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Horseradish and Soybean Peroxidases: Comparable Tools for Alternative 1 

Niches? 2 

 3 

Barry J. Ryan, Neil Carolan and Ciarán Ó'Fágáin*. 4 

School of Biotechnology and National Centre for Sensors Research, Dublin City 5 

University, Dublin 9, Ireland. 6 
 7 
 8 

Horseradish and soybean peroxidases (HRP and SBP, respectively) are useful 9 

biotechnological tools. HRP is often termed the classical plant heme peroxidase, and 10 

although it has been studied for decades our understanding has deepened since its 11 

cloning and subsequent expression, which has enabled numerous mutational and 12 

protein engineering studies. SBP, however, has been neglected until recently; despite 13 

offering a real alternative to HRP that actually outperforms it in terms of stability. 14 

SBP is now used in numerous biotechnological applications, including biosensors. 15 

Review of both is timely. This article summarises and discusses the main insights into 16 

the structure and mechanism of HRP, with special emphasis on HRP mutagenesis, and 17 

outlines its use in a variety of applications. It also reviews current knowledge and 18 

applications to date of SBP, particularly biosensors. The final paragraphs speculate on 19 

the future of plant heme-based peroxidases, with probable trends outlined and 20 

explored. 21 

 22 
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Abbreviations: 32 
ABTS, 2,2’-Azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid); Co(bpy), Tris-2,2’-dipyridylocbalt(III) perchlorate trihydrate; 33 
CV, Cyclic voltammogram. DAB, 3,3’-diaminobenzidine tetrahydrochloride. DMPC, Dimyristoylphosphatidylcholine 34 
epoxidised olefins. DTT, dithiothreitol; ELISA, Enzyme-Linked Immunosorbent Assay. GOx, Glucose oxidase; GP, Graphite 35 
Powder; H2O2, Hydrogen peroxide; HQ, hydroquinone; IPTG, iso-propyl-β-thiogalactoside; MET, mediated electron transfer; 36 
mm, millimetre. PEGDGE, Poly(ethylene glycol) (400) diglycidylether. PelB, pectate lyase B fragment. PDB, Protein Data 37 
Bank; POs-EA, Os(bpy)2Cl+/2+ poly(4-vinylpyridine) quaternerised with 2-bromoethylamine. Pt, Platinum. PVA, Polyvinyl 38 
alcohol. PVP, Polyvinyl pyridine. PVP-Osn+, polyvinyl pyridine-osmium complex. POCT, point-of-care testing; Px, peroxidase. 39 
Pxox, oxidised peroxidase. rHRP, recombinant HRP; TTCA, poly-5,2':5',2"-terthiophene-3'-carboxylic acid. 40 
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Introduction. 41 

Peroxidase enzymes span the bioscience and biotechnology spectra, ranging from 42 

bioremediation [1] and biocatalysis [2] through diagnostics [3] and biosensors [4] to 43 

recombinant protein expression [5], transgenics [6], bioinformatics [7], protein 44 

engineering [8] and even to therapeutics [9]. This article contrasts two key heme-45 

containing plant peroxidases, horseradish (HRP) and soybean (SBP), with special 46 

emphasis on mutagenesis studies and biosensor applications. HRP is a ‘traditional’ 47 

enzyme, whereas SBP emerged in the 1990s. A comparison of these key 48 

biotechnological tools is timely. 49 

 50 

Brief biochemistry of horseradish and soybean peroxidase: 51 

All heme peroxidases (E.C. 1.11.1.7) have a ferriprotoporphyrin IX prosthetic group 52 

located at the active site [10]. Both HRP and SBP are classified as Class III Classical 53 

Secretory plant peroxidases [7 & 11] and as such share common features (Table 1). 54 

Their catalytic mechanism involves a two-electron oxidation of the heme moiety to an 55 

intermediate known as Compound I. Successive one-electron reductions return the 56 

enzyme to its resting state via a second intermediate, Compound II [6].  57 

Determining the in vivo function of peroxidases is complex owing to the numbers of 58 

isoenzymes in[E1] the family [12]. Interestingly, despite the several in vitro uses of 59 

