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 6	

Abstract 7	

The Pseudomonas sp. have been long recognized for their exogenous lipolytic activities yet the genus still 8	
contains a lot of unexplored strains. Due to the versatile metabolic machinery and their potential for 9	
adaptation to fluctuating environmental conditions Pseudomonas sp. are of great interest for 10	
biotechnological applications. In this study, a new extracellularly produced lipolytic enzyme from 11	
Pseudomonas sp. (P. reinekei) was purified and characterized. The production of lipase from P. reinekei 12	
(H1) was enhanced 10-fold by optimizing the nitrogen source. The 50 kDa H1 lipase was purified using 13	
negative and positive mode anion exchange chromatography. The purified lipase was active over a broad 14	
pH range (5.0-9.0) and was stable for 24h at 40°C. The lipase showed significant stability, and indeed 15	
activation, in the presence of organic solvents with log P≥ 2.0. These features render this lipase of 16	
interest as a biocatalyst for applications such as biodiesel production, detergent formulations and 17	
biodegradation of oil in the environment. 18	

Keywords: Pseudomonas, lipase, chromatography, solvent stability, fermentation 19	

Introduction 20	

Lipases also known as serine hydrolases are ubiquitous enzymes that belong to the triacylglycerol ester 21	

hydrolase family (EC 3.1.1.3). They are also termed carboxylesterases, since they can catalyse the 22	

hydrolysis (and synthesis) of long-chain triglycerides. They were first identified in pancreatic juice by 23	

Bernard in 1856 [1]. Later in 1901, their presence was observed in the bacterial genus Bacillus [2], and 24	

this initiated an ongoing exploration of lipase-producing microbes of which Candida, Geotrichum, 25	

Rhizopus, Bacillus, Pseudomonas, Burkholderi and Streptomyces are the most studied [3]. They have 26	

been widely used for synthesis of novel compounds in so called biocatalytic processes.  27	

Enzyme catalysed water-based transformations can result in unwanted side reactions such as hydrolysis, 28	

racemization, polymerization and decomposition; and may have lower yields due to solubility of 29	

substrates/products [4]. Hence, the biocatalytic environment, from a processing and economic viewpoint, 30	

has shifted researchers’ interest from aqueous to a non-aqueous environment [5]. Organic solvents are the 31	

most commonly used non-aqueous media for bio-catalysis [6]. However, enzymes may be inactivated, or 32	

denatured, in organic solvents thereby limiting their use in some cases [4].  Despite this drawback many 33	
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industrial processes such as the production of biodiesel, biopolymers, cosmetics and pharmaceuticals still 34	

employ enzymes in non-aqueous environments. Solvent stable lipases are one of the leading biocatalysts 35	

in non-aqueous environment due to their unique property of catalysing a wide variety of useful 36	

transformations. The benefits of non-aqueous biocatalysis have encouraged researchers to discover, or 37	

engineer, enzymes that are stable in non-aqueous environment. In this study, the biodiscovery, 38	

purification and characterisation of a novel solvent stable lipase from Pseudomonas reinekei is described. 39	

This novel enzyme will be of interest for biocatalytic applications in non-aqueous media.  40	

Materials and methods 41	

Chemicals and materials 42	

Q-Sepharose high performance (HP) resin was purchased from GE Healthcare. All other chemicals were 43	

analytical grade and were purchased from Sigma-Aldrich.  44	

Enzyme assay 45	

 Plate assay 46	

Rhodamine B agar plates were used for the detection of lipolytic activity from microbial strains. 47	

Rhodamine B agar plates were prepared by using the Kouker and Jaeger Method [7].  48	

 Spectrophotometric assay 49	

p-NPP (p-Nitrophenyl palmitate) was used as the substrate for the estimation of lipase activity as per 50	

Glogauer and colleagues [8]. Lipase activity was measured after 30mins of incubation at 28°C.  51	

 52	

 Zymogram assay 53	

Lipolytic activity of proteins separated by Sodium Dodecyl Sulphate-Polyacrylamide gel electrophoresis 54	

(SDS-PAGE; non-reducing) was visualised before Coomassie Brilliant Blue staining. After non-reducing 55	

electrophoresis, gels were washed twice in 50mM Phosphate buffer saline with 1.5% v/v Triton X-100 at pH 56	

7.0±0.2 for 30mins at room temperature and were then were treated with freshly prepared 100µM 4-57	

Methylumbelliferyl butyrate (MUF-butyrate) for 10mins [9]. After incubation, activity bands resulting from 58	

4-methylumbelliferyl (MUF) liberation were visualised under UV illumination.  59	

 60	

Isolation and identification of solvent tolerant lipase producing strain:  61	
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Soil samples collected from the Wicklow mountains in Ireland from various locations were enriched in 62	

enrichment media [10] for 72hours at 28°C, 200rpm. The supernatant of the enriched samples were 63	

serially diluted (10-1 to 10-11) with autoclaved double distilled water (ddH2O). 100µl of each diluted 64	

sample was spread on Rhodamine B plates and incubated at 28°C for 48hours. Lipase producing colonies 65	

were aseptically picked and were sub-cultured on LB agar plates at 28°C to isolate pure colonies. The 66	

stability of lipase producing cultures in different solvents was determined by a plate-overlay method [11] 67	

