
401	isolates with resistance to ampicillin and variable susceptibility to amoxicillin-
402	clavulante. Int J Antimicro. Agts 24, 327-333.
403	
404	Hirt, H., Schlievert, P. M. and Dunny, G. M (2002) In vivo induction of virulence
405	and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex
406	pheromone-sensing system of pCF10. Infect Immun, 70, 716-723.
407	
408	Hummel, A., Holzapfel, W.H. and Franz, C.M.A.P. (2006) Characterisation and
409	transfer of antibiotic resistance genes from enterococci isolated from food.
410	Syst Appl Microbiol 19, 1-7.
411	
412	Kharazmi, M., Hammes, W.P. and Hertel, C. (2002) Construction of a Marker
413	Rescue System in Bacillus subtilis for Detection of Horizontal Gene Transfer
414	in Food. Syst Appl Micro 25, 471-477.

415	
416	Lagido, C. Wilson, I. J., Glover, L. A. and Prosser, J. I. (2003) A model for bacterial
417	conjugal gene transfer on solid surfaces. FEMS Micro Ecol 44, 67-78.
418	
419	Larson, L.L. and Ramphal, R. (2002) Extended-Spectrum β -lactamases. Semin
420	Respir Infect 17, 189-194.
421	
422	Mc Mahon, A., Blair, I.S., Moore, J.E. and McDowell, D.A. (2007) The rate of
423	horizontal transmission of ABR plasmids is increased in food preservation-
424	stressed bacteria. Submitted to Journal of Applied Microbiology.
425	
426	Molin, S. and Tolker-Nielsen, T. (2003) Gene transfer occurs with enhanced
427	efficiency in biofilms and induces enhanced stabilisation of the biofilm
428	structure. Curr Opin Biotech 14, 255-261
429	
430	Mulvey, M.R., Boyd, D.A., Olson, A.B., Doublet, B. and Cloeckaert, A. (2006) The
431	genetics of Salmonella genomic island 1. Microbes Infect 8 1915-1922.
432	
433	Netherwood, T., Bowden, R., Harrison, P., O'Donnell, A.G., Parker, D.S. and Gilbert,
434	H.J. (1999) Gene Transfer in the Gastrointestinal Tract. Appl Environ
435	<i>Micro</i> 65 , 5139-5141.
436	
437	Ohlsen, K., Ternes, T., Werner, G., Wallner, U., Loffler, D., Ziebuhr, W., Witte, W.
438	and Hacker, J. (2003) Impact of antibiotics on conjugational resistance gene

439	transfer in Staphylococcus aureus in sewage. Environ Microbiol, 5,
440	711-716.
441	
442	O'Mahony, R., Saugy, M., Leonard, N., Drudy, D., Bradshaw, B., Egan, J., Whyte, P.,
443	O'Mahony, M., Wall, P. and Fanning, S. (2005) Antimicrobial resistance in
444	isolates of Salmonella spp. from pigs and the characterisation of a S. Infantis
445	gene cassette. Foodborne Pathog Dis, 2, 274-278.
446	
447	Pourshaban, M., Ferrini, A.M., Mannoni, V., Oliva, B. and Aureli, P. (2002)
448	Transferable tetracycline resistance in Listeria monocytogenes from food in
449	Italy. J Med Micro 51, 564-566.
450	
451	Randall, L.P., Cooles, S. W., Osborn, M. K., Piddock, L. J. V. and Woodward, M. J.
452	(2004). Antibiotic resistance genes, integrons and multiple antibiotic
453	resistance in thirty-five serotypes of Salmonella enterica isolated from humans
454	and animals in the UK. J Antimicrob Chemother 53, 208-216.
455	
456	Tzouvelekis, L.S., Lukova, V., Tassios, P.T., Fluit, A.C., Jones, R.N. and Legakis,
457	N.J. (2003) Resistance to β -lactams among blood isolates of <i>Salmonella</i> spp.
458	in European hospitals: results from the SENTRY Antimicrobial Surveillance
459	Program 1997-1998. Clin Microbiol Infect 9, 149-152.
460	
461	Walsh, D., Sheridan, J.J., Duffy, G., Blair, I.S., McDowell D.A. and Harrington, D.
462	(2001) Thermal resistance of wild-type and antibiotic resistance Listeria
463	monocytogenes in meat and potato substrates. J Appl Microbiol 90, 555-560.

465	Wang, H.H., Manuzon, M., Lehman, M., Wan, K., Luo, H., Wittum, T.E., Yousef, A.
466	and Bakaletz, L.O. (2006) Food commensal microbes as a potentially
467	important avenue in transmitting antibiotic resistance genes. FEMS Microbial
468	<i>Lett</i> 254 , 226-231.
469	
470	Wilcks, A., Andersen, S.R. and Licht, T.R. (2005) Characterization of transferable
471	tetracycline resistance genes in Enterococcus faecalis isolated from raw food.
472	FEMS Micro Lett 243, 15-19.
473	

Gene	Denaturation	Annealing	Extensions	No. of Cycles		Primers
bla_{TEM}	94°C-2 min	54°C-1 min	72°C-30 sec	30	Fwd	5`-TTG GGT GCA CGA GTG GGT TA-3`
					Rev	5`-TAA TTG TTG CCG GGA AGC TA-3`

<u>Table 1</u> Thermocycler amplification conditions for the β-lactamase gene: *bla*_{TEM} (Arlet and Philippon, 1991)

<u>Table 2</u> Frequency of transfer from S. Typhimurium DT104 to E. coli K12 nal^R in broth (log₁₀ cfu/ml), milk (log₁₀ cfu/ml) for 18 h, and ground meat (log₁₀ cfu/g) for 18 and 36 h.

	Trans	Trans/Recpt		Trans	Trans/Recpt	
Broth (18 h)		Meat (18 h)				
4°C	0.00	0.00	4°C	0.00	0.00	
15 °C	0.00	0.00	15 °C	$0.22 \ge 10^{0}$	2.0 x 10 ⁻⁶	
25 °C	4.13×10^{0}	2.9 x 10 ⁻⁴	25 °C	1.93×10^{0}	4.7 x 10 ⁻⁵	
37 °C	4.45×10^{0}	5.8 x 10 ⁻⁴	37 °C	3.49×10^{0}	4.7×10^{-4}	
Milk (18 h)			Meat (36	h)		
4°C	0.00	0.00	4°C	0.00	0.00	
15 °C	0.00	0.00	15 °C	$0.52 \ge 10^{\circ}$	8.1 x 10 ⁻⁶	
25 °C	3.17×10^{0}	2.6 x 10 ⁻⁴	25 °C	3.08×10^{0}	5.8 x 10 ⁻⁴	
37 °C	4.07×10^{0}	2.6 x 10 ⁻⁴	37 °C	4.23×10^{0}	3.3×10^{-2}	

*Trans: Transconjugants, Trans/Recpt: Transconjugants per recipient cells