HRP, its actual in vivo role has never been elucidated. Several suggestions have been 60 

proposed based on the known roles of other plant peroxidases. Peroxidases are usually 61 

found in the cell wall, vacuoles, transport organelles and the rough endoplasmic 62 

reticulum, and have noted roles in lignification, wound healing and auxin catabolism 63 

[4]. SBP has been isolated from that plant’s seed coat and its presence prevents 64 

premature germination[E2] [13]. Plant peroxidases can use lignin and other plant 65 

compounds as reducing substrates. Indeed, SBP has been noted to polymerise 66 

coniferyl alcohol, indicating that it can efficiently catalyse reactions involving lignin 67 

precursors [14]. Therefore, it is possible that peroxidases are involved in the 68 

lignification or suberisation processes of plants [15].  69 
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Recombinant Peroxidase Expression. 70 

Recombinant hemoprotein expression has been plagued by inclusion body formation, 71 

most notably in recombinant HRP expression. Several general methods have been 72 

suggested to reduce the formation of inclusion bodies, including reducing cultivation 73 

temperature and altering inducer composition and concentration [16]. Other, more 74 

peroxidase-specific, methodologies have been cited, including use of specific E. coli 75 

strains [17], inclusion of chaperones [18] and use of leader sequences [19]. Another 76 

major obstacle in the recombinant expression of hemoproteins is the limited 77 

availabilty of heme and iron within a bacterial cell. Bacterial cells each contain 105 to 78 

106 iron ions, which are essential for many metabolic pathways [20]. Culture 79 

supplementation with the heme precursor δ-aminolevulinic acid has been suggested 80 

[21]; but Goodwin and co-workers have recently developed an elegant co-expression 81 

system incorporating a membrane heme receptor, allowing the use of exogenous heme 82 

as an iron source [22]. Jung and co-workers [5] noted an increased ratio of holoprotein 83 

to apoprotein with less-intense induction conditions, suggesting that slow recombinant 84 

hemoprotein production appears to allow easier incorporation of the available heme 85 

into the apoprotein [5]. Developments in HRP expression in both prokaryotic and 86 

eukaryotic systems are outlined in the supplementary online material. 87 

 88 

HRP: Cloning and Expression. 89 

The gene coding for the HRP protein was first synthesised by Smith and co-workers 90 

[23] based on the protein sequence published by Welinder [24]. This 940 basepairs 91 

synthetic gene was designed using commonly used codons in E. coli to minimise 92 

protein truncation owing to codon bias [25]. Recombinant HRP was over-expressed 93 

by induction but this led to the formation of misfolded apoprotein and the requirement 94 

to disrupt these aggregates, refold the protein correctly and add the heme centre. 95 

Disruption involved addition of EDTA to chelate ions, lysozyme and DNAse to 96 

reduce viscosity of the bacterial cell lysate, urea to solubilise the protein, and 97 

dithiothreitol (DTT) to break disulphide bonds. Refolding required slow exchange of 98 

disrupting reagents with folding facilitators such as calcium (for structural integrity), 99 

oxidized glutathione (to reform disulphide bridges) and hemin (to provide the 100 

prosthetic heme group) [23]. 101 

 102 
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SBP: Cloning and Expression. 103 

The gene encoding SBP was first derived from a soybean plant cDNA library 104 

screened with a peroxidase-specific probe [26]. The open reading frame for the SBP 105 

protein was cloned into the pET-34b (+) expression vector; however, induction of 106 

rSBP led to inclusion body formation and E. coli cell death. Active SBP was achieved 107 

by a refolding strategy similar to that of HRP. Unlike rHRP refolding, however, 108 

inclusion of oxidised glutathione in the refolding medium decreased active SBP 109 

recovery, possibly due to the formation of mispaired disulphides [26]. Henriksen and 110 

co-workers [15] also developed a recombinant SBP for crystallisation studies based 111 

on previous cDNA work, in which they successfully refolded SBP from inclusion 112 

bodies using a cocktail that included both oxidized and reduced glutathione [27]. 113 

There have been several other recent examples of recombinantly expressed plant 114 

peroxidases including Hushpulian and co-workers’ [28] work on tobacco anionic 115 

peroxidase.116 
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Mutagenesis of HRP. 117 