against various solvents ranging from log P<0.2 to log P>2. Lipolytic strains stable in multiple solvents 68	

were 16S rRNA sequenced (Eurofins, Germany). 69	

Lipase production 70	

Fermentation time and inoculum percentage 71	

1% to 15% (v/v) of an overnight grown culture in LB media was added to basal lipase production media 72	

containing 50g/L bacteriological peptone, 2 gm/L sodium chloride, 0.4gm/L magnesium sulfate, 0.5gm/L 73	

ammonium sulfate, 0.3gm/L dipotassium hydrogen phosphate, 0.03gm/L potassium hydrogen phosphate 74	

and 10g/L olive oil at pH 7.0±0.2. After every 24hrs of fermentation, cell free supernatant was analysed 75	

for lipolytic activity by the spectrophotometer assay. 76	

Nitrogen source and percentage 77	

1% w/v of different nitrogen sources (bacteriological peptone, tryptone, yeast extract, ammonium sulfate, 78	

L-Lysine and L-Arginine individually) were used as a substitute to 50g/L peptone in the basal lipase 79	

production media. After screening the best nitrogen source responsible for maximum lipase production 80	

was further explored a different concentration (0.25-5% w/v) to supplement the basal production media.   81	

 pH of production media 82	

The pH of the production media, with the optimised nitrogen source and concentration, was adjusted 83	

between 5.0 (±0.2) to 9.0 (±0.2) to identify the optimum production pH. 84	

Purification 85	

With the optimized fermentation conditions, cell free supernatant was harvested by centrifugation at 4°C, 86	

5000xg for 20mins. The supernatant was filtered through a 1.2µm pre-filter, followed by 0.45µm filter. 87	

The filtered supernatant was dialysed at 1:20 ratio in 10mM Tris-HCl buffer at pH 9.0 (±0.2) in 12kDa 88	

cut off dialysis membrane. Lipase was purified from the dialysate using two step anion exchange 89	

chromatography with Q-Sepharose High Performance resin (6 cm x 1.5 cm). The first purification step 90	
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was carried out at flow through mode; pre-equilibrated with 10mM Tris-HCl at pH 9.0 (±0.2); the second 91	

purification with bind and elute mode; pre-equilibrated with 10mM Tris-HCl pH 9.0 (±0.2) containing 92	

250mM NaCl. The flow though from first column was collected and before using it for lipase purification 93	

from the second anion exchange chromatography 250mM of NaCl was added to it. Purified lipase was 94	

collected from second anion exchange chromatography when a step elution of 500mM NaCl was 95	

performed.  96	

Crude and purified lipase fractions were analysed on 12% (v/v) reducing and non-reducing, SDS-PAGE. 97	

Protein bands were checked for lipolytic activity by zymogram assay and were also visualised by 98	

Coomassie Brilliant Blue staining. The relative molecular mass was calculated by comparing with the 99	

molecular weight marker (14.4kDa- 116kDa, Pierce™ Unstained Protein marker).  100	

Stability Studies/Characterisation 101	

The stability of purified lipase was monitored over pH 3.0-10.0 at 28°C using the following buffers: 102	

50mM of Glycine-HCl (pH 3.0, 4.0), 50mM of Tris-Acetate (pH 5.0, 6.0), 50mM of Tris-HCl (pH 7.0, 103	

8.0, 9.0) and 50mM of Borate Buffer (pH 10.0) and subsequent relative activity was expressed as 104	

percentage to highest activity. The effect of temperature at 20, 30, 40, 50, 60, 70 and 80°C was 105	

determined by pre-incubating the purified lipase solution at the relevant temperature for 1.0 hour and 24 106	

hours and subsequent residual activity was expressed as a percentage of the activity at 4°C. The thermal 107	

half-life (T1/2) of lipase was determined by incubating the enzyme solution at 45°C for 1.5hours and 108	

analysing for lipase activity by withdrawing samples at different intervals. Lipase stability in organic 109	

solvents was investigated by gently mixing purified lipase solution and the selected solvent in screw cap 110	

glass vials under continuous mixing at both 28°C and 40°C. Similarly, the effect of additives (metal ions, 111	

enzyme inhibitors and surfactants) on purified lipase was estimated at 28°C and 40°C. Enzyme activity is 112	

represented as a % residual activity and was measured relative to control (enzyme solution without any 113	

solvents/additives at same condition). The steady state Michaelis–Menten kinetic constants of Km and 114	

Vmax were determined by Lineweaver–Burk plot using the reaction rate at varying substrate 115	

concentrations (pNP-Palmitate) under standard assay conditions. The catalytic constant (Kcat) was 116	

calculated by using Vmax, molecular weight and concentration of the enzyme. Lipolytic activity for all the 117	

characterisation trials (except substrate specificity) was estimated using spectrophotometric assay with p-118	

nitrophenyl palmitate (p-NPP) as substrate. 119	

Results and discussion  120	

Isolation and identification of solvent tolerant lipase producing strain:  121	
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Two lipolytic cultures isolated from soil sample from 53°00'12.4"N 6°20'47.9"W 53.003435, -6.346639 122	

were found to be stable in methanol, ethanol, n-hexane, heptane and cyclohexane by plate overlay method 123	