Mutagenic studies on HRP began following successful cloning of a synthetic HRP 118 

gene [23]. Before the elucidation of the crystal structure [29], most mutations focused 119 

on ascertaining the key residues in the active site. Before 1997, researchers based their 120 

assumptions on crystal structures of closely related peroxidases, such as cytochrome c 121 

peroxidase, which suggested positions 38 through 42 as key catalytic residues. 122 

Mutations of Arg 38, Phe 41 and His 42 led to dramatic decreases in peroxidase 123 

catalytic activity. However, some Phe 41 mutants revealed an augmented thioether 124 

sulfoxidation activity owing to increased access channel area [30].  125 

Asn 70 was also noted as an important residue in HRP catalysis: although it lies some 126 

distance from the heme iron atom, it is hydrogen-bonded to the side chain of the distal 127 

His 42. [31] Mutations in this region showed a decrease in HRP activity and a re-128 

orientation of active site residues. Mutation of Phe 221 altered the heme iron of the 129 

resting enzyme to a quantum mixed-spin state [32]. Substitutions of Trp 117 revealed 130 

this residue’s role in protein folding and electron transfer [33]. Mutations within the 131 

active site entrance revealed the key role of Phe 142 in binding aromatic molecules 132 

[34], whilst mutations within the proximal region (the area below the heme plane) 133 

disclosed the parts played by Phe 179 in aromatic molecule binding [35] and by His 134 

170 in heme group anchorage [36]. Table 2 lists the various site directed HRP 135 

mutants. Recent examples of site directed mutants of HRP have been fewer [37], but 136 

Colas and de Montellano [38] identified the key role of carboxylate side chain amino 137 

acids in HRP protein-heme interactions. 138 

To date, there have been few reports of HRP random mutagenesis. Arnold and co-139 

workers directionally evolved HRP with the aim of increasing activity and stability. 140 

Development of a stabilised recombinant HRP is of great importance to increase and 141 

consolidate the range of peroxidase applications. Three rounds of random mutagenesis 142 

improved expression in yeast, yielding a nine-position HRP mutant displaying an 85-143 

fold increase in activity over the parental molecule. One round of random mutagenesis 144 

was also carried out to improve stability, resulting in three mutants more stable than 145 

the parent in relation to temperature and H2O2 tolerance (supplementary online 146 

material) [8, 19, 39, & 40]. Recent publications suggest that targeted, “semi-rational”, 147 

evolution of enzymes might yield superior mutants in less time [41 and references 148 

within]. Mendive and co-workers developed a rapid screening methodology for 149 
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random mutants displaying increased peroxidase activity, using DAB as substrate. 150 

Whereas Arnold and co-workers expressed HRP in E. coli, S. cerevisiae. and P. 151 

pastoris, Mendive and co-workers utilised a baculovirus expression system [42].  152 

No mutagenesis studies on recombinant SBP have been reported to date, and the 153 

authors believe that this requires urgent attention. For example, mutagenesis could 154 

reveal which residues in SBP endow it with its enhanced stability vis a vis HRP [15]. 155 

Also, similar to HRP, SBP could be subjected to focussed directed evolution to 156 

increase the number of substrates accepted. 157 

 158 

HRP in Biosensors 159 

One of the most common uses of HRP is in biosensors. A biosensor is “an analytical 160 

device that brings together an immobilised biological sensing material [often HRP] 161 

and a transducer to produce an electronic signal that is proportional to the 162 

concentration of the target chemical substance” [43]. Although reports of SBP-based 163 

biosensors are emerging, HRP biosensor research dominates and has continued to 164 

develop through many forms, from the traditional voltammetric- and amperometric-165 

based methods of detection, to nano-sized devices. Real time quantification of 166 

hydrogen peroxide continues to be one of the main reasons for sensor development 167 

[44], although other diverse applications include the detection of glucose [45], ethanol 168 

[46] and tumour markers in vivo [47]. Enzyme-based biosensors require rapid and 169 

uniform transfer of electrons generated at the enzyme active site to the transducer. 170 

The distance between the active site and the transducer can hinder electron transfer; 171 

often, posttranslational modifications such as glycosylation increase this distance. 172 

Recombinant HRP, devoid of glycans, offers a shorter path for electron transfer and 173 

numerous reports of rHRP-based sensors have appeared [48 and references 174 

within].While a detailed review of HRP-based sensors is beyond the scope of this 175 

article, we outline some of the emerging trends in HRP-based biosensor development. 176 

Biosensors, including immunosensnors [49] and electrosensors [50], incorporating 177 

organic solvents have developed as an expanding area of peroxidase research, 178 

primarily due to insolubility of many analytes in aqueous solutions. Recently, Konash 179 

and Magner [51] developed a HRP-immobilised, mediated H2O2 sensor, which 180 

demonstrated good catalytic activity in 2-butanone and ethyl acetate. Organic solvent 181 

compatible bi-enzyme peroxidase sensors have also been cited in the literature [52]. 182 
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Size reduction remains a pivotal area in sensor research. The use of nanoparticles 183 

offers increased surface area for enzyme immobilisation, whilst simultaneously 184 

reducing apparatus size [53]. Currently, HRP-based nano-sensors are at the forefront 185 

of biosensor research [54 and Table 3]. 186 

 187 

SBP in biosensors. 188 

Although HRP is the classical heme peroxidase, there is increasing interest in SBP. 189 

SBP has advantages over HRP in terms of catalytic activity and stability [55]; these 190 

can be exploited in biosensors. Also, unlike HRP, SBP is active in the pH range 2-6, 191 

offering a greater range of potential biosensing applications [56]. The first SBP 192 

biosensor was reported in 1995 by Vreeke and co-workers [57] as a thermostable 193 

wired enzyme electrode using an osmium-based mediator, which aids electron transfer 194 

from the active site to the electrode, modified by an epoxide. Kenausis and co-195 

workers [58] also used a poly(4-vinylpyridine) polymer, complexing the pyridine 196 

nitrogens to the osmium-based mediator, quaternised with 2-bromoethylamine. Until 197 

the use of SBP by Heller and Vreeke [59], no peroxidase-based sensors could be used 198 

at 37°C for an extended period (~100 hours). Monitoring of glucose “in vivo” for 199 

diabetes mellitus, and of lactate for confirmation of hypoxia and ischemia, are vital in 200 

patient management; use of thermostable SBP immobilised into a mediator enables 201 

this [59]. 202 

The typical electrochemical reactions of a H2O2 sensing, peroxidase based, osmium-203 

mediated electrode system are outlined in Box 1 [60]. In addition to conveying 204 

electrons, generated at the active site, to the electrode surface, the pyridin-N-ethylene 205 

groups of the osmium-containing mediator also increase the hydration and provide 206 

primary amines for cross-linking [58].  207 

Table 3 summarizes reports to date of SBP-based biosensors, most of which use a 208 

mediator. H2O2 can be electrochemically detected by its electrooxidation on a Pt (or 209 

other inert Pt group metal) electrode [59]. Utilisation of an enzyme/mediator system 210 

produces a multi-step mediated electron-transfer (MET) process, in which each step 211 

transports the electron a small distance [61]. However, use of a mediator with a redox 212 

enzyme can create its own problems: the mediator-enzyme film can, depending upon 213 

its thickness, obstruct substrate diffusion [62]. Chemical modification of redox 214 

enzymes with an electron relay moiety can increase multi-step MET by decreasing the 215 
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electron transfer distance. This leads to improved electrical communication between 216 

the enzyme’s redox centre and its external environment [61].  217 

 218 

Peroxidase based Micro- and Nano-Systems 219 

An emerging field in peroxidase research is the use of micro- and nano- sized 220 

structures in diagnostic and biosensing fields. Enzyme microreactors, for example, 221 

permit chemical and biochemical reactions to be carried out on a microscale. HRP has 222 

previously been used as a model microreactor system to monitor HRP catalytic 223 

activity and as a diagnostic tool; however, the development of this field will be 224 

determined by the ability to immobilise peroxidases onto suitable support structures 225 

[63]. Miniaturisation of enzymatic processes is also evident in the diagnostics sector, 226 

in “Lab on a Chip” and “Point of Care Testing”(POCT) research. The classical 227 

application of HRP in POCT is ClinistixTM; however, recently Cho and co-workers 228 