[11]. 16S rRNA sequencing of these strains identified one of the lipolytic cultures as Pseudomonas 124	

reinekei (P. reinekei), designated H1. The Pseudomonas genus demonstrates a great deal of metabolic 125	

diversity and attracts attention for industrial and environmental biocatalysis [12]. Figure 1 illustrates 126	

stability of Pseudomonas reinekei and its lipase respectively towards n-heptane by plate overlay method. 127	

 128	
(A)                                                           (B) 129	

Figure 1: Plate over lay method: (A) LB agar plates treated with n-heptane. The presence of growth indicated 130	
stability of the P. reinekei (H1) towards the organic solvent (n-heptane in the figure). (B) Stability of extracellular 131	
crude lipase towards n-heptane visualized by UV-illumination of Rhodamine B agar plates treated with n-heptane. 132	
 133	

Lipase production 134	

Production of lipases is known to be affected by media composition as well as factors like fermentation 135	

time, initial inoculum level, nitrogen source, pH, temperature etc. [13] and these were investigated 136	

following a one-factor at a time optimisation approach [14]. 137	

Fermentation time and Inoculum percentage 138	

The percentage of inoculum (i.e. the initial cell count) during the fermentation process plays an important 139	

role in lipase production. The finite volume of a culture medium results in limited nutrients and the rate of 140	

nutrient consumption is dependent on bacteria cell population/growth stage [15]. Maximum lipase activity 141	

for P. reinekei (H1) was obtained with 15% (v/v) inoculum after 6 days of fermentation (Figure 2). The 142	

onset of lipase production is organism-specific but, in general, lipases are released during late logarithmic 143	

or stationary phase of growth [16]. Cultivation periods from 5.0 hours to 168 hours have been reported as 144	

optimal for different lipase producing organisms. Lipases from Serratia marcesecens [17] and 145	

H1(P.reinekei) H1(P.reinekei)
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Pseudoalteromonas sp. WP27 [18] were shown to be produced to the highest level after 6 and 14 days of 146	

fermentation respectively. 147	

148	
Figure 2: The effect of percentage inoculums (1-15% v/v) on lipase production as estimated via spectrophotometric 149	
activity assay. This shake flask experiment was performed in basal lipase production media at 28°C with 200rpm 150	
continuous shaking over a period of 8 days. Data represented here are the mean of three independent determinants 151	
with error bars as standard deviation. 152	

 153	

Nitrogen source  154	

For the lipase from P. reinekei (H1), a 1% (w/v, or 68mM) L-Lysine supplement resulted in a significant 155	

(P ≤0.05, t-test) increase in lipase production to 0.46±0.023 IU/mL and was the best nitrogen source of all 156	

the nitrogen sources examined (Figure 3). Both organic and inorganic nitrogen sources have traditionally 157	

been used for lipase production. Media supplementation with specific amino acids; such as alanine, 158	

glycine, lysine and serine, have previously been shown to stimulate lipase production in Streptococcus 159	

faecalis [19]. For example, tryptone, combined with Lysine, was the most effective inducer for lipase 160	

production in Pseudomonas fluorescens [20]. Similarly, lipase production was enhanced by the presence 161	

of arginine, lysine, aspartic acid and glutamic acid for Pseudomonas fragi [21].  162	

Increased L-Lysine concentrations (above 1%, w/v) resulted in a decrease in lipase production. There was 163	

no significant difference (log P>0.05, t-test) in lipase concentration for 0.25%, 0.5% and 1% (w/v) L-164	

Lysine (Figure 4). 165	
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 166	
Figure 3: Influence of Nitrogen supplementation on Lipase production. Media supplementation optimization was 167	
performed by replacing the nitrogen source in basal lipase production media (without peptone) with 1% (w/v) of 168	
different nitrogen sources. A 15% (v/v) of inoculum was used for lipase production (28°C, for 6 days under 169	
continuous shaking at 200rpm). Amm sulp. represents 1% (w/v) of ammonium sulfate; while L-Arginine & L-Lysine 170	
represent lipase producing media containing 1% (w/v) of both L-Arginine and L-Lysine The data represented here 171	
are the mean of three independent experiments with standard deviations shown as error bars (* P≤0.05, **P≤0.01, 172	
***P≤0.001 represents significant, very significant and extremely significant difference based on t-test) 173	
 174	

 175	
Figure 4: Influence of level of Lysine supplementation on Lipase production. Media supplementation optimization 176	
experiment was performed with different % (w/v) of L-lysine in the production media (basal media without 177	
peptone). 15% (v/v) of inoculum was used for lipase production (28°C, for 6 days under continuous shaking at 178	
200rpm). No statistically significant difference was observed in lipase activity at 0.5% (w/v) and 1% (w/v) of L-179	
Lysine. The data represented here are the mean of three independent experiments with standard deviations noted as 180	
error bars. 181	
 182	

Influence of media pH	183	

pH plays a significant role in enzyme stability through maintaining an enzyme’s three-dimensional 184	

structure required for its biological activity [22]. Enzymes remain metabolically active at a favourable pH 185	

range during fermentation.	The maximum lipase production (0.46±0.02 IU/mL) was achieved when the 186	

initial pH of the production media was 6.5 (±0.2). Above pH 7.0 (±0.2), there was a significant reduction 187	
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(P≤0.05, t-test) in lipase production (Figure 5). A pH 7.0 (±0.2) was found to be optimum for lipase 188	

production in Pseudomonas gessardii [23], P. fluorescens [24] and P. aeruginosa [25]. In comparison, 189	