[64] have applied HRP to a portable sequential cross flow immunoanalytical device. 229 

Cross flow imumunoassays are capable of introducing the antigen-antibody complex 230 

to the flow cell whilst sequentially extracting the catalytic signal, thus simplifying the 231 

complex traditional ELISA procedure. This device demonstrates many advantages 232 

over ELISA-based analytical methodologies including a rapid, sensitive and 233 

inexpensive in-situ diagnosis for the presence of Hepatitis B surface antigen in a 234 

sample. Miniaturisation of peroxidase-based devices also features in other research 235 

fields, including the use of micro-crystals for oxidoreductase-based catalysis in 236 

organic solvent [65], nano-immobilisation techniques for peroxidase based 237 

wastewater treatment [66], and a more widespread use of nano-structures for 238 

peroxidase based sensors [67 & 68]. Recently Yan and co-workers [69] described a 239 

microcantilever based biosensor, modified with HRP, for H2O2 detection. In this 240 

system the enzyme-functionalised microcantilievers deflected irreversibly in response 241 

to H2O2 concentrations in the nanomolar range. The deflection was caused by 242 

conformational change within the HRP molecule as it underwent oxidation by the 243 

H2O2; the irreversibility was due to the absence of a second, reducing substrate 244 

required for reversion of HRP to the resting state. This technique may also provide a 245 

sensitive tool for investigating protein structural change. HRP has also been utilised as 246 

the functional component of self-assembled three-dimensional (3-D) nano-structures. 247 

Rauf and co-workers [70] utilised self-assembly layer-by-layer technology to 248 
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construct controlled 3-D catalytically active nano-structures. This method of 249 

peroxidase immobilisation allows for increased catalytic activity per unit area, and 250 

will aid in the miniaturisation of biosensors, biochips and immobilised biocatalysts. 251 

With increasing sophistication of support structures on the micro- and nano-scale, 252 

miniaturisation of peroxidase-based devices will continue to develop in the future, 253 

particularly in the fields of POCT and biosensing. 254 

 255 

Peroxidase based Biocatalysis. 256 

A major shortcoming of all heme-dependent peroxidases is their low operational 257 

stability, owing to oxidative degeneration of the heme group [71]. Operational 258 

stability of SBP can be increased by generating H2O2 in situ from glucose and O2. 259 

When co-immobilized with glucose oxidase in a polyurethane foam, SBP could act as 260 

a peroxygenase to convert thioanisole to its sulphoxide (i.e. by inserting an oxygen 261 

atom). Here, SBP uses the H2O2 generated in situ by glucose oxidase; it formed no 262 

sulphoxide with free, exogenous H2O2 [71]. Such an arrangement avoids excessive 263 

initial H2O2 concentrations and, hence, formation of compound III (a reversible dead-264 

end complex formed from compound II in the presence of an excess H2O2, which 265 

slowly reverts to native enzyme; [10]) and/or irreversibly inhibited SBP. HRP has 266 

been subjected to intense experimentation, including a large body of work focussing 267 

on site directed mutants (see above and Table 2). Now that the key catalytic residues 268 

are known, researchers have begun to use site directed mutagenesis to alter the 269 

function of the HRP molecule [48], e.g. by construction of an improved luminol 270 

binding site [72]. Directed evolution stabilised HRP against thermal denaturation [39] 271 

and has endowed it with increased H2O2 tolerance and increased catalytic activity 272 

[40]. Further targeted directed evolution, focussing on the substrate access channel 273 

and binding pocket, could allow HRP to accept an increased variety of substrates [73], 274 

and promote further diversification of HRP applications in organic synthesis [41]. 275 

Peroxidase catalysis in organic solvents, both aqueous and anhydrous, offers a huge 276 

advantage to organic chemists, as difficult asymmetric oxidation and reduction 277 

reactions can take place rapidly and with high specificity [74]. The major problems of 278 

substrate solubility and unwanted side reactions promoted by water are also overcome 279 

during organic solvent based synthesis. Additionally, in some anhydrous solvents 280 

peroxidase (HRP and SBP) activity was actually increased [75], with additional 281 
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methods, such as salt activation [76] and excipient aided lyophilisation [77] also 282 

resulting in increased peroxidase activity. However, in some low water solvents, 283 

peroxidases can lose their confirmational structure [78]; although recent advances in 284 

peroxidase encapsulation in amphiphilic matrices [79], the use of reverse micelles 285 

[80] and oil emulsions [81] allow for peroxidase activity in an extended range of 286 

anhydrous solvents. Reactions carried out in these solvents include hydroxylations, N-287 

demethylations and sulphoxidations [2]. An interesting recent environmental 288 

application of SBP polymerisation in organic solvents is the production of 289 

polycardanol in as a potential anti-biofouling agent [82], whilst recently it has been 290 

noted that HRP requires a mediator to catalyse the same substrate [83]. The interested 291 

reader is directed to a recent review of this area [74].  292 

 293 

Peroxidase based Bioremediation. 294 

Highly expressed, stabilized, recombinant HRP [39, 40] could be very useful for 295 

wastewater cleanup, provided the recombinant enzyme can be produced cost 296 

effectively and in sufficient quantities. Phenol cleanup by HRP has been widely 297 

reviewed [1] but several drawbacks limit its widespread application, including 298 

intolerance of high concentrations of the primary substrate H2O2 [84], low enzymatic 299 

reusability, and financial costs. Plant heme peroxidase expression in E.coli can be 300 

frustrating, but advances in peroxidase expression, without formation of inclusion 301 

bodies, may pave the way for increased production of recombinant peroxidases (See 302 

supplementary online material). SBP has proven itself a worthy alternative 303 

peroxidase: it displays superior stability and activity characteristics to the classical 304 

HRP. However, research into this enzyme lags far behind HRP. SBP can effectively 305 

cleanup phenolic wastewater, yet recent publications cite HRP as being a superior, 306 

albeit less stable, catalyst than SBP for phenol cleanup [85]. Development of an 307 

enhanced catalytic SBP mutant would provide a powerful tool for wastewater 308 

treatment. Bódalo and co-workers [85] noted that the choice of peroxidase for 309 

wastewater treatment also depends on effluent characteristics, operational 310 

requirements and costs. SBP has been shown to outperform HRP in oxidative dye 311 

removal [86]. SBP, possibly owing to its larger substrate access channel, and, hence, 312 

greater exposure of the catalytically important delta heme edge, can accept more 313 

substrates than HRP [87].  314 
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 315 

HRP: an Unlikely Therapeutic 316 

An exciting application of HRP is as a novel cancer treatment via gene-directed 317 

enzyme/prodrug therapy. It has been noted that the non-toxic HRP substrate, indole-3-318 

acetic acid (IAA), forms a radical that is toxic to cancer cells upon HRP catalysis. The 319 

exact mechanism of toxicity remains unclear: it is believed to involve lipid 320 

peroxidation induced by the free radical formation [88]; however, in human 321 

melanoma cells, death receptor-mediated and mitochondrial apoptotic pathways are 322 

known to be involved also [89]. Leaving aside the actual reason(s) for toxicity, 323 

inactive IAA can be introduced to the body; and then becomes activated by HRP at 324 

the region of interest. Localisation of the HRP molecule is achieved via its 325 

conjugation to an antibody specific to an extracellular tumour antigen. This approach 326 

has become the focus of much research and numerous clinical trials, due to several 327 

attractive features: these include the robust nature of the activating enzyme and the 328 

low toxicity of the prodrug [90]. HRP has been shown to activate other pro-drugs 329 

including ellipticine [91] and halogenated IAA derivates [92]. The interested reader is 330 

directed to the excellent recent review of Dachs et al. [93]. 331 
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Conclusion and Future Directions: 332 