Pseudomonas putida 922 produced maximum lipase after 48 hours of incubation in a production media at 190	

pH 10 [26]. 191	

 192	

Figure 5: Influence of initial media pH on lipase production. Optimization was achieved by adjusting the pH of 193	
lipase producing media containing 1% (w/v) of L-Lysine. A 15% (v/v) inoculum was used for lipase production 194	
(28°C, for 6 days under continuous shaking at 200rpm). The data represented here are the mean of three independent 195	
experiments, with standard deviations noted as error bars. 196	

 197	

Purification of P. reinekei Lipase 198	

The isolation of the lipase from the optimized fermentation parameters was achieved by a two-step procedure 199	

(Table 1). The first purification column; an anion exchange Q-Sepharose HP (negative mode chromatography) 200	

removed contaminant proteins from the lipase preparation. The second chromatography step (positive mode 201	

chromatography; bind and elute), an anion exchange on Q-Sepharose HP resulted in isolation of 50 kDa 202	

lipase (Figure 6).  203	

  204	
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Table 1: The purification of lipase from P. reinekei (H1) by two-step purification. Anion exchanger Q-Sepharose HP 205	
was used as negative (chromatography 1) and positive (chromatography 2) mode of purification to achieve an 206	
overall yield of 13.72%, 4.23IU/mg specific activity and a 4.65fold purification.  207	

Purification step 
Total 
activity (IU) 

Total protein 
(mgs) 

Specific 
activity 
(IU/mg) 

Purification 
(fold) 

Yield 
(%) 

Cell free supernatant 75.1 82.48 0.91 1 100 
Dialysate 64.2 82.06 0.79 0.98 97.13 
Chromatography 1 49.4 47.60 1.04 1.14 67.66 
Chromatography 2 6.8 1.60 4.23 4.65 13.72 

 208	

 209	

							210	

	211	

(A)                                (B)   (C) 212	

Figure 6: (A) Rhodamine B agar plate representing the presence of lipolytic activity in purified lipase. CFS: Cell 213	
free supernatant from P.reinekei, +ve control: M.meihei lipase, -ve control: Bovine serum albumin. (B) 12% (v/v) 214	
non-reducing SDS-PAGE gel Stained with Coomassie Brilliant Blue. Lane 1: molecular weight marker, lane 2: Cell 215	
Free Supernatant; lane 3: Purified Lipase (C) Zymogram of 12% (v/v) non-reducing SDS-PAGE. Lane 1: Negative 216	
control (Bovine Serum Albumin); Lane 2: Cell Free Supernatant; Lane 3: Purified Lipase; Lane 4: lipase from 217	
M.meihei as positive control. The estimated size of purified lipase was ~50kDa. 218	

 219	

Previous studies have shown sorbitol and other polyols to effectively reduce or inhibit aggregation of IgG 220	

solutions [27]. Therefore, to enhance the stability of lipase and to avoid precipitation due to aggregation 221	

5% (w/v) sorbitol was added to purified lipase sample with no effect on the characteristics of the purified 222	

lipase.  223	

 224	
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Characterisation of P. reinekei lipase 225	

  pH stability  226	

Significant loss of activity was seen at pH 3.0 (±0.2), 4.0 (±0.2) and pH 10 (±0.2); conversely >90% 227	

relative activity was observed between pH 5.0 (±0.2) to 8.0 (±0.2) (Figure 7). Generally, Pseudomonas 228	

lipases have neutral or alkaline pH optima [28], however P. gessardii lipase had an acidic optimum at pH 229	

5.0 and was found to be active even at pH 2.0 [29]. Given that the purified from P. reinekei (H1) was 230	

stable from pH 5.0-9.0 it could prove advantageous in application areas such as detergents, leather 231	

tanning and fine chemicals manufacture [30]. Furthermore, an optimal pH of 5.0 makes this lipase ideal 232	

for oleochemical and food industries, as well as for the hydrolysis or modification of triacylglycerols to 233	

improve nutritional properties of food [31]. 234	

 235	

Figure 7: The relative activity of purified P. reinekei (H1) lipase was measured after 24hours incubation at 28°C in 236	
the presence of different pH buffers (pH 3.0-10.0). The relative lipase activity was measured by spectrophotometric 237	
assay. The data represent the mean of three independent experiments and the standard deviations are noted as error 238	
bars. 239	

 240	

Thermostability 241	

Optimum temperature for lipolytic activity of purified lipase from P.reinekei using p-NPP spectrophotometer 242	

assay was 35°C (Figure 8). Purified lipase from P. reinekei lost 70% of its initial activity at temperatures 243	

greater than 50°C within one hour of incubation (Figure 9). However, the lipase retained 90% of activity at 244	

40°C after 24hours. Lipases from Pseudomonas species have broad temperature optima from 4°C to 90°C. 245	

Lipase from Pseudomonas sp. PF 16 had an optimum temperature of 4°C [32]; while lipase from 246	

Pseudomonas sp. AG-8 showed optimum activity at 45°C [33]. The inter-connection between the habitat of 247	
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micro-organism isolated and the enzyme properties [34] could be a possible reason for explaining the lower 248	

thermostability of P. reinekei (H1) lipase. As the soil sample for H1 isolation was from temperate 249	

environmental conditions, lower thermostability of enzymes was expected. However, thermostability is a 250	

desirable characteristic for enzymes used in applications at high temperatures; the same can be achieved by 251	

protein engineering such as physical immobilization, chemical modification and crosslinking [35].   252	

 253	

Figure 8:  The optimum temperature for lipolytic activity of purified lipase was investigated by incubating the 254	
enzyme-substrate solution at various temperatures (4, 15, 20, 25, 30, 35, 40 and 45°C) for 30mins. Activity of lipase 255	
(IU) was calculated. The data represented are the mean of three independent experiments and the standard deviations 256	
are noted as error bars. 257	

 258	

Figure 9: The thermal stability of purified lipase was investigated by incubating the enzyme solution at various 259	
temperatures (20, 30, 40, 50, 60, 70 and 80°C) for 1hour. Residual activity (%) at each temperature and time point 260	
was calculated relative to that at 0 hour, as 100%. The data represented are the mean of three independent 261	
experiments and the standard deviations are noted as error bars. 262	
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 263	

By first order thermal deactivation, half-life of purified lipase at 45°C (Figure 10) was calculated as 89mins 264	

according to eq. (1) and eq. (2) [36]. 265	

ln At = ln A0 – kd t          (1) 266	

   T1/2 = ln0.5                         (2) 267	
                                                                      -kd 268	

 269	

Figure 10: The thermal half-life of purified lipase was calculated by incubating the enzyme solution at 45°C. 270	
Relative activity (%) at each time point was calculated considering initial activity as 100% using the 271	
spectrophotometer assay. The data represented are the mean of three independent experiments and the standard 272	
deviations are noted as error bars. 273	

Influence of Metal ions and chemical reagents 274	

The presence of Ca2+ and Mg2+ ions has been reported to enhance the hydrolytic activity of lipases [37,38]. 275	

However, the activity of P. reinekei (H1) lipase was unaffected (P≥0.05, t-test) by the presence of Ca2+, Mg2+, 276	

K+, Na+ ions irrespective of the incubation temperature. P. reinekei (H1) lipase lost activity in the presence of 277	

EDTA, suggesting this it may be a metalloenzyme and EDTA chelated metal ions required for its activity. 278	

Lipases from Pseudomonas putida 3SK, Pseudomonas stutzeri, and Pseudomonas sp. DMVR46 were also 279	

found to be metalloenzymes [12,39,40]. Significant loss in lipolytic activity (P≤0.05, t-test) for P. reinekei 280	

(H1) lipase was observed in presence of urea. Urea molecules interrupt the intra-chain hydrogen bonds in an 281	

enzyme and can cause direct denaturation [41]. However, lipase from Pseudomonas sp. AG-8 [33] and 282	

Pseudomonas sp. 42A2 [42] have been shown to be stable in 6.0 M urea. Non-ionic detergents do not interact 283	

extensively with the protein surface and are therefore considered mild. Ionic detergents on the other hand, in- 284	

particular SDS, bind non-specifically to the enzyme surface, leading to protein unfolding [43]. Interestingly, 285	
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in the presence of 1mM (0.028% w/v) SDS, an enhanced activity of the P. reineki (H1) lipase was observed 286	

(Table 2). Enhanced activity at 28°C, coupled with no significant loss in activity at 40°C, could be explained 287	

by the concentration of SDS. Below the Critical Micelle Concentration CMC (8.2mM or 0.24% w/v at 25°C) 288	

SDS binds to the lid of lipase and activates it by conformational changes and the enzyme requires less 289	

interfacial activation [44]. Also, detergents may also alter the hydrophobicity of the enzyme and, therefore, 290	

the availability of substrate to the enzyme [45]. The absence of disulphide bonds in the novel P. reinekei 291	

lipase was confirmed as no activity loss was noted after incubation in β-Mercaptoethanol. A similar 292	

observation was seen with lipases from Streptomyces bambergiensis OC 25-4 [46] and Pseudomonas 293	

aeruginosa BN-1 [47]. Stability in surfactants like Tween, Triton X is desirable for lipases for their potential 294	

application in detergent formulations. The lipase from P. reinekei (H1) exhibited good stability towards 295	

surfactant and detergents, which enhances its’ novel properties and extends its potential application range. 296	

The effect of detergents on this enzyme correlates with their hydrophilic/lipophilic balance (HLB), which is 297	

defined the detergent distribution between polar and non-polar phases [48]. Thus, non-ionic surfactants with 298	

low HLB value (Triton X-100: HLB 13.5; and Tween 80: HLB 15) are less detrimental on activity of lipase 299	

in comparison to SDS with a higher HLB of 40.  300	

Table 2: The effect of various metal ions and effector molecules/chemicals (1mM) on the stability/activity of P. 301	
reinekei (H1) lipase was investigated and reported by the spectrophotometer assay. The residual activity (%) was 302	
calculated relative to that of enzyme solution at same temperature but in the absence of any additive, after 24 hours 303	
of incubation at 28°C and 40°C. The data represented are the mean of three independent experiments and the 304	
standard deviations are noted (* P≤0.05, **P≤0.01, ****P<0.0001 represents significant, very significant and 305	
extremely significant difference based on t-test) 306	
 307	