As outlined, peroxidases are widely studied and very important enzymes, with many 333 

applications in the life sciences and beyond. They remain pivotal to advancing 334 

biotechnology, and as such, we present two clearly distinct, yet similar members of 335 

this classical family. Continued research into the “traditional” HRP, has been 336 

accompanied by the slow, but steady progression of SBP. Crude SBP, isolated from 337 

waste soybean hulls, offers a cheap bulk peroxidase catalyst for applications such as 338 

wastewater treatment and organic synthesis, whilst the more costly peroxidase 339 

alternatives (plant HRP and recombinant HRP and SBP) will prove themselves in 340 

higher value niches, such as diagnostics and therapeutics. With improved 341 

understanding of the catalytic and stability characteristics, the detection of new 342 

substrates and the increasing use of implantable devices in the medical field, SBP will 343 

rapidly develop its own high value market niche. As noted for HRP, use of 344 

recombinant SBP would also benefit the biosensor field by permitting more rapid 345 

electron transfer, due to the lack of protein glycosylation. Improvement of these two 346 

peroxidases, by rational mutation and “focussed” directed evolution, will widen their 347 

applications and expand their roles as key biotechnological tools in the future. 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 
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H2O2 + 2H+ + Px      Pxox +2H2O  equation 1 

Pxox + 2PVP-Os2+      Px    + 2PVP-Os3+ equation 2 

2PVP-Os3+ +2e-      2PVP-Os2+  equation 3 

                  H2O2 + 2e-  + 2H+                  2H2O 

 
 
 
Box[E4] 1: Typical biosensor based on a mediated peroxidase (Px) reaction scheme. Upon the addition 
of H2O2, Px catalyses the reaction forming water; in the process, Px goes through its catalytic cycle. 
This causes the mediator to go from its resting state of Os2+ to Os3+. The osmium species is seen as a 
one-electron donor, used as the mediator to assist in electron transfer from the active site of Px to the 
electrode surface. Pxox corresponds to the catalytic intermediate Compound I, formed by a two-electron 
oxidation. The individual one-electron reduction steps that take place on the enzyme itself (formation 
of catalytic intermediate Compound II and reversion to resting enzyme, Px) have been omitted from 
equation 2 for the sake of clarity. Adapted from Analytica Chimica Acta. 418, Li W. et al. (2000). 
Fabrication of multilayer films containing horseradish peroxidase and polycation-bearing Os complex 
by means of electrostatic layer-by-layer adsorption and its applications as a hydrogen peroxide sensor. 
225-232. [60] Copyright 2000, with permission from Elsevier. 
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Table 1: Comparison of the biochemical and structural properties of HRP and SBP. Key references are noted.  
 
 Horseradish Peroxidase Soybean Peroxidase 

Species Name Armoracia rusticana [23] Glycine max[14] 
Number of Amino Acids 306 [23] 306 [94] 
Enzyme Classification 1.11.1.7 [29] 1.11.1.7 [15] 
PDB Accession Number 1ATJ 1FHF 
Molecular Weight 44,100 Da [6] 40,660 Da [15] 

Carbohydrate 7,580 Da [6] 7,400 Da [15] 
Heme Group 550 Da [6] 550 Da [15] 
Calcium Ions 80 Da [6] 80 Da [15] 

Glycosylation Sites Asn: 13, 57, 158, 186, 198, 
214, 255, 268, 316 [95] 

Asn: 185, 197, 211, 216 [96] 

pI 9.0 [24] 4.1 [14] 
pH Activity Range 4-8 [97] 2-10 [15] 
Secondary Structure 13 α-helices 

3 β-sheets [29] 
13 α-helices 

2 β-sheets [15] 
Disulphide Bridges 11-91, 44-49, 97-301, 177-209 

[29] 
11-91, 44-49, 97-299, 176-208 

[15] 
In vivo localisation Roots, cell wall, vacuoles [6] Hourglass cells, seed coat [14] 
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Table 2: Summary of HRP site directed mutants[E5] 
Mutations Conclusions 
Active Site. [98, 99, & 100] 
R38A F41T Arg38 and His42 are key residues in enzyme catalysis. 
R38E F41V Arg38 and His42mutations decrease Compound I formation. 
R38G F41W Mutants affect reactivity towards reducing substrates. NB- Morimoto ref. 
R38H H42A Arg 38 and His42 are acid base partners. Arg 38 stabilises His 42. 
R38K H42E Arg38 and His42 operate in concert to distally bind BHA. 
R38L H42L Arg38 and His42 are dioxygen-heterolytic cleavers 
R38S H42Q Arg38 plays a role in H2O2 binding and cleavage. 
F41A H42R Hydrophobicity of active site region is critical in enzymatic catalysis. 
F41H H42V Space creating active site mutants alter substrate specificity. 
F41L  Phe41 acts as hydrophobic barrier between Arg38 and His42. 
   