Substances Residual activity ± SD (28°C) Residual activity ± SD (40°C) 
Control 100 100 
Ca2+ 87.25±3.36** 98.88±4.94 
Mg2+ 95.06±3.75 105.00±4.25 
K+ 95.70±3.78 106.76±4.34 
Na+ 100.48±4.02 90.87±4.54* 
EDTA 26.36±1.32**** 11.60±1.58**** 
β-Mercaptoethanol 122.73±5.14** 114.98±5.75* 
Polysorbate 80 98.60±3.93 103.28±5.16 
Triton X-100 100.48±4.02 90.87±4.54* 
SDS 110.48±4.52* 88.24±5.41** 

 308	

Effect of Organic solvents 309	

The application of lipases for bioconversions in an organic solvent system is advantageous from a 310	

biotechnological viewpoint. Activity and stability in solvents are considered critical attributes in a lipase. P. 311	
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reinekei (H1) lipase showed significant stability in 20% (v/v) methanol and ethanol after 24hours of 312	

incubation (Table 3). Few lipases have been reported as stabilized/activated, in hydrophilic solvents; for 313	

example, Antarctic Pseudomonas lipase lost only 10% of its activity in presence of 25% (v/v) methanol, 314	

while showed 101.9% activity in 25% (v/v) ethanol [49]. The activation of lipase in the presence of some 315	

hydrophilic organic solvents can be explained by the interactions of certain amino acid residues with the 316	

organic solvent, changing the lipase conformation from the closed to the open form, thereby enhancing lipase 317	

activity [50]. Alternatively, some lipases are known to be able to maintain an essential hydration layer, due to 318	

the presence of surface polar/charged amino acid residues, which interact strongly with water molecules [40]. 319	

Hydrophobic organic solvents with higher log P (for example, cyclohexane, n-hexane, n-heptane) possess a 320	

reduced ability to strip essential water molecules from the enzyme surface than hydrophilic solvents (low log 321	

P). Enhanced lipolytic activity was observed for P. reinekei (H1) lipase in the presence of hydrophobic 322	

solvents (cyclohexane, n-hexane and n-heptane). The activation in lipolytic activity of P. reinekei lipase by 323	

hydrophobic solvents may be due to the interaction of solvent with hydrophobic amino acid residues present 324	

in the lid/flap covering the catalytic site of the enzyme, thereby keeping the enzyme in a flexible open 325	

conformation and consequently increasing its activity [3]. Similar observations have been noted for a lipase 326	

from Pseudomonas stutzeri, where the activity increased to 111% when it was incubated in 50% (v/v) n-327	

hexane at 37°C for 30min [40].  328	

Table 3: The effect of various organic solvents on the stability of P. reinekei (H1) lipase was investigated and reported 329	
by the spectrophotometer assay. Residual activity (%) was calculated relative to that of enzyme solution at same 330	
temperature but no additive after 1hour and 24hours of incubation at 28°C and 40°C. The data represented are the mean 331	
of three independent experiments and the standard deviations are noted (* P≤0.05, **P≤0.01, ***P≤0.001, 332	
****P≤0.0001 represents significant, very significant and extremely significant difference based on t-test). 333	

Solvent %(v/v) 
% Residual 

activity at 28°C 
after 1hour 

% Residual 
activity at 40°C 

after 1hour 

% Residual 
activity at 28°C 
after 24hours 

Methanol 10 96.24±4.81 97.19±4.81 92.71±4.63 
20 90.19±4.51 69.02±3.45*** 97.86±4.80 

Ethanol 10 97.57±4.81 82.86±4.12* 92.27±4.61 
20 87.90±4.39* 37.77±2.19**** 92.07±4.60 

Cyclohexane 50 243.64±5.81**** 198.14±7.81**** 193.28±6.88**** 
Hexane 50 138.72±7.81**** 197.34±8.82**** 275.95±7.56**** 
Heptane 50 181.14±9.05**** 192.66±9.13**** 324.37±4.81**** 

 334	

Enzyme Kinetics 335	

The kinetics of the purified lipase from P. reinekei was studied using pNP-palmitate as the substrate of 336	

choice at 28°C. A Lineweaver Burk plot (Figure 11) was used to calculate the kinetic parameters Vmax, Km 337	
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and Kcat and were estimated to be 3.41±0.17mmol/min/mg, 0.48±0.02mM and 2601.66 respectively. Low 338	

Km of P. reinekei lipase indicates a high affinity of this enzyme towards pNP-Palmitate. In this study the 339	

high Kcat, coupled with low Km, values for P. reinekei (H1) lipase are beneficial both from economical 340	

and application perspective.  341	

 342	

Figure 11: A Lineweaver Burk plot for the purified P. reinekei (H1) lipase using pNP-Palmitate as substrate over the 343	
substrate concentration range 0.2-2mM under standard assay conditions. The data represented are the mean of three 344	
independent experiments and the standard deviations are noted as error bars. 345	

 346	

Substrate Specificity 347	

Lipase from P. reinekei (H1) showed maximum catalytic efficiency for short chain (C8:0) Phenyl ester 348	

(pNP-Octanoate). The catalytic efficiency reduced with increased chain length from C10:0 to C16:0, with no, 349	

or minimal, catalytic activity observed for short chain esters (C2:0, C4:0; Figure 12). 350	