Active Site Entrance. [101] 
S35K F143E Phe 142 plays a critical role in aromatic substrate binding. 
F142A F176E Charged residues are important at the active site entrance. 
F143A  Luminol binds to active site via electrostatic interactions in binding area. 
   
Proximal Region. [102 & 36] 
F179A H170A Phe 179 is crucial for aromatic substrate binding. 
F179H F172T His 170 tethers heme moiety in position. Prevents distal His coordination. 
F179S  His 170 maintains heme moiety in penta-coordinated state. 
   
Asparagine 70. [103] 
N70V N70D Asn70 hydrogen bonds to His42, mutations alter distal heme orientation. 
  Mutant protein displays increased redox potential. 
   
Tryptophan 117. [33 & 104] 
W117F  Mutants displayed increased acid stability.  
  Trp 117 is important in internal electron transfer and protein unfolding. 
   
Threonine 171. [37] 
T171S  Proximal structural alteration, affects proximal pocket hydrogen bonding. 
   
Phenylalanine 221. [105 & 32] 
F221M F221W Mutants display decreased stability in alkaline conditions. 
  Trp introduction destabilises protein, due to unfavourable surroundings. 
 
Footnote: 
Mutants are grouped into active site, active site entrance, proximal heme region, aspargine 70, 
tryptophan 117 and Phe 221 mutations. Mutants were expressed in a variety of hosts including E.coli, 
Trichoplusia ni, and Spodoptera fruigiperda cell lines. Key references only are noted for each 
collection of mutants; further references may be found within these. 
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Table 3: Some SBP, HRP and rHRP biosensors, and their properties, from the literature. 

Electrode type 
Size of 

Electrode 
Enzyme 

Method of 

immobilisation 
Mediator 

Analyte 

measured 

Method of 

measurement 
Reference 

Soybean Peroxidase 

Glassy carbon 4mm SBP Adsorption PVA/PVP H2O2 Amperometry  [106] 
        

Glassy carbon 4mm SBP Entrapment Sol-gel  H2O2 Amperometry [56] 
        

Glassy carbon 3mm SBP  Entrapment Pos-EA, 
PEGDGE 

H2O2 Amperometry [59] 

        
Pyrolitic 
graphite  

(Rotating disk) 

0.2mm SBP Entrapment DMPC H2O2 Amperometry
/CV 

[107] 

        
Glassy carbon 3mm GOx/SBP Entrapment Pos-EA Glucose  Amperometry [58]  

        
        

Horseradish Peroxidase 

Gold - HRP Adsorption DNA H2O2 Amperometry [108] 
        

Glassy Carbon 3mm HRP Adsorption HQ H2O2 Amperometry [53] 
        

Carbon 
Ceramic 

6mm HRP Covalent Nano Au H2O2 Amperometry [109] 

        
Carbon Paste 7mm HRP Entrapment GP Biogenic 

Amine 
Amperometry [110] 

        
Titanium 0.8mm HRP Adsorption Thionine H2O2 Amperometry [111] 

        
Platinum 1mm HRP Entrapment Co(bpy) H2O2 Amperometry [112] 

        
        

Carbon Fibre 3mm Cho/HRP Adsorption Os- PVP Choline Amperometry [113] 
        

Platinum 7mm Cho/HRP Adsorption TTCA Choline Amperometry 114 
        
        

Recombinant HRP 

Gold 0.15mm rHRP Adsorption Direct H2O2 Amperometry [115] 
        
        

Graphite  
Rotating disk 

3mm rHRP Adsorption Direct H2O2 Amperometry [116] 

        
Gold 0.3mm CytC / 

rHRP 
Adsoprtion Direct Superoxid

e Anion 
radical 

Amperometry [117] 

        
Gold 0.15mm L-LO / 

rHRP 
Adsorption Direct L-lysine Amperometry [118] 
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