 351	

Figure 12: Substrate specificity of purified lipase from P. reinekei towards a range of p-NP esters. Specificity was 352	
checked using standard assay conditions reported via the spectrophotometer assay. The data represented are the 353	
mean of three independent experiments and the standard deviations are noted as error bars. 354	
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 355	

 356	

Amino acid sequence identification 357	

Mass spectrophotometer analysis of the purified lipase from P. reinekei revealed four conserved peptide 358	

sequences: AGYTTAQVEVLGK; LLEIGIGFR; VLNIGYENDPVFR; ANTWVQDLNR. Internal 359	

sequencing primers were designed to bind where these P. reinekei lipases peptide sequence fragments 360	

most closely aligned the lipase from P. fluorescens, Pseudomonas sp. PMAC 25886, P. yamanorum, 361	

LipAMS8 from Pseudomonas sp. AMS8 and Pseudomonas sp. PAMC25886 (Figure 13). Examination of 362	

phylogenetic tree of the amino acid sequences by BlastP in NCBI revealed the location of lipase from P. 363	

reinekei to other lipases of Pseudomonas species (Figure 14).  364	

P. reinekei: H1    ------------------------------------------------------------ 0    365	
P. fluorescens     MGVFDYKNLGTEGSKALFADAMAITLYSYHNLDNGFAVGYQHNGFGLGLPATLVGALLGS 60 366	
PAMC 25886         MGVFDYKNLGTEGSKALFADALAISLYSYHNLDNGFAVGYQHNGFGLGLPATLVGALLGS 60 367	
P. yamanorum       MGVFDYKNLGTEGSKALFADAMAITLYSYHNLDNGFAVGYQHNGFGLGLPATLVGALLGS 60 368	
LipAMS8            MGVFDYKNLGTEGSKALFADAMAITLYSYHNLDNGFAVGYQHNGFGLGLPATLVGALLGS 60 369	
PTA-122608         MGVFDYKNLGTEGSKALFADAMAITLYSYHNLDNGFAVGYQHNGFGLGLPATLVGALLGS 60 370	
 371	
P. reinekei: H1    -----------------------------------------------------AGYTTAQ 120 372	
P. fluorescens     TDSQGVIPGIPWNPDSEKAALDAVHKAGWTPISASTLGYGGKVDARGTFFGEKAGYTTAQ 120 373	
PAMC 25886         TDSQGVIPGIPWNPDSEKAALEAVNNAGWTPISASTLGYGGKVDARGTFFGEKAGYTTAQ 120 374	
P. yamanorum       TDSQGVIPGIPWNPDSEKAALDAVNKAGWTPISASTLGYGGKVDARGTFFGEKAGYTTAQ 120 375	
LipAMS8            TDSQGVIPGIPWNPDSEKAALEAVNKAGWTPISASTLGYGGKVDARGTFFGEKAGYTTAQ 120 376	
PTA-122608         TDSQGVIPGIPWNPDSEKAALEAVNKAGWTPISASTLGYGGKVDARGTFFGEKAGYTTAQ 120 377	
                                                                        ******* 378	
P. reinekei: H1    VEVLGK------LLEIGIGFR--------------------------------------- 180 379	
P. fluorescens     VEVLGKYDGDGKLLEIGIGFRGTSGPRETLISDSIGDLVSDLLAALGPKDYAKNYAGEAF 180 380	
PAMC 25886         VEVLGKYDGAGKLLEIGIGFRGTSGPRETLISDSIGDLVSDLLAALGPKDYAKNYAGEAF 180 381	
P. yamanorum       VEVLGKYDGAGKLLEIGIGFRGTSGPRETLITDSIGDLVSDLLAALGPKDYAKNYAGEAF 180 382	
LipAMS8            VEVLGKYDGDGKLLEIGIGFRGTSGPRETLITDSIGDLVSDLLAALGPKDYAKNYAGEAF 180 383	
PTA-122608         VEVLGKYDGDGKLLEIGIGFRGTSGPRETLITDSIGDLVSDLLAALGPKDYAKNYAGEAF 180 384	
                   ******      ********* 385	
 386	
P. reinekei: H1    ----------------------------------SMADLSGNKWSGFYKDSNYVAYASPT 240 387	
P. fluorescens     GTLLKDVAAYAGSHGLTGKDVVVSGHSLGGLAVNSMADLSGNKWSGFYKDSNYVAYASPT 240 388	
PAMC 25886         GTLLKDVAAYAGSHGLTGKDVVVSGHSLGGLAVNSMADLSGNKWSGFYKDSNYVAYASPT 240 389	
P. yamanorum       GTLLKDVAAYAGSHGLTGKDVVVSGHSLGGLAVNSMADLSGNKWSGFYKDSNYVAYASPT 240 390	
LipAMS8            GTLLKDVAAYAGSHGLTGKDVVVSGHSLGGLAVNSMADLSGNKWSGFYKDSNYVAYASPT 240 391	
PTA-122608         GTLLKDVAAYAGSHGLTGKDVVVSGHSLGGLAVNSMADLSGNKWSGFYKDSNYVAYASPT 240 392	
                                                     ************************** 393	
 394	
P. reinekei: H1    QSSAT-VLNIGYENDPVFR-------------------------------------WNVL 300 395	
P. fluorescens     QSAGDKVLNIGYENDPVFRALDGSSFNFSSLGVHDKPHESTTDNIVSFNDHYASTLWNVL 300 396	
PAMC 25886         QSSGDKVLNIGYENDPVFRALDGSSFNFSSLGVHDKPHESTTDNIVNFNDHYASTLWNVL 300 397	
P. yamanorum       QSSGDKVLNIGYENDPVFRALDGSSFNFSSLGVHDKPHESTTDNIVNFNDHYASTLWNVL 300 398	
LipAMS8            QSSGDKVLNIGYENDPVFRALDGSSFNFSSLGVHDKPHESTTDNIVSFNDHYASTLWNVL 300 399	
PTA-122608         QSSGDKVLNIGYENDPVFRALDGSSFNFSSLGVHDKPHESTTDNIVSFNDHYASTLWNVL 300 400	
                   **.   *************                                     **** 401	
 402	
P. reinekei: H1    PFSIVNVPTWLSHLPTAYGDGLTRVLDSKFYDLTSRDS------------ANTWVQDLNR 360 403	
P. fluorescens     PFSIVNVPTWISHLPTAYGDGLTRVLDSQFYDLTSRDSTIIVANLSDPARANTWVQDLNR 360 404	
PAMC 25886         PFSIVNVPTWLSHLPTAYGDGLTRVLDSTFYDLTSRDSTIIVANLSDPARANTWVQDLNR 360 405	
P. yamanorum       PFSIVNVPTWLSHLPTAYGDGLTRVLDSKFYDLTSRDSTIIVANLSDPARANTWVQDLNR 360 406	
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AMS8               PFSIVNVPTWLSHLPTGYGDGLTRVLDSKFYDLTSRDSTIIVANLSDPARANTWVQDLNR 360 407	
PTA-122608         PFSIVNVPTWLSHLPTGYGDGLTRVLDSKFYDLTSRDSTIIVANLSDPARANTWVQDLNR 360 408	
                   ****************.***********.*********            ********** 409	
 410	
P. reinekei: H1    ------------------------------------------------------------ 420 411	
P. fluorescens     NAEPHKGNTFIIGSDGNDLIQGGKGVDFIEGGKGNDTIRDNSGHNTFLFGGQFGQDRVIG 420 412	
PAMC 25886         NAEPHKGNTFIIGSEGDDLIQGGKGVDFIEGGKGNDTIRDNSGHNTFLFGGQFGQDRVVG 420 413	
P. yamanorum       NAEPHKGNTFIIGSDGDDLIQGGKGVDFIEGGKGNDTIRDNSGHNTFLFGGQFGQDRVIG 420 414	
AMS8               NAEPHKGNTFIIGSDGNDLIQGGKGVDFIEGGKGNDTIRDNSGHNTFLFGGQFGQDRVIG 420 415	
PTA-122608         NAEPHKGNTFIIGSDGNDLIQGGKGVDFIEGGKGNDTIRDNSGHNTFLFGGQFGQDRVIG 420 416	
                    417	
P. reinekei: H1    -------------------------------------------------------- 476 418	
P. fluorescens     YQPTDKLVFRDVEGSADWRDHAKVVGSDTVLSFGADSVTLVGVGLAGVWGDGISIS 476 419	
PAMC 25886         YQPTDKLVFRDVEGSADWRDHAKVVGGDTVLSFGADSVTLVGVGLAGVWGDGISIS 476 420	
P. yamanorum       YQPTDKLVFRDVEGSADWRDHAKVVGGDTVLSFGADSVTLVGVGLAGVWGDGISIS 476 421	
LipAMS8            YQSTDKLVFKDVEGSADWRDHAKVVGGDTVLSFGADSVTLVGVGLAGVGGDGISIS 476 422	
PTA-122608         YQSTDKLVFRDVEGSADWRDHAKVVGGDTVLSFGADSVTLVGVGLAGVGGDGISIS 476 423	
                    424	
Figure 13: Alignment of P. reinekei (H1) lipase with lipase from P. fluorescens, Pseudomonas sp. PAMC 25886, P. 425	
yamanorum, LipAMS8 from Pseudomonas sp. AMS8 and Pseudomonas sp. PTA-122608.  426	

 427	

 428	

Figure 14: A distance tree based on conserved amino acid sequences in P. reinekei lipase generated via a BlastP 429	
alignment. The homology of P. reinekei lipase (highlighted in yellow and reported as ‘unnamed protein product’) to 430	
lipases from different Pseudomonas sp. is noted as within the same clade. 431	

 432	

Conclusion 433	
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Pseudomonas sp. is one of the most studied bacterial species [51]; and lipases from these have been 434	

extensively explored.  In this study, a novel lipase from P. reinekei was discovered and when fully 435	

characterised, displayed high stability in a variety of industrially relevant organic solvents. Furthermore, it 436	

was stable over wide pH range (5.0-9.0) and was moderately thermostable, suggesting that this enzyme may 437	

be a suitable candidate for bio-transformations in the food and pharmaceutical industries. Additionally, the 438	

novelty of P. reinekei strain, and the lipase explored here with its unique stability characteristics, makes this 439	

enzyme a potential catalyst for other biotechnological applications such as synthesis of biodiesel and 440	

biodegradable biopolymers. Further explorative work, including molecular cloning and lipase over 441	

expression, will assist in the application of this novel enzyme.     442	